人教版七年级上数学试卷第二单元整式的加减练习题3(含答案)
新人教版初中数学七年级数学上册第二单元《整式的加减》检测卷(有答案解析)(3)
一、选择题1.某地为了打造千年古镇旅游景点,将修建一条长为3600m 的旅游大道.此项工程由A 、B 两个工程队接力完成,共用时20天.若A 、B 两个工程队每天分别能修建240m 、160m ,设A 工程队修建此项工程xm ,则可列方程为( )A .360020240160x x -+=B .360020160240x x -+=C .360020160240x x +-=D .360020160240x x--= 2.有两支同样长的蜡烛,一支能点燃小时,另一支能点燃小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( ) A .小时B .小时C .小时D .小时3.某人连续休假4天,这四天的日期之和是74,他休假第一天的日期是( ) A .17号B .18号C .19号D .20号4.下列方程中,是一元一次方程的是( ) A .243x x -=B .0x =C .21x y +=D .11x x-=5.解方程-3x=2时,应在方程两边( ) A .同乘以-3B .同除以-3C .同乘以3D .同除以36.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ). A .95元 B .90元 C .85元 D .80元 7.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3 8.若4a ﹣9与3a ﹣5互为相反数,则a 2﹣2a+1的值为( )A .1B .﹣1C .2D .09.如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D10.如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( )A .ab+2x 2B .ab ﹣2x 2C .ab+4x 2D .ab ﹣4x 211.书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x 本书,则可列方程为( ) A .2x -8=12(x +8)+3 B .2x =12(x +8)+3 C .2x -8=12x +3 D .2x =12x +3 12.某工厂一、二月份共完成生产任务吨,其中二月份比一月份的多吨,设一月份完成吨,则下列所列方程正确的是( ) A . B . C .D .二、填空题13.方程2243x -=的解是__________ 14.桐桐的爸爸三年前在银行办理了一份3000元的定期存款,今年到期时的本息和为3243元,请你帮桐桐的爸爸算一算这种储蓄的年利率,若设年利率为x%,则可列方程为________________.(前一年的利息不计入下一年本金)15.若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则m n +的值是_________.16.对任意四个有理数a ,b ,c ,d ,定义:a b ad bc c d=-,已知24181-=x x,则x =_____.17.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.18.日历中同一竖列相邻三个数的和是63,则这三个数分别是______________. 19.若4a +9与3a +5互为相反数,则a 的值为_____.20.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.三、解答题21.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示: 类别/单价 成本价 销售价(元/箱) 甲 24 36 乙3348(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?22.我们知道13写成小数形式为0.3,反过来,无限循环小数0.3也可以转化成分数形式.方法如下:设0.3x =,由0.30.333=,可知10 3.333x =,所以103x x -=.解方程,得13x =,所以10.33=.例如:把无限循环小数0.32化为分数的方法如下: 设0.32x =,由0.320.323232=,可知10032.323232x =,所以10032x x -=,解方程,得3299x =,所以320.3299=.根据上述材料,解答下列问题: (1)把下列无限循环小数写成分数形式:①0.5=________;②2.58=________;③0.518=________.(2)借鉴材料中的方法,从第(1)题的①②③中任选一个,写出你的转化过程. 23.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a= ,若居民乙用电200千瓦时,交电费 元.(2)若某用户某月用电量超过300千瓦时,设用电量为x 千瓦时,请你用含x 的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?24.a ※b 是新规定的这样一种运算法则:a ※b=a 2+2ab ,例如3※(-2)=32+2×3×(-2)=-3 (1)试求(-2)※3的值(2)若1※x=3,求x 的值 (3)若(-2)※x=-2+x ,求x 的值.25.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。
人教版七年级数学上册第二章《整式的加减》考试卷(含答案)
人教版七年级数学上册第二章《整式的加减》考试卷(含答案)一、单选题1.下列代数式中,为单项式的是( ) A .5xB .aC .3a ba+ D .22x y +2.代数式1x, 2x +y , 13a 2b , x y π-, 54yx , 0.5 中整式的个数( )A .3个B .4个C .5个D .6个3.单项式322π3a b c -的系数和次数分别是( ) A .2π3-,6B .23-,6C .2π3-,5D .2π3,64.某品牌冰箱进价为每台m 元,提高20%作为标价.元旦期间按标价的9折出售,则出售一台这种冰箱可获得利润( ) A .0.1m 元B .0.2m 元C .0.8m 元D .0.08m 元5.若A 是一个四次多项式,B 是一个三次多项式,则A B -是( ) A .七次多项式B .七次整式C .四次多项式D .四次整式6.多项式﹣2x 2y ﹣9x 3+3x 3+6x 3y +2x 2y ﹣6x 3y +6x 3的值是( ) A .只与x 有关B .只与y 有关C .与x ,y 都无关D .与xy 都有关7.如图,两个大小正方形的边长分别是4cm 和x cm (0<x <4).用含x 的式子表示图中阴影部分的面积为( )cm 2.A .214xB .212xC .()2144x + D .()2142x + 8.若当x =2时,335ax bx ++=,则当x =-2时,求多项式2132ax bx --的值为( ) A .-5 B .-2 C .2 D .59.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为a ,宽为b )的盒子底部(如图①),盒子底面未被卡片覆盖的部分用阴影表示.则图①中两块阴影部分周长和是( )A .4aB .4bC .()2a b +D .()4a b -10.按框图的程序计算,若开始输入的n 值为3,则最后输出的结果是( ).A .2B .151C .153D .168二、填空题11.在代数式23xy ,m ,263a a -+,12,22145x yzx xy -,23ab 中,单项式有___________个.12.甲、乙两地相距400千米,某车以80千米/小时的速度从甲地开往乙地,行驶了t (t ≤5)小时,此时该车距乙地的路程为____________千米. 13.多项式2342x y xy x -++-的次数与项数之比为______.14.已知多项式4916252581114357911a a a a a b b b b b-+-+……,(0)ab ≠,该多项式的第7项为_______,用字母a 、b 和n 表示多项式第n 项____________.(n 为正整数) 15.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:_______________________. 三、解答题的指出项和次数:4232223431,,1,,331,32,227m n a b x y x x y xy x t x y -+--++--.17.列式表示(1)某地冬季一天的温差是15℃,这天最低气温是t ℃,最高气温是多少? (2)买单价c 元的商品n 件要花多少钱?支付100元,应找回多少元?(3)某种商品原价每件b 元,第一次降价打“八折”,第二次降价每件又减10元,第一次降价后的售价是多少?第二次降价后的售价是多少?(4)30天中,小张长跑路程累计达到45000m ,小李跑了()m 45000a a >,平均每天小李和小张各跑多少米?平均每天小李比小张多跑多少米?18.已知A=3a 2b ﹣2ab 2+abc ,小明同学错将“2A ﹣B”看成“2A+B”,算得结果为4a 2b ﹣3ab 2+4abc .(1)计算B 的表达式; (2)求出2A ﹣B 的结果;(3)小强同学说(2)中的结果的大小与c 的取值无关,对吗?若a=18,b=15,求(2)中式子的值.19.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目: 已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.20.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.21.如图是某居民小区的一块长为2a 米,宽为 b 米的长方形空地,为了美化环境,b 米的扇形花台,然后在花台内种花,准备在这个长方形的四个顶点处修建一个半径为12其余种草.如果建造花台及种花费用每平方米需要资金100 元,种草每平方米需要资金50 元,那么美化这块空地共需资金多少元?参考答案1.B 2.B 3.A 4.D 5.D 6.C 7.B 8.B 9.B 10.D 11.312.(400﹣80t )13.3414.492015ab ()()23121nn n a b -+-15.22(1)(1)21n n n n n --=+-=- 16.17.(1)(15)t +℃;(2)nc 元,(100)nc -元;(3)0.8b 元,(0.810)b -元;(4)m,1500m,1500.3030a a m ⎛⎫- ⎪⎝⎭18.解:(1)①2A +B =4a 2b ﹣3ab 2+4abc ,①B =4a 2b ﹣3ab 2+4abc -2A=4a 2b -3ab 2+4abc -2(3a 2b -2ab 2+abc) =4a 2b -3ab 2+4abc -6a 2b +4ab 2-2abc =-2a 2b +ab 2+2abc ;(2)2A -B =2(3a 2b -2ab 2+abc)-(-2a 2b +ab 2+2abc) =6a 2b -4ab 2+2abc +2a 2b -ab 2-2abc =8a 2b -5ab 2;(3)对,由(2)化简的结果可知与c 无关,将a =18,b =15代入,得8a 2b -5ab 2=8×218⎛⎫ ⎪⎝⎭×15-5×18×21()5=0.19.添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号. ①a 2+b 2=5,1-b =-2,①-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7. 20.由题意可知0a c -<,0b >,0b a ->,0b a +<, ||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+. 21.解:100×14πb 2+50(2ab ﹣14πb 2)=252πb 2+100ab (元).。
人教版七年级数学上册《第二章整式的加减》单元试题(含答案)
第二章《整式的加减》单元练习题一、选择题1.化简-16(x-0.5)的结果是()A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+82.以下判断正确的是()A.单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D.是单项式3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是()A. -4B. -2C. 2D. 44.单项式-32xy2z3的系数和次数分别是()A. -1,8B. -3,8C. -9,6D. -9,35.如果-33amb2是7次单项式,则m的值是()A. 6B. 5C. 4D. 26.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为()A. 29B. -6C. 14D. 247.已知a<b,那么a-b和它的相反数的差的绝对值是()A.b-aB. 2b-2aC. -2aD. 2b8.下面不是同类项的是()A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2二、填空题9.若单项式2x2ym与−xny3的和仍为单项式,则m+n的值是___________.10.若单项式-a2xbm与anby-1可合并为a2b4,则xy-mn=___________.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.14.如果数轴上表示a,b两数的点的位置如图所示,那么|a-b|+|a+b|的计算结果是___________.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.16.化简:-2a2-[3a2-(a-2)]=___________.三、解答题17.完成下表18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.第二章《整式的加减》单元练习题答案解析1.【答案】D【解析】-16(x-0.5)=-16x+8.2.【答案】B【解析】A、单项式xy的系数是1,故错误;B、-1是单项式,故正确;C、23x2是2次单项式,故错误;D、是分式,故错误.3.【答案】C【解析】因为x2y=2,所以原式=5x2y+5xy-7x-4x2y-5xy+7x=x2y=2.4.【答案】C【解析】单项式-32xy2z3的系数和次数分别是-9,65.【答案】B【解析】根据单项式次数的定义,所有字母的指数和为7,即m+2=7,则m=5.6.【答案】B【解析】原式=a-1,当a=-5时,原式=-5-1=-6.7.【答案】B【解析】依题意因为a<b,所以2a<2b,即2a-2b<0,所以|(a-b)-(b-a)|=|a-b-b+a|=|2a-2b|=2b-2a.8.【答案】B【解析】A、是两个常数项,故是同类项;B、所含字母不同,故不是同类项;C、符合同类项的定义,故是同类项;D、符合同类项的定义,故是同类项.9.【答案】5【解析】由题意知单项式2x2ym与−xny3是同类项,则n=2,m=3,所以m+n=5,10.【答案】-3【解析】因为单项式-a2xbm与anby-1可合并为a2b4,则此三个单项式为同类项,则m=4,n=2,2x=2,y-1=4,所以x=1,y=5,则xy-mn=1×5-4×2=-3.11.【答案】-5a2b【解析】多项式2ab2-5a2b-7+a3b3按字母b的降幂排列为a3b3+2ab2-5a2b-7.12.【答案】4【解析】因为a2m−5b2与-3ab3-n的和为单项式,所以2m-5=1,2=3-n,解得m=3,n=1.故m+n=4.13.【答案】-2(x-1)2-3(x-1)3【解析】原式=3(x-1)2-2(x-1)3-5(x-1)2-(x-1)3 =-2(x-1)2-3(x-1)3.14.【答案】-2a【解析】因为由图可知,a<0,b>0,|a|>b,所以a-b<0,a+b<0,所以原式=-(a-b)-(a+b)=-a+b-a-b=-2a.15.【答案】1【解析】因为由图可知,a<0,所以a-1<0,所以原式=1-a+a=1.16.【答案】-5a2+a-2【解析】-2a2-[3a2-(a-2)]=-2a2-(3a2-a+2)=-2a2-3a2+a-2=-5a2+a-2.17.【答案】解:x的系数是1,次数是1;-2mn的系数是-2,次数是2;的系数是,次数是4.【解析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.18.【答案】解:因为-mx2y|n-3|是关于x、y的10次单项式,且系数是8,所以m=-8,且2+|n-3|=10,解得n=11或-5,则m+n=3或m+n=-13.【解析】利用单项式的定义得出m的值,进而利用单项式次数的定义得出n的值,进而得出答案.19.【答案】解:(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(a−3)+2a2]+4=a2-a+1.【解析】去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.20.【答案】解:由题意可知小红的年龄为(2m-4)岁,小华的年龄为[(2m−4)+1]岁,则这三名同学的年龄的和为m+(2m−4)+[(2m−4)+1]=m+2m-4+(m-2+1)=4m-5.答:这三名同学的年龄的和是(4m-5)岁.【解析】根据题意分别列出小明、小红和小华的年龄,再相加,去括号,合并同类项,即可求出这三名同学的年龄的和.21.【答案】解:因为(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,所以|a|=3,b=-2,a-3≠0,解得a=-3,b=-2,则a2-3ab+b2=9-18+4=-5.【解析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.。
新人教版初中数学七年级数学上册第二单元《整式的加减》检测卷(答案解析)(3)
一、选择题1.小丽买了20支铅笔,店主给她8折优惠(即按标价的80%出售),结果共便宜了1.6元,则每支铅笔的标价是()A.0.20元B.0.40元C.0.60元D.0.80元2.某地为了打造千年古镇旅游景点,将修建一条长为3600m的旅游大道.此项工程由A、B两个工程队接力完成,共用时20天.若A、B两个工程队每天分别能修建240m、160m,设A工程队修建此项工程xm,则可列方程为()A.360020240160x x-+=B.360020160240x x-+=C.360020160240x x+-=D.360020160240x x--=3.如图,相同形状的物体的重量是相等的,其中最左边天平是平衡的,则右边三个天平中仍然平衡的是( )A.①②③B.①③C.①②D.②③4.若代数式x+2的值为1,则x等于( )A.1 B.-1 C.3 D.-35.若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为()A.8 B.﹣8 C.6 D.﹣66.关于x的方程2x m3-=1的解为2,则m的值是()A.2.5 B.1 C.-1 D.37.解方程32282323x x x----=的步骤如下,错误的是()①2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x﹣6=16﹣4x;③3x+4x=16+10;④x=267.A.①B.②C.③D.④8.若正方形的边长增加3cm,它的面积就增加39cm,则正方形的边长原来是()A.8cm B.6cm C.5cm D.10cm9.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( ) A .2015(34)x x =- B .220315(34)x x ⨯=⨯- C .320215(34)x x ⨯=⨯- D .320(34)215x x ⨯-=⨯10.某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少( ) A .80元 B .200元C .120元D .160元11.方程的解是( ) A .B .C .D .12.四位同学解方程,去分母分别得到下面四个方程:①;②;③;④.其中错误的是( )A .②B .③C .②③D .①④二、填空题13.为了创建宜居城市,某单位积极响应植树活动,由一人植树要80小时完成.现由一部分人植树5小时,由于单位有紧急事情,再增加2人,4小时后完成植树任务.若这些人的工作效率相同,则先植树的有________人.14.已知一个角的补角是这个角的4倍,那么这个角的度数是_________. 15.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________. 16.小石在解关于x 的方程225a x x -=时,误将等号前的“2x -”看作“3x -”,得出解为1x =-,则a 的值是_________,原方程的解为__________ .17.所谓方程的解就是使方程中等号左右两边相等的未知数的值。
人教版七年级上册数学第二章《整式的加减》计算题训练(含答案)
3.计算
(1) 2 x 5y 43x 4 y
(2) 4x2 y 3xy 23xy 2 2x2 y
4.计算:
(1) 3a2b 5 5b2 6a2b 7 5b2 4a3 ;
(2) 3ab2 2 2ab2 a2b 3 1 4a2b 10ab2 . 2
5.化简:
8.化简并求值: 2 ab2 2a2b 3 ab2 a2b 1 ,其中 a 2,b 1.
9.先化简,再求值: x2 y2 2xy 3x2 4xy y2 5xy ,其中, x= 1, Nhomakorabeay 2.
10.先化简,再求值 2
ab 3a2
5a2
4ab a2
14.已知 A 3a2 ab , B 5ab a2 (1)求 2A B 的值;
(2)若 2A 与 B C 互为相反数,a、b 满足 a 22 + b+1=0 ,求 C 的值.
15.已知 A 4x2 2xy 3y2, B 4x2 3y2 . (1)求 A B ; (2)当 x 3, y 1 时,求 A B 的值.
18.已知代数式 A 2x2 5xy 7 y 3 , B x2 xy 2
(1)求 3A 2A 3B 的值;
(2)若 A 2B 值与 x 的取值无关,求 y 的值.
1.(1) 1 x2 - 3x + 2 5
(2) 1 a2b 4
2.(1) 2x2 x 1 (2) 3a2 33a 18
3.(1) 6 y 10x (2) 2x2 y 3xy 4
4.(1) 3a2b 4a3 2 (2) 4ab2 6
5.(1) a2b 8ab2 (2) x2 4x
6.(1) 2a2 7b2 ab (2)12a 10b
7. 3x2 4xy 12 , 24 8. ab2 a2b 3 , 5 9. 4x2 xy ;6 10. 2ab ;1 11. 3x2 y 5xy , 2 12. 5x2 xy ,18 13. a2b 6ab2 3 , 89 14.(1) 5a2 3ab (2) 14
人教版初中七年级数学上册第二单元《整式的加减》经典练习题(含答案解析)(3)
一、选择题1.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )A .(1-15%)(1+20%)a 元B .(1-15%)20%a 元C .(1+15%)(1-20%)a元 D .(1+20%)15%a 元 2.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .123.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .114.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55 5.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .666.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .327.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣18.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ 9.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣410.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ 11.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者 12.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - 13.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( )A .2B .﹣2C .0D .414.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元 15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( )A .2m +2nB .mC .m +nD .m ,n 中的较大数二、填空题16.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.17.已知轮船在静水中的速度为(a +b )千米/时,逆流速度为(2a -b )千米/时,则顺流速度为_____千米/时18.观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.19.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.20.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .21.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.22.计算7a 2b ﹣5ba 2=_____. 23.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.24.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.25.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.26.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________三、解答题27.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?28.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.29.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值.30.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.。
(常考题)人教版初中数学七年级数学上册第二单元《整式的加减》检测(答案解析)(3)
一、选择题1.小丽买了20支铅笔,店主给她8折优惠(即按标价的80%出售),结果共便宜了1.6元,则每支铅笔的标价是( ) A .0.20元 B .0.40元C .0.60元D .0.80元2.如图,相同形状的物体的重量是相等的,其中最左边天平是平衡的,则右边三个天平中仍然平衡的是( )A .①②③B .①③C .①②D .②③ 3.方程2424x x -=-+的解是 ( )A .x =2B .x =−2C .x =1D .x =04.有两支同样长的蜡烛,一支能点燃小时,另一支能点燃小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( ) A .小时B .小时C .小时D .小时5.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( ) A .5袋B .6袋C .7袋D .8袋6.甲乙两人骑摩托车从相距170千米的A ,B 两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行( ) A .30千米B .40千米C .50千米D .45千米7.一项工程,甲单独做需10天完成,乙单独做需6天完成.现由甲先做2天,乙再加入合做,完成这项工程共需多少天?若设完成这项工程共需x 天,依题意可得方程( )A .106x x +=1 B .22106x x +-+=1 C .2106x x -+=1 D .222106x x x --++=18.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=9.两年前,李叔叔在银行存了一笔两年的定期存款,年利率是2.75%.到期后取出,得到本金和利息总共21100元.设李叔叔存入的本金为x 元,则下列方程正确的是( ) A .2 2.75%21100x ⨯= B . 2.75%21100x x += C .2 2.75%21100x x +⨯= D .2( 2.75%)21100x x +=10.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=- C .()322x -+= D .()()3221x x ++=-11.若代数式的值为,则的值为( ) A .B .C .D .12.四位同学解方程,去分母分别得到下面四个方程:①;②;③;④.其中错误的是( )A .②B .③C .②③D .①④二、填空题13.我们规定:若关于x 的一元一次方程ax =b 的解为b +a ,则称该方程为“和解方程“. 例如:方程2x =﹣4的解为x =﹣2,而﹣2=﹣4+2,则方程2x =﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程3x =a 是“和解方程”,则a 的值为_____;(2)已知关于x 的一元一次方程﹣2x =ab +b 是“和解方程“,并且它的解是x =b ,则a +b 的值为_____.14.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.15.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有______________幅.16.某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元 17.对于数a ,b 定义这样一种运算:*2a b b a =-,例如1*3231=⨯-,若()3*11x +=,则x 的值为______.18.日历中同一竖列相邻三个数的和是63,则这三个数分别是______________. 19.方程3622y y y -+=,左边合并同类项后,得____________. 20.要使代数式154t +与15()4t -的值互为相反数,则t 的值是_________. 三、解答题21.解方程:(1)36156x x -=--;(2)45173x x +=-; (3) 2.57.5516y y y --=-;(4)11481.5533z z +=-.22.解方程:41(7)6(7)55x x -=--.23.松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲工厂比乙工厂要多用20天在加工过程中,学校每天需付甲工厂费用80元,乙工厂费用120元.(1)这批校服共有多少件?(2)在实际加工过程中,甲、乙两个工厂按原生产效率合作一段时间后,甲工厂停工了,乙工厂每天的生产效率提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间比甲工厂工作时间的2倍还多4天,则乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲工厂单独完成;方案二:由乙工厂单独完成;方案三:按第(2)问方式完成并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种既省时又省钱的加工方案.24.依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。
人教版七年级数学上册《第二章整式的加减》单元测试卷(含答案)
人教版七年级数学上册《第二章整式的加减》单元测试卷(含答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.单项式πr2ℎ的次数是()A.1 B.2 C.3 D.42.在代数式x2+5,﹣1,x2﹣3x+4,π,5m 和x2+1x+1中,整式有()A.3个B.4个C.5个D.6个3.下列说法正确的是()A.1x +1是多项式B.3x+y3是单项式C.−mn5是五次单项式D.−x2y−2x3y是四次多项式4.多项式36x2−3x+5与3x3+12mx2−5x+7相加后,不含二次项,则常数m的值是()A.2 B.-8 C.-2 D.-35.下列选项中的单项式,与−ab2是同类项的是()A.−a2b B.3ab2C.3ab D.ab2c6.下面计算正确的是()A.3x2y−2y2x=xy B.ab−ba2=12abC.2a2+a=3a3D.m4+m4=m87.若整式−100a−m b2+100a3b n+4经过化简后结果等于4,则m n的值为()A.−8B.8 C.−9D.9 8.若x−2y=3,则2(x−2y)−x+2y−5的值是()A.−2B.2 C.4 D.−4二、填空题9.请写出一个只含有a,b两个字母的单项式,要求系数为−4,次数3,这个单项式可以是.10.多项式3x2﹣2xy2+xyz3的次数是.11.如果单项式5a m+1b n+5与a2m+1b2n+3是同类项,则m=,n=12.多项式(m﹣2)x|m|+mx﹣3是关于x的二次三项式,则m= .13.已知x2+2y-3=0,则3(x2+2xy)-(x2+6xy)+4y的值为14.化简:(1)3xy2−4x2y−2xy2+5x2y;(2)(mn+3m2)−(m2−2mn)15.若关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是2,求m2+n3的值.16.先化简,再求值2(x3−2y2)−(x−2y)−(x−4y2+2x3),其中x=−2,y=3.a2−3ab−2且a、b互为倒数,求3A−2B的值.17.若A=a2−4ab−5,B=3218.今年十月份,为方便民众出行,连江县成立了出租车公司,收费标准是:起步价5元,可乘坐3千米;3千米之后每千米加收1.8元.若某人乘坐了x千米(1)用代数式表示他应支付的费用;(2)若他乘坐了13千米,应支付多少元?1.C2.B3.D4.D5.B6.B7.D8.A9.−4ab 2或−4a 2b10.511.0;212.-213.614.(1)xy 2+x 2y(2)3mn +2m 215.﹣7.16.−2x +2y ,10.17.−6ab −11,−17. 18.(1)①当0x <≤3时,支付的费用为5;②当3x >时,支付的费用为()1.80.4x -元(2)23元。
(必考题)人教版初中七年级数学上册第二章《整式的加减》模拟测试卷(答案解析)(3)
一、选择题1.(0分)[ID :68031]下面用数学语言叙述代数式1a﹣b ,其中表达正确的是( ) A .a 与b 差的倒数 B .b 与a 的倒数的差 C .a 的倒数与b 的差 D .1除以a 与b 的差2.(0分)[ID :68057]若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3-B .0C .3D .63.(0分)[ID :68046]已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36 B .40C .44D .464.(0分)[ID :68041]化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b5.(0分)[ID :68017]我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 6.(0分)[ID :68014]如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n7.(0分)[ID :68005]下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+-D .如果||||x y =,那么x y =8.(0分)[ID :68000]下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、69.(0分)[ID :67988]已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .mB .nC .m n +D .m ,n 中较大者10.(0分)[ID :67979]若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x -- D .23x x -11.(0分)[ID :67976]代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍12.(0分)[ID :67975]式子5x x-是( ). A .一次二项式B .二次二项式C .代数式D .都不是13.(0分)[ID :67970]张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元14.(0分)[ID :67962]多项式33x y xy +-是( ) A .三次三项式 B .四次二项式 C .三次二项式 D .四次三项式15.(0分)[ID :67959]如果m ,n 都是正整数,那么多项式的次数是( ) A .B .mC .D .m ,n 中的较大数二、填空题16.(0分)[ID :68128]为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.17.(0分)[ID :68124]一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________. 18.(0分)[ID :68121]将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____. 19.(0分)[ID :68119]观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.20.(0分)[ID :68092]已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.21.(0分)[ID :68090]由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).22.(0分)[ID :68086]在迎新春活动中,三位同学玩抢2018游戏,甲、乙、丙围成一圈依序报数,规定:甲、乙、丙首次报的数依次为1、2、3,接着甲报4、乙报5…按此规律,后一位同学报的数比前一位同学报的数大1,当报的数是2018时,报数结束;按此规则,最后能抢到2018的同学是______.23.(0分)[ID :68085]如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.24.(0分)[ID :68081]为了鼓励节约用电,某地对用户用电收费标准作如下规定:如果每户用电不超过50度,那么每度电按a 元收费,如果超过50度,那么超过部分按每度()0.5a +元收费,某居民在一个月内用电98度,他这个月应缴纳电费______元.25.(0分)[ID :68074]用棋子按下列方式摆图形,依照此规律,第n 个图形比第()1n -个图形多______枚棋子.…第1个 第2个 第3个26.(0分)[ID :68072]观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______. 27.(0分)[ID :68071]如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______. 三、解答题28.(0分)[ID :67803]观察下列等式. 第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭; 第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; …请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____; (2)求a 1+a 2+a 3+a 4+…+a 100的值.29.(0分)[ID :67798]已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值.30.(0分)[ID :67793]有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.C3.A4.A5.D6.A7.B8.C9.D10.D11.B12.C13.C14.D15.D二、填空题16.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n个图形有6n+2根火柴棒17.【解析】根据题意要求写一个关于字母x的二次三项式其中二次项是x2一次项是-x常数项是1所以再相加可得此二次三项式为18.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本19.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个20.7【分析】根据数轴和题目中的式子可以求得c﹣b的值从而可以求得|b﹣c|的值【详解】∵|a﹣c|=10|a﹣d|=12|b﹣d|=9∴c﹣a=10d﹣a=12d﹣b=9∴(c﹣a)﹣(d﹣a)+(d21.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n个图形中白色正方形的个数为:(3n-1)个22.乙【分析】由题意可得甲乙丙报的数字顺序规律为从1起三个数字为一个循环即丙报的数字规律为3的倍数将2018除以3余数为2即2018为一个循环的第2个数字即可判断为乙报的数字【详解】解:∵2018÷3=23.【分析】由长方形的面积减去PQLM与RKTS的面积再加上重叠部分面积即可得到结果【详解】S矩形ABCD=AB•AD=abS道路面积=ca+cb-c2所以可绿化面积=S矩形ABCD-S道路面积=ab-24.【分析】98度超过了50度应分两段进行计费第一段50每度收费a元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代25.【分析】归纳总结找出第n个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n个图形1+26.【分析】观察各式的特点找出关于n的式子用2n+1和2n-1表示奇数用2n表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找27.0【分析】根据同类项的定义先得到k的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础三、解答题28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【分析】根据代数式的意义,可得答案. 【详解】用数学语言叙述代数式1a﹣b 为a 的倒数与b 的差, 故选:C . 【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.C解析:C 【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值. 【详解】解:根据题意可得:26{3a b a b +=-=,解得:3{0a b ==, 所以303a b +=+=, 故选:C . 【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.A解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.4.A解析:A【解析】2a-[3b-5a-(2a-7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.5.D解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A、根据“单价×数量=总价”可知3a表示买a kg葡萄的金额,此选项不符合题意;B、由等边三角形周长公式可得3a表示这个等边三角形的周长,此选项不符合题意;C、由“售价=进价+利润”得售价为1.5a元,则2×1.5a=3a(元),此选项不符合题意;D、由题可知,这个两位数用字母表示为10×3+a=30+a,此选项符合题意.故选:D.【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.6.A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20; ……;第n 个“金鱼”需用火柴棒的根数为6n +2. 故选:A . 【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.7.B解析:B 【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可. 【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误; 故选:B. 【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.8.C解析:C 【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可. 【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误; 故选:C . 【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.9.D解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.10.D解析:D 【分析】根据N=M+N-M 列式即可解决此题. 【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D. 【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.11.B解析:B 【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断. 【详解】代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B . 【点睛】本题考查了代数式,正确理解代数式表示的意义是关键.12.C解析:C 【分析】根据代数式以及整式的定义即可作出判断. 【详解】式子5x x -分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C . 【点睛】本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.13.C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-2 3020302222a b a b a b a a b aa b++++ -+-=⨯+⨯)()=10(b-a)+15(a-b)=10b-10a+15a-15b=5a-5b,则这次买卖中,张师傅赚5(a-b)元.故选C.【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.14.D解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D.【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关15.D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式的次数是m,n中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式中次数最高的多项式的次数,即m,n中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.二、填空题16.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n 个图形有6n+2根火柴棒.17.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 18.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.19.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12 631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…, 即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 20.7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值从而可以求得|b ﹣c|的值【详解】∵|a ﹣c|=10|a ﹣d|=12|b ﹣d|=9∴c ﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.21.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 22.乙【分析】由题意可得甲乙丙报的数字顺序规律为从1起三个数字为一个循环即丙报的数字规律为3的倍数将2018除以3余数为2即2018为一个循环的第2个数字即可判断为乙报的数字【详解】解:∵2018÷3=解析:乙【分析】由题意可得甲、乙、丙报的数字顺序规律为,从1起三个数字为一个循环,即丙报的数字规律为3的倍数,将2018除以3余数为2,即2018为一个循环的第2个数字,即可判断为乙报的数字.【详解】解:∵2018÷3=672 (2)∴最后能抢到2018的同学是乙.故答案为:乙【点睛】本题考查数字规律,读懂题意,找到数字循环规律是解答此题的关键.23.【分析】由长方形的面积减去PQLM与RKTS的面积再加上重叠部分面积即可得到结果【详解】S矩形ABCD=AB•AD=abS道路面积=ca+cb-c2所以可绿化面积=S矩形ABCD-S道路面积=ab-解析:2--+ab bc ac c【分析】由长方形的面积减去PQLM与RKTS的面积,再加上重叠部分面积即可得到结果.【详解】S矩形ABCD=AB•AD=ab,S道路面积=ca+cb-c2,所以可绿化面积=S矩形ABCD-S道路面积=ab-(ca+cb-c2),=ab-ca-cb+c2.故答案为:ab-bc-ac+c2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.24.【分析】98度超过了50度应分两段进行计费第一段50每度收费a 元第二段(98-50)度每度收费(a+05)元据此计算即可【详解】解:由题意可得:(元)故答案为:(98a+24)【点睛】本题考查了列代解析:()9824a +【分析】98度超过了50度,应分两段进行计费,第一段50,每度收费a 元,第二段(98-50)度,每度收费(a +0.5)元,据此计算即可.【详解】解:由题意可得:()()5098500.59824a a a +-+=+(元).故答案为:(98a +24).【点睛】本题考查了列代数式,根据题意,列出代数式是解决此题的关键.25.【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n 个图形1+解析:32n -【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数,相减即可得到结果.【详解】解:第1个图形棋子的个数:1;第2个图形,1+4;第3个图形,1+4+7;第4个图形,1+4+7+10;…第n 个图形,1+4+7+…+(3n -2);则第n 个图形比第(n-1)个图形多(3n-2)枚棋子.故答案为:3n-2【点睛】此题主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.26.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的. 27.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.三、解答题28.(1)1911⨯;12×11911⎛⎫- ⎪⎝⎭;(2)100201. 【分析】(1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得; (2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】(1)由观察知, 左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1,右边:这两个奇数的倒数差的一半,∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫- ⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭ 12002201=⨯ 100201=. 【点睛】 本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.29.12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --,当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键. 30.3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.。
人教版初中七年级数学上册第二章《整式的加减》经典测试卷(含答案解析)(3)
1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kgB .24(1-a %)b % 元/kgC .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg D 解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a %,1月份鸡的价格为24元/kg ,∴2月份鸡的价格为24(1-a %)元/kg ,∵3月份比2月份下降b %,∴三月份鸡的价格为24(1-a %)(1-b %)元/kg .故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.3.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.4.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D .【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.5.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】 由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键.7.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.8.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.9.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.10.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者D解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项.【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,m n x x 中指数大的,即m ,n 中较大的,故答案选D.【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.11.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.12.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.13.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.14.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A 解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 15.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( )A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B 解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )]=10a ﹣6b ﹣6a +2b +3a ﹣b=7a ﹣5b .故选B .【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.1.a -b ,b -c ,c -a 三个多项式的和是____________0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0解析:0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.2.在多项式422315x x x x 中,同类项有_________________;-2x5x 【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x 与5x 是同类项;故答案为:-2x5x 【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x ,5x根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x 与5x 是同类项;故答案为:-2x ,5x .【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.3.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.4.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 5.关于x 的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x 的次数逐渐减小排列,这个二次三项式为____.-3x2+5x -4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x 的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.6.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.1024【分析】先写出前3次分割得到的正方形的个数找到规律即可得出答案【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为个;分割3次得到正方形的个数为个;…以此类推分割5次得到解析:1024【分析】先写出前3次分割得到的正方形的个数,找到规律即可得出答案.【详解】由图可知分割1次得到正方形的个数为4;16=4个;分割2次得到正方形的个数为264=4个;分割3次得到正方形的个数为3…以此类推,分割5次得到正方形的个数为:54=1024个,故答案为:1024.【点睛】本题考查了图形规律题,仔细观察图形找到规律是解题的关键.7.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.8.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键.9.如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序).2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.10.一个长方形的周长为68a b +,其一边长为23a b +,则另一边长为______.【分析】根据长方形的周长公式列出代数式求解即可【详解】解:由长方形的周长=2×(长+宽)可得另一边长为:故答案为:a+b 【点睛】本题考查了整式的加减长方形的周长公式列出代数式是解决此题的关键解析:+a b【分析】根据长方形的周长公式列出代数式求解即可.【详解】解:由长方形的周长=2×(长+宽)可得,另一边长为:()()68223a b a b a b +÷-+=+. 故答案为:a +b .【点睛】本题考查了整式的加减,长方形的周长公式列出代数式是解决此题的关键.11.仅当b =______,c =______时,325x y 与23b c x y 是同类项。
七年级数学上册第二章《整式的加减》测试卷-人教版(含答案)
七年级数学上册第二章《整式的加减》测试卷-人教版(含答案)一、选择题1.若数m增加它的x%后得到数n,则n等于( )A.m·x%B.m(1+x%)C.m+x%D.m(1+x)%2.对于a2+b2解释不恰当的是( )A.a,b两数的平方和B.边长分别是a,b的两正方形的面积和C.买a支单价为a元的铅笔和买b支单价为b元的铅笔所花的总钱数D.边长是a+b的正方形的面积3.下列式子,不是整式的是( )A.x﹣12y B.37x C.1x+1D.04.单项式- 25πx2y 的系数与次数分别是()A.- 25π,3 B.25π,3 C.-25π,2 D.-25,45.多项式2a2b﹣ab2﹣ab的项数及次数分别是( )A.3,3B.3,2C.2,3D.2,26.已知a2+3a=1,那么代数式2a2+6a-1的值是( )A.0B.1C.2D.37.如果2x2y3与x2y n+1是同类项,那么n的值是( )A.1B.2C.3D.48.下列各式计算正确的是( )A.3x+x=3x2B.-2a+5b=3abC.4m2n+2mn2=6mnD.3ab2-5b2a=-2ab29.下面计算正确的是( )A.6a-5a=1B.a+2a2=3a2C.-(a-b)=-a+bD.2(a+b)=2a+b10.如果一个多项式的次数是5,那么这个多项式的任何一项的次数满足( )A.都小于5B.都大于5C.都不小于5D.都不大于511.一个多项式A与多项式B=2x2-3xy-y2的和是多项式C=x2+xy+y2,则A 等于( )A.x2-4xy-2y2B.-x2+4xy+2y2C.3x2-2xy-2y2D.3x2-2xy12.某商家在甲批发市场以每包a元的价格购进了40包茶叶,又在乙批发市场以每包b元(a>b)的价格购进了同样的茶叶60包,如果商家以每包a+b2元的价格卖出这种茶叶,那么卖完后,该商家( )A.盈利了B.亏损了C.不盈不亏D.盈亏不能确定二、填空题13.若-5ab n-1与a m-1b3是同类项,则m+2n=_______.14.化简3x﹣2(x﹣3y)的结果是 .15.在多项式3x2+πxy2+9中,次数最高的项的系数是 .16.若x=1时,2ax2+bx=3,则当x=2时,ax2+bx=_______.7.已知a2+2ab=﹣8,b2+2ab=14,则a2+4ab+b2= .18.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2026个格子中的整数是 .3 a b c -1 -2 …19.化简:3a2+5b-2a2-2a+3a-8b;20.化简:(8x-7y)-2(4x-5y);21.化简:-3a2b-(2ab2-a2b)-(2a2b+4ab2),22.化简:-3a2b-(2ab2-a2b)-(2a2b+4ab2).23.化简:-3a2b+(-4ab2+2a2b)-3(a2b-ab2).24.化简:- 13(x2y2-xy+3)+2[x2-12(xy-2x+y-1)]+3x-1.25.移动公司开设了两种通讯业务:①“全球通”用户先交10元月租费,然后每通话一分钟,付话费0.2元;②“快捷通”用户不交月租费,每通话一分钟付话费0.4元.(1)按一个月通话a分钟计算,请你写出两种收费方式中用户应付的费用?(2)某用户一个月内通话300分钟,你认为选择哪种移动通讯业务较合适?26.已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式,那么a和b的值可能是多少?说明你的理由.27.老师在黑板上书写了一个正确的验算过程,随后用手掌捂住了一个二次三项式,形式如下:(1)求所捂的二次三项式;(2)若-x2+2x=1,求所捂二次三项式的值.28.某超市在春节期间实行打折促销活动,规定如下:一次性购物促销方法:少于200元不打折;低于500元但不低于200元打九折;500元或超过500元其中500元部分打九折,超过500元部分打八折.(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200元时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的式子表示)(3 )如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的式子表示两次购物王老师实际付款多少元?参考答案1.B.2.D3.C.4.A5.A6.B7.B8.D9.C10.D.11.B12.A.13.答案为:1014.答案为:x+6y.15.答案为:π.16.答案为:617.答案为:6.18.答案为:3.19.解:原式=3a2-2a2-2a+3a+5b-8b=a2+a-3b.20.解:原式=8x-7y-8x+10y=3y.21.解:原式=-4a2b-6ab222.解:原式=-4a2b-6ab223.解:原式=-3a2b-4ab2+2a2b-3a2b+3ab2=-3a2b+2a2b-3a2b-4ab2+3ab2=(-3+2-3)a2b+(-4+3)ab2=-4a2b-ab2.24.解:原式=- 13x2y2-23xy+2x2+5x-y-125.解:(1)①0.2a+10;②0.4a(2)当a=300时,0.2a+10=70(元);0.4a=120(元),因为70<100,所以选择“全球通”移动通讯业务较合适26.解:(1)若axy b与﹣5xy为同类项,则b=1.因为和为单项式,所以a=5,b=1.(2)若4xy2与axy b为同类项,则b=2.因为axy b+4xy2=0,所以a=﹣4.所以a=﹣4,b=2.27.解:(1)所捂的二次三项式为x2-2x+1.(2)若-x2+2x=1,则x2-2x+1=-(-x2+2x)+1=-1+1=0.28.解:(1)530.500×0.9+(600﹣500)×0.8=530(元).(2)0.9x0.8x+50.(3)因为200<a<300,所以第一次实际付款为0.9a元,第二次付款超过500元,超过500元部分为(820﹣a﹣500)元,所以两次购物王老师实际付款为0.9a+0.8(820﹣a﹣500)+450=0.1a+706(元).。
人教版七年级上册数学 第二章 整式的加减 单元训练题 (3)(有解析)
第二章 整式的加减 单元训练题 (3)一、单选题1.下列式子中去括号错误的是( ).A .5x -(x -2y +5z )=5x -x +2y -5zB .2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2dC .3x 2-3(x +6)=3x 2-3x -6D .-(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 22.下列说法不正确的是( )A .单项式一定是整式B .多项式一定是整式C .单独的一个字母一定是整式D .整式中一定不含有除法运算3.观察图中正方形四个顶点所标的数字规律,可知数2011应标在( )A .第502个正方形的左下角B .第502个正方形的右下角C .第503个正方形的左上角D .第503个正方形的右下角 4.按某种标准,多项式232a a +-与23ab b +-属于同一类,则下列符合此类标准的多项式是( )A .22x y -B .231a abx +-C .234a x +-D .22a y ab +- 5.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“S ”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则“S”形的周长可表示为( )A .8a-4bB .8a-5bC .4a+5bD .4a+4b6.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .1009 7.下列代数式中:1x ,2x y +,213a b ,x y π-,54y x ,0,整式有( ) 个 A .3个B .4个C .5个D .6个 8.如果213a x +与35x 是同类项,那么a 的值是( ). A .0B .1C .2D .3 9.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是A .M=mnB .M=n(m+1)C .M=mn+1D .M=m(n+1) 10.下列说法不正确的是( )A .0是单项式B .单项式﹣235x 的系数是﹣35 C .单项式a 2b 的次数为2D .多项式1﹣xy +2x 2y 是三次三项式11.下列计算正确的是( )A .﹣2x 2y+x 2y =﹣x 2yB .4y ﹣y =4C .3a+4a =7a 2D .m 2+3m 3=4m 512.下列各组中的两个单项式,属于同类项的一组是A .23a b 与23abB .2x 与2xC . 23与2aD .4与12- 二、填空题13.计算:2223a b a b -=__________.14.如图(1),在边长为acm 的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个如图(2)所示的无盖的长方体.设剪去的小正方形的边长为4cm ,则这样折成的无盖长方体的容积是__________3cm .图(1)图(2)15.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.+=示例:即437则(1)用含x的式子表示m=______;y=-时,x=______,n的值为______.(2)当716.已知1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42,1+2+3+4+5+4+3+2+1=25=52.根据上面四式的计算规律求:1+2+3+…+2014+2015+2016+2015+2014+…+3+2+1=________(写出某数的平方即可).17.若A是一个单项式,B是一个多项式,且A+B=1,请写出一组符合条件的 A、B,A =_________,B=__________.18.如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=_____,一般地,用含有m,n的代数式表示y,即y=_____.三、解答题19.如图,是某住宅的平面结构图,图中标注有关尺寸(单位:米),房子的主人计划把卧室以外的地面都铺上地砖.()1请你帮他计算一下要铺地砖的面积是多少?()2如果选用地砖的价格是30元2/m ,当2x =时,问他买地砖需用多少钱?20.已知:2221,31,M x x N x x =--=--求6-4M N 的值,其中12x =. 21.求下列各式的值:(1)(5a 2﹣a +4)﹣(4﹣2a +4a 2),其中a =﹣23 (2)13(﹣3ax 2﹣ax +3)﹣(﹣ax 2﹣12ax ﹣1),其中a =﹣2,x =3 22.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.23.先化简,再求值:(1)2m 2-4m +1-2(m 2+2m -12),其中m =-1; (2)5xy 2-[2x 2y -(2x 2y -3xy 2)],其中(x -2)2+|y +1|=0.24.已2232A x xy y =-+,22234B x xy y =+-,求:(1)2A B -;(2)2A B +.25.某公园的门票价格是:成人票每张10元,学生票每张5元,一个旅游团有成人x 人,学生y 人.(1)该旅游团应付多少门票费?(2)如果该旅游团有30个成人和15个学生,那么他们应付多少门票费?26.先化简,再求值: ()()()221x x x x -+--,其中3x =.【答案与解析】一、单选题1.C解析:C利用去括号法则逐项排除,即可解答.解:A. 5x -(x -2y +5z )=5x -x +2y -5z ,正确;B. 2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2d ,正确;C. 3x 2-3(x +6)=3x 2-3x -18,错误;D. -(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 2,正确;故答案为C.【点睛】本题主要考查了去括号法则,即括号外是正号的,去括号后每一项都不变号;括号外是负号的,去括号后每一项都变号;括号外有系数的,括号内每一项都要乘除.2.D解析:D根据整式、单项式的定义来求解.解:A 、正确,整式包括单形式和多项式,故单项式一定是整式;B 、正确,整式包括单形式和多项式,故多项式一定是整式;C 、正确,单独的一个字母是单项式,一定是整式;D 、错误,整式有除法运算.故选D.【点睛】本题考查了整式、单项式的定义.单项式和多项式统称整式;表示数与字母乘积的代数式叫做单项式,单独一个数或字母也是单项式,分母中不含字母;所有字母的指数和叫做这个单项式的次数.3.C解析:C略4.C解析:C由多项式232a a +-与23ab b +-都是二次三项式解答即可.多项式232a a +-与23ab b +-都是二次三项式,A. 22x y -是二次二项式,故不符合题意;B. 231a abx +-是三次三项式,故不符合题意;C. 234a x +-是二次三项式,符合题意;D. 22a y ab +-是三次三项式,故不符合题意;故选C.【点睛】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.5.A解析:A根据题意列出关系式,去括号合并即可得到结果.根据题意得:44a-b 8a a b +=-()4 ,故选:A【点睛】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.6.B解析:B观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题.观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=, 2019OA 1009∴= ,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B .【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.7.B解析:B 试题解析:212,,,03πx y x y a b -+是整式,共4个. 故选B.点睛:分母中不含字母的式子即为整式. 8.B解析:B解:∵213a x +与35x 是同类项,∴23a +=,∴1a =.故选B . 9.D解析:D试题分析:寻找规律:∵3=(2+1)×1, 15=(4+1)×3,35=(6+1)×5,∴根据数的特点,上边的数与比左边的数大1的数的积正好等于右边的数。
人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)
人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)一、单选题(每小题3分,共30分)1.下列各式2211241,,8,,26,,,25πx y x ymn m x xa y-+-++中,单项式有( )A.3个B.4个C.6个D.7个2.(安顺中考)下列计算正确的是 ( )A.3x2-x2=3B.-3a2-2a2=-a2C.3(a-1)=3a-1D.-2(x+1)=-2x-23.下列说法正确的是 ( )A.-22x3y 的次数6B. 0不是单项C.23x y的系数是13D.2πr的系数是14.(贵州安顺期末)下列各组中的两个项不属于同类项的是 ( )A. 3x2y和-2x2yB. -xy和2yxC. 1-和1D. -2x2y与xy25.整式x2-3x的值是4,则3x2-9x+8的值是 ( )A.20B.4C.16D.-46.下面四个代数式中,不能表示图中阴影部分面积的是 ( )A.(x+3)(x+2)-2xB.x2+5xC.3(x+2)+x2D. x(x+3)+67.一台轿车标价a万元,为了促销,每台降价10%销售,则每台轿车的售价为 ( )万元A. 10a%B.(1+10% )aC.90% aD.(1+.90%)a8.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是 ( )A.-5x-1B.5x+1C.-13x-1D.13x+19.如果多项式x2+8xy-y2-kxy+5不含xy项,则k的值为( )A.0B.7C.1D.810.(青岛期末)观察如图所示图形,则第n个图形中三角形的个数是 ( )A.22n +B.44n +C.4nD.44n -二、填空题(每小题3分,共24分) 11.写出一个系数为-2且含a,b 的五次单项式 。
12.多项式3235612x y x -+-是 次 项式,最高次项的系数是 。
13.若代数式3a m b n-1与-9a 3b 6的和是单项式,则m n += 。
人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)
人教版七年级上册数学第二章《整式的加减》单元达标测试卷一.选择题(每题3分,共30分)1.下列代数式中,符合书写规则的是( )A .xB .x ÷yC .m ×2D .32.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .B .C .D .3关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+14.若x+y=1,则代数式3(4x-1)-2(3-6y )的值为( )A .-8B .8C .-3D .35.下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=1A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣17.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 等于( )A .x 2-5y 2+1B .x 2-3y 2+1C .5x 2-3y 2-1D .5x 2-3y 2+18.两船从同一港口同时反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h ,水流的速度为a km/h ,3h 后,甲船比乙船多航行的路程是( )A .1.5a kmB .3a kmC .6a kmD .(150+3a )km 9.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面.(﹣x 2+3xy 12-y 2)﹣(12-x 2+4xy 12-y 2)12=-x 2●,黑点处即为被墨迹弄污的部分,那么被墨汁遮住的一项应是( )A .﹣xyB .+xyC .﹣7xyD .+7xy10.如图,阴影部分的面积为A.B.C.D.二、填空题(共24分)11.减去3m后,等于3m2+m﹣1的多项式是.12.已知3a n b n﹣1与﹣5a2b2m(m是正整数)是同类项,那么(2m﹣1)2=.13.计算:(m+3m+5m+…+2019m)﹣(2m+4m+6m+…+2020m)=.14.小华在计算多项式P加上x2﹣3x+6时,因误认为加上x2+3x+6,得到的答案是2x2﹣4x,则P应是.15.如图,把五个长为b、宽为a的小长方形,按图1和图2两种方式放在一个宽为m的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为C1,图2中阴影部分的周长为C2,若大长方形的长比宽大(6﹣a),则C2﹣C1的值为.16.如图,将图①中的四边形剪开得到图②,图中共有4个四边形;将图②中的一个四边形剪开得到图③,图中共有7个四边形;如此剪下去,第5个图中共有________个四边形,第n(n为正整数)个图中共有________个四边形.。
(常考题)人教版初中数学七年级数学上册第二单元《整式的加减》测试(包含答案解析)(3)
一、选择题1.定义运算“*”,其规则为2*3a b a b +=,则方程4*4x =的解为( ) A .3x =-B .3x =C .2x =D .4x = 2.下列解方程的过程中,移项正确的是( ) A .由,得 B .由,得 C .由,得 D .由,得3.有两支同样长的蜡烛,一支能点燃小时,另一支能点燃小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( )A .小时B .小时C .小时D .小时 4.若三个连续偶数的和是24,则它们的积为( )A .48B .240C .480D .1205.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( )A .-2B .34C .2D .43- 6.若4a ﹣9与3a ﹣5互为相反数,则a 2﹣2a+1的值为( )A .1B .﹣1C .2D .07.两年前,李叔叔在银行存了一笔两年的定期存款,年利率是2.75%.到期后取出,得到本金和利息总共21100元.设李叔叔存入的本金为x 元,则下列方程正确的是( ) A .2 2.75%21100x ⨯=B . 2.75%21100x x +=C .2 2.75%21100x x +⨯=D .2( 2.75%)21100x x +=8.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( ) A .2015(34)x x =-B .220315(34)x x ⨯=⨯-C .320215(34)x x ⨯=⨯-D .320(34)215x x ⨯-=⨯ 9.把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律 10.一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( )A .34000mB .32500mC .32000mD .3500m11.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( )A .2B .12C .-2D .1-212.下列方程中,以x =-1为解的方程是( )A .B .7(x -1)=0C .4x -7=5x +7D .x =-3二、填空题13.关于x 的方程927x kx -=+的解是自然数,则整数k 的值为________. 14.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有______________幅.15.用等式的性质解方程:155x -=,两边同时________,得x =________;245y =,两边同时________,得y =________.16.若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则m n +的值是_________.17.某中学组织学生为“希望工程”捐款,甲、乙两班一共捐款425元,已知甲班有50人,乙班比甲班少5人,而乙班比甲班平均每人多捐1元,则乙班平均每人捐款______元. 18.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.19.有一位工人师傅要锻造底面直径为40cm 的“矮胖”形圆柱,可他手上只有底面直径是10cm 、高为80cm 的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.20.张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________. 三、解答题21.大明共有4800元,他将一部分钱按活期存了一年,剩下的钱买了企业债券,一年后共获利24.8元,知活期储蓄的年利率是0.35%,企业债券的年利率是0.6%,则大明存活期和买债券各用了多少元?22.松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲工厂比乙工厂要多用20天在加工过程中,学校每天需付甲工厂费用80元,乙工厂费用120元.(1)这批校服共有多少件?(2)在实际加工过程中,甲、乙两个工厂按原生产效率合作一段时间后,甲工厂停工了,乙工厂每天的生产效率提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间比甲工厂工作时间的2倍还多4天,则乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲工厂单独完成;方案二:由乙工厂单独完成;方案三:按第(2)问方式完成并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种既省时又省钱的加工方案.23.一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,,则两队合作,几个月可以完工?24.已知关于x 的方程:2(x ﹣1)+1=x 与3(x +m )=m ﹣1有相同的解,求以y 为未知数的方程3332my m x --=的解. 25.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?26.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据新定义列出关于x 的方程,解之可得.【详解】∵4*x=4,∴234x ⨯+=4, 解得x=4,故选:D .【点睛】 本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.D解析:D【解析】【分析】把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
新人教版初中数学七年级数学上册第二单元《整式的加减》测试卷(有答案解析)(3)
一、选择题1.如图,每个圆纸片的面积都是30,圆纸片A 与B ,B 与C ,C 与A 的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为( )A .54B .56C .58D .692.下列各等式的变形中,等式的性质运用正确的是( )A .由02x =,得2x =B .由14x -=,得5x =C .由23a =,得23a =D .由a b =,得a b c c= 3.在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x 场,则根据以上信息所列方程正确的是( ) 大比分胜(积分) 负(积分) 3:03 0 3:13 0 3:2 2 1A .3x+2x =32B .3(11﹣x )+3(11﹣x )+2x =32C .3(11﹣x )+2x =32D .3x+2(11﹣x )=324.定义运算“*”,其规则为2*3a b a b +=,则方程4*4x =的解为( ) A .3x =- B .3x = C .2x = D .4x = 5.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x 千米,可列方程( )A .408 3.6x x -=B .4083.6x =-C . 3.6840x x -=D . 3.6408x x -= 6.下列变形中,正确的是( ) A .变形为B .变形为C .变形为D .变形为7.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )A .5袋B .6袋C .7袋D .8袋8.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A .120元B .125元C .135元D .140元9.某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折10.已知方程(1)30m m x -+=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或111.对于ax+b=0(a ,b 为常数),表述正确的是( )A .当a≠0时,方程的解是x=b aB .当a=0,b≠0时,方程有无数解C .当a=0,b=0,方程无解D .以上都不正确.12.下列方程的变形,符合等式的性质的是( )A .由2x ﹣3=7,得2x=7﹣3B .由3x ﹣2=x+1,得3x ﹣x=1﹣2C .由﹣2x=5,得x=﹣3D .由﹣13x=1,得x=﹣3 二、填空题13.解关于x 的方程,有如下变形过程:①由2316x =-,得2316x =-; ②由342x -=,得324x =-;③由0.221 1.530.1x x -+=+,得366045x x +=-+; ④由253x x -=,得352x x -=. 以上变形过程正确的有_____.(只填序号)14.若关于x 的方程2mx+3m=-1与3x+6x=-3的解相同,则m 的值为_____.15.一条河的水流速度为3km/h ,船在静水中的速度为xkm/h ,则船在这条河中顺水行驶的速度是____km/h ;16.当3x =时,式子22x +与5x k +的值相等,则k 的值是______.17.对于实数a ,b ,c ,d ,规定一种运算 a bc d =ad -bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x =_____.18.猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a 亥b ab b =-,则满足等式123x -亥61=-的x 的值为__________. 19.对于数a ,b 定义这样一种运算:*2a b b a =-,例如1*3231=⨯-,若()3*11x +=,则x 的值为______.20.一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.三、解答题21.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.22.为鼓励居民节约用电,某市试行每月阶梯电价收费制度,具体执行方案如下:档次每户每月用电量(度) 执行电价(元/度) 第一档小于或等于200 0.5 第二档 大于200且小于或等于450时,超出200的部0.7分第三档大于450时,超出450的部分1(1)一户居民七月份用电300度,则需缴电费__________元.(2)某户居民五、六月份共用电500度,缴电费290元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于450度.①请判断该户居民五、六月份的用电量分别属于哪一个档次?并说明理由.②求该户居民五、六月份分别用电多少度?23.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?24.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元.(2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.25.已知数轴上的A、B两点分别对应数字a、b,且a、b满足|4a-b|+(a-4)2=0(1)a= ,b= ,并在数轴上面出A、B两点;(2)若点P从点A出发,以每秒3个单位长度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B距离的2倍;(3)数轴上还有一点C的坐标为30,若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A.求点P和点Q运动多少秒时,P、Q两点之间的距离为4,并求此时点Q对应的数.26.解下列方程:(1)2(x-1)=6;(2)4-x=3(2-x);(3)5(x+1)=3(3x+1)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据图形可知:三个圆纸片覆盖的总面积+A 与B 的重叠面积+B 与C 的重叠面积+C 与A 的重叠面积−A 、B 、C 共同重叠面积=每个圆纸片的面积×3,由此等量关系列方程求出A 、B 、C 共同重叠面积,从而求出图中阴影部分面积.【详解】解:设三个圆纸片重叠部分的面积为x ,则73+6+8+5−x =30×3,得x =2.所以三个圆纸片重叠部分的面积为2.图中阴影部分的面积为:73−(6+8+5−2×2)=58.故选:C .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出式子,再求解.2.B解析:B【解析】【分析】利用等式的基本性质判断即可.【详解】解:A 、由02x =,得x=0,不符合题意; B 、由x-1=4,得x=5,符合题意; C 、由2a=3,得a=32,不符合题意; D 、由a=b ,c≠0,得a b c c =,不符合题意; 故选:B .【点睛】本题考查了等式的性质,熟练掌握等式的基本性质是解题的关键.3.C解析:C【分析】设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x )场,根据总积分=3×小比分获胜的场次数+2×大比分获胜场次数,即可得出关于x 的一元一次方程.【详解】解:设中国队以大比分3:2取胜的场次有x 场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x )场,依题意,得:2x +3(11﹣x )=32.故选:C .【点睛】本题考查了一元一次方程的应用,正确理解题意、找准相等关系是解题的关键. 4.D解析:D【分析】根据新定义列出关于x 的方程,解之可得.【详解】∵4*x=4, ∴234x ⨯+=4, 解得x=4,故选:D .【点睛】 本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.5.C解析:C【分析】本题中的相等关系是:步行从甲地到乙地所用时间-乘车从甲地到乙地的时间=3.6小时,据此列方程即可.【详解】解:设甲乙两地相距x 千米,根据等量关系列方程得:3.6840x x -= 故选:C.【点睛】列方程解应用题的关键是找出题目中的相等关系. 6.B解析:B【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2, 两边同时乘以2,即可得到x+3=4+2x;故选项正确.C. 根据等式性质2, 两边都除以−2,应得到x−4=−1,故选项错误;D. 根据等式性质2, 两边同时乘以2,即可得到−x−1=1;故选项错误.故选B.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.7.A解析:A【解析】【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.8.B解析:B【分析】设每件的成本价为x元,列方程求解即可.【详解】设每件的成本价为x元,⨯+=+,0.8(140%)15x x解得x=125,故选:B.【点睛】此题考查一元一次方程的实际应用—销售问题,正确理解题意是列方程解决问题的关键. 9.C【分析】设打折x 折,利用利润率=100%⨯-⨯标价折扣进价进价的数量关系, 根据利润率不低于20%可得:12000.1x 800 20%800⨯-≥,解不等式可得:8x ≥. 【详解】设打折x 折,由题意可得:12000.1x 80020%800⨯-≥, 解得:8x ≥.故选C.【点睛】本题主要考查不等式解决商品利润率问题,解决本题的关键是要熟练掌握利润率的数量关系,列不等式进行求解.10.C解析:C【分析】直接利用一元一次方程的定义进而分析得出答案.【详解】∵方程(1)30m m x -+=是关于x 的一元一次方程, ∴1m =,10m -≠,解得:1m =-.故选:C .【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键. 11.D解析:D【分析】ax+b=0(a ,b 为常数),当a=0时,就不是一元一次方程,当a=0时,是一元一次方程.分两种情况进行讨论.【详解】A 、当a≠0时,方程的解是x=-b a,故错误; B 、当a=0,b≠0时,方程无解,故错误;C 、当a=0,b=0,方程有无数解,故错误;D 、以上都不正确.故选D .此题很简单,解答此题的关键是:正确记忆一元一次方程的一般形式中,一次项系数不等于0.12.D解析:D【分析】根据等式的基本性质对各选项进行逐一分析即可.【详解】A .∵2x ﹣3=7,∴2x=7+3,故本选项错误;B .∵3x ﹣2=x+1,∴3x ﹣x=1+2,故本选项错误;C .∵﹣2x=5,∴x=﹣52,故本选项错误; D .∵﹣13x=1,∴x=﹣3,故本选项正确. 故选D .【点睛】考核知识点:等式基本性质.理解等式基本性质的内容是关键.二、填空题13.无【分析】①方程x 系数化为1求出解即可做出判断;②方程移项得到结果即可做出判断;③方程去分母得到结果即可做出判断;④方程去分母得到结果即可做出判断【详解】①由得;②由得;③由得;④由得则以上变形过程解析:无.【分析】①方程x 系数化为1求出解,即可做出判断;②方程移项得到结果,即可做出判断;③方程去分母得到结果,即可做出判断;④方程去分母得到结果,即可做出判断.【详解】①由2316x =-,得1623x =-; ②由342x -=,得324x =+;③由0.221 1.530.1x x -+=+,得3660 4.5x x +=-+; ④由253x x -=,得3530x x -=. 则以上变形过程正确的有无,故答案为:无【点睛】本题考查等式的基本性质,掌握等式的基本性质,对等式进行变形是解答此题的关键.14.【分析】分别解出两方程的解两解相等就得到关于m的方程从而可以求出m的值【详解】解:由3x+6x=-3可得:x=-由2mx+3m=-1可得:x=所以可得:解得:故答案为:【点睛】本题考查了同解方程本题解析:3 7 -【分析】分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.【详解】解:由3x+6x=-3可得:x=-13,由2mx+3m=-1可得:x=132mm--,所以可得:131 23mm--=-,解得:37m=-,故答案为:37 -.【点睛】本题考查了同解方程,本题解决的关键是能够求解关于x的方程,要正确理解方程解的含义.15.x+3【分析】根据顺水速度=静水中的速度+水速即可列出代数式【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题解决问题的关键是读懂题意找到所求的量之解析:x+3【分析】根据顺水速度=静水中的速度+水速,即可列出代数式.【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题,解决问题的关键是读懂题意,找到所求的量之间的关系.16.-7【分析】把x=3代入两个式子即可表示出两个式子的值就可得到一个关于k的方程从而求得k的值【详解】解:由题意得:8=15+k解得:k=-7故答案为:-7【点睛】本题要注意列出方程求出未知数的值解析:-7【分析】把x=3代入两个式子即可表示出两个式子的值,就可得到一个关于k的方程,从而求得k 的值.【详解】解:由题意得:8 =15+k,解得:k=-7,故答案为:-7【点睛】本题要注意列出方程,求出未知数的值.17.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x的方程然后解方程即可求出x的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(解析:22【分析】由题中的新定义可知,此种运算为对角线乘积相减的运算,化简所求的式子得到关于x的方程,然后解方程即可求出x的值.【详解】解:∵(1)(2) (3)(1)x xx x++--=27,∴(x+1)(x-1)-(x+2)(x-3)=27,∴x2-1-(x2-x-6)=27,∴x2-1-x2+x+6=27,∴x=22;故答案为:22.【点睛】本题考查了新定义运算,及灵活运用新定义的能力,根据新定义把所给算式转化为一元一次方程是解答本题的关键.18.【分析】原式利用题中的新定义计算即可求出值【详解】根据题中的新定义得亥故答案为:【点睛】本题考查了一元一次方程的解法掌握解一元一次方程的解法是解题的关键解析:3 4 -【分析】原式利用题中的新定义计算即可求出值.【详解】根据题中的新定义得123x -亥61=- 126613x -⨯-=- 2461x --=-43x -=34x =- 故答案为:34-. 【点睛】本题考查了一元一次方程的解法,掌握解一元一次方程的解法是解题的关键. 19.1【分析】根据新定义的运算法则代入计算即可得到答案【详解】解:∵∴∴∴;故答案为:1【点睛】本题考查了新定义的运算法则解题的关键是熟练掌握新定义的运算法则进行运算解析:1【分析】根据新定义的运算法则,代入计算即可得到答案.【详解】解:∵*2a b b a =-,∴()3*12(1)31x x +=+-=,∴211x -=,∴1x =;故答案为:1.【点睛】本题考查了新定义的运算法则,解题的关键是熟练掌握新定义的运算法则进行运算. 20.﹣【分析】利用新定义相伴数对列出方程解方程即可求出x 的值【详解】解:根据题意得:去分母得:15x+10=6x+6移项合并得:9x =﹣4解得:x =﹣故答案为:﹣【点睛】本题考查解一元一次方程正确理解相解析:﹣49. 【分析】 利用新定义“相伴数对”列出方程,解方程即可求出x 的值.【详解】 解:根据题意得:11235x x , 去分母得:15x+10=6x+6,移项合并得:9x =﹣4,解得:x=﹣49.故答案为:﹣49.【点睛】本题考查解一元一次方程,正确理解“相伴数对”的定义是解本题的关键.三、解答题21.大正方形的面积是36cm2【分析】设小正方形的边长为x,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积.【详解】设小正方形的边长为x,则大正方形的边长为4+(5−x)cm或(x+1+2)cm,根据题意得:4+(5−x)=(x+1+2),解得:x=3,∴4+(5−x)=6,∴大正方形的面积为36cm2.答:大正方形的面积为36cm2.【点睛】本题考查了一元一次方程的应用,解题的关键是设出小正方形的边长并表示出大正方形的边长.22.(1) 170元;(2)①五月份用电量在第一档,六月份用电量在第二档. ②设五、六月份分别用电100度、400度.【分析】(1)根据阶梯电价收费制度,七月份用电300度属于第二档,所以应缴电费200×0.5+100×0.7=170(元);(2)①分情况进行讨论,从而确定五六月份的用电量分别位于哪一档;②由①的结论,设五月份用电x度,列方程求解即可.【详解】解:(1) ∵200<300小于450∴应缴电费:200×0.5+100×0.7=170(元)故答案为:170(2)①因为两个月的总用电量为500度,所以每个月用电量不可能都在第一档;假设该用户五、六月每月用电均超过200度,此时的电费共计200×0.5+200×0.5+100×0.7=270(元),而270<290,不符合题意;又因为六月份用电量大于五月份,所以五月份用电量在第一档,六月份用电量在第二档.②设五月份用电x度,则六月份用电(500-x)度,根据题意,得0.5x+200×0.5+0.7×(500-x-200)=290解得x=100,500-x=400.答:该户居民五、六月份分别用电100度、400度.【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:(1)根据收费标准列式计算;(2)分情况讨论用电量,列出关于x的一元一次方程.23.(1)购买A种记录本120本,B种记录本50本;(2)学校此次可以节省82元钱.【分析】根据两种记录本一共花费460元即可列出方程【详解】(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】根据题意中的等量关系列出方程是解决问题的关键24.(1)134元,520元;(2)54元;(3)见解析【分析】(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减去实际付款可求节省的钱数;(3)先计算两次物品合起来一次购买实际付款,在与134+466比较即可.【详解】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品的标价超过了500元.设其标价x元,则500×0.9+(x-500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;故答案为:134元,520元;(2)134+520-134-466=54,所以省了54元;(3)两次物品合起来一次购买更节省.两次合起来一次购买支付500×0.9+(654-500)×0.8=573.2元,573.2<134+466=600,所以两次物品合起来一次购买更节省.【点睛】此题主要考查了一元一次方程的应用中实际生活中的折扣问题,关键是运用分类讨论的思想,分析清楚付款打折的两种情况.25.(1)4,16.画图见解析;(2)83或8秒;(3)点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.此时点Q表示的数为20,24,25,27.【分析】(1)根据非负数的性质求出a、b的值即可解决问题;(2)构建方程即可解决问题;(3)分四种情形构建方程即可解决问题.【详解】(1)∵a,b满足|4a-b|+(a-4)2≤0,∴a=4,b=16,故答案为4,16.点A、B的位置如图所示.(2)设运动时间为ts.由题意:3t=2(16-4-3t)或3t=2(4+3t-16),解得t=83或8,∴运动时间为83或8秒时,点P到点A的距离是点P到点B的距离的2倍;(3)设运动时间为ts.由题意:12+t-3t=4或3t-(12+t)=4或12+t+4+3t=52或12+t+3t-4=52,解得t=4或8或9或11,∴点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.此时点Q表示的数为20,24,25,27.【点睛】本题考查多项式、数轴、行程问题的应用等知识,具体的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.26.(1)x=4;(2)x=1;(3)x=1 2【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解;(2)方程去括号,移项合并,将未知数系数化为1,即可求出解;(3)方程去括号,移项合并,将未知数系数化为1,即可求出解;【详解】(1)去括号,得2x-2=6.移项,得2x=8.系数化为1,得x=4.(2)去括号,得4-x=6-3x.移项,得-x+3x=6-4.合并同类项,得2x=2.系数化为1,得x=1.(3)去括号,得5x+5=9x+3.移项,得5x-9x=3-5.合并同类项,得-4x=-2.系数化为1,得x=1 2 .【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.。
(常考题)人教版初中数学七年级数学上册第二单元《整式的加减》检测卷(包含答案解析)(3)
一、选择题1.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+2.新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm 3.方程2424x x -=-+的解是 ( )A .x =2B .x =−2C .x =1D .x =04.在三峡大坝截流时,用载重卡车将一堆石料运到围堰龙口,第一次运了这堆石料的少万方,第二次运了剩下的多万方,此时还剩下万方未运,若这堆石料共有万方,于是可列方程为( ) A . B . C . D .5.把方程10.58160.60.9x x -++=的分母化为整数,结果应为( ) A .1581669x x -++= B .10105801669x x -++= C .101058016069x x -+-= D .15816069x x -++= 6.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( )A .-2B .34C .2D .43-7.解方程32282323x x x----=的步骤如下,错误的是( ) ①2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x ); ②6x ﹣4﹣3x ﹣6=16﹣4x ; ③3x +4x =16+10;④x =267. A .①B .②C .③D .④8.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( ) A .1146x x++= B .1146x x ++= C .1146x x -+= D .111446x x +++= 9.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=- C .()322x -+=D .()()3221x x ++=-10.如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( )A .ab+2x 2B .ab ﹣2x 2C .ab+4x 2D .ab ﹣4x 2 11.方程的解是( ) A . B .C .D .12.下列判断错误的是 ( )A .若,则B .若,则C .若,则D .若,则二、填空题13.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y 的值等于______.14.自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按2元收费;用水超过10吨,超过10吨的部分按每吨3元收费.王老师家三月份水费为50元,则王老师家三月份用水________吨.15.某公司销售,,A B C 三种电子产品,在去年的销售中,产品C 的销售额占总的销售额的60%,由于受新冠肺炎疫情的影响,估计今年,A B 两种产品的销售额都将比去年减少45%,公司将产品C 定为今年销售的重点,要使今年的总销售额与去年持平,那么今年产品C 的销售额应比去年增加__________.16.若有a ,b 两个数满足关系式:1a b ab +=-,则称a ,b 为“共生数对”,记作(),a b .例如:当2,3满足23231+=⨯-时,则()23,是“共生数对”.若()2x -,是“共生数对”,则x =__________.17.如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为______厘米2.(1毫升=1立方厘米)18.已知222a b ck b c a c a b===+++,则k =______. 19.在方程1322x -=-的两边同时_________,得x =__________. 20.某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米. (1)若设这个足球场的宽为x 米,那么长为_______米。
最新人教版初中数学七年级数学上册第二单元《整式的加减》检测卷(含答案解析)(3)
一、选择题1.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+ 2.已知5x =是关于x 的方程4231x m x +=+的解,则方程3261x m x +=+的解是_________.A .53B .53-C .-2D .13.如图所示,两人沿着边长为90 m 的正方形,按A →B →C →D →A …的方向行走,甲从A 点以65 m/min 的速度、乙从B 点以75 m/min 的速度行走,当乙第一次追上甲时,将在正方形的( )边上.A .BCB .DC C .ADD .AB 4.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元 5.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x 辆汽车到甲队,由此可列方程为( )A .100﹣x =2(68+x)B .2(100﹣x)=68+xC .100+x =2(68﹣x)D .2(100+x)=68﹣x 6.某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为( )A .300元B .250元C .240元D .200元 7.甲乙两人骑摩托车从相距170千米的A ,B 两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行( )A .30千米B .40千米C .50千米D .45千米 8.已知方程16x -1=233x + ,那么这个方程的解是( ) A .x =-2 B .x =2 C .x =-12 D .x =129.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m 3,每立方米收费2元;若用水超过20m 3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水( )m 3.A .38B .34C .28D .4410.已知方程(1)30m m x -+=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或111.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,则该电器的标价为( )A .3750元B .4000元C .4250元D .3500元 12.若代数式的值为,则的值为( ) A . B . C . D .二、填空题13.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有______________幅.14.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.15.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________. 16.用等式的性质解方程:155x -=,两边同时________,得x =________;245y =,两边同时________,得y =________.17.若4a +9与3a +5互为相反数,则a 的值为_____.18.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号. 19.如果ma mb =,那么下列等式一定成立的是_______.①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.20.关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.三、解答题21.解方程:(1)3(26)17x x +=--;(2)4(2)13(1)x x --=-;(3)4(1)5(3)11x x +--=;(4)14(1)(26)112x x --+=. 22.如图,在一条不完整的数轴上,一动点A 向左移动4个单位长度到达点B ,再向右移动7个单位长度到达点C .(1)若点A 表示的数为0,求点B 、点C 表示的数;(2)如果点A,C表示的数互为相反数,求点B表示的数;(3)在(1)的条件之下,若小虫P从点B出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q恰好从点C出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两只小虫在数轴上的点D相遇,点D表示的数是多少?23.一天,某客运公司的甲、乙两辆客车分别从相距380千米的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2小时时甲车先到达服务区C地,此时两车相距20千米,甲车在服务区C地休息了20分钟,然后按原速度开往B地;乙车行驶2小时15分钟时也经过C地,未停留继续开往A地.(友情提醒:画出线段图帮助分析)(l)乙车的速度是千米/小时,B、C两地的距离是千米,A、C两地的距离是千米;(2)甲车的速度是千米/小时;(3)这一天,乙车出发多长时间,两车相距200千米?24.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C 所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.25.利用等式的性质解下列方程:(1)x-2=5;(2)-23x=6;(3)3x=x+6.26.某同学在解方程21132y y a-+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y=2,试求a的值及此方程的解.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.2.B解析:B【分析】根据方程的解求得m 的值,然后将m 的值代入方程3261x m x +=+求解x 的值即可.【详解】解:∵x=5是关于x 的方程4x+2m=3x+1的解,∴20+2m=15+1,解得:m=-2,∴方程变为3x-4=6x+1,解得:x=53-. 故选B.【点睛】本题考查了二元一次方程的解的知识,解题的关键是根据方程的解求得m 的值,难度不大. 3.C解析:C【分析】设乙x 分钟后追上甲,根据乙追上甲时,比甲多走了270米,可得出方程,求出时间后,计算乙所走的路程,继而可判断在哪一条边上相遇.【详解】设乙x 分钟后追上甲,由题意得,75x−65x =270,解得:x =27,而75×27=5×360+212×90, 即乙第一次追上甲是在AD 边上.故选C .【点睛】本题考查了一元一次方程的应用,完成本题要注意通过所行路程及正方形的周长正确判断追上时在正方形的那条边上.4.C解析:C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.5.C解析:C【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆-调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【详解】设需要从乙队调x辆汽车到甲队,由题意得100+x=2(68﹣x),故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.6.C解析:C【分析】设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【详解】设这种商品每件的进价为x元,根据题意得:330×80%−x=10%x,解得:x=240,则这种商品每件的进价为240元.故选C.【点睛】此题考查一元一次方程的应用,找准题目中的等量关系是解题的关键.7.B解析:B【解析】【分析】相向而行,2小时相遇,那么相应的等量关系为:甲2小时走的路程+乙2小时走的路程=170,把相关数值代入即可求解.【详解】解:乙每小时行x 千米,甲每小时走(x +5)千米,则2x +2(x +5)=170,解得x =40,选B.【点睛】本题主要考查用一元一次方程解决行程问题中的相遇问题;得到甲乙行程和的等量关系是解决本题的关键.8.A解析:A【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】两边同乘以6去分母,得62(23)x x -=+,去括号,得646x x -=+,移项,得646x x -=+,合并同类项,得510x -=,系数化为1,得2x =-,故选:A .【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.9.C解析:C【解析】试题设小明家5月份用水xm 3,当用水量为20m 3时,应交水费为20×2=40(元).∵40<64,∴x >20.根据题意得:40+(2+1)(x-20)=64,解得:x=28.故选C .10.C解析:C【分析】直接利用一元一次方程的定义进而分析得出答案.【详解】∵方程(1)30m m x -+=是关于x 的一元一次方程,∴1m =,10m -≠,解得:1m =-.故选:C .【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键. 11.A解析:A【分析】先根据利润=20%×成本,设未知数解方程求出成本,再用售价÷8折=标价解答即可.【详解】解:设该电器的成本为x 元.依题意,得50020%x =,解得2500x =.所以该电器的标价为(2500500)0.83750+÷=(元).故选:A .【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.12.A解析:A【解析】【分析】根据题意列出方程,求出方程的解即可得到x 的值.【详解】根据题意得:2x +3=6,移项合并得:2x =3,解得:x =,故选:A .【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.二、填空题13.69【详解】设国画为x 幅则油画为(2x+7)幅根据题意可得:x+2x+7=100解得:x=31则2x+7=69即油画作品的数量为69幅考点:一元一次方程的应用 解析:69【详解】设国画为x 幅,则油画为(2x+7)幅,根据题意可得:x+2x+7=100,解得:x=31,则2x+7=69,即油画作品的数量为69幅.考点:一元一次方程的应用.14.28【解析】设这种电子产品的标价为x 元由题意得:09x−21=21×20解得:x=28所以这种电子产品的标价为28元故答案为28解析:28【解析】设这种电子产品的标价为x 元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.15.【分析】先求出m 的值再代入求出x 的值即可【详解】因为原方程是关于x 的一元一次方程所以移项得合并同类项得把代入原方程得移项得合并同类项得系数化为1得故答案为:【点睛】本题考查了解一元一次方程的问题掌握 解析:3x =-【分析】先求出m 的值,再代入求出x 的值即可.【详解】因为原方程是关于x 的一元一次方程,所以21+=m ,移项,得12m =-.合并同类项,得1m =-.把1m =-代入原方程,得224x --=.移项,得242x -=+.合并同类项,得26x -=.系数化为1,得3x =-.故答案为:3x =-.【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 16.加1520除以10【分析】根据等式的基本性质解答即可解方程时将方程变形的原则是左边不含常数项右边不含未知项【详解】等式左边有-15则两边需加15得;等式两边都除以(或乘)得故答案为:加1520除以1解析:加15 20 除以2510 【分析】根据等式的基本性质解答即可,解方程时将方程变形的原则是左边不含常数项,右边不含未知项.【详解】等式155x -=,左边有-15,则两边需加15,得20x; 等式245y =,两边都除以25(或乘52),得10y =. 故答案为:加15,20,除以25,10 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 17.-2【分析】利用相反数的性质求出a 的值即可【详解】解:根据题意得:4a+9+3a+5=0移项合并得:7a =﹣14解得:a =﹣2故答案为﹣2【点睛】本题考查了解一元一次方程以及相反数熟练掌握运算法则是解析:-2【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a +9+3a +5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键. 18.【解析】【分析】根据题意先设中间一个的数字为x 即可解答【详解】设中间一个的数字为x 其他两个为x+7x-7则x+7+x+x-7=42解答x=14所以第一个是14-7=7日故答案为:7【点睛】此题考查一解析:7【解析】【分析】根据题意先设中间一个的数字为x ,即可解答.【详解】设中间一个的数字为x ,其他两个为x+7,x-7,则x+7+x+x-7=42,解答x=14,所以第一个是14-7=7日,故答案为:7.【点睛】此题考查一元一次方程的应用,解题关键在于找出等量关系.19.②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决【详解】当m =0时a =b 不一定成立故 解析:②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立; ②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【详解】当m =0时,a =b 不一定成立.故①错误;ma =mb ,根据等式的性质1,两边同时减去6,就得到ma−6=mb−6.故②正确;根据等式的性质2,两边同时乘以−12,即可得到1122ma mb -=-,故③正确; 根据等式的性质1,两边同时加上8就可得到ma +8=mb +8.故④正确; 根据等式的性质2,两边同时乘以3,即可得到33ma mb =,根据等式的性质1,两边同时减去1就可得到3ma-1=3mb-1,故⑤正确;根据等式的性质1,ma mb =两边同时加或减3,结果仍相等,故⑥错误,故答案为:②③④⑤.【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.20.或或x=-3【分析】利用一元一次方程的定义判断即可【详解】解:关于的方程如果是一元一次方程(1)当即即解得:(2)当m=0时解得:(3)当2m-1=0即m=时方程为解得:x=-3故答案为x=2或x=解析:2x =或2x =-或x=-3.【分析】利用一元一次方程的定义判断即可.【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,(1)当2m 11﹣=,即m 1=, 即x 20﹣=解得:x 2=,(2)当m=0时,x 20--=,解得:x 2=-(3)当2m-1=0,即m=12时,方程为112022x --= 解得:x=-3, 故答案为x=2或x=-2或x=-3.【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.三、解答题21.(1)5x =-;(2)6x =;(3)8x =;(4)6x =【分析】(1)去括号,移项及合并同类项,系数化为1即可求解.(2)去括号,移项及合并同类项,系数化为1即可求解.(3)去括号,移项及合并同类项,系数化为1即可求解.(4)去括号,移项及合并同类项,系数化为1即可求解.【详解】(1)去括号,得61817x x +=--.移项及合并同类项,得735x =-.系数化为1,得5x =-.(2)去括号,得48133x x --=-.移项,得43381x x -=-++.合并同类项,得6x =.(3)去括号,得4451511x x +-+=.移项,得4511415x x -=--.合并同类项,得8x -=-.系数化为1,得8x =.(4)去括号,得44311x x ---=.移项,得41143x x -=++.合并同类项,得318x =.系数化为1,得6x =.【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 22.(1)点B 表示的数为4-,点C 表示的数为3;(2)点B 表示的数为 5.5-;(3)1【分析】(1)根据数轴上两点间的距离公式,分别求出B 、C 表示的数.(2)根据相反数的定义求解即可.(3)根据题意列出方程求解即可.【详解】(1)若点A 表示的数为0,因为044-=-,所以点B 表示的数为4-.因为473-+=,所以点C 表示的数为3.(2)若点A ,C 表示的数互为相反数,因为743AC =-=,所以点A 表示的数为 1.5-.因为 1.54 5.5--=-,所以点B 表示的数为 5.5-.(3)设小虫P 与小虫Q 的运动时间为t .依题意得0.50.27t t +=,解得10t =,则点D 表示的数是0.51041⨯-=.【点睛】本题考查了数轴的综合问题,掌握数轴两点的距离公式、相反数的性质、解一元一次方程的方法是解题的关键.23.(1)80,180,200;(2)100(3)乙车出发1小时或11327小时,两车相距200千米 【分析】(1)由题意可知,甲车2小时到达C 地,休息了20分钟,乙车行驶2小时15分钟也到C 地,这20分钟甲车未动,即乙车15分钟走了20千米,据此可求出乙车的速度,再根据速度求出B 、C 两地的距离和A 、C 两地的距离即可解答.(2)根据A 、C 两地的距离和甲车到达服务区C 地的时间可求出甲车的速度;(3)此题分为两种情况,未相遇和相遇以后相距200千米,据此根据题意列出符合题意得方程即可解答.【详解】解:(1)15分钟=14小时,2小时15分=94小时,20分钟=13小时 乙车的速度为:20÷14=80(千米/小时); B 、C 两地的距离是:80×94=180(千米); A 、C 两地的距离是:380-180=200(千米);故答案为:80,180,200;(2)甲车的速度是:200÷2=100(千米/小时);故答案为:100;(3)设乙车出发x 小时,两车相距200千米.由题意得,100x+80x+200=380或100(x-13)+80x=380+200 解得:x=1或x=11327答:乙车出发1小时或11327小时,两车相距200千米 【点睛】本题主要考查一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.25.(1)x=7;(2)x=-9;(3)x=3【分析】(1)两边同时加上2即可求解;(2)两边同时乘-32即可求解;(3)两边同时减x,然后同时除以2即可求解.【详解】解:(1)等式两边加2,得x-2+2=5+2,即x=7.(2)等式两边乘-32,得x=6×(-32),即x=-9.(3)等式两边减x,得2x=6.两边除以2,得x=3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.26.y=-3.【分析】根据题意得到去分母结果,把y=2代入求出a的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,解得:a=13,方程为12131 32yy+-=-,去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学试卷--第二单元整式的加减练习题3一、单选题(共10题;共20分)1.下列计算正确的是( )A. a3+a2=a5B. a6÷a3=a2C. (a2)3=a8D. a2·a3=a52.下列计算错误的是()A. a2•a=a3B. (ab)2=a2b2C. (a2)3=a5D. ﹣a+2a=a3.多项式x2+3的项数和次数分别是()A. 1,2B. 2,2C. 1,3D. 2,34.在代数式中,单项式的个数是().A. 6B. 5C. 4D. 35.下列说法正确的是()A. 3不是单项式B. x3y2没有系数C. 是一次一项式D. 是单项式6.同时含有字母a、b、c且系数为1的五次单项式有()A. 1个B. 3个C. 6个D. 9个7.若﹣2a m b4与b n﹣2a3是同类项,则m n的值为()A. 9B. ﹣9C. 729D. ﹣7298.如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的后,得图③、④,…,记第n (n≥3)块纸板的周长为P n,则P n-P n-1等于()A. B. 3- C. 1- D. +9.下列计算正确的是()A. 2(x+y)=2x+yB. x4•x3=x7C. x3﹣x2=xD. (x3)2=x510.下列说法正确的是()A. 的系数是-2B. 32ab3的次数是6次C. x2+x-1的常数项为1D. 4x2y-5x2y2+7xy是四次三项式二、填空题(共10题;共13分)11.请你写出一个同时符合下列条件的代数式,(1)同时含有字母a,b;(2)是一个4次单项式;(3)它的系数是一个正数,你写出的一个代数式是________.12.若2x5y2m+3n与﹣3x3m+2n y6是同类项,则|m﹣n|=________.13.若,则=________.14.计算:5a-3a=________.15.单项式-4πab2的系数是________,次数是________.16.一个多项式减去x3-2y3等于x3+y3,则这个多项式为________.17.(2018•新疆)如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为________.18.在代数式2b+bc,3x,m2n,4x2﹣2x﹣7,+3,﹣2,,中,单项式有________ 个,多项式有________ 个,整式有________ 个.19.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:5 16 8 4 2 1,如果自然数m最少经过7步运算可得到1,则所有符合条件的m的最小值为________.20.(2018•汕头)计算:2x3÷x=________.三、计算题(共10题;共165分)21.计算(1)()2﹣(﹣3)0(2)8a3﹣3a5÷a2(3)4ab(2a2b2﹣ab+3)(4)(x+y)2﹣(x﹣y)(x+y)22.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2.其中a=1,b=﹣3.23.计算:(1)(-4)×3+(-18)÷(-2)(2)(3)先化简,再求值:x2一(5x2—4y)+3(x2一y)其中x=一1,y=2.24.化简求值:(2x2y﹣4xy2)﹣(﹣3xy2+x2y),其中x=﹣1,y=2.25.(2019•眉山)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.26.计算.(1)(2a2b2c)4z÷(﹣2ab2c2)2;(2)(3)(4)(0.4x3y m)2÷(2x2y n)2.27.先化简,再求值:-3x2+5x-0.5x2+x-1,其中x=2。
28.计算。
(1)y5÷y3(2)[(﹣2)3]2(3)()﹣1(4)(﹣2x•x2•x3)0(5)(﹣b)8÷b3÷(﹣b)2(6)(x﹣y)5•(y﹣x)4•(x﹣y)3(7)4﹣(﹣)﹣2﹣32÷(3.14﹣π)0(8)(y﹣x)3÷(x﹣y)2.29.计算π(1)x2-(x+2)(x-2)(2)(3)(6x3y)2 ·(-4xy3)÷(-12x2y)(4)运用乘法公式计算:30.计算。
(1)()5×(2)(x2)3;(3)22003×()2004(4)a3•a3•a2+(a4)2+(﹣2a2)4(5)[(a5)3•(b3)2]2(6)(a2m•a n+1)2•a m.四、解答题(共2题;共10分)31.如图所示,已知前两个天平两端保持平衡.要使第三个天平两端保持平衡,天平的右边应放几个圆形?请写出你的思路.32.已知多项式是六次四项式,单项式与该多项式次数相同,求m,n的值.五、综合题(共2题;共25分)33.计算:(1)(﹣)0÷(﹣2)﹣2﹣23×2﹣2(2)(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)34.已知M(1)=﹣2,M(2)=(﹣2)×(﹣2),M(3)=(﹣2)×(﹣2)×(﹣2),…,︸.个相乘(1)计算:M(5)+M(6)(2)求2M(2016)+M(2017)的值.(3)猜想2M(n)与M(n+1)的关系并说明理由.答案解析部分一、单选题1. D2.C3.B4. D5. D6.C7. C8.A9.B 10.D二、填空题11.2a3b12.113.914. 2a15. -4π;316.2x3-y317.37018.3;4;719.320.2x2三、计算题21.(1)解:原式= ﹣1=﹣(2)解:原式=8a3﹣3a3=5a3(3)解:原式=8a3b3﹣4a2b2+12ab(4)解:原式=(x2+2xy+y2)﹣(x2﹣y2)=2xy+2y222.解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=ab2,当a=1,b=﹣3时,原式=1×(﹣3)2=923.(1)解:原式=-12+9=-3.(2)解:原式=-4+8-9=-5.(3)解:x2-(5x2-4y)+3(x2-y)=x2-5x2+4y+3x2-3y=-x2+y,当x=-1,y=2时,原式=-(-1)2+2=1.24. 解:(2x2y﹣4xy2)﹣(﹣3xy2+x2y)=2x2y﹣4xy2+3xy2﹣x2y=x2y﹣xy2,当x=﹣1,y=2时,原式=(﹣1)2×2﹣(﹣1)×22=1×2+1×4=2+4=625.解:原式=a2+6a+9﹣6a﹣8=a2+1,当a=﹣2时,原式=4+1=526.(1)解:(2a2b2c)4z÷(﹣2ab2c2)2=16a8b8c4z÷4a2b4c4=4a6b4z(2)解:=81x12y12z4÷9x6y4z2÷ x2y6z=18x4y2z (3)解:=9ax2(﹣4a5x3)÷(6a2x5)=﹣6a4(4)解:(0.4x3y m)2÷(2x2y n)2=0.16x6y2m÷4x4y2n=0.4x2y2m﹣2n27. 解:原式=﹣3.5x2+6x﹣1,当x=2时,原式=﹣3.5×22+6×2﹣1 =﹣14+12﹣1 =﹣328.(1)解:原式=y2(2)解:原式=﹣25=﹣32(3)解:原式=2(4)解:当x≠0时,原式=1;当x=0时,原式没有意义(5)解:原式=b3(6)解:原式=(x﹣y)12(7)解:原式=4+4﹣9=﹣1(8)解:原式=﹣(x﹣y)=﹣x+y29.(1)解:原式=(2)解:原式=1+4-1=4(3)解:原式=(4)解:原式=112²-(112+1)×(112-1)=112²-(112²-1)=112²-112²+1=130.(1)解:()5× =()12(2)解:(x2)3=x6(3)解:22003×()2004=(2× )2003×=1×=(4)解:a3•a3•a2+(a4)2+(﹣2a2)4=a8+a8+a8=3a8(5)解:[(a5)3•(b3)2]2=[a15•b6]2=a30b12;(6)解:(a2m•a n+1)2•a m.=a4m•a2n+2•a m=a5m+2n+2四、解答题31.解:⑴由第一个天平可得3○=□+3▲①;⑵由第二个天平可得2□=○+4▲②;⑶3×②-4×①可消去▲,从而等到□与○的等量关系:3○=2□,进而求出第三个天平右边应放圆形的个数为3个.32.解:∵多项式是六次四项式,单项式与该多项式次数相同,∴2+m+1=6,2n+5-m=6,解得:m=3,n=2五、综合题33. (1)解:原式=1×4﹣8× =4﹣2=2(2)解:原式=4x2﹣1﹣(4x2+3x﹣24x﹣18)=4x2﹣1﹣4x2+21x+18=21x+1734.(1)解:M(5)+M(6)=(﹣2)5+(﹣2)6=﹣32+64=32(2)解:2M(201 ,6)+M(2017)=2×(﹣2)2016+(﹣2)2017=2×22016﹣22017=22017﹣22017=0(3)解:∵2M(n)+M(n+1)=﹣(﹣2)×(﹣2)n+(﹣2)n+1=﹣(﹣2)n+1+(﹣2)n+1=0,∴2M(n)与M(n+1)互为相反数.。