人教版 九年级下册数学《锐角三角函数》单元测试卷及答 案
人教版九年级下册《第二十八章 锐角三角函数》单元测试卷及答案
人教版九年级下册《第28章锐角三角函数》单元测试卷(1)一、单选题1.在Rt△ABC中,∠C=90°,cos B=,则tan A的值为()A.B.C.D.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则()A.B.C.D.3.小明沿着坡度为1:2的山坡向下走了1000m,则他下降了()A.200m B.500m C.500m D.1000m4.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则tan∠OBC的值为()A.B.C.D.5.如图,四边形ABCD中,∠B=∠C=90°,CD=2米,BC=5米,,则AB =()A.8米B.10米C.12米D.14米6.如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长()米.A.B.C.D.7.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=1000米,∠D=55°,使A、C、E在一条直线上,那么开挖点E与D的距离是()A.1000sin55°米B.1000cos35°米C.1000tan55°米D.1000cos55°米8.如图,在矩形ABCD中,F是BC中点,E是AD上一点,且∠ECD=30°,∠BEC=90°,EF=4cm,则矩形的面积为()A.16cm2B.8cm2C.16cm2D.32cm29.如图,AB是圆锥的母线,BC为底面直径,已知BC=6cm,圆锥的侧面积为15πcm2,则cos∠ABC的值为()A.B.C.D.10.如图,边长为的等边三角形AOB的顶点B在x轴的正半轴上,点C为△AOB的中心,将△AOB绕点O以每秒60°的速度逆时针旋转,则第2021秒,△AOB的中心C 的对应点C2021的坐标为()A.(0,﹣2)B.C.D.二、填空题11.计算:=.12.在正方形网格中,△ABC的位置如图所示,则tan C的值为.13.△ABC中,∠A、∠B均为锐角,且(tan A﹣)2+|2cos B﹣1|=0,则△ABC的形状是.14.若等边三角形的边长为6,则其边心距为.15.如图,为方便行人过某天桥,市政府在10米高的天桥两端修建斜道,设计斜坡满足sin A =,则斜道AC的长度是米.16.一艘邮轮从港口P处出发,沿北偏东60°方向行驶200海里到A港口,卸货后向正南方向行驶到B港口,此时P港口在邮轮的北偏西45°方向上,这时邮轮与港口P相距海里.(保留根号)17.如图,在等腰Rt△ABC中,∠BAC=90°,.分别以点A,B,C为圆心,以的长为半径画弧分别与△ABC的边相交,则图中阴影部分的面积为.(结果保留π)三、解答题(一)18.计算:+|1﹣cos60°|﹣2tan45°•sin60°.19.如图,点P是∠α的边OA上的一点,已知点P的横坐标为6,若tanα=(1)求点P的纵坐标;(2)求∠α其它的三角函数值.20.某路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°,求路况显示牌BC的长度.(结果保留根号)四、解答题(二)21.如图,小锋将一架4米长的梯子AB斜靠在竖直的墙AC上,使梯子与地面所成的锐角α为60°.(1)求梯子的顶端与地面的距离AC(结果保留根号);(2)为使梯子顶端靠墙的高度更高,小锋调整了梯子的位置使其与地面所成的锐角α为70°,则需将梯子底端点B向内移动多少米(结果精确到0.1米)?参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75.22.如图,在平面直角坐标系xOy中,一次函数的图象y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,线段OA=5,OC=3,E为x轴上一点,且tan∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积.23.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,sin∠C=,求CD的长.五、解答题(三)24.图为某货站传送货物的平面示意图,为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4m.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出5m的通道,试判断距离B点4m的货物MNQP是否需要挪走,并说明理由.25.问题探究(1)如图①,⊙O的半径为10,弦AB=16,则圆心O到AB的距离为;(2)如图②,线段BC和动点A构成△ABC,已知BC=9,∠BAC=60°,过点A作BC边上的高线AD.若点D在线段BC上,求线段AD长度的最小值;问题解决(3)周老师为了增加数学学习的趣味性,设计了一个“寻宝”游戏:如图③,在平面内,线段AB长为9cm,线段AB外有一动点P,且线段PA长为7cm,又有一点Q满足PB=BQ,且∠PBQ=90°,当线段AQ的长度最大时,点Q的位置即为藏宝地.请你确定藏宝地的位置及此时藏宝地到点A的距离.人教版九年级下册《第28章锐角三角函数》单元测试卷(1)参考答案与试题解析一、单选题1.在Rt△ABC中,∠C=90°,cos B=,则tan A的值为()A.B.C.D.【考点】互余两角三角函数的关系.【分析】利用余弦的定义得到cos B==,设BC=x,AB=3x,则可求出AC=2x,然后根据正切的定义求解.【解答】解:在Rt△ABC中,∠C=90°,∴cos B==,设BC=x,AB=3x,则AC=2x,∴tan A===.故选:C.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则()A.B.C.D.【考点】锐角三角函数的定义.【分析】先利用勾股定理计算出AB,然后根据锐角三角函数的定义对各选项进行判断.【解答】解:∵∠C=90°,AC=4,BC=3,∴AB==5,∴sin A=cos B==,cos A==,tan B==.故选:B.3.小明沿着坡度为1:2的山坡向下走了1000m,则他下降了()A.200m B.500m C.500m D.1000m【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据坡度等于坡角的正切值,以及正切的定义可设下降了x m,则水平距离为2x m,再根据勾股定理求得答案.【解答】解:由题意得,BC:AB=1:2,设BC=x m,AB=2x m,则AC==x=1000(m),解得:x=200.故选:A.4.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则tan∠OBC的值为()A.B.C.D.【考点】圆周角定理;锐角三角函数的定义;坐标与图形性质.【分析】首先设⊙A与x轴的另一个交点为D,连接CD,根据直角对的圆周角是直径,即可得CD是直径,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,可得∠OBC =∠ODC,继而可求得答案.【解答】解:设⊙A与x轴的另一个交点为D,连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵C(0,5),∴OC=5,∴OD==5,∵∠OBC=∠ODC,∴tan∠OBC=tan∠ODC===.故选:C.5.如图,四边形ABCD中,∠B=∠C=90°,CD=2米,BC=5米,,则AB =()A.8米B.10米C.12米D.14米【考点】解直角三角形的应用;勾股定理.【分析】过D作DE⊥AB于E,利用四边形DEBC是矩形,得出BE=DC,DE=BC,根据三角函数得出AD,进而利用勾股定理解答即可.【解答】解:过D作DE⊥AB于E,∴∠DEB=∠B=∠C=90°,∴四边形DEBC是矩形,∴BE=DC=2米,DE=BC=5米,∵sin A=,∴,∴AD=13(米),∴AE=(米),∴AB=AE+BE=12+2=14(米),故选:D.6.如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长()米.A.B.C.D.【考点】解直角三角形的应用﹣坡度坡角问题;平行投影.【分析】利用直角三角形的性质得出BC,BD的长,进而得出答案.【解答】解:如图所示:∵第一次是当阳光与地面成45°,∴AB=BC=5m,∵第二次是阳光与地面成30°,∴BD==5(m),∴第二次观察到的影子比第一次长:(5﹣5)m.故选:A.7.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=1000米,∠D=55°,使A、C、E在一条直线上,那么开挖点E与D的距离是()A.1000sin55°米B.1000cos35°米C.1000tan55°米D.1000cos55°米【考点】解直角三角形的应用.【分析】根据已知条件可得∠E=90°,即可在Rt△BED中利用锐角三角函数即可得结果.【解答】解:∵∠ABD=145°,∴∠EBD=35°,∵∠D=55°,∴∠E=90°,在Rt△BED中,BD=1000米,∠D=55°,∴ED=1000cos55°米,故选:D.8.如图,在矩形ABCD中,F是BC中点,E是AD上一点,且∠ECD=30°,∠BEC=90°,EF=4cm,则矩形的面积为()A.16cm2B.8cm2C.16cm2D.32cm2【考点】矩形的性质.【分析】根据直角三角形斜边上的中线等于斜边的一半求出BC,再根据直角三角形两锐角互余求出∠BCE=60°,判断出△CEF是等边三角形,过点E作EG⊥CF于G,根据等边三角形的性质求出EG,然后根据矩形的面积公式列式进行计算即可得解.【解答】解:∵F是BC中点,∠BEC=90°,∴EF=BF=FC,BC=2EF=2×4=8cm,∵∠ECD=30°,∴∠BCE=90°﹣∠EBC=90°﹣30°=60°,∴△CEF是等边三角形,过点E作EG⊥CF于G,则EG=EF=×4=2cm,∴矩形的面积=8×2=16cm2.故选:C.9.如图,AB是圆锥的母线,BC为底面直径,已知BC=6cm,圆锥的侧面积为15πcm2,则cos∠ABC的值为()A.B.C.D.【考点】圆锥的计算;解直角三角形.【分析】先根据扇形的面积公式S=L•R求出母线长,再根据锐角三角函数的定义解答即可.【解答】解:根据题意可知:,解得AB=5cm,∵,∴.故选:B.10.如图,边长为的等边三角形AOB的顶点B在x轴的正半轴上,点C为△AOB的中心,将△AOB绕点O以每秒60°的速度逆时针旋转,则第2021秒,△AOB的中心C的对应点C2021的坐标为()A.(0,﹣2)B.C.D.【考点】坐标与图形变化﹣旋转;规律型:点的坐标.【分析】因为360°÷60°=6,推出△AOB的位置6秒一循环,而2021=6×336+5,推出第2021秒,△AOB的位置如图所示,设点C的对应点C′,过C′作C′D⊥x轴于点D,连接OC′,BC′,则∠DOC′=30°,OD=DB=,求出点B′坐标即可.【解答】解:∵360°÷60°=6,∴△AOB的位置6秒一循环,而2021=6×336+5,∴第2021秒,△AOB的位置如图所示,设点C的对应点C′,过C′作C′D⊥x轴于点D,连接OC′,BC′,则∠DOC′=30°,OD=DB=,∴DC′=OD•tan∠DOC′=×tan30°=×=1,∴C′.故选:B.二、填空题11.计算:=0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】首先计算零指数幂、负整数指数幂、特殊角的三角函数值和绝对值,然后计算乘法,最后合并同类项,求出算式的值是多少即可.【解答】解:=4﹣3+﹣2×﹣1=1+﹣﹣1=0.故答案为:0.12.在正方形网格中,△ABC的位置如图所示,则tan C的值为.【考点】解直角三角形.【分析】过A作AD⊥BC于D,根据正切的定义计算,得到答案.【解答】解:过A作AD⊥BC于D,在Rt△ADC中,tan C==,故答案为:.13.△ABC中,∠A、∠B均为锐角,且(tan A﹣)2+|2cos B﹣1|=0,则△ABC的形状是等边三角形.【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】直接利用非负数的性质结合特殊角的三角函数值得出各角度数,即可得出答案.【解答】解:∵(tan A﹣)2+|2cos B﹣1|=0,∴tan A﹣=0,2cos B﹣1=0,则tan A=,cos B=,故∠A=60°,∠B=60°,则∠C=60°,即△ABC的形状是等边三角形.故答案为:等边三角形.14.若等边三角形的边长为6,则其边心距为.【考点】正多边形和圆;等边三角形的性质.【分析】已知正六边形的边长为6,欲求边心距,可通过边心距、边长的一半和内接圆半径构造直角三角形,通过解直角三角形求解即可.【解答】解:如图所示,∵△ABC是等边三角形,边长BC=AB=AC=6,O为外心,∴∠OBD=30°,∵OD⊥BC,∴BD=CD=,在Rt△BDO中,OD=BD•tan∠OBD=3×,故答案为:.15.如图,为方便行人过某天桥,市政府在10米高的天桥两端修建斜道,设计斜坡满足sin A =,则斜道AC的长度是30米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】在Rt△ABC中,由锐角三角函数定义求出AC的长即可.【解答】解:在Rt△ABC中,BC=10米,sin A==,∴AC=3BC=30(米),故答案为:30.16.一艘邮轮从港口P处出发,沿北偏东60°方向行驶200海里到A港口,卸货后向正南方向行驶到B港口,此时P港口在邮轮的北偏西45°方向上,这时邮轮与港口P相距100海里.(保留根号)【考点】解直角三角形的应用﹣方向角问题.【分析】如图所示,作PD⊥AB于D点,解直角三角形即可得到结论.【解答】解:如图所示,作PD⊥AB于D点,根据题意可得∠APD=30°,AP=200海里,在Rt△APD中,AD=100海里,海里,又∵∠B=45°,∴△PBD为等腰直角三角形,∴海里,故答案为:.17.如图,在等腰Rt△ABC中,∠BAC=90°,.分别以点A,B,C为圆心,以的长为半径画弧分别与△ABC的边相交,则图中阴影部分的面积为8﹣2π.(结果保留π)【考点】扇形面积的计算;等腰直角三角形.【分析】利用等腰直角三角形的性质得出AD,BD的长,再利用扇形面积求法以及直角三角形面积求法得出答案.【解答】解:等腰Rt△ABC中,∠BAC=90°,.∴AB=BC•sin45°=,=,∴S△ABC∵∠A+∠B+∠C=180°,∴,以2为半径,180°扇形是半圆=,阴影面积=8﹣2π.故答案为:8﹣2π.三、解答题(一)18.计算:+|1﹣cos60°|﹣2tan45°•sin60°.【考点】特殊角的三角函数值;绝对值.【分析】把特殊角的三角函数值代入原式,根据绝对值是性质计算即可.【解答】解:+|1﹣cos60°|﹣2tan45°•sin60°=﹣1+1﹣﹣2×1×=﹣.19.如图,点P是∠α的边OA上的一点,已知点P的横坐标为6,若tanα=(1)求点P的纵坐标;(2)求∠α其它的三角函数值.【考点】解直角三角形;坐标与图形性质.【分析】(1)过P作PM⊥x轴于M,则OM=6,由tanα=可得PM=8;(2)利用勾股定理求出OP=10,进而根据锐角三角函数的定义求出∠α其它的三角函数值.【解答】解:(1)如图,过P作PM⊥x轴于M,则∠PMO=90°,∵点P的横坐标为6,∴OM=6,∵tanα===,∴PM=8,∴点P的纵坐标是8;(2)∵在Rt△OMP中,∠PMO=90°,PM=8,OM=6,∴OP===10,∴sinα===,cosα===.20.某路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°,求路况显示牌BC的长度.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△ABD中,知道了已知角的对边,可用正切函数求出邻边AD的长;同理在Rt△ABC中,知道了已知角的邻边,用正切值即可求出对边AC的长;进而由BC=AC ﹣AB得解.【解答】解:∵在Rt△ADB中,∠BDA=45°,AB=3m,∴DA=3m,在Rt△ADC中,∠CDA=60°,∴tan60°=,∴CA=m∴BC=CA﹣BA=(3﹣3)米.四、解答题(二)21.如图,小锋将一架4米长的梯子AB斜靠在竖直的墙AC上,使梯子与地面所成的锐角α为60°.(1)求梯子的顶端与地面的距离AC(结果保留根号);(2)为使梯子顶端靠墙的高度更高,小锋调整了梯子的位置使其与地面所成的锐角α为70°,则需将梯子底端点B向内移动多少米(结果精确到0.1米)?参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75.【考点】解直角三角形的应用.【分析】(1)根据竖直的墙与梯子形成直角三角形,利用锐角三角函数即可求出AC的长;(2)将梯子向内移动后,移动的距离为BD,根据DE=AB=4m,利用锐角三角函数即可求出结果.【解答】解:(1)竖直的墙与梯子形成直角三角形,在Rt△ABC中,∠C=90°,∴(m);(2)如图所示,将梯子向内移动后,移动的距离为BD,∵DE=AB=4m,在Rt△ABC中,(m),在Rt△EDC中,DC=DE⋅cos70°≈4×0.34=1.36(m),∴BD=BC﹣DC≈2﹣1.36≈0.6(m),故向内移动0.6m.22.如图,在平面直角坐标系xOy中,一次函数的图象y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,线段OA=5,OC=3,E为x轴上一点,且tan∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入代入y=可求得m=﹣12,则可得到反比例函数解析式;然后把A和C点坐标分别代入y=kx+b得到关于k、b的方程组,再解方程组求出k和b的值,从而可确定一次函数解析式;=S△AOC+S△BOC求解.(2)先确定B点坐标,然后根据S△AOB【解答】解:(1)作AD⊥x轴于D,如图,在Rt△OAD中,tan∠AOE=,∴=,∵OA=5,∴AD=4,OD=3,∴A(﹣3,4),把A(﹣3,4)代入y=(m≠0)得m=﹣3×4=﹣12,所以反比例函数解析式为y=﹣;∵OC=3,∴C(3,0),把A(﹣3,4)、C(3,0)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2;(2)解得,∴B(6,﹣2),=S△AOC+S△BOC=×3×4+×3×2=9.∴S△AOB23.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,sin∠C=,求CD的长.【考点】圆周角定理;解直角三角形.【分析】(1)欲证明CB∥PD,只要证明∠1=∠P即可.(2)根据三角函数的定义求出BE,再利用勾股定理求出EC可得结论.【解答】(1)证明:∵∠C=∠P,又∵∠1=∠C,∴∠1=∠P,∴CB∥PD.(2)解:连接AC.∵AB为⊙O的直径,∴∠ACB=90°,又∵CD⊥AB,∴,∴∠P=∠CAB,∴=,又∵BC=3,∴BE=2,∴CE===,∴CD=2EC=2.五、解答题(三)24.图为某货站传送货物的平面示意图,为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4m.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出5m的通道,试判断距离B点4m的货物MNQP是否需要挪走,并说明理由.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】(1)根据等腰直角三角形的性质求出AD,根据直角三角形的性质求出AC;(2)根据余弦的定义求出CD,根据题意求出PC,根据题意判断即可.【解答】解:(1)在Rt△ABD中,∠ABD=45°,∴AD=AB=4(m),在Rt△ACD中,∠ACD=30°,∴AC=2AD=8(m),答:新传送带AC的长度为8m;(2)在Rt△ACD中,∠ACD=30°,∴CD=AC•cos∠ACD=4(m),在Rt△ABD中,∠ABD=45°,∴BD=AD=4(m),∴BC=CD﹣BD=(4﹣4)m,∴PC=BP﹣BC=4﹣(4﹣4)=4(m),∵4<5,∴货物MNQP需要挪走.25.问题探究(1)如图①,⊙O的半径为10,弦AB=16,则圆心O到AB的距离为6;(2)如图②,线段BC和动点A构成△ABC,已知BC=9,∠BAC=60°,过点A作BC边上的高线AD.若点D在线段BC上,求线段AD长度的最小值;问题解决(3)周老师为了增加数学学习的趣味性,设计了一个“寻宝”游戏:如图③,在平面内,线段AB长为9cm,线段AB外有一动点P,且线段PA长为7cm,又有一点Q满足PB=BQ,且∠PBQ=90°,当线段AQ的长度最大时,点Q的位置即为藏宝地.请你确定藏宝地的位置及此时藏宝地到点A的距离.【考点】圆的综合题.【分析】(1)如图1,过点O作OC⊥AB,连接OB,在Rt△OBC中,由勾股定理得,即可求解;(2)BC=9,∠BAC=60°,且点D在线段BC上,则△ABC应为锐角三角形或直角三角形,进而求解;(3)连接AC并延长交⊙C于点Q',当Q与Q'重合时,AQ的长度最大,即为AQ'的长度,点Q'即为藏宝地,即可求解.【解答】解:(1)如图1,过点O作OC⊥AB,连接OB,∵OB=10,,在Rt△OBC中,由勾股定理得,故答案为:6;(2)如图,作△ABC的外接圆⊙O,∵BC=9,∠BAC=60°,且点D在线段BC上,∴△ABC应为锐角三角形或直角三角形,∴点A在劣弧上,∴当点D与点B或点D与点C重合时,AD长度最小,此时∠A''BC=∠A'CB=90°,∴,即AD的最小值为;(3)如图3,∵PB=BQ,且∠PBQ=90°,∴将△PAB绕点B逆时针旋转90°,PB与QB重合,得到△QCB,则QC=PA=7cm,∴当点P运动时,点Q的运动路径为以C为圆心、半径为7cm的⊙C,QC=PA=7cm.连接AC并延长交⊙C于点Q',当Q与Q'重合时,AQ的长度最大,即为AQ'的长度,点Q'即为藏宝地.∵∠ABC=∠PBQ=90°,AB=BC=9cm,∴,∴,∴藏宝地到点A的距离为.。
人教版九年级下《第28章锐角三角函数》单元测试卷含参考答案.doc
人教版九年级数学下册第28章锐角三角函数单元测试卷A. B. C. D.10.的值为()学校:班级:姓名:考号: __________ A. B.一、选择题(本题共计 10 小题,每题 3 分,共计30分) C. D.1. 在中,,下列各式中正确的是()二、填空题(本题共计 10 小题,每题3分,共计 30分,)A. B.11. 如图,一楼高,一只鸽子从地面的处沿倾斜角为的方向直飞楼顶的处,则鸽子飞行C. D.的路程是.2. 的值是()A. B. C. D.3. 在中,如果一条直角边和斜边的长度都缩小至原来的,那么锐角的各个三角函数值()12. 如图,一艘轮船以海里 / 小时速度从南向北航行,当航行至处时,测得小岛在轮船的北偏A.都缩小B.都不变东度的方向处,航行一段时间后到达处,此时测得小岛在轮船的南偏东度的方向处.若C.都扩大倍 D.无法确定海里,则轮船航行的时间为.4. 为锐角,若,则的值为()A. B. C. D.5. 如图所示,已知是等腰底边上的高,且,上有一点,满足,则的值是()13. 中,,则三边之比.14. 如图是屋架设计图的一部分,立柱垂直于横梁,米,,则斜梁米.A. B. C. D.6. 如图,在边长为的小正方形组成的网格中,的三个顶点均在格点上,则的值为()15. 如图,一束光线从轴上点出发,经过轴上点反射后经过点,则光线从点到点经过的路线长是.A. B. C. D.7. 已知:,则锐角等于()16. 市政府决定今年将A. B. 长的大堤的迎水坡面铺石加固.如图,堤高,堤面加宽C. D.以上结论都不对坡度由原来的改成,则完成这一工程需要的石方数为________ .8. 在中,,,则的值为()A. B. C. D.9. 已知是锐角,且,那么等于()17. 如图,河堤横断面迎水坡的坡比是,则坡角________ .若,,,都是锐角,且.试判断、的大小,并给出证明.18. 如图,为了测量某建筑物的高度,在地面上的处测得建筑物顶端的仰角为,沿方向前进到达处,在处测得建筑物顶端的仰角为,则建筑物的高度等于 ________.19. 分别求出图中、的正切值:(其中),由上面的例子可以得出结论:直角三角形的两个锐角的正切值互为.23. 已知:如图,在中,,平分,,.20. 如图,一渔船由西往东航行,在点测得海岛位于北偏东的方向,前进海里到达点,求;此时,测得海岛位于北偏东的方向,则海岛到航线的距离等于海里.求.三、解答题(本题共计 6 小题,每题 10 分,共计 60 分,)21. 已知:如图,是的斜边上的高,用余弦、正切的定义证明:( 1);24. 如图,在坡角为的山顶上有一座电视塔,在山脚处测得电视塔顶部的仰角为,斜坡( 2 ).的长为米,求电视塔的高.22. 如图,已知和射线上一点(点与点不重合),且点到、的距离为、.若,,,试比较、的大小;25.天津北宁公园内的致远塔,塔高九层,塔内四周墙壁上镶钳着历史题材为内容的瓷板油彩画或青石刻浮雕,叠双向盘旋楼梯或电梯可达九层,津门美景尽收眼底,是我国目前最高的宝塔.某校数学情趣小组实地测量了致远塔的高度,如图,在处测得塔尖的仰角为,再沿方向前进到达处,测得塔尖的仰角为,求塔高(精确到,)26. 一架外国侦察机沿方向侵入我国领空进行非法侦察,我空军的战斗机沿方向与外国侦察机平行飞行,进行跟踪监视,我机在处与外国侦察机处的距离为米,为,这时外国侦察机突然转向,以偏左的方向飞行,我机继续沿方向以米 / 秒的速度飞行,外国侦察机在点故意撞击我战斗机,使我战斗机受损.问外国侦察机由到的速度是多少?(结果保留整数,参考数据,)答案1.C2.A3.B4.D5.B6.D7.A8.B9.B10.D11.12.小时13.14.15.16. ∴,即,17. 则;∵,18. ∴,又,19. 倒数∴,20.则.21. 解:∵ 是的斜边上的高,∴,24. 解:在中,米,,在中,∴米,,(米).在中,又,,,∴.∴(米)∴,即;∵∴米.,高米.∴电视塔∴,25. 塔高约为米.在中,26. 外国侦察机由到的速度是.,在中,,∴,即.22. 解:在中,在中,又∴;根据得,又∵∴∴.23. 解:在中,,,,根据勾股定理得:,∴,∴,又为的平分线,。
人教版九年级数学下册《第二十八章锐角三角函数》单元测试卷-含答案
人教版九年级数学下册《第二十八章锐角三角函数》单元测试卷•含答案(120分钟150分)题号123456789101112一、选择题(每小题3分,共36分)1.如图,在RtAABC中,ZC=90°4C=4?BC=3,则()2.RtAABC中C=90。
,A09,sin项U AB=()A.15B.12C.9D.63.小明沿着坡度为1:2的山坡向下走了1000m,则他下降了()A.200V5mB.500mC.500V3mD.l000m4.如图直径为10的OA经过点C(0,5)和点0(0,0),8是y轴右侧OA优弧上一点,则tan ZOBC的值为()5.如图,四边形A8CQ中,ZB=ZC=90°,CD=2米,8。
=5米sin4二二则AB=()D CA.8米B.10米C.12米D.14米6.如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45。
时第二次是阳光与地面成30。
时第二次观察到的影子比第一次长__________米.()A.5V3-5B.5-V3C.5+5V3D.5号7.(2023.长春中考)学校开放日即将来临,负责布置的林老师打算从学校图书馆的顶楼拉出一条彩旗绳A8到地面如图所示.已知彩旗绳与地面形成25。
角(即ZBAC=25°)>旗绳固定在地面的位置与图书馆相距32米(即AC=32米),则彩旗绳A8的长度为()A.32sin25咪B.32cos25。
米C.表米D.看米8.如图在矩形A8CQ中『是BC中点,E是AQ上一点,且/归8=30。
,/器。
二90。
, Eg=4cm,则矩形的面积为cm2.()A.16B.8V3C.16V3D.329.如图,A8是圆锥的母线,8。
为底面直径,已知BC=6cm,圆锥的侧面积为15兀cm2,则cos ZABC的值为()3345A・Z C-5D310.如图,在AABC中,sin B=|,AB=84C=5,且匕C为锐角,则cos C的值是()AB CA.-B.-C,— D.-552411.小明去爬山,在山脚看山顶角度为30。
九年级下学期数学(锐角三角函数)单元测试卷(及解析)
九年级下学期“锐角三角函数”单元测试卷(人教版)(考试时间:100分钟,满分:100分)(3*8=24分)、在Rt △ABC 中,∠C =90°,a =2,b =3,则cos A = ,sin B = ,tan B = 。
、直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sin A = 。
、已知tan α=125,α是锐角,则sin α= 。
、等腰三角形底边长10cm ,周长为36cm ,则一底角的正切值为 。
、某人沿着坡度i=1:3的山坡走了50米,则他离地面 米高。
、如图,在坡度为1:2 的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米。
、如图,两条宽度为1的纸带,相交成600角,那么重叠部分的面积是 。
第6题 第7题 第8题、如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时,梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面墙上N ,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角45°,则这间房子的宽AB 是 米。
(3*10=30分)、Rt △ABC 中,∠C =90°,若BC =4,,32sin =A 则AC 的长为( )A .6B .52C .53D .132、在Rt ΔABC 中,∠C=900,则cb是∠A 的( ) 、正弦 B 、正切 C 、余弦 D 、以上都不对 11、在Rt ΔABC 中,∠C=900,则下列关系成立的是( )A 、AC=BCsinAB 、A C=ABsinAC 、B C=ACsinBD 、AC=ABsinB12、在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值( )A 也扩大3倍B 缩小为原来的31C 都不变D 有的扩大,有的缩小 13、以直角坐标系的原点O 为圆心,以1为半径作圆。
若点P 是该圆上第一象限内的一点,且OP 与x 轴正方向组成的角为α,则点P 的坐标为 ( ) A (cos α,1) B (1,sin α) C (sin α,cos α) D (cos α,sin α) 14、如图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC=53,则BC 的长是 ( A ) A 、4cm B 、6cm C 、8cm D 、10cm15、已知a 为锐角,sina=cos500则a 等于 ( )A 200B 300C 400D 50016、 16、若tan(a+10°)=3,则锐角a 的度数是( )A 、20°B 、50°C 、35°D 、30° 17、计算:2Sin 245°+4Cos 260°=( )A 、 2B 、 1C 、 0D 、-218、小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为 ( )A .9米B .28米C .()37+米 D.()3214+米三、解答题:(6小题,共46分)19、计算(6分):如图,阴影部分是一个正方形,其中A 、D 、E 三点在同一条直线上,求正方形ABCD 的面积。
人教版九年级数学下册第28章:锐角三角函数 全章测试含答案
人教版初中数学九年级下册第28章《锐角三角函数》全章测试一、选择题1. 在直角三角形中,如果各边都扩大1倍,则其锐角的三角函数值( )A. 都扩大1倍B.都缩小为原来的一半C.都没有变化D. 不能确定2.Rt △ABC 中,∠C =90°,若BC =4,,32sin =A 则AC 的长为( )A .6B .52C .53D .132 3.已知β为锐角,cos β≤21,则β的取值范围为( ) A.30°≤β <90° B. 0°<β≤60° C. 60°≤β<90° D. 30°≤β<60° 4.化简:140tan 240tan 2+-︒︒ 的结果为( )A.1+tan40°B. 1-tan40°C. tan40°-1D. tan 240°+1 5.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( )A .312B .12C .324D .3486.如图,△ABC 中,,90︒=∠C AD 是BAC ∠的角平分线,交BC 于点D ,那么CDACAB -=( )(A )BAC ∠sin (B )BAC ∠cos (C )BAC ∠tan (D )无法确定7.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么ABDC的值为( )A .sin ∠APCB .cos ∠APC C .tan ∠APCD .APC∠tan 18.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( )A .15mB .12mC .9mD .7m 9. 已知α是锐角,且sin α+cos α=332,则sin α·cos α值为( ) A. 32 B. 23 C. 61D. 110.P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 点,若∠APB =2,⊙O 的半径为R ,则AB 的长为( )A .ααtan sin RB .ααsin tan R C .ααtan sin 2R D .ααsin tan 2R二、填空题11. 计算:1sin 60cos302-= . 12.ABC △中,90C =∠,若1tan 2A =,则sin ______A =13. 已知山坡的坡度i =1,则坡角为________.14. 在△ABC 中,∠C =90°,∠ABC =60°,若D 是AC 边中点,则tan ∠DBC 的值为______. 15. 在Rt △ABC 中,∠C =90°,a =10,若△ABC 的面积为3350,则∠A =______度. 第6题 第7题16. 菱形的两条对角线长分别为23和6,则菱形的相邻的两内角分别为_________.17.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .18. 如图所示,四边形ABCD 中,∠B =90°,AB =2,CD =8,AC ⊥CD ,若,31s i n =∠A C B 则cos ∠ADC =______.19.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示). 20.在数学活动课上,小敏,小颖分别画了△ABC •和△DEF ,数据如图7,如果把小敏画的三角形面积记作ABC S ∆,小颖画的三角形面积记作DEF S ∆,那么你认为小敏和小颖画的两个三角形的面积的大小关系是ABC S ∆ DEF S ∆.(填“>,<,或=”) 三、解答题 21.计算:(1) 200822)45cot (30cot 60tan 60cot 30sin 2︒-+︒︒-︒+︒ (2) 130cos 260sin 60tan 45tan 2+︒-︒+︒-︒ (3)已知α是锐角,且sin (α+15°)=32,求8 -4cos α—( 2 -1)0+tan α的值. 22. 在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.23由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中∠A =30°,tan B = ▲,AC =AB 的长”。
人教版九年级数学下册《第28章锐角三角函数》单元测试卷(含答案)
新人教版九年级下《第28章锐角三角函数》单元测试卷一、选择题(本大题共10小题,共30.0分)1.sin60°的值等于()A. B. C. D.2.已知α为锐角,sin(α-20°)=,则α=()A. B. C. D.3.在正方形网格中,∠α的位置如图所示,则tanα的值是()A.B.C.D. 24.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是()A. B. C. D.5.在Rt△ABC中,各边都扩大5倍,则角A的三角函数值()A. 不变B. 扩大5倍C. 缩小5倍D. 不能确定6.在△ABC中,∠C=90°,tan A=,则cos A的值为()A. B. C. D.7.在△ABC中,∠A=120°,AB=4,AC=2,则sin B的值是()A. B. C. D.8.如图,山顶一铁塔AB在阳光下的投影CD的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB的高为()A. 3米B. 米C. 米D. 米9.坡度等于1:的斜坡的坡角等于()A. B. C. D.10.济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1m,则该楼的高度CD为()A. 47mB. 51mC. 53mD. 54m二、填空题(本大题共7小题,共26.0分)11.求值:sin60°-tan30°= ______ .12.如图,在直角三角形ABC中,∠C=90°,AC=5,AB=10,则∠A= ______ 度.13.如图,∠AOB放置在正方形网格中,则cos∠AOB的值为______ .14.△ABC中,∠C=90°,斜边上的中线CD=6,sin A=,则S△ABC= ______ .15.如图,身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高为(其中小丽眼睛距离地面高度近似为身高)______ .16.在我们生活中通常用两种方法来确定物体的位置.如小岛A在码头O的南偏东60°方向的14千米处,若以码头O为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1千米为单位长度建立平面直角坐标系,则小岛A也可表示成______ .17.如图,在△ABC中,∠C=90°,BC=1,AB=2,则sin A= ______ .三、解答题(本大题共7小题,共64.0分)18.已知α为一锐角,sinα=,求cosα,tanα.19.如图,已知AC=4,求AB和BC的长.20.如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)21.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.求新传送带AC的长度.22.某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B处测得宣传牌底部C的仰角为30°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.23.如图,在一笔直的海岸线上有A,B两个观测站,A观测站在B观测站的正东方向,有一艘小船在点P处,从A处测得小船在北偏西60°方向,从B处测得小船在北偏东45°的方向,点P到点B的距离是3千米.(注:结果有根号的保留根号)(1)求A,B两观测站之间的距离;(2)小船从点P处沿射线AP的方向以千米/时的速度进行沿途考察,航行一段时间后到达点C处,此时,从B测得小船在北偏西15°方向,求小船沿途考察的时间.24.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)答案和解析1.【答案】C【解析】解:sin60°=.故选:C.根据特殊角的三角函数值直接解答即可.此题考查了特殊角的三角函数值,是需要识记的内容,要注意积累.2.【答案】D【解析】解:∵α为锐角,sin(α-20°)=,∴α-20°=60°,∴α=80°,故选D.根据特殊角的三角函数值直接解答即可.本题考查的是特殊角的三角函数值,属较简单题目.3.【答案】D【解析】解:由图可得,tanα=2÷1=2.故选D.此题可以根据“角的正切值=对边÷邻边”求解即可.本题考查了锐角三角函数的定义,正确理解正切值的含义是解决此题的关键.4.【答案】D【解析】解:A、∵sinB=,∴b=c•sinB,故选项错误;B、∵cosB=,∴a=c•cosB,故选项错误;C、∵tanB=,∴a=,故选项错误;D、∵tanB=,∴b=a•tanB,故选项正确.故选D.根据三角函数的定义即可判断.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.【答案】A【解析】解:∵各边都扩大5倍,∴新三角形与原三角形的对应边的比为5:1,∴两三角形相似,∴∠A的三角函数值不变,故选:A.易得边长扩大后的三角形与原三角形相似,那么对应角相等,相应的三角函数值不变.用到的知识点为:三边对应成比例,两三角形相似;相似三角形的对应角相等.三角函数值只与角的大小有关,与角的边的长短无关.6.【答案】D【解析】解:如图,∵tanA==,∴设BC=x,则AC=3x,∴AB==x,∴cosA===.故选D.根据正切的定义得到tanA==,于是可设BC=x,则AC=3x,根据勾股定理计算出AB,然后利用余弦的定义求解.本题考查了三角形函数的定义:在三角形三角形中,一锐角的余弦等于它的邻边与斜边的比值;这个锐角的正切等于它的对边与邻边的比值.也考查了勾股定理.7.【答案】B【解析】解:延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD=,BD=5,∴BC==2,∴sinB===.故选:B.首先延长BA过点C作CD⊥BA延长线于点D,进而得出AD,CD,BC的长,再利用锐角三角函数关系求出即可.此题主要考查了解直角三角形,作出正确辅助线构造直角三角形是解题关键.8.【答案】B【解析】解:设直线AB与CD的交点为点O.∴.∴AB=.∵∠ACD=60°.∴∠BDO=60°.在Rt△BDO中,tan60°=.∵CD=6.∴AB==6.故选:B.依据平行于三角形一边的直线截其他两边所得的线段对应成比例及60°的正切值联立求解.本题主要考查平行线分线段成比例定理,解题的关键是根据实际问题抽象出几何图形.解:坡角α,则tanα=1:,则α=30°.故选A.根据坡度就是坡角的正切值即可求解.本题主要考查了坡度的定义,理解坡度和坡角的关系是解题的关键.10.【答案】B【解析】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC-∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=60×=30≈51(m).故选:B.由题意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可证得△ABD是等腰三角形,然后利用三角函数,求得答案.此题考查了解直角三角形的应用-仰角俯角问题.注意证得△ABD是等腰三角形,利用特殊角的三角函数值求解是关键.11.【答案】【解析】解:原式=-=-=.故答案为.根据sin60°=,tan30°=得到原式=-,然后通分合并即可.本题考查了特殊角的三角函数值:sin60°=,tan30°=.也考查了二次根式的运算.解:∵∠C=90°,AC=5,AB=10,∴cosA===,∴∠A=30°,故答案为:30°.根据条件求出,即可得到cos∠A的值,再根据特殊角的三角函数值求出∠A的度数.此题主要考查了锐角三角函数定义,以及特殊角的三角函数值,解决此题的关键是求出cosA.13.【答案】【解析】解:将∠AOB放在一直角三角形中,邻边为1,对边为2,由勾股定理得斜边,则cos∠AOB的值==.根据余弦的定义,cos∠AOB等于邻边比斜边,可以求得cos∠AOB的值.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的余弦为邻边比斜边.14.【答案】【解析】解:在Rt△ABC中,∵斜边上的中线CD=6,∴AB=12.∵sinA==,∴BC=4,AC==8.∴S△ABC=AC•BC=16.根据直角三角形中斜边上的中线为斜边的一半可求出AB;根据三角函数的定义求出AC,根据面积公式解答.本题利用了直角三角形的性质:直角三角形中斜边上的中线为斜边的一半和锐角三角函数的概念求解.15.【答案】(2+1.6)m【解析】解:由题意得:AD=6m,在Rt△ACD中,tanA==∴CD=2,又AB=1.6m∴CE=CD+DE=CD+AB=2+1.6,所以树的高度为(2+1.6)m.已知小丽与树之间的距离为6m即AD=7m,可由直角三角形ACD及三角函数的关系可求出CD 的长度,再由AB=1.6m可得出树的高度.本题考查解直角三角形的应用,要注意利用已知线段及三角函数关系求未知线段.16.【答案】,【解析】解:过点A作AC⊥x轴于C.在直角△OAC中,∠AOC=90°-60°=30°,OA=14千米,则AC=OA=7千米,OC=7千米.因而小岛A所在位置的坐标是(7,-7).故答案为:(7,-7).过点A作AC⊥x轴于C,根据已知可求得小岛A的坐标.本题主要考查了解直角三角形的应用-方向角问题,正确记忆三角函数的定义是解决本题的关键.17.【答案】【解析】【分析】本题考查了锐角的三角函数值的定义,理解定义是关键.利用锐角三角函数的定义求解.【解答】解:sinA==.故答案为.18.【答案】解:由sinα==,设a=4x,c=5x,则b==3x,故cosα==,tanα==.【解析】根据sinα=,设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出cosα的值,同理可得tanα的值.本题考查了同角三角函数的关系,求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.19.【答案】解:作CD⊥AB于点D,在Rt△ACD中,∵∠A=30°,∴∠ACD=90°-∠A=60°,CD=AC=2,AD=AC•cos A=2.在Rt△CDB中,∵∠DCB=∠ACB-∠ACD=45°,∴BD=CD=2,∴BC=2,∴AB=AD+BD=2+2.【解析】作CD⊥AB于点D,根据三角函数的定义在Rt△ACD中,在Rt△CDB中,即可求出CD,AD,BD,从而求解.本题考查了解直角三角形,作出辅助线是解题的关键,难度中等.20.【答案】解:作BE⊥l于点E,DF⊥l于点F.∵∠ ∠ ,∠ ∠ ,∴∠根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sin,∴mm在Rt△ADF中,cos∠ ,∴mm.∴矩形ABCD的周长=2(40+60)=200mm.【解析】作BE⊥l于点E,DF⊥l于点F,求∠ADF的度数,在Rt△ABE中,可以求得AB的值,在Rt△ADF中,可以求得AD的值,即可计算矩形ABCD的周长,即可解题.本题考查了矩形对边相等的性质,直角三角形中三角函数的应用,锐角三角函数值的计算.21.【答案】解:在Rt△ABD中,AD=AB sin45°=4×=4.在Rt△ACD中,∵∠ACD=30°,∴AC=2AD=8.答:新传送带AC的长度约为8米.【解析】根据正弦的定义求出AD,根据直角三角形的性质解答即可.本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.22.【答案】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.在Rt△ABF中,i=tan∠BAF==,∴∠BAF=30°,∴BF=AB=5,AF=5.∴BG=AF+AE=5+15.在Rt△BGC中,∵∠CBG=30°,∴CG:BG=,∴CG=5+5.在Rt△ADE中,∠DAE=45°,AE=15,∴DE=AE=15,∴CD=CG+GE-DE=5+5+5-15=(5-5)m.答:宣传牌CD高约(5-5)米.【解析】过B分别作AE、DE的垂线,设垂足为F、G.分别在Rt△ABF和Rt△ADE中,通过解直角三角形求出BF、AF、DE的长,进而可求出EF即BG的长;在Rt△CBG中,∠CBG=30°,求出CG的长;根据CD=CG+GE-DE即可求出宣传牌的高度.此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.23.【答案】解:(1)如图,过点P作PD⊥AB于点D.在Rt△PBD中,∠BDP=90°,∠PBD=90°-45°=45°,∴BD=PD=3千米.在Rt△PAD中,∠ADP=90°,∠PAD=90°-60°=30°,∴AD=PD=3千米,PA=6千米.∴AB=BD+AD=3+3(千米);(2)如图,过点B作BF⊥AC于点F.根据题意得:∠ABC=105°,在Rt△ABF中,∠AFB=90°,∠BAF=30°,∴BF=AB=千米,AF=AB=+3 千米.在△ABC中,∠C=180°-∠BAC-∠ABC=45°.在Rt△BCF中,∠BFC=90°,∠C=45°,∴CF=BF=千米,∴PC=AF+CF-AP=3千米.故小船沿途考察的时间为:3÷=3(小时).【解析】(1)过点P作PD⊥AB于点D,先解Rt△PBD,得到BD和PD的长,再解Rt△PAD,得到AD和AP 的长,然后根据BD+AD=AB,即可求解;(2)过点B作BF⊥AC于点F,先解Rt△ABF,得出BF和AF的长,再解Rt△BCF,得出CF的长,可求PC=AF+CF-AP,从而求解.本题考查了解直角三角形的应用-方向角问题,难度适中.通过作辅助线,构造直角三角形是解题的关键.24.【答案】解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,tan22°=,则=,解得:x=20.即教学楼的高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE=,即A、E之间的距离约为48m【解析】(1)首先构造直角三角形△AEM,利用tan22°=,求出即可;(2)利用Rt△AME中,cos22°=,求出AE即可此题主要考查了解直角三角形的应用,根据已知得出tan22°=是解题关键。
人教版九年级数学下第二十八章 锐角三角函数单元练习题(含答案)含答案
人教版九年级数学下第二十八章锐角三角函数单元练习题(含答案)含答案一、选择题1.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A.4B.2C.D.2.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,则sin A等于()A.B.C.D.3.在Rt△ABC中,∠C=90°,a=1,b=,则∠A等于()A.30°B.45°C.60°D.90°4.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h·cosα5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米6.Rt△ABC中,∠C=90°,AB=13,AC=5,则sin B的值为()A.B.C.D.7.在Rt△ABC中,∠C=90°,AB=6,AC=4,则cos A的值是()A.B.C.D.8.如图,在一笔直的海岸线l上有A、B两个观测站,C离海岸线l的距离(即CD的长)为2,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则AB的长()A.2 kmB.(2+)kmC.(4-2) kmD.(4-) km9.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是() A.100tanα米B.100cotα米C.100sinα米D.100cosα米10.把△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦函数值()A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定二、填空题11.若2cosα-=0,则锐角α=____________度.12.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sin A=;②cos B=;③tan A =;④tan B=,其中正确的结论是__________(只需填上正确结论的序号)13.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则sin ∠BAC=____________.14.已知∠A的补角是120°,则tan A=________.15.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是____________.16.汽车沿着坡度为1∶7的斜坡向上行驶了50米,则汽车升高了____________米.17.已知0°<θ<30°,且sinθ=km+(k为常数且k<O),则m的取值范围是__________.18.在Rt△ABC中,∠C=90°,BC=3,sin A=,那么AB=__________.19.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin ∠ABC=________.20.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:≈1.73)三、解答题21.如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为(即AB∶BC=),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos 75°=0.2588,sin 75°=0.9659,tan 75°=3.732,=1.732,=1.414)23.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)(参考数据:sin 15°≈0.259,cos 15°≈0.966,tan 15°≈0.268,≈1.414)24.小明周日在广场放风筝,如图,小明为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为20米,小明的身高AB为1.75米,请你帮小明计算出风筝离地面的高度.(结果精确到0.1米,参考数据≈1.41,≈1.73)25.如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin 53°=0.80,cos 53°=0.60,tan 53°=0.33,=1.41)26.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cos B的值.27.如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A 到地面CD的距离(精确到0.1 m).(参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75)28.在△ABC中,∠C=90°,AC=7,BC=24,求sin A,sin B的值.答案解析1.【答案】A【解析】如图,∵∠C=90°,∴cos B=,∴BC=AB cos B=6×=4,故选A.2.【答案】B【解析】sin A==,故选B.3.【答案】A【解析】如图所示:∵在Rt△ABC中,∠C=90°,a=1,b=,∴tan A==.∴∠A=30°,故选A.4.【答案】B【解析】∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos ∠BCD=,∴BC==,故选B.5.【答案】A【解析】在如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC===5,∴小车上升的高度是5 m.故选A.6.【答案】A【解析】∵Rt△ABC中,∠C=90°,AB=13,AC=5,∴sin B==.故选A.7.【答案】B【解析】cos A===.故选B.8.【答案】C【解析】在CD上取一点E,使BD=DE,可得∠EBD=45°,AD=DC=2,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC.设AB=x,则DE=BD=AD-AB=2-x,∴EC=BE=BD=(2-x),∵DE+EC=CD,∴2-x+(2-x)=2,解得x=4-2,即AB=4-2.故选C.9.【答案】B【解析】∵∠BAC=α,BC=100 m,∴AB=BC·cotα=100cotαm.故选B.10.【答案】A【解析】因为△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,故锐角A的余弦函数值也不变.故选A.11.【答案】45°【解析】∵2cosα-=0,∴cosα=,又∵cos 45°=,∴锐角α=45°.12.【答案】②③④【解析】如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sin A==,故①错误;∴∠A=30°,∴∠B=60°,∴cos B=cos 60°=,故②正确;∵∠A=30°,∴tan A=tan 30°=,故③正确;∵∠B=60°,∴tan B=tan 60°=,故④正确.故答案为②③④.13.【答案】【解析】∵A(0,1),B(0,-1),∴AB=2,OA=1,∴AC=2,由勾股定理,得OC==,∴在Rt△AOC中,sin ∠OAC=sin ∠BAC==.14.【答案】【解析】∵∠A的补角是120°,∴∠A=180°-120°=60°,∴tan A=tan 60°=.15.【答案】5∶12【解析】如图所示,由题意可知,PM=13 m,MC=5米,∴PC==12,∴MC∶PC=5∶12,故答案为5∶12.16.【答案】5【解析】∵坡度为1∶7,∴设坡角是α,则sinα==,∴上升的高度是50×=5(米).17.【答案】<m<【解析】∵0°<θ<30°,∴sin 0°<sinθ<sin 30°,即0<km+<,∴<km<,∴<m<.18.【答案】18【解析】在Rt△ABC中,∵∠C=90°,sin A==,∴AB=3×6=18.19.【答案】【解析】∵小正方形边长为1,∴AB2=8,BC2=10,AC2=2;∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠CAB=90°,∴sin ∠ABC===.20.【答案】208【解析】由题意可得:tan 30°===,解得:BD=30,tan 60°===,解得DC=90,故该建筑物的高度为BC=BD+DC=120≈208(m).21.【答案】解∵AF⊥AB,AB⊥BE,DE⊥BE,∴四边形ABEF为矩形,∴AF=BE,EF=AB=2,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,∵=,AB=2,∴BC=2,在Rt△AFD中,DF=DE-EF=x-2,∴AF===(x-2),∵AF=BE=BC+CE.∴(x-2)=2+x,解得x=6.答:树DE的高度为6米.【解析】由于AF⊥AB,则四边形ABEF为矩形,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,得到=,求出BC,在Rt△AFD中,求出AF,由AF=BC +CE即可求出x的长.22.【答案】解过B作BD⊥AC,∵∠BAC=75°-30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理,得BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan ∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.【解析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.23.【答案】解过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO·sin 15°≈30×0.259≈7.77(cm)AD=AO·cos 15°≈30×0.966≈28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+BD=36.75≈36.8(cm).答:AB的长度为36.8 cm.【解析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO·sin 15°,AD=AO·cos 15°,在Rt△BDO中根据∠OBC=45°可知,BD=OD,再根据AB=AD+BD即可得出结论.24.【答案】解∵在Rt△CBE中,sin 60°=,∴CE=BC·sin 60°=20×≈17.3 m,∴CD=CE+ED=17.3+1.75=19.05≈19.1 m.答:风筝离地面的高度是19.1 m.【解析】先根据锐角三角函数的定义求出CE的长,再由CD=CE+ED即可得出结论.25.【答案】解(1)如图,作PC⊥AB于C,在Rt△PAC中,∵PA=100,∠PAC=53°,∴PC=PA·sin ∠PAC=100×0.80=80,在Rt△PBC中,∵PC=80,∠PBC=∠BPC=45°,∴PB=PC=1.41×80≈113,即B处与灯塔P的距离约为113海里;(2)∵∠CBP=45°,PB≈113海里,∴灯塔P位于B处北偏西45°方向,且距离B处约113海里.【解析】(1)根据方向角的定义结合已知条件在图中画出点B,作PC⊥AB于C,先解Rt△PAC,得出PC=PA·sin ∠PAC=80,再解Rt△PBC,得出PB=PC=1.41×80≈113;(2)由∠CBP=45°,PB≈113海里,即可得到灯塔P位于B处北偏西45°方向,且距离B处约113海里.26.【答案】解∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,∴∠A+∠B=90°,∠A+∠AMN=90°,∴∠B=∠AMN,又AN=3,AM=4,∴MN==,∴cos B=cos ∠AMN==.【解析】根据“同角的余角相等”,可得∠B=∠AMN,又AN=3,AM=4,由勾股定理得MN =,故cos B=cos ∠AMN.27.【答案】解作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos 70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.【解析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.28.【答案】解在△ABC中,∠C=90°,AC=7,BC=24,由勾股定理,得AB===25,sin A==,sin B==.【解析】根据勾股定理,可得AC的长,根据锐角的正弦为对边比斜边,可得答案.人教版九年级数学下第二十八章锐角三角函数单元复习卷(含答案)一、选择题1.在△ABC中,∠C=90°,tan A=,则cos A的值为()A.B.C.D.2.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C处测得摩天轮的最高点A的仰角为45°,再往摩天轮的方向前进50 m至D处,测得最高点A的仰角为60°.问摩天轮的高度AB约是()(结果精确到1 米,参考数据:≈1.41,≈1.73)A.120米B.117米C.118米D.119米3.已知,在Rt△ABC中,∠C=90°,AB=,AC=1,那么∠A的正切tan A等于()A.B.2C.D.4.如图,每个小正方形的边长为1,点A、B、C是小正方形的顶点,则∠ABC的正弦值为()A.B.C.D.不能确定5.在Rt△ABC中,∠C=90°,则tan A·tan B等于()A.0B.1C.-1D.不确定6.在Rt△ABC中,∠C=90°,∠A=∠B,则sin A的值是()A.B.C.D.17.如图,水库大坝截面的迎水坡AD的坡比为4∶3,背水坡BC的坡比为1∶2,大坝高DE =20 m,坝顶宽CD=10 m,则下底AB的长为()A.55 mB.60 mC.65 mD.70 m8.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.9.当锐角a<60°,sin a的值()A.小于B.大于C.小于D.大于10.在Rt△ABC中,∠C=Rt∠,若BC∶AC=3∶4,BD平分∠ABC交AC于点D,则tan∠DBC 的值为()A.B.C.D.二、填空题11.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是________.12.某船自西向东航行,在A处测得某岛B在北偏东60°的方向上,前进8海里后到达C,此时,测得海岛B在北偏东30°的方向上,要使船与海岛B最近,则船应继续向东前进____________海里.13.△ABC中,∠C=90°,BC=5,AC=3,那么sin B=________.14.在Rt△ABC中,斜边AB的长是8,cos B=,则BC的长是__________.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为__________ n mile.(结果取整数,参考数据:≈1.7,≈1.4)16.在△ABC中,AD是BC边上的高,∠C=45°,sin B=,AD=1.则BC的长____________.17.在△ABC中,∠ACB=90°,若tan A=,则cos A=__________.18.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin ∠ABC=________.19.已知0<α<90°,且tanα=,则∠α=________.20.在Rt△ABC中,∠ABC=90°,AB=4BC,则sin A=__________.三、解答题21.如图,两座建筑物的水平距离BC=30 m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.22.在锐角△ABC中,AB=15,BC=14,S△ABC=84,求:(1)tan C的值;(2)sin A的值.23.如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.24.如图,海中一渔船在A处且与小岛C相距70 nmile,若该渔船由西向东航行30 nmile到达B处,此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.25.我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)26.如图,在△ABC中,AB=8,BC=6,S△ABC=12.试求tan B的值.27.如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60 m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)28.小敏家对面新建了一幢图书大厦,小敏在自家窗口测得大厦顶部的仰角为45°,大厦底部的仰角为30°,如图所示,量得两幢楼之间的距离为20米.(1)求出大厦的高度BD;(2)求出小敏家的高度AE.答案解析1.【答案】D【解析】如图,∵tan A==,∴设BC=x,则AC=3x,∴AB==x,∴cos A===.故选D.2.【答案】C【解析】在Rt△ABC中,由∠C=45°,得AB=BC,在Rt△ABD中,∵tan ∠ADB=tan 60°=,∴BD===AB,又∵CD=50 m,∴BC-BD=50,即AB AB=50,解得AB≈118.即摩天轮的高度AB约是118米.故选C.3.【答案】B【解析】∵∠C=90°,AB=,AC=1,∴BC==2,则tan A==2,故选B.4.【答案】B【解析】如图,连接AC,根据勾股定理可以得到AC=AB=,BC=2.∵()2+()2=(2)2.∴AC2+AB2=BC2.∴△CAB是等腰直角三角形.∴∠ABC=45°,∴∠ABC的正弦值为.故选B.5.【答案】B【解析】根据正切函数的定义,利用△ABC的边表示出两个三角函数,即可求解.tan A·tan B=·=1,故选:B.6.【答案】B【解析】∵∠C=90°,∠A=∠B,∴∠A=45°,∴sin 45°=.故选B.7.【答案】C【解析】∵DE=20 m,DE∶AE=4∶3,∴AE=15 m,∵CF=DE=20 m,CF∶BF=1∶2,∴BF=40 m,∴AB=AE+EF+BF=15+10+40=65 m.故选C.8.【答案】D【解析】过A作AB⊥x轴于B,∵A(4,3),∴PB=3,OB=4,由勾股定理得OA==5,所以cosα==.故选D.9.【答案】A【解析】∵sin 60°=,a<60°,∴sinα<sin 60°=.故选A.10.【答案】B【解析】作DE⊥AB于E,在Rt△ABC中,设BC为3x,则AC为4x,根据勾股定理,AB=5x,设CD为a,BD平分∠ABC,则DE=CD=a,AD=4x-a,AE=5x-3x=2x,在Rt△ADE中,AD2=DE2+AE2,即(4x-a)2=a2+(2x)2,解得a=x,∴tan∠DBC===,故选B.11.【答案】【解析】∵在△ABC中,∠C=90°,AB=5,BC=3,∴AC==4,∴cos A==.12.【答案】4【解析】根据题意画出图形,过B作BD⊥AD,如图所示,∵∠BAC=30°,∠BCD=60°,且∠BCD为△ABC的外角,∴∠ABC=∠BCD-∠BAC=30°,∴∠CAB=∠CBA,又AC=8海里,∴AC=BC=8海里,在直角三角形BCD中,BC=8海里,∠BCD=30°,∴CD=BC=4海里,则要使船与海岛B最近,则船应继续向东前进4海里.13.【答案】【解析】∵在△ABC中,∠C=90°,BC=5,AC=3,∴AB===,∴sin B===.14.【答案】【解析】在Rt△ABC中,∵∠C=90°,AB=8,cos B=,∴=,∴BC=.15.【答案】102【解析】过P作PD⊥AB,垂足为D,∵一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86 n mile的A处,∴∠MPA=∠PAD=60°,∴PD=AP·sin ∠PAD=86×=43,∵∠BPD=45°,∴∠B=45°.在Rt△BDP中,BP===43×≈102(n mile).16.【答案】2+1【解析】∵在△ABC中,AD是BC边上的高,∴AD⊥BC,即∠ADB=∠ADC=90°,在Rt△ACD中,∠C=45°,∴∠DAC=45°,∴DC=AD=1,在Rt△ABD中,sin B=,AD=1,∴sin B==,即AB=3,根据勾股定理,得BD==2,则BC=BD+DC=2+1.17.【答案】【解析】∵tan A=,∴设b=x,则a=2x,根据a2+b2=c2,得c=x.∴cos A===.故答案为.18.【答案】【解析】∵小正方形边长为1,∴AB2=8,BC2=10,AC2=2;∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠CAB=90°,∴sin ∠ABC===.19.【答案】30°【解析】∵tanα=,0<α<90°,∴α=30°.20.【答案】【解析】因为Rt△ABC中,∠ABC=90°,AB=4BC,所以AC==BC,所以sin A===.21.【答案】解延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=30 m,∠EAD=30°,∴ED=AE tan 30°=10m,在Rt△ABC中,∠BAC=30°,BC=30 m,∴AB=30m,则CD=EC-ED=AB-ED=30-10=20m.【解析】延长CD,交AE于点E,可得DE⊥AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC-ED求出DC 的长即可.22.【答案】解(1)过A作AD⊥BC于点D.∵S△ABC=BC·AD=84,∴×14×AD=84,∴AD=12.又∵AB=15,∴BD==9.∴CD=14-9=5.在Rt△ADC中,AC==13,∴tan C==.(2)过B作BE⊥AC于点E.∵S△ABC=AC·EB=84,∴BE=,∴sin ∠BAC===.【解析】(1)过A作AD⊥BC于点D,利用面积公式求出高AD的长,从而求出BD、CD、AC 的长,此时再求tan C的值就不那么难了.(2)同理作AC边上的高,利用面积公式求出高的长,从而求出sin A的值.23.【答案】解设建筑物AB的高度为x米.在Rt△ABD中,∠ADB=45°,∴AB=DB=x.∴BC=DB+CD=x+60.在Rt△ABC中,∠ACB=30°,∴tan ∠ACB=,∴tan 30°=,∴=,3x=(x+60)=x+60,(3-)x=60,x==30+30,∴x=30+30.经检验,x=30+30是分式方程的解.∴建筑物AB的高度为(30+30)米.【解析】设建筑物AB的高度为x米,在Rt△ABD中可得出AB=DB=x,在Rt△ABC中根据tan ∠ACB的值可求出x的值.24.【答案】解过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,则:在Rt△BCD中,BD=BC·sin 30°=x,CD=BC·cos 30°=x;∴AD=30+x,∵AD2+CD2=AC2,即+=702,解之得x=50(负值舍去),答:渔船此时与C岛之间的距离为50海里.【解析】过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,解直角三角形即可得到结论.25.【答案】解(1)过点B作BH⊥CA交CA的延长线于点H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°-∠BAC-∠CBA=30°,∴BH=BC×sin ∠BCA=150×=75(海里).答:B点到直线CA的距离是75海里;(2)∵BD=75海里,BH=75海里,∴DH==75海里,∵∠BAH=180°-∠BAC=60°,在Rt△ABH中,tan ∠BAH==,∴AH=25海里,∴AD=DH-AH=(75-25)(海里).答:执法船从A到D航行了(75-25)海里.【解析】(1)过点B作BH⊥CA交CA的延长线于点H,根据三角函数可求BH的长即为所求;(2)根据勾股定理可求DH,在Rt△ABH中,根据三角函数可求AH,进一步得到AD的长.26.【答案】解如图,过点A作AD⊥BC的延长线于D,S△ABC=BC·AD=×6×AD=12,解得AD=4,在Rt△ABD中,BD===4,tan B===.【解析】过点A作AD⊥BC的延长线于D,利用三角形的面积求出AD,再利用勾股定理列式求出BD,然后根据锐角的正切值等于对边比邻边列式计算即可得解.27.【答案】解由题知,∠DBC=60°,∠EBC=30°,∴∠DBE=∠DBC-∠EBC=60°-30°=30°.又∵∠BCD=90°,∴∠BDC=90°-∠DBC=90°-60°=30°.∴∠DBE=∠BDE.∴BE=DE.设EC=x m,则DE=BE=2EC=2x m,DC=EC+DE=x+2x=3x m,BC===x,由题意知,∠DAC=45°,∠DCA=90°,AB=60,∴△ACD为等腰直角三角形,∴AC=DC.∴x+60=3x,解得x=30+10,2x=60+20.答:塔高约为(60+20)m.【解析】先求出∠DBE=30°,∠BDE=30°,得出BE=DE,然后设EC=x m,则BE=2x m,DE =2x m,DC=3x m,BC=x m,然后根据∠DAC=45°,可得AC=CD,列出方程求出x的值,然后即可求出塔DE的高度.28.【答案】解(1)如题图,∵AC⊥BD,∴BD⊥DE,AE⊥DE,∴四边形AEDC是矩形,∴AC=DE=20米,∵在Rt△ABC中,∠BAC=45°,∴BC=AC=20米,在Rt△ACD中,tan 30°=,∴CD=AC·tan 30°=20×=20(米),∴BD=BC+CD=20+20(米);∴大厦的高度BD为(20+20)米;(2)∵四边形AEDC是矩形,∴AE=CD=20米.∴小敏家的高度AE为20米.【解析】(1)易得四边形AEDC是矩形,即可求得AC的长,然后分别在Rt△ABC与Rt△ACD 中,利用三角函数的知识求得BC与CD的长,继而求得答案;(2)结合(1),由四边形AEDC是矩形,即可求得小敏家的高度AE.人教版九年级下册第二十八章《锐角三角函数》单元测试一、选择题1、3tan60°的值为()A. B. C. D.32、sin45°的值等于()A. B.1 C. D.3、在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA= B.tanA= C.sinA= D.cosA=4、在4×4网格中,∠α的位置如图所示,则tanα的值为()A. B. C.2 D.5、如图,在△ABC中,∠C=90°,AB=3,BC=2,则cosB的值是()A. B. C. D.6、在Rt△ABC中,∠C=90º,,则的值为A. B.C.D.7、在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.108、将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A. 3cm B. 6cm C.cm D.cm9、如图,有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是( )A.10海里 B.(10-10)海里 C.10海里 D.(10-10)海里二、填空题10、计算:= .11、如下图:直角三角形纸片的两直角边长分别为4,8,现将如图那样折叠,使点与点重合,折痕为,则的值是.12、如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=__________]m.13、.如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为.14、如图,河坝横断面迎水坡AB的坡比是1:,堤高BC=5米,则坝底AC的长度是米.15、全球最大的关公塑像矗立在荆州古城东门外,如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为___米.(参考数据:tan78°12′≈4.8)16、如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN= .三、计算题17、计算:3tan30°﹣2tan45°+2sin60°+4cos60°.18、计算:.四、简答题19、在Rt△ABC中,∠C=90°,BC∶AC=3∶4,求∠A的三个三角函数值.20、如图,九(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度,标杆与旗杆的水平距离,人的眼睛与地面的高度,人与标杆的水平距离,人的眼睛E、标杆顶点C和旗杆顶点A在同一直线,求旗杆的高度.21、小刚学想测量灯杆AB的高度,结果他在D处时用测角仪测灯杆顶端A的仰角∠AEG=30°,然后向前走了8米来到C处,又测得A的仰角∠AFG=45°,又知测角仪高1.6米,求灯杆AB的高度.(结果保留一位小数;参考数据:≈1.73)22、如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A.C之间选择一点B(A.B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).23、山西绵山是中国历史文化名山,因春秋时期晋国介子推携母隐居于此被焚而著称,如图1,是绵山上介子推母子的塑像,某游客计划测量这座塑像的高度,由于游客无法直接到达塑像底部,因此该游客计划借助坡面高度来测量塑像的高度;如图2,在塑像旁山坡坡脚A处测得塑像头顶C的仰角为75°,当从A处沿坡面行走10米到达P处时,测得塑像头顶C的仰角刚好为45°,已知山坡的坡度i=1:3,且O,A,B在同一直线上,求塑像的高度.(侧倾器高度忽略不计,结果精确到0.1米,参考数据:cos75°≈0.3,tan75°≈3.7,≈1.4,≈1.7,≈3.2)24、如图,A,B两地之间有条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=11km,∠A=45°,∠B=37°,桥DC和AB平行,桥DC与桥EF的长相等.(1)求点D到直线AB的距离;(2)现在从A地到B地可比原来少走多少路程?(结果保留小数点后一位.参考数据:≈1.41,sin37°≈0.60,cos37°≈0.80).25、甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.26、如图,海上有一灯塔P,在它周围3海里处有暗礁,一艘客轮以9海里/时的速度由西向东航行,行至A点处测得P在北偏东60°方向上,继续行驶20分钟后,到达B处又测得灯塔P在北偏东45°方向上,问客轮不改变方向继续前进有无触礁危险?参考答案一、选择题1、D【考点】特殊角的三角函数值.【分析】把tan60的数值代入即可求解.【解答】解:3tan60°=3×=3.故选D.【点评】本题考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是关键.2、D【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值得出即可.【解答】解:sin45°=,故选D.【点评】本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.3、C【考点】锐角三角函数的定义.【分析】根据三角函数定义:(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.分别进行分析即可.【解答】解:在直角△ABC中,∠C=90°,则A、cosA=,故本选项错误;B、tanA=,故本选项错误;C、sinA=,故本选项正确;D、cosA=,故本选项错误;故选:C.【点评】此题主要考查了锐角三角函数的定义,关键是熟练掌握锐角三角函数的定义.4、C【考点】锐角三角函数的定义.【专题】网格型.【分析】根据“角的正切值=对边÷邻边”求解即可.【解答】解:由图可得,tanα=2÷1=2.故选C.【点评】本题考查了锐角三角函数的定义,正确理解正切值的含义是解决此题的关键.5、C【考点】锐角三角函数的定义.【分析】根据在直角三角形中,余弦为邻边比斜边,可得答案.【解答】解:△ABC中,∠C=90°,AB=3,BC=2,得cosB==,故选:C.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.6、B7、D【考点】解直角三角形.【分析】在直角三角形ABC中,利用锐角三角函数定义表示出sinA,将sinA的值与BC的长代入求出AB的长即可.【解答】解:在Rt△ABC中,∠C=90°,sinA==,BC=6,∴AB===10,故选D8、D9、D二、填空题10、;11、12、 5.513、.考点:解直角三角形;特殊角的三角函数值.分析:重叠部分为菱形,运用三角函数定义先求边长AB,再求出面积.解答:解:∵AC=,∴它们重叠部分(图中阴影部分)的面积为:×1=.故答案为:.14、.【解析】试题分析:∵河坝横断面迎水坡AB的坡比是1:,∴BC:A C=1:,∵堤高BC=5米,∴坝底AC=米.故答案为:.考点:解直角三角形的应用-坡度坡角问题.15、58_16、【考点】正方形的性质;轴对称的性质;锐角三角函数的定义.【分析】M、N两点关于对角线AC对称,所以CM=CM,进而求出CN的长度.再利用∠ADN=∠DNC 即可求得tan∠ADN.【解答】解:在正方形ABCD中,BC=CD=4.∵DM=1,∴CM=3,∵M、N两点关于对角线AC对称,∴CN=CM=3.∵AD∥BC,∴∠ADN=∠DNC,∵tan=∠DNC==,∴tan∠ADN=.故答案为:.三、计算题17、原式=2.18、.解:原式=1+﹣1+2﹣=2四、简答题19、20、AB=13.5 m21、【考点】解直角三角形的应用-仰角俯角问题.【分析】设AG的长为x米,根据正切的概念分别表示出GF、GE的长,计算即可得到AG,求出AB即可.【解答】解:设AG的长为x米,在Rt△AGE中,EG==x,在Rt△AGF中,GF=AG=x,由题意得,x﹣x=8,解得,x≈10.9,则AB=AG+GB≈12.5米,答:灯杆AB的高度约为12.5米.22、解:(1)过点B作BE⊥AD于点E,∵AB=40m,∠A=30°,∴BE=AB=20m,AE==20m,即点B到AD的距离为20m;(2)在Rt△ABE中,∵∠A=30°,∴∠ABE=60°,∵∠DBC=75°,∴∠EBD=180°﹣60°﹣75°=45°,∴DE=EB=20m,则AD=AE+EB=20+20=20(+1)(m),在Rt△ADC中,∠A=30°,∴DC==(10+10)m.答:塔高CD为(10+10)m.23、【考点】解直角三角形的应用﹣仰角俯角问题;解直角三角形的应用﹣坡度坡角问题.【分析】过点P作PE⊥OB于点E,PF⊥OC于点F,设PE=x,则AE=3x,在Rt△AEP中根据勾股定理可得PE=,则AE=3,设CF=PF=m米,则OC=(m+)米、OA=(m﹣3)米,在Rt△AOC中,由tan75°=求得m的值,继而可得答案.【解答】解:过点P作PE⊥OB于点E,PF⊥OC于点F,∵i=1:3,AP=10,设PE=x,则AE=3x,在Rt△AEP中,x2+(3x)2=102,解得:x=或x=﹣(舍),∴PE=,则AE=3,∵∠CPF=∠PCF=45°,∴CF=PF,设CF=PF=m米,则OC=(m+)米,OA=(m﹣3)米,在Rt△AOC中,tan75°==,即m+=tan75°•(m﹣3),解得:m≈14.3,∴OC=14.3+≈17.5米,答:塑像的高度约为17.5米.24、【考点】解直角三角形的应用.【分析】(1)过点D作DH⊥AB于H,DG∥CB交AB于G,根据平行四边形的判定得出DCBG为平行四边形,在Rt△DGH中,根据DH=DG•sin37,即可求出点D到直线AB的距离;(2)根据(1)先求出GH、AD和AH的长,再根据两条路线路程之差为AD+DG﹣AG,代值计算即可得出答案.【解答】解:(1)如图,过点D作DH⊥AB于H,DG∥CB交AB于G,∵DC∥AB,∴四边形DCBG为平行四边形.∴DC=GB,GD=BC=11.在Rt△DGH中,DH=DG•sin37°≈11×0.60=6.60,∴点D到直线AB的距离是6.60km;(2)根据(1)得:GH=DG•cos37°≈11×0.80≈8.80,在Rt△ADH中,AD=DH≈1.41×6.60≈9.31.AH=DH≈6.60,∵两条路线路程之差为AD+DG﹣AG,∴AD+DG﹣AG=(9.31+11)﹣(6.60+8.80)≈4.9(km).即现在从A地到B地可比原来少走约4.9km.25、【考点】TB:解直角三角形的应用﹣方向角问题.【分析】(1)根据题意画出图形,再根据平行线的性质及直角三角形的性质解答即可.(2)根据甲乙两轮船从港口A至港口C所用的时间相同,可以求出甲轮船从B到C所用的时间,又知BC间的距离,继而求出甲轮船后来的速度.【解答】解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里.(2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).26、解:过P作PC⊥AB于C点,如图,据题意知AB=9×=3,∠PAB=90°-60°=30°,[ ∠PBC=90°-45°=45°,∠PCB=90°,∴PC=BC.在Rt△APC中,tan 30°===,即=,∴PC=海里>3海里,∴客轮不改变方向继续前进无触礁危险.。
人教版九年级下册数学锐角三角函数单元测试卷附详细解析
人教版九年级下册数学锐角三角函数单元测试卷附详细解析一、单选题(共10题;共30分)1.(3分)tan30°的值等于()A.√3B.√33C.√22D.12.(3分)如图,PA、PB分别切⊙O于A,B,⊙APB=60°,⊙O半径为2,则PB的长为()A.3B.4C.2√3D.2√23.(3分)已知Rt⊙ABC中,⊙C=90°,⊙A=50°,AB=2,则AC=()A.2sin50°B.2sin40°C.2tan50°D.2tan40°4.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,tanA=34.以点C为圆心,CB长为半径的圆交AB于点D,则AD的长是()A.1B.75C.32D.25.(3分)如图,在扇形AOB中,⊙AOB=90°,以点A为圆心,OA的长为半径作OC⌢交AB⌢于点C,若OA=2,则阴影部分的面积为()A.23π−√3B.√3−13πC.13πD.√3+13π6.(3分)如图,一艘轮船在小岛A的西北方向距小岛40√2海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东60°的B处,则该船行驶的路程为()A.80海里B.120海里C.(40+40√2)海里D.(40+40√3)海里7.(3分)如图,A,B,C是小正方形的顶点,且每个小正方形的边长为1,则sin⊙ABC的值()A.√22B.1C.√33D.√28.(3分)在⊙ABC中,(2cosA-√2)2+| √3-tanB|=0,则⊙ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.锐角三角形9.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin⊙OBD=()A.12B.34C.45D.3510.(10分)如图(1)所示,E为矩形ABCD的边AD上一边,动点P,Q同时从点B出发,点P 沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,⊙BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分)则下列结论正确的是()A.AB:AD=3:4B.当⊙BPQ是等边三角形时,t=5秒C.当⊙ABE⊙⊙QBP时,t=7秒D.当⊙BPQ的面积为4cm2时,t的值是√10或475秒二、填空题(共5题;共15分)11.(3分)cos245∘−tan30∘⋅sin60∘=.12.(3分)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠ABC的值为.13.(3分)如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是cm.14.(3分)如图,在Rt⊙ABC中,⊙ACB=90°,CD是高,如果⊙A=α,AC=4,那么BD=.(用锐角α的三角比表示)15.(3分)如图,Rt⊙AOB中,⊙OAB=90°,⊙OBA=30°,顶点A在反比例函数y=−4x图象上,若Rt⊙AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为.三、解答题(共8题;共78分)16.(8分)先化简,再求代数式(aa2−1−1a+1)⋅(a−1)的值,其中a=tan60°−2sin30°.17.(9分)居庸关位于距北京市区50余公里外的昌平区境内,是京北长城沿线上的著名古关城,有“天下第一雄关”的美誉某校数学社团的同学们使用皮尺和测角仪等工具,测量南关主城门上城楼顶端距地面的高度,下表是小强填写的实践活动报告的部分内容:请你帮他计算出城楼的高度AD(结果精确到0.1m,sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)18.(9分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20 √2海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:√2≈1.41,√3≈1.73)19.(9分)如图,从甲楼AB的楼顶A,看乙楼CD的楼顶C,仰角为30°,看乙楼(CD)的楼底D,俯角为60°;已知甲楼的高AB=40m.求乙楼CD的高度,(结果精确到1m)20.(10分)如图,两幢楼高AB=CD=30m,两楼间的距离AC=24m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,√3≈1.732,√2≈1.414)21.(10分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊙AB于E,设⊙ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得⊙EFD=k⊙AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2-CF2取最大值时,求tan⊙DCF的值.22.(11分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)(5分)求楼间距AB;(2)(6分)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)23.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣4,0)和点B(2,0),与y轴交于点C.(1)(4分)求该抛物线的表达式及点C的坐标;(2)(4分)如果点D的坐标为(﹣8,0),联结AC、DC,求⊙ACD的正切值;(3)(4分)在(2)的条件下,点P为抛物线上一点,当⊙OCD=⊙CAP时,求点P的坐标.答案解析部分1.【答案】B【解析】【解答】解:tan30°=√33. 故答案为:B【分析】利用特殊角的三角函数值直接求解即可。
人教版九年级下册《第28章锐角三角函数》单元测试卷(含答案)
新人教版九年级下《第28章锐角三角函数》单元测试卷一、选择题(本大题共10小题,共30.0分)1.sin60°的值等于()A. 12B. √22C. √32D. √332.已知α为锐角,sin(α-20°)=√32,则α=()A. 20∘B. 40∘C. 60∘D. 80∘3.在正方形网格中,∠α的位置如图所示,则tanα的值是()A. √33B. √53C. 12D. 24.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是()A. b=a⋅sinBB. a=b⋅cosBC. a=b⋅tanBD. b=a⋅tanB5.在Rt△ABC中,各边都扩大5倍,则角A的三角函数值()A. 不变B. 扩大5倍C. 缩小5倍D. 不能确定6.在△ABC中,∠C=90°,tan A=13,则cos A的值为()A. √1010B. 23C. 34D. 3√10107.在△ABC中,∠A=120°,AB=4,AC=2,则sin B的值是()A. 5√714B. √2114C. √35D. √2178.如图,山顶一铁塔AB在阳光下的投影CD的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB的高为()A. 3米B. 6√3米C. 3√3米D. 2√3米9.坡度等于1:√3的斜坡的坡角等于()A. 30∘B. 40∘C. 50∘D. 60∘10.济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,√3≈1.7,结果精确到1m,则该楼的高度CD为()A. 47mB. 51mC. 53mD. 54m二、填空题(本大题共7小题,共26.0分)11.求值:sin60°-tan30°= ______ .12.如图,在直角三角形ABC中,∠C=90°,AC=5√3,AB=10,则∠A= ______ 度.13.如图,∠AOB放置在正方形网格中,则cos∠AOB的值为______ .14.△ABC中,∠C=90°,斜边上的中线CD=6,sin A=1,则S△ABC= ______ .315.如图,身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高为(其中小丽眼睛距离地面高度近似为身高)______ .16.在我们生活中通常用两种方法来确定物体的位置.如小岛A在码头O的南偏东60°方向的14千米处,若以码头O为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1千米为单位长度建立平面直角坐标系,则小岛A也可表示成______ .17.如图,在△ABC中,∠C=90°,BC=1,AB=2,则sin A= ______ .三、解答题(本大题共7小题,共64.0分)18.已知α为一锐角,sinα=4,求cosα,tanα.519.如图,已知AC=4,求AB和BC的长.20.如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)21.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4√2米.求新传送带AC的长度.22.某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B处测得宣传牌底部C的仰角为30°.已知山坡AB的坡度i=1:√3,AB=10米,AE=15米,求这块宣传牌CD的高度.23.如图,在一笔直的海岸线上有A,B两个观测站,A观测站在B观测站的正东方向,有一艘小船在点P处,从A处测得小船在北偏西60°方向,从B处测得小船在北偏东45°的方向,点P到点B的距离是3√2千米.(注:结果有根号的保留根号)(1)求A,B两观测站之间的距离;(2)小船从点P处沿射线AP的方向以√3千米/时的速度进行沿途考察,航行一段时间后到达点C处,此时,从B测得小船在北偏西15°方向,求小船沿途考察的时间.24. 如图,某办公楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE ,而当光线与地面夹角是45°时,办公楼顶A 在地面上的影子F 与墙角C 有25米的距离(B ,F ,C 在一条直线上). (1)求办公楼AB 的高度;(2)若要在A ,E 之间挂一些彩旗,请你求出A ,E 之间的距离.(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)答案和解析1.【答案】C【解析】解:sin60°=.故选:C.根据特殊角的三角函数值直接解答即可.此题考查了特殊角的三角函数值,是需要识记的内容,要注意积累.2.【答案】D【解析】解:∵α为锐角,sin(α-20°)=,∴α-20°=60°,∴α=80°,故选D.根据特殊角的三角函数值直接解答即可.本题考查的是特殊角的三角函数值,属较简单题目.3.【答案】D【解析】解:由图可得,tanα=2÷1=2.故选D.此题可以根据“角的正切值=对边÷邻边”求解即可.本题考查了锐角三角函数的定义,正确理解正切值的含义是解决此题的关键.4.【答案】D【解析】解:A、∵sinB=,∴b=c•sinB,故选项错误;B、∵cosB=,∴a=c•cosB,故选项错误;C、∵tanB=,∴a=,故选项错误;D、∵tanB=,∴b=a•tanB,故选项正确.故选D.根据三角函数的定义即可判断.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.【答案】A【解析】解:∵各边都扩大5倍,∴新三角形与原三角形的对应边的比为5:1,∴两三角形相似,∴∠A的三角函数值不变,故选:A.易得边长扩大后的三角形与原三角形相似,那么对应角相等,相应的三角函数值不变.用到的知识点为:三边对应成比例,两三角形相似;相似三角形的对应角相等.三角函数值只与角的大小有关,与角的边的长短无关.6.【答案】D【解析】解:如图,∵tanA==,∴设BC=x,则AC=3x,∴AB==x,∴cosA===.故选D.根据正切的定义得到tanA==,于是可设BC=x,则AC=3x,根据勾股定理计算出AB,然后利用余弦的定义求解.本题考查了三角形函数的定义:在三角形三角形中,一锐角的余弦等于它的邻边与斜边的比值;这个锐角的正切等于它的对边与邻边的比值.也考查了勾股定理.7.【答案】B【解析】解:延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD=,BD=5,∴BC==2,∴sinB===.故选:B.首先延长BA过点C作CD⊥BA延长线于点D,进而得出AD,CD,BC的长,再利用锐角三角函数关系求出即可.此题主要考查了解直角三角形,作出正确辅助线构造直角三角形是解题关键.8.【答案】B【解析】解:设直线AB与CD的交点为点O.∴.∴AB=.∵∠ACD=60°.∴∠BDO=60°.在Rt△BDO中,tan60°=.∵CD=6.∴AB==6.故选:B.依据平行于三角形一边的直线截其他两边所得的线段对应成比例及60°的正切值联立求解.本题主要考查平行线分线段成比例定理,解题的关键是根据实际问题抽象出几何图形.9.【答案】A【解析】解:坡角α,则tanα=1:,则α=30°.故选A.根据坡度就是坡角的正切值即可求解.本题主要考查了坡度的定义,理解坡度和坡角的关系是解题的关键.10.【答案】B【解析】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC-∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=60×=30≈51(m).故选:B.由题意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可证得△ABD是等腰三角形,然后利用三角函数,求得答案.此题考查了解直角三角形的应用-仰角俯角问题.注意证得△ABD是等腰三角形,利用特殊角的三角函数值求解是关键.11.【答案】√36【解析】解:原式=-=-=.故答案为.根据sin60°=,tan30°=得到原式=-,然后通分合并即可.本题考查了特殊角的三角函数值:sin60°=,tan30°=.也考查了二次根式的运算.12.【答案】30【解析】解:∵∠C=90°,AC=5,AB=10,∴cosA===,∴∠A=30°,故答案为:30°.根据条件求出,即可得到cos∠A的值,再根据特殊角的三角函数值求出∠A的度数.此题主要考查了锐角三角函数定义,以及特殊角的三角函数值,解决此题的关键是求出cosA.13.【答案】√55【解析】解:将∠AOB放在一直角三角形中,邻边为1,对边为2,由勾股定理得斜边,则cos∠AOB的值==.根据余弦的定义,cos∠AOB等于邻边比斜边,可以求得cos∠AOB的值.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的余弦为邻边比斜边.14.【答案】16√2【解析】解:在Rt△ABC中,∵斜边上的中线CD=6,∴AB=12.∵sinA==,∴BC=4,AC==8.∴S△ABC=AC•BC=16.根据直角三角形中斜边上的中线为斜边的一半可求出AB;根据三角函数的定义求出AC,根据面积公式解答.本题利用了直角三角形的性质:直角三角形中斜边上的中线为斜边的一半和锐角三角函数的概念求解.15.【答案】(2√3+1.6)m【解析】解:由题意得:AD=6m,在Rt△ACD中,tanA==∴CD=2,又AB=1.6m∴CE=CD+DE=CD+AB=2+1.6,所以树的高度为(2+1.6)m.已知小丽与树之间的距离为6m即AD=7m,可由直角三角形ACD及三角函数的关系可求出CD的长度,再由AB=1.6m可得出树的高度.本题考查解直角三角形的应用,要注意利用已知线段及三角函数关系求未知线段.16.【答案】(7√3,−7)【解析】解:过点A作AC⊥x轴于C.在直角△OAC中,∠AOC=90°-60°=30°,OA=14千米,则AC=OA=7千米,OC=7千米.因而小岛A所在位置的坐标是(7,-7).故答案为:(7,-7).过点A作AC⊥x轴于C,根据已知可求得小岛A的坐标.本题主要考查了解直角三角形的应用-方向角问题,正确记忆三角函数的定义是解决本题的关键.17.【答案】12【解析】【分析】本题考查了锐角的三角函数值的定义,理解定义是关键.利用锐角三角函数的定义求解.【解答】解:sinA==.故答案为.18.【答案】解:由sinα=ac =45,设a=4x,c=5x,则b=√c2−a2=3x,故cosα=bc =35,tanα=ab=43.【解析】根据sinα=,设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出cosα的值,同理可得tanα的值.本题考查了同角三角函数的关系,求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.19.【答案】解:作CD⊥AB于点D,在Rt△ACD中,∵∠A=30°,∴∠ACD=90°-∠A=60°,CD=12AC=2,AD=AC•cos A=2√3.在Rt△CDB中,∵∠DCB=∠ACB-∠ACD=45°,∴BD=CD=2,∴BC=2√2,∴AB=AD+BD=2+2√3.【解析】作CD⊥AB于点D,根据三角函数的定义在Rt△ACD中,在Rt△CDB中,即可求出CD,AD,BD,从而求解.本题考查了解直角三角形,作出辅助线是解题的关键,难度中等.20.【答案】解:作BE⊥l于点E,DF⊥l于点F.∵α+∠DAF=180°−∠BAD=180°−90°=90°,∠ADF+∠DAF=90°,∴∠ADF=α=36°.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sinα=BEAB,∴AB=BEsin36∘=240.60=40mm在Rt△ADF中,cos∠ADF=DFAD,∴AD=DFcos36∘=480.80=60mm.∴矩形ABCD的周长=2(40+60)=200mm.【解析】作BE⊥l于点E,DF⊥l于点F,求∠ADF的度数,在Rt△ABE中,可以求得AB 的值,在Rt△ADF中,可以求得AD的值,即可计算矩形ABCD的周长,即可解题.本题考查了矩形对边相等的性质,直角三角形中三角函数的应用,锐角三角函数值的计算.21.【答案】解:在Rt△ABD中,AD=AB sin45°=4√2×√22=4.在Rt△ACD中,∵∠ACD=30°,∴AC =2AD =8.答:新传送带AC 的长度约为8米.【解析】根据正弦的定义求出AD ,根据直角三角形的性质解答即可.本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.22.【答案】解:过B 作BF ⊥AE ,交EA 的延长线于F ,作BG ⊥DE 于G .在Rt △ABF 中,i =tan ∠BAF =1√3=√33, ∴∠BAF =30°,∴BF =12AB =5,AF =5√3.∴BG =AF +AE =5√3+15.在Rt △BGC 中,∵∠CBG =30°,∴CG :BG =√33, ∴CG =5+5√3.在Rt △ADE 中,∠DAE =45°,AE =15,∴DE =AE =15,∴CD =CG +GE -DE =5+5√3+5-15=(5√3-5)m .答:宣传牌CD 高约(5√3-5)米.【解析】过B 分别作AE 、DE 的垂线,设垂足为F 、G .分别在Rt △ABF 和Rt △ADE 中,通过解直角三角形求出BF 、AF 、DE 的长,进而可求出EF 即BG 的长;在Rt △CBG 中,∠CBG=30°,求出CG 的长;根据CD=CG+GE-DE 即可求出宣传牌的高度.此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.23.【答案】解:(1)如图,过点P 作PD ⊥AB 于点D .在Rt △PBD 中,∠BDP =90°,∠PBD =90°-45°=45°,∴BD =PD =3千米.在Rt △PAD 中,∠ADP =90°,∠PAD =90°-60°=30°,∴AD =√3PD =3√3千米,PA =6千米. ∴AB =BD +AD =3+3√3(千米);(2)如图,过点B 作BF ⊥AC 于点F .根据题意得:∠ABC =105°,在Rt △ABF 中,∠AFB =90°,∠BAF =30°,∴BF =12AB =3+3√32千米,AF =√32AB =√3+3 千米. 在△ABC 中,∠C =180°-∠BAC -∠ABC =45°.在Rt △BCF 中,∠BFC =90°,∠C =45°,∴CF =BF =3+3√32千米, ∴PC =AF +CF -AP =3√3千米.故小船沿途考察的时间为:3√3÷√3=3(小时).【解析】(1)过点P 作PD ⊥AB 于点D ,先解Rt △PBD ,得到BD 和PD 的长,再解Rt △PAD ,得到AD 和AP 的长,然后根据BD+AD=AB ,即可求解; (2)过点B 作BF ⊥AC 于点F ,先解Rt △ABF ,得出BF 和AF 的长,再解Rt △BCF ,得出CF 的长,可求PC=AF+CF-AP ,从而求解.本题考查了解直角三角形的应用-方向角问题,难度适中.通过作辅助线,构造直角三角形是解题的关键.24.【答案】解:(1)如图,过点E 作EM ⊥AB ,垂足为M .设AB 为x .Rt △ABF 中,∠AFB =45°,∴BF =AB =x ,∴BC =BF +FC =x +25,在Rt △AEM 中,∠AEM =22°,AM =AB -BM =AB -CE =x -2, tan22°=AM ME , 则x−2x+25=25,解得:x =20.即教学楼的高20m .(2)由(1)可得ME =BC =x +25=20+25=45.在Rt △AME 中,cos22°=MEAE . ∴AE =ME cos22∘,即A 、E 之间的距离约为48m【解析】(1)首先构造直角三角形△AEM ,利用tan22°=,求出即可; (2)利用Rt △AME 中,cos22°=,求出AE 即可此题主要考查了解直角三角形的应用,根据已知得出tan22°=是解题关键。
人教版九年级数学下册第28章《锐角三角函数》单元测试【含答案】
人教版九年级数学下册第28章《锐角三角函数》单元测试一.选择题(共10小题,满分30分)1.在Rt△ABC中,∠C=90°,若cos A=( )A.B.C.D.2.在边长相等的小正方形组成的网格中,点A,B,C都在格点上( )A.B.C.D.3.在Rt△ABC中,∠C=90°,BC=1,那么tan B的值是( )A.B.C.D.4.∠β为锐角,且2cosβ﹣1=0,则∠β=( )A.30°B.60°C.45°D.37.5°5.在Rt△ABC中,∠C=90°,AB=5,则tan A的值是( )A.B.C.D.6.如图,在Rt△ABC中,∠C=90°,则sin B=( )A.B.2C.D.7.若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是( )A.B.C.D.8.如图,AD是△ABC的高,AB=4,tan∠CAD=,则BC的长为( )A. +1B.2+2C.2+1D. +49.如图,半径为3的⊙O内有一点A,OA=,当∠OPA最大时,S△OPA等于( )A.B.C.D.110.如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,∠C=42°,AB=60( )A.60sin50°B.C.60cos50°D.60tan50°二.填空题(共10小题,满分30分)11.在Rt△ABC中,∠C=90°,sin A= .12.用科学计算器计算: tan16°15′≈ (结果精确到0.01)13.在△ABC中,若,∠A,∠B都是锐角 三角形.14.在Rt△ABC中,∠C=90°,AC=6,那么AB的长为 .15.比较大小:sin80° tan50°(填“>”或“<”).16.在Rt△ABC中,∠C=90°,cos A= .17.在△ABC中,若|sin A﹣|+(﹣cos B)2=0,则∠C的度数是 .18.如图,在Rt△ABC中,CD是斜边AB上的中线,AC=6,则tan A的值为 .19.如图,在Rt△ABC中,∠ACB=90°,连接CD,过点B作CD的垂线,tan A=,则cos∠DBE的值为 .20.如图,河坝横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),水平宽度AC=m 米.三.解答题(共7小题,满分6021.已知cos45°=,求cos21°+cos22°+…+cos289°的值.22.如图,在Rt△ABC中,∠C=90°,BC=5.求sin A,cos A和tan A.23.如图,在Rt△ABC中,∠C=90˚,BC=6,求AC的长和sin A的值.24.计算:cos60°﹣2sin245°+tan230°﹣sin30°.25.计算:(1);(2)sin245°+cos245°+tan30°tan60°﹣cos30°.26.2022年8月21日,重庆市北碚区缙云山突发山火,山火无情,各地消防迅速出动,冲锋在前,然后沿着坡比为5:12的斜坡前进104米到达B处平台,继续前进到达C,沿斜坡CD前行800米到达着火点D.(1)求着火点D距离山脚的垂直高度;(2)已知消防员在平地的平均速度为4m/s,求消防员通过平台BC的时间.(保留一位小数)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈,≈1.732)27.如图,已知∠ABC和射线BD P(点P与点B不重合),且点P到BA、BC的距离为PE、PF.(1)若∠EBP=40°,∠FBP=20°,PB=m;(2)若∠EBP=α,∠FBP=β,α,β都是锐角,并给出证明.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:如图,∵∠C=90°,∴设AC=5k,AB=13k,根据勾股定理得,BC==,所以,sin A===.故选:D.2.解:设点C到AB的距离为h,由勾股定理可知:AC==2=,由于S△ABC=32﹣×6×2﹣×7×3=9﹣8﹣3=4.∴AB•h=4,∴h=,∴sin∠BAC==,∴cos∠BAC=,故选:A.3.解:∵∠C=90°,∴tan B===.故选:D.4.解:∵∠β为锐角,且2cosβ﹣1=8,∴cosβ=,∴∠β=60°.故选:B.5.解:∵∠C=90°,AB=5,∴AC===4,∴tan A==,故选:D.6.解:∵∠C=90°,tan A=2,∴BC=2AC,∴,∴,故C正确.故选:C.7.解:若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是.故选:C.8.解:∵AD是△ABC的高,∴∠ADB=∠ADC=90°,在Rt△ABD中,cos∠BAD=,∴cos60°=,sin60°=,∴AD=4cos60°=7×=5=4,在Rt△ADC中,tan∠CAD=,∴=,解得CD=1,∴BC=BD+CD=2+1.故选:C.9.解:如图所示:∵OA、OP是定值,∴PA⊥OA时,∠OPA最大,在直角三角形OPA中,OA=,∴PA==,∴S△OPA=OA•AP=××=.故选:B.10.解:过点A作AD⊥BC于点D,如图所示:∵∠BAC=88°,∠C=42°,∴∠B=180°﹣88°﹣42°=50°,在Rt△ABD中,AD=AB×sin60×sin50°,∴点A到BC的距离为60sin50°,故A正确.故选:A.二.填空题(共10小题,满分30分)11.解:由sin A=知,可设a=6x,b=3x.∴tan A=.故答案为:.12.解: tan16°15′≈0.71,故答案为:4.71.13.解:∵,∴sin A=,cos B=,∴∠A=60°,∠B=60°,∴△ABC是等边三角形.故答案为:等边.14.解:∵cos A==,AC=7,∴AB==8,故答案为:8.15.解:∵tan50°>tan45°,tan45°=1,∴tan50°>1,又sin80°<2,∴sin80°<tan50°;故答案为:<.16.解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A=.故答案为:.17.解:∵|sin A﹣|+(2=2,∴sin A﹣=4,,即sin A=,cos B=,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°.故答案为:105°.18.解:在Rt△ABC中,CD是斜边AB上的中线,∴AB=2CD=10,∵AC=6,∴BC===8,∴tan A===,故答案为:.19.解:过点C作CF⊥AB,垂足为F,在Rt△ABC中,AC=3a=,∴BC=4a,AB=5a,∵D是AB的中点,∴CD=AB=a,∵△ABC的面积=AB•CF=,∴AB•CF=AC•CB,∴5aCF=3a×4a,∴CF=a,∴cos∠DCF==,∵BE⊥CD,∴∠E=90°,∴∠EDB+∠EBD=90°,∵∠FCD+∠CDF=90°,∠CDF=∠BDE,∴∠EBD=∠DCF,∴cos∠DBE=cos∠DCF=,故答案为:.20.解:∵河坝横断面迎水坡AB的坡比是1:,AC=m,∴=,∴BC=AC==3(m),在Rt△ABC中,由勾股定理得:AB==,故答案为:6.三.解答题(共7小题,满分60分)21.解:原式=(cos21°+cos289°)+(cos22°+cos588°)+…+(cos244°+cos246°)+cos445=(sin21°+cos51°)+(sin22°+cos22°)+…+(sin844°+cos244°)+cos245=44+()2=44.22.解:在Rt△ABC中,∠C=90°,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.23.解:∵△ABC中,tan A=,∴=,∴AC=8,∴AB===10,∴sin A==24.解:原式=﹣4×()6+×()2﹣=﹣2×+×﹣=﹣2+﹣=﹣.25.解:(1)=﹣4﹣7+1=﹣4;(2)sin645°+cos245°+tan30°tan60°﹣cos30°===.26.(1)如图所示,过点B,C,D分别作水平线的垂线,F,G,延长BC交AG于点H,BHGE是矩形,依题意,,AB=104米,CD=800米,在Rt△ABE中,,设BE=8k米,∴AB=13k,∵AB=104米,∴k=8,∴BE=5×2=40(米),AE=12×8=96(米),在Rt△DCH中,CD=800米,∴DG=DH+HG=DH+BE=480+40=520(米),即着火点D距离山脚的垂直高度为520米;(2)依题意,∠DAG=30°,∴米,∵Rt△DCH中,CH=cos37°×CD=≈0.8×800=640(米),又AE=96米,∴(米),∵消防员在平地的平均速度为4m/s,∴消防员通过平台BC的时间为(秒).27.解:(1)在Rt△BPE中,sin∠EBP=在Rt△BPF中,sin∠FBP=又sin40°>sin20°∴PE>PF;(2)根据(1)得sin∠EBP==sinα=sinβ又∵α>β∴sinα>sinβ∴PE>PF.。
人教版九年级下《第二十八章锐角三角函数》单元测试题含答案
第二十八章 锐角三角函数一、选择题(每小题3分,共30分) 1.sin60°的值等于( ) A.12 B.22 C.32 D.332.在Rt △ABC 中,∠C =90°,BC =4,sin A =23,则AB 的长为( )A.83B .6C .12D .8 3.已知α为锐角,且cos(90°-α)=12,则cos α的值为( )A.33 B.22 C.12 D.324.如图1,点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是( )图1A .1B .1.5C .2D .35.如图2,∠AOB 在正方形网格中,则cos ∠AOB 的值为( )图2A.12B.22C.32D.336.如图3,将△ABC 放在每个小正方形的边长都为1的网格中,点A ,B ,C 均在格点上,则tan A 的值是( )图3A.55 B.105 C .2 D.127.如图4,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )图4A.53B.2 55C.52 D.238.如图5,某酒店大门的旋转门内部由三块宽为2米,高为3米的玻璃隔板组成,三块玻璃摆放时夹角相同.若入口处两根立柱之间的距离为2米,则两立柱底端中点到转轴底端的距离为( )图5A.3米 B .2米 C .2 2米 D .3米9.如图6,轮船沿正南方向以30海里/时的速度匀速航行,在M 处观测到灯塔P 在南偏西22°方向上.航行2小时后到达N 处,观测灯塔P 在南偏西44°方向上,若该船继续向南航行至离灯塔最近的位置,则此时轮船离灯塔的距离约为(参考数据:sin68°≈0.9272,sin46°≈0.7193,sin22°≈0.3746,sin44°≈0.6947)( )图6A .22.48海里B .41.68海里C .43.16海里D .55.63海里10.如图7,四边形BDCE 内接于以BC 为直径的⊙A ,已知BC =10,cos ∠BCD =35,∠BCE =30°,则线段DE 的长是( )图7A.89 B .7 3 C .4+3 3 D .3+4 3 请将选择题答案填入下表:题号 12345678910总分答案第Ⅱ卷 (非选择题 共70分)二、填空题(每小题3分,共18分)11.如图8,在△ABC 中,∠B =45°,cos C =35,AC =5a ,则△ABC 的面积用含a 的式子表示是________.图812.为解决停车难的问题,在一段长56米的路段上开辟停车位,如图9,每个车位是长为5米、宽为2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出________个这样的停车位.(参考数据:2≈1.4)图913.如图10,在等腰三角形ABC 中,AB =AC ,BC =4,D 为BC 的中点,点E ,F 在线段AD 上,tan ∠ABC =3,则阴影部分的面积是________.图1014.已知△ABC ,若⎪⎪⎪⎪sin A -12与(tan B -3)2互为相反数,则∠C 的度数是________. 15.如图11,已知四边形ABCD 是正方形,以CD 为一边向CD 两旁分别作等边三角形PCD 和等边三角形QCD ,那么tan ∠PQB 的值为________.图1116.如图12,已知点A(5 3,0),直线y =x +b(b >0)与y 轴交于点B ,连接AB.若∠α=75°,则b =________.图12三、解答题(共52分)17.(5分)计算:cos30°tan60°-cos45°sin45°-sin260°.18.(5分)如图13,在△ABC中,AB=4,AC=6,∠ABC=45°,求BC的长及tan C 的值.图1319.(5分)如图14,在半径为1的⊙O中,∠AOB=45°,求sin C的值.图1420.(5分)如图15,AB是长为10 m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:sin37°≈35,tan37°≈34,sin65°≈910,tan65°≈157)图1521.(7分)如图16,菱形ABCD的对角线AC与BD相交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.图1622.(7分)如图17,市防汛指挥部决定对某水库的水坝进行加高加固,设计师提供的方案是:水坝加高1米(EF=1米),背水坡AF的坡度i=1∶1,已知AB=3米,∠ABE=120°,求水坝原来的高度.图1723.(9分)阅读下面的材料:小凯遇到这样一个问题:如图18①,在四边形ABCD中,对角线AC,BD相交于点O,AC=4,BD=6,∠AOB=30°,求四边形ABCD的面积.小凯发现,分别过点A,C作直线BD的垂线,垂足分别为E,F,设AO为m,通过计算△ABD与△BCD的面积和可以使问题得到解决(如图②).请回答:(1)△ABD 的面积为________(用含m 的式子表示); (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图③,在四边形ABCD 中,对角线AC ,BD 相交于点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为________(用含a ,b ,α的式子表示).图1824.(9分)观察与思考:阅读下列材料,并解决后面的问题.在锐角三角形ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,过点A 作AD ⊥BC 于点D(如图19①),则sin B =AD c ,sin C =ADb ,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即b sin B =csin C ,同理有c sin C =a sin A ,a sin A =b sin B ,所以a sin A =b sin B =c sin C. 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题:(1)如图②,△ABC 中,∠B =45°,∠C =75°,BC =60,则∠A =________°,AC =________;(2)如图③,在某次巡逻中,渔政船在C 处测得海岛A 在其北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得海岛A 在其北偏西75°的方向上,求此时渔政船距海岛A 的距离AB.(结果精确到0.01海里,6≈2.449)图19详解详析1.C2.B [解析] 由题意可得sin A =23=BCAB.因为BC =4,所以AB =6.3.D [解析] 因为cos(90°-α)=12,α为锐角,所以90°-α=60°,所以α=30°,所以cos α=32. 4.C [解析] ∵点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,∴tan α=3t =32,∴t =2. 5.B [解析] 如图,连接AC .由网格图的特点,易得△ACO 是等腰直角三角形,所以∠AOB =45°,所以cos ∠AOB 的值为22.6.D [解析] 如图,连接BD .由网格图的特点可知AD ⊥BD ,由AD =2 2,BD =2,可得tan A 的值为12.7.A [解析] 在Rt △ABC 中,根据勾股定理可得AB 2=AC 2+BC 2=(5)2+22=9,∴AB =3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin B =AC AB =53.故选A. 8.A [解析] 如图,设转轴底端为A ,两立柱底端的点为B ,C ,BC 的中点为D ,则有AB =AC =2米,所以AD ⊥BC ,且CD =1米,所以AD =3米.9.B [解析] 如图,过点P 作P A ⊥MN 于点A ,MN =30×2=60(海里).∵∠PMN =22°,∠PNA =44°, ∴∠MPN =∠PNA -∠PMN =22°, ∴∠PMN =∠MPN , ∴MN =PN =60海里. ∵∠PNA =44°,∴在Rt △NAP 中,P A =PN ·sin ∠PNA ≈60×0.6947≈41.68(海里). 故选B.10.D [解析] 如图,过点B 作BF ⊥DE 于点F .在Rt △CBD 中,∵BC =10,cos ∠BCD =35,∴DC =6,∴BD =8.在Rt △BCE 中,BC =10,∠BCE =30°, ∴BE =5.在Rt △BDF 中,∠BDF =∠BCE =30°,BD =8, ∴DF =BD ·cos30°=4 3.在Rt △BEF 中,∠BEF =∠BCD , 即cos ∠BEF =cos ∠BCD =35,∴EF =BE ·cos ∠BEF =3,∴DE =EF +DF =3+4 3. 11.14a 2 12.1713.6 [解析] 由等腰三角形的轴对称性可知阴影部分的面积等于△ABC 的面积的一半.因为BD =12BC =2,AD ⊥BC ,tan ∠ABC =3,所以AD =6,所以△ABC 的面积为12,所以阴影部分的面积为6.14.90° [解析] 由题意得sin A =12,tan B =3,所以∠A =30°,∠B =60°,所以∠C的度数是90°.15.2-3 [解析] 延长QP 交AB 于点F .∵四边形ABCD 是正方形,△PCD 和△QCD 是以CD 为边的等边三角形, ∴四边形PCQD 是菱形.设正方形ABCD 的边长为a ,则可得PE =QE =32a ,DE =EC =12a ,FB =12a , ∴tan ∠PQB =FBFQ=12a a +32a=2- 3. 16.5 [解析] 设直线y =x +b (b >0)与x 轴交于点C ,易得C (-b ,0),B (0,b ), 所以OC =OB , 所以∠BCO =45°.又因为α=75°,所以∠BAO =30°. 因为OA =5 3,所以OB =5,所以b =5. 17.1418.解:如图,过点A 作AD ⊥BC 于点D .在Rt △ABD 中,∠B =45°, ∵sin B =ADAB,∴AD =AB ·sin B =4×sin45°=4×22=2 2, ∴BD =AD =2 2.在Rt △ADC 中,AC =6,由勾股定理,得DC =AC 2-AD 2=62-(2 2)2=2 7, ∴BC =BD +DC =2 2+2 7,tan C =AD DC =2 22 7=147. 19.解:如图,过点A 作AD ⊥OB 于点D . ∵在Rt △AOD 中,∠AOB =45°, ∴OD =AD =OA ·cos45°=1×22=22, ∴BD =OB -OD =1-22, ∴AB =AD 2+BD 2=(22)2+(1-22)2=2- 2. ∵AC 是⊙O 的直径,∴∠ABC =90°,AC =2,∴sin C =ABAC =2-22.20.解:如图,过点B 作BF ⊥AE 于点F , 则BF =DE .在Rt △ABF 中,sin ∠BAF =BF AB, 则BF =AB ·sin ∠BAF ≈10×35=6(m).在Rt △CDB 中,tan ∠CBD =CD BD ,则CD =BD ·tan65°≈10×157≈21(m). 则CE =DE +CD =BF +CD ≈6+21=27(m).答:大楼CE 的高度约是27 m.21.解:(1)∵四边形ABCD 是菱形, ∴AD ∥BC ,∴∠ABC +∠BAD =180°. 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°.∵四边形ABCD 是菱形, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan30°=33. (2)证明:∵四边形ABCD 是菱形, ∴∠BOC =90°.∵BE ∥AC ,CE ∥BD ,∴∠OBE =∠BOC =∠OCE =90°, ∴四边形OBEC 是矩形.22.解:如图所示,过点E 作EC ⊥BD 于点C , 设BC =x 米.∵∠ABE =120°, ∴∠CBE =60°. 在Rt △BCE 中, ∵∠CBE =60°,∴tan60°=CE BC =3,即CE =3x 米. ∵背水坡AF 的坡度i =1∶1,∴CF AC=1. ∵AC =(3+x )米,CF =(1+3x )米, ∴1+3x 3+x=1,解得x =3+1, ∴EC =3x =(3+3)米.答:水坝原来的高度为(3+3)米.23.解:(1)∵AO =m ,∠AOB =30°,∴AE =12m , ∴△ABD 的面积为12×12m ×6=32m . 故答案为32m. (2)由(1)得S △ABD =32m . 同理,CF =12(4-m ), ∴S △BCD =12BD ·CF =6-32m . ∴S 四边形ABCD =S △ABD +S △BCD =6.解决问题:分别过点A ,C 作直线BD 的垂线,垂足分别为E ,F ,设AO 为x .∵∠AOB =α,∴AE =x ·sin α,∴S △ABD =12BD ·AE =12b ·x ·sin α. 同理,CF =(a -x )·sin α,∴S △BCD =12BD ·CF =12b ·(a -x )·sin α. ∴S 四边形ABCD =S △ABD +S △BCD =12b ·x ·sin α+12b ·(a -x )·sin α=12ab ·sin α. 故答案为12ab ·sin α. 24.解:(1)60 20 6(2)依题意,得BC =40×0.5=20(海里).∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°,∴∠A=45°.在△ABC中,ABsin∠ACB=BC sin A,即ABsin60°=20sin45°,解得AB=10 6≈24.49(海里).答:渔政船距海岛A的距离AB约为24.49海里.。
人教版九年级下册第二十八章《锐角三角函数》单元测试(含答案)
人教版九年级下册第二十八章《锐角三角函数》单元测试(含答案)一、选择题1、在△ABC中,∠C=90°.若AB=3,BC=1,则sinA的值为()A. B. C. D.32、cos 30°的值等于( )A. B. C.1 D.3、2cos45°的值等于()A. B. C. D.4、3tan60°的值为()A. B. C. D.35、在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA= B.tanA= C.sinA= D.cosA=6、在4×4网格中,∠α的位置如图所示,则tanα的值为()A. B. C.2 D.7、在Rt△ABC中,∠C=90º,,则的值为A. B.C.D.8、如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2 D.39、如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1∶0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°≈0.45)( )A.21.7米 B.22.4米C.27.4米 D.28.8米10、.如图,已知∠α的一边在x轴上,另一边经过点A(2,4),顶点为(﹣1,0),则sin α的值是()A. B. C. D.二、填空题11、计算:=12、在等腰Rt△ABC中,AB=AC,则tanB= .13、在△ABC中,∠C=90°,△ABC的面积为6,斜边长为6,则tanA+tanB的值为.14、如图,在边长为1的小正反形组成的网格中,△ABC的三个顶点均在格点上,则tanB的值为 .15、如图,在△ABC中,AB=AC,sinA=,BC=2,则△ABC的面积为.16、如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有.17、如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为 .18、如图,△ABC中,∠C=90°,∠B=∠BAD=30°,DE⊥AB,若CD=2,则DE=__________.19、如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为米(结果保留整数,测角仪忽略不计,≈1.414,≈1.732)三、简答题20、如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得∠α=30°,∠β=45°,量得BC长为100米.求河的宽度(结果保留根号).21、如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.22、如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)是多少?23、如图,在△ABC中,∠B为锐角,AB=3,AC=5,sinC=,求BC的长.24、如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角α和坝底宽AD(结果果保留根号).25、如图,四边形ABCD是平行四边形,以AB为直径的⊙0经过点D,E是⊙O上一点,且∠AED=45°,(1)求证:CD是⊙O的切线.(2)若⊙O的半径为3,AE=5,求∠ADE的正弦值.26、如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为30°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.27、如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)28、如图所示,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速公路(即线段AC),经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120km 的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100km为半径的圆形区域,请问计划修建的这条高速公路是否穿越保护区,为什么?(参考数据:≈1.73)参考答案一、选择题1、A解:∵∠C=90°,AB=3,BC=1,∴sinA=,2、B3、B【考点】特殊角的三角函数值.【分析】将45°角的余弦值代入计算即可.【解答】解:∵cos45°=,∴2cos45°=.故选B.【点评】本题考查特殊角的三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主4、D【考点】特殊角的三角函数值.【分析】把tan60的数值代入即可求解.【解答】解:3tan60°=3×=3.故选D.【点评】本题考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是关键.5、C【考点】锐角三角函数的定义.【分析】根据三角函数定义:(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.分别进行分析即可.【解答】解:在直角△ABC中,∠C=90°,则A、cosA=,故本选项错误;B、tanA=,故本选项错误;C、sinA=,故本选项正确;D、cosA=,故本选项错误;故选:C.【点评】此题主要考查了锐角三角函数的定义,关键是熟练掌握锐角三角函数的定义.6、C【考点】锐角三角函数的定义.【专题】网格型.【分析】根据“角的正切值=对边÷邻边”求解即可.【解答】解:由图可得,tanα=2÷1=2.故选C.【点评】本题考查了锐角三角函数的定义,正确理解正切值的含义是解决此题的关键.7、B8、C【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.9、A10、D【考点】锐角三角函数的定义;坐标与图形性质.【分析】作AC⊥x轴于点C,根据点的坐标特征求出点A、B的坐标,得到CA、CB的长,根据勾股定理求出AB,根据正弦的定义解答即可.【解答】解:作AC⊥x轴于点C,由题意得,BC=3,AC=4,由勾股定理得,AB=5,则sinα==,故选:D.二、填空题11、12、1.解:由等腰Rt△ABC中,AB=AC,得∠B=45°.tanB=tan45°=1,13、3.解:∵△ABC的面积为6,∴ab=12.在Rt△ABC中,∠C=90°,AB=6,∴a2+b2=62=36,∴tanA+tanB====3,14、解:如图:,tanB==.15、30【解答】解:过B作BD⊥AC,交AC于点D,在Rt△ABD中,sinA==,设AB=AC=5x,BD=3x,根据勾股定理得:AD=4x,即CD=x,在Rt△BDC中,根据勾股定理得:BC2=BD2+CD2,即40=9x2+x2,解得:x=2(负值舍去),∴BD=6,AB=AC=10,则S△ABC=AC•BD=30.16、①②③④.【解答】解:∵∠A=90°,AD⊥BC,∴∠α+∠β=90°,∠B+∠β=90°,∠B+∠C=90°,∴∠α=∠B,∠β=∠C,∴sinα=sinB,故①正确;sinβ=sinC,故②正确;∵在Rt△ABC中sinB=,cosC=,∴sinB=cosC,故③正确;∵sinα=sinB,cos∠β=cosC,∴sinα=cos∠β,故④正确;故答案为①②③④.17、2+.解:如图,连接OA,过点A作AC⊥OB于点C,则AC=1,OA=OB=2,∵在Rt△AOC中,OC===,∴BC=OB﹣OC=2﹣,∴在Rt△ABC中,tan∠ABO===2+.18、2.【考点】含30度角的直角三角形.【分析】利用已知条件易求∠CAD=30°,则AD的长可求,又因为∠BAD=30°,进而可求出DE 的长.【解答】解:∵∠C=90°,∠B=30°,∴∠CAB=60°,∵∠B=∠BAD=30°,∴∠CAD=30°,∵CD=2,∴AD=4,∵∠BAD=30°,∴DE=AD=2,故答案为:2.【点评】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.19、137.【解析】试题分析:如图,∠A BD=30°,∠ACD=45°,BC=100m,设AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+100,在Rt△ABD中,∵tan∠ABD=,∴,∴x=≈137,即山高AD为137米.故答案为:137.考点:解直角三角形的应用-仰角俯角问题.三、简答题20、解:过点A作AD⊥BC于点D,∵∠β=45°,∠ADC=90°,∴AD=DC,设AD=DC=xm,则tan30°==21、:(1)解:∵点E、F分别是BC、CD的中点,∴EC=DF=×4=2,由勾股定理得,DE==2,∵点F是CD的中点,点N为DE的中点,∴DN=DE=×2=,NF=EC=×2=1,∴△DNF的周长=1++2=3+;在Rt△ADF中,由勾股定理得,AF===2,所以,sin∠DAF===;(2)证明:在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠DAF+∠AFD=90°,∴∠CDE+∠AFD=90°,∴AF⊥DE,∵点E、F分别是BC、CD的中点,∴NF是△CDE的中位线,∴DF=EC=2NF,∵cos∠DAF==,cos∠CDE==,∴=,∴2AD•NF=DE•DM.22、AB=km (提示:过点A作AD⊥OB)23、解:作AD⊥BC于点D,∴∠ADB=∠ADC=90°.∵AC=5,,∴AD=AC•sinC=3.∴在Rt△ACD中,.∵AB=,∴在Rt△ABD中,.∴BC=BD+CD=7.24、解:过B作BF⊥AD于F.在Rt△ABF中,AB=5,BF=CE=4.∴AF=3.在Rt△CDE中,tanα==i=.∴∠α=30°且DE==4,∴AD=AF+FE+ED=3+4.5+4=7.5+4.答:坡角α等于30°,坝底宽AD为7.5+4.25、【解答】解:(1)CD与⊙O相切.理由是:连接OD.则∠AOD=2∠AED=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠CDO=∠AOD=90°.∴OD⊥CD,∴CD与⊙O相切.(2)连接BE,由圆周角定理,得∠ADE=∠ABE.∵AB是⊙O的直径,∴∠AEB=90°,AB=2×3=6(cm).在Rt△ABE中,sin∠ABE==,∴sin∠ADE=sin∠ABE=.26、.解:如图,延长ED交BC延长线于点F,则∠CFD=90°,∵tan∠DCF=i==,∴∠DCF=30°,…… 2分∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,过点E作EG⊥AB于点G,则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=30°,∴AG=GEtan∠AEG=4•tan30°=4,则AB=AG+BG=4+3.5=7.5,故旗杆AB的高度为7.5米.27、【解答】解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=AD=20.∴BC=BD+CD=20+20(m).答:这栋楼高为(20+20)m.28、解:结论;不会.理由如下:作PH⊥AC于H.由题意可知:∠EAP=60°,∠FBP=30°,∴∠PAB=30°,∠PBH=60°,∵∠PBH=∠PAB+∠APB,∴∠BAP=∠BPA=30°,∴BA=BP=120,在Rt△PBH中,sin∠PBH=,∴PH=PB•sin60°=120×≈103.80,∵103.80>100,∴这条高速公路不会穿越保护区.人教版九年级数学下册第二十八章锐角三角函数单元练习题(含答案)一、选择题1.直线y=2x与x轴正半轴的夹角为α,那么下列结论正确的是()A.tanα=2B.tanα=0.5C.sinα=2D.cosα=22.2cos 30°的值等于()A.1B.C.D.23.如图,在Rt△ABC中,∠C=90°,∠A=30°,c=10,则下列不正确的是()A.∠B=60°B.a=5C.b=5D.tan B=4.如图,在2×3的正方形网格中,tan ∠ACB的值为()A.B.C.D.25.用科学记算器计算锐角α的三角函数值时,不能直接计算出来的三角函数值是() A.cotαB.tanαC.cosαD.sinα6.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h·cosα7.若把Rt△ABC三边的长度都扩大为原来的5倍,则锐角∠A的正切值()A.扩大为原来的5倍B.不变C.缩小为原来的5倍D.不能确定8.如图,在△ABC中,∠ACB=90°,BC=2,AC=1,则下列三角函数值正确的是()A.sin A=B.tan B=C.sin B=D.cos A=9.如图,第一象限的点P的坐标是(a,b),则tan ∠POx等于()A.B.C.D.10.在湖边高出水面50 m的山顶A处看见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志P处的仰角为45°,又观其在湖中之像的俯角为60°,则飞艇底部P距离湖面的高度为(参考等式:=)()A.(25+75)米B.(50+50)米C.(75+75)米D.(50+100)米二、填空题11.在Rt△ABC中,斜边AB的长是8,cos B=,则BC的长是__________.12.用科学计算器计算:2-sin 60°=________(结果精确到0.1)13.如图,在坡角∠BAC=30°的斜坡上,两树间的水平距离AC为米,则两树间的坡面距离AB为________米.14.如图,小明妈妈的高跟鞋很高,但是小明发现妈妈在走上坡路时一点也不累.有一次,妈妈上山上坡正好和走平地一样,脚掌AB正好呈水平,小明偷偷量过妈妈的高跟鞋跟高h 是10 cm,AB长度15 cm,请问妈妈走的那个山坡与水平线夹角的正切值是________.15.在Rt△ABC中,∠C=90°,sin A=,BC=20,则△ABC的面积为________.16.在△ABC中,已知sin A=,cos B=,则∠C=________度.17.用科学计算器计算:cos 32°≈________.(精确到0.01)18.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,若c=4a,则tan A=__________.19.若等腰三角形两边为4,10,则底角的正弦值是__________.20.在Rt△ABC中,∠C=90°,AC=3BC,则tan A=________.三、解答题21.三角形中有3个角、3条边共6个元素,由其中的已知元素,求出所有未知元素的过程,叫做解三角形.已知△ABC中,AB=,∠B=45°,BC=1+,解△ABC.22.在某飞机场东西方向的地面l上有一长为1 km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得一架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5千米的C处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由.23.如图,一垂直于地面的灯柱AB被一钢线CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin 53°≈0.80,cos 53°≈0.60,tan 53°≈1.33)24.用计算器求下列各式中的锐角α(精确到1″):(1)sinα=0.917 1.(2)cosα=0.550 3.(3)tanα=72.43.25.△ABC的三边长分别为AB=1,BC=,AC=,求∠ACB的正弦值.26.如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos 75°≈0.2588,sin 75°≈0.9659,tan 75°≈3.732,≈1.732,≈1.414)27.如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)28.同学们,在我们进入高中以后,将还会学到下面三角函数公式:sin (α-β)=sinαcosβ-cosαsinβ,cos (α-β)=cosαcosβ+sinαsinβ例:sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30°=(1)试仿照例题,求出cos 15°的准确值;(2)我们知道,tanα=,试求出tan 15°的准确值.答案解析1.【答案】A【解析】过点A作AB⊥x轴于B.∵直线y=2x与x轴正半轴的夹角为α,设OB=x,则AB=2x,根据勾股定理得OA=x,∴tanα===2,sinα===,cosα===.故选A.2.【答案】C【解析】根据特殊角的三角函数值直接解答即可.2cos 30°=2×=.故选C.3.【答案】D【解析】A、∵∠C=90°,∠A=30°,∴∠B=180°-∠A-∠C=180°-30°-90°=60°,故选项正确;B、sin A=,则a=c·sin A=10·sin 30°=10×=5,故选项正确;C、cos A=,则b=c·cos A=10×=5,故选项正确,D、tan B=tan60°=,故选项错误,故选D.4.【答案】D【解析】如图,过A作AD⊥BC于D,设每个小正方形边长为1,在Rt△ACD中,AD=2,CD=1,则tan ∠ACB==2,故选D.5.【答案】A【解析】用科学记算器计算锐角α的三角函数值时,只能计算正弦、余弦、正切的值,要计算余切的值,需先计算正切值,在借助倒数进行计算得出答案,故选A.6.【答案】B【解析】∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos ∠BCD=,∴BC==,故选B.7.【答案】B【解析】因为Rt△ABC三边的长度都扩大为原来的5倍所得的三角形与原三角形相似,所以锐角A的大小没改变,所以锐角A的正切函数值也不变.故选B.8.【答案】B【解析】∵∠ACB=90°,BC=2,AC=1,∴AB===,A、sin A===,故本选项错误;B、tan B==,故本选项正确;C、sin B===,故本选项错误;D、cos A===,故本选项错误,故选B.9.【答案】B【解析】如图因为第一象限的点P的坐标是(a,b),所以tan ∠POx=.故选B.10.【答案】D【解析】设AE=x m,在Rt△AEP中∠PAE=45°,则∠P=45°,∴PE=AE=x,∵山顶A处高出水面50 m,∴OE=50 m,∴OP′=OP=PE+OE=x+50,∵∠P′AE=60°,∴P′E=tan 60°·AE=x,∴OP′=P′E-OE=x-50,∴x+50=x-50,解得x=50(+1)(m),∴PO=PE+OE=50(+1)+50=(50+100)(m),即飞艇离开湖面的高度是(50+100) m.故选D.11.【答案】【解析】在Rt△ABC中,∵∠C=90°,AB=8,cos B=,∴=,∴BC=.12.【答案】14.2【解析】正确使用计算器计算即可.按运算顺序进行计算.2-sin 60°≈2×7.550=15.10-0.87≈14.2.13.【答案】2【解析】∵△ABC是直角三角形,∴AB=,∵AC=米,∠BAC=30°,∴AB==2(米).14.【答案】【解析】∵Rt△ABC中,AB=15 cm,AC=h=10 cm,∴BC===5,∴tan ∠ABC===.15.【答案】150【解析】∵在Rt△ABC中,∠C=90°,sin A==,∴AB==20÷=25,∴AC===15,则△ABC的面积为AC·BC=×15×20=150.16.【答案】120【解析】∵sin A=,cos B=,∴∠A=30°,∠B=30°,∴∠C=180°-30°-30°=120°.17.【答案】2.68【解析】熟练应用计算器,对计算器给出的结果,根据精确度的概念用四舍五入法取近似数.cos 32°=3.162 3×0.848 0≈2.68.18.【答案】【解析】设a=x,则c=4x,由勾股定理得b=x,tan A==,故答案为.19.【答案】【解析】∵4+4=8<10,∴AB=AC=10,BC=4.过点A作AD⊥BC于点D.∵AB=AC,AD⊥BC,∴BD=DC=BC=2.∵AB=AC=10,∴AD===4,∴sin ∠ABD===.20.【答案】【解析】∵在Rt△ABC中,∠C=90°,AC=3BC,∴tan A==,故答案为.21.【答案】解过点A作AD⊥BC,垂足为D,在Rt△ADB中,∠ADB=90°,∠B=45°,AB=,则cos B=.∴AD=BD=AB×cos 45°=×cos 45°=1,在Rt△ADC中,∠ADC=90°,CD=BC-BD=1+-1=,则tan C===,∴∠C=30°,∴AC==2,∠BAC=180°-45°-30°=105°.【解析】过点A作AD⊥BC,垂足为D,解直角三角形求出BD、AD,求出CD,解直角三角形求出∠C,AC,即可求出答案.22.【答案】解(1)由题意,得∠BAC=90°,∴BC==10,∴飞机航行的速度为10×60=600(km/h);(2)能降落在跑道MN之间.理由:作CE⊥l于点E,设直线BC交l于点F.在Rt△ABC中,AC=5,BC=10,∴∠ABC=30°,即∠BCA=60°,又∵∠CAE=30°,∠ACE=∠FCE=60°,∴CE=AC·sin ∠CAE=,AE=AC·cos ∠CAE=.则AF=2AE=15(km),∴AN=AM+MN=14.5+1=15.5 km,∵AM<AF<AN,∴飞机不改变航向继续航行,可以落在跑道MN之间.【解析】(1)先求出∠BAC=90°,然后利用勾股定理列式求解即可得到BC,再求解即可;(2)作CE⊥l于E,设直线BC交l于F,然后求出CE、AE,然后求出AF的长,再进行判断即可.23.【答案】解设BD=x米,则BC=x米,BE=(x+2)米,在Rt△BDE中,tan ∠EDB==,即≈1.33,解得x≈6.06,∵sin ∠EDB=,即0.8=,解得ED≈10,即钢线ED的长度约为10米.【解析】根据题意,可以得到BC=BD,由∠CDB=45°,∠EDB=53°,由三角函数值可以求得BD的长,从而可以求得DE的长.24.【答案】解(1)α=shift sin 0.917 1=66.505°≈66°30′18″,(2)α=shift cos 0.550 3=56.612 4°≈56°364 5″,(3)α=shift tan 72.43=89.208 9≈89°12′32″.【解析】熟练应用计算器,对计算器给出的结果,用四舍五入法取近似数.25.【答案】解如图,过B作BD⊥AC于D.设CD=x,则AD=-x.∵在Rt△BCD中,BD2=BC2-CD2=2-x2,在Rt△BAD中,BD2=AB2-AD2=1-(-x)2,2-x2=1-(-x)2,解得x=,BD==,sin ∠ACB===.【解析】根据勾股定理,可得方程,根据解方程,可得CD的长,再根据勾股定理,可得BD的长,根据三角函数的正弦,可得答案.26.【答案】解延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan ∠ACB=,∴AB=BC·tan 75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHD=60°,sin ∠FAG=,∴sin 60°==,∴FG=2.17,∴DM=FG+GM-DF≈3.05米.答:篮框D到地面的距离是3.05米.【解析】延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.27.【答案】解如图作CH⊥AD于H.设CH=x km,在Rt△ACH中,∠A=37°,∵tan 37°=,∴AH==,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴=,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35 km,∴E处距离港口A有35 km.【解析】如图作CH⊥AD于H.设CH=x km,在Rt△ACH中,可得AH==,在Rt△CEH中,可得CH=EH=x,由CH∥BD,推出=,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题.28.【答案】解(1)cos 15°=cos 45°cos 30°+sin 45°sin 30°=×+×=;(2)tan 15°===2-.【解析】从题中给出的信息进行答题:(1)把15°化为45°-30°直接代入三角函数公式:cos (α-β)=cosαcosβ+sinαsinβ计算即可;(2)把tan 15°代入tanα=,再把(1)及例题中的数值代入即可.期末复习:人教版九年级数学下册第28章锐角三角函数单元检测试卷(解析版)一、单选题(共10题;共30分)1.sin60°的值为()A. B. C. D.2.在△ABC中,∠C =90o,若cosB= ,则∠B的值为().A. B. C. D.3.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A. B. C. D.4.在中,,,则的值等于()A. B. C. D.5.在△ABC中,∠C=90°,AC=9,sinB=,则AB=( )A. 15B. 12C. 9D. 66.一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高()米.A. B. 3 C. D. 以上的答案都不对7.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC的长,则下列按键顺序正确的是()A. 5÷tan26°=B. 5÷sin26°=C. 5×cos26°=D. 5×tan26°=8.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C的度数是()A. 45°B. 75°C. 105°D. 120°9.在中,,,,则cosA等于()A. B. C. D.10.在学习解直角三角形以后,重庆八中数学兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB的影子一部分落在平台上的影长BC为6米,落在斜坡上的影长CD为4米,AB⊥BC,同一时刻,光线与旗杆的夹角为37°,斜坡的坡角为30°,旗杆的高度AB约为()米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.73)A. 10.61B. 10.52C. 9.87D. 9.37二、填空题(共10题;共30分)11.如图所示,在建筑物AB的底部a米远的C处,测得建筑物的顶端A点的仰角为α,则建筑物AB的高可表示为________.12.如图,在边长为1的小正反形组成的网格中,△ABC的三个顶点均在格点上,则tanB的值为________.13.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D 处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是________m(结果保留根号)14.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cosB=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是________ .15.如图,△ABC中,∠C=90°,AC=3,AB=5,点D是边BC上一点.若沿AD将△ACD翻折,点C刚好落在AB边上点E处,则BD=________.16.如下图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则线段DE的长为________.17.如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N 处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为________米(结果保留根号).18.在Rt△ABC中,∠ACB=90°,a=2,b=3,则tanA=________19.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是________.20.如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在处测得岛礁在东北方向上,继续航行1.5小时后到达处此时测得岛礁在北偏东方向,同时测得岛礁正东方向上的避风港在北偏东方向为了在台风到来之前用最短时间到达处,渔船立刻加速以75海里/小时的速度继续航行________小时即可到达(结果保留根号)三、解答题(共8题;共60分)21.如图,锐角△ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tanB的值.22.如图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC改建为坡度1:0.5的迎水坡AB,已知AB=4米,则河床面的宽减少了多少米.(即求AC的长)23.中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)24.热气球的探测器显示,从热气球底部A处看一栋高楼顶部B的仰角为30°,看这栋楼底部C的俯角为45°,已知楼高是120m,热气球若要飞越高楼,问至少要继续上升多少米?(结果保留根号)25.如图:我渔政310船在南海海面上沿正东方向匀速航行,在A点观测到我渔船C在北偏东60°方向的我国某传统渔场捕鱼作业.若渔政310船航向不变,航行半小时后到达B点,观测到我渔船C在东北方向上.问:渔政310船再按原航向航行多长时间,离渔船C的距离最近?(渔船C捕鱼时移动距离忽略不计,结果不取近似值)26.如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A,B两个探测点探测到地下C处有生命迹象.已知A,B两点相距8米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度(结果保留根号).27.如图所示,一条自西向东的观光大道l上有A、B两个景点,A、B相距2km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离.(结果精确到0.1km)28.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1 cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.414)答案解析部分一、单选题1.【答案】B【考点】特殊角的三角函数值【解析】【解答】解:sin60°= .故答案为:B.【分析】由特殊角的三角函数值可求解。
人教版九年级下册数学《第28章锐角三角函数》单元测试题含答案
人教版九年级下册数学《第28章锐角三角函数》单元测试题含答案一、选择题(每题3分,共30分)1.在Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是( )A .sinB =23 B .cos B =23C .tan B =23 D .t an B =322.在Rt △ABC 中,∠C =90°,tan B =32,BC =23,则AC 等于( )A .3B .4C .4 3D .6 3.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为( ) A.35 B.34 C.105 D .14.如图所示,在四边形ABCD 中,AD ∥BC ,AC ⊥AB ,AD =CD ,cos ∠DCA =45,BC =10,则AB 的长是( )[来源:学_科_网]A .3B .6C .8D .95.如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A =30°,则sinE 的值为( )A.12B.22C.32D.33(第3题) (第4题) (第5题) 6.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知AB =8,BC =10,则tan ∠EFC 的值为( ) A.34 B.43 C.35 D.45(第6题) (第7题) (第8题)7.如图所示,在四边形ABCD 中,E ,F 分不是AB ,AD 的中点,若EF =2,BC =5,CD =3,则tan C 等于( )A.34B.43C.35D.458.如图,某地修建高速公路,要从B 地向C 地修一条隧道(B ,C 在同一水平面上).为了测量B ,C 两地之间的距离,某工程师乘坐热气球从C 地动身,垂直上升100 m 到达A 处,在A 处观看B 地的俯角为30°,则B ,C 两地之间的距离为( )A .100 3 mB .50 2 mC .50 3 m D.10033 m9.等腰三角形一腰上的高与腰长之比是12,则等腰三角形顶角的度数为( )A .30°B .50°C .60°或120°D .30°或150°10.如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B ,C 之间的距离为( )A .20海里B .103海里C .202海里D .30海里二、填空题(每题3分,共30分)11.在△ABC 中,∠C =90°,AB =13,BC =5,则tanB =________.12.运算:131-⎪⎭⎫⎝⎛-|-2+3tan45°|+(2-1.41)0=________.13.如图,正方形ABCD 的边长为4,点M 在边DC 上,M ,N 两点关于对角线AC 所在的直线对称,若DM =1,则tan ∠ADN =________.14.已知锐角A 的正弦sin A 是一元二次方程2x2-7x +3=0的根,则sin A =________.15.如图所示,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△A ′B ′C ′,使点B ′与C 重合,连接A ′B ,则tan ∠A ′BC ′的值为________.16.如图所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,cos ∠BAC =34,则墙高BC =________米.(第13题) (第15题) (第16题)17.如图所示,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于________.18.一次函数的图象通过点(tan 45°,tan 60°)和(-cos 60°,-6t an 30°),则此一次函数的解析式为________.19.如图所示,在△ABC 中,∠ACB =90°,CD 是AB 边上的中线,AC =6,CD =5,则sin A 等于________.20.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且CF FD =13.连接AF 并延长交⊙O 于点E ,连接AD ,DE.若CF =2,AF=3.下列结论:①△ADF ∽△AED ;②FG =2;③tan E =52;④S △DEF =45,其中正确的是________.(第17题)[来源:学(第18题) (第19题) 三、解答题(21题12分,23题8分,其余每题10分,共60分)21.运算:(1)2(2cos 45°-sin 60°)+24 4;(2)sin 60°·cos 60°-tan 30°·tan 60°+sin245°+cos245°.22.在△ABC中,∠C=90°.(1)已知c=83,∠A=60°,求∠B,a,b;(2)已知a=36,∠A=45°,求∠B,b,c.23.如图,已知▱ABCD ,点E 是BC 边上的一点,将边AD 延长至点F ,使∠AFC =∠DEC.(1)求证:四边形DECF 是平行四边形;(2)若AB =13,DF =14,tan A =125,求CF 的长.24.如图,海上有一灯塔P ,在它周围3海里处有暗礁,一艘客轮以9海里/时的速度由西向东航行,行至A 点处测得P 在北偏东60°方向上,连续行驶20分钟后,到达B 处又测得灯塔P 在北偏东45°方向上,咨询客轮不改变方向连续前进有无触礁危险?25.如图,拦水坝的横断面为等腰梯形ABCD ,坝顶宽BC 为6 m ,坝高为3.2 m ,为了提升水坝的拦水能力需要将水坝加高2 m ,同时保持坝顶宽度不变,迎水坡CD 的坡度不变,然而背水坡的坡度由原先的1∶2变成1∶2.5(坡度是坡高与坡的水平长度的比).求加高后的坝底HD 的长为多少?26.【咨询题学习】小芸在小组学习时咨询小娟如此一个咨询题:已知α为锐角,且sin α=13,求sin 2α的值.小娟是如此给小芸讲解的: 如图①,在⊙O 中,AB 是直径,点C 在⊙O 上,因此∠ACB =90°.设∠BAC =α,则sin α=BC AB =13.易得∠BOC =2α.设BC =x ,则AB =3x ,AC =22x.作CD ⊥AB 于D ,求出CD =________(用含x 的式子表示),可求得sin 2α=CDOC =________.【咨询题解决】已知,如图②,点M ,N ,P 为⊙O 上的三点,且∠P=β,sin β=35,求sin 2β的值.答 案 一、1.C2.A 点拨:由tan B =AC BC 知AC =BC ·tan B =23×32=3. 3.B4.B 点拨:因为AD =DC ,因此∠DAC =∠DCA.又因为AD ∥BC ,因此∠DAC =∠ACB ,因此∠DCA =∠ACB.在Rt △ACB 中,AC =BC ·cos ∠ACB =10×45=8,则AB =BC2-AC2=6.5.A 6.A7.B 点拨:如图所示,连接BD ,由三角形中位线定理得BD =2EF =2×2=4.又BC =5,CD =3,∴CD2+BD2=BC2.∴△BDC 是直角三角形,且∠BDC =90°,∴tan C =BD CD =43.(第7题) 8.A9.D 点拨:有两种情形:当顶角为锐角时,如图①,sin A =12,∠A =30°;当顶角为钝角时,如图②,sin (180°-∠BAC)=12,180°-∠BAC =30°,∠BAC =150°.(第9题)10.C 二、11.12512.2+3 点拨:原式=3-|-2+3|+1=4-2+3=2+ 3.13.4314.1215.13 点拨:如图,过A ′作A ′D ⊥BC ′于点D ,设A ′D =x ,则B ′D =x ,BC =2x ,BD =3x.因此tan ∠A ′BC ′=A ′D BD =x 3x =13.(第15题) 16.7 点拨:由cos ∠BAC =AC AB =34,知3AB =34,AB =4米. 在Rt △ABC 中,BC =AB2-AC2=42-32=7(米).17.2 点拨:由题意知BD ′=BD =2 2.在Rt △ABD ′中,tan ∠B AD ′=BD ′AB =222= 2.18.y =23x -3 点拨:tan 45°=1,tan 60°=3,-cos 60°=-12,-6tan 30°=-2 3.设y =kx +b 的图象通过点(1,3),⎝ ⎛⎭⎪⎫-12,-23,则用待定系数法可求出k =23,b =- 3. 19.45 点拨:∵CD 是Rt △ABC 斜边上的中线,∴AB =2CD =2×5=10,∴BC =AB2-AC2=102-62=8,∴sin A =BC AB =810=45.20.①②④三、21.解:(1)原式=2×⎝ ⎛⎭⎪⎫2×22-32+62=2-62+62=2.(2)原式=32×12-33×3+⎝ ⎛⎭⎪⎫222+⎝ ⎛⎭⎪⎫222[来源:学科网]=34-1+12+12=34.22.解:(1)∠B =30°,a =12,b =43; (2)∠B =45°,b =36,c =6 3.23.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC.∴∠ADE =∠DEC.又∵∠AFC =∠DEC ,∴∠AFC =∠ADE ,∴DE ∥FC. ∴四边形DECF 是平行四边形.(2)解:过点D 作DH ⊥BC 于点H ,如图.(第23题)∵四边形ABCD 是平行四边形,∴∠BCD =∠A ,AB =CD =13.又∵tan A =125=tan ∠DCH =DHCH ,∴DH =12,CH =5.[来源:学科网] ∵DF =14,∴CE =14.∴EH =9. ∴DE =92+122=15.∴CF =DE =15. 24.解:过P 作PC ⊥AB 于C 点,如图,(第24题)据题意知AB =9×26=3,∠PAB =90°-60°=30°,[来源:学&科&网Z&X&X&K]∠PBC =90°-45°=45°,∠PCB =90°,∴PC =BC.在Rt △APC 中,tan 30°=PC AC =PC AB +BC =PC3+PC ,即33=PC3+PC,∴PC =33+32海里>3海里,∴客轮不改变方向连续前进无触礁危险.25.解:由题意得BG =3.2 m ,MN =EF =3.2+2=5.2(m),ME =NF =BC =6 m .在Rt △DEF 中,EF FD =12, ∴FD =2EF =2×5.2=10.4(m).在Rt △HMN 中, MN HN =12.5,HN =2.5MN =13(m).∴HD =HN +NF +FD =13+6+10.4=29.4(m).∴加高后的坝底HD 的长为29.4 m.26.解:22x 3;429如图,连接NO ,并延长交⊙O 于点Q ,连接MQ ,MO ,过点M 作M R ⊥NO 于点R.(第26题)在⊙O 中,易知∠NMQ =90°.∵∠Q =∠P =β, ∴∠MON =2∠Q =2β.在Rt △QMN 中,∵sin β=MN NQ =35,∴设MN =3k ,则NQ =5k ,∴MQ =QN2-MN2=4k ,OM =12NQ =52k.∵S △NMQ =12MN ·MQ =12NQ ·MR ,∴3k ·4k =5k ·MR.∴MR =125k.在Rt △MRO 中,sin 2β=sin ∠MOR =MR OM =125k52k=2425.。
人教版初3数学9年级下册 第28章(锐角三角函数)单元检测题 含答案
下学期初中数学人教版九年级 锐角三角函数 单元检测题学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 把△ABC 三边的长度都扩大为原来的2倍,则锐角A 的正弦函数值( ) A.缩小为原来的12 B.不变C.扩大为原来的2倍D.扩大为原来的4倍2. 如图,在菱形ABCD 中,∠ABC =60∘,AC =4,则BD 的长为( )A.83B.43C.23D.83. 如图,在 Rt △ABC ∠C =90∘, AC =4, AB =5, BC =3 sin B 的值是( ) A.23 B. 35C.45D. 344. 在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( ) A.扩大2倍 B.缩小2倍C.扩大4倍D.没有变化5. 如图,△ABC 的顶点都在正方形网格的格点上,则tan C 的值为( )A.3510 B.255C.55D.126. 在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图,已知小明距假山的水平距离BD 为试卷第2页,总12页12m ,他的眼睛距地面的高度为1.6m ,李明的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60∘刻度线,则假山的高度为( )A.(43+1.6)mB.(123+1.6)mC.(42+1.6)mD.43m7. 已知sin α<cos α,那么锐角α的取值范围是( ) A.30∘<α<45∘ B.0∘<α<45∘C.45∘<α<60∘D.45∘<α<90∘8. 如图,沿AC 的方向开山修路,为了加快速度,要在小山的另一边同时施工,在AC 上取一点B ,使得 ∠ABD =148∘ .已知BD =600米,∠D =58∘ ,点A ,C ,E 在同一条直线上,那么开挖点E 离点D 的距离是( )A.600sin 58∘米B.600cos 58∘米 C.600tan 58∘米 D.600cos 58∘米9. 如图要测量小河两岸相对的两点P 、A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得PC =50米,∠PCA =44∘,则小河宽PA 为( )A.50tan 44∘米B.50sin 44∘米C.50sin 46∘米D.100tan 44∘米10. 如图:在Rt △ABC 中,C =90∘,sin A =35,则tan A 的值等于()A.45 B.35C.34D.5511. 如图,在△ABC 中,∠ACB =90∘,CD ⊥AB ,垂足为D .如果AD =8,BD =4,那么tan A 的值是( )A.12 B.22C.33D.212. 如图,某山坡的坡面AB =200米,坡角∠BAC =30∘,则该山坡的高BC 的长为( )A.50米B.100米C.150米D.1003米13. 在某次海上搜救工作中,A 船发现在它的南偏西30∘方向有一漂浮物,同时在A 船正东10km 处的B 船发现该漂浮物在它的南偏西60∘方向,此时,B 船到该漂浮物的距离是( ) A.53km B.103kmC.10kmD.20km14. 如图,电线杆CD 的高度为ℎ,两根拉线AC 与BC 相互垂直,∠CAB =α,则拉线BC 的长度为(A ,D ,B 在同一条直线上)( )试卷第4页,总12页A.ℎsin αB.ℎcos αC.ℎtan αD.ℎ⋅cos α15. 在△ABC 中,∠C 是直角,cos B =23,则sin B =( ) A.253B.53C.55D.25516. 如图,梯形护坡石坝的斜坡AB 的坡度i =1:3,坡度BC 为2m ,则斜坡AB 的长是( )A.25mB.210mC.45mD.6m17. 如图,在 △ABC 中, ∠B =2∠C, AD ⊥BC 于点D ,设 AD =m, BD =n ,则 DC =( )A.m +m 2+n 2B.2n +m 2+n 2C.n +m 2+n 2D.n +2m 2+n 218. 在△ABC 中,∠C =90∘,sin A =35,则sin B 的值是( ) A.23 B.25C.45D.21519. 如图,在菱形ABCD 中,E ,F 分别是BC 和CD 的中点,且AE ⊥BC ,AF ⊥CD ,若AE=,则菱形ABCD 的周长等于( )A. B. C.4 D.820. 已知小芳站在层高为2.5米的六层楼的屋顶上来估计旁边一支烟囱的高度,当小芳以俯角∠COB=45∘向下看时,刚好可以看到烟囱的底部,当小芳以仰角∠AOB=30∘向上看时,刚好可以看到烟囱的顶部,若小芳的身高为1.5米,请你估计烟囱的高度(2=1.414,3=1.732结果保留三个有效数字)()A.22.1米B.26.0米C.27.9米D.32.8米21. 若sin20∘=cos(α+25∘),则tanα=________.22. 若1−tanα=0,则锐角α=________度.23. 用计算器求值:sin23∘5′+cos66∘55′≈________.(精确到0.0001)24. 如图,某校教学楼AC与实验楼BD的水平间距CD=153米,在实验楼顶部B点测得教学楼顶部A点的仰角是30∘,底部C点的俯角是45∘,则教学楼AC的高度是________米(结果保留根号).25. 如果港口A的南偏东52∘方向有一座小岛B,那么从小岛B观察港口A的方向是________.26. 如图,已知△ABC三个顶点的坐标分别为A(−2, −4),B(0, −4),C(1, −1).试卷第6页,总12页(1)请在网格中,画出线段BC 关于原点对称的线段B 1C 1;(2)请在网格中,过点C 画一条直线CD ,将△ABC 分成面积相等的两部分,与线段AB 相交于点D ,写出点D 的坐标;(3)若另有一点P(−3, −3),连接PC ,则tan ∠BCP =________.27. 如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以24海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60∘的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东30∘方向上,如果海轮不改变方向继续前进有没有触礁的危险?28. 计算:6tan 230∘−3sin 60∘−2sin 45∘.29. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交BC ,AC 于点D ,E ,DG ⊥AC 于点G ,交AB 的延长线于点F .(1)求证:直线FG 是⊙O 的切线;(2)若AC =10,cos A =25,求CG 的长.30. 如图,AB ,AC 分别是⊙O 的直径和弦,OD ⊥AC 于点D .过点A 作⊙O 的切线与OD 的延长线交于点P ,PC ,AB 的延长线交于点F.(2)若∠ABC=60∘,AB=10,求线段CF的长.参考答案与试题解析一、选择题(本题共计 20 小题,每题 3 分,共计60分)1.【答案】B2.【答案】B3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】B8.【答案】D9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】试卷第8页,总12页B14.【答案】B15.【答案】B16.【答案】B17.【答案】C18.【答案】C19.【答案】D20.【答案】B二、填空题(本题共计 5 小题,每题 3 分,共计15分)21.【答案】122.【答案】4523.【答案】0.784124.【答案】(15+153)25.【答案】北偏西52∘三、解答题(本题共计 5 小题,每题 10 分,共计50分)26.【答案】解:(1)作出点B1,C1连接即可;试卷第10页,总12页(2)因为直线CD 将△ABC 分成面积相等的两部分,且与线段AB 相交于点D ,故点D 为线段AB 的中点,画出直线CD ,可知点D 坐标为(−1, −4);127.【答案】解:过P 作PD ⊥AB .AB =24×2060=8海里.∵ ∠PAB =30∘,∠PBD =60∘∴ ∠PAB =∠APB∴ AB =BP =8海里.在直角△PBD 中,PD =BP ⋅sin ∠PBD =8×32=43海里.∵ 43>6∴ 海轮不改变方向继续前进没有触礁的危险.28.【答案】解:原式=6×(33)2−3×32−2×22=6×13−32−2=2−32−2=12−229.【答案】(1)证明:如图1,连接OD ,∵ AB =AC ,∴ ∠C =∠ABC .∵ OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD // AC,∴∠ODG=∠DGC.∵DG⊥AC,∴∠DGC=90∘,∴∠ODG=90∘,∴OD⊥FG.∵OD是⊙O的半径,∴直线FG是⊙O的切线.(2)解:如图2,∵AB=AC=10,AB是⊙O的直径,∴OA=OD=10÷2=5.由(1)可得OD⊥FG,OD // AC,∴∠ODF=90∘,∠DOF=∠A.在△ODF和△AGF中,∠DOF=∠A,∠F=∠F, ∴△ODF∼△AGF,∴ODAG =OFAF.∵cos A=25,∴cos∠DOF=25,∴OF=ODcos∠DOF =525=252,∴AF=AO+OF=5+252=352,∴5AG =252352,解得AG=7,∴CG=AC−AG=10−7=3,即CG的长是3.30.【答案】(1)证明:如图,连接OC,试卷第12页,总12页∵ OD ⊥AC ,OD 经过圆心O ,∴ AD =CD ,∴ PA =PC ,在△OAP 和△OCP 中,∵ OA =OC,PA =PC,OP =OP, ∴ △OAP≅△OCP(SSS),∴ ∠OCP =∠OAP ,∵ PA 是⊙O 的切线,∴ ∠OAP =90∘,∴ ∠OCP =90∘,即OC ⊥PC ,∴ PC 是⊙O 的切线.(2)解:∵ OB =OC ,∠OBC =60∘,∴ △OBC 是等边三角形,∴ ∠COB =60∘,∵ AB =10,∴ OC =5,由(1)可知,∠OCF =90∘,∴ CF =OC ⋅tan ∠COB =53.。
人教版九年级下学期第28章锐角三角函数 单元过关测试卷 含参考答案
人教版九年级下学期第28章锐角三角函数 单元过关测试卷 含参考答案一、选择题(每小题3分,共18分)1、在Rt △ABC 中,∠C =90º,b=53c ,则sinB 的值是( ) A 、53 B 、54 C 、43 D 、342、在△ABC中,若1sin 02A B -=,则△ABC 是( )A 、等腰三角形B 、等腰直角三角形C 、直角三角形D 、等边三角形 3、如图,在菱形ABCD 中,DE ⊥AB ,cosA=53,BE=2,则tan ∠DBE 的值是( ) A 、21B 、2C 、25D 、554、如图,长4m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( ) A .32 m B .62 m C .(32﹣2)m D .(62﹣2)m5、一人乘雪橇沿坡度为i=1:3的斜坡滑下,滑下距离S(米)与时间t (秒)之间的关系为S=2210t t +,若滑动时间为4秒,则他下降的垂直高度为( ) A 、72米 B 、36米 C 、336米 D 、318米6、某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立 于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处, 然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么 大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( ) A .8.1米 B .17.2米 C .19.7米 D .25.5米 二、填空题(每小题3分,共21分)7、在△ABC 中,∠C =90°,若sinB =31,则sinA 的值为 8、如图,P 是∠α 的边OA 上一点,且点P 的坐标为(3,4), 则sin α= 9、升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m ,则旗杆高度约为 . (取3=1.732,结果精确到0.1m )10、如图,线段AB 、DC 分别表示甲、乙两座楼房的高,AB ⊥BC , DC ⊥BC ,两建筑物间距离(第3题) (第4题) (第6题) ED CB A DB C AB D CE ABC=30米,若甲建筑物高AB=28米,在点A 测得D 点的仰角α=45°, 则乙建筑物高DC= 米.11、如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高BC=5m ,则坡面AB 的长度是 米.12、某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为13、四边形ABCD 的对角线AC BD ,的长分别为m n ,,可以证明当AC BD ⊥时(如图1),四边形ABCD 的面积12S mn =,那么当AC BD ,所夹的锐角为θ时(如图2),四边形ABCD 的面积S = .(用含m n θ,,的式子表示) 三、解答题(共61分) 14、计算:(8分)(1)45sin 60)︒-︒ (2)3sin60°﹣2cos30°﹣tan60°•tan45°.15、(8分)如图,防洪大堤的横断面是梯形,背水坡AB 的坡比i =(指坡面的铅直高(第10题)(第11题) (第13题)D 图1 C图2度与水平宽度的比).且AB=20 m .身高为1.7 m 的小明站在大堤A 点,测得高压电线杆端点D 的仰角为30°.已知地面CB 宽30 m ,求高压电线杆CD 的高度(结果保留0.1m,1.732).16、(8分)如图,在四边形ABCD 中,∠BCD 是钝角,AB=AD ,BD 平分∠ABC ,若CD=3,BD=62,sin ∠DBC=33,求对角线AC 的长.17、(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A 处水平飞行至B 处需8秒,在地面C 处同一方向上分别测得A 处的仰角为75°,B 处的仰角为30°.已知无人飞D CBA机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)18、(8分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上. (1)改善后滑滑板会加长多少?(精确到0.01) (2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由 (≈1.411.73≈2.45, )19、(10分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。
【3套】人教版九年级数学下册第二十八章 锐角三角函数单元练习题(含答案)含答案
人教版九年级数学下册第二十八章锐角三角函数单元练习题(含答案)含答案一、选择题1.已知sinα=,求α,若用计算器计算且结果为“30”,最后按键()A.AC10NB.SHIETC.MODED.SHIFT2.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sin A的值为()A.B.C.D.3.已知α是锐角,cosα=,则tanα的值是()A.B.2C.3D.4.在某次海上搜救工作中,A船发现在它的南偏西30°方向有一漂浮物,同时在A船正东10 km处的B船发现该漂浮物在它的南偏西60°方向,此时,B船到该漂浮物的距离是() A.5kmB.10kmC.10 kmD.20 km5..如图,一艘海轮位于灯塔P的东北方向,距离灯塔40海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为()A.(40+40)海里B.(80)海里C.(40+20)海里D.80海里6.济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60 m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1 m,则该楼的高度CD为()A.47 mB.51 mC.53 mD.54 m7.将一矩形纸片ABCD沿CE折叠,B点恰好落在AD边上的F处,若AB∶BC=4∶5,则cos ∠AFE 的值为()A.4∶5B.3∶5C.3∶4D.8.已知tanα=6.866,用计算器求锐角α(精确到1″),按键顺序正确的是()A.B.C.D.9.cos 60°的值等于()A.B.1C.D.10.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是()A.B.1C.D.二、填空题11.若cos A>cos 60°,则锐角A的取值范围是________.12.比较下列三角函数值的大小:sin 40°__________ sin 50°.13.已知,△ABC中,AB=5,BC=4,S△ABC=8,则tan C=________________.14.△ABC中,∠C=90°,BC=5,AC=3,那么sin B=________.15.计算:sin 45°+cos 45°-tan 30°sin 60°=____________.16.已知不等臂跷跷板AB长为3米,当AB的一端点A碰到地面时(如图1),AB与地面的夹角为30°;当AB的另一端点B碰到地面时(如图2),AB与地面的夹角的正弦值为,那么跷跷板AB的支撑点O到地面的距离OH=____________米.17.如图,在一次数学课外实践活动中,小聪在距离旗杆10 m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1 m,则旗杆高BC为____________m(结果保留根号).18.如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横截面⊙O的圆心,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.则垂直支架CD的长度为________厘米(结果保留根号).19.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为____________.20.用计算器求下列三角函数(保留四位小数):sin 38°19′=________;cos 78°43′16″=________;tan 57°26′=__________.三、解答题21.在△ABC中,已知∠A=60°,∠B为锐角,且tan A,cos B恰为一元二次方程2x2-3mx+3=0的两个实数根.求m的值并判断△ABC的形状.22.已知α是锐角,且sin (α+15°)=,计算-4cosα-(π-3.14)0+tanα+-1的值.23.如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.24.某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80 cm,AC=165 cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果保留根号)25.小敏家对面新建了一幢图书大厦,小敏在自家窗口测得大厦顶部的仰角为45°,大厦底部的仰角为30°,如图所示,量得两幢楼之间的距离为20米.(1)求出大厦的高度BD;(2)求出小敏家的高度AE.26.在△ABC中,∠C=90°,BC=3,AB=5,求sin A,cos A,tan A的值.27.如图,在Rt△ABC中,∠C=90°,点D是BC边上的一点,CD=6,cos ∠ADC=,tan B =,求BD的长.28.计算下列各式(1)tan 30°×sin 45°+tan 60°×cos 60°(2)sin230°+2sin 60°+tan 45°-tan 60°+cos230°.答案解析1.【答案】D【解析】本题要求熟练应用计算器.“SHIFT”表示使用该键上方的对应的功能.故选D.2.【答案】B【解析】∵在Rt△ABC中,由勾股定理得,BC==12,∴sin A==,故选B.3.【答案】B【解析】如图,设∠A=α,由于cosα=,则可设AC=k,AB=3k,由勾股定理,得BC===k,∴tanα=tan A===2.故选B.4.【答案】B【解析】∵△ABC中,∠ABC=90°-60°=30°,∠CAB=30°+90°=120°,∴∠C=30°,∴∠C=∠ABC,∴AB=AC=10 km.作AD⊥BC于点D,则BC=2BD.在直角△ABD中,BD=AB·cos 30°=5(km).则BC=10(km).故选B.5.【答案】A【解析】根据题意,得PA=40海里,∠A=45°,∠B=30°,∵在Rt△PAC中,AC=PC=PA·cos 45°=40×=40(海里),在Rt△PBC中,BC===40(海里),∴AB=AC+BC=40+40(海里).故选A.6.【答案】B【解析】根据题意,得∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC-∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60 m,∴CD=BD·sin 60°=60×=30≈51(m).故选B.7.【答案】D【解析】∵∠AFE+∠CFD=90°,∴cos ∠AFE=sin ∠CFD=,由折叠可知,CB=CF,矩形ABCD中,AB=CD,sin ∠CFD===.故选D.8.【答案】D【解析】由tanα=6.866,得2nd tan 6.866,故选D.9.【答案】D【解析】cos 60°=,故选D.10.【答案】D【解析】由圆周角定理,得∠AED=∠ABD.在Rt△ABC中,由勾股定理,得BC==,cos ∠AED=cos ∠ABC===,故选D.11.【答案】0°<A<60°【解析】由cos A>cos 60°,得0°<A<60°,故答案为0°<A<60°.12.【答案】<【解析】∵当0<α<90°,sinα随α的增大而增大,又∵40°<50°,∴sin 40°<sin 50°.13.【答案】4或【解析】设AD是BC边上的高,如图.∵BC=4,S△ABC=8,∴×4AD=8,∴AD=4,∴BD===3.若高AD在△ABC内部,如图1,∵CD=BC-BD=1,∴tan C===4;若高AD在△ABC外部,如图2,∵CD=BC+BD=7,∴tan C==.故答案为4或.14.【答案】【解析】∵在△ABC中,∠C=90°,BC=5,AC=3,∴AB===,∴sin B===.15.【答案】-【解析】原式=+-×=-.16.【答案】【解析】设OH=x,∵当AB的一端点A碰到地面时,AB与地面的夹角为30°,∴AO=2x m,∵当AB的另一端点B碰到地面时,AB与地面的夹角的正弦值为,∴BO=3x m,则AO+BO=2x+3x=3,解得x=.17.【答案】10+1【解析】如图,过点A作AE∥DC,交BC于点E,则AE=CD=10 m,CE=AD=1 m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE·tan 60°=10(m),∴BC=CE+BE=10+1.∴旗杆高BC为(10+1) m.18.【答案】38【解析】∵支架CD与水平面AE垂直,∴∠DCE=90°,在Rt△DCE中,∠DCE=90°,∠CED=60°,DE=76厘米,∴CD=DE·sin ∠CED=76×sin 60°=38(厘米).19.【答案】或【解析】(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,另一条直角边的长度是=,则这个直角三角形中较小锐角的正切值为=.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,则这个直角三角形中较小锐角的正切值为,故答案为或.20.【答案】0.61930.6193 1.5657【解析】直接使用计算器解答.1、按MODE,出现:DEG,按sin ,38,“.”,19,“.”,=,显示:0.6193;2、按MODE,出现:DEG,按cos ,78,“.”,43,“.”,16,“.”=,显示:0.6193;3、按MODE,出现:DEG,按tan ,50,“.”,26,“.”,=,显示:1.5657.21.【答案】解∵∠A=60°,∴tan A=.把x=代入方程2x2-3mx+3=0,得2()2-3m+3=0,解得m=.把m=代入方程2x2-3mx+3=0得2x2-3mx+3=0,解得x1=,x2=.∴cos B=,即∠B=30°.∴∠C=180°-∠A-∠B=90°,即△ABC是直角三角形.【解析】先求出一元二次方程的解,再根据特殊角的三角函数值求出各角的度数,判断三角形的形状.22.【答案】解∵sin 60°=,∴α+15°=60°,∴α=45°,∴原式=2-4×-1+1+3=3.【解析】根据特殊角的三角函数值得出α,然后利用二次根式、特殊角的三角函数值、零指数幂、负指数幂的性质进行化简,根据实数运算法则即可计算出结果.23.【答案】解设建筑物AB的高度为x米.在Rt△ABD中,∠ADB=45°,∴AB=DB=x.∴BC=DB+CD=x+60.在Rt△ABC中,∠ACB=30°,∴tan ∠ACB=,∴tan 30°=,∴=,3x=(x+60)=x+60,(3-)x=60,x==30+30,∴x=30+30.经检验,x=30+30是分式方程的解.∴建筑物AB的高度为(30+30)米.【解析】设建筑物AB的高度为x米,在Rt△ABD中可得出AB=DB=x,在Rt△ABC中根据tan ∠ACB的值可求出x的值.24.【答案】解(1)在Rt△CDE中,∠CDE=30°,DE=80 cm,∴CD=80×cos 30°=80×=40(cm).(2)在Rt△OAC中,∠BAC=30°,AC=165 cm,∴OC=AC×tan 30°=165×=55(cm),∴OD=OC-CD=55-40=15(cm),∴AB=AO-OB=AO-OD=55×2-15=95(cm).【解析】(1)在Rt△CDE中,根据∠CDE=30°,DE=80 cm,求出支架CD的长是多少即可.(2)首先在Rt△OAC中,根据∠BAC=30°,AC=165 cm,求出OC的长是多少,进而求出OD 的长是多少;然后求出OA的长是多少,即可求出真空热水管AB的长是多少.25.【答案】解(1)如题图,∵AC⊥BD,∴BD⊥DE,AE⊥DE,∴四边形AEDC是矩形,∴AC=DE=20米,∵在Rt△ABC中,∠BAC=45°,∴BC=AC=20米,在Rt△ACD中,tan 30°=,∴CD=AC·tan 30°=20×=20(米),∴BD=BC+CD=20+20(米);∴大厦的高度BD为(20+20)米;(2)∵四边形AEDC是矩形,∴AE=CD=20米.∴小敏家的高度AE为20米.【解析】(1)易得四边形AEDC是矩形,即可求得AC的长,然后分别在Rt△ABC与Rt△ACD 中,利用三角函数的知识求得BC与CD的长,继而求得答案;(2)结合(1),由四边形AEDC是矩形,即可求得小敏家的高度AE.26.【答案】解∵Rt△ABC中,∠C=90°,BC=3,AB=5,∴AC==4,∴sin A==,cos A==,tan A==.【解析】首先利用勾股定理求得AC的长度;然后利用锐角三角函数的定义解答.27.【答案】解在Rt△ACD中,∵cos ∠ADC==,∴AD=×6=10,∴AC===8,在Rt△ABC中,∵tan B==,∴BC=×8=20,∴BD=BC-CD=20-6=14.【解析】在Rt△ACD中,利用∠ADC的余弦可计算出AD=10,再利用勾股定理计算出AC =8,然后在Rt△ABC中,利用∠B的正切计算出BC=20,于是根据BD=BC-CD求解.28.【答案】解(1)原式=×+×=+;(2)原式=2+2×+1+2=++1+=2.【解析】(1)首先代入特殊角的三角函数值,然后化简二次根式即可;(2)首先代入特殊角的三角函数值,然后化简二次根式即可.人教版九年级下数学第28章锐角三角函数质量评估试卷(含答案) 一、选择题(每小题3分,共30分)1.如图1,在直角坐标系中,P 是第一象限内的点,其坐标是(3,m ),且OP 与x 轴正半轴的夹角α的正切值是43,则sin α的值为( )图1A.45B.54C.35D.532.下列各数:13,π,38,cos 60°,0,3,其中无理数的个数是( ) A .1个 B .2个 C .3个D .4个3.在等腰△ABC 中,AB =AC =10 cm ,BC =12 cm ,则cos A2的值是( ) A.45 B.35 C.34D.544.如图2,一河坝的横断面为等腰梯形ABCD ,坝顶宽10 m ,坝高12 m ,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( )图2A .26 mB .28 mC .30 mD .46 m5.如图3,一个斜坡长130 m ,坡顶离水平地面的距离为50 m ,那么这个斜坡与水平地面夹角的正切值等于( )图3A. 513B.1213C.512D.13126.点M (-sin 60°,cos 60°)关于x 轴对称的点的坐标是( ) A.⎝ ⎛⎭⎪⎫32,12 B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-32,12 D.⎝ ⎛⎭⎪⎫-12,32 【解析】 ∵sin 60°=32,cos 60°=12,∴M ⎝ ⎛⎭⎪⎫-32,12关于x 轴对称的点的坐标为M ′⎝ ⎛⎭⎪⎫-32,-12.7.[2017·温州]如图4,一辆小车沿倾斜角为cos α=1213的斜坡向上行驶13 m ,则小车上升的高度是( )图4A .5 mB .6 mC .6.5 mD .12 m8.如图5,△ABC 的顶点是正方形网格的格点,则sin A 的值为( )图5A.12B.55C.1010 D.2559.如图6,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10 m,∠B=36°,则中柱AD(D为底边中点)的长是()图6A.5sin 36° m B.5cos 36° mC.5tan 36° m D.10tan 36° m10.[2016·苏州]如图7,长4 m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()图7A.2 3 m B.2 6 mC.(23-2) m D.(26-2) m【解析】在Rt△ABD中,∵sin ∠ABD=AD AB,∴AD=4sin 60°=2 3 m,在Rt△ACD中,∵sin ∠ACD=AD AC,∴AC=23sin 45°=2 6 m.二、填空题(每小题4分,共24分)11.在△ABC中,∠C=90°,BC=2,sin A=13,则AB=_______.12.为加强防汛工作,某市对一拦水坝进行加固.如图8,加固前拦水坝的横断面是梯形ABCD,已知迎水坡面AB=12 m,背水坡面CD=12 3 m,∠B=60°,加固后拦水坝的横断面为梯形ABED ,tan E =3133,则CE 的长为_________m.图813.如图9所示,为了测量出一垂直水平地面的某高大建筑物AB 的高度,一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了100 m 后到达D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为 137 m .(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:2≈1.41,3≈1.73)图914.在△ABC 中,如果∠A ,∠B 满足||tan A -1+⎝ ⎛⎭⎪⎫cos B -122=0,那么∠C=__________.15.如图10,AB 是⊙O 的直径,AB =15,AC =9,则tan ∠ADC =_________.图1016.如图11,在菱形ABCD 中,DE ⊥AB ,垂足是E ,DE =6,sin A =35,菱形ABCD 的周长是______.图11三、解答题(共66分)17.(10分)计算:(1)2sin 30°+cos 60°-tan 60°·tan 30°+cos2 45°;(2)sin 30°1+cos 30°+tan 45°tan 30°.18.(10分)已知△ABC中,∠C=90°.(1)已知c=83,∠A=60°,求∠B,a,b;(2)已知a=36,∠A=30°,求∠B,b,c.19.(10分)如图12,线段AB,CD分别表示甲、乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A,D.从D点测得B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30 m.图12(1)求甲、乙两建筑物之间的距离AD;(2)求乙建筑物的高CD.20.(12分)如图13,海中一渔船在A处且与小岛C相距70海里,若该渔船由西向东航行30海里到达B处,此时测得小岛C位于B的北偏东30°方向上,求该渔船此时与小岛C之间的距离.图1321.(12分)如图14,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D ,交AC 于点E ,连接AD ,BD ,CD.图14(1)求证:AD =CD ;(2)若AB =10,cos ∠ABC =35,求tan ∠DBC 的值.22.(12分)在一个三角形中,各边和它所对角的正弦的比相等,即asin A =b sin B =csin C ,利用上述结论可以求解如下题目,如:在△ABC 中,若∠A =45°,∠B =30°,a =6,求b .解:在△ABC 中,∵a sin A =bsin B , ∴b =a sin B sin A =6sin 30°sin 45°=6×1222=3 2.问题解决:如图15,甲船以每小时30 2 海里的速度向正北方航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,且乙船从B 1处按北偏东15°方向匀速直线航行,当甲船航行20分钟后到达A 2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10 2 海里.图15(1)判断△A1A2B2的形状,并给出证明.(2)乙船每小时航行多少海里?参考答案1.A2.B3.A4.D5.C6.B7.A8.B9.C10.B11.612.813.13714.75°15.3416.4017. 解:(1)原式=2×12+12-3×33+⎝⎛⎭⎪⎫222=1+12-1+12=1;(2)原式=121+32+133=12+3+3=2. 18. 解:(1)∠B =90°-∠A =90°-60°=30°, a =c sin A =c sin 60°=83×32=12, b =c cos A =c cos 60°=83×12=43;(2)∠B =90°-∠A =90°-30°=60°,c =a sin A =a sin 30°=3612=66,b =a tan A =a tan 30°=3633=9 2. 19. 解:(1)根据题意得,在Rt △ABD 中,∠BDA =∠α=60°,AB =30 m , ∴AD =AB tan 60°=303=10 3 m , 答:甲、乙两建筑物之间的距离AD 为10 3m. (2)如答图,过点C 作CE ⊥AB 于点E .第19题答图 根据题意,得∠BCE =∠β=30°,CE =AD =103,CD =AE . 在Rt △BEC 中,tan ∠BCE =BE CE ,∴tan 30°=BE 103, ∴BE =10 m ,∴CD =AE =AB -BE =30-10=20 m.答:乙建筑物的高CD 为20 m.20. 解:如答图,过点C 作CD ⊥AB 于点D ,由题意得:第20题答图∠BCD =30°,设BC =x ,在Rt △BCD 中,BD =BC sin 30°=12x ,CD =BC cos 30°=32x ,∴AD =30+12x ,∴在Rt △ACD 中,AD 2+CD 2=AC 2,即⎝ ⎛⎭⎪⎫30+x 22+⎝ ⎛⎭⎪⎫3x 22=702, 解得:x 1=50,x 2=-80(舍去).答:渔船此时与C 岛之间的距离为50海里. 21. (1)证明:∵AB 为⊙O 直径,∴∠ACB =90°,又∵OD ∥BC ,∴∠AEO =∠ACB =90°,∴OD ⊥AC .∴AD =CD .∴AD =CD ,(2)解:∵AB =10,∴OA =OD =12AB =5,∵OD ∥BC ,∴∠AOE =∠ABC ,在Rt △AEO 中,OE =OA cos ∠AOE =OA cos ∠ABC =5×35=3,∴DE =OD -OE =5-3=2,由勾股定理得,AE =AO 2-OE 2=52-32=4,在Rt△AED中,tan ∠DAE=DEAE=24=12,又∵∠DBC=∠DAE,∴tan ∠DBC=1 2.22. 解:(1)△A1A2B2是等边三角形.证明:由已知A2B2=102,A1A2=302×2060=102,∴A1A2=A2B2,又∠A1A2B2=180°-120°=60°,∴△A1A2B2是等边三角形.(2)∵△A1A2B2是等边三角形,∴A1B2=A1A2=102,由已知∠CB1A1=180°-105°=75°,∴∠B2B1A1=75°-15°=60°,又∠B1A1B2=105°-60°=45°,在△A1B2B1中,由正弦定理得:B1B2sin 45°=A1B2sin 60°,B1B2=A1B2sin 60°·sin 45°=10232·22=2033.因此,乙船的速度大小为2033×6020=20 3 (海里/小时).答:乙船每小时航行20 3 海里.人教版九年级数学下第二十八章锐角三角函数单元练习题(含答案)一、选择题1.△ABC中,若AB=6,BC=8,∠B=120°,则△ABC的面积为()A.12B.12C.24D.482.如图,将一面三角形的小旗放在边长都为1的小正方形方格中(三角形的各顶点均在小正方形的顶点上),则cos A的值为()A.B.C.D.3.如图,港口A在观测站O的正东方向,某船从港口A出发,沿北偏东15°方向航行2 km 到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则观测站O距港口A的距离(即OA的长)为()A.kmB.2 kmC.2kmD.4km4.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h·cosα5.如图,山顶一铁塔AB在阳光下的投影CD的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB的高为()A.3米B.6米C.3米D.2米6.计算:tan 45°-cos 60°等于()A.B.C.1D.7.在△ABC中,若|sin A|+2=0,∠A,∠B都是锐角,则∠C的度数是() A.75°B.90°C.105°D.120°8.如图,在边长为1的小正方形组成的网络中,△ABC的三个顶点在格点上,则cos A的值是()A.B.C.D.9.若tan A=,则sin A的值是()A.B.C.3D.10.如图,某地入口处原有三级台阶,每级台阶高为20 cm,深为30 cm,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡的坡度i=1∶5,则AC的长度是()A.200 cmB.210 cmC.240 cmD.300 cm二、填空题11.Rt△ABC中,∠C=90°,AB=10,BC=8,则cos B=________.12.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,tan∠BCD=,AC=12,则BC=____________.13.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则tan ∠BAC=____________.14.如图,一艘海轮位于灯塔P的东北方向,距离灯塔40海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为____________海里(结果保留根号).15.已知△ABC,若有|sin A-|与(tan B)2互为相反数,则∠C的度数是__________.16.如图,某建筑物BC上有一旗杆AB,从与BC相距38 m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度约为__________ m.(结果精确到0.1 m,参考数据:sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.19)17.如图,P(12,a)在反比例函数y=图象上,PH⊥x轴于H,则tan ∠POH的值为__________.18.某水库水坝的坝高为10米,迎水坡的坡度为1∶2.4,则该水库迎水坡的长度为____________米.19.△ABC中,∠C=90°,(1)若cos A=,则tan B=________;(2)若tan A=,则sin B=__________.20.如图,在5×4的正方形网格中,每个小正方形的边长均为1,点A、B、C都在格点上,则∠ABC的正弦值是____________.三、解答题21.在△ABC中,已知∠A=60°,∠B为锐角,且tan A,cos B恰为一元二次方程2x2-3mx+3=0的两个实数根.求m的值并判断△ABC的形状.22.如图所示,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速公路(即线段AC),经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100 km为半径的圆形区域,请问计划修建的这条高速公路是否穿越保护区,为什么?(参考数据:≈1.73)23.在我市十个全覆盖工作的推动下,某乡镇准备在相距3千米的A、B两个工厂间修一条笔直的公路,在工厂A北偏东60°方向、工厂北偏西45°方向有一点P,以P点为圆心,1.2千米为半径的区域是一个村庄,问修筑公路时,这个村庄是否有居民需要搬迁?(参考数据:≈1.4,≈1.7)24.如图,在Rt△OAB中,∠OBA=90°,且点B的坐标为(0,4).(1)写出点A的坐标;(2)画出△OAB绕点O顺时针旋转90°后的△O1A1B1;(3)求出sin ∠A1OB1的值.25.如图,在△ABC中,∠A=30°,∠B=45°,AB=12+12,求△ABC的面积.26.为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1∶1(即DB:EB=1∶1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.2)27.计算:(1)tan 30°cos 60°+tan 45°cos 30°;(2)tan260°-2sin 30°cos 45°.28.计算:(1)cos 30°-sin 60°+2sin 45°·tan 45°;(2)sin 30°cos 45°+tan260°.答案解析1.【答案】A【解析】作AD⊥BC于点D.∵∠B=120°,∴∠ABD=180°-120°=60°,在直角△ABD中,AD=AB·sin 60°=6×=3,在△ABC的面积是BC·AD=×8×3=12.故选A.2.【答案】A【解析】∵∠A的对边长是3,邻边长是4,∴根据勾股定理得到斜边长是5.∴cos A=.故选A.3.【答案】C【解析】如图,过点A作AD⊥OB于D.在Rt△AOD中,∠B=180°-30°-90°-15°=45°,∴AD=AB·sin 45°=2×=km,∴OA=2×=2km.即该船航行的距离(即OA的长)为2km.故选C.4.【答案】B【解析】∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos ∠BCD=,∴BC==,故选B.5.【答案】B【解析】设直线AB与CD的交点为点O.∴=.∴AB=.∵∠ACD=60°.∴∠BDO=60°.在Rt△BDO中,tan 60°=.∵CD=6.∴AB=×CD=6.故选B.6.【答案】A【解析】将tan 45°和cos 60°的值代入求解.原式=1=.故选A.7.【答案】C【解析】∵|sin A|=0,(-cos B)2=0,∴sin A-=0,-cos B=0,∴sin A=,=cos B,∴∠A=45°,∠B=30°,∴∠C=180°-∠A-∠B=105°.故选C.8.【答案】D【解析】如图所示,∵AB=3,BC=4,∴AC==5,∴cos A==.故选D.9.【答案】B【解析】如图,∵tan A=,∴设BC=k,AC=4k,由勾股定理,得AB===k,∴sin A===.故选B.10.【答案】C【解析】过B作BD⊥AC,由题可知,BD=60 cm,AD=60 cm.∵tan ∠BCA==,∴DC=300 cm,∴AC=DC-AD=300-60=240(cm).故选C.11.【答案】【解析】如图所示,∵∠C=90°,AB=10,BC=8,∴cos B===.12.【答案】9【解析】∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A,∴tan∠BCD=tan A=,在Rt△ABC中,AC=12,∴tan A==,则BC=9.13.【答案】【解析】∵A(0,1),B(0,-1),∴AB=2,OA=1,∴AC=2,OC=,在Rt△AOC中,tan ∠BAC===.14.【答案】40+40【解析】在Rt△APC中,∵AP=40,∠APC=45°,∴AC=PC=40.在Rt△BPC中,∵∠PBC=30°,∴BC=PC·tan 60°=40×=40.∴AB=AC+BC=40+40(海里).15.【答案】90°【解析】∵|sin A-|与(tan B)2互为相反数,∴sin A-=0,tan B=0,则sin A=,tan B=,∴∠A=30°,∠B=60°,则∠C的度数是90°.16.【答案】7.2【解析】根据题意,得EF⊥AC,CD∥FE,∴四边形CDEF是矩形,已知底部B的仰角为45°,即∠BEF=45°,∴∠EBF=45°,∴CD=EF=FB=38,在Rt△AEF中,AF=EF·tan 50°=38×1.19≈45.22,∴AB=AF-BF=45.22-38≈7.2,∴旗杆的高约为7.2米.17.【答案】【解析】∵P(12,a)在反比例函数y=图象上,∴a==5,∵PH⊥x轴于H,∴PH=5,OH=12,∴tan ∠POH=.18.【答案】26【解析】∵大坝高10米,背水坝的坡度为1∶2.4,∴水平距离=10×2.4=24(米).根据勾股定理,可得背水面的坡长为=26(米).19.【答案】【解析】(1)∵cos A=,∴∠A=60°,又∵∠C=90°,∴∠B=30°,∴tan B=;(2)在△ABC中,∠C=90°,tan A=,设BC=2x,则AC=3x.故AB=x.∴sin B===.20.【答案】【解析】连接AC,由网格特点和勾股定理可知,AC=,AB=2,BC=,∵AC2+AB2=10,BC2=10,∴AC2+AB2=BC2,∴△ABC是直角三角形,∴sin ∠ABC===,故答案为.21.【答案】解∵∠A=60°,∴tan A=.把x=代入方程2x2-3mx+3=0,得2()2-3m+3=0,解得m=.把m=代入方程2x2-3mx+3=0得2x2-3mx+3=0,解得x1=,x2=.∴cos B=,即∠B=30°.∴∠C=180°-∠A-∠B=90°,即△ABC是直角三角形.【解析】先求出一元二次方程的解,再根据特殊角的三角函数值求出各角的度数,判断三角形的形状.22.【答案】解计划修建的这条高速公路不会穿越保护区.理由如下:作PH⊥AC于H.由题意可知:∠EAP=60°,∠FBP=30°,∴∠PAB=30°,∠PBH=60°,∵∠PBH=∠PAB+∠APB,∴∠BAP=∠BPA=30°,∴BA=BP=120,在Rt△PBH中,sin ∠PBH=,∴PH=PB·sin 60°=120×≈103.80,∵103.80>100,∴这条高速公路不会穿越保护区.【解析】作PH⊥AC于H.求出PH与100比较即可解决问题.23.【答案】解过P作PC⊥AB于C,设BC=x,则AC=3-x,∵PC∥BF,∴∠CPB=∠PBF=45°,∴△PCB是等腰直角三角形,∴PC=BC=x,∵∠EAB=90°,∠EAP=60°,∴∠PAC=90°-60°=30°,tan ∠PAC=,∴tan 30°==,∴x=≈=1.05<1.2,答:修筑公路时,这个村庄有一些居民需要搬迁.【解析】作垂线段PC,计算PC的长与1.2千米作比较,若PC>1.2时,居民不需要搬迁;若PC<1.2时,居民需要搬迁;先设BC=x,则AC=3-x,根据30度的余弦列式求出PC的长,则可以得出结论.24.【答案】解(1)从图上读出点A的坐标(3,4);(2)(3)根据勾股定理得O1A1==5,故sin ∠A1OB1=.【解析】(1)从图上读出点A的坐标即可.(2)让三角形的各顶点都绕点O顺时针旋转90°后得到对应点,顺次连接即可.(3)利用解的正弦值,即对边÷斜边.25.【答案】解作CH⊥AB于H,如图,设CH=x,在Rt△ACH中,∵∠A=30°,∴AH=CH=x,在Rt△CBH中,∵∠B=45°,∴BH=CH=x,∴AB=BH+AH=x+x,∴x+x=12+12,∴△ABC的面积=CH·AB=×12×(12+12)=72+72.【解析】作CH⊥AB于H,如图,设CH=x,在Rt△ACH中利用含30度的直角三角形三边的关系得AH=CH=x,在Rt△CBH中,根据等腰直角三角形的性质得BH=CH=x,则AB=BH+AH=x+x,原式可得到方程x+x=12+12,解方程得到x=12,然后根据三角形面积公式求解.26.【答案】解设BC=x米,在Rt△ABC中,∠CAB=180°-∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB∶EB=1∶1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【解析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.27.【答案】解(1)tan 30°cos 60°+tan 45°cos 30°=×+1×=+=.(2)原式=()2-2××=1.【解析】将特殊角的三角函数值代入求解.28.【答案】解(1)原式=+2××1=;(2)原式=×+×()2=+×3=1.【解析】直接利用特殊角的三角函数值代入求出即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版 九下数学《锐角三角函数》单元测试卷及答案【3】
一、填空题:(30分)
1、在Rt △ABC 中,∠C =90°,a =2,b =3,则cosA = ,sinB = ,tanB = 。
2、直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sinA = 。
3、已知tan α=12
5,α是锐角,则sin α= 。
4、cos 2(50°+α)+co s 2(40°-α)-tan(30°-α)tan(60°+α)= ;
5、如图1,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为 .(结果保留根号).
(1) (2) (3)
6、等腰三角形底边长10cm ,周长为36cm ,则一底角的正切值为 .
7、某人沿着坡度i=1:3的山坡走了50米,则他离地面 米高。
8、如图2,在坡度为1:2 的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米。
9、在△ABC 中,∠ACB=90°,cosA=3
3,AB =8cm ,则△ABC 的面积为______ 。
10、如图3,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时,梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面墙上N ,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角45°,则这间房子的宽AB 是 _米。
二、选择题:(30分)
11、sin 2θ+sin 2(90°-θ) (0°<θ<90°)等于( )A.0 B.1 C.2 D.2sin 2θ
12、在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值 ( )
A.也扩大3倍
B.缩小为原来的13
C. 都不变
D.有的扩大,有的缩小 13、以原点O 为圆心,以1为半径作圆。
若点P 是该圆上第一象限内的一点,且OP 与x 轴正方向组成的角为α,则点P 的坐标为( )
A.(cos α,1)
B.(1,sin α)
C.(sin α,cos α)
D.(cos α,sin α)
14、如图4,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC=
53,则BC 的长是( )A 、4cm B 、6cm C 、8cm D 、10cm
图4 图5 图6
15、已知a 为锐角,sina=cos500则a 等于( )A.200 B.300 C.400 D.500
16、若tan(a+10°)=3,则锐角a 的度数是 ( )A 、20° B 、30° C 、35° D 、50°
17、如果α、β都是锐角,下面式子中正确的是 ( )
A 、sin(α+β)=sin α+sin β
B 、cos(α+β)=12
时,α+β=600 C 、若α≥β时,则cos α≥cos β D 、若cos α>sin β,则α+β>900
18、如图5,小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为 ( )
A .9米
B .28米
C .()37+米 D.()
3214+米
19、如图6,两建筑物的水平距离为am,从A 点测得D 点的俯角为a,测得C 点的俯角为β,则较低建筑物CD 的高为( )
A.a m
B.(a ·tan α)m
C.tan a α
m D.a(tan α-tan β)m 20、如图,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长23m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到C A '的位置,此时露在水面上的鱼线C B ''为33,则鱼竿转过的角度是
( )
A .60°
B .45°
C .15°
D .90°
三、解答题:(60分)
21、计算(8分):
(1)tan30°sin60°+cos 230°-si n 245°tan45°
(2)
50cos 40sin 0cos 45tan 30cos 330sin 145tan 41222-+-+.
22、(8分)△ABC 中,∠C =90°.(1)已知:c = 83,∠A =60°,求∠B 、a 、b .
(2) 已知:a =36, ∠A =30°,求∠B 、b 、c.
23、(5分)如图山脚下有一棵树AB ,小强从点B 沿山坡向上走50m 到达点D ,用高为1.5m
的测角仪CD测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB的高.(精确到0.1m,已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)
24、 (8分) 已知Rt△ABC的斜边AB的长为10cm , sinA、sinB是方程m(x2-2x)+5(x2+x)+12=0的两根。
(1)求m的值;(2)求Rt△ABC的内切圆的面积。
25、(6分)如图,△ABC是等腰三角形,∠ACB=90°,过BC的中点D作DE⊥AB,垂足为E,连结CE,求sin∠ACE的值.
26、(7分)(05苏州)为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提
供了该地下停车库的设计示意图。
按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入。
(其中AB=9m ,BC=m 5.0)为标明限高,请你根据该图计算CE 。
(精确到0.1m )(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)
27、(8分)如图,已知MN 表示某引水工程的一段设计路线,从M 到N 的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,以A 为圆心,500m 为半径的圆形区域为居民区。
取MN 上另一点B ,测得BA 的方向为南偏东75°.已知MB=400m ,通过计算回答,如果不改变方向,输水线路是否会穿过居民区?
28、(10分)如图,点A(tan α,0),B(tan β,0)在x 轴的正半轴上,点A 在点B 的左边,α、β是以线段AB 为斜边、顶点C 在x 轴上方的Rt △ABC 的两个锐角;(1)若二次函数y=
-x 2-2
5kx+(2+2k -k 2)的图象经过A 、B 两点,求它的解析式。
(2)点C 在(1)中求出的二次函数的图象上吗?请说明理由。
参考答案 1、13133,13133,23
2、54
3、13
5
4、0
5、(0,4+334)
6、512
7、25
8、35
9、3
232 10、a 11、B 12、C 13、D 14、A 15、C
16、D 17、B 18、D 19、D 20、C 21(1)43 (2)2
22、(1)∠B=30°,a=12,2)∠B=30°,b=92,c=66
23、BF=48.5=CE ,DE=13,CF=BE=14.5,AE=8.73,AB=23.2m
24、(1)m=20(m=-2舍)(2)4π
25、10
103 26、BD=2.924,DC=2.424,CE=2.3
27、不会穿过居民区。
过A 作AH ⊥MN 于H ,则∠ABH=45°,AH=BH
设AH=x ,则BH=x ,,
∴>500
∴不会穿过居民区。
28、(1)tan α·tan β=k 2―2k ―2=1 ∴k 1=3(舍),k 2=-1
∴解析式为y=―x 2+
2
5x ―1 (2)不在。