2011届中考数学模拟复习测试题19

合集下载

江苏省南通市通州区2011届中考适应性抽测数学试卷

江苏省南通市通州区2011届中考适应性抽测数学试卷

南通市通州区2011年中考适应性抽测数 学(总分 150分 答卷时间 120分钟)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填写在题前的括号内. 【 】1.计算32()a 的结果是A .5a B .6a C .8a D .9a【 】2.在 -3-1, 0 这四个实数中,最大的是A .-3B .C . -1D . 0【 】3.某校七年级有15名同学参加百米竞赛,预赛成绩各不相同,要取前7名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这15名同学成绩的 A .中位数 B .众数 C .平均数 D .方差【 】4.下列四张扑克牌图案,属于中心对称图形的是A. B. C. D. 【 】5.以下列各组线段长为边,能组成三角形的是A .1、2、3B .8、6、4C .12、5、6D .2、3、6【 】6.如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是 A .两个相交的圆 B .两个内切的圆 C .两个外切的圆D .两个外离的圆【 】7.下列方程中,有两个不相等实数根的是A .210x x ++=B .2310x x +-=C .2440x x -+=D .2230x x -+=.【 】8.已知:如图,∠AOB 的两边OA ,OB 均为平面反光镜,∠AOB =40°.在OB 上有一点P ,从P 点射出一束光线 经OA 上的Q 点反射后,反射光线QR 恰好与OB 平行, 则∠QPB 的度数是A .60°B .80°C .100 °D .120°【 】9.如图,小雪从O 点出发,前进4米后向右转20°,再前进4米后又向右转20°,……, 这样一直走下去,她第一次回到出发点O 时 一共走了A .40米B .60米C .70米D .72米O ABPQ R (第8题)【】10.方程x2+2x-1=0的根可看成函数y=x+2与函数1yx=的图象交点的横坐标,用此方法可推断方程x3+x-1=0的实数根x所在范围为A.12x-<<B.12x<<C.112x<<D.312x<<二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上.11.在函数y=x的取值范围是.12.2010年6月3日,人类首次模拟火星载人航天飞行试验“火星-500”正式启动.包括中国志愿者王跃在内的6名志愿者踏上了为期12480小时的“火星之旅”.将12480用科学记数法表示.13.随机抛掷两枚一元硬币,落地后全部正面朝上的概率是.14.不等式组40320xx->⎧⎨+>⎩的解集是.15.为了估计县城空气质量情况,某同学在30天里做了如下记录:其中w<50时空气质量为优,50≤w≤100时空气质量为良,100<w≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为天.16.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是.(结果保留π)17.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正弦值等于.18.如图,在平面直角坐标系xOy中,直线y=-x+b与双曲线y=1x-(x<0)交于点A,与x轴交于点B,则OA2-OB2的值为.ACABO xy(第18题)三、解答题:本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步骤. (第19题8分,第20题8分) 19.(1)计算:12--sin30°+π0; (2)因式分解:a 3-9a .20.先化简再求值:121‏‌x x x x x --⎛⎫÷- ⎪⎝⎭,其中x 取你喜欢的值.(第21题8分,第22题8分)21.如图,在△ABC 中,AB =AC ,点O 是BC 的中点,连结AO ,在AO 的延长线上取一点D ,连结BD ,CD .(1)求证:△ABD ≌△ACD ; (2)当AO 与AD 满足什么数量关系时,四边形ABDC 是菱形?并说明理由.22.一只不透明的袋子中,装有2个白球(标有号码1、2)和1个红球,这些球除颜色外其他都相同. (1)搅匀后从中摸出一个球,摸到白球的概率是多少?(2)搅匀后从中一次摸出两个球,请用树状图(或列表法)求这两个球都是白球的概率.(第23题10分,第24题10分)(第21题)ABCDO23.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)24.如图,半圆的直径10AB =,点C 在半圆上,6BC =. (1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.(第24题)PBCcEA C(第23题)(第25题10分,第26题10分)25. 某现代农业产业园区要对1号、2号、3号、4号四个品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广. 通过实验得知,3号果树幼苗成活率为89.6%. 把实验数据绘制成下列两幅统计图(部分信息未给出):(1)实验所用的2号果树幼苗的数量是 株; (2)请求出3号果树幼苗的成活数,并把图2的统计图补充完整; (3)你认为应选哪一品种进行推广?请通过计算说明理由.26. 因国务院有关房地产的新政策出台后,某楼盘平均成交价由今年2月份的6000元/m 2下降到4月份的5400元/ m 2(假设每月降价一次,且降幅相同). (1)求平均每次下降的百分率;0.95)(2)如果房价继续回落,按此降价的百分率,你预测到6月份该楼盘成交均价是否会跌破4800元/ m 2?请说明理由.27.甲、乙两地相距50千米,图中折线表示某骑车人离甲地的距离y 与时间x 的函数关系.有一辆客车9点从乙地出发,以50千米/时的速度匀速行驶,并往返于甲、乙两地之间.(乘客上、下车停留时间忽略不计)(1)从折线图可以看出,骑车人一共休息 次,共休息 小时; (2)请在图中画出9点至15点之间客车与甲地的距离y 随时间x 变化的函数图象; (3)通过计算说明,何时骑车人与客车第二次相遇.1号 30% 2号4号 25% 3号 25%图1图2(第25题)(第27题)401011 12 1314159 x //小时500株幼苗中各品种幼苗所占百分比统计图各品种幼苗成活数统计图(第28题14分)28.如图1,抛物线y =ax2-2ax -b (a<0)与x 轴交于点A 、点B (-1,0),与y 轴的正半轴交于点C ,顶点为D .(1)求顶点D 的坐标(用含a 的代数式表示); (2)若以AD 为直径的圆经过点C .①求抛物线的解析式;②如图2,点E 是y 轴负半轴上的一点,连结BE ,将△OBE 绕平面内某一点旋转180°,得到△PMN (点P 、M 、N 分别和点O 、B 、E 对应),并且点M 、N 都在抛物线上,作MF ⊥x 轴于点F ,若线段MF :BF =1 :2,求点M 的坐标;③如图3,点Q 在抛物线的对称轴上,以Q 为圆心的圆过A 、B 两点,并且和直线CD 相切,请求出点Q 的坐标.图1图3图2数学答案及评分标准说明:本评分标准每题一般只提供一种解法,如有其他解法,请参照本标准的精神给分. 一、选择题(本大题共有10小题,每小题3分,共30分)二、填空题(本大题共有8小题,每小题3分,共24分)11.x ≥1 12.1.248×104 13.41 14.243x -<<15. 292 16.65π 17.5518.2 三、解答题(本大题共有10小题,共96分) 19.(本题满分8分)解:(1)原式=113122+-+ ………………………………………………2分= 4 ……………………………………………………………4分(2)原式=a (a 2-9) ………………………………………………2分 =a (a -3)(a +3) …………………………………………………4分 20.(本题满分8分)解:原式=xx x x x 1212+-÷- ……………………………………………2分 =2)1(1-⨯-x xx x …………………………………………………4分 =11-x .……………………………………………………………6分 x 取0和1以外的任何数.……………………………………………………8分 21.(本题满分8分)证明:(1)∵AB =AC , 点O 为BC 的中点,∴∠BAO =∠CAO . ……………………………2分 ∵AD =AD ,∴△ABD ≌△ACD . ……………………………3分 (2)当AD =2AO 时,四边形ABDC 是菱形. ………………………………5分理由如下:∵AD =2A O ,∴AO =DO . 又点O 为BC 中点,∴BO =CO . ∴四边形ABDC 为平行四边形. ……………………………7分 ∵AB =AC , ∴四边形ABDC 为菱形.……………………8分 22.(本题满分8分)(第21题图)ABCDO解:(1)P (一个球是白球)=23······················································································· 3分 (2)树状图如下(列表略):开始········································································································································· 6分∴P (两个球都是白球)2163== . ··········································································· 8分23.(本题满分10分)解:过A 作AD ⊥CB ,垂足为点D . ···················································································· 1分在Rt △ADC 中,∵CD =36,∠CAD =60°. ··································································· 2分 ∴AD =31233660tan ==︒CD ≈20.76. ·········································································· 6分在Rt △ADB 中,∵AD ≈20.76,∠BAD =37°. ····························································· 7分 ∴BD = 37tan ⨯AD ≈20.76×0.75=15.57≈15.6(米). ················································ 9分答:气球应至少再上升15.6米. ····················································································· 10分24.(本题满分10分)解:(1)AB 是半圆的直径,点C 在半圆上,90ACB ∴∠=°. ……………………………………2分在Rt ABC △中,8AC == ………………4分(2)PE AB ⊥,90APE ∴∠=°.90ACB ∠= °,APE ACB ∴∠=∠. ………………………………………5分 又PAE CAB ∠=∠ ,AEP ABC ∴△∽△, ………………………………………6分 PE AP BC AC∴= ………………………………………8分 110268PE⨯∴=301584PE ∴==.………………………………………10分25.(本题满分10分)解:(1)100 ………………………………………………………………2分 (2)50025%89.6%112⨯⨯= ………………………………………4分白2 红 白1 白1 红 白2白1 白2 红…………………………6分(3)1号幼苗成活率为135100%90%150⨯=, 2号幼苗成活率为85100%85%100⨯=, 4号幼苗成活率为117100%93.6%125⨯=,…………………………9分 ∵93.6%90%89.6%85%>>>∴应选择4号品种进行推广. …………………………………………10分26.(本题满分10分)解:(1)设平均每次下调的百分率为x ,根据题意,得26000(1)5400x -=, …………………………………………4分化简得 2(1)0.9x -=解得10.05x ≈,2 1.95x ≈(不合题意舍去). ……………………6分 所以平均每次下调的百分率约为5%. ………………………………7分 (2)∵25400(1)x -=5400×0.9=4860>4800,∴按此降价的百分率,预测到6月份该楼盘成交均价不会跌破4800元/ m 2. ……………………………………………………………………………10分 27.(本题满分10分)解:(1)两,2. …………………………………………2分(2)5分(3)设直线EF 所表示的函数解析式为y=kx+b .把E (10,0),F (11,50)分别代入y=kx+b ,得⎩⎨⎧=+=+.5011,010b k b k …………………………………………7分 10 11 12 13 14 159 x /时解得⎩⎨⎧-==.500,50b k∴直线EF 所表示的函数解析式为y =50x -500.……………………………8分 把y =40代入y =50x -500 得40=50x -500 ∴x =1054. 答:10点48分骑车人与客车第二次相遇. …………………………………10分 28.(本题满分12分)解:(1)由题意,得0=a +2a -b ,b=3 a , ···························································· 1分∴223y ax ax a =--.配方,得2(1)4y a x a =--, ·································································· 2分 ∴顶点D 的坐标为(1,-4a ). ···························································· 3分 (2)①∵以AD 为直径的圆经过点C ,∴∠ACD =90°.过点D 作DH ⊥y 轴,垂足为点H ,易证△DHC ≌△COA . ················· 4分∴DH HC CO OA =,即133aa -=-.解得a =-1(正值舍去) . ························ 5分 ∴抛物线解析式为223y x x =-++. ························································ 6分 ②设点M 的坐标为(m ,n ),其中m 、n 均大于0,则FB =m +1,FM =n , ∵MF :BF =1 :2,∴12m n +=. ··········································又∵223n m m =-++,∴21232m m m +=-++. ················解得m 1=-1(舍去),m 2=52.此时n =74. ·····························∴点M 的坐标为(52,74). ············································③设切点为G ,直线CD 交x 轴于点R ,对称轴交x 轴于点T ,连接QG ,QB ,易求CD 的解析式为3y x =+,DT =RT =4,从而∠CDQ =45°. ········ 11分 在Rt △DGQ 中,222DQ GQ =,而QG QB =,∴222DQ BQ =, 设点Q (1,y ),那么222(4)2(2)y y -=+ ·············································· 12分 解得4y =± ··············································································· 13分 点Q 的坐标为(1,4-+1,4--. ························ 14分。

2011年初中毕业生学业考试数学模拟测试卷及答案(1)

2011年初中毕业生学业考试数学模拟测试卷及答案(1)

2011年初中数学学业考试模拟测试试题卷(一)考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟.2.全卷分试卷Ⅰ(选择题)和试卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔答在答题纸的相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔涂黑.卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分)1.下面四个数中比-2小的数是………………………………………………………( ▲ ) A .1B .0C .-1D .-32.计算3x +x 的结果是……………………………………………………………………( ▲ ) A . 3x 2B . 2xC . 4xD . 4x 23﹒下列各点中,在反比例函数3y x=-图象上的是 …………………………………( ▲ ) A.(1,3) B.(-3,1) C.(6,12) D.(-1,-3)4.下列图形中,由AB CD ∥,能得到12∠=∠的是………………………………( ▲ )5. 一组数据3,0,-5,5,4,4的中位数是…………………………………………( ▲ )A .4B .5C .3.5D .4.56.已知四边形ABCD 是平行四边形,下列结论中不正确...的是 ………………………( ▲ ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90°时,它是矩形 D .当AC =BD 时,它是正方形A CB D1 2 A CB D1 2 A .B .1 2ACB DC .BDCAD .127.如图,在8×4的方格(每个方格的边长为1个单位长)中,⊙A 的半径为1,⊙B 的半径为2,将⊙A 由图示位置向右平移几个单位长度后与⊙B 内切……………………( ▲ ) A.1 B. 2 C. 3 或5 D. 2或48. 按如图所示的程序计算,若开始输入的x 的值为48,我们发现第一次得到的结果为24,第二次得到的结果为12,……,请你探索第2011次得到的结果是 …………( ▲ ) A.8B.4C.2D.19.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有……………………………………………………………( ▲ ) A .5个B .4个C .3个D .2个10. 函数a ax y +=与xay =(a ≠0)在同一直角坐标系中的图象可能是………( ▲ )卷 Ⅱ二、填空题 (本题有6小题,每小题4分,共24分) 11. -5的相反数是 ▲ .12. 如图,DE 是△ABC 的中位线,若DE 的长为6cm ,则BC 的长为 ▲ cm . 13. 方程0415=-+x x 的解是 ▲ ﹒ 14. 如图,三角板ABC 中,︒=∠90ACB ,︒=∠30B ,6=BC .三角板绕直角顶点C 逆时针旋转,当点A 的对应点'A 落在AB 边的起始位置上时即停止转动,则点B 转过的路径长为 ▲ .第12题C B DEA第7题图第14题图 第15题图15﹒如图,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数)0(1>x xy =的图象上,则点E 的坐标是 ▲ .16. 已知⊙O 的半径为2,圆心O 在坐标原点,弦AB 垂直于y 轴,垂足为C ,P 是圆周上的一个动点.当满足条件“P 到直线AB 的距离等于1”的动点P 恰好有三个时,点C 的坐标为 ▲ . 三、解答题 (本题有8小题,共66分) 17.(本题6分)计算:30cos 23)23(0--+-°.18.(本题6分)解不等式组3(2)8,1.23x x x x ++⎧⎪-⎨⎪⎩<≤19.(本题6分)如图,在O ⊙中,△ABC 是边长为32cm 的圆内接正三角形,D 是上的任一点.(1)求∠BDC 的度数; (2)求O ⊙的半径.AO CBO CA D BExyF A A ′B ′C如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1) 求证:△ADF ∽△DEC ;(2) 若AB =4,AD =33,AE =3,求AF 的长.21.(本题8分)如图,小明在一次高尔夫球争霸赛中,从山坡下O 点打出一球向球洞A 点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球移动的水平距离为9米时,达到最大高度,此时球离水平线距离(BD )为12米.已知山坡OA 与水平方向OC 的夹角为30o ,O 、A 两点相距83米.建立如图的直角坐标系. (1)求出点A 的坐标;(2)求出球的飞行路线所在抛物线的解析式;(3)请通过计算判断小明这一杆能否把高尔夫球从O 点直接打入球洞A 点 ?ABCDEF某校为了提高学生身体素质,组织学生参加乒乓球、跳绳、羽毛球、篮球四项课外体育活动,要求学生根据自己的爱好只选报其中一项.学生会随机抽取了部分学生的报名表,并对抽取的学生的报名情况进行统计,绘制了两幅统计图(如图,不完整),请你结合图中的信息,解答下列问题:(1)抽取的报名表的总数是▲;(2)将两个统计图补充完整(不写计算过程);(3)该校共有200人报名参加这四项课外体育活动,选报羽毛球的大约有多少人?兵乓球蓝球23.(本题10分)如图,△ABC中,点O是边AB上的一个动点(不与A、B重合),过点O作BC的平行线交∠ABC的平分线于点D,过点B作BE⊥BD,交直线OD于点E .(1)若∠ABC=60°,则∠BED=▲.(2)求证:OE=OD.(3)当点O在边AB上运动时:①若四边形BDAE是矩形,请说明此时点O应满足的条件;②在①的条件下,四边形BDAE可能成为正方形吗?若能,请直接写出此时△ABC应满足的条件;若不能,请说明理由.如图,已知直线l的解析式为y=-x+6,它与x 轴、y 轴分别相交于A、B两点,平行于直线l 的直线n 从原点O出发,沿x 轴正方向以每秒1个单位长度的速度运动,运动时间为t 秒,运动过程中始终保持n // l,直线n 与y 轴,x 轴分别相交于C、D两点,线段CD的中点为P,以P为圆心,以CD为直径在CD上方作半圆,半圆面积为S,当直线n 与直线l 重合时,运动结束.(1)求A、B两点的坐标;(2)求S与t 的函数关系式及自变量t 的取值范围;(3)直线n 在运动过程中,①当t为何值时,半圆与直线l 相切?②是否存在这样的t 值,使得半圆面积S=12S梯形ABCD?若存在,求出t值,若不存在,说明理由.24题图(1) 24题图(2)备用图2011年初中数学学业考试模拟测试试题卷(一)参考答案一、 选择题:DCBBC DCCBA二、填空题:11. 5 12. 12 13. x =4 14. 2π 15. (215+,215-) 16. (0,1),(0,-1)三、解答题:17.原式=11+=. 18.解略:x ≤-2 .19.(1)∠BDC =60°;(2)O ⊙的半径为2 . 20.(1)证明略;(2)AF =32 21.(1)A (12,43) (2)x x y 382742+-= (3)不能 22.(1)60;(2)略;(3)约50人23.(1)60°;(2)提示:证OD =OB ,OB =OE ; (3)①O 为AB 的中点;②能,△ABC 满足∠ABC =90°或AB 2+BC 2=AC 2.24.(1)A (6,0),B (0,6) (2)S =24t π ,0<x ≤6 (3) t =3;存在,t =116++ππ.感谢您的阅读,祝您生活愉快。

2011年中考数学模拟试题及答案

2011年中考数学模拟试题及答案

1 1 1数学模拟试题本试卷分第I 卷(选择题)和第U 卷(非选择题)两部分。

满分120分,考试用 时120分钟。

第I 卷(选择题共42分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答 题卡上。

2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动, 用橡皮擦干净后,再选涂其它答案,不能答在试卷上。

3. 考试结束,将本试卷和答题卡一并收回。

一、选择题(本大题共14小题,每小题3分,满分42分)在每小题所给的四个 选项中,只有 一项是符合题目要求的。

1. 9的算术平方根是 A . 3 B . -3C . - 3D . - 92 •今年初,惊闻海地发生地震,中国政府和人民在第一时间作出支援海地的决定:1月13日,中国红十字会向海地先期捐款 204959美元,用科学记数法表示并保留三个有效数字应为(B )3、下列运算正确的是()A . 3X 2-:X =2X B . (x 2)3=x 54. 对于数据:85,83,85,81,86.下列说法中正确的是(B )A .这组数据的中位数是 84B .这组数据的方差是 3.25A . 2.050 10B 52.05 10 C630.205 10 D . 205 103412X -X X 2 2 2D . 2x 3x =5xC •这组数据的平均数是 85D.这组数据的众数是865. 一个几何体的三视图如右图所示,这个几何体是( D )5.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序, 但具体顺序忘记了,那么小明第一次就拨通电话的概率是第5题图A. D.12111C9. 如图,三个天平的托盘中形状相同的物体质量相等.图⑴、图⑵所示的两个天平处于平衡状态,要使第三个天平也保持平衡,则需在它的右盘中放置(C ).A.3个球B.4个球C.5个球D.6个球亠 oAAAz -xcferriz X EDAZV \onAy 、 /II) (2)⑶10. 一次函数y =kx ■ k -2一定过定点( ) A.(-1,-2)B.(72)C.(1,2)D.(1,-2)13.在平面直角坐标系中,对于平面内任一点P a, b 若规定以下两种变换:① f(a,b)=(T ,七).如 f(1,2) =(-1,-2)6.已知,如图,AB 是O O 的直径,点 D,C 在O O 上,联结 ADBD DC AC,如果/ BAD=25,那么/ C 的度数是( )A. 75B. 65C. 60D. 507.如图折叠直角三角形纸片的直角,使点 C 落的点E 处.已知AB=8.3 , / B =30° ,则DE 的长A. 6B.4C. 4.3D. 2,3D在斜边AB 上 是(B )&已知一个圆锥的底面积是全面积的A. 60 oB. 90 oC.1201 ,那么这个圆锥的侧面展开图的圆心角是( 3o D.180 o11.如图,反比例函数 y = k 与O O 的一个交点为(2,1),则图中阴影部分的面积是( x3 A.-4B.二5 C.-二412.已知二次函数y =ax 2+bx+c 的图象如图所示,那么下列判断中不正确的是2B. b -4ac > 0C.2a+b> 0D.4a-2b+c<0O)A. abc > 0 (第12题图)18..小明最近的十次数学考试成绩(满分 150分)如下表所示14题图第u 卷(非选择题共78分)注意事项:1. 用钢笔或圆珠笔直接答在试卷上。

重庆育才中学2011届九年级中考模拟考试数学试题

重庆育才中学2011届九年级中考模拟考试数学试题
位置 ( 要求尺规作图, 保留作 图痕迹 , 不写已知、 求作和
作法 )
二、 填空囊 ( 本大题6 个小题 , 每小题4 , 4 分 共2分) l. 0 1 月6 1 2 1年4 日.两江 国际计算 中心暨中国国际电子商 务中心重庆数据产业 园在水土高新技术产业园开建 。 总建筑面积2 70 o O0 0平方米 。 该数用科学记数法表示为
( 明 : 间 1O 说 时 2分钟
满 分 1 0- 55- ) )


选择墨 ( 本大题共1,题 , (J 每小题4 共4分 ) )、 分, O )
C._ 3 ’D.一 1 1
A ’ B C
14 (7 . _ - )等于(
A.3 B.1 1


2 计算x (x) 3 2 的结果是( +
D 对 2 1年重 庆市 中考前 20 . 00 0
名学生 的中考数学成绩 的
调 查
6 如 图2A 是 60的弦 .半 径 . 。B )
O = . A B I0 则 弦A 的 A 2 L O =2O 曰 长是 ( )

第1 个 第 2 个 第3 个
图4
第4 个
A 2/ . 、 了 C / .、 了
l 在平面 内 。 的半径为 3 i, 至 圆 , 的距离为 4 oO n 点P 0 5 t 0
7 m, 则点尸 QO c 与 的位 置关 系是—
1. 5 在一 个不 透明 的盒子里 装有 5 分别 写有数 字一 , 个 2

10 12 ,,,的小球 , 它们除数字不同外其余全部相 同. 现
B.8 o 0

C.9  ̄ 0 D.】 0 0 。

中考数学综合模拟测试题(附答案解析)

中考数学综合模拟测试题(附答案解析)
18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,Pn.若点P1的坐标为(2,0),则点P2 017的坐标为____________.
三、解答题(本大题共9小题,共90分)
19.计算:(π﹣3.14)0+|1﹣2 |﹣ +( )﹣1
20.先化简,再求值: ﹣ ÷ ,其中x=2.
21.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.
(1)求证:△ABC≌△DFE;
(2)连接AF、BD,求证:四边形ABDF是平行四边形.
A. 102°B. 54°C. 48°D. 78°
5.一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是
A. 100元B. 105元C. 108元D. 118元
6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),
23.某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);
(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?
【答案】D
【解析】
【详解】试题分析:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,

2011年云南省宣威市热水镇一中中考数学模拟试卷(七)

2011年云南省宣威市热水镇一中中考数学模拟试卷(七)

云南省宣威市热水镇一中2011年中考数学模拟试卷(七)一. 选择题 (每小题3分, 共24分) 1、-2011的倒数是( ) A. 2011 B. -20111 C. 20111 D. -2011 2. 2011年3月5日上午9时,第十一届全国人民代表大会第四次会议在人民大会堂开幕,国务院总理温家宝在年度计划报告中指出,今年中央财政用于“三农”的投入拟安排9884.5亿元.将9884.5用科学记数法表示应为( )(A) 98.845⨯102 (B) 0.98845⨯104 (C) 9.8845⨯104 (D) 9.8845⨯103。

3. 下列运算正确的是( )(A)6332x x x =+ (B)428x x x =÷ (C)2045)(x x =- (D)mnn m x x x =⋅4.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是( )A.①②B.②③C. ②④D. ③④5.一个正常人在做激烈运动时,心跳速度加快,当运动停止下来后,心跳次数N (次)与时间s (分)的函数关系图像大致是( )ABC D6. 小明用一个半径为5cm ,面积为15π2cm 的扇形纸片,制作成一个圆锥的侧面(接缝处不重叠),那么这个圆锥的底面半径为( )(A ) 4cm (B )3cm (C ) 5cm (D ) 15cm7. 在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为)1,3(-,半径为1,那么⊙O 与⊙A 的位置关系是( )A .内含B .内切C . 外切D .相交 8、下列命题中的真命题是( ).A 、对角线互相垂直的四边形是菱形B 、中心对称图形都是轴对称图形C 、两条对角线相等的梯形是等腰梯形D 、等腰梯形是中心对称图形 二. 填空题 (每小题3分, 共24分)①正方体②圆柱③圆锥 ④球(第4题)s (分(3)(2)(1)C 3B 3A 3A 2C 1B 11C B A C 2B 2B 2C 2A B C 1B 1C 1A 2C 1B 11C B A … 图4第14题ABDB ’C EP9. 分解因式:m 3-4m = 。

2011年中考模拟试卷数学试卷及答案(2)

2011年中考模拟试卷数学试卷及答案(2)
2011 年中考数学模拟试卷 试题卷
一. 仔细选一选 (本题有 10 个小题, 每小题 3 分, 共 30 分)
下面每小题给出的四个选项中, 只有一个是正确的, 请在答题卷中把正确选项的字母涂黑.
注意可以用多种不同的方法来选取正确答案.
1.我国在 2009 到 2011 三年中,各级政府投入医疗卫生领域资金达 8500 亿元人民币.将“8500
14.
15.
16.
三.全面答一答 (本题有 8 个小题, 共 66 分.)
17. (本题 6 分) 解:原式= a 2 a(a 1) a ……… 3 分 a 1 (a 2)(a 2) a 2
当 a=-1 时, 原式= -1
…………….2 分 …………….1 分
18. (本题 6 分) 解:(1)图略 ………… ………………………………3 分
23.(本题满分 10 分)某公司投资新建了一商场,共有商铺 30 间.据预测,当每间的年租金定为 10 万元时,可全部租出.每间的年租金每增加 5 000 元,少租出商铺 1 间.(假设年租金的增加额 均为 5000 元的整数倍)该公司要为租出的商铺每间每年交各种费用 1 万元,未租出的商铺每 间每年交各种费用 5 000 元.
)
①正方体
②圆柱
③圆锥
④球
A. ①②
B. ②③
C. ②④
D. ③④
7.如图,把⊙O1 向右平移 8 个单位长度得⊙O2,两圆相交于 A.B,
1
第7题
且 O1A⊥O2A,则图中阴影部分的面积是(
A.4π-8 B. 8π-16
C.16π-16
) D. 16π-32
2010 8. 已知函数 y=― t3― ,则在平面直角坐标系中关于该函数图像的位置判断正确的是

2011年中考数学模拟测试题及答案

2011年中考数学模拟测试题及答案

2011年中考数学模拟测试题及答案
考生须知:
1.本试卷分试题卷和答题卷两部分,满分120分,考试时间120分钟。

2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。

3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

4.考试结束后,上交试题卷和答题卷
试题卷
一. 仔细选一选(本题有10个小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的。

注意可以用多种不同的方法来选取正确答案。

1. 的相反数是( )(原创)
A. B. C. D.
2.下列运算正确的是( ) (改编)
A. B. C. D.
3.北京时间2010年10月1日长征三号丙火箭在位于中国四川的西昌卫星发射中心发发射,把嫦娥二号探月卫星
成功送入太空。

“嫦娥二号”所携带的CCD立体相机的空间分辨率小于10米,并将在距月球约100公里的轨道上绕月运行,较“嫦娥一号”的距月球200公里高的轨道要低,也就是卫星轨道距月球表面又近了一倍,“看得更加精细”。

“200公里”用科学计数法表示为( ) (原创)
A.2.00×102米
B.2.00×105米
C.200×103米
D.2.00×104米
4.下列图案由黑、白两种颜色的正方形组成,其中属于轴对称图形的是( ).(改编)
2011年中考数学模拟测试题及答案完整版下载。

2011年浙江省杭州市中考数学试卷-含答案详解

2011年浙江省杭州市中考数学试卷-含答案详解

杭州市2011年各类高中招生文化考试一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列各式中.正确的是( )A. B. C. D.2. 正方形纸片折一次,沿折痕剪开,能剪得的图形是( )A. 锐角三角形B. 钝角三角形C. 梯形D. 菱形3. (2×106)3=( )A. 6×109B. 8×109C. 2×1018D. 8×10184. 正多边形的一个内角为135°,则该正多边形的边数为( )A. 9B. 8C. 7D. 45. 在平面直角坐标系xOy中,以点(−3,4)为圆心,4为半径的圆( )A. 与x轴相交,与y轴相切B. 与x轴相离,与y轴相交C. 与x轴相切,与y轴相交D. 与x轴相切,与y轴相离6. 如图,函数y 1=x−1和函数的图象相交于点M(2,m),N(−1,n),若y 1>y 2,则x的取值范围是( )A. x<−1或0<x<2B. x<−1或x>2C. −1<x<0或0<x<2D. −1<x<0或x>27. —个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是( )A. B.C. D.8. 如图是一个正六棱柱的主视图和左视图,则图中的a=( )A. B. C. 2 D. 19. 若a+b=−2,且a≥2b,则( )A. 有最大值B. 有最大值1C. 有最大值2D. 有最大值10. 在矩形ABCD中,有一个菱形BFDE(点E,F分别在线段AB,CD上),记它们的面积分别为S ABCD和S BFDE.现给出下列命题:①若,则;②若DE 2=BD·EF,则DF=2AD.则( )A. ①是真命题,②是真命题B. ①是真命题,②是假命题C. ①是假命题,②是真命题D. ①是假命题,②是假命题二、填空题(本大题共6小题,共24.0分)11. 写出一个比−4大的负无理数.12. 当x=−7时,代数式(2x+5)(x+1)−(x−3)(x+1)的值为_____.13. 数据9.30,9.05,9.10,9.40,9.20,9.10的众数是_____;中位数是_____.14. 如图,点A,B,C,D都在O上,的度数等于84°,CA是∠OCD的平分线,则∠ABD+∠CAO=_____。

2011年初三数学中考模拟卷2(含答案、答卷)

2011年初三数学中考模拟卷2(含答案、答卷)

D 2010—2011学年第二学期期中测试初三数学试卷命题人:徐惠忠复核人:缪月红 (满分130分,考试时间120分钟)一、选择题(每题3分,共30分,请在答题卡指定区域内作答)1、-3的倒数是…………………………………………………………………………( )A . 3B . 31-C .-3D .31 2、下列运算中,结果正确的是…………………………………………………………( ) A .()532x x = B .()222y x y x +=+ C .532x x x =+ D .633x x x =⋅3、下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是( )4、已知33-=-y x ,则y x 35+-的值是………………………………………………( ) A . 2 B .5 C .8 D .05、下列调查适合作普查的是………………………………………………………………( ) A .了解在校大学生的主要娱乐方式 B .了解无锡市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查6、如图:是由几个相同的小正方体搭成的一个几何体,它的左视图是…………………( )O 1O 2可能取的值 )8、已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是…………………( ) A .220cmB .220cm πC .210cm πD .25cm π9、下图是章老师早晨出门散步时,离家的距离(y )与时间(x )之间的函数图像,若用黑点表示章老师家的位置,则章老师散步行走的路线可能是……………………………( )A B CDABC10、如图,E F G H ,,,分别为正方形ABCD 的边AB ,BC ,CD , DA 上的点,且13AE BF CG DH AB ====,则图中阴影部分的面积与正方形ABCD 的面积之比为……………………………………………………………………………………………( )A .25B .49 C .12D .35二、填空(每空2分,共20分,请在答题卡指定区域内作答) 11、-8的相反数是 ;25的算术平方根是 12、函数y =x 的取值范围是13、2010年上海世界博览会中国馆投资110000万元,将110000万元用科学记数法表示为_________ 万元14、因式分解: x x 43-=___________15、关于x 的一元二次方程220x x m -+=有两个实数根分别为1x 和 2x ,则m 的取值范围是_____________,12x x +=16、如图:△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,点D 在⊙O 上, 若∠BAC =35°,则∠ADC = 度17、如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=(x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .18、如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .第9题(第10题)第16题第17题第18题第22题三、解答题(本大题共10小题,共80分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19、(本题满分8分)计算:(1101()(5)4sin 603π----︒ (2)化简并求值:21(1)11a a a a --÷++,其中12a =.20、(本题满分8分) (1)解方程:213xx x +=+; (2)解不等式组:12,132,2x x x ->⎧⎪⎨-≤+⎪⎩………………①…………②21、(本题满分6分)中央电视台举办的第14届“蓝色经典·天之蓝”杯青年歌手大奖赛,由部队文工团的A (海政)、B (空政)、C (武警)组成种子队,由部队文工团的D (解放军)和地方文工团的E (江苏)、F (上海)组成非种子队.现从种子队A 、B 、C 与非种子队D 、E 、F 中各抽取一个队进行首场比赛.(1)请用适当方式写出首场比赛出场的两个队的所有可能情况(用代码A 、B 、C 、D 、E 、F 表示);(2)求首场比赛出场的两个队都是部队文工团的概率P. 22、(本题满分6分)已知:如图,E 、F 是平行四边行ABCD 的对角线AC 上的两点,AE=CF 。

中考数学模拟测试题(附有答案)

中考数学模拟测试题(附有答案)

中考数学模拟测试题(附有答案)(满分:120分考试时间120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。

在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分. 211.下列实数中有理数是()A. √12B. √13C. √14D. √152.下列计算正确的是()A. a3+a2=a5B. a3÷a2=aC. 3a3⋅2a2=6a6D. (a−2)2=a2−43.如图AB//CD点E F在AC边上已知∠CED=70°∠BFC=130°则∠B+∠D的度数为()A. 40°B. 50°C. 60°D. 70°(第3题图)4.如图是我们数学课本上采用的科学计算器面板利用该型号计算器计算√23cos35°按键顺序正确的是()A.B.C.D.5.如图二次函数y=ax2+bx+c的图象的对称轴为x=−12且经过点(−2,0)下列说法错误的是()A. bc<0B. a=bC. 当x1>x2≥−12时D. 不等式ax 2+bx +c <0的解集是−2<x <32(第5题图)6. 《九章算术》是古代中国第一部自成体系的数学专著 其中《卷第八方程》记载:“今有甲乙二人持钱不知其数 甲得乙半而钱五十 乙得甲太半而亦钱五十 问甲 乙持钱各几何?”译文是:今有甲 乙两人持钱不知道各有多少 甲若得到乙所有钱的12 则甲有50钱 乙若得到甲所有钱的23 则乙也有50钱.问甲 乙各持钱多少?设甲持钱数为x 钱 乙持钱数为y 钱 列出关于x y 的二元一次方程组是( )A. {x +2y =5032x +y =50B. {x +12y =5023x +y =50B. C. {x +12y =5032x +y =50D. {x +23y =5012x +y =507. 如图 直角坐标系中 以5为半径的动圆的圆心A 沿x 轴移动 当⊙A 与直线l :y =512x 只有一个公共点时 点A 的坐标为( )A. (−12,0)B. (−13,0)C. (±12,0)D. (±13,0)(第7题图)8. 已知反比例函数y =bx 的图象如图所示 则一次函数y =cx +a 和二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A. B.C. D.9. 对于任意的有理数a b 如果满足a 2+b 3=a+b 2+3那么我们称这一对数a b 为“相随数对” 记为(a,b).若(m,n)是“相随数对” 则3m +2[3m +(2n −1)]=( ) A. −2B. −1C. 2D. 310. 如图 在正方形ABCD 中 E F 分别是AB BC 的中点 CE DF 交于点G 连接AG.下列结论:①CE =DF ②CE ⊥DF ③∠AGE =∠CDF.其中正确的结论是( ) A. ①② B. ①③ C. ②③ D. ①②③(第10题图)第Ⅱ卷(非选择题 共90分)二 填空题:本大题共8小题 其中11-14题每小题3分 15-18题每小题4分 共28分.只要求填写最后结果.11. “先看到闪电 后听到雷声” 那是因为在空气中光的传播速度比声音快.科学家发现 光在空气里的传播速度约为3×108米/秒 而声音在空气里的传播速度大约为3×102米/秒 在空气中声音的速度是光速的_______倍.(用科学计数法表示) 12. 分解因式:ax 2+2ax +a =______.13. “共和国勋章”获得者 “杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻 中国境外种植面积达800万公顷.某村引进了甲 乙两种超级杂交水稻品种 在条件(肥力 日照 通风…)不同的6块试验田中同时播种并核定亩产 统计结果为:x 甲−=1042kg/亩 s 甲2=6.5 x 乙−=1042kg/亩 s 乙2=1.2 则______ 品种更适合在该村推广.(填“甲”或“乙”)14. 从不等式组{x −3(x −2)≤42+2x 3≥x −1的所有整数解中任取一个数 它是偶数的概率是______.15. 如图 △ABC 中 ∠B =30° 以点C 为圆心 CA 长为半径画弧 交BC 于点D 分别以点A D 为圆心大于12AD 的长为半径画弧两弧相交于点E 作射线CE 交AB 于点F FH ⊥AC 于点H.若FH =√2 则BF 的长为______.16.如图从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形则此扇形的面积为______dm2.17.如图在Rt△OAB中∠AOB=90°OA=OB AB=1作正方形A1B1C1D1使顶点A1B1分别在OA OB上边C1D1在AB上类似地在Rt△OA1B1中作正方形A2B2C2D2在Rt△OA2B2中作正方形A3B3C3D3…依次作下去则第n个正方形A n B n C n D n的边长是______.(15题图)(16题图)(17题图)18.已知正方形ABCD的边长为3E为CD上一点连接AE并延长交BC的延长线于点F过点D作DG⊥AF交AF于点H交BF于点G N为EF的中点M为BD上一动点分别连接MC MN.若S△DCGS△FCE =14则MN+MC的最小值为______.(18题图)三解答题:本大题共7小题共62分.解答要写出必要的文字说明证明过程或演算步骤.19.(本题满分8分第(1)题3分第(2)题5分)(1)计算:(π−2021)0−3tan30°+|1−√3|+(12)−2.(2)先化简再求值:x−3x2−8x+16÷x−3x2−16−xx−4其中x=√2+4.20.(本题满分8分)为引导学生知史爱党知史爱国某中学组织全校学生进行“党史知识”竞赛该校德育处随机抽取部分学生的竞赛成绩进行统计将成绩分为四个等级:优秀良好一般不合格并绘制成两幅不完整的统计图.(第20题图)根据以上信息解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩在扇形统计图中表示“一般”的扇形圆心角的度数为______(2)将条形统计图补充完整(3)该校共有1400名学生估计该校大约有多少名学生在这次竞赛中成绩优秀?(4)德育处决定从本次竞赛成绩前四名学生甲乙丙丁中随机抽取2名同学参加全市“党史知识”竞赛请用树状图或列表法求恰好选中甲和乙的概率.21.(本题满分8分)如图△ABC内接于⊙O AB是⊙O的直径E为AB上一点BE=BC延长CE交AD于点D AD=AC.(1)求证:AD是⊙O的切线(2)若tan∠ACE=1OE=3求BC的长.3(第21题图)22.(本题满分8分)某工厂生产并销售A B两种型号车床共14台生产并销售1台A型车床可以获利10万元如果生产并销售不超过4台B型车床则每台B型车床可以获利17万元如果超出4台B型车床则每超出1台每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时完成以下两个问题:①请补全下面的表格:②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元问:生产并销售B型车床多少台?(2)当0<x≤14时设生产并销售A B两种型号车床获得的总利润为W万元如何分配生产并销售AB两种车床的数量使获得的总利润W最大?并求出最大利润.23.(本题满分8分)如图在景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度测得斜坡AB=105米坡度i=1:2在B处测得电梯顶端C的仰角α=45°求观光电梯AC的高度.(参考数据:√2≈1.41√3≈1.73√5≈2.24.结果精确到0.1米)(第23题图)24.(本题满分10分)已知正方形ABCD E F为平面内两点.(第24题图)【探究建模】(1)如图1当点E在边AB上时DE⊥DF且B C F三点共线.求证:AE=CF【类比应用】(2)如图2当点E在正方形ABCD外部时DE⊥DF AE⊥EF且E C F三点共线.猜想并证明线段AE CE DE之间的数量关系【拓展迁移】(3)如图3当点E在正方形ABCD外部时AE⊥EC AE⊥AF DE⊥BE且D F E三点共线DE与AB交于G点.若DF=3AE=√2求CE的长.x2+bx+c与坐标轴交于A(0,−2)B(4,0) 25.(本题满分12分)如图在平面直角坐标系中抛物线y=12两点直线BC:y=−2x+8交y轴于点C.点D为直线AB下方抛物线上一动点过点D作x轴的垂线垂足为G DG分别交直线BC AB于点E F.x2+bx+c的表达式(1)求抛物线y=12(2)当GF=1时连接BD求△BDF的面积2(3)①H是y轴上一点当四边形BEHF是矩形时求点H的坐标②在①的条件下第一象限有一动点P满足PH=PC+2求△PHB周长的最小值.(第25题图)参考答案与解析1.【答案】C【解析】解:A.√12=√22不是有理数不合题意B.√13=√33不是有理数不合题意C.√14=12是有理数符合题意D.√15=√55不是有理数不合题意故选:C.2.【答案】B【解析】解:a3a2不是同类项因此不能用加法进行合并故A项不符合题意根据同底数幂的除法运算法则a3÷a2=a故B项符合题意根据单项式乘单项式的运算法则可得3a3⋅2a2=6a5故C项不符合题意根据完全平方公式展开(a−2)2=a2−4a+4故D项不符合题意.故选:B.3.【答案】C【解析】解:∵∠BFC=130°∴∠BFA=50°又∵AB//CD∴∠A+∠C=180°∵∠B+∠A+∠BFA+∠D+∠C+∠CED=360°∴∠B+∠D=60°故选:C.4.【答案】B【解析】解:根据计算器功能键正确的顺序应该是B.故选:B.5.【答案】D【解析】解:由图象可得b>0c<0则bc<0故选项A正确∵该函数的对称轴为x=−12∴−b2a =−12化简得b=a故选项B正确∵该函数图象开口向上 该函数的对称轴为x =−12 ∴x ≥−12时 y 随x 的增大而增大当x 1>x 2≥−12时 y 1>y 2 故选项C 正确 ∵图象的对称轴为x =−12 且经过点(−2,0) ∴图象与x 轴另一个交点为(1,0)不等式ax 2+bx +c <0的解集是−2<x <1 故选项D 错误 故选:D .6.【答案】B【解析】解:设甲 乙的持钱数分别为x y 根据题意可得:{x +12y =5023x +y =50故选:B .7.【答案】D【解析】解:当⊙A 与直线l :y =512x 只有一个公共点时 直线l 与⊙A 相切 设切点为B 过点B 作BE ⊥OA 于点E 如图∵点B 在直线y =512x 上 ∴设B(m,512m) ∴OE =−m在Rt △OEB 中 tan∠AOB =BEOE =512. ∵直线l 与⊙A 相切 ∴AB ⊥BO .在Rt△OAB中tan∠AOB=ABOB =512.∵AB=5∴OB=12.∴OA=√AB2+OB2=√52+122=13.∴A(−13,0).同理在x轴的正半轴上存在点(13,0).故选:D.8.【答案】D【解析】解:∵反比例函数的图象在二四象限∴b<0A∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限A错误B∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾B错误C∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾C错误D∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限D正确.故选:D.9.【答案】A【解析】解:因为(m,n)是“相随数对”所以m2+n3=m+n2+3所以3m+2n6=m+n5即9m+4n=0所以3m+2[3m+(2n−1)]=3m+2[3m+2n−1]=3m+6m+4n−2=9m+4n−2=0−2=−2故选:A.10.【答案】D【解析】解:∵四边形ABCD是正方形∴AB=BC=CD=AD∠B=∠BCD=90°∵E F分别是AB BC的中点∴BE=12AB CF=12BC∴BE=CF在△CBE与△DCF中{BC=CD∠B=∠BCD BE=CF∴△CBE≌△DCF(SAS)∴∠ECB=∠CDF CE=DF故①正确∵∠BCE+∠ECD=90°∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF故②正确∴∠EGD=90°在Rt△CGD中取CD边的中点H连接AH交DG于K ∴HG=HD=12CD∴Rt△ADH≌Rt△AGH(HL)∴AG=AD∴∠AGD=∠ADG∵∠AGE+∠AGD=∠ADG+∠CDF=90°∴∠AGE=∠CDF故③正确故选:D .11.【答案】1×10−6【解析】【解答】解:3×102米/秒÷(3×108)米/秒=10−6故答案为1×10−6.12.【答案】a(x +1)2【解析】解:ax 2+2ax +a=a(x 2+2x +1)--(提取公因式)=a(x +1)2.--(完全平方公式)13.【答案】乙【解析】解:∵x 甲−=1042kg/亩 x 乙−=1042kg/亩 s 甲2=6.5s 乙2=1.2∴x 甲−=x 乙− S 甲2>S 乙2∴产量稳定 适合推广的品种为乙故答案为:乙.14.【答案】25 【解析】解:∵{x −3(x −2)≤4①2+2x3≥x −1②由①得:x ≥1由②得:x ≤5∴不等式组的解集为:1≤x ≤5∴整数解有:1 2 3 4 5∴它是偶数的概率是25.故答案为25.15.【答案】2√2【解析】解:过F 作FG ⊥BC 于G由作图知 CF 是∠ACB 的角平分线∵FH ⊥AC 于点H.FH =√2∴FG=FH=√2∵∠FGB=90°∠B=30°.∴BF=2FG=2√2故答案为:2√2.16.【答案】2π【解析】解:连接AC∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形即∠ABC=90°∴AC为直径即AC=4dm AB=BC(扇形的半径相等)∵AB2+BC2=22∴AB=BC=2√2dm∴阴影部分的面积是90⋅π⋅(2√2)2360=2π(dm2).故答案为:2π.17.【答案】13n【解析】解:法1:过O作OM⊥AB交AB于点M交A1B1于点N如图所示:∵A1B1//AB∴ON⊥A1B1∵△OAB为斜边为1的等腰直角三角形∴OM=12AB=12又∵△OA1B1为等腰直角三角形∴ON=12A1B1=12MN∴ON:OM=1:3∴第1个正方形的边长A1C1=MN=23OM=23×12=13同理第2个正方形的边长A2C2=23ON=23×16=132则第n个正方形A n B n D n C n的边长13n法2:由题意得:∠A=∠B=45°∴AC1=A1C1=C1D1=B1D1=BD1AB=1∴C1D1=13AB=13同理可得:C2D2=13A1B1=132AB=132依此类推C n D n=13n.故答案为13n.18.【答案】2√10【解析】解:∵四边形ABCD是正方形∴A点与C点关于BD对称∴CM=AM∴MN+CM=MN+AM≥AN∴当A M N三点共线时MN+CM的值最小∵AD//CF∴∠DAE=∠F∵∠DAE+∠DEH=90°∵DG⊥AF∴∠CDG+∠DEH=90°∴∠DAE=∠CDG∴∠CDG=∠F∴△DCG∽△FCE∵S△DCGS△FCE =14∴CDCF =12∵正方形边长为3∴CF=6∵AD//CF∴ADCF =DECE=12∴DE=1CE=2在Rt△CEF中EF2=CE2+CF2∴EF=√22+62=2√10∵N是EF的中点∴EN=√10在Rt△ADE中EA2=AD2+DE2∴AE=√32+12=√10∴AN=2√10∴MN+MC的最小值为2√10故答案为:2√10.19.(1)【答案】解:(π−2021)0−3tan30°+|1−√3|+(12)−2=1−3×√33+√3−1+4=1−√3+√3−1+4=4.(2)【答案】解:原式=x−3(x−4)2⋅(x+4)(x−4)x−3−xx−4=x+4x−4−xx−4=4x−4.把x=√2+4代入原式=√2+4−4=2√2.20.【答案】40108°【解析】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名)则在条形统计图中成绩“一般”的学生人数为:40−10−16−2=12(名)∴在扇形统计图中成绩“一般”的扇形圆心角的度数为:360°×1240=108°故答案为:40108°(2)把条形统计图补充完整如下:(3)1400×1040=350(名)即估计该校大约有350名学生在这次竞赛中成绩优秀(4)画树状图如图:共有12种等可能的结果恰好选中甲和乙的结果有2种∴恰好选中甲和乙的概率为212=16.21.【答案】解:(1)∵AB是⊙O的直径∴∠ACB=90°即∠ACE+∠BCE=90°∵AD=AC BE=BC∴∠ACE=∠D∠BCE=∠BEC又∵∠BEC=∠AED∴∠AED+∠D=90°∴∠DAE=90°即AD⊥AE∵OA是半径∴AD是⊙O的切线(2)由tan∠ACE=13=tan∠D可设AE=a则AD=3a=AC ∵OE=3∴OA=a+3AB=2a+6∴BE=a+3+3=a+6=BC在Rt△ABC中由勾股定理得AB2=BC2+AC2即(2a+6)2=(a+6)2+(3a)2解得a1=0(舍去)a2=2∴BC=a+6=8.22.【答案】解:(1)①由题意得生产并销售B型车床x台时生产并销售A型车床(14−x)台当x>4时每台B型车床可以获利[17−(x−4)]=(21−x)万元.故答案应为:14−x21−x②由题意得方程10(14−x)+70=[17−(x−4)]x解得x1=10x2=21(舍去)答:生产并销售B型车床10台(2)当0<x≤4时总利润W=10(14−x)+17x整理得W=7x+140∵7>0∴当x=4时总利润W最大为7×4+140=168(万元)当x>4时总利润W=10(14−x)+[17−(x−4)]x整理得W=−x2+11x+140∵−1<0=5.5时总利润W最大∴当x=−112×(−1)又由题意x只能取整数∴当x=5或x=6时∴当x=5时总利润W最大为−52+11×5+140=170(万元)又∵168<170∴当x=5或x=6时总利润W最大为170万元而14−5=914−6=8答:当生产并销售A B两种车床各为9台5台或8台6台时使获得的总利润W最大最大利润为170万元.23.【答案】解:过B作BM⊥水平地面于M BN⊥AC于N如图所示:则四边形AMBN是矩形∴AN=BM BN=MA∵斜坡AB=105米坡度i=1:2=BMAM∴设BM=x米则AM=2x米∴AB=√BM2+AM2=√x2+(2x)2=√5x=105∴x=21√5∴AN=BM=21√5(米)BN=AM=42√5(米)在Rt△BCN中∠CBN=α=45°∴△BCN是等腰直角三角形∴CN=BN=42√5(米)∴AC=AN+CN=21√5+42√5=63√5≈141.1(米)答:观光电梯AC的高度约为141.1米.24.【答案】(1)证明:如图1中∵四边形ABCD是正方形∴DA=DC∠A=∠ADC=∠DCB=∠DCF=90°∵DE⊥DF∴∠EDF=∠ADC=90°∴∠ADE=∠CDF在△DAE和△DCF中{∠ADE=∠CDF DA=DC∠A=∠DCF∴△DAE≌△DCF(ASA)∴AE=CF.(2)解:结论:EA+EC=√2DE.理由:如图2中连接AC交DE于点O过点D作DK⊥EC于点K DJ⊥EA交EA的延长线于点J.∵四边形ABCD是正方形△DEF是等腰直角三角形∴∠DAO=∠OEC=45°∵∠AOD=∠EOC∴△AOD∽△EOC∴AOEO =ODOC∴AOOD =OEOC∵∠AOE=∠DOC∴△AOE∽△DOC∴∠AEO=∠DCO=45°∴∠DEJ=∠DEK∵∠J=∠DKE=90°ED=ED∴△EDJ≌△EDK(AAS)∴EJ=EK DJ=DK∵∠J=∠DKC=90°DJ=DK DA=DC∴Rt△DJA≌Rt△DKC(HL)∴AJ=CK∴EA+EC=EJ−AJ+EK+CK=2EJ∵DE=√2EJ∴EA+EC=√2DE.(3)解:如图3中连接AC取AC的中点O连接OE OD.∵四边形ABCD是正方形AE⊥EC∴∠AEC=∠ADC=90°∵OA=OC∴OD=OA=OC=OE∴A E C D四点共圆∴∠AED=∠ACD=45°∴∠AEC=∠DEC=45°由(2)可知AE+EC=√2DE∵AE⊥AF∴∠EAF=90°∴∠AEF=∠AFE=45°∴AE=AF=√2∴EF=√2AE=2∵DF=3∴DE=5∴√2+EC=5√2∴EC=4√2.25.【答案】解:(1)∵抛物线y=12x2+bx+c过A(0,−2)B(4,0)两点∴{c=−28+4b+c=0解得{b=−32 c=−2∴y=12x2−32x−2.(2)∵B(4,0)A(0,−2)∴OB=4OA=2∵GF⊥x轴OA⊥x轴在Rt△BOA和Rt△BGF中tan∠ABO=OAOB =GFGB即24=12GB∴GB=1∴OG=OB−GB=4−1=3当x=3时y D=12×9−32×3−2=−2∴D(3,−2)即GD=2∴FD=GD−GF=2−12=32∴S△BDF=12⋅DF⋅BG=12×32×1=34.(3)①如图1中过点H作HM⊥EF于M ∵四边形BEHF是矩形∴EH//BF EH=BF∴∠HEF=∠BFE∵∠EMH=∠FGB=90°∴△EMH≌△FGB(AAS)∴MH=GB EM=FG∵HM=OGOB=2∴OG=GB=12∵A(0,−2)B(4,0)x−2∴直线AB的解析式为y=12a−2)设E(a,−2a+8)F(a,12由MH=BG得到a−0=4−a∴a=2∴E(2,4)F(2,−1)∴FG=1∵EM=FG∴4−y H=1∴y H=3∴H(0,3).②如图2中BH=√OH2+OB2=√32+42=5∵PH=PC+2∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7要使得△PHB的周长最小只要PC+PB的值最小∵PC+PB≥BC∴当点P在BC上时PC+PB=BC的值最小∵BC=√OC2+OB2=√82+42=4√5∴△PHB的周长的最小值为4√5+7.第21页共21页。

鄂州市车湖中学2011届中考数学模拟试题

鄂州市车湖中学2011届中考数学模拟试题

CBA2011年中考数学模拟试题一、选择题(30分)1、2010年3月5日第十一届全国人大二次会议在北京人民大会堂开幕,温家宝总理在政府工作报告中指出:中央财政投入资金450亿元,补帖家电汽车摩托车下乡、汽车家电以旧换新和农机具购置。

把450亿元用科学记数法表示为( )A 、4.5×1010元 B 、4.5×1011元 C 、0.45×1010元 D 、0.45×1011元2、A .6,6B .6.5,6C .6,6.5D .7,63、如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为( )4、如图,有一张直角三角形纸片,两直角边6A C cm =,9BC cm =,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 等于( )cm . A 、254B 、223C 、74D 、255、如图,Rt △ABC 的直角边BC 在x 轴正半轴上,斜边AC 边上的中线BD 反向延长线交y 轴负半轴于E ,双曲线k y x=(x >0)的图像经过点A ,若S △BEC =8,则k 等于( )A 4B 8C 12D 16 6、西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克。

另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低()元。

A 0.2或0.3 B 0.4 C 0.3D 0.27、如图,将置于直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得 △A′OB′. 已知∠AOB =30°,∠B =90°,AB =1,则B′点的坐标为( ) A .3)22B .3(22C.1(22D .1)228、以半圆中的一条弦BC(非直径)为对称轴将弧BC 折叠后与直径AB 交于点D ,若32=DBAD ,且10=AB ,则CB 的长为( )1 32 1 3题A .B .C .D .第4题图A .54B .34C .24D .4 9、如图为二次函数2y ax bx c =++的图象,在下列说法中:①abc >0;②方程20ax bx c ++=的根为11x =-,23x =; ③0a b c ++>;④当1x >时,y 随着x 的增大而增大. 正确的说法个数是( )A 1B 2C 3D 410、如图,矩形ABCD 中,AD=5,AB=12,点M 在AC 上,点N 在AB 上,则BM+MN 的最小值为( ) A9 B 12 C 13120 D1691440二、填空题(18分)11、9的平方根是12、用一个半径为10㎝半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 13、如果m 、n 是互不相等的实数,且m m n n 225252=+=+,,则nm m n +的值为 。

2011年中考数学模拟卷及答案

2011年中考数学模拟卷及答案

中考数学模拟试卷四中一、选择题(每小题3分,共计30分)1、「的值是()A. —2B. 2C. 4D. —42、下列计算中,正确的是()A. = a a3 =a3C.屮一「=FD.(-ab)3= a2b23、若一个多边形的每个外角都等于45°,则它的边数是()A. 11B. 10C. 9D. 84、方程* 1的根为()A. x = lB. x = 0C. Xi-O^x^ -1D. x:-0,x2 --15、把一个小球以20m/s的速度竖直向上弹出,它在空中的高度h (m与时间t (S)满足关系:人加当..时,小球的运动时间为()A. 20sB. 2sC (2^2 + 2)sD (2屈一2)s6、某校有一个两层楼的餐厅,甲、乙、丙三名学生各自随机选择其中的某个楼层的餐厅用餐,则甲、乙、丙三名学生在同一个楼层餐厅用餐的概率为()A 1 D 3 1 3A、 B C、D、一4 4 8 87、下列各图中,是中心对称图形的是()8、图中的图象(折线OBCD)描述的是一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km②汽车在行驶途中停留了0.5h ;SO, 一血③汽车在整个行驶过程中的平均速度为^ ;④汽车出发后3~4.5h之间行驶的速度在逐渐减少。

其中正确的说法共有()A. 1个B. 2个C. 3个D. 4个9、某装修公司到建材市场买同样一种多边形的地砖密铺地面,在以下四种地砖中,该公司不能买()A、正三角形地砖B正方形地砖C正五边形地砖D、正六边形地砖10、如图,矩形ABC(11)与矩形CDEF全等,点B, C, D在同一条直线上,△ APE的顶点P在线段BD上移动,使厶APE为直角三角形的点P的个数是()A. 5B. 4C. 3D. 2A”、填空题(每小题3分,共计30 分)11、2007年中国月球探测工程的“嫦娥一号”卫星发射升空飞向月球。

2011年数学中考模拟试卷及答案

2011年数学中考模拟试卷及答案

命题人:张晓云 2011年数学模拟试卷一、选择题(每小题3分,共30分) 1.下列四个数中,小于0的是( )(A )-2. (B )0. (C )1. (D )3. 2.下列运算正确的是 ( )A .523a a a =+B .632a a a =⋅C .22))((b a b a b a -=-+ D.222)(b a b a +=+3.右边的几何体是由五个大小相同的正方体组成的,它的正视图为( )4.两圆的半径分别为2和5,圆心距为7,则这两圆的位置关系为( ) (A )外离. (B )外切. (C )相交. (D )内切.5. 二次函数2)1(2+-=x y 的最小值是( )(A )2 (B )1 (C )-1 (D )-2 6.下列命题中不成立的是( )A .矩形的对角线相等B .三边对应相等的两个三角形全等C .两个相似三角形面积的比等于其相似比的平方D .一组对边平行,另一组对边相等的四边形一定是平行四边形7.下列四个点中,有三个点在同一反比例函数xk y =的图象上,则不在这个函数图象上的点是 ( )A .(5,1)B .(-1,5)C .(35,3) D .(-3,35-)(第2题)8.已知圆锥的底面半径为5cm ,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( )(A )125 (B )135 (C )1310 (D )13129.如图,四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE=( ) A .2 B .3 C .22D .2310. 如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回.点P 在运动过程中速度大小不变.则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为( )二、填空题(每小题3分,共30分)11.新建的北京奥运会体育场——“鸟巢”能容纳91000位观众,将91000用科学记数法表示为 . 12.分解因式241a -= . 13.当x = 时,分式1x x+没有意义. 14.如图,AB//CD,CE 平分∠ACD ,若∠1=250,那么∠2的度数是 . 15.在一个不透明的袋子中有2个黑球、3个白球,它们除 颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸 出1个球,那么两个球都是黑球的概率为 . 16如图,沿倾斜角为30的山坡植树,要求相邻两棵树的水 平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。

2011年中考数学模拟卷(含详细答案)

2011年中考数学模拟卷(含详细答案)

2011年中考数学模拟试卷题号 一 二 三总 分 19 20 21 22 23 24 25 得分注意事项:本试题满分150分,考试时间120分钟;一、选择题:本大题8个小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是正确的,请把正确选项的标号填在题后面的括号内.1. 北京国家体育场“鸟巢”建筑面积达25.8万平方米,用科学记数法表示应为 ( )A .24108.25m ⨯B .25108.25m ⨯C .251058.2m ⨯D . 261058.2m ⨯ 2.计算23(2)a -的结果为 ( ) A .68a -B .52a -C .58a -D .66a -3.如图所示,已知直线AB CD ∥,125C ∠=°,45A ∠=°,则E ∠的度数为( ) A .70° B .80° C .90° D .100°4.某百货商场的女装专柜对上周女装的销售情况进行了统计,销售情况如下表所示:颜色 黄色 绿色 白色 紫色 红色 数量(件)10018022080550百货商场经理根据上周销售情况的统计表,决定本周多进一些红色的女装,可用来解释这一现象的统计知识是 ( )A.方差 B.平均数 C.众数 D.中位数 5.已知二元一次方程组2423m n m n -=⎧⎨-=⎩,,则m n +的值是 ( )A .1B .0C .2-D .1-6.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么 ( ) A .0k >,0b > B .0k >,0b < C .0k <,0b > D .0k <,0b < 7.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积是 ( ) A .4π B .π42 C .π22 D .2π得分 评卷人Oyx 1x =(30)A ,EAB C D45°125°3题图7题图8.如图所示是二次函数2y ax bx c =++图象的一部分,图象过A 点(3,0), 二次函数图象对称轴为1x =,给出四个结论:①24b ac >;②0bc <;③20a b +=;④0a b c ++=,其中正确结论是 ( ) A .②④ B .①③ C .②③ D .①④二、填空题:本大题共8个小题,每小题4分,共32分,请把答案填在题中横线上。

2011~2012中考数学模拟试卷(2)

2011~2012中考数学模拟试卷(2)

2011~2012中考数学模拟试卷(2) 姓名 班级 一、选择题1.2010年3月5日第十一届全国人大二次会议在北京人民大会堂开幕,温家宝总理在政府工作报告中指出:中央财政投入资金450亿元,补帖家电汽车摩托车下乡、汽车家电以旧换新和农机具购置。

把450亿元用科学记数法表示为 …… ( ) A 、4.5×1010元 B 、4.5×1011元 C 、0.45×1010元 D 、0.45×1011元2.某校10916,6.5 D .7,6 …… ( ) 3.如下面左图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为 …… ( )4.下列运算正确的是 …… ( )A .236(2)6x x -=-B .422x x x ÷= C .224x y xy += D .22()()y x y x y x +-+=-5.若三角形的两边长分别为2和6,则第三边的长可能是A .3 B .4 C .5 D .8…… ( )6.分式方程154x x =+的解是A .1 B . 23 C .-1 D .无解 …… ( )7.如下图,有一张直角三角形纸片,两直角边6AC cm =,9BC cm =,将△ABC 折叠,使点B 与点A重合,折痕为DE ,则CD 等于 …… ( ) A 、254cm B 、223cm C 、74cm D 、258.如上图,将置于直角坐标系中的三角板AOB 绕O A′OB′. 已知∠AOB =30°,∠B =90°,AB =1,则B′点的坐标为 …… ( )A .322⎛⎫ ⎪ ⎪⎝⎭, B .322⎛⎫ ⎪ ⎪⎝⎭, C .122⎛⎫ ⎪ ⎪⎝⎭, D .122⎛⎫⎪ ⎪⎝⎭, 9.如上图为二次函数2y ax bx c =++的图象,在下列说法中:①abc >0;②方程20ax bx c ++=的根为11x =-,23x =;③0a b c ++>;④当1x >时,y 随着x 的增大而增大.正确的说法个数是A .1B . 2C . 3D . 4 …… ( )10.如上图,矩形ABCD 中,512AD AB ==,,点M ,N 分别在AC ,AB 上,则BM MN +的最小值为A .9B . 12C .13120D .1691440…… ( ) 1 3 21 A . B . C . D .B A D A二、填空题11. 16的算术平方根是 . 12.因式分解:222a -= . 13有意义的x 的取值范围是 . 14.不等式组42348x x -+<⎧⎨-≤⎩的解集是 .15.如下图,在□ ABCD 中,点E 在边BC 上,BE :EC =1:2,连接AE 交BD 于点F ,则BFE ∆的面积与DFA ∆的面积之比为 .16.如下图,在平面直角坐标系中,将线段AB 绕点A 按逆时针方向旋转90°后,得到线段AB ′,则线段AB 扫过的图形面积的为 .17.如上图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 分别交OC 于点E ,交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①2AEC DEO S S ∆∆=;②AC=2CD ;③线段OD 是DE 与DA 的比例中项;④AB CE CD ⋅=22.其中正确结论的序号是 .18.已知整数x 满足109x -≤≤,11y x =+,224y x =-+,对任意一个x ,m 都取1y , 2y 中的较大值,则m 的最小值是. 三、解答题19.计算:()1133012cos π-︒︒-+-+-⎛⎫⎪⎝⎭. 20.求不等式组46521223x x x x >-++≥+⎧⎪⎨⎪⎩的整数解.21.先化简,再求值221211111x x x x x x ⎛⎫-+-+ ⎪+-+⎝⎭÷,其中2x =.AD BABDCOE22.在2010年上海世博会举行期间,某初级中学组织全校学生参观世博园,亲身体验“城市让生活更美好”的世博理念.为了解学生就学校统一组织参观过的5个场馆的最喜爱程度,随机抽取该校部分学生进行问卷调查(每人应选且只能选一个场馆),数据整理后,绘制成如下的统计图: 请根据统计图提供的信息回答下列问题:(1)本次随机抽样调查的样本容量是 ;(2)本次随机抽样调查的统计数据中,男生最喜爱场馆的中位数是 名;(3)估计该校女生最喜爱泰国馆的约占全校学生数的 %(保留三个有效数字);(4)如果该校共有2000名学生,而且六、七、八年级学生人数总和比九年级学生人数的3倍还多200名,试通过计算估计该校九年级学生最喜爱中国馆的人数约为多少名?23.如图,射线PG 平分∠EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与∠EPF 两边相交于A 、B和C 、D ,连结OA ,此时有OA ∥PE .(1)求证:AP AO =; (2)若弦12AB =,求tan ∠OPB 的值;(3)若以图中的点(即P 、A 、B 、C 、D 、O )构造四边形,则能构成菱形的四个点为 ,能构成等腰梯形的四个点为 或 或 .24.某大学校园内一商店,销售一种进价为每件20元的台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+. (1)设此商店每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (2)如果此商店想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种台灯的销售单价不得高于32元,如果此商店想要每月获得的利润不低于2000元,那么商店每月的成本最少需要多少元?25.如图,AE 是位于公路边的电线杆,为了使拉线CDE 不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD ,用于撑起拉线.已知公路的宽AB 为8米,电线杆AE 的高为12米,水泥撑杆BD 高为6米,拉线CD 与水平线AC 的夹角为67.4°.求拉线CDE 的总长L (A 、B 、C 三点在同一直线上,电线杆、水泥杆的大小忽略不计). (参考数据:1267.413sin ≈,567.413cos ≈ ,1267.45tan =)EADB C26.如图,在矩形ABCD中,2AB AD ==,(1)在边CD 上找一点E ,使EB 平分∠AEC ,并加以说明;(2)若P 为BC 边上一点,且2BP CP =,连结EP 并延长交AB 的延长线于F .①求证:点B 平分线段AF ;②PAE ∆能否由PFB ∆绕P 点按顺时针方向旋转而得到?若能,加以证明,并求出旋转度数;若不能,请说明理由.27.(1)【初始问题】如图1,已知两个同心圆,直线AD 分别交大⊙O 于点A 、D ,交小⊙O 于点B 、C .AB 与CD 相等吗?请证明你的结论. (2)【类比研究】如图2,若两个等边三角形ABC 和A 1 B 1 C 1的中心(点O )相同,且满足AB ∥A 1B 1,BC ∥B 1C 1,AC ∥A 1C 1,可知AB 与A 1B 1,BC 与B 1C 1,AC 与A 1C 1之间的距离相等.直线MQ 分别交三角形的边于点M 、N 、P 、Q ,与AB 所成夹角为∠α(3090α︒<∠<︒). ①求PQMN (用含∠α的式子表示); ②求∠α等于多少度时,MN = PQ .A B P图1图228.如图,在直角坐标平面内,点A 的坐标为(3,0),第一象限内的点P 在直线2y x =上,45PAO ∠=︒. (1)求点P 的坐标;(2)如果二次函数的图像过P 、O 、A 三点,求这个二次函数的解析式,并写出它的图像的顶点坐标M ; (3)如果将第(2)小题中的二次函数的图像向上或向下平移,使它的顶点落在直线2y x =上的点Q 处,求APM ∆与APQ ∆的面积之比.29.如图,抛物线与x 轴交于A (1x ,0)、B (2x ,0)两点,且12x x <,与y 轴交于点()04C -,,其中12x x ,是方程24120x x --=的两个根.(1)求抛物线的解析式;(2)点M 是线段AB 上的一个动点,过点M 作MN ∥BC ,交AC 于点N ,连接CM ,当CMN ∆的面积最大时,求点M 的坐标; (3)点()4D k ,在(1)中抛物线上,点E 为抛物线上一动点,在x 轴上是否存在点F ,使以A D E F 、、、为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点F 的坐标,若不存在,请说明理由。

2011年九年级中招模拟卷数学(一)参考答案

2011年九年级中招模拟卷数学(一)参考答案

九年级数学 第 1 页 共 5 页2011年九年级中招模拟试卷数学(一)参考答案一、选择题(每小题3分,共18分)二、填空题(每小题3分,共27分)三、解答题(本大题共8个大题,满分75分)16.解:原式21242(4)(4)2 4.2424x x x x x x xx x x+--+--===------ ……………(6分) 当4x =-时,原式44=+-= ……………………………(8分)17. 解:(1)④;……………………………………………………………………(2分)(2)75;……………………………………………………………………(4分) (3)754530300++×360万=180万;……………………………………(7分)(4)由于全市有360万人,而样本只选取了300人,样本容量太小,不能准确的反映真实情况,因此可加大样本容量.…………………………………(9分)18.解:(1)△EOF ,△AOM ,△DON ;…………………………………………(3分) (2)∵AB ⊥EF 于点B ,DC ⊥EF 于点C ,∴∠ABC =∠DCB =90°,……… (4分) ∵ CF = BE ,∴CF +BC =BE +BC ,即BF =CE ………………………………………………………………………(6分)九年级数学 第 2 页 共 5 页E BCAD FOON M FD ACBE在△ABF 和△DCE 中, AB D C ABC D C B BF C E =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△DCE . ………………………………………………………………(9分)19. 解:过点A 作AF //BD 交l 2于点F . l 1 // l 2,AF //BD ,∴ 四边形AFDB 是平行四边形. ∴ DF =AB =60,∠AFC =30°,∴ CF =CD -DF =140-60=80.…(3分)又 ∠ACE 是△ACF 的一个外角,∴∠CAF =∠ACE -∠AFC = 60°-30°=30°,∴∠CAF =∠AFC .∴AC =CF =80.…………………………………………………………………(6分) 在Rt △AEC 中,∠ACE =60° ∴ AE =AC ·sin60°= 80⨯2≈69.28≈69.3(米) ………………………(8分)答:河流的宽度AE 约为69.3米. ……………………………………………(9分)20.解:(1)当BC =1时,四边形AECF 是菱形.理由如下:…………………(1分) ∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,……………………(2分) ∵BE =DF ,∴OB -BE =OD -DF ,即OE =OF ,……………………………(3分) ∴四边形AECF 是平行四边形,……(4分)当BC = AB =1时,平行四边形ABCD 是菱形,∴AC ⊥BD ,即AC ⊥EF ,∴平行四边形AECF 是菱形. ………………………………………(6分) (2)由于正方形是特殊的菱形,由(1)知,此时四边形ABCD 和AECF 均为菱形.CDE1l 2F九年级数学 第 3 页 共 5 页∵∠ABC =60°,AB =1, AC ⊥BD ,∴△ADC 和△ABC 均为等边三角形,且AO =CO =12,BO =DO=2.…………(8分)当四边形AECF 是正方形时,EO =FO = AO =CO =12,∴1222D F D O FO =-== …………………………………………(9分)21.解:(1)设A 车间每天生产x 件甲种产品,B 车间每天生产x+3件乙种产品,2(3)31x x +=- ……………………………………………(2分)解得 7x =故 310x +=答:A 车间每天生产7件甲种产品,B 车间每天生产10件乙种产品.………(4分) (注:也可以列一元一次方程解决)(2)设该客户购买甲种产品m 件,则购买乙种产品(100)m -件,由题意得185********(100)18650m m +-<≤ ……………………………………(6分) 解得:4750m <≤ ……………………………………………………(7分)m 为正整数∴m 为48、49、50, ……………………………………………………(8分) 又 A 车间7天生产49件甲产品,B 车间7天生产乙产品70件∴ m 为48、49,此时对应的(100)m - 的值为52、51,………………………(9分) ∴有两种购买方案:购买甲种产品48件,乙种产品52件;购买甲种产品49件,乙种产品51件. …………………………………………………………………………(10分)22.(1)证明:分别过点C 、D 作CG ⊥AB 、DH ⊥AB ,垂足为G 、H ,则∠CGA =∠DHB =90°.∴ CG ∥DH .∵ △ABC 与△ABD 的面积相等, ∴ CG =DH . ……………………(2分) ∴ 四边形CGHD 为平行四边形.∴ AB ∥CD . …………………… (3分) (2)①证明:连结MF ,NE .AB DC 图①G H九年级数学 第 4 页 共 5 页图③设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2). ∵ 点M ,N 在反比例函数xk y =(k >0)的图象上,∴ k y x =11,k y x =22. ∵ ME ⊥y 轴,NF ⊥x 轴, ∴ OE =y 1,OF =x 2. ∴ S △EFM =ky x 212111=⋅,S △EFN =k y x 212122=⋅.∴S △EFM =S △EF N .由(1)中的结论可知:MN ∥EF .…………………………………………(6分)②设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2) ∵ S △EFM =11522E M E O k ⋅==,S △EFN =11522F N F O k ⋅==.∴ S △EFM =S △EF N .由(1)中的结论可知:MN ∥EF .设MN 和x 轴的交点为G (如图③),则,易知四边形 EFGM 为平行四边形,EM =2. S 四边形EFNM =S □EFGM + S △FNG =1122EM EO FG FN EM EO EM FN +=+=10+FN 当S 四边形EFNM =12时,FN =2,∴点N 的坐标为(-5,-2). ……………………………………………………(10分)23.解:(1)(1,0)A -和(0,4)C 代入2y x bx c =-++,得10,4.b c c --+=⎧⎨=⎩ 解得34b c =⎧⎨=⎩∴此抛物线解析式为: 234y x x =-++.……………………………………(3分)九年级数学 第 5 页 共 5 页(2)由题意得:2134y x y x x =+⎧⎨=-++⎩ 解得1110x y =-⎧⎨=⎩ 2234x y =⎧⎨=⎩∴点D 的坐标为(34),…………………(4分) 过点P 作PQ ∥y 轴,交直线AD 与点Q , ∵点P 的横坐标是m ,又点P 在抛物线234y x x =-++上,∴P 的纵坐标是234m m -++,点Q 的横坐标也是m , ∵点Q 在直线1y x =+上, ∴Q 的纵坐标是1m +,∴22(34)(1)23PQ m m m m m =-++-+=-++ ……………………………(7分) S △ADP = S △APQ + S △DPQ =2211(23)[(1)](23)(3)22m m m m m m -++--+-++-=21(23)42m m -++⨯2246m m =-++ 22(1)8m =--+.当1m =,△ADP 的面积S 的最大值为8. ………………………………………(9分) (3)11,22M -,2(1,22M ---,3(4,5)M ,4717(,)1010M .(11分)。

北京四中2011中考数学全真模拟试题(4)及答案

北京四中2011中考数学全真模拟试题(4)及答案

北京2011-2012中考数学全真模拟试题及答案第Ⅰ卷 (机读卷 共32分)一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1.5-的相反数是( )A .5B .5-C .15 D .15- 2.在第十一届全国人民代表大会第二次会议上,温家宝总理在政府报告中指出:2008年我国粮食连续五年增产,总产量为52850万吨,创历史最高水平.将52850用科学记数法表示应为( ) A .528510⨯ B .352.8510⨯ C .35.28510⨯ D .45.28510⨯ 3.五边形的内角和是( )A .180°B .360°C .540°D .720° 4.我国部分城市五月某一天最高温度如下表,这些数据的众数和中位数分别是( )城市 北京 上海 重庆 杭州 苏州 广州 武汉 最高温度 (℃)262531 29293131A .29,28B .31,29C .26,30D .25,315.若两圆的半径分别是2cm 和5cm ,圆心距为3cm ,则这两圆的位置关系是( ) A .外离 B .相交 C .外切 D .内切 6.如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是A .12B .14C .34D .17.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,…,若 21010b ba a+=⨯符合前面式子的规律,则a b +的值为( )A .179B .140C .109D .210 8.将一正方体纸盒沿下右图所示的粗实线剪开,展开成平面图,其展开图的形状为( ).0.1625—32A .B .C .D .第Ⅱ卷 (非机读卷 共88分)二、填空题(共4道小题,每小题4分,共16分) 9.在函数1y x =-中,自变量x 的取值范围是______________.10.如图,点A 、B 、C 是⊙O 上三点,∠C 为20°,则∠AOB 的度数 为__________°.11.分解因式:2242x x ++=____________________.12.如图,小正方形方格的边长为1cm ,则AB ⌒的长为___________cm .三、解答题(共5道小题,共25分) 13.(本小题满分5分)计算:112sin 60(2009)122-⎛⎫+--+ ⎪⎝⎭.14.(本小题满分5分)解不等式组()2035148x x x -<⎧⎪⎨+-⎪⎩≥,15.(本小题满分5分)已知:如图,AB ∥DE ,∠A =∠D ,且BE =CF , 求证:∠ACB =∠F . 16.(本小题满分5分)先化简,再求值:2314223a a a a +-⎛⎫+÷⎪--⎝⎭,其中2410a a -+=.AOBA B C DE FAOCBCBDA图1图2AD 'BCACE OBD F 17.(本小题满分5分)如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于(13)A ,,(1)B n -,两点.求反比例函数与一次函数的解析式.四、解答题(共2道小题,共10分) 18.(本小题满分5分)如图1,矩形纸片ABCD 中,AB =4,BC =43,将矩形纸片沿对角线AC 向下翻折,点D 落在点D ’处,联结B D ’,如图2,求线段BD ’ 的长.19.(本小题满分5分)如图,点D 是⊙O 直径CA 的延长线上一点,点B 在⊙O 上,且AB =AD =AO . (1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,弦AE 与BC 相交于点F ,且CF =9,cos ∠BF A =32,求EF 的长.图1A CE DB20.某校学生会准备调查本校初中三年级同学每天(除课间操外)课外锻炼的平均时间.(1)确定调查方式时,①甲同学说:“我到1班去调查全体同学”;②乙同学说:“我到体育场上去询问参加锻炼的同学”;③丙同学说:“我到初中三年级每个班去随机调查一定数量的同学”.上面同学说的三种调查方式中最为合理的是___________(填写序号); (2)他们采用了最为合理的调查方式收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将图1补充完整;(3)若该校初中三年级共有240名同学,则其中每天(除课间操外)课外锻炼平均时间不大于20分钟的人数约为__________人. (注:图2中相邻两虚线形成的圆心角为30°)六、解答题(共2道小题,共10分) 21.(本小题满分5分)列方程或方程组解应用题:2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心.“一方有难、八方支援”,某厂计划加工1500顶帐篷支援灾区,在加工了300顶帐篷后,由于情况紧急,该厂又增加了人员进行生产,将工作效率提高到原来的1.5倍,结果提前4天完成任务.问该厂原来每天加工多少顶帐篷.22.(本小题满分5分)把两个三角形按如图1放置,其中90ACB DEC ==︒∠∠, 45A =︒∠,30D =︒∠,且6AB =,7DC =.把△DCE 绕点C 顺时针旋转15°得到△D 1CE 1,如图2,这时AB 与 CD 1相交于点O ,与D 1E 1相交于点F .(1)求1ACD ∠的度数;(2)求线段AD 1的长;(3)若把△D 1CE 1绕点C 顺时针再旋转30°得到△D 2CE 2,这时点B 在△D 2CE 2的内部、外部、还是边上?请说明理由.BAE CD 1OF23.如图1,在ABC △中,ACB ∠为锐角,点D 为射线BC 上一点,联结AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB AC =,90BAC =∠,①当点D 在线段BC 上时(与点B 不重合),如图2,线段CF BD 、所在直线的位置关系为 __________ ,线段CF BD 、的数量关系为 ; ②当点D 在线段BC 的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB AC ≠,BAC ∠是锐角,点D在线段BC 上,当ACB ∠满足什么条件时,CF BC ⊥(点C F 、不重合),并说明理由.八、解答题(本题满分7分)24. 如图,在平面直角坐标系中,直线1(0)2y x b b =-+>分别交x 轴、y 轴于A B 、两点.点(40)C ,、(80)D ,,以CD 为一边在x 轴上方作矩形CDEF ,且:1:2CF C D =.设矩形CDEF 与ABO △重叠部分的面积为S .(1)求点E 、F 的坐标;(2)当b 值由小到大变化时,求S 与b 的函数关系式; (3)若在直线1(0)2y x b b =-+>上存在点Q ,使OQC ∠等于90 ,请直接..写出b 的取值范围.图1 A B D F E C 图2A B D E C F F 图3A B D C ExyB C E AF DO25.已知抛物线223y x bx c =-++与x 轴交于不同的两点()10A x ,和()20B x ,,与y 轴交于点C ,且12x x ,是方程2230x x --=的两个根(12x x <).(1)求抛物线的解析式;(2)过点A 作AD ∥CB 交抛物线于点D ,求四边形ACBD 的面积; (3)如果P 是线段AC 上的一个动点(不与点A 、C 重合),过点P 作平行于x 轴的直线l 交BC 于点Q ,那么在x 轴上是否存在点R ,使得△PQR 为等腰直角三角形?若存在,求出点R 的坐标;若不存在,请说明理由.答案及评分参考一、选择题(共8道小题,每小题4分,共32分)1.A ; 2.D ; 3.C ; 4.B ; 5.D ; 6.B ; 7.C ; 8.A . 二、填空题(共4道小题,每小题4分,共16分)9.x ≥1; 10.40; 11.()221x +; 12.2π. 三、解答题(共5道小题,共25分)13.解:1012sin 60(2009)122-⎛⎫+--+ ⎪⎝⎭14.()2035148x x x -<⎧⎪⎨+-⎪⎩≥, ①,② 3212322=⨯+-+…………4分 解:解不等式①,得x >2; ······· 2分 33=-.………………………5分 解不等式②,得1x -≥; ····· 4分 在数轴上表示不等式①、②的解集,∴原不等式组的解集为x >2. ··· 5分15.证明: ∵AB ∥DE ,∴∠B =∠DEF , ·········································································· 1分∵BE =CF , ∴BE +CE =CF +CE ,即BC =EF , ········································· 2分 ∵∠A =∠D ,∴△ABC ≌△DEF . ·································································· 4分 ∴∠ACB =∠F . ································································································· 5分16.解:2314223a a a a +-⎛⎫+÷ ⎪--⎝⎭2314223a a a a +-⎛⎫=-÷ ⎪--⎝⎭22423a a a +-=÷-………2分 ()()23222a a a a +=⋅-+-2344a a =-+ ···································································· 4分∵2410a a -+= ∴241a a -=-当241a a -=-时, 原式3114==-+. ······························································· 5分17.解:(1)∵点A (13),在反比例函数ky x =的图象上,∴3k =, …………………1分∴反比例函数的解析式为3y x =, ································································· 2分∵点B (1)n -,在反比例函数3y x=的图象上, ∴31n=-,∴3n =-, ·················································································· 3分 ∴点B 的坐标为(31)--,,∵点A 、点B 在一次函数y mx b =+的图象上.12345-1-2-3-4-50A C E O BD F O 1423CBD 'A 图2图1ADBCE∴331m b m b +=⎧⎨-+=-⎩,∴12m b =⎧⎨=⎩∴一次函数的解析式为2y x =+···································································· 5分四、解答题(共2个小题,共10分)18.解:设AD ’交BC 于O ,方法一:过点B 作BE ⊥AD ’于E , 矩形ABCD 中,∵AD ∥BC ,AD =BC , ∠B =∠D =∠BAD =90°, 在Rt △ABC 中,∵ta n ∠BAC =4334BC AB ==, ∴∠BAC =60°,∴∠DAC =90°—∠BAC =30°,……………………………2分∵将△ACD 沿对角线AC 向下翻折,得到△ACD ’,∴AD’=AD =BC =43,∠1=∠DAC =30°, ∴∠4=∠BAC —∠1=30°,又在Rt △ABE 中,∠AEB =90°,∴BE =2, ……………………………………4分 ∴AE =2223AB BE -=,∴D’E =AD’—AE =23,∴AE =D’E ,即BE 垂直平分AD’,∴BD ’=AB =4. ……………………………5分 方法二:矩形ABCD 中,∵AD ∥BC ,AD =BC ,∠B =∠D =90°,∴∠ACB =∠DAC , 在Rt △ABC 中,∵ta n ∠BAC =4334BC AB ==, ∴∠BAC =60°,∴∠ACB =90°—∠BAC =30°,……………………………2分∵将△ACD 沿对角线AC 向下翻折,得到△ACD ’, ∴AD =AD’=BC ,∠1=∠DAC =∠ACB =30°, ∴OA =OC ,∴OD ’=OB ,∴∠2=∠3,∵∠BOA =∠1+∠ACB =60°, ∠2+∠3=∠BOA , ∴∠2=12∠BOA =30°,…………………………………………………………4分 ∵∠4=∠BAC —∠1=30°,∴∠2=∠4,∴BD ’=AB =4. …………………5分19.(1)证明:联结BO ,……………………………1分 方法一:∵AB =AD ,∴∠D =∠ABD ,∵AB =AO ,∴∠ABO =∠AOB ,………………2分又在△OBD 中,∠D +∠DOB +∠ABO +∠ABD =180°,∴∠OBD =90°,即BD ⊥BO ,∴BD 是⊙O 的切线. ················································································ 3分方法二:∵AB =AO ,BO =AO ,∴AB =AO =BO ,∴△ABO 为等边三角形,∴∠BAO =∠ABO =60°, ∵AB =AD ,∴∠D =∠ABD , 又∠D +∠ABD =∠BAO =60°,∴∠ABD =30°, …………………2分 ∴∠OBD =∠ABD +∠ABO =90°,即BD ⊥BO , ∴BD 是⊙O 的切线. ……………………………………………………3分方法三:∵ AB =AD =AO ,∴点O 、B 、D 在以OD 为直径的⊙A 上 …………2分∴∠OBD =90°,即BD ⊥BO , ∴BD 是⊙O 的切线. ……………………………………………………3分(2)解:∵∠C =∠E ,∠CAF =∠EBF ,∴△ACF ∽△BEF , …………………… ········· 4分∵AC 是⊙O 的直径,∴∠ABC =90°,在Rt △BF A 中,cos ∠BF A =32=AF BF ,∴32==AF BF CF EF ,又∵CF =9,∴EF =6.…………………5分五、解答题(本题满分5分) 20.解:(1)③,……………………1分(2)图1补充完整, ……3分 (3)220. …………………5分六、解答题(共2个小题,共10分)21.解:设该厂原来每天加工x 顶帐篷,则工作效率提高后每天加工1.5x 顶帐篷. ······ 1分根据题意,得1500300150030041.5x x---=, ····················································· 3分 解这个方程,得100x =, ····················································································· 4分 经检验:100x =是原方程的解.答:该厂原来每天加工100顶帐篷. ····································································· 5分22.解:(1)如图1,由题意可知:∠BCE 1=15°,∵∠D 1CE 1=60°, ∴∠D 1CB =∠D 1CE 1—∠D 1CB =45°,又∠ACB =90°,∴∠ACD 1=∠ACB —∠D 1CB =45°. ············· 1分(2)由(1)知,∠ACD 1=45°,又∠CAB =45°,∴∠AOD 1=∠CAB +∠ACD 1=45°∴OC ⊥AB ,∵∠BAC =45°,∠ABC =90°—∠BAC =45°, ∴∠ABC =∠BAC ,∴AC =BC , ∴OC =12AB =OA =3,∴OD 1=CD 1—OC =4, 在R t △AOD 1中,∠5=90°,AD 1=221OA OD +=5. ···························· 3分 (3)点B 在△D 2CE 2内部. ··················································································· 4分 理由如下:设BC (或延长线)交D 2E 2于点P ,则∠PCE 2=15°+30°=45°.在R t △PCE 2中,可求CP =212CE 2=722, 在R t △ABC 中,可求BC =32,∵72322<,即BC <CP ,………5分 ∴点B 在△D 2CE 2内部.B 图1A E 1C D 1O FG B D C E FA 图1B C ADE FyxOGDE F C 图2A ByxOH GxyBA图3C FE D OD E FC图4AByxO 七、解答题(本题满分7分) 23.(1)①垂直,相等;………………………………………………………………………1分②当点D 在BC 的延长线上时①的结论仍成立.…………………………………2分 由正方形ADEF 得 AD =AF ,∠DAF =90º. ∵∠BAC =90º,∴∠DAF =∠BAC , ∴∠DAB =∠F AC ,又AB =AC ,∴△DAB ≌△F AC , ∴CF =BD , ∠ACF =∠ABD . ∵∠BAC =90º, AB =AC ,∴∠ABC =45º,∴∠ACF =45º,∴∠BCF =∠ACB +∠ACF =90º.即 CF ⊥BD . ……………………………………………………………………5分(2)当∠ACB =45º时,CF ⊥BD (如图).……………………………………………6分 理由:过点A 作AG ⊥AC 交CB 或CB 的延长线于点G ,则∠GAC =90º,∵∠ACB =45°,∠AGC =90°—∠ACB =45°, ∴∠ACB =∠AGC ,∴AC =AG ,∵点D 在线段BC 上,∴点D 在线段GC 上,由(1)①可知CF ⊥BD . …………………………………………………………7分八、解答题(本题满分7分)24. 解:(1)∵(40)C ,,(80)D ,,∴4CD =, ∵矩形CDEF 中,12CF CD =,∴2CF DE ==, ∵点E 、F 在第一象限,∴(8)E ,2,(4)F ,2.………………………1分 (2)由题意,可知(2)A b ,0,(0)B b ,,在R t △ABO 中,ta n ∠BAO =12OA OB =, ①当0<b ≤2时,如图1,0S =.……………………………………………2分 ②当2<b ≤4时,如图2,设AB 交CF 于G ,24AC b =-, 在R t △AGC 中,∵ta n ∠BAO =12GC AC =,∴2CG b =-. ∴()()12422S b b =--,即244S b b =-+,……………………………4分③当4<b ≤6时,如图3,设AB 交EF 于G ,交ED 于H ,28AD b =-, 在R t △ADH 中,∵ta n ∠BAO =12DH AD =,∴4DH b =-,6EH b =-, 在矩形CDEF 中,∵CD ∥EF ,∴∠EGH =∠BAO , 在R t △EGH 中,∵ta n ∠EGH =12EH EG =,∴122EG b =-, ∴()()12412262S b b =⨯---,即21228S b b =-+-,……………5分 ④当b >6时,如图4,8S =.………………………………………………6分(3)0b <≤51+. ………………………………………………………7分九、解答题(本题满分8分)解:(1)解方程2230x x --=,得123x x ==-1,.………………1分∴点()0A -1,,点()0B 3,.∴()()221110213302b c b c ⎧-⨯-+⋅-+=⎪⎪⎨⎪-⨯+⋅+=⎪⎩ 解,得432b c ⎧=⎪⎨⎪=⎩ ∴抛物线的解析式为224233y x x =-++. ······················································· 2分 (2)∵抛物线与y 轴交于点C .∴点C 的坐标为(0,2).又点()0B 3,,可求直线BC 的解析式为223y x =-+. ∵AD ∥CB ,∴设直线AD 的解析式为23y x b '=-+. 又点()0A -1,,∴23b '=-,直线AD 的解析式为2233y x =--. 解2242332233y x x y x ⎧=-++⎪⎪⎨⎪=--⎪⎩,得211241,1003x x y y =⎧=-⎧⎪⎨⎨==-⎩⎪⎩, ∴点D 的坐标为(4,103-). ················································································ 4分 过点D 作DD ’⊥x 轴于D ’, DD ’=103,则又AB =4.∴四边形ACBD 的面积S =12AB •OC +12AB •DD ’=2103································· 5分 (3)假设存在满足条件的点R ,设直线l 交y 轴于点E (0,m ),∵点P 不与点A 、C 重合,∴0< m <2,∵点()0A -1,,点()0,2C ,∴可求直线AC 的解析式为22y x =+,∴点112P m m ⎛⎫- ⎪⎝⎭,. ∵直线BC 的解析式为223y x =-+,∴点332Q m m ⎛⎫-+ ⎪⎝⎭,. ∴24PQ m =-+.在△PQR 中,①当RQ 为底时,过点P 作PR 1⊥x 轴于点R 1,则∠R 1PQ =90°,PQ =PR 1=m . ∴24m m -+=,解得43m =,∴点1433P ⎛⎫- ⎪⎝⎭,, ∴点R 1坐标为(13-,0). ················································································ 6分 ②当RP 为底时,过点Q 作Q R 2⊥x 轴于点R 2,同理可求,点R 2坐标为(1,0). ····································································· 7分 ③当PQ 为底时,取PQ 中点S ,过S 作SR 3⊥PQ 交x 轴于点R 3,则PR 3=QR 3,∠PR 3Q =90°.∴PQ =2R 3S =2m .∴242m m -+=,解,得1m =, ∴点112P ⎛⎫- ⎪⎝⎭,,点312Q ⎛⎫ ⎪⎝⎭,,可求点R 3坐标为(12,0). …………………8分 经检验,点R 1,点R 2,点R 3都满足条件.综上所述,存在满足条件的点R ,它们分别是R 1(13-,0),R 2(1,0)和点R 3(12,0).。

2011届中考数学二次函数复习题

2011届中考数学二次函数复习题

二次函数练习1、(07河北)如图,已知二次函数24y ax x c =-+的图像经过点A(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m ,m )与点Q 均在该函数图像上(其中m >0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 到x 轴的距离.2、(淄博07)在平面直角坐标系中,△AOB 的位置如图所示,已知∠AOB =90º,AO =BO ,点A 的坐标为(-3,1).(1)求点B 的坐标;(2)求过A ,O ,B 三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴l 的对称点为B 1,求△AB 1B 的面积.第1题图(第2题)3、(08长春)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)足球第一次落地点C距守门员多少米?(取7=)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取5=)4、(08佛山)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.(1) 直接写出点M及抛物线顶点P的坐标;(2) 求出这条抛物线的函数解析式;(3) 若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?第4题图5、(08桂林)桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过A、C、B三点的抛物线,以桥面的水平线为X轴,经过抛物线的顶点C与X轴垂直的直线为Y轴,建立直角坐标系,已知此桥垂直于桥面的相邻两柱之间距离为2米(图中用线段AD、CO、BE等表示桥柱)CO=1米,FG=2米(1)求经过A、B、C三点的抛物线的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数 学 试 题张天锋一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.-5的倒数是A .-5B .5C .- 15D .152.今年是中国共产党建党90周年,据最新统计中共党员总人数已接近7600万名,用科学记数法表示76000000的结果是A. 576010⨯ B .87.610⨯ C . 87610⨯ D .77.610⨯3.已知⊙O 1、⊙O 2的半径分别为5cm 、8cm ,且它们的圆心距为8cm ,则⊙O 1与⊙O 2的位置关系为A .外离B .相交C .相切D .内含4.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,A 5.D 6.A .357.如图是一个圆锥形冰淇淋,已知它的母线长是5cm ,高是4cm , 则这个圆锥形冰淇淋的底面面积是 A .210cm π B .29cm π C .220cm π D .2cm π8.观察下列图形及所对应的算式,根据你发现的规律计算1+8+16+24+ … + 8n(n 是正整数)的结果为A. ()221n + B. 18n + C. 18(1)n +- D. 244n n +二、填空题(本题共16分,每小题4分)9. 函数y = 1x -2中,自变量x 的取值范围是 .10.方程方程2230x x --=的两个根是__________________ . 11. 已知x=1是方程x 2-4x12.如图,Rt △ABC 中,∠C 点(不与点B 、C 重合),且三、解答题(本题共3013(本题满分5分)计算:02sin 302011︒ 14. (本题满分5分)因式分解: 221218x x -+ 15.(本题满分5分)如图, 已知:BF=DE,∠1=2,∠3=∠4 求证:AE=CF .证明: 16.(本题满分5分)已知 230a a --=,求代数式111a a --的值. 解:(第12题)第8题图17. (本题满分5分)一个涵洞成抛物线形,它的截面Array如图(1).现测得,当水面宽AB=1.6 m时,涵洞顶点O与水面的距离为2.4 m.ED离水面的高FC=1.5 m,求涵洞ED宽是多少?是否会超过1 m?(提示:设涵洞所成抛物线为y)ax(2<=a)0解:18.(本题满分6分)“校园手机”现象越来越受到社会的关注.“寒假”期间,记者刘凯随机调查了某区若干名学生和四、解答题(本题共20分,第19、20题各5分,第21题6分,第22题4分)19. (本题满分5分)如图,已知AB为⊙O的直径,DC切⊙O于点C,过D点作DE⊥AB,垂足为E,DE交AC于点F. 求证:△DFC是等腰三角形.20.(本题满分5分)某校九年级两个班各为红十字会捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程....解决的问题,并写出解题过程.21. (本题满分6分)如图,已知二次函数y = x 2-4x + 3的图象交x 轴于A 、B 两点(点A 在点B 的左侧)抛物线y = x 2-4x + 3交y 轴于点C ,(1)求线段BC 所在直线的解析式. (2)又已知反比例函数ky x=与BC 有两个交点且k 为正整数,求k 的值. 解:(1)(2)22.(本题满分4分)(1)如图①两个正方形的边长均为3,求三角形DBF 的面积.(2)如图②,正方形ABCD 的边长为3,正方形CEFG 的边长为1, 求三角形DBF 的面积. (3)如图③,正方形ABCD 的边长为a ,正方形CEFG 的边长为b ,求三角形DBF 的面积.从上面计算中你能得到什么结论.结论是:三角形DBF 的面积的大小只与a 有关, 与b 无关. (没写结论也不扣分)五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. (本题满分7分)如图,已知二次函数24y ax x c =-+的图象与坐标轴交于点A (-1, 0)和点C (0,-5). (1)求该二次函数的解析式和它与x 轴的另一个交点B 的坐标。

(2)在上面所求二次函数的对称轴上存在一点P (2,-2),连结OP,找出x 轴上所有点M 的坐标,使得△OPM 是等腰三角形.解: 24. (本题满分6分)等腰△ABC ,AB=AC=8,∠BAC=120°,P 为BC 的中点,小亮拿着300角的透明三角板,使300角的顶点落在点P ,三角板绕P 点旋转.(1)如图a ,当三角板的两边分别交AB 、AC 于点E 、F 时.求证:△BPE ∽△CFP ;(2)操作:将三角板绕点P 旋转到图b 情形时,三角板的两边分别交BA 的延长线、边AC 于点E 、F .① 探究1:△BPE 与△CFP 还相似吗?② 探究2:连结EF ,△BPE 与△PFE 是否相似?请说明理由; ③ 设EF=m ,△EPF 的面积为S ,试用m 的代数式表示S .25.如图,设抛物线C1:()512-+=x a y , C 2:()512+--=x a y ,C 1与C 2的交点为A, B,点A的坐标是)4,2(,点B 的横坐标是-2. (1)求a 的值及点B 的坐标;(2)点D 在线段AB 上,过D 作x 轴的垂线,垂足为点H,在DH 的右侧作正三角形DHG. 过C 2顶点M的 直线记为l ,且l 与x 轴交于点N. ① 若l 过△DHG 的顶点G,点D 的坐标为 (1, 2),求点N 的横坐标; ② 若l 与△DHG 的边DG 相交,求点N 的横 坐标的取值范围.BCPBP第25题图(注:12题评分标准:有AD <3 …2分, 有2≤AD …2分, 有2<AD …1分)三、解答题(本题共30分,每小题5分) 13(本题满分5分)计算:02sin 302011︒解:原式=1212⨯+……………………………………4分 =…………………………………………………5分14. (本题满分5分)因式分解: 221218x x -+解:221218x x -+=2)96(2+-x x …………………………………4分=223x -()……………………………………………… …5分 15.(本题满分5分)证明:∵BF=DE EF=EF ∴BF- EF =DE- EF∴BE=DF ………………………1分 在△ABE 和△CDF 中∵12,34,BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF ……………………………………4分 ∴AE=CF .…………………………………5分16.(本题满分5分)已知 230a a --=,求代数式111aa --的值.解:()11111a aa a a a ---=--………………………………………1分 ()11a a =--……………………………………………………2分21a a=--……………………………………3分 ∵ 230a a --=, ∴23a a -=.…………………………………4分∴ 原式13=-……………………………………5分 17. (本题满分5分)解:∵抛物线 )0(2<=a ax y点B 在抛物线上,将B(0.8,2.4)它的坐标代人)0(2<=a ax y ,求得=a 所求解析式为2415x y -= 再由条件设D 点坐标为0,(-x则有:24159.0x -=-x =……………………………4分x <0.5 ……………………………5分2x <1所以涵洞ED 不超过1m.18.(本题满分6分)解:20%=400 家长反对人数280 补全图 ……2分° ………………………… 4分………………………… 6分四、解答题(本题共20分,第19、20题各5分,第21题6分,第22题4分)19.证明:连结OC ,∵OA=OC ∴∠OAC=∠OCA ……………(1分) ∵DC 是切线(1)∴∠DCF=900-∠OCA ……………(2分) ∵DE ⊥AB∴∠DFC=900-∠OAC ……………(3分) ∵∠OAC=∠OCA ,……………(4分)∴∠DFC=∠DCF ……………(5分)即△DFC 是等腰三角形. 20.(本题满分5分)20.解法一:求两个班人均捐款各多少元?设1班人均捐款x 元,则2班人均捐款(x+4)元,根据题意得 1800x ·90%=1800x+4………………………………………………………(3分)解得x=36 经检验x=36是原方程的根,且符合实际意义………………………(4分) ∴x+4=40 ……………………………………………(5分) 答:1班人均捐36元,2班人均捐40元解法二:求两个班人数各多少人? 设1班有x 人,则根据题意得1800x +4=180090x% …………(3分)解得x=50 ,经检验x=50是原方程的根,且符合实际意义…(4分)∴90x % =45 ……………(5分) 答:1班有50人,2班有45人. (不检验扣1分) 21. (本题满分6分)解:(1)令x 2-4x + 3=0,1x =1,2x =3………………………(2分) 则A(1,0) B(3,0) C(0,3)BC 所在直线为3y x =-+……………………………………………(3分)(2有两个交点且k 为正整数 -3x + k=0………………………(4分) ∵△=9-4k>0 ∴ k <94…………………………………………………(5分) 又因为反比例函数ky x=与BC 的交点 所以k >0,因为 k 为正整数所以k=1或k=2………………………………………(6分) 22.(本题满分4分)(第23题图)解:(1)92 92………………………(2分) (2)22a …………(2分)结论是:三角形DBF 的面积的大小只与a 有关, 与b 无关. (没写结论也不扣分)五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. (本题满分7分)解:(1)根据题意,得⎪⎩⎪⎨⎧+⨯-⨯=-+-⨯--⨯=.0405,)1(4)1(022c a c a …(2分)解得 ⎩⎨⎧-==.5,1c a ……………………(3分) ∴二次函数的表达式为542--=x x y .B(5,0)…………………………………………………………………………(4分) (2)令y=0,得二次函数542--=x x y 的图象与x 轴的另一个交点坐标C (5, 0)…………………………………………………(5分) 符合条件的坐标有共有4个,分别是1P (4,0)2P (2,0) 3P (-22,0)4P 7分)解:EPC ∠= 而∠ ∠B 所以FPC BEP ∠=∠ 由︒=∠=∠30C B 可知结论成立. ………………………………………………………………………(3分) (2)①相似……………………………………………………………………………(4分)②相似……………………………………………………………………………(5分) 理由:由△BPE 与△CFP 相似可得 PF PE PC BE =即PFPEPB BE =,而︒=∠=∠30EPF B 知结论成立…………(6分)③由△BPE 与△PFE 相似得EFPEPF BP =,即m PF PE 34=⋅,过F 作PE 垂线可得PF S 2121⋅⋅=7分)图a25.(本题满分8分)解:(1)∵ 点A )4,2(在抛物线C 1上,∴ 把点A 坐标代入()512-+=x a y 得 a =1 ∴ 抛物线C 1的解析式为422-+=x x y设B(-2,b), ∴3分) (2)①如图1:∵ M(1, 5),过点G 作GE ⊥DH,垂足为由△DHG 是正三角形,可得∴ ME =4. 设N ( x, 0 ), 则 NH =x , 1…………(5分)) 2, 直线l 与DG 交于点G,此时点N的横坐标最大. 过点G,M作x 轴的垂线,垂足分别为点Q,F, 设N(x ,0)∵ A (2, 4) ∴ G (322+, 2)∴ NQ=322--x NF =1-x GQ=2 MF =5. ∵ △NGQ ∽△NMF ∴MFGQNF NQ = BCP B第25题图1第25题图2∴521322=---x x ∴ 38310+=x . ………………………………………………………(7分) 当点D 移到与点B 重合时,如图3直线l 与DG 交于点D,即点B此时点N 的横坐标最小.∵ B(-2, -4) ∴ H(-2, 0), D(-2, -4)设N (x ,0)∵ △BHN ∽△MFN ,∴∴ 5412=-+x x ∴ x∴ 点N 横坐标的范围为 -(。

相关文档
最新文档