汽车发动机进气控制技术透视
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车发动机进气控制技术透视
汽车问世120多年来,汽车发动机技术出现了长足的进步,但是,汽车发动机技术真正意义上的提高却是在近二十年,而这些技术的进步却是得益于电子计算机技术的发展。
从二十世纪九十年代开始,环境保护的呼声越来越高,各个国家越来越重视大气环境的保护,苛刻的环保法规不断出台,汽车的排放成为进入市场的先决条件;而石油资源的日益减少又导致对汽车耗油量的要求也日益严格;进入二十一世纪后,这些要求更加严格。
因此,各个汽车厂家不惜投入大量的资金进行技术研究、设计和开发,电子计算机模拟技术的使用使新技术的研发实验周期大幅度缩短,尤其在这几年新材料的不断应用,汽车发动机技术的进展可以说是日新月异,出现了长足的进步。除了发动机本体没有太大改动之外,其它各个系统都发生了质的变化,很多原来在理论上认为不可能成立的想法,在今天竟然成为现实;不管是从体积、质量、转速、功率、稳定性还是可靠性方面,传统发动机与现代发动机简直无法同日而语。
可变进气系统缸内进气气流图
一直以来,发动机最大输出功率和转矩受到进气量的限制,难以有效提高,多气门技术的投入使用使这一长期困扰发动机设计师的问题在一定程度上得到解决,而近几年通过各国汽车工程师的努力,使进气控制技术更上一层楼,这就是可变气门正时和可变进气系统。本文从发动机进气控
制方面简单谈一谈发动机新的技术发展。
作者:李大华博士美国汽车工程师学会
1、可变气门正时:
亦称可变配气相位。在发动机运转过程中,有部分工况将会出现一些难以解
决的矛盾,比如:如何保证低转速时的扭矩输出、高转速时的功率输出以及
在这些工况下的燃油耗量等问题;如果只采用节气门控制的燃油供给方式是
难以圆满解决的!现在可以通过可变气门正时和升程、可变进气管道和可变
压缩比这些方式来有效地解决。比较典型的是丰田汽车公司的可变配气正时
控制机构(VVT-i)、本田汽车公司的可变气门正时升程电子控制系统(V
TEC)及萨博汽车公司(SAAB)的可变压缩比技术。
◆丰田可变配气正时控制机构(VVT-i):它能够在维持发动机怠速性能
的情况下,有效改善全负荷性能。它可以保持进气门开启的持续角度不变,
改变进气门开闭时刻来增加充气量。它由VVT-i控制器、凸轮轴正时机油控
制阀和传感器三部分组成,其中传感器有曲轴位置传感器、凸轮轴位置传感
器和VVT传感器。
丰田VVT-i 16气门4缸发动机
在工作过程中,排气凸轮轴由凸轮轴齿形皮带轮驱动,其相对于齿形皮带轮的转角不变。曲轴位置传感器测量曲轴转角,向发动机电子控制单元提供发动机转速信号;凸轮轴位置传感器测量齿形带轮转角;VVT传感器测量进气凸轮轴相对于齿形带轮的转角。它们的信号输入发动机电子控制单元(EC U),ECU根据转速和负荷的要求控制进气凸轮轴正时控制阀,控制器根据指令使进气凸轮轴相对于齿形带旋转一个角度,达到进气门延迟开闭的目的,用以增大高速时的进气迟后角,从而提高气缸的充气效率。
◆本田可变气门正时升程电子控制系统(VTEC):VTEC系统由发动机电子控制单元(ECU)控制,ECU接收发动机传感器(包括转速、进气压力、车速、水温)的数据、参数并进行处理,输出相应的控制信号,通过电磁阀调节摇臂活塞液压系统,从而使发动机在不同的转速工况下由不同的凸轮控
制,影响进气门的开度和时间。
大众W8发动机采用了可变气门正时系统
一般情况下,汽车发动机每缸气门组只由一组凸轮驱动,而VTEC系统的发动机却有中低速用和高速用两组不同的气门驱动凸轮,并可通过电子控制系统的智能控制,进行自动转换。它保证了发动机中低速与高速不同的配气相位及进气量的要求,使发动机不论在任何转速情况下运转均能达到动力性、
经济性与低排放的统一和极佳状态。
◆萨博(SAAB)可变压缩比技术:一般情况下,发动机气缸的压缩比是不可变动的,原因是燃烧室容积及气缸工作容积都是固定的参数,在设计中已
经确定。不过,为了使得现代发动机能在各种不断变化的工况中发挥更高的效率,来改善发动机的运行性能;气门可变驱动技术已经实现,压缩比这一重要参数虽然过去也曾经有人尝试过,试图由固定不变改为随机应变,但由于改变气缸压缩比必然会涉及到整个发动机结构的改变,难度非常大,因此,
这一技术革新进展得非常缓慢。
绅宝(SAAB)开发的SVC发动机以改变气缸压缩比的方式来达到控制发动机的燃油消耗量的目的。它的核心就是在缸体与缸盖之间安装楔型滑块,缸体可以沿滑块的斜面运动,使得燃烧室与活塞顶面的相对位置发生变化,改变燃烧室的容积,从而改变气缸压缩比。其压缩比可从8:1至14:1之间范围变化。在发动机小负荷时采用高压缩比以实现节约燃油;在发动机大负荷时采用低压缩比,并辅以机械增压器以实现大功率和高转矩输出。SVC 发动机采用5缸1.6L排量,气缸缸径68mm,冲程88mm,最大功率166k w,最大扭矩305Nm,综合工况油耗比常规发动机降低30%,并能够满足
苛刻的欧洲Ⅳ排放标准。
2、可变进气系统:
若要提高发动机动力性能只有提高充气效率,提高充气效率的途径除了采用增压之外,可以采用适当的配气相位并能随发动机转速不同而变化,也可以利用进气的惯性及谐振效应;这些都是提高充气效率的最佳方式。进气惯性及谐振效应是随着发动机转速、进气管长度及管径大小的变化而变化。在不同转速下,进气管长度应有所不同,才能获得良好的进气惯性效应。因此,只有结合可变配气相位控制,可变进气系统才能适应不同工况
的要求,比较全面的提高发动机性能。
可变进气系统分为两类:多气门分别投入工作和可变进气道系统;目的都是为了改变进气涡流强度、提高充气效率;或是为了形成谐振及进气脉冲惯性效应,以适应低速及中高速工况都能提高性能的需要。
◆多气门分别投入工作:多气门分别投入工作的方式有以下两种:一是通过凸轮或摇臂控制气门按时开或关;二是在气道中设置旋转阀门,按需要打开或关闭该气门的进气通道;后者比采用凸轮、摇臂控制简单。
电子控制技术促进了汽车技术的进步
◆可变进气道系统:可变进气道系统是根据发动机不同工况,采用不同长度及容积的进气管向气缸内充气,以便能形成惯性充气效应及谐振脉冲波效应,从而提高充气效率及发动机动力性能。它有三种工作形式:双脉冲进气系统、四气门二段进气系统和三段进气系统。