《因式分解——完全平方公式》进阶练习(一)
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2. 12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值. 27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a —b )2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b )22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b )2或 (-a-b)2或 (—a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同.即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 —a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23。
.(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26。
(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8。
(2a +3)2+(3a -2)29。
(a -2b +3c -1)(a +2b -3c -1);10。
(s -2t )(-s -2t )-(s -2t )2;11。
(t -3)2(t +3)2(t 2+9)2.12。
972;13. 20022;14。
992-98×100;15。
49×51-2499.16.(x -2y)(x +2y )-(x +2y )217。
(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y)2-(2x +y )2+5x (y -x)20.先化简。
再求值:(x +2y )(x -2y)(x 2-4y 2),其中x =2,y =-1。
21。
解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22。
已知x -y =9,x ·y =5,求x 2+y 2的值。
23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值. 24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值. 25.已知2a -b =5,ab =23,求4a 2+b 2-1的值. 26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
初中数学:因式分解强化练习(含答案)
因式分解知识讲解1、因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解.注:因式分解和整式乘法互为逆运算.2、常用的因式分解方法:(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法: 平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法;(4)最后考虑用分组分解法.4、因式分解的原则(1)分解因式必须要分解到不能分解为止.(2)有公因式的一定要先提取公因式.(一)提公因式法提取公因式法:)(c b a m mc mb ma ++=++公因式:一个多项式每一项都含有的相同的因式,叫做这个多项式各项的公因式;找公因式的方法:1、系数为各系数的最大公约数;2、字母是相同字母;3、字母的次数:相同字母的最低次数.总结:把公有的因式提出来,剩下的照着抄下来.一、填空题(1)因式分解:am-3a= a (m-3) .(2)因式分解:ax ²-ax= ax (x-1) .(3)因式分解:3ab ²+a ²b= ab (3b+a ) .(4)因式分解:x 2﹣xy= x (x ﹣y ) .(5)因式分解:(x+y )²-(x+y )= (x+y )(x+y-1) .(6)因式分解:a (a-b )-a+b= (a-b )(a-1) .(7)因式分解:2m(a -b)-3n(b -a)= (a -b)(2m +3n) .二、因式分解的解答题1、直接提取公因式(1)3ab 2+a 2b ; (2)2a 2-4a ; (3)20x ³y-15x ²y 解:原式=ab(3b +a) 解:原式=2a(a -2) 解:原式=)34(52-x y x(4)x 4+x 3+x ; (5)3x 3+6x 4; (6)4a 3b 2-10ab 3c ;解:原式=x(x 3+x 2+1). 解:原式=3x 3(1+2x). 解:原式=2ab 2(2a 2-5bc).(7)-3ma 3+6ma 2-12ma ; (8)ab b a b a 264222-+- (9) y x y x y x 332232-- 解:原式=-3ma(a 2-2a +4) 解:原式=-2ab (2ab-3a+1) 解:原式=)321(22x y y x --2、变符号,再提取公因式(1)a (3-b )+3(b-3) (2)2a (x-y )-3b (y-x ) (3)x(x -y)+y(y -x) 解:原式=(3-b )(a-3) 解:原式=(x-y )(2a+3b ) 解:原式=(x -y)2.(4)m(5-m)+2(m -5); (5))93()3(2-+-x x解:原式=(m -2)(5-m). 解:原式=x (x-3);3、稍微复杂的提取公因式(1)6x (a-b )+4y (b-a ) (2)6p(p +q)-4q(p +q).解:原式=2(a-b )(3x-2y ) 解:原式=2(p +q)(3p -2q).(3)4q(1-p)3+2(p -1)2. (4)5x(x -2y)3-20y(2y -x)3.解:原式=2(1-p)2(2q -2pq +1) 解:原式=5(x -2y)3(x +4y).(5)(a 2-ab)+c(a -b); (6)22)2(20)2(5a b b b a a --- 解:原式=(a +c)(a -b). 解:原式=5(a-2b )2(a-4b )4、用简便方法计算:(1)213×255-213×55. (2)1571215711576⨯-⨯-⨯. 解:(1)原式=42600; 解:(2)原式=-15.(二)平方差公式因式分解1、平方差公式 ))((22b a b a b a -+=-2、平方减平方等于平方差,等于两个数的和乘以两个数的差.3、有公因式的,先提公因式,再因式分解.一、填空题(1)因式分解:a ³-a= a (a+1)(a-1) .(2)因式分解:x 2﹣4= (x+2)(x ﹣2) .(3)因式分解:16x 2-64= 16(x +2)(x -2) .(4)因式分解:a 3﹣ab 2= a (a+b )(a ﹣b ) .二、在实数范围内分解因式:1、(1)4x 2-y 2 (2)-16+a 2b 2 (3)100x 2-9y 2解:(2x +y)(2x -y) 解:(ab +4)(ab -4) 解:(10x +3y)(10x -3y)(4)4x ²-9y ² (5)x 2-3解:原式=(2x+3y )(2x-3y ) 解:原式=(x -3)(x +3)(6)4x 2-25 (7)(x 2+9)2-36x 2解:原式=(2x +5)(2x -5) 解:原式=(x +3)2(x -3)22、将下列式子因式分解.(1)(m+n )²-(m-n )² (2)(x +2y)2-(x -y)2 (3)(a +3)2-(a +b)2 解:原式=4mn 解:原式=3y(2x +y) 解:原式=(2a +b +3)(3-b)3、先提公因式再因式分解.(1)a 3-9a (2)2416x x - (3)224364b a a -解:原式=a(a +3)(a -3) (2)原式=x ²(x+4)(x-4) (3)原式=4a ²(a+3b )(a-3b )(4)3m(2x -y)2-3mn 2 (5)(a -b)b 2-4(a -b) 解:原式=3m(2x -y +n)(2x -y -n) 解:原式=(a -b)(b +2)(b -2)4、四次的因式分解.(1)16-b 4 (2)x 4-4解:原式=(2+b)(2-b)(4+b 2) 解:原式=(x 2+2)(x +2)(x -2) (三)完全平方公式因式分解完全平方式 222)(2b a b ab a ±=+± 等于(首-尾)2或者(首+尾)2一、填空题(1)因式分解:x 2y 2-2xy +1= (xy -1)2 .(2)因式分解:-4a 2+24a -36= -4(a -3)2 .(3)因式分解:x 2﹣6x+9= (x ﹣3)2 .(4)因式分解:ab 2﹣4ab+4a= a (b ﹣2)2 .(5)因式分解:= ﹣(3x ﹣1)2 .二、解答题1、分解因式.(1)a 2+4a +4 (2)4x 2+y 2-4xy (3)9-12a +4a 2 解:原式=(a +2)2 解:原式=(2x -y)2 解:原式=(3-2a)22、因式分解.(1)9)1(6)1(222+---x x (2)16)4(8)4(222+-+-m m m m 解:原式=(x+2)²(x-2)² 解:原式=4)2(-m(4)(a +b)2-4(a +b)+4 (3)(m +n)2-6(m +n)+9解:原式=(a +b -2)2 解:原式=(m +n -3)23、利用因式分解计算.(1)202²+98²+202×196 (2)800²-1600×798+798²解:(1)原式=90000; 解:(2)原式=4.4、利用因式分解计算:992+198+1.解:原式=992+2×99×1+1=(99+1)2=1002=10000. (四)十字相乘法方法步骤:第一步:拆分,拆分二次项次数和常数项.第二步:交叉相乘,然后相加,加出来的得数若等于中间的一次项系数则配对成功,可以横着写.十字相乘法专项练习题(1)=--1522x x (x-5)(x+3) (2)=+-652x x (x-2)(x-3)(2)=--3522x x (2x+1)(x-3) (4)=-+3832x x (3x-1)(x+3)(5)=+-672x x (x-1)(x-6) (6)=-+1232x x (3x-1)(x+1)(7)=--9542x x (4x-9)(x+1) (8)=--2142x x (x-7)(x+3)(9)2x 2+3x+1= (2x+1)(x+1) (10)=-+22x x (x-1)(x+2)(11)20-9y -20y 2 =-(4y+5)(5y-4) (12)=-+1872m m (m-2)(m+9)(13)=--3652p p (p-9)(p+4) (14)=--822t t (t-4)(t+2)(15)=++342x x (x+1)(x+3) (16)=++1072a a (a+2)(a+5)(17)=+-1272y y (y-3)(y-4) (18)q 2-6q+8=(q-2)(q-4)(19)=-+202x x (x-4)(x+5) (20)=++232x x (x+1)(x+2)(21)18x 2-21x+5=(3x-1)(6x-5) (22)=-+1522x x (x-3)(x+5)(23)2y 2+y -6= (2y-3)(y+2) (24)6x 2-13x+6= (2x-3)(3x-2)(25)3a 2-7a -6= (3a+2)(a-3) (26)6x 2-11x+3= (2x-3)(3x-1)(27)4m 2+8m+3= (2m+3)(2m+1) (28)10x 2-21x+2= (10x-1)(x-2)(29)8m 2-22m+15= (2m-3)(4m-5) (30)4n 2+4n -15= (2n+5)(2n-3)(31)6a 2+a -35= (2a+5)(3a-7) (32)5x 2-8x -13= (5a-13)(a+1)(33)4x 2+15x+9=(4x+3)(x+3) (34)8x 2+6x -35=(4x-7)(2x+5)因式分解中考真题专项练习(一)1、(云南)因式分解:3x 2﹣6x+3= 3(x-1)2 .2、(宜宾)分解因式:3m 2﹣6mn+3n 2= 3(m-n)2 .3、(仙桃天门潜江江汉)分解因式:3a 2b+6ab 2= 3ab(a+b) .4、(湘潭)因式分解:m 2﹣mn= m(m-n) .5、(绥化)分解因式:a 3b ﹣2a 2b 2+ab 3= ab(a-b)2 .6、(潍坊)分解因式:x 3﹣4x 2﹣12x= x(x-6)(x+2) .7、(威海)分解因式:3x 2y+12xy 2+12y 3= 3y(x+2y)2 .8、(沈阳)分解因式:m 2﹣6m+9= (m-3)2 .9、(黔西南州)分解因式:a 4﹣16a 2= a 2(a+4)(a-4) .10、(南充)分解因式:x 2﹣4x ﹣12= (x-6)(x+2) . 11、(六盘水)分解因式:2x 2+4x+2= 2(x+1)2 . 12、(临沂)分解因式:a ﹣6ab+9ab 2= a(1-3b)2 .13、(呼伦贝尔)分解因式:27x 2﹣18x+3= 3(3x-1)2 . 14、(黄石)分解因式:x 2+x ﹣2= (x+2)(x-1) .15、(哈尔滨)把多项式a 3﹣2a 2+a 分解因式的结果是 a(a-1)2 .16、(乐山)下列因式分解:①x 3﹣4x=x (x 2﹣4);②a 2﹣3a+2=(a ﹣2)(a ﹣1);③a 2﹣2a ﹣2=a (a ﹣2)﹣ 2;④.其中正确的是 ②④ (只填序号). 17、(江津区)把多项式x 2﹣x ﹣2分解因式得 (x-2)(x+1) .18、(荆州)分解因式:x (x ﹣1)﹣3x+4= (x-2)2 .19、(莱芜)分解因式:﹣x 3+2x 2﹣x= -x(x-1)2 .20、(菏泽)将多项式a 3﹣6a 2b+9ab 2分解因式得 a(a-3b)2 .21、(抚顺)分解因式:ax 2﹣4ax+4a= a(a-2)2 .22、(巴中)把多项式3x 2+3x ﹣6分解因式的结果是 3(x+2)(x-1) .23、(鞍山)因式分解:ab 2﹣a= a(b+1)(b-1) .24、(中山)分解因式:x 2﹣y 2﹣3x ﹣3y= (x+y)(x-y-3) .25、(安顺)将x ﹣x 2+x 3分解因式的结果为 x(1-0.5x)2 .26、(湘潭)已知m+n=5,mn=3,则m 2n+mn 2= 15 .27、(潍坊)分解因式:27x 2+18x+3= 3(3x+1)2 .28、(威海)分解因式:(x+3)2﹣(x+3)= (x+3)(x+2) .29、(陕西)分解因式:a 3﹣2a 2b+ab 2= a(a-b)2 .30、(泉州)因式分解:x 2﹣6x+9= (x-3)2 .31、(攀枝花)因式分解:ab 2﹣6ab+9a= a(b-3)2 .32、(内江)分解因式:﹣x 3﹣2x 2﹣x= -x(x+1)2.33、(临沂)分解因式:xy 2﹣2xy+x= x(y-1)2 .34、(嘉兴)因式分解:(x+y )2﹣3(x+y )= (x+y)(x+y-3) .35、(赤峰)分解因式:3x 3﹣6x 2+3x= 3x(x-1)2 .36、(泰安)将x+x 3﹣x 2分解因式的结果是 x(x-21)2 . 37、(绍兴)分解因式:x 3y ﹣2x 2y 2+xy 3= xy(x-y)2 .38、(黔东南州)分解因式:x3+4x2+4x= x(x+2)2.39、(聊城)分解因式:ax3y+axy3﹣2ax2y2= axy(x-y)2.40、(莱芜)分解因式:(2a+b)2﹣8ab= (2a-b)2.41、(巴中)把多项式x3﹣4x2y+4xy2分解因式,结果为 x(x-2y)2.42、(潍坊)在实数范围内分解因式:4m2+8m﹣4= 4(m2+2m-1) .43、(雅安)分解因式:2x2﹣3x+1= (2x-1)(x-1) .44、(芜湖)因式分解:(x+2)(x+3)+x2﹣4= (2x+1)(x+2) .45、(深圳)分解因式:﹣y2+2y﹣1= -(y-1)2.46、(广元)分解因式:3m3﹣18m2n+27mn2= 3m(m-3n)2.47、(广东)分解因式:2x2﹣10x= 2x(x-5) .48、(大庆)分解因式:ab﹣ac+bc﹣b2= (a-b)(b-c) .49、(广西)分解因式:2xy﹣4x2= 2x(y-2x) .50、(本溪)分解因式:9ax2﹣6ax+a= a(3a-1)2.51、(北京)分解因式:mn2+6mn+9m= m(n+3)2.52、(珠海)分解因式:ax2﹣4a= a(x+2)(x-2) .53、(张家界)因式分解:x3y2﹣x5= x3(y+x)(y-x) .54、(宜宾)分解因式:4x2﹣1= (2x-1)(2x+1) .55、(岳阳)分解因式:a4﹣1= (a+1)(a-1)(a2+1) .56、(扬州)因式分解:x3﹣4x2+4x= x(x-2)2.57、(潍坊)分解因式:a3+a2﹣a﹣1= (a+1)2(a-1) .58、(威海)分解因式:16﹣8(x﹣y)+(x﹣y)2= (4-x+y)2.59、(淄博)分解因式:8(a2+1)﹣16a=8(a﹣1)2.60、(遵义)分解因式:x3﹣x=x(x+1)(x﹣1).因式分解中考真题专项练习(二)1、(泸州)分解因式:3a2﹣3=3(a+1)(a﹣1).2、(泸州)分解因式:2m2﹣8=2(m+2)(m﹣2).3、(泸州)分解因式:2a2+4a+2=2(a+1)2.4、(泸州)分解因式:2m2﹣2=2(m+1)(m﹣1).5、(泸州)分解因式:3a2+6a+3= 3(a+1)2.6、(泸州)分解因式:x2y﹣4y=y(x+2)(x﹣2).7、(泸州)分解因式:x3﹣6x2+9x=x(x﹣3)2.8、(泸州)分解因式:3x 2+6x+3= 3(x+1)2 .9、(泸州)分解因式:ax ﹣ay= a (x ﹣y ) .10、(泸州)分解因式:3a 2﹣6a+3= 3(a ﹣1)2 .11、(泸州)分解因式:ax 2﹣4ax+4a= a (x 2﹣4x+4)=a (x ﹣2)2 .12、(南充)分解因式:2a 3﹣8a = 2a (a+2)(a ﹣2) .13、(德阳)分解因式:2xy 2+4xy+2x = 2x (y+1)2 .14、(眉山)分解因式:x 3﹣9x = x (x+3)(x ﹣3) .15、(绵阳)因式分解:x 2y ﹣4y 3= y (x ﹣2y )(x+2y ) .16、(内江)分解因式:a 3b ﹣ab 3= ab (a+b )(a ﹣b ) .17、(攀枝花)分解因式:x 3y ﹣2x 2y+xy = xy (x ﹣1)2 .18、(遂宁)分解因式3a 2﹣3b 2= 3(a+b )(a ﹣b ) .19、(宜宾)分解因式:2a 3b ﹣4a 2b 2+2ab 3= 2ab (a ﹣b )2 .20、(自贡)分解因式:ax 2+2axy+ay 2= a (x+y )2 .21、(广安)因式分解:3a 4﹣3b 4= 3(a 2+b 2)(a+b )(a ﹣b ) .22、(广元)分解因式:a 3﹣4a = a (a+2)(a ﹣2) .23、(眉山)分解因式:3a 3﹣6a 2+3a = 3a (a ﹣1)2 .24、(绵阳)因式分解:m 2n+2mn 2+n 3= n (m+n )2 .25、(内江)分解因式:xy 2﹣2xy+x = x (y ﹣1)2 .26、(攀枝花)分解因式:a 2b ﹣b = b (a+1)(a ﹣1) .27、(宜宾)分解因式:b 2+c 2+2bc ﹣a 2= (b+c+a )(b+c ﹣a ) .28、(泸州冲刺卷)(1)分解因式:2=-m m 83 2m(m+2)(m-2) .(2)分解因式:=-222m ()()112-+m m .(3)分解因式:=+-962x x ()23-x 29、(泸州模拟)(1)分解因式:2a 2﹣2= 2(a+1)(a ﹣1) .(2)分解因式:x 2﹣2x+1= ()21-x . 30、(泸州冲刺卷)(1)分解因式:3x 3﹣12x = 3x (x ﹣2)(x+2) .(2)分解因式:2x 2﹣8= 2(x+2)(x ﹣2) .(3)分解因式:3m 2﹣12= 3(m+2)(m ﹣2) .(4)分解因式:2m 2+4m+2= 2(m+1)2 .(5)分解因式:x 2﹣6x+9= (x ﹣3)2 .31、(南充)分解因式:x 2﹣4(x ﹣1)= (x ﹣2)2 .32、(巴中)分解因式:2a2﹣8=2(a+2)(a﹣2).33、(达州)分解因式:x3﹣9x=x(x+3)(x﹣3).34、(乐山)把多项式分解因式:ax2﹣ay2=a(x+y)(x﹣y).35、(绵阳)因式分解:x2y4﹣x4y2=x2y2(y﹣x)(y+x).36、(宜宾)分解因式:am2﹣4an2=a(m+2n)(m﹣2n).37、(广安)分解因式:my2﹣9m=m(y+3)(y﹣3).38、(株洲)分解因式:x2+3x(x﹣3)﹣9=(x﹣3)(4x+3).39、(眉山)分解因式:xy2﹣25x=x(y+5)(y﹣5).40、(宜宾)分解因式:x3﹣x=x(x+1)(x-1).41、(深圳)分解因式:2x2﹣8=2(x+2)(x﹣2).42、(绵阳)在实数范围内因式分解:x2y﹣3y=y(x﹣)(x+).。
完全平方公式专项练习50题(有答案)
完全平方公式专项练习知识点:完全平方公式:(a+b )2=a 2+2ab+b 2 (a —b )2=a 2—2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b )2 a 2—2ab+b 2=(a-b )22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (—a-b )2或 (—a+b )2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2—a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )2 7。
(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12。
972;13. 20022;14. 992-98×100;15。
49×51-2499.16.(x -2y)(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a)219。
(3x -y)2-(2x +y )2+5x (y -x)20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1。
21。
解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值。
23。
完全平方公式展开练习题
完全平方公式展开练习题完全平方公式是数学中常见的一个公式,用于展开一个二次多项式。
它的形式为:(a + b)^2 = a^2 + 2ab + b^2在这个公式中,a和b可以是任意实数。
通过应用这个公式,我们可以将一个二次多项式展开为一系列项的和。
接下来,我将给出一些完全平方公式展开的练习题,帮助大家更好地理解和应用这个公式。
1. 将 (x + 3)^2 展开。
解答:根据完全平方公式,展开后的结果为 x^2 + 6x + 9。
2. 将 (2y - 5)^2 展开。
解答:根据完全平方公式,展开后的结果为 4y^2 - 20y + 25。
3. 将 (3a + 2b)^2 展开。
解答:根据完全平方公式,展开后的结果为 9a^2 + 12ab + 4b^2。
4. 将 (m - n)^2 展开。
解答:根据完全平方公式,展开后的结果为 m^2 - 2mn + n^2。
通过这些练习题,我们可以看到完全平方公式的应用非常简单。
只需要将括号中的两个项分别平方,然后将结果相加即可。
这个公式在解决二次多项式的展开问题中非常有用。
除了展开二次多项式,完全平方公式还可以用于因式分解。
通过将一个二次多项式展开为完全平方的形式,我们可以更容易地找到它的因式。
下面是一个例子:将 x^2 + 6x + 9 因式分解。
解答:观察到这个多项式是一个完全平方,可以写成 (x + 3)^2 的形式。
因此,x^2 + 6x + 9 = (x + 3)^2。
通过这个例子,我们可以看到完全平方公式在因式分解中的应用。
通过将一个多项式转化为完全平方的形式,我们可以更容易地找到它的因式,从而简化问题的解决过程。
完全平方公式不仅在数学中有广泛的应用,还在其他学科中发挥着重要的作用。
在物理学中,完全平方公式可以用于解决运动学问题。
在经济学中,完全平方公式可以用于解决成本和收益的关系。
在计算机科学中,完全平方公式可以用于优化算法的设计。
总之,完全平方公式是数学中一个重要且常用的公式。
完全平方公式专项练习50题(有答案)ok
完全平方公式专项练习50题(有答案)ok完全平方公式是数学中的一个重要概念。
它可以用来计算两数和(或差)的平方。
具体公式为(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²。
这个公式可以逆用,即a²+2ab+b²=(a+b)²,a²-2ab+b²=(a-b)²。
运用完全平方式的判定有两种情况,一是有两数和(或差)的平方,即(a+b)、(a-b)、(-a-b)、(-a+b);二是有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同,即a²+2ab+b²、a²-2ab+b²、-a²-2ab-b²、-a²+2ab-b²。
以下是50道完全平方公式的专项练题,带有答案:1.(a+2b)²答案:a²+4ab+4b²2.(3a-5)²答案:9a²-30a+253.(-2m-3n)²答案:4m²+12mn+9n²4.(a²-1)²-(a²+1)²答案:-4a²5.(-2a+5b)²答案:4a²-20ab+25b²6.(-ab²-c)²答案:a²b⁴+2abc²+ c²7.(x-2y)(x²-4y²)(x+2y)答案:-12xy(x²-4y²)8.(2a+3)²+(3a-2)²答案:13a²+139.(a-2b+3c-1)(a+2b-3c-1)答案:a²-6bc+4b²+4c²+2ac-2a-2b+6c+1 10.(s-2t)(-s-2t)-(s-2t)²答案:-4st11.(t-3)²(t+3)²(t²+9)²答案:(t⁴-9t²+81)³12.972答案:(6³)²13.200²-2²答案:14.99²-101²答案:-40415.49×51-50²答案:116.(x-2y)(x+2y)-(x+2y)²答案:-4y²17.(a+b+c)(a+b-c)答案:a²+b²+c²-ab-ac-bc18.2a+1-1+2a答案:4a19.3x-y-2x-y+5xy-5x²答案:-2x²+4xy-y20.(x+2y)(x-2y)(x-4y),其中x=2,y=-1 答案:12021.(x+1/x)-(x-1/x)((x+1/x)+1)答案:222.x-y=9,xy=5,求x+y答案:1423.a(a-1)+(b-a)-(ab)= -7,求-ab答案:-524.a+b=7,ab=10,求a²+b²,(a-b)²答案:a²+b²=33,(a-b)²=925.2a-b=5,ab=3/2,求4a²+b²-1答案:47/226.(a+b)²=9,(a-b)²=5,求a²+b²,ab 答案:a²+b²=7,ab=127.已知(a+b)²=25,求(a-b)²答案:928.已知(a+b)²=16,求(a-b)²答案:429.已知(a-b)²=9,求(a+b)²答案:2530.已知(a+b)²=36,求(a-b)²答案:031.已知(a+b)²=49,求ab答案:1232.已知(a-b)²=16,求ab答案:-1233.已知ab=3,a²+b²=13,求a-b答案:234.证明对于任意的x,y,代数式a=x²+2xy+y²+3x+2y+1的值总是正数。
完全平方公式专项练习50题(有答案)ok
完全平方公式专项练习50题(有答案)ok完全平方公式是数学中的一个重要概念。
它可以用来计算两数和(或差)的平方。
具体公式为(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²。
这个公式可以逆用,即a²+2ab+b²=(a+b)²,a²-2ab+b²=(a-b)²。
运用完全平方式的判定有两种情况,一是有两数和(或差)的平方,即(a+b)、(a-b)、(-a-b)、(-a+b);二是有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同,即a²+2ab+b²、a²-2ab+b²、-a²-2ab-b²、-a²+2ab-b²。
以下是50道完全平方公式的专项练题,带有答案:1.(a+2b)²答案:a²+4ab+4b²2.(3a-5)²答案:9a²-30a+253.(-2m-3n)²答案:4m²+12mn+9n²4.(a²-1)²-(a²+1)²答案:-4a²5.(-2a+5b)²答案:4a²-20ab+25b²6.(-ab²-c)²答案:a²b⁴+2abc²+ c²7.(x-2y)(x²-4y²)(x+2y)答案:-12xy(x²-4y²)8.(2a+3)²+(3a-2)²答案:13a²+139.(a-2b+3c-1)(a+2b-3c-1)答案:a²-6bc+4b²+4c²+2ac-2a-2b+6c+1 10.(s-2t)(-s-2t)-(s-2t)²答案:-4st11.(t-3)²(t+3)²(t²+9)²答案:(t⁴-9t²+81)³12.972答案:(6³)²13.200²-2²答案:14.99²-101²答案:-40415.49×51-50²答案:116.(x-2y)(x+2y)-(x+2y)²答案:-4y²17.(a+b+c)(a+b-c)答案:a²+b²+c²-ab-ac-bc18.2a+1-1+2a答案:4a19.3x-y-2x-y+5xy-5x²答案:-2x²+4xy-y20.(x+2y)(x-2y)(x-4y),其中x=2,y=-1 答案:12021.(x+1/x)-(x-1/x)((x+1/x)+1)答案:222.x-y=9,xy=5,求x+y答案:1423.a(a-1)+(b-a)-(ab)= -7,求-ab答案:-524.a+b=7,ab=10,求a²+b²,(a-b)²答案:a²+b²=33,(a-b)²=925.2a-b=5,ab=3/2,求4a²+b²-1答案:47/226.(a+b)²=9,(a-b)²=5,求a²+b²,ab 答案:a²+b²=7,ab=127.已知(a+b)²=25,求(a-b)²答案:928.已知(a+b)²=16,求(a-b)²答案:429.已知(a-b)²=9,求(a+b)²答案:2530.已知(a+b)²=36,求(a-b)²答案:031.已知(a+b)²=49,求ab答案:1232.已知(a-b)²=16,求ab答案:-1233.已知ab=3,a²+b²=13,求a-b答案:234.证明对于任意的x,y,代数式a=x²+2xy+y²+3x+2y+1的值总是正数。
《用完全平方公式因式分解》专项练习
《用完全平方公式因式分解》专项练习要点感知1完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.适合用完全平方公式因式分解的多项式的特点:①必须是__________;②两个平方项的符号__________;③第三项是两平方项的__________.预习练习1-1下列式子中,完全平方式有__________.(填序号)①x2+4x+4;②1+16a2;③x2+2x-1;④x2+xy+y2;⑤m2+n2+2mn.1-2因式分解:x2+6x+9=__________.要点感知2因式分解的一般步骤:首先__________,然后再用__________进行因式分解.在因式分解时,必须进行到每一个因式都不能分解为止.预习练习2-1因式分解:3a2+6a+3=__________.2-2因式分解:x2y-4xy+4y.知识点1 用完全平方公式因式分解1.下列各式能用完全平方公式进行因式分解的是( )A.x2+x+1B.x2+2x-1C.x2-1D.x2-6x+92.因式分解(x-1)2-2(x-1)+1的结果是( )A.(x-1)(x-2)B.x2C.(x+1)2D.(x-2)23.因式分解:(1) x2+2x+1=__________;(2) x2-4(x-1)=__________.4.利用1个a×a的正方形,1个b×b的正方形和2个a×b的长方形可拼成一个正方形(如图所示),从而可得到因式分解的公式____________________.5.因式分解:(1)-x2+4xy-4y2;(2)4a4-12a2y+9y2;(3)(a+b)2-14(a+b)+49.知识点2 综合运用提公因式法和公式法因式分解6.把x2y-2y2x+y3因式分解正确的是( )A.y(x2-2xy+y2)B.x2y-y2(2x-y)C.y(x-y)2D.y(x+y)27.把a3-2a2+a因式分解的结果是( )A.a2(a-2)+aB.a(a2-2a)C.a(a+1)(a-1)D.a(a-1)28.将多项式m2n-2mn+n因式分解的结果是__________.9.把下列各式因式分解:(1)2a3-4a2b+2ab2;(2)5x m+1-10x m+5x m-1;(3)(2x-5)2+6(2x-5)+9;(4)16x4-8x2y2+y4;(5)(a2+ab+b2)2-9a2b2.10.下列多项式能因式分解的是( )A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y211.(2013·西双版纳)因式分解x3-2x2+x正确的是( )A.(x-1)2B.x(x-1)2C.x(x2-2x+1)D.x(x+1)212.下列各式:①x2-2xy-y2;②x2-xy+2y2;③x2+2xy+y2;④x2-2xy+y2,其中能用公式法因式分解的有( )A.1个B.2个C.3个D.4个13.因式分解:4a3-12a2+9a=__________.14.多项式ax2-a与多项式x2-2x+1的公因式是__________.15.因式分解:16-8(x-y)+(x-y)2=__________.16.若m=2n+1,则m2-4mn+4n2的值是__________.17.把下列各式因式分解:(1)16-8xy+x2y2;(2)9(a-b)2+12(a2-b2)+4(a+b)2;(3)(2a+b)2-8ab; (4)3a(x2+4)2-48ax2.18.利用因式分解计算:(1)12×3.72-3.7×2.7+12×2.72;(2)1982-396×202+2022.19.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.20.若|m+4|与n2-2n+1互为相反数,把多项式x2+4y2-mxy-n因式分解.21.当a,b为何值时,多项式4a2+b2+4a-6b-8有最小值,并求出这个最小值.参考答案要点感知1三项式相同底数的积的2倍预习练习1-1①⑤1-2(x+3)2要点感知2 提取公因式公式法预习练习2-13(a+1)22-2 原式=y(x2-4x+4)=y(x-2)2.1.D2.D3.(1)(x+1)2(2)(x-2)24.a2+2ab+b2=(a+b)25.(1)原式=-(x2-4xy+4y2)=-(x-2y)2.(2)原式=(2a2-3y)2.(3)原式=(a+b-7)2.6.C7.D8.n(m-1)29.(1)原式=2a(a2-2ab+b2)=2a(a-b)2.(2)原式=5x m-1(x2-2x+1)=5x m-1(x-1)2.(3)原式=[(2x-5)+3]2=(2x-2)2=4(x-1)2.(4)原式=(4x2-y2)2=(2x+y)2(2x-y)2.(5)原式=(a2+ab+b2+3ab)(a2+ab+b2-3ab)=(a2+4ab+b2)(a-b)2.10.C 11.B 12.B 13.a(2a-3)214.x-1 15.(x-y-4)216.1 17.(1)原式=(4-xy)2.(2)原式=[3(a-b)+2(a+b)]2=(5a-b)2.(3)原式=4a2+4ab+b2-8ab=4a2-4ab+b2=(2a-b)2.(4)原式=3a[(x2+4)2-16x2]=3a(x+2)2(x-2)2.18.(1)原式=12×(3.7-2.7)2=12.(2)原式=(198-202)2=16.19.(x2+2xy)+x2=2x2+2xy=2x(x+y);或(y2+2xy)+x2=(x+y)2;或(x2+2xy)-(y2+2xy)=x2-y2=(x+y)(x-y);或(y2+2xy)-(x2+2xy)=y2-x2=(y+x)(y-x).20.由题意可得|m+4|+(n-1)2=0,所以40,10.mn+=-=⎧⎨⎩解得4,1.mn=-=⎧⎨⎩所以,原式=x2+4y2+4xy-1=(x+2y)2-1=(x+2y+1)(x+2y-1).21.4a2+b2+4a-6b-8=(4a2+4a+1)+(b2-6b+9)-18=(2a+1)2+(b-3)2-18,当2a+1=0,b-3=0时,原多项式有最小值.这时a=-12,b=3,这个最小值是-18.。
八年级数学因式分解进阶练习题含答案
⼋年级数学因式分解进阶练习题含答案因式分解进阶中考要求例题精讲⼀、基本概念因式分解:把⼀个多项式化成⼏个整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.因式分解与整式乘法互为逆变形:()m a b c ma mb mc ++++整式的乘积因式分解式中m 可以代表单项式,也可以代表多项式,它是多项式中各项都含有的因式,称为公因式因式分解的常⽤⽅法:提取公因式法、运⽤公式法、分组分解法、⼗字相乘法.分解因式的⼀般步骤:如果多项式的各项有公因式,应先提公因式;如果各项没有公因式,再看能否直接运⽤公式⼗字相乘法分解,如还不能,就试⽤分组分解法或其它⽅法.注意事项:①若不特别说明,分解因式的结果必须是每个因式在有理数范围内不能再分解为⽌;②结果⼀定是乘积的形式;③每⼀个因式都是整式;④相同的因式的积要写成幂的形式.在分解因式时,结果的形式要求:①没有⼤括号和中括号;②每个因式中不能含有同类项,如果有需要合并的同类项,合并后要注意能否再分解;③单项式因式写在多项式因式的前⾯;④每个因式第⼀项系数⼀般不为负数;⑤形式相同的因式写成幂的形式.⼆、提公因式法提取公因式:如果多项式的各项有公因式,⼀般要将公因式提到括号外⾯.确定公因式的⽅法:系数——取多项式各项系数的最⼤公约数;平⽅差公式:22()()a b a b a b -=+-①公式左边形式上是⼀个⼆项式,且两项的符号相反;②每⼀项都可以化成某个数或式的平⽅形式;③右边是这两个数或式的和与它们差的积,相当于两个⼀次⼆项式的积.完全平⽅公式:2222()a ab b a b ++=+2222()a ab b a b -+=-①左边相当于⼀个⼆次三项式;②左边⾸末两项符号相同且均能写成某个数或式的完全平⽅式;③左边中间⼀项是这两个数或式的积的2倍,符号可正可负;④右边是这两个数或式的和(或差)的完全平⽅,其和或差由左边中间⼀项的符号决定. ⼀些需要了解的公式:3322()()a b a b a ab b+=+-+3322()()a b a b a ab b-=-++ 33223()33a b a a b ab b+=+++33223()33a b a a b ab b-=-+-2222()222a b c a b c ab ac bc++=+++++模块⼀重组分解法【例 1】分解因式:22()4a b ab c-+-【解析】22()422224a ab b ab c=-++-222222()a ab bc a b c=++-=+-()()a b c a b c=+-++【答案】()()a b c a b c+-++【巩固】分解因式:()() x x z y y z+-+【解析】()()x x z y y z+-+22x xz y yz=+--()()()x y x y z x y=-++-()()x y x y z=-++【答案】()()【巩固】分解因式:(1)(2)6x x x---【解析】(1)(2)6x x x---2(32)6x x x=-+-32326x x x=-+-2(3)2(3)x x x=-+-2(2)(3)x x=+-【答案】2(3)2(3)x x x-+-【例 2】(泰安中考题)因式分解:2 (2)(3)4x x x+++-=.【解析】2 (2)(3)4 x x x+++-22564 x x x252x x=++ (21)(2)x x=++【答案】(21)(2)x x++【巩固】分解因式:2()(1)1a b ab+-+【解析】2()()1a b ab a b+-++[()1][()1]a a b b a b =+-+-22(1)(1)a ab ab b =+-+-【答案】22(1)(1)a ab ab b +-+-【例 3】分解因式:222(1)()ab x x a b +++【解析】 222(1)()ab x x a b +++222abx ab a x b x =+++()()ax b a bx =++()()ax bx a b a bx =+++【答案】()()ax b a bx ++【巩固】分解因式:222222()()ax by ay bx c x c y ++-++【解析】原式222222222222a x b y a y b x c x c y =+++++222222222222a xb xc x b y a y c y =+++++ 22222222()()a b c x a b c y =+++++22222()()a b c x y =+++.【答案】22222()()a b c x y +++板块⼆拆项与添项利⽤配⽅思想拆项与添项∴2244690a a b b -++-+=∴()()22230a b -+-=,∴2030a b -=??-=?,∴23a b =??=?,∴5a b += 【答案】5a b +=【例 5】分解因式:4231x x -+;【解析】4231x x -+ 42221x x x =-+-222(1)x x =-- 22(1)(1)x x x x =---+【答案】22(1)(1)x x x x ---+【例 6】分解因式:42231x x -+;【解析】42231x x -+ 4222125x x x =++- 222(1)(5)x x =+-22(15)(15)x x x x =+++-【答案】22(15)(15)x x x x +++-【例 7】分解因式:4224a a b b ++【解析】4224a a b b ++4224222a a b b a b =++-2222()()a b ab =+-2222()()a ab b a ab b =++-+【答案】2222()()a ab b a ab b ++-+拆项与添项【例 8】分解因式:343a a -+【解析】原式3()(33)a a a =---(1)(1)3(1)a a a a =+---2(1)(3)a a a =-+-或原式322()()(33)a a a a a =-+---2(1)(1)3(1)a a a a a =-+---2(1)(3)a a a =-+-.【答案】2(1)(3)a a a -+-+--32266x x x x =++-- 2(21)6(1)x x x x =++-+(1)(2)(3)x x x =+-+ 解法(⼆)拆⼆次项222242x x x =-解法(三)拆常数项651-=--及2222x x x =+解法(四)22223x x x =-及523x x x -=--【答案】2(1)(3)a a a -+-【例 10】分解因式:3234x x +-【解析】⑴把4-拆成13--;⑵添四次项4x ,再减去4x ;⑶添⼀次项4x ,再减去4x⑷拆22234x x x =-;⑸拆三次项33343x x x =-;2(1)(2)x x -+【答案】2(1)(2)x x -+【例 11】分解因式:267x x +-【解析】267x x +- 2()(77)x x x =-+-(7)(1)x x =+- 【答案】(7)(1)x x +-【例 12】分解因式:398x x -+【解析】398x x -+3199x x =--+2(1)(1)9(1)x x x x =-++--2(1)(8)x x x =-+-【答案】2(1)(8)x x x -+-【例 13】(“CASIO”杯河南省竞赛)把下列各式因式分解:326116x x x +++【解析】原式()()()3225566x x x x x =+++++ ()()()215161x x x x x =+++++ ()()()123x x x =+++【答案】()()()123x x x +++模块三换元法【例1】分解因式:2222(48)3(48)2x x x x x x ++++++【解析】将248x x u ++=看成⼀个字母,可利⽤⼗字相乘得原式2232()(2)u xu x u x u x =++=++22(48)(482)x x x x x x =++++++22(58)(68)x x x x =++++2(2)(4)(58)x x x x =++++,其实也可⽤⼗字相乘的思想解答【答案】2(2)(4)(58)x x x x ++++原式=(2)(3)12t t ++-256t t =+- (1)(6)t t =-+2(2)(3)(51)x x x x =+++-⽅法2:将252x x ++看作⼀个整体,设252x x t ++=,则原式=22(1)1212(3)(4)(2)(3)(51)t t t t t t x x x x +-=+-=-+=+++-⽅法3:将253x x ++看作⼀个整体,过程略.如果学⽣的能⼒到⼀定的程度,甚⾄连换元都不⽤,直接把25x x +看作⼀个整体,将原式展开,分组分解即可,则原式222(5)5(5)6x x x x =+++-22(51)(56)x x x x =+-++(2)(3)x x =++2(51)x x +-. 【答案】2(2)(3)(51)x x x x +++-【例3】分解因式:(1)(3)(5)(7)15x x x x +++++【解析】2(2)(6)(810)x x x x ++++【答案】2(2)(6)(810)x x x x ++++【例4】证明:四个连续整数的乘积加1是整数的平⽅.【解析】设这四个连续整数为:1x +、2x +、3x +、4x +(1)(2)(3)(4)1x x x x +++++[(1)(4)][(2)(3)]1x x x x =+++++22(54)(56)1x x x x =+++++24652u x x +=++原式22[(55)1][(55)1]1x x x x =++-++++22(55)11x x =++-+22(55)x x =++【答案】见解析【例5】分解因式2(25)(9)(27)91a a a +---【解析】原式[(25)(3)][(3)(27)]91a a a a =+-+--22(215)(221)91a a a a =-----设2215a a x --=,原式(6)91x x =--2691x x =--(13)(7)x x =-+ 22(228)(28)a a a a =----2(4)(27)(28)a a a a =-+--【答案】2(4)(27)(28)a a a a -+--(2)(4)(6)(8)12x x x x =+++++22(1016)(1024)12x x x x =+++++21016t x x =++原式(8)12t t =++(2)(6)t t =++22(1018)(1022)x x x x =++++【答案】22(1018)(1022)x x x x ++++【例7】分解因式:22222()4()x xy y xy x y ++-+【解析】设22x y a +=,xy b =,则原式2()4a b ab =+-2()a b =- 222()x y xy =+-.【答案】222()x y xy +-【例8】分解因式22(32)(384)90x x x x ++++-【解析】原式(1)(2)(21)(23)90x x x x =++++- 22(253)(252)90x x x x =++++-225y x x =+原式(3)(2)90y y =++-2584y y =+- (12)(7)y y =+-2(2512)(27)(1)x x x x =+++-【答案】2(2512)(27)(1)x x x x +++-模块四选主元【例 14】分解因式:1a b c ab ac bc abc +++++++【解析】把a 视为未知数,其它视为参数。
因式分解(完全平方公式)(试题参考答案)
完全平方公式例1(1)把229124b ab a +-分解因式.(2)把22816y x xy +-分解因式. (3)把2411x x ++分解因式.(4)把xy y x 4422-+分解因式.练习:把下列各式分解因式:(5).1692+-t t (6).412r r +-(7).236121a a +- (8).42242b b a a +-例2.把下列各式分解因式: (9).122++n nm m(10).222n m mn --(11).ax y ax y ax ++2232 (12).22224)1(4)1(a a a a ++-+ 练习:把下列各式分解因式: (13).n n m my y x x42242510+- (14).222y xy x -+-(15)21222+-x x (16)161)(21)(2+---y x y x (17)n n m my y x x 2245105-+-例3.把下列各式分解因式:(18).222)1(4+-a a (19).2)(4y x y x --练习:把下列各式分解因式:(20).222)41(+-m m (21).222224)(b a b a -+(22).)(42s t s s -+- (23).1)3)(2)(1(++++x x x x例4(24).已知054222=+++-b b a a 求b a ,的值【课堂操练】一.填空:(25).-2x ( )+29y =(x - 2)(26).+-244x x =-2(x 2)(27).++x x 32=+x (2)(28).++22520r r =( +52)r二.填空,将下列各式填上适当的项,使它成为完全平方式(222b ab a ++)的形式:(29).+-x x 2(30).++2241y x (31).242x xy -+ (32).++24414b a(33).++469n m (34).+-x x 52三.把下列各式分解因式:(36).244x x +- (37).49142++x x(38).9)(6)(2++-+n m n m (39).n n n x x x 7224212+-++【课后巩固】一.填空1.( )2+=+22520y xy ( )2.2.=+⨯-227987981600800( -- 2)= .3.已知3=+y x ,则222121y xy x ++= . 4.已知0106222=++-+y x y x 则=+y x .5.若4)3(2+-+x m x 是完全平方式,则数m 的值是 . 6.158-能被20至30之间的两个整数整除,那么这两个整数是 . 二.把下列各式分解因式:7.32231212x x y xy -+ 8.442444)(y x y x -+9.22248)4(3ax x a -+ 10.2222)(4)(12)(9b a b a b a ++-+- (11).2222224)(b a c b a --+ (12).22222)(624n m n m +- (13).115105-++-m m m x x x三.利用因式分解进行计算: (14).419.36.7825.03.2541⨯-⨯+⨯ (15).2298196202202+⨯+ (16).225.15315.1845.184+⨯+四.(17).将多项式1362+x 加上一个单项式,使它成为一个整式的平方.五.(18).已知212=-b a ,2=ab 求:42332444b a b a b a -+-的值.(19).已知n b a m b a =-=+22)(,)(,用含有m ,n 的式子表示: (1)a 与b 的平方和; (2)a 与b 的积; (3)baa b +.【课外拓展】(20).已知△ABC 的三边为a ,b ,c ,并且ca bc ab c b a ++=++222求证:此三角形为等边三角形.(21).已知cb a ,,是△ABC三边的长,且0)(22222=+-++c a b c b a 你能判断△ABC 的形状吗?请说明理由.(22).求证:不论为x,y 何值,整式5422+-xy y x 总为正值.。
完全平方公式练习50题
完全平方公式练习50题完全平方公式专项练知识点:完全平方公式完全平方公式:(a+b)²=a²+2ab+b² (a-b)²=a²-2ab+b²两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a²+2ab+b²=(a+b)² a²-2ab+b²=(a-b)²2、能否运用完全平方式的判定:①两数和(或差)的平方即:(a+b)²或(a-b)²或(-a-b)²或(-a+b)²②两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a²+2ab+b²或a²-2ab+b²-a²-2ab-b²或-a²+2ab-b²专项练:1.(a+2b)²2.(3a-5)²3.(-2m-3n)²4.(a²-1)²-(a²+1)²5.(-2a+5b)²6.(1/2ab-c)²7.(x-2y)(x²-4y²)(x+2y)8.(2a+3)²+(3a-2)²9.(a-2b+3c-1)(a+2b-3c-1) 10.(s-2t)(-s-2t)-(s-2t)²11.(t-3)²(t+3)²(t²+9)²12.97²13.2002²14.992-98×10015.49×51-2499 16.(x-2y)(x+2y)-(x+2y)²17.(a+b+c)(a+b-c)18.(a+b+c+d)²19.2a+1-1+2a20.3x-y-2x-y+5x(y-x)21.先化简,再求值:(x+2y)(x-2y)(x-4y),其中x=2,y=-1.22.解关于x的方程:(x+22/111)-(x-1/4444)(x+1/4444)=023.已知x-y=9,x·y=5,求x+y的值.24.已知a+b=7,ab=10,求a²+b²,(a-b)²的值.25.已知a(a-1)+(b-a)=-7,求-ab的值.26.已知2a-b=5,ab=3,求4a²+b²-1的值.27.已知(a+b)²=9,(a-b)²=5,求a²+b²,ab的值.28.已知(a+b)=16,ab=4,求与(a-b)的值。
完整版)完全平方公式提升练习题
完整版)完全平方公式提升练习题完全平方公式提升练题一、完全平方公式1.$(\frac{a}{2}b-c)^2$2.$(x-3y-2)(x+3y-2)$3.$(x-2y)(x^2-4y^2)(x+2y)$4.若$x^2+2x+k$是完全平方形式,则$k=x+1$5.若$x^2-7xy+M$是完全平方形式,则$M=\frac{49}{4}y^2$6.若$4a^2-Nab+81b^2$是完全平方形式,则$N=8a$7.若$25x-kxy+49y$是完全平方形式,则$k=50$二、公式的逆用8.$(2x-y)^2=4x^2-4xy+y^2$9.$(3m^2+n)^2=9m^4+6m^2n+n^2$10.$x^2-xy+y^2=(x-\frac{1}{2}y)^2+\frac{3}{4}y^2$11.$49a^2-18ab+81b^2=(7a-9b)^2$12.代数式$xy-x^2-y^2$等于$(x-y)^2-x^2-y^2$三、配方思想13.若$a+b-2a+2b+2=0$,则$a=-1$14.已知$x^2+y^2+4x-6y+13=1$,求$xy=-\frac{3}{2}$15.已知$x^2+y^2-2x-4y+5=0$,求$(x-1)^2-xy=\frac{3}{4}$16.已知$x^2+y^2+xy=2(x+y)$,求代数式$\frac{x+y}{4}$17.已知$x^2+y^2+z^2-2x+4y-6z+14=0$,则$x+y+z=1$四、完全平方公式的变形技巧18.已知$(a+b)^2=16$,$ab=4$,求$(a-b)^2=8$19.已知$2a-b=5$,$ab=2$,求$4a^2+b^2-1=44$20.已知$x-\frac{1}{x}=6$,求$x^2+\frac{1}{x^2}=37$21.已知$x^2+3x+1=0$,求$(1) x^2+\frac{1}{x^2}$,$(2) x^4+\frac{1}{x^4}$五、利用乘法公式进行计算22.$992-98\times100=-806$23.$(1-\frac{1}{2^2})(1-\frac{1}{3^2})(1-\frac{1}{4^2})=\frac{3}{4}$六、“整体思想”在整式运算中的运用24.当代数式$x^2+3x+5=7$时,求代数式$3x^2+9x-2=18$25.已知$a=\frac{1}{1\times2}\times\frac{2}{2\times3}\times\frac{3}{3\ti mes4}\times\cdots\times\frac{1999}{1999\times2000}$,$b=\frac{1}{2\times3}\times\frac{2}{3\times4}\times\frac{3}{4\ti mes5}\times\cdots\times\frac{1999}{2000\times2001}$,$c=\frac{1}{3\times4}\times\frac{2}{4\times5}\times\frac{3}{5\ti mes6}\times\cdots\times\frac{1999}{2001\times2002}$,求代数式$a^2+b^2+c^2-ab-ac-bc=\frac{1}{4003}$26、已知当$x=2$时,代数式$ax^5+bx^3+cx-8=10$,当$x=-2$时,代数式$ax^5+bx^3+cx-8$的值为27.当$x=2$时,代数式$ax^5+bx^3+cx-8=10$,即$32a+8b+2c=18$;当$x=-2$时,代数式$ax^5+bx^3+cx-8$的值为27,即$-32a+8b-2c=35$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《因式分解——完全平方公式》进阶练习
一、选择题
1.下列分解因式中,结果正确的是()
A.x2﹣1=(x﹣1)2
B.x2+2x﹣1=(x+1)2
C.2x2﹣2=2(x+1)(x﹣1)
D.x2﹣6x+9=x(x﹣6)+9
2. 下列能用完全平方公式因式分解的是()
A.16x2+4x+1
B.16x2-8x+1
C.4x2+4x+4
D.x2+2x+4
3.把a2b-2ab2+b3分解因式正确的是()
A.b(a2-2ab+b2)
B.a2b-b2(2a-y)
C.b(a-b)2
D.b(a+b)2
二、填空题
4.因式分解:a2-4a+4=____ ____.
5. 因式分解:x3y-2x2y+xy=_______ _.
6.分解因式:x2y﹣4xy+4y= ______ ___ .
三、计算题
7.求:分解因式的结果
参考答案
1.C
2.B
3.C
4.(a-2)2
5.xy(x-1)²
6.y(x-2)2
7.
【解析】
1. 【分析】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.熟练掌握因式分解的方法是解本题的关键.各项分解因式得到结果,即可做出判断.
解:A.原式=(x+1)(x-1),错误;
B.原式不能分解,错误;
C.原式=2(x2-1)=2(x+1)(x-1),正确;
D.原式=(x-3)2,错误.
故选C.
2. 【分析】
考查用完全平方公式分解因式的相关知识;熟练掌握完全平方公式是解决本题的关键.找到符合a2±2ab+b2的形式的式子即可.
【解答】
解:A.若能用完全平方公式分解因式,中间那项应为8x,故错误;
B.可分解为(4x-1)2,正确;
C.若能用完全平方公式分解因式,中间那项应为8x或常数项为1,故错误;
D.若能用完全平方公式分解因式,最后那项应为1,故错误.
故选B.
3. 解:原式=b(a2-2ab+b2)
=b(a-b)2.故选C.
原式分解因式得到结果,即可做出判断.
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
4. 【分析】
本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.
根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.
【解答】
解:a2-4a+4=(a-2)2.
故答案为 (a-2)2.
5. 【分析】
此题考查了多项式的因式分解.观察多项式的特点先利用提公因式法提取公因式xy,再用完全平方公式继续分解即可.
【解答】
解:x³y-2x²y+xy
=xy(x²-2x+1)
=xy(x-1)². 故答案为xy(x-1)².
6. 【分析】
本题考查了提公因式法,公式法分解因式,难点在于提取公因式后要进行二次分解因式,分解因式要彻底.先提取公因式y,再对余下的多项式利用完全平方公式继续分解.【解答】
解:x2y-4xy+4
=y(x2-4x+4)
=y(x-2)².
故答案为 y(x-2)2.
7. 本题主要考查了利用完全平方公式进行分解因式。
解:
= =。