2020年湖南省长沙市初中毕业学业考试数学试卷初中数学
2020年湖南省长沙市中考数学试卷(有详细解析)
2020年湖南省长沙市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共12小题,共36.0分)1.(−2)3的值等于()A. −6B. 6C. 8D. −82.下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.3.为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中数字632400000000用科学记数法表示为()A. 6.324×1011B. 6.324×1010C. 632.4×109D. 0.6324×10124.下列运算正确的是()A. √3+√2=√5B. x8÷x2=x6C. √3×√2=√5D. (a5)2=a75.2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A. v=106t B. v=106t C. v=1106t2 D. v=106t26.从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是()A. 42√3米B. 14√3米C. 21米D. 42米7.不等式组{x+1≥−1x2<1的解集在数轴上表示正确的是()A. B.C. D.8.一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的不一定是红球C. 第一次摸出的球是红球的概率是13D. 两次摸出的球都是红球的概率是199.2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day)”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是()A. ②③B. ①③C. ①④D. ②④10.如图:一块直角三角板的60°角的顶点A与直角顶点C分别在两平行线FD、GH上,斜边AB平分∠CAD,交直线GH于点E,则∠ECB的大小为()A. 60°B. 45°C. 30°D. 25°11.随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A. 400x−30=500xB. 400x=500x+30C. 400x=500x−30D. 400x+30=500x12.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:p=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A. 3.50分钟B. 4.05分钟C. 3.75分钟D. 4.25分钟二、填空题(本大题共4小题,共12.0分)13.长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校100次数7次及以上654321次及以下人数81231241564这次调查中的众数和中位数分别是______,______.14.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为______.15.已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为______.16.如图,点P在以MN为直径的半圆上运动(点P不与M,N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F.(1)PFPQ +PEPM=______.(2)若PN2=PM⋅MN,则MQNQ=______.三、解答题(本大题共9小题,共72.0分)17.计算:|−3|−(√10−1)0+√2cos45°+(14)−1.18.先化简再求值:x+2x2−6x+9⋅x2−9x+2−xx−3,其中x=4.19.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:∠AOB.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求(如图).请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是______.(填序号)①SSS②SAS③AAS④ASA(2)请你证明OC为∠AOB的平分线.20.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:(1)这次调查活动共抽取______人;(2)m=______,n=______;(3)请将条形统计图补充完整;(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.21.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=√3,求⊙O的半径.22.今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:第一批第二批A型货车的辆数(单位:辆)12B型货车的辆数(单位:辆)35累计运输物资的吨数(单位:吨)2850备注:第一批、第二批每辆货车均满载(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车.试问至少还需联系多少辆B种型号货车才能一次性将这批生活物资运往目的地?23.在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=2√3,AD=4,求EC的长;(3)若AE−DE=2EC,记∠BAF=α,∠FAE=β,求tanα+tanβ的值.24.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图象上关于原点对称的两点叫做一对“H点”.根据该约定,完成下列各题.(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”.①y=2x(______);②y=m(m≠0)(______);x③y=3x−1(______).(2)若点A(1,m)与点B(n,−4)是关于x的“H函数”y=ax2+bx+c(a≠0)的一对“H点”,且该函数的对称轴始终位于直线x=2的右侧,求a,b,c的值或取值范围.(3)若关于x的“H函数”y=ax2+2bx+3c(a,b,c是常数)同时满足下列两个条件:①a+b+c=0,②(2c+b−a)(2c+b+3a)<0,求该“H函数”截x轴得到的线段长度的取值范围.25.如图,半径为4的⊙O中,弦AB的长度为4√3,点C是劣弧AB⏜上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;(2)当点C沿着劣弧AB⏜从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;(3)分别记△ODE,△CDE的面积为S1,S2,当S12−S22=21时,求弦AC的长度.答案和解析1.D解:(−2)3=−8,2.B解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项符合题意;C、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;3.A解:632400000000=6.324×1011,4.B解:A、√3与√2不是同类项,不能合并,计算错误,故本选项不符合题意.B、原式=x8−2=x6,计算正确,故本选项符合题意.C、原式=√3×2=√6,计算错误,故本选项不符合题意.D、原式=a5×2=a10,计算错误,故本选项不符合题意.5.A解:∵运送土石方总量=平均运送土石方的速度v×完成运送任务所需时间t,∴106=vt,∴v=106t,6.A解:根据题意可得:船离海岸线的距离为42÷tan30°=42√3(米)7.D解:由不等式组{x+1≥−1x2<1,得−2≤x<2,故该不等式组的解集在数轴表示为:8.A解:A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故本选项错误;B、第一次摸出的球是红球,第二次摸出的不一定是红球,故本选项正确;C、∵不透明袋子中装有1个红球,2个绿球,∴第一次摸出的球是红球的概率是13,故本选项正确;D、共用9种等情况数,分别是红红、红绿、红绿、绿红、绿绿、绿绿、绿红、绿绿、绿绿,则两次摸出的球都是红球的概率是19,故本选项正确;9.A解:因为圆周率是一个无理数,是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,所以表述正确的序号是②③;10.C解:∵AB平分∠CAD,∴∠CAD=2∠BAC=120°,又∵DF//HG,∴∠ACE=180°−∠DAC=180°−120°=60°,又∵∠ACB=90°,∴∠ECB=∠ACB−∠ACE=90°−60°=30°,11.B解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:400x =500x+30.12.C解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p=at2+bt+c中,{9a+3b+c=0.8 16a+4b+c=0.9 25a+5b+c=0.6,解得{a=−0.2 b=1.5c=−1.9,所以函数关系式为:p=−0.2t2+1.5t−1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=−b2a =− 1.52×(−0.2)=3.75,则当t=3.75分钟时,可以得到最佳时间.13.5 5解:这次调查中的众数是5,这次调查中的中位数是5+52=5,14.7解:设每人有牌x张,B同学从A同学处拿来二张扑克牌,又从C同学处拿来三张扑克牌后,则B同学有(x+2+3)张牌,A同学有(x−2)张牌,那么给A同学后B同学手中剩余的扑克牌的张数为:x+2+3−(x−2)=x+5−x+ 2=7.15.3π解:∵圆锥的侧面展开图是扇形,∴S侧=πrl=3×1π=3π,∴该圆锥的侧面展开图的面积为3π.16.1 √5−12解:(1)∵MN为⊙O的直径,∴∠MPN=90°,∵PQ⊥MN,∴∠PQN=∠MPN=90°,∵NE平分∠PNM,∴∠MNE=∠PNE,∴△PEN∽△QFN,∴PEQF =PNQN,即PEPN=QFQN①,∵∠PNQ+∠NPQ=∠PNQ+∠PMQ=90°,∴∠NPQ=∠PMQ,∵∠PQN=∠PQM=90°,∴△NPQ∽△PMQ,∴PNMP =NQPQ②,∴①×②得PEPM =QFPQ,∵QF=PQ−PF,∴PEPM =QFPQ=1−PFPQ,∴PFPQ +PEPM=1,故答案为:1;(2)∵∠PNQ=∠MNP,∠NQP=∠NPQ,∴△NPQ∽△NMP,∴PNMN =QNPN,∴PN2=QN⋅MN,∵PN 2=PM ⋅MN , ∴PM =QN , ∴MQ NQ=MQ PM,∵tan∠M =MQPM =PMMN , ∴MQ NQ =PM MN,∴MQ NQ=NQ MQ+NQ,∴NQ 2=MQ 2+MQ ⋅NQ ,即1=MQ 2NQ 2+MQ NQ,设MQNQ =x ,则x 2+x −1=0, 解得,x =√5−12,或x =−√5+12<0(舍去),∴MQ NQ=√5−12,17. 解:原式=3−1+√2×√22+4 =2+1+4 =7.18. 解:x+2x 2−6x+9⋅x 2−9x+2−xx−3=x+2(x−3)2⋅(x+3)(x−3)x+2−xx−3=x+3x−3−xx−3 =3x−3,当x =4时,原式=34−3=3.19. ①解:(1)这种作已知角的平分线的方法的依据是①SSS . 故答案为:①(2)由基本作图方法可得:OM =ON ,OC =OC ,MC =NC , 则在△OMC 和△ONC 中, {OM =ON OC =OC MC =NC, ∴△OMC≌△ONC(SSS), ∴∠AOC =∠BOC ,即OC 为∠AOB 的平分线.20.200 86 27解:(1)20÷10%=200(人),故答案为:200;(2)200×43%=86(人),54÷200=27%,即,n=27,故答案为:86,27;(3)200×20%=40(人),补全条形统计图如图所示:(4)3000×27%=810(人),答:该校3000名学生中一周劳动4次及以上的有810人.21.解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴AD//OC,∵AD⊥DC,∴OC⊥DC,又OC是⊙O的半径,∴DC为⊙O的切线;(2)过点O作OE⊥AC于点E,在Rt△ADC中,AD=3,DC=√3,∴tan∠DAC=DCAD =√33,∴∠DAC=30°,∴AC=2DC=2√3,∵OE⊥AC,根据垂径定理,得AE=EC=12AC=√3,∵∠EAO =∠DAC =30°,∴OA =AE cos30∘=2, ∴⊙O 的半径为2. 22. 解:(1)设A 种型号货车每辆满载能运x 吨生活物资,B 种型号货车每辆满载能运y 吨生活物资,依题意,得:{x +3y =282x +5y =50, 解得:{x =10y =6. 答:A 种型号货车每辆满载能运10吨生活物资,B 种型号货车每辆满载能运6吨生活物资.(2)设还需联系m 辆B 种型号货车才能一次性将这批生活物资运往目的地, 依题意,得:10×3+6m ≥62.4,解得:m ≥5.4,又∵m 为正整数,∴m 的最小值为6.答:至少还需联系6辆B 种型号货车才能一次性将这批生活物资运往目的地.23. (1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°,由翻折可知,∠D =∠AFE =90°,∴∠AFB +∠EFC =90°,∠EFC +∠CEF =90°,∴∠AFB =∠FEC ,∴△ABF∽△FCE .(2)设EC =x ,由翻折可知,AD =AF =4,∴BF =√AF 2−AB 2=√16−12=2,∴CF =BC −BF =2,∵△ABF∽△FCE ,∴AB CF =BF EC , ∴2√32=2x ,∴x =2√33, ∴EC =2√33.(3)∵△ABF∽△FCE ,∴AF EF =ABCF ,∴tanα+tanβ=BF AB +EF AF =BF AB +CF AB =BF+CFAB =BCAB , 设AB =CD =a ,BC =AD =b ,DE =x ,∴AE =DE +2CE =x +2(a −x)=2a −x ,∵AD =AF =b ,DE =EF =x ,∠B =∠C =∠D =90°,∴BF =√b 2−a 2,CF =√x 2−(a −x)2=√2ax −a 2,∵AD 2+DE 2=AE 2,∴b 2+x 2=(2a −x)2,∴a 2−ax =14b 2,∵△ABF∽△FCE ,∴AB CF =BF EC , ∴√x 2−(a−x)2=√b 2−a 2a−x ,∴a 2−ax =√b 2−a 2⋅√2ax −a 2,∴14b 2=√b 2−a 2⋅√a 2−12b 2,整理得,16a 4−24a 2b 2+9b 4=0,∴(4a 2−3b 2)2=0,∴b a =2√33, ∴tanα+tanβ=BC AB =2√33.24. √ √ ×解:(1)①y =2x 是“H 函数”.②y =m x (m ≠0)是“H 函数”.③y =3x −1不是“H 函数”.故答案为:√,√,×.(2)∵A ,B 是“H 点”,∴A ,B 关于原点对称,∴m =4,n =1,∴A(1,4),B(−1,−4),代入y =ax 2+bx +c(a ≠0)得{a +b +c =4a −b +c +−4, ∴{b =4a +c =0, ∵该函数的对称轴始终位于直线x =2的右侧, ∴−b 2a >2,∴−42a >2,∴−1<a <0,∵a +c =0,∴0<c <1,综上所述,−1<a <0,b =4,0<c <1.(3)∵y =ax 2+2bx +3c 是“H 函数”,∴设H(p,q)和(−p,−q),代入得到{ap 2+2bp +3c =q ap 2−2bp +3c =−q, 解得ap 2+3c =0,2bp =q ,∵p 2>0,∴a ,c 异号,∴ac <0,∵a +b +c =0,∴b =−a −c ,∵(2c +b −a)(2c +b +3a)<0,∴(2c −a −c −a)(2c −a −c +3a)<0,∴(c −2a)(c +2a)<0,∴c 2<4a 2,∴c 2a 2<4,∴−2<c a <2, 设t =c a ,则−2<t <0,设函数与x 轴交于(x 1,0),(x 2,0),∴x 1,x 2是方程ax 2+2bx +3c =0的两根,∴|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√(−2b a )2−4⋅3c a =√4(a+c)2a 2−12c a=√4[1+2c a +(c a )2−3c a ]=2√1+2t +t 2−3t=2√(t −12)2+34, ∵−2<t <0,∴2<|x 1−x 2|<2√7.25. 解:(1)如图1中,过点O 作OH ⊥AB 于H .∵OA =OB =4,OH ⊥AB ,∴AH =HB =12AB =2√3,∠AOH =∠BOH ,∴sin∠AOH =AH AO =√32, ∴∠AOH =60°,∴∠AOB =2∠AOH =120°.(2)如图2中,连接OC.∵OA=OC=OB,AD=DC,CE=EB,∴OD⊥AC,OE⊥CB,∴∠ODC=∠OEC=90°,∴∠ODC+∠OEC=180°,∴O,D,C,E四点共圆,∴OC是直径,∴OC的中点P是△OED的外接圆的圆心,∴OP=12OC=2,∴点P的运动路径的长=120⋅π⋅2180=4π3.(3)如图3中,连接OC交AB于J,过点O作OH⊥AB于H,过点C作CK⊥AB于K.∵AD=CD,CE=EB,∴DE//AB,AB=2DE,∴△CDE∽△CAB,∴S△CDES△CAB =(DEAB)2=14,∴S△ABC=4S2,∵S△ADO=S△ODC,S△OBE=S△OEC,∴S四边形ODCE =12S四边形OACB,∴S1+S2=12(4S2+4√3)=2S2+2√3,∴S1=S2+2√3,∵S12−S22=21,∴S22+4√3S2+12−S22=21,∴S2=3√34,∴S△ABC=3√3=12×AB×CK,∴CK=32,∵OH ⊥AB ,CK ⊥AB ,∴OH//CK ,∴△CKJ∽△OHJ ,∴CK OH=CJ OJ , ∴CJ OJ =322=34, ∴CJ =37×4=127,OJ =47×4=167, ∴JK =√CJ 2−CK 2=√(127)2−(32)2=3√1514,JH =√OJ 2−OH 2=√(167)2−22=2√157, ∴KH =√152,∴AK =AH =KH =2√3−√152,∴AC =√AK 2+CK 2=√(2√3−√152)2+(32)2=√18−6√5=√15−√3.。
2020年长沙市中考数学试卷
A. B. C. D.
【答案】A
2020年长沙市初中学业水平考试试卷数学
一、选择题
1. 的值是()
A. B.6C.8D.
【答案】D
【解析】
【分析】
利用有理数的乘方计算法则进行解答.
【详解】 =-8,
故选:D.
【点睛】此题考查有理数的乘方计算法则,熟练掌握运算法则是解题的关键.
2.下列图形中,是轴对称图形但不是中心对称图形的是()
A. B.
【解析】
【分析】
先将632400000000表示成a×10n的形式,其中1<| a |<10,n为将632400000000化成an×10n的形式时小数点向左移动的位数.
【详解】解:632400000000元= 元.
故答案为A.
【点睛】本题考查了科学记数法,即将原数据写成a×10的形式,确定a和n的值是解答此类题的关键.
A. B. C. D.
【答案】A
【解析】
【分析】
由总量=vt,求出v即可.
【详解】解(1)∵vt=106,
∴v= ,
故选:A.
【点睛】本题考查了反比例函数的应用,熟练掌握反比例函数的性质是解题的关键.
6.从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为()
A. 米B. 米C.21米D.42米
故选:B.
【点睛】本题考查了合并同类项,同底数幂的除法,二次根式的乘法,幂的乘方.很容易混淆,要熟练掌握运算法则.
2020年湖南长沙市中考数学试题(学生版)
2020年长沙市初中学业水平考试试卷数学一、选择题1.()3-2的值是( ) A. 6-B. 6C. 8D. 8-2.下列图形中,是轴对称图形但不是中心对称图形的是( )A. B.C. D.3.为了将“新冠疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展,据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中632400000000用科学记数法表示为( ) A. 116.23410⨯ B. 106.23410⨯C. 96.23410⨯D. 126.23410⨯4.下列运算正确的是( ) A.325= B. 826x x x ÷=C.325= D. ()257a a =5.2019年10月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开 ,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为6310m 土石方的任务,该运输公司平均运送土石方的速度v (单位:3/m 天)与完成运送任务所需的时间t (单位:天)之间的函数关系式是( )A. 610v t=B. 610v =C. 26110v t =D. 6210v t =6.从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为( ) A. 423B. 143米C. 21米D. 42米7.不等式组1112x x +≥-⎧⎪⎨<⎪⎩的解集在数轴上表示正确的是( )A.B.C.D.8.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是( )A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的球不一定是绿球C. 第一次摸出的球是红球,第二次摸出的球不一定是红球D. 第一次摸出的球是红球的概率是13;两次摸出的球都是红球的概率是199.2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( ) A. ②③B. ①③C. ①④D. ②④10.如图,一块直角三角板的60度的顶点A 与直角顶点C 分别在平行线,FD GH 上,斜边AB 平分CAD ∠,交直线GH 于点E ,则ECB ∠的大小为( )A. 60︒B. 45︒C. 30︒D. 25︒11.随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x 万件,依据题意得( ) A.40050030x x=- B.40050030x x =+ C.40050030x x =- D.40050030x x=+ 12.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p 与加工煎炸的时间t (单位:分钟)近似满足函数关系式:2p at bt c =++(0,a ≠a ,b ,c 为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A. 3.50分钟B. 4.05分钟C. 3.75分钟D. 4.25分钟二、填空题13.长沙地铁3号线、5号线即将运行,为了解市民每周乘地铁出行的次数,某校园小记者随机调查了100名市民,得到了如下的统计表:这次调查的众数和中位数分别是___________________________.14.某数学老师在课外活动中做了一个有趣的游戏:首先发给A ,B ,C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤: 第一步,A 同学拿出三张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学, 请你确定,最终B 同学手中剩余的扑克牌的张数为___________________. 15.若一个圆锥的母线长是3,底面半径是1,则它的侧面展开图的面积是_____.16.如图,点P 在以MN 为直径的半圆上运动,(点P 与M ,N 不重合),PQ MN NE ⊥平分MNP ∠,交PM 于点E ,交PQ 于点F . (1)PF PEPQ PM+=___________________.(2)若2PN PM PN =⋅,则MQNQ=___________________.三、解答题17.计算:()1131012cos 454-︒⎛⎫---++ ⎪⎝⎭18.先化简,再求值22296923x x xx x x x +-⋅--++-,其中4x = 19.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法: 已知:AOB ∠ 求作:AOB ∠的平分线做法:(1)以O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N , (2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在AOB ∠的内部相交于点C (3)画射线OC ,射线OC 即为所求.请你根据提供的材料完成下面问题:(1)这种作已知角平分线的方法的依据是__________________(填序号). ①SSS ②SAS ③AAS ④ASA (2)请你证明OC 为AOB ∠的平分线.20.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育意见》长沙市教育局发布了“普通中小学校劳动教育状况评价指标”,为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如下统计图表:(1)这次调查活动共抽取___________人; (2)_________;____________m n ==. (3)请将条形图补充完整(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数. 21.如图,AB 为O 的直径,C 为O 上的一点,AD 与过点C 的直线互相垂直,垂足为D ,AC 平分DAB ∠.(1)求证:DC 为O 的切线;(2)若3,3AD DC ==,求O 的半径.22.今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响,“一方有难,八方支援”,某市筹集了大量的生活物资,用A ,B 两种型号的货车,分两批运往受灾严重的地区,具体运算情况如下:第一批 第二批 A 型货车的辆数(单位:辆) 1 2 B 型货车的辆数(单位:辆) 3 5 累计运送货物的顿数(单位:吨) 2850备注:第一批、第二批每辆货车均满载(1)求A ,B 两种型号货车每辆满载分别能运多少吨生活物资;(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A 型号货车,试问至少还需联系多少辆B 型号货车才能一次性将这批生活物资运往目的地.23.在矩形ABCD 中,E 为DC 上的一点,把ADE ∆沿AE 翻折,使点D 恰好落在BC 边上的点F . (1)求证:ABFFCE ∆∆(2)若23,4AB AD ==,求EC 的长;(3)若2AE DE EC -=,记,BAF FAE αβ∠=∠=,求tan tan αβ+的值.24.我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×” ①2y x =( ) ②my (m 0)x=≠( ) ③31y x =-( ) (2)若点()1,A m 与点(),4B n -关于x 的“H 函数” ()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值域或取值范围;(3)若关于x 的“H 函数” 223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,②(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围. 25.如图,半径为4的O 中,弦AB 的长度为43点C 是劣弧AB 上的一个动点,点D 是弦AC 的中点,点E 是弦BC 的中点,连接DE ,OD ,OE . (1)求AOB ∠的度数;(2)当点C 沿着劣弧AB 从点A 开始,逆时针运动到点B 时,求ODE∆外心P 所经过的路径的长度;(3)分别记,ODE CDE ∆∆的面积为12,S S ,当221221S S -=时,求弦AC 的长度.。
2020年湖南省初中数学学业水平考试 数学模拟试卷(二)(解析版)
2020年湖南省初中数学学业水平考试数学模拟试卷(二)一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上.每小题4分,共40分)1.﹣2020的相反数是( )A .2020B .﹣2020C .20201D .﹣20201 【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2020的相反数是2020.故选:A .【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.﹣22×3的结果是( )A .﹣5B .﹣12C .﹣6D .12【分析】根据有理数的混合运算法则解答即可.【解答】解:﹣22×3=﹣4×3=﹣12.故选:B .【点评】本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键.有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的.3.下列运算正确的是( )A .a •a 2=a 2B .(ab )2=abC .3﹣1=D .【分析】根据同底数幂的乘法法则对A 进行判断;根据积的乘方对B 进行判断;根据负整数指数幂的意义对C 进行判断;根据二次根式的加减法对D 进行判断.【解答】解:A 、原式=a 3,所以A 选项错误;B 、原式=a 2b 2,所以B 选项错误;C 、原式=,所以C 选项正确;D、原式=2,所以D选项错误.故选:C.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.也考查了整式的运算.4.分式有意义,则x的取值范围是()A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣7【分析】直接利用分式有意义则分母不为零进而得出答案.【解答】解:分式有意义,则x﹣2≠0,解得:x≠2.故选:A.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.5.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°【分析】利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.【解答】解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.故选:A.【点评】本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.6.若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A.0 B.2.5 C.3 D.5【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【解答】解:(1)将这组数据从小到大的顺序排列为1,2,3,4,x,处于中间位置的数是3,∴中位数是3,平均数为(1+2+3+4+x)÷5,∴3=(1+2+3+4+x)÷5,解得x=5;符合排列顺序;(2)将这组数据从小到大的顺序排列后1,2,3,x,4,中位数是3,此时平均数是(1+2+3+4+x)÷5=3,解得x=5,不符合排列顺序;(3)将这组数据从小到大的顺序排列后1,x,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,不符合排列顺序;(4)将这组数据从小到大的顺序排列后x,1,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,符合排列顺序;(5)将这组数据从小到大的顺序排列后1,2,x,3,4,中位数,x,平均数(1+2+3+4+x)÷5=x,解得x=2.5,符合排列顺序;∴x的值为0、2.5或5.故选:C.【点评】本题考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数7.如图的立体图形的左视图可能是()A.B.C.D.【分析】左视图是从物体左面看,所得到的图形.【解答】解:此立体图形的左视图是直角三角形,故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.8.在同一平面直角坐标系中,函数y=x+k与y=(k为常数,k≠0)的图象大致是()A.B.C.D.【分析】方法1、根据已知解析式和函数的图象和性质逐个判断即可.方法2、先根据一次函数的图象排除掉C,D,再判断出A错误,即可得出结论.【解答】解:方法1、A、从一次函数图象看出k<0,而从反比例函数图象看出k>0,故本选项不符合题意;B、从一次函数图象看出k>0,而从反比例函数图象看出k>0,故本选项符合题意;C、从一次函数图象看出k>0,而从反比例函数图象看出k<0,故本选项不符合题意;D、从一次函数图象看出k<0,而从反比例函数图象看出k<0,但解析式y=x+k的图象和图象不符,故本选项不符合题意;故选B.方法2、∵函数解析式为y=x+k,这里比例系数为1,∴图象经过一三象限.排除C,D选项.又∵A、一次函数k<0,反比例函数k>0,错误.故选:B.【点评】本题考查了反比例函数和一次函数的图象和性质,能灵活运用图象和性质进行判断是解此题的关键.9.等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9 B.10 C.9或10 D.8或10【分析】由三角形是等腰三角形,得到①a=2,或b=2,②a=b①当a=2,或b=2时,得到方程的根x=2,把x=2代入x2﹣6x+n﹣1=0即可得到结果;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,由△=(﹣6)2﹣4(n﹣1)=0可的结果.【解答】解:∵三角形是等腰三角形,∴①a=2,或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴x=2,把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,∴△=(﹣6)2﹣4(n﹣1)=0解得:n=10,故选:B.【点评】本题考查了等腰三角形的性质,一元二次方程的根,一元二次方程根的判别式,注意分类讨论思想的应用.10.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2020的值为()A.201721⎪⎭⎫⎝⎛B.201722⎪⎪⎭⎫⎝⎛C.201822⎪⎪⎭⎫⎝⎛D.201821⎪⎭⎫⎝⎛【分析】根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.【解答】解:如图所示,∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=()n﹣3.当n=2020时,S2018=()2020﹣3=()2017.故选:A.【点评】本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“S n=()n﹣3”.二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内,每小题4分,共32分)11.新田为实现全县“脱贫摘帽”,2019年2月已统筹整合涉农资金235000000元,撬动800000000元金融资本参与全县脱贫攻坚工作,请将235000000用科学记数法表示为 2.35×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将235000000用科学记数法表示为:2.35×108.故答案为:2.35×108.【点评】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.直线y=2x+1经过点(0,a),则a= 1 .【分析】根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可.【解答】解:∵直线y=2x+1经过点(0,a),∴a=2×0+1,∴a=1.故答案为:1.【点评】本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程.13.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是 4 .【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【解答】方法1解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,∴S阴影=S△CGE+S△BGF=4.故答案为4.方法2设△AFG,△BFG,△BDG,△CDG,△CEG,△AEG的面积分别为S1,S2,S3,S4,S5,S6,根据中线平分三角形面积可得:S1=S2,S3=S4,S5=S6,S1+S2+S3=S4+S5+S6①,S2+S3+S4=S1+S5+S6②由①﹣②可得S1=S4,所以S1=S2=S3=S4=S5=S6=2,故阴影部分的面积为4.故答案为:4.【点评】根据三角形的中线把三角形的面积分成相等的两部分,该图中,△BGF的面积=△BGD的面积=△CGD 的面积,△AGF的面积=△AGE的面积=△CGE的面积.14.把多项式3x2﹣12因式分解的结果是3(x﹣2)(x+2).【分析】首先提取公因式,再利用平方差公式进行二次分解即可.【解答】解:3x2﹣12=3(x2﹣4)=3(x﹣2)(x+2).故答案为:3(x﹣2)(x+2).【点评】此题主要考查了提公因式法与公式法的综合运用,在分解因式时首先要考虑提取公因式,再考虑运用公式法,注意分解一定要彻底.15.不等式组的解集是2≤x<4 .【分析】分别解两个不等式得到x<4和x≥2,然后根据大小小大中间找确定不等数组的解集.【解答】解:,解①得x<4,解②得x≥2,所以不等式组的解集为2≤x<4.故答案为2≤x<4.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B.若△AOB 的面积为1,则k=﹣2 .【分析】根据反比例函数的性质可以得到△AOB的面积等于|k|的一半,由此可以得到它们的关系.【解答】解:依据比例系数k的几何意义可得两个三角形的面积都等于|k|=1,解得k=﹣2,故答案为:﹣2.【点评】本题考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.该知识点是中考的重要考点,同学们应高度关注.17.在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m﹣1,7),若线段AB与直线y=﹣2x﹣1相交,则m的取值范围为﹣4≤m≤﹣1 .【分析】先求出直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),再分类讨论:当点B在点A的右侧,则m ≤﹣4≤3m﹣1,当点B在点A的左侧,则3m﹣1≤﹣4≤m,然后分别解关于m的不等式组即可.【解答】解:当y=7时,﹣2x﹣1=7,解得x=﹣4,所以直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),当点B在点A的右侧,则m≤﹣4≤3m﹣1,无解;当点B在点A的左侧,则3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,所以m的取值范围为﹣4≤m≤﹣1,故答案为﹣4≤m≤﹣1.【点评】本题考查了一次函数图象上点的坐标特征,根据直线y=﹣2x﹣1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键..18.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D.当△ODA是等边三角形时,这两个二次函数的最大值之和等于2.【分析】连接PB、PC,根据二次函数的对称性可知OB=PB,PC=AC,从而判断出△POB和△ACP是等边三角形,再根据等边三角形的性质求解即可.【解答】解:如图,连接PB、PC,由二次函数的性质,OB=PB,PC=AC,∵△ODA是等边三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等边三角形,∵A(4,0),∴OA=4,∴点B、C的纵坐标之和为4×=2,即两个二次函数的最大值之和等于2.故答案为2.【点评】本题考查了二次函数的最值问题,等边三角形的判定与性质,作辅助线构造出等边三角形并利用等边三角形的知识求解是解题的关键.三、解答题(本大题共8个小题,共78分,解答题要求写出证明步骤或解答过程)19.(8分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)2020【分析】原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.【解答】解:原式=﹣4+1+1+1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)先化简,再求值:﹣÷,其中a=1.【分析】原式第二项利用除法法则变形,约分后通分并利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=﹣•2(a﹣3)=﹣==,当a=1时,原式==﹣1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(8分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)本次抽查的学生人数是多少人?(2)请补全条形统计图;请补全扇形统计图;(3)“自行乘车”对应扇形的圆心角的度数是126 度;(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?【分析】(1)本次抽查的学生人数:18÷15%=120(人);(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),据此补全条形统计图;(3)“自行乘车”对应扇形的圆心角的度数360°×=126°;(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人).【解答】解:(1)本次抽查的学生人数:18÷15%=120(人),答:本次抽查的学生人数是120人;(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),补全条形统计图如下:(3)“自行乘车”对应扇形的圆心角的度数360°×=126°,故答案为126;(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人),答:该校“家人接送”上学的学生约有500人.【点评】本题主要考查条形统计图及扇形统计图及相关计算.解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键.22.(10分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米,)【分析】先根据锐角三角函数的定义求出AC的长,再根据AB=AC+DE即可得出结论.【解答】解:∵BD=CE=6m,∠AEC=60°,∴AC=CE•tan60°=6×=6≈6×1.732≈10.4m,∴AB=AC+DE=10.4+1.5=11.9m.答:旗杆AB的高度是11.9米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,先根据锐角三角函数的定义得出AC的长是解答此题的关键.23.(10分)如图,正方形ABCD中,E,F分别为BC,CD上的点,且AE⊥BF,垂足为G.(1)求证:AE=BF.(2)若BE=,AG=2,求正方形的边长.【分析】(1)由正方形的性质得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA证得△ABE≌△BCF即可得出结论;(2)证出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG•AE,设EG=x,则AE=AG+EG =2+x,代入求出x,求得AE=3,由勾股定理即可得出结果.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥BF,垂足为G,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵四边形ABCD为正方形,∴∠ABC=90°,∵AE⊥BF,∴∠BGE=∠ABE=90°,∵∠BEG=∠AEB,∴△BGE∽△ABE,∴=,即:BE2=EG•AE,设EG=x,则AE=AG+EG=2+x,∴()2=x•(2+x),解得:x1=1,x2=﹣3(不合题意舍去),∴AE=3,∴AB===.【点评】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握正方形的性质,证明三角形全等与相似是解题的关键.24.(10分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线.(2)若AD=1,PB=BO,求弦AC的长.【分析】(1)要证明DB为⊙O的切线,只要证明∠OBD=90即可.(2)根据已知及直角三角形的性质可以得到PD=2BD=2DA=2,再利用等角对等边可以得到AC=AP,这样求得AP的值就得出了AC的长.【解答】(1)证明:连接OD;∵PA为⊙O切线,∴∠OAD=90°;在△OAD和△OBD 中,,∴△OAD≌△OBD,∴∠OBD=∠OAD=90°,∴OB⊥BD∴DB为⊙O的切线(2)解:在Rt△OAP中;∵PB=OB=OA,∴OP=2OA,∴∠OPA=30°,∴∠POA=60°=2∠C,∴PD=2BD=2DA=2,∴∠OPA=∠C=30°,∴AC=AP=3.【点评】本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况.25.(12分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型目的地大货车A村(元/辆)B村(元/辆)800 900小货车400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8﹣x)辆,前往A村的小货车为(10﹣x)辆,前往B村的小货车为[7﹣(10﹣x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【解答】解:(1)设大货车用x辆,小货车用y辆,根据题意得:,解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往A村.最少运费为9900元.【点评】本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往B村的大货车数x的关系.26.(12分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)求抛物线的解析式.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC 于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?【分析】(1)根据抛物线的对称轴与矩形的性质可得点A的坐标,根据待定系数法可得抛物线的解析式;(2)先根据勾股定理可得CE,再分两种情况:当∠QPC=90°时;当∠PQC=90°时;讨论可得△PCQ为直角三角形时t的值;(3)根据待定系数法可得直线AC的解析式,根据S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.【解答】解:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,∴点A坐标为(1,4),设抛物线的解析式为y=a(x﹣1)2+4,把C(3,0)代入抛物线的解析式,可得a(3﹣1)2+4=0,解得a =﹣1.故抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依题意有:OC=3,OE=4,∴CE===5,当∠QPC=90°时,∵cos∠QPC=,∴,解得t=;当∠PQC=90°时,∵cos∠QCP=,∴,解得t=.∴当t=或t=时,△PCQ为直角三角形;(3)∵A(1,4),C(3,0),设直线AC的解析式为y=kx+b,则有:,解得.故直线AC的解析式为y=﹣2x+6.∵P(1,4﹣t),将y=4﹣t代入y=﹣2x+6中,得x=1+,∴Q点的横坐标为1+,将x=1+代入y=﹣(x﹣1)2+4 中,得y=4﹣.∴Q点的纵坐标为4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,∴S△ACQ=S△AFQ+S△CPQ=FQ•AG+FQ•DG,=FQ(AG+DG),=FQ•AD,=×2(t﹣),=﹣(t﹣2)2+1,∴当t=2时,△ACQ的面积最大,最大值是1.【点评】考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,矩形的性质,待定系数法求抛物线的解析式,待定系数法求直线的解析式,勾股定理,锐角三角函数,三角形面积,二次函数的最值,方程思想以及分类思想的运用.。
湖南长沙市2020年中考数学试题(解析版)
A. B. C. D.
【答案】A
A. B.
C. D.
【答案】D
【解析】
【分析】
先分别解出两个不等式,然后找出解集,表示在数轴上即可.
详解】解: ,
由①得,x≥−2,
由②得,x<2,
故原不等式组的解集为:−2≤x<2.
在数轴上表示为:
故答案为:D.
【点睛】本题考查的是一元一次不等式组的解法及在数轴上表示解集,在数轴上表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.熟练掌握不等式组的解法是解题的关键.
A. B. C. D.
【答案】A
【解析】
【分析】
由总量=vt,求出v即可.
【详解】解(1)∵vt=106,
∴v= ,
故选:A.
【点睛】本题考查了反比例函数的应用,熟练掌握反比例函数的性质是解题的关键.
6.从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为()
A. 米B. 米C.21米D.42米
【答案】A
【解析】
【分析】
在直角三角形中,已知角的对边求邻边,可以用正切函数来解决.
【详解】解:根据题意可得:船离海岸线的距离为42÷tan30°=42 (米).
故选:A.
【点睛】本题考查解直角三角形的应用-仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.
7.不等式组 的解集在数轴上表示正确的是()
2020年长沙市初中毕业学业考试初中数学
2020年长沙市初中毕业学业考试初中数学数学试卷考生注意:本试卷共26道小题,时量120分钟,总分值120分.一、填空题〔此题共8个小题,每题3分,总分值24分〕1、-8的绝对值是 .2、函数y =2-x 中的自变量x 的取值范畴是 .3、△ABC 中,∠A=55︒,∠B=25︒,那么∠C= .4、方程112=-x 的解为x = . 5、如图,P 为菱形ABCD 的对角线上一点,PE ⊥AB 于点E ,PF ⊥AD 于点F ,PF=3cm ,那么P 点到AB 的距离是 cm .6、如图,在Rt △ABC 中,∠C=90︒,AB=10cm ,D 为AB 的中点,那么CD= cm .7、A .b 为两个连续整数,且a <7<b ,那么b a += .8、在一次捐款活动中,某班50名同学人人拿出自己的零花钞票,有捐5元、10元、20元的,还有捐50元和100元的。
右边的统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款 元.二、选择题〔此题共8个小题,每题3分,总分值24分〕9、下面运算正确的选项是〔 〕A .A .221-=-B .24±=C .(3n m ⋅)2=6n m ⋅D .426m m m =÷10、要反映长沙市一周内每天的最高气温的变化情形,宜采纳〔 〕A .条形统计图B .扇形统计图C .折线统计图D .频数分布直方图11、假设点P 〔a ,a -4〕是第二象限的点,那么a 必须满足〔 〕A .a <4B .a >4C .a <0D .0<a <412、如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与〝迎〞相对的面上的汉字是〔 〕A .文B .明C .奥D .运13、在同一平面直角坐标系中,函数xy 1-=与函数x y =的图象交点个数是〔 〕 A .0个 B .1个 C .2个 D .3个14、在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,那么树的高度为〔 〕A .4.8米B .6.4米C .9.6米D .10米15、如图,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP=5,PA=4,那么sin ∠APO 等于〔 〕A .54B .53C .34D .43 16、二次函数c bx ax y ++=2的图象如下图,那么以下关系式不正确的选项是〔 〕A .a <0B .abc >0C .c b a ++>0D .ac b 42->0三、解答题〔此题共6个小题,每题6分,总分值36分〕17、运算:0)151(30sin 2273--︒+. 18、先化简,再求值:a a a -+-21422,其中21=a . 19、在下面的格点图中,每个小正方形的边长均为1个单位,请按以下要求画出图形:〔1〕画出图①中阴影部分关于O 点的中心对称图形;〔2〕画出图②中阴影部分向右平移9个单位后的图形; 〔3〕画出图③中阴影部分关于直线AB 的轴对称图形.〔图①〕 〔图②〕 〔图③〕20、解不等式组:⎪⎩⎪⎨⎧-<-≤-xx x 14340121,并将其解集在数轴上表示出来.21、当m 为何值时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根?现在这两个实数根是多少?22、某商场开展购物抽奖活动,抽奖箱中有4个标号分不为1、2、3、4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,假设两次摸出的数字之和为〝8”是一等奖,数字之和为〝6”是二等奖,数字之和为其它数字那么是三等奖,请分不求出顾客抽中一、二、三等奖的概率.四、解答题〔此题共2个小题,每题8分,总分值16分〕23、〔此题总分值8分〕〝5·12”汶川大地震后,灾区急需大量帐篷。
湖南长沙市2020年中考数学试卷.docx
2020年长沙市初中学业水平考试试卷、以『•、”数学一、选择题1. (-2)3的值是() A, —6 B. 6C. 8D. —8【答案】D 【详解】(-2)3=82. 下列图形中,是轴对称图形但不是中心对称图形的是()【答案】B【详解】A 、不是轴对称图形,也不是中心对称图形,不合题意; B 、 是轴对称图形,不是中心对称图形,符合题意; C 、 不是轴对称图形,也不是中心对称图形,不合题意; D 、 不是轴对称图形,是中心对称图形,不合题意. 3.为了将“新冠疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实 减轻企业负担,以促进我国进出口企业平稳发展,据国家统计局相关数据显示,2020年1月 至5月,全国累计办理出口退税632400000000元,其中632400000000用科学记数法表示为C. 6.234 xlO 9D. 6.234xlO 12【答案】A 【详解】解:632400000000 元=6.234x10“ 元. 4.下列运算正确的是()A 、 s/3 + y/2 = 45 B. x'』』 C. 73X ^ = A /5D. 3)2=W( )A. 6.234X1011B. 6.234x10*°【答案】B【详解】解:A、&皿?必,故本选项错误;B、x8^%2-故本选项正确;C、、& x A ,故本选项错误;D、(W)2=al。
?/,故本选项错误.5.2019年10月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为106 〃亍土石方的任务,该运输公司平均运送土石方的速度V (单位:"F/天)与完成运送任务所需的时间t (单位:天)之间的函数关系式是()A 106A. v = -----B. v = 106t1 2D. v = 106?2C. v ——— t 106【答案】A【详解】解(1) Vvt=106,._106• • V-------- ,t6.从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为()A.42右米B. 14^/3 米C. 21 米D. 42 米【答案】A【详解】解:根据题意可得:船离海岸线的距离为42Han3(F=420 (米).% + 1>-17.不等式组]x 的解集在数轴上表示正确的是()—<1 12A.—•---- 1---- 1 ---- * --- :~ AB. ] I -------------------- 1----- L 』•-2-1012 -2-10 I 2C. - - 一♦一一I --- A►D. -------- ------ 1 ---- L-2-10 12 -2-1 0【答案】D【详解】w: L ,一<i②12由①得,x>-2,由②得,x<2,故原不等式组的解集为:-2<x<2.在数轴上表示为:-2-1 0 I 28.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球, 然后放回摇匀,再随机摸出一个,下列说法中,错误的是()A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的球不一定是绿球C.第一次摸出的球是红球,第二次摸出的球不一定是红球D.第一次摸出的球是红球的概率是:;两次摸出的球都是红球的概率是&【答案】A【详解】A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故错误;B、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故正确;C、第一次摸出的球是红球,第二次摸出的球不一定是红球,故正确;D、第一次摸出的球是红球的概率是L;3两次摸到球的情况共有(红,红),(红,绿1),(红,绿2),(绿1,红),(绿1,绿1),(绿1,绿2),(绿2,红),(绿2,绿1),(绿2,绿2) 9种等可能的情况,两次摸出的球都是红球的有1种,...两次摸出的球都是红球的概率是故正确;9.2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“兀(Day)”国际数学日之所以定在3月14日,是因为3. 14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是()A.②③B.①③C.①④D.②④【答案】A【详解】解:①圆周率是一个有理数,错误;②互是一个无限不循环小数,因此圆周率是一个无理数,说法正确;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;10.如图,一块直角三角板的60度的顶点A与直角顶点C分别在平行线FD,GH上,斜边AB 平分ZCAD,交直线GH于点E,则ZECB的大小为()A. 60°B. 45°C. 30°D. 25°【答案】C【详解】...AB 平分ZC4D, ZCAB=60° ,.I ZDAE=60° ,.: FD//GH,.-.ZACE+ZCAD=180o ,...ZACE= 180 ° - Z CAB- Z DAE=60 ° ,ZACB=90° ,/. ZECB=90 ° -ZACE=30 ° ,11.随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x万件,依据题意得()400 500k. ---------- =--------x-30 x 400 500、 ___ __ _____x x-30【答案】B400 500B. ------- — ---------x x +30400 500D. ------------ = ----- x + 30 x【详解】依题意, 解:设更新技术前每天生产x 万件产品,则更新技术后每天生产(x+30)万件产品, f 400 500 得:——= ------- .x x + 30 12.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂, 其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p 与加工煎炸的时间t (单位:分钟)近似满足函数关系式: p = at 2+bt + c (a*0,a, b, c 为常数),如图纪录了三次实验数据,根据上述函数关系和 实验数据,可以得到加工煎炸臭豆腐的最佳时间为( ) 0.9 ________________ , 0.8 --------------------- ,: O 3 4 5 f A. 3.50分钟 B. 4.05分钟 C. 3.75分钟D. 4.25分钟【答案】C【详解】将(308)(4,0. 9)(5,0.6)^A p = at~ +bt + c^: 0.8 = 9tz + 3b + c ①) 0.9 = 16a + 4Z? + c ②0.6 = 25a + 5b + c ③②一①和③一②得<Q.l=la + b ④ 一0.3 = 9。
2020年湖南省长沙市中考数学试卷
2020年湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.(3分)(2020•长沙)(﹣2)3的值等于()A.﹣6B.6C.8D.﹣82.(3分)(2020•长沙)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.(3分)(2020•长沙)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中数字632400000000用科学记数法表示为()A.6.324×1011B.6.324×1010C.632.4×109D.0.6324×10124.(3分)(2020•长沙)下列运算正确的是()A.√3+√2=√5B.x8÷x2=x6C.√3×√2=√5D.(a5)2=a7 5.(3分)(2020•长沙)2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A.v=106t B.v=106t C.v=1106t2D.v=106t26.(3分)(2020•长沙)从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是()A.42√3米B.14√3米C.21米D.42米7.(3分)(2020•长沙)不等式组{x +1≥−1x 2<1的解集在数轴上表示正确的是( ) A .B .C .D . 8.(3分)(2020•长沙)一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是( )A .第一次摸出的球是红球,第二次摸出的球一定是绿球B .第一次摸出的球是红球,第二次摸出的不一定是红球C .第一次摸出的球是红球的概率是13D .两次摸出的球都是红球的概率是19 9.(3分)(2020•长沙)2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day )”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是( )A .②③B .①③C .①④D .②④10.(3分)(2020•长沙)如图:一块直角三角板的60°角的顶点A 与直角顶点C 分别在两平行线FD 、GH 上,斜边AB 平分∠CAD ,交直线GH 于点E ,则∠ECB 的大小为( )A .60°B .45°C .30°D .25°11.(3分)(2020•长沙)随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x 万件产品,依题意得( )A .400x−30=500x B .400x =500x+30 C .400x =500x−30 D .400x+30=500x12.(3分)(2020•长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P 与加工煎炸时间t (单位:分钟)近似满足的函数关系为:p =at 2+bt +c (a ≠0,a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A .3.50分钟B .4.05分钟C .3.75分钟D .4.25分钟二、填空题(本大题共4个小题,每小题3分,共12分)13.(3分)(2020•长沙)长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表:次数 7次及以上6 5 4 3 2 1次及以下 人数 8 12 31 24 15 6 4这次调查中的众数和中位数分别是 , .14.(3分)(2020•长沙)某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为 .15.(3分)(2020•长沙)已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为 .16.(3分)(2020•长沙)如图,点P 在以MN 为直径的半圆上运动(点P 不与M ,N 重合),PQ ⊥MN ,NE 平分∠MNP ,交PM 于点E ,交PQ 于点F .(1)PF PQ +PE PM = .(2)若PN 2=PM •MN ,则MQ NQ = .三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)(2020•长沙)计算:|﹣3|﹣(√10−1)0+√2cos45°+(14)﹣1. 18.(6分)(2020•长沙)先化简再求值:x+2x 2−6x+9•x 2−9x+2−x x−3,其中x =4.19.(6分)(2020•长沙)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N .(2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C .(3)画射线OC ,射线OC 即为所求(如图).请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是 .(填序号)①SSS②SAS③AAS④ASA(2)请你证明OC为∠AOB的平分线.20.(8分)(2020•长沙)2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:(1)这次调查活动共抽取人;(2)m=,n=;(3)请将条形统计图补充完整;(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.21.(8分)(2020•长沙)如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=√3,求⊙O的半径.22.(9分)(2020•长沙)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B 两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:第一批第二批A型货车的辆数(单位:辆)12B型货车的辆数(单位:辆)35累计运输物资的吨数(单位:吨)2850备注:第一批、第二批每辆货车均满载(1)求A、B两种型号货车每辆满载分别能运多少吨生活物资?(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车.试问至少还需联系多少辆B种型号货车才能一次性将这批生活物资运往目的地?23.(9分)(2020•长沙)在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=2√3,AD=4,求EC的长;(3)若AE﹣DE=2EC,记∠BAF=α,∠F AE=β,求tanα+tanβ的值.24.(10分)(2020•长沙)我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图象上关于原点对称的两点叫做一对“H点”.根据该约定,完成下列各题.(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”.①y=2x();②y=m x(m≠0)();③y=3x﹣1().(2)若点A(1,m)与点B(n,﹣4)是关于x的“H函数”y=ax2+bx+c(a≠0)的一对“H点”,且该函数的对称轴始终位于直线x=2的右侧,求a,b,c的值或取值范围.(3)若关于x的“H函数”y=ax2+2bx+3c(a,b,c是常数)同时满足下列两个条件:①a+b+c=0,②(2c+b﹣a)(2c+b+3a)<0,求该“H函数”截x轴得到的线段长度的取值范围.̂上25.(10分)(2020•长沙)如图,半径为4的⊙O中,弦AB的长度为4√3,点C是劣弧AB的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;̂从点A开始,逆时针运动到点B时,求△ODE的外心P所经过(2)当点C沿着劣弧AB的路径的长度;(3)分别记△ODE,△CDE的面积为S1,S2,当S12﹣S22=21时,求弦AC的长度.2020年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.(3分)(2020•长沙)(﹣2)3的值等于()A.﹣6B.6C.8D.﹣8【解答】解:(﹣2)3=﹣8,故选:D.2.(3分)(2020•长沙)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项符合题意;C、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;故选:B.3.(3分)(2020•长沙)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中数字632400000000用科学记数法表示为()A.6.324×1011B.6.324×1010C.632.4×109D.0.6324×1012【解答】解:632 400 000 000=6.324×1011,故选:A.4.(3分)(2020•长沙)下列运算正确的是()A.√3+√2=√5B.x8÷x2=x6C.√3×√2=√5D.(a5)2=a7【解答】解:A 、√3与√2不是同类项,不能合并,计算错误,故本选项不符合题意.B 、原式=x 8﹣2=x 6,计算正确,故本选项符合题意. C 、原式=√3×2=√6,计算错误,故本选项不符合题意.D 、原式=a 5×2=a 10,计算错误,故本选项不符合题意. 故选:B .5.(3分)(2020•长沙)2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m 3土石方的任务,该运输公司平均运送土石方的速度v (单位:m 3/天)与完成运送任务所需时间t (单位:天)之间的函数关系式是( )A .v =106tB .v =106tC .v =1106t 2D .v =106t 2【解答】解:∵运送土石方总量=平均运送土石方的速度v ×完成运送任务所需时间t , ∴106=vt ,∴v =106t , 故选:A .6.(3分)(2020•长沙)从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是( )A .42√3米B .14√3米C .21米D .42米【解答】解:根据题意可得:船离海岸线的距离为42÷tan30°=42√3(米)故选:A .7.(3分)(2020•长沙)不等式组{x +1≥−1x 2<1的解集在数轴上表示正确的是( ) A .B .C .D . 【解答】解:由不等式组{x +1≥−1x 2<1,得﹣2≤x <2,故该不等式组的解集在数轴表示为:故选:D .8.(3分)(2020•长沙)一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是( )A .第一次摸出的球是红球,第二次摸出的球一定是绿球B .第一次摸出的球是红球,第二次摸出的不一定是红球C .第一次摸出的球是红球的概率是13D .两次摸出的球都是红球的概率是19 【解答】解:A 、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故本选项错误;B 、第一次摸出的球是红球,第二次摸出的不一定是红球,故本选项正确;C 、∵不透明袋子中装有1个红球,2个绿球,∴第一次摸出的球是红球的概率是13,故本选项正确;D 、共用9种等情况数,分别是红红、红绿、红绿、绿红、绿绿、绿绿、绿红、绿绿、绿绿,则两次摸出的球都是红球的概率是19,故本选项正确; 故选:A .9.(3分)(2020•长沙)2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day )”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是( )A .②③B .①③C .①④D .②④【解答】解:因为圆周率是一个无理数,是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,所以表述正确的序号是②③;故选:A .10.(3分)(2020•长沙)如图:一块直角三角板的60°角的顶点A 与直角顶点C 分别在两平行线FD 、GH 上,斜边AB 平分∠CAD ,交直线GH 于点E ,则∠ECB 的大小为( )A .60°B .45°C .30°D .25°【解答】解:∵AB 平分∠CAD , ∴∠CAD =2∠BAC =120°, 又∵DF ∥HG ,∴∠ACE =180°﹣∠DAC =180°﹣120°=60°, 又∵∠ACB =90°,∴∠ECB =∠ACB ﹣∠ACE =90°﹣60°=30°, 故选:C .11.(3分)(2020•长沙)随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x 万件产品,依题意得( ) A .400x−30=500xB .400x=500x+30C .400x=500x−30D .400x+30=500x【解答】解:设更新技术前每天生产x 万件产品,则更新技术后每天生产(x +30)万件产品, 依题意,得:400x=500x+30.故选:B .12.(3分)(2020•长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P 与加工煎炸时间t (单位:分钟)近似满足的函数关系为:p =at 2+bt +c (a ≠0,a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A .3.50分钟B .4.05分钟C .3.75分钟D .4.25分钟【解答】解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p =at 2+bt +c 中,{9a +3b +c =0.816a +4b +c =0.925a +5b +c =0.6, 解得{a =−0.2b =1.5c =−1.9,所以函数关系式为:p =﹣0.2t 2+1.5t ﹣1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标: t =−b 2a =− 1.52×(−0.2)=3.75, 则当t =3.75分钟时,可以得到最佳时间. 故选:C .二、填空题(本大题共4个小题,每小题3分,共12分)13.(3分)(2020•长沙)长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表: 次数7次及以上654321次及以下 人数81231241564这次调查中的众数和中位数分别是 5 , 5 . 【解答】解:这次调查中的众数是5, 这次调查中的中位数是5+52=5,故答案为:5;5.14.(3分)(2020•长沙)某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为7.【解答】解:设每人有牌x张,B同学从A同学处拿来二张扑克牌,又从C同学处拿来三张扑克牌后,则B同学有(x+2+3)张牌,A同学有(x﹣2)张牌,那么给A同学后B同学手中剩余的扑克牌的张数为:x+2+3﹣(x﹣2)=x+5﹣x+2=7.故答案为:7.15.(3分)(2020•长沙)已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为3π.【解答】解:∵圆锥的侧面展开图是扇形,∴S侧=πrl=3×1π=3π,∴该圆锥的侧面展开图的面积为3π.故答案为:3π.16.(3分)(2020•长沙)如图,点P在以MN为直径的半圆上运动(点P不与M,N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F.(1)PFPQ +PEPM=1.(2)若PN2=PM•MN,则MQNQ=√5−12.【解答】解:(1)∵MN为⊙O的直径,∴∠MPN=90°,∵PQ ⊥MN ,∴∠PQN =∠MPN =90°, ∵NE 平分∠PNM , ∴∠MNE =∠PNE , ∴△PEN ∽△QFN , ∴PE QF=PN QN,即PEPN=QF QN①,∵∠PNQ +∠NPQ =∠PNQ +∠PMQ =90°, ∴∠NPQ =∠PMQ , ∵∠PQN =∠PQM =90°, ∴△NPQ ∽△PMQ , ∴PN MP=NQ PQ②,∴①×②得PEPM=QF PQ,∵QF =PQ ﹣PF , ∴PE PM =QF PQ =1−PFPQ , ∴PF PQ+PE PM=1,故答案为:1;(2)∵∠PNQ =∠MNP ,∠NQP =∠NPQ , ∴△NPQ ∽△NMP , ∴PN MN=QN PN,∴PN 2=QN •MN , ∵PN 2=PM •MN , ∴PM =QN , ∴MQ NQ=MQ PM,∵tan ∠M =MQPM =PMMN , ∴MQ NQ =PM MN,∴MQ NQ=NQ MQ+NQ,∴NQ 2=MQ 2+MQ •NQ ,即1=MQ 2NQ 2+MQNQ , 设MQ NQ=x ,则x 2+x ﹣1=0,解得,x =√5−12,或x =−√5+12<0(舍去),∴MQ NQ=√5−12, 故答案为:√5−12. 三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)(2020•长沙)计算:|﹣3|﹣(√10−1)0+√2cos45°+(14)﹣1.【解答】解:原式=3﹣1+√2×√22+4 =2+1+4 =7.18.(6分)(2020•长沙)先化简再求值:x+2x 2−6x+9•x 2−9x+2−xx−3,其中x =4.【解答】解:x+2x −6x+9•x 2−9x+2−xx−3=x+2(x−3)2⋅(x+3)(x−3)x+2−x x−3 =x+3x−3−xx−3 =3x−3,当x =4时,原式=34−3=3.19.(6分)(2020•长沙)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法: 已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N . (2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C .(3)画射线OC ,射线OC 即为所求(如图). 请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是 ① .(填序号) ①SSS ②SAS ③AAS ④ASA(2)请你证明OC 为∠AOB 的平分线.【解答】解:(1)这种作已知角的平分线的方法的依据是①SSS . 故答案为:①(2)由基本作图方法可得:OM =ON ,OC =OC ,MC =NC , 则在△OMC 和△ONC 中, {OM =ON OC =OC MC =NC, ∴△OMC ≌△ONC (SSS ), ∴∠AOC =∠BOC , 即OC 为∠AOB 的平分线.20.(8分)(2020•长沙)2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:(1)这次调查活动共抽取200人;(2)m=86,n=27;(3)请将条形统计图补充完整;(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.【解答】解:(1)20÷10%=200(人),故答案为:200;(2)200×43%=86(人),54÷200=27%,即,n=27,故答案为:86,27;(3)200×20%=40(人),补全条形统计图如图所示:(4)3000×27%=810(人),答:该校3000名学生中一周劳动4次及以上的有810人.21.(8分)(2020•长沙)如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=√3,求⊙O的半径.【解答】解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴AD∥OC,∵AD⊥DC,∴OC⊥DC,又OC是⊙O的半径,∴DC为⊙O的切线;(2)过点O作OE⊥AC于点E,在Rt△ADC中,AD=3,DC=√3,∴tan∠DAC=DCAD=√33,∴∠DAC=30°,∴AC=2DC=2√3,∵OE⊥AC,根据垂径定理,得AE=EC=12AC=√3,∵∠EAO=∠DAC=30°,∴OA =AEcos30°=2,∴⊙O 的半径为2.22.(9分)(2020•长沙)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A ,B 两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:第一批 第二批 A 型货车的辆数(单位:辆) 1 2 B 型货车的辆数(单位:辆) 3 5 累计运输物资的吨数(单位:吨)2850备注:第一批、第二批每辆货车均满载(1)求A 、B 两种型号货车每辆满载分别能运多少吨生活物资?(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A 种型号货车.试问至少还需联系多少辆B 种型号货车才能一次性将这批生活物资运往目的地?【解答】解:(1)设A 种型号货车每辆满载能运x 吨生活物资,B 种型号货车每辆满载能运y 吨生活物资,依题意,得:{x +3y =282x +5y =50,解得:{x =10y =6.答:A 种型号货车每辆满载能运10吨生活物资,B 种型号货车每辆满载能运6吨生活物资.(2)设还需联系m 辆B 种型号货车才能一次性将这批生活物资运往目的地, 依题意,得:10×3+6m ≥62.4, 解得:m ≥5.4, 又∵m 为正整数, ∴m 的最小值为6.答:至少还需联系6辆B 种型号货车才能一次性将这批生活物资运往目的地. 23.(9分)(2020•长沙)在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F . (1)求证:△ABF ∽△FCE ;(2)若AB =2√3,AD =4,求EC 的长;(3)若AE ﹣DE =2EC ,记∠BAF =α,∠F AE =β,求tan α+tan β的值.【解答】(1)证明:∵四边形ABCD 是矩形, ∴∠B =∠C =∠D =90°, 由翻折可知,∠D =∠AFE =90°,∴∠AFB +∠EFC =90°,∠EFC +∠CEF =90°, ∴∠AFB =∠FEC , ∴△ABF ∽△FCE .(2)设EC =x ,由翻折可知,AD =AF =4,∴BF =√AF 2−AB 2=√16−12=2, ∴CF =BC ﹣BF =2, ∵△ABF ∽△FCE , ∴AB CF=BF EC,∴2√32=2x, ∴x =2√33, ∴EC =2√33.(3)∵△ABF ∽△FCE , ∴AF EF=AB CF,∴tan α+tan β=BFAB +EFAF =BFAB +CFAB =BF+CF AB=BCAB , 设AB =CD =a ,BC =AD =b ,DE =x , ∴AE =DE +2CE =x +2(a ﹣x )=2a ﹣x ,∵AD =AF =b ,DE =EF =x ,∠B =∠C =∠D =90°,∴BF =√b 2−a 2,CF =√x 2−(a −x)2=√2ax −a 2,∵AD 2+DE 2=AE 2,∴b 2+x 2=(2a ﹣x )2,∴a 2﹣ax =14b 2,∵△ABF ∽△FCE ,∴AB CF =BF EC , ∴22=√b 2−a 2a−x ,∴a 2﹣ax =√b 2−a 2•√2ax −a 2,∴14b 2=√b 2−a 2•√a 2−12b 2, 整理得,16a 4﹣24a 2b 2+9b 4=0,∴(4a 2﹣3b 2)2=0,∴b a =2√33, ∴tan α+tan β=BC AB =2√33.24.(10分)(2020•长沙)我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图象上关于原点对称的两点叫做一对“H 点”.根据该约定,完成下列各题.(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”.①y =2x ( √ );②y =mx (m ≠0)( √ );③y =3x ﹣1( × ).(2)若点A (1,m )与点B (n ,﹣4)是关于x 的“H 函数”y =ax 2+bx +c (a ≠0)的一对“H 点”,且该函数的对称轴始终位于直线x =2的右侧,求a ,b ,c 的值或取值范围.(3)若关于x 的“H 函数”y =ax 2+2bx +3c (a ,b ,c 是常数)同时满足下列两个条件:①a +b +c =0,②(2c +b ﹣a )(2c +b +3a )<0,求该“H 函数”截x 轴得到的线段长度的取值范围.【解答】解:(1)①y =2x 是“H 函数”.②y =m x (m ≠0)是“H 函数”.③y =3x ﹣1不是“H 函数”.故答案为:√,√,×.(2)∵A ,B 是“H 点”,∴A ,B 关于原点对称,∴m =4,n =﹣1,∴A (1,4),B (﹣1,﹣4),代入y =ax 2+bx +c (a ≠0)得{a +b +c =4a −b +c =−4, ∴{b =4a +c =0, ∵该函数的对称轴始终位于直线x =2的右侧,∴−b 2a >2,∴−42a >2,∴﹣1<a <0,∵a +c =0,∴0<c <1,综上所述,﹣1<a <0,b =4,0<c <1.(3)∵y =ax 2+2bx +3c 是“H 函数”,∴设H (p ,q )和(﹣p ,﹣q ),代入得到{ap 2+2bp +3c =q ap 2−2bp +3c =−q, 解得ap 2+3c =0,2bp =q ,∵p 2>0,∴a ,c 异号,∴ac<0,∵a+b+c=0,∴b=﹣a﹣c,∵(2c+b﹣a)(2c+b+3a)<0,∴(2c﹣a﹣c﹣a)(2c﹣a﹣c+3a)<0,∴(c﹣2a)(c+2a)<0,∴c2<4a2,∴c2a<4,∴﹣2<ca<2,设t=ca,则﹣2<t<0,设函数与x轴交于(x1,0),(x2,0),∴x1,x2是方程ax2+2bx+3c=0的两根,∴|x1﹣x2|=√(x1+x2)2−4x1x2=√(−2b a)2−4⋅3c a=√4(a+c)2a2−12c a=√4[1+2c a+(c a)2−3c a]=2√1+2t+t2−3t=2√(t−12)2+34,∵﹣2<t<0,∴2<|x1﹣x2|<2√7.25.(10分)(2020•长沙)如图,半径为4的⊙O中,弦AB的长度为4√3,点C是劣弧AB̂上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;(2)当点C沿着劣弧AB̂从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;(3)分别记△ODE,△CDE的面积为S1,S2,当S12﹣S22=21时,求弦AC的长度.【解答】解:(1)如图1中,过点O作OH⊥AB于H.∵OA=OB=4,OH⊥AB,∴AH=HB=12AB=2√3,∠AOH=∠BOH,∴sin∠AOH=AHAO=√32,∴∠AOH=60°,∴∠AOB=2∠AOH=120°.(2)如图2中,连接OC.∵OA=OC=OB,AD=DC,CE=EB,∴OD⊥AC,OE⊥CB,∴∠ODC=∠OEC=90°,∴∠ODC+∠OEC=180°,∴O,D,C,E四点共圆,∴OC是直径,∴OC的中点P是△OED的外接圆的圆心,∴OP=12OC=2,∴点P 的运动路径的长=120⋅π⋅2180=4π3. (3)如图3中,若AC <BC ,连接OC 交AB 于J ,过点O 作OH ⊥AB 于H ,过点C 作CK ⊥AB 于K .∵AD =CD ,CE =EB ,∴DE ∥AB ,AB =2DE ,∴△CDE ∽△CAB ,∴S △CDES △CAB =(DE AB )2=14, ∴S △ABC =4S 2,∵S △ADO =S △ODC ,S △OBE =S △OEC ,∴S 四边形ODCE =12S 四边形OACB ,∴S 1+S 2=12(4S 2+4√3)=2S 2+2√3,∴S 1=S 2+2√3,∵S 12﹣S 22=21,∴S 22+4√3S 2+12﹣S 22=21,∴S 2=3√34,∴S △ABC =3√3=12×AB ×CK ,∴CK =32,∵OH ⊥AB ,CK ⊥AB ,∴OH ∥CK ,∴△CKJ ∽△OHJ ,∴CK OH =CJ OJ ,∴CJOJ =322=34,∴CJ=37×4=127,OJ=47×4=167,∴JK=√CJ2−CK2=√(127)2−(32)2=3√1514,JH=√OJ2−OH2=√(167)2−22=2√157,∴KH=√15 2,∴AK=AH﹣KH=2√3−√15 2,∴AC=√AK2+CK2=(2√3−√152)2+(32)2=√18−6√5=√15−√3.若AC>BC时,同法可得AC=√15+√3,综上所述,AC的长为√15−√3或√15+√3.。
2020年湖南省长沙市中考数学试卷
2020年湖南省长沙市中考数学试卷一、选择题(共12小题;共60分)1. 年月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为土石方的任务,该运输公司平均运送土石方的速度(单位:)与完成运送任务所需的时间(单位:天)之间的函数关系式是A. B. C. D.2. 的值是B. C.3. 为了将“新冠疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展,据国家统计局相关数据显示,年月至月,全国累计办理出口退税元,其中用科学记数法表示为A. B. C. D.4. 下列图形中,是轴对称图形但不是中心对称图形的是A. B.C. D.5. 下列运算正确的是A. B. C. D.6. 从一艘船上测得海岸上高为米的灯塔顶部的仰角是度,船离灯塔的水平距离为A. 米B. 米C. 米D. 米7. 不等式组的解集在数轴上表示正确的是A. B.C. D.8. 一个不透明的袋子中装有个红球,个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的球不一定是绿球C. 第一次摸出的球是红球,第二次摸出的球不一定是红球D. 第一次摸出的球是红球的概率是9. 年月日,是人类第一个“国际数学日”这个节日的昵称是“()”国际数学日之所以定在月日,是因为与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是A. ②③B. ①③C. ①④D. ②④10. 随着网络技术的发展,市场对产品的需求越来越大,为满足市场需求,某大型产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产万件产品,现在生产万件产品所需的时间与更新技术前生产万件产品所需时间相同,设更新技术前每天生产万件,依据题意得A. B. C. D.11. 如图,一块直角三角板的度的顶点与直角顶点分别在平行线,上,斜边平分,交直线于点,则的大小为A. B. C. D.12. “闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”与加工煎炸的时间(单位:分钟)近似满足函数关系式:(,,,为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为A. 分钟B. 分钟C. 分钟D. 分钟二、填空题(共4小题;共20分)13. 长沙地铁号线、号线即将运行,为了解市民每周乘地铁出行的次数,某校园小记者随机调查了名市民,得到了如下的统计表:这次调查的众数和中位数分别是.14. 某数学老师在课外活动中做了一个有趣的游戏:首先发给A,B,C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A同学拿出三张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学,请你确定,最终B同学手中剩余的扑克牌的张数为.15. 若一个圆锥的母线长是,底面半径是,则它的侧面展开图的面积是.16. 如图,点在以为直径的半圆上运动,(点与,不重合),,平分,交于点,交于点.();()若,则.三、解答题(共9小题;共117分)17. 计算:.18. 先化简,再求值,其中.19. 人教版初中数学教科书八年级上册第页告诉我们一种作已知角的平分线的方法:已知:.求作:的平分线.做法:()以为圆心,适当长为半径画弧,交于点,交于点.()分别以点,为圆心,大于的长为半径画弧,两弧在的内部相交于点.()画射线,射线即为所求.请你根据提供的材料完成下面问题:(1)这种作已知角平分线的方法的依据是(填序号).①;②;③;④(2)请你证明为的平分线.20. 年月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》长沙市教育局发布了“普通中小学校劳动教育状况评价指标”,为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如下统计图表.(1)这次调查活动共抽取人;(2);;(3)请将条形图补充完整;(4)若该校学生总人数为人,根据调查结果,请你估计该校一周劳动次及以上的学生人数.21. 如图,为的直径,为上的一点,与过点的直线互相垂直,垂足为,平分.(1)求证:为的切线;(2)若,,求的半径.22. 今年月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响,“一方有难,八方支援”,某市筹集了大量的生活物资,用,两种型号的货车,分两批运往受灾严重的地区,具体运算情况如下:备注:第一批、第二批每辆货车均满载.(1)求,两种型号货车每辆满载分别能运多少吨生活物资;(2)该市后续又筹集了吨生活物资,现已联系了辆型号货车,试问至少还需联系多少辆型号货车才能一次性将这批生活物资运往目的地.23. 我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“函数”,其图象上关于原点对称的两点叫做一对“点”,根据该约定,完成下列各题.(1)在下列关于的函数中,是“函数”的,请在相应题目后面的括号中打“”,不是“函数”的打“”.①;②;③.(2)若点与点关于的“函数”的一对“点”,且该函数的对称轴始终位于直线的右侧,求,,的值域或取值范围;(3)若关于的“函数”(,,是常数)同时满足下列两个条件:①,②,求该函数截轴得到的线段长度的取值范围.24. 如图,半径为的中,弦的长度为,点是劣弧上的一个动点,点是弦的中点,点是弦的中点,连接,,.(1)求的度数;(2)当点沿着劣弧从点开始,逆时针运动到点时,求的外心所经过的路径的长度;(3)分别记,的面积为,,当时,求弦的长度.25. 在矩形中,为上的一点,把沿翻折,使点恰好落在边上的点.(1)求证:;(2)若,,求的长;(3)若,记,,求的值.答案第一部分1. A【解析】,.2. D 【解析】.3. A 【解析】元元.4. B【解析】A、不是轴对称图形,也不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不合题意;D、不是轴对称图形,是中心对称图形,不合题意.故选:B.5. B【解析】A、,故本选项错误;B、,故本选项正确;C、,故本选项错误;D、,故本选项错误.故选:B.6. A 【解析】根据题意可得:船离海岸线的距离为(米).7. D 【解析】由①得,;由②得,..在数轴上表示为:8. A【解析】A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故错误;B、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故正确;C、第一次摸出的球是红球,第二次摸出的球不一定是红球,故正确;D两次摸到球的情况共有(红,红),(红,绿),(红,绿),(绿,红),(绿,绿),(绿,绿),(绿,红),(绿,绿),(绿,绿)种等可能的情况,两次摸出的球都是红球的有种,两次摸出的球都是红球的概率是A.9. A 【解析】①圆周率是一个有理数,错误;②是一个无限不循环小数,因此圆周率是一个无理数,说法正确;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A.10. B【解析】设更新技术前每天生产万件产品,则更新技术后每天生产万件产品,依题意,得:.11. C 【解析】平分,,,,,,,.12. C【解析】将,,代入得:和得得,解得.将.代入可得.对称轴.第二部分13. ,【解析】从表格中可得人数最多的次数是,故众数为.,即中位数为从小到大排列的第位,故中位数为.14.【解析】设每个同学的扑克牌的数量都是;第一步,A同学的扑克牌的数量是,B同学的扑克牌的数量是;第二步,B同学的扑克牌的数量是,C同学的扑克牌的数量是;第三步,A同学的扑克牌的数量是,B同学的扑克牌的数量是. B同学手中剩余的扑克牌的数量是:.15.【解析】圆锥的底面周长为:,侧面积为:.16. ,【解析】()如图所示,过作于,则.为半圆的直径,,又平分,,.平分,,,,,又,,,又,,,又,.,,,在中,,又,,将,,代入得,,,即;(),,又,平分,即,.第三部分17.18.将代入可得:19. (1)①【解析】根据作图的过程知道:,,,所以由全等三角形的判定定理可以证得,从而得到为的平分线.(2)如图,连接,.根据作图的过程知,在与中,,,为的平分线.20. (1)【解析】这次调查活动共抽取:(人).(2);【解析】(人),,.(3)(人),补全图形如下:(4)“次及以上”所占的百分比为,(人).答:该校一周劳动次及以上的学生人数大约有人.21. (1)连接,,,平分,,,,,,,,,为的切线.(2)连接,在中,,,,,,,,是的直径,,,的半径为.22. (1)设,两种型号货车每辆满载分别能运,吨生活物资.依题意,得解得,两种型号货车每辆满载分别能运吨,吨生活物资.(2)设还需联系辆型号货车才能一次性将这批生活物资运往目的地.依题意,得解得又为整数,最小取.至少还需联系辆型号货车才能一次性将这批生活物资运往目的地.23. (1);;【解析】①是“函数”;②是“函数”;③不是“函数”.(2),是“点”.,关于原点对称,,.,.代入,得解得又该函数的对称轴始终位于直线的右侧,,,,,.,,.(3)是“函数”.设点为和,代入得解得,.,,异号,.,.,......设,则.设函数与轴的交点为,.,是方程的两根.又,.24. (1)如图,过作于.,,,,,,.(2)如图,连接,取的中点,连接,.是弦的中点,点是弦的中点,,,,即,,,,,四点共圆,为的外心,在以为圆心,为半径的圆上运动,,运动路径长为.(3)当点靠近点时,如图,作交圆于,作交于,交于,作交于,交于,交于,连接.是弦的中点,点是弦的中点,,,,.设,,由题可知,,,,,,,,即,解得,,即,由于,,又,.同理当点靠近点时,可知.综上所述,或.25. (1)四边形是矩形,,,是翻折得到的,,,,.(2)是翻折得到的,,,,由()得,,,.(3)由()得,,,设,,,,,,,,,,,,,解得,,,,,.。
2020年中考数学试题解析(含答案)湖南长沙
2020 年中考数学试卷参考答案与试题解析
湖南省长沙市
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1. 1 的倒数是( ) 2
A、2 考点: 倒数.
B、-2
C、 1 2
分析:根据乘积为的 1 两个数倒数,可得一个数的倒数.
解答: 解:
1
的倒数是
2,
2
故选:A.
∴AD=AB=2, 又∵∠DAB=60°, ∴△DAB 是等边三角形, ∴AD=BD=AB=2, 则对角线 BD 的长是 2. 故选:C. 点评:此题主要考查了菱形的性质以及等边三角形的判定,得出△DAB 是等边三角形是解题关 键.
9.(3 分)(2020•长沙)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转
1
保证原创精品 已受版权保护
故选 B. 点评: 本题考查了平均数及中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列
后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
4.(3 分)(2020•长沙)平行四边形的对角线一定具有的性质是(
A. 相等
B. 互相平分
C.互相垂直
选项不符合题意;
B、六棱柱的主视图、左视图、俯视图分别为四边形,四边形,六边形,故 B 选项不符合题
意;
C、球的主视图、左视图、俯视图分别为三个全等的圆,故 C 选项符合题意;
D、四棱锥的主视图、左视图、俯视图分别为三角形,三角形,四边形,故 D 选项不符合题
意;
故选 C.
点评: 考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.
5.(3 分)(2020•长沙)下列计算正确的是( )
2020年湖南长沙中考数学试卷(解析版)
2020年湖南长沙中考数学试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)A.B.C.D.1.的值等于( ).A. B.C. D.2.下列图形中,是轴对称图形但不是中心对称图形的是( ).A.B.C.D.3.为了将”新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,年月至月,全国累计办理出口退税元,其中数字用科学记数法表示为( ).4.下列运算正确的是( ).A.B.C.D.5.年月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为土石方的任务,该运输公司平均运送土石方的速度(单位:天)与完成运送任务所需时间(单位:天)之间的函数关系式是( ).A.B.C.D.6.从一艘船上测得海岸上高为米的灯塔顶部的仰角为时,船离灯塔的水平距离是( ).A.米B.米C.米D.米7.不等式组的解集在数轴上表示正确的是( ).A.B.RC.D.M8.一个不透明袋子中装有个红球,个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是( ).A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的不一定是红球C.第一次摸出的球是红球的概率是D.两次摸出的球都是红球的概率是9.年月日,是人类第一个“国际数学日”.这个节日的昵称是“”.国际数学日之所以定在月日,是因为“”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是( ).A.②③B.①③C.①④D.②④10.如图:一块直角三角板的角的顶点与直角顶点分别在两平行线、上,斜边平分,交直线于点,则的大小为( ).A.B.C.D.11.随着网络技术的发展,市场对产品的需求越来越大,为满足市场需求,某大型产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产万件产品,现在生产万件产品所需时间与更新技术前生产万件产品所需时间相同.设更新技术前每天生产万件产品,依题意得( ).A.B.C.D.12.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃.臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”与加工煎炸时间(单位:分钟)近似满足的函数关系为:(,,,是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( ).A.分钟B.分钟C.分钟D.分钟二、填空题(本大题共4小题,每小题3分,共12分)13.长沙地铁号线、号试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了名市民,得到如下统计表:次数次及以上次及以下人数这次调查中的众数和中位数分别是 , .14.某数学老师在课外活动中做了一个有趣的游戏:首先发给、、三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,同学拿出二张扑克牌给同学;第二步,同学拿出三张扑克牌给同学;第三步,同学手中此时有多少张扑克牌,同学就拿出多少张扑克牌给同学.请你确定,最终同学手中剩余的扑克牌的张数为 .15.已知圆锥的母线长为,底面半径为,该圆锥的侧面展开图的面积为 .16.如图,点在以为直径的半圆上运动(点不与,重合),,平分,交于点,交于点.(1)(2).若,则.三、解答题(本大题共9小题,共72分)17.计算:.18.先化简再求值:,其中.(1)(2)19.人教版初中数学教科书八年级上册第页告诉我们一种作已知角的平分线的方法:已知:.求作:的平分线.作法:以点为圆心,适当长为半径画弧,交于点,交于点.分别以点,为圆心,大于的长为半径画弧,两弧在的内部相交于点.画射线,射线即为所求(如图).请你根据提供的材料完成下面问题.这种作已知角的平分线的方法的依据是 (填序号)①②③④请你证明为的平分线.20.年月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如下统计图表:(1)(2)(3)(4)某学校学生一周劳动次数的条形统计图某学校学生一周劳动次数的扇形统计图人数次及以上次次次及以下一周劳动次数次及以上次及以上次次这次调查活动共抽取 人. ,.请将条形统计图补充完整.若该校学生总人数为人,根据调查结果,请你估计该校一周劳动次及以上的学生人数.(1)(2)21.如图,为⊙的直径,为⊙上一点,与过点的直线互相垂直,垂足为,平分.求证:为⊙的切线.若,,求⊙的半径.(1)22.今年月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用、两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:第一批第二批型货车的辆数(单位:辆)型货车的辆数(单位:辆)累计运输物资的吨数(单位:吨)备注:第一批、第二批每辆货车均满载求、两种型号货车每辆满载分别能运多少吨生活物资?(2)该市后续又筹集了吨生活物资,现已联系了辆种型号货车.试问至少还需联系多少辆种型号货车才能一次性将这批生活物资运往目的地?(1)(2)(3)23.在矩形中,为边上一点,把沿翻折,使点恰好落在边上的点.求证:.若,,求的长.若,记,,求的值.(1)(2)(3)24.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“函数”,其图象上关于原点对称的两点叫做一对“点”.根据该约定,完成下列各题.在下列关于的函数中,是“函数”的,请在相应题目后面的括号中打“√”,不是“函数”的打“”.1..( )2..( )3..( )若点与点是关于的“函数”的一对“点”,且该函数的对称轴始终位于直线的右侧,求,,的值或取值范围.若关于的“函数”(,,是常数)同时满足下列两个条件:①,②,求该“函数”截轴得到的线段长度的取值范围.25.如图,半径为的⊙中,弦的长度为,点是劣弧上的一个动点,点是弦的中点,点是弦的中点,连接、、.【答案】解析:,故选.解析:轴对称是平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.所以是轴对称图形的有,是中心对称图形的有,所以答案选择.解析:用科学记数法表示为,故选.(1)(2)(3)求的度数.当点沿着劣弧从点开始,逆时针运动到点时,求的外心所经过的路径的长度.分别记,的面积为,,当时,求弦的长度.D1.B2.A3.B4.在工程问题中,工作效率(速度)工作总量工作时间.故选.解析:船离灯塔的水平距离为(米).故选.灯塔顶部船米解析:该不等式组解得.故选.解析:第一次摸出的是红球,第二次摸出绿球的概率是,选项错误;第二次摸出红球的概率是,选项正确;每次摸出红球的概率都是,选项正确;两次摸出的都是红球的概率是,选项正确;故选.解析:圆周率是一个无限不循环小数,是一个无理数,①说法错误,②说法正确;圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,③说法正确,④说法错误;正确的为②③,故选.A 6.D 7.A 8.A 9.因为斜边平分,所以,则(两直线平行,同旁内角互补),又因为,所以.故选.解析:根据题意可得,即.答案选择.解析:将三个点,,代入函数关系式,有,解得,即函数解析式为,化为顶点式,即当时,有最大值.故选.解析:众数就是出现次数最多的数,由可得这次调查中的众数是;中位数就是将一组数据从小到大排列,最中间的那个数即为这组数据第个数和第个数的平均数,即,B 11.原速现速C 12. ;13.(1)所以这次调查的中位数是.解析:设原来、、三个同学有张扑克,则由题意得:第一步时:有张,有张;第二步时:有张;有张;第三步时:有张,有张,∴同学手中有(张).故答案为:.解析:圆锥的展开图的圆心角为(度),所以展开图的面积为.故答案为:.解析:过点作,∵平分,14.15.(1)(2)16.(2)∴,,∵为半圆的直径,,∴,,∴,∴,又∵,∴,∴,则,∵,∴,则.故答案为:.∵为半圆的直径,,∴,∴,∵,∴,∴,则,∵,∴,同理可证,∴,∴,则,∴,设,则,解得,(舍去),∴.(1)(2)故答案为:.解析:原式.解析:原式,将代入原式,所以原式.故答案为:.解析:这种作已知角的平分线的方法的依据是.故答案为:①.∵、在以点为圆心的弧上,∴,又∵分别以、为圆心,相同长度画弧,∴,∴在和中,有,∴≌,∴,∴是的角平分线.17..18.(1)①(2)证明见解析.19.(1)(2)(3)(4)(1)解析:这次调查活动一共抽取了(人).故答案为:.(人),.故答案为:;.一周劳动次数为次的有(人),如图:某学校学生一周劳动次数的条形统计图某学校学生一周劳动次数的扇形统计图人数次及以上次次次及以下一周劳动次数次及以上次及以上次次.该校一周劳动次数为次及以上的有(人).故答案为:该校一周劳动次数为次及以上的有人.解析:连接,(1)(2);(3)画图见解析.(4)人.20.(1)证明见解析.(2)⊙的半径为.21.(2)(1)(2)∵平分,∴,∵,∴,∴,∴且,∴,∴,为圆的切线.作与点,∵,,∴,∴,∵,∴,∴半径为.解析:设货车满载可以运吨物资,型号货车满载可以运吨物资,则由题意可得,解得.答:货车满载可以运吨生活物资,型号货车满载可运吨生活物资.设至少需要联系辆型货车,由题意可得,解得,又为整数,所以最小取,答:至少需联系辆型货车.(1)货车满载可以运吨生活物资,型号货车满载可以运吨生活物资.(2)至少需联系辆型货车.22.(1)(2)(3)解析:∵,∴,又∵,∴,∴且,∴.设为,则,,∵,,∴,,在中有,解得,∴.故答案为:.∵,∴,设,,则可得,,根据勾股定理,可求得,,,∵,∴有,同时平方可得,∴,整理可得,即,,将代入可得.故答案为:.(1)证明见解析.(2).(3).23.(1)(2)(3)解析: 1 :通过原点,有无数个点关于原点对称.2 :也有无数个点关于原点对称.3 :没有任何两个点关于原点对称.由题意得,两点关于原点对称,所以,,将,两点代入原方程可得:,,可得:,,又因为,所以,所以,综上所述:,,.设和是图象上关于原点对称的点的横坐标,得:,化简得:,所以,异号,,,又因为,将代入上式,可得:,即:,又因为,异号,故,,令,则,(1)✓✓×(2),,.(3).24.(1)(2)所以,二次函数对称轴为且开口向上,所以当时,最小值为,当时,最大值为,所以.解析:如图,过作于,∵,∴,∴,∴,∵,∴,∴.如图,连接,取的中点,连接、,(1).(2).(3)或.25.(3)∵是弦的中点,点是弦的中点,,∴,,即,∴,∴、、、四点共圆,为的外心,∴在以为圆心,为半径的圆上运动,∵,∴运动路径长为.当点靠近点时,如图,作交圆于,作交于,交于,作交于,交于,交于,连接,∵是弦的中点,点是弦的中点,∴,∵,,∴,设,,由题可知,,∴,,∴,,∵,∴,即,解得,∴,即,由于,∴,又∵,∴,同理当点靠近点时,可知,综上所述,或.。
湖南省长沙市2020届初中毕业学业水平模拟考试数学试题(一)(可编辑PDF版)
k,满足
1 y1
1 y2
1 6a
?
如果存在,请求出 k 的值;如果不存在,请说明理由;
(3)若点 E 是二次函数图象上的一个动点,点 E 的横坐标是 n ,且 1 n 1 ,过 E 点作 y 轴的平行线,
与一次函数图象交于点 F,当 0 a 2 时,求线段 EF 的最大值。
初中学业水平考试模拟卷数学(一)第 8 页
初中学业水平考试模拟卷数学(一)第 7 页
26.已知关于 x 的二次函数 y ax2 2axa 0 的顶点为 C,与 x 轴交于点 O,A,关于 x 的一次函数 y axa 0 .
(1)试说明点 C 在一次函数的图象上;
(2)若两个点 k,
y1, k
2,
y2 k
0,2 都在二次函数的图象上,是否存在整数
一、选择题 题号 1 答案 D
2020 年长沙市初中学业水平考试模拟试卷 数学(一)参考答案及评分标准
2 3 4 5 6 7 8 9 10 11 12 BACDCDBDBCC
二、填空题
13. 4.6 108
14. x 2
15. 96
16. 8
17. 8
18.①②③④
三、解答题
19.解:原式 3 2 1 8 1 ···························································································(4 分) 2
初中学业水平考试模拟卷数学(一)第 5 页
24.如图,已知 AB 是⊙O 的直径,弦 CD⊥AB,垂足为 H,在 CD 上有点 N 满足 CN=CA,AN 交⊙O 于点 F,过点 F 的 AC 的平行线交 CD 的延长线于点 M,交 AB 的延长线于点 E. (1)求证:EM 是⊙O 的切线;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年湖南省长沙市初中毕业学业考试数学试卷初
中数学
本试卷共26道小题,时量120分钟,总分值120分.
一、填空题〔此题共8个小题,每题3分,总分值24分〕 1.1
2
-
的倒数是 . 2
的点是 . 3.正五边形的一个内角的度数是 .
4.2006年4月21日,胡锦涛总书记在美国耶鲁大学演讲时谈到,我国国内生产总值从1978年的1473亿美元增长到2005年的22257亿美元.假设将2005年的国内生产总值用四舍五入法保留三个有效数字,其近似值用科学记数法表示为 亿美元.
5
.假设点-在反比例函数(0)k
y k x
=≠的图象上,那么k = . 6.〝太阳每天从东方升起〞,这是一个 事件〔填〝确定〞或〝不确定〞〕. 7.如图,四边形ABCD 中,AB CD ∥,要使四边形ABCD 为平行四边形,那么应添加的条件是 〔添加一个条件即可〕.
8.如图,AOB ∠和射线O B '',用尺规作图法作A O B AOB '''∠=∠〔要求保留作图痕迹〕.
二、选择题〔此题共8个小题,每题3分,总分值24分〕 请将你认为正确的选择支的代号填在下面的表格里 9.以下运算中,正确的选项是〔 〕
A.2=B.632x x x ÷= C.1
22-=-
D.325
()a a a -=-
10.小明从正面观看以下图所示的物体,看到的是〔 〕
第2题
D
C
第7题
A
O B '
第8题
A .
B .
C .
D .
11.长沙地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:34,35,36,34,36,37,37,36,37,37〔单位℃〕.那么这组数据的中位数和众数分不是〔 〕 A.36,37
B.37,36
C.36.5,37
D.37,36.5
12.两圆的半径分不为7和1,当它们外切时,圆心距为〔 〕 A.6
B.7
C.8
D.9
13.某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管的水速是平均的,那么泳池内水的高度h 随时刻t 变化的图象是〔 〕
14.不等式组2450.
x x >-⎧⎨-⎩,
≤的解集是〔 〕
A.2x >
-
B.
25x -<≤ C.5x ≤
D.无解 15.如图,Rt ABC △沿直角边BC 所在的直线向右平移 得到
DEF △,以下结论中错误的选项是〔 〕 A.ABC DEF △≌△ B.90DEF ∠= C.AC DF =
D.EC CF =
16.如图,等腰梯形ABCD 中,AD BC ∥,60B ∠=,
28AD BC ==,,那么此等腰梯形的周长为〔 〕
A.19 B.20
C.21
D.22
三、解答题〔此题共6个小题,每题6分,总分值36分〕
170
2π⎛⎫
-+ ⎪3⎝⎭
.
18.先化简再求值:222
1412211
a a a a a a --÷+-+-,其中a 满足2
0a a -=. A . B . C . D .
A
B
E C
F
D
第15题
C
第16题
19.如图,ABC △中,1204BAC AB AC BC ∠===,,,请你建立适当的直角坐标系,并写出A B C ,,各点的坐标.
20.如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将ABC △向下平移4个单位,得到
A B C '''△,再把A B C '''△绕点C '顺时针旋转90,得
到A B C '''''△,请你画出A B C '''△和A B C '''''△〔不要求写画法〕.
21.某中学团委会为研究该校学生的课余活动情形,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了假设干名学生的爱好爱好,并将调查的结果绘制了如下的两幅不完整的统计图〔如图1,图2〕,请你依照图中提供的信息解答以下咨询题: 〔1〕在这次研究中,一共调查了多少名学生? 〔2〕〝其它〞在扇形图中所占的圆心角是多少度? 〔3〕补全频数分布折线图.
22.将正面分不标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上. 〔1〕随机地抽取一张,求P (偶数);
〔2〕随机地抽取一张作为个位上的数字〔不放回〕,再抽取一张作为十位上的数字,能组成哪些两位数?恰好为〝68〞的概率是多少?
四、解答题〔此题共2个小题,每题8分,总分值16分〕
A
B
C
其它
娱乐
40%
运动
20% 阅读
图1 图2
A
B
23.〔此题总分值8分〕
在社会主义新农村建设中,某乡镇决定对一段公路进行改造.这项工程由甲工程队单独做需要40天完成;假如由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.
〔1〕求乙工程队单独完成这项工程所需的天数; 〔2〕求两队合做完成这项工程所需的天数. 24.〔此题总分值8分〕 如图,A B D E ,,,四点在
O 上,AE BD ,的延长线相交于点C ,直径AE 为8,
12OC =,EDC BAO ∠=∠.
〔1〕求证:CD CE
AC CB
=
;〔2〕运算CD CB 的值,并指出CB 的取值范畴.
五、解答题〔此题共2个小题,每题10分,总分值20分〕 25.〔此题总分值10分〕
我市某乡A
B ,两村盛产柑桔,A 村有柑桔200吨,B 村有柑桔300吨.现将这些柑桔运到
C
D ,两个冷藏仓库,C 仓库可储存240吨,D 仓库可储存260吨;从A 村运往C D ,两
处的费用分不为每吨20元和25元,从B 村运往C D ,两处的费用分不为每吨15元和18
元.设从A 村运往C 仓库的柑桔重量为x 吨,A
B ,两村运往两仓库的柑桔运输费用分不为A y 元和B y 元.
〔1〕请填写下表,并求出A B y y ,与x 之间的函数关系式; 解:
O
C
E
D
B
A
〔2〕试讨论A B
,两村中,哪个村的运费较少;
解:
〔3〕考虑到B村的经济承担能力,B村的柑桔运费不得超过4830元.在这种情形下,请咨询如何样调运,才能使两村运费之和最小?求出那个最小值.
解:
26.〔此题总分值10分〕
如图1,直线
1
2
y x
=-与抛物线2
1
6
4
y x
=-+交于A B
,两点.
〔1〕求A B
,两点的坐标;
〔2〕求线段AB的垂直平分线的解析式;
〔3〕如图2,取与线段AB等长的一根橡皮筋,端点分不固定在A B
,两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A B
,构成许多个三角形,这些三角形中是否存在一个面积最大的三角形?假如存在,求出最大面积,并指出现在P点的坐标;假如不存在,请简要讲明理由.
图2
图1。