2017年全国初中数学联合竞赛(初二年级)试题参考答案及
全国初中数学联赛初二卷及详解
全国初中数学联赛初二卷及详解————————————————————————————————作者:————————————————————————————————日期:2017年全国初中数学联合竞赛试题 初二卷第一试一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1,1110135a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2的值为( ). A.125 B.120 C.100 D.813.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.14.已知正整数a,b,c 满足a 2-6b-3c+9=0,-6a+b 2+c=0,则a 2+b 2+c 2的值为( ). A.424 B.430 C.441 D.4605.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). A.1023 B.1033C.32D.33 6.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62二、填空题:(本题满分 28 分,每小题 7 分)7.使得等式311a a ++=成立的实数a 的值为________.8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________.9.设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD与EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c是不全相等的正整数,且55a bb c++为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.解析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证. 解析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无与之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().A.1023B.1033C.32D.33答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则BE=BC-CE=BC-AD=3=AB,则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得423AH =. 所以梯形ABCD 的面积为()14210214233⨯+⨯=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.解析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.使得等式311a a ++=成立的实数a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得()3211aa ++=.令1x a =+,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 解析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 解析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11, ………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 与EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.解析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°. ………5分 由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC.………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 是不全相等的正整数,且55a bb c ++为有理数,求222a b c a b c ++++的最小值. 答案:3对应讲次:所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.注意到50b c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值. 解析:50b c -≠,由()()()2222255555555a b b c ab bc b ac a b b c b c b c +--+-⋅+==--+是有理数,可得b 2=ac. …10分 ()()22222a c b a b c a c b a b c a c b +-++==+-++++. ………15分 不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3. 所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时. ………25分。
2017年全国初中数学联合竞赛(初二决赛)试题参考答案及评分标准.docx
2017 年全国初中数学联合竞赛(初二决赛)试题参考答案及评分标准明:卷,依据本分准. 和填空只 7 分和 0 分两档;解答,格按照本分准定的分档次分,不要再增加其他中档次. 如果考生的解答方法和本解答不同 , 只要思路合理 , 步正确 ,在卷参照本分准划分的档次, 予相的分数 .一、 (本分 42 分,每小7 分 )1、 C2、D3、 A4、 B5、 C6、 B二、填空(本分28 分,每小7 分)7、 238、 75°9、13或填)10、 1625(0.52三、(本共三小,第11 20分,第12、 13 各 25 分,分 70分)11. 已知关于x的方程x21 a 有且有两个解,求数 a 的取范.解:由已知必有 a0 ,由原方程得:x21a( 1);⋯⋯⋯⋯⋯⋯⋯⋯ 5 分若 a1, x 21 a ,此方程(1)有两解,原方程也有两解;⋯⋯10 分若 0a1,此方程(1)的解: x 3 a , x3a , x 1 a , x 1 a ,要使原方程只有两解,四个解中必有两个解相等 . 若x 3 a 3 a ,得 a0 ,此x 1a1 a ,故原方程有两解;若 x3a1a,得 a1(舍去),若 x 3a1a ,得 a1,此方程有三个解,不符合要求;然3a1a, 3 a 1 a 。
故此 a0原方程有两解 .上, a 0 或 a 1原方程有两解.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯20 分12. 如 , 已知等腰直角三角形ABC中, B 90 ,D BC的中点, E 段 AC上一点,且EDC ADB .求BE ED的.BD解:点 C 作 BC 的垂交 DE 的延于点F, AF. 易△ ABD ≌△ FCD.∴AD=FD. ⋯⋯⋯⋯⋯⋯⋯⋯ 5 分易四形 ABCF 是正方形,∴ AB=AF.⋯⋯⋯⋯⋯ 10 分易△ ABE ≌△ AFE ,∴ FE=BE. ⋯⋯⋯⋯⋯⋯⋯⋯ 15 分-1-∴ AD=FD=DE+EF= BE +ED.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯20 分∴ BE ED AD 5. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25 分BD BD13.从的自然数1, 2,⋯, 2017 中可以取出n个不同的数,使所取出的n 个不同的数中任意三个数之和都能被21 整除.求n的最大.解: a 、b、 c 、d是所取出的任意四个数.由意有a b c21m ,a b d21n ,其中,m、n正整数.所以,c d 21( m n) .上式表明,所取出的数中任意两数之差是21的倍数,即所取的每个数除以21 所得的余数相同.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分个余数 k ,于是,a21a1 k , b21b1k , c 21c1 k ,其中, a1、 b1、c1是整数,0k2110 分.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯a b c21(a1b1c1 ) 3k .因a b c 能被21整除,所以,3k能被 21整除,即 k能被 7 整除.因此,k =0,7或14.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯15 分当 k0 ,可取21, 42, 63,⋯, 2016 共 96 个数,符合意;当 k7 ,可取7,28, 49,⋯, 2002 共 96 个数,符合意;当 k14 ,可取14, 35, 56,⋯, 2009 共 96 个数,符合意⋯⋯⋯⋯⋯20 分上所述, n 的最大是96.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25 分-2-。
2017年全国初中数学联合竞赛(初二年级)试题参考答案和评分标准
若 b =6,则 (a 9)2 0 ,解得 a 9 ,此时 c 18 .
因此, a 9 , b =6, c 18 ,故 a2 b2 c2 =441.
5.梯形 ABCD 中, AD // BC , AB 3 , BC 4 , CD 2 , AD 1,则梯形的面积为 ( )
B
形,底边 AE 边上的高为 32 12 2 2 .
A
D
H
E
C
所以△ ABE 的面积 S 1 AE 2 2 1 BE AH ,故可得 AH 4 2 .
2
2
3
A
D
F
所以梯形的面积为 1 (1 4) 4 2 10 2 .
2
3
3
E
6.如图,梯形 ABCD 中, AD // BC , A 90 ,点 E 在 AB 上,若 AE 42 ,
【答】 20 . 因为 表示100 C,C B, B A中的最小者,所以 100 C , C B , B A ,所以
6 3(100 C ) 2(C B ) (B A) 300 (A B C ) 120,所以 20 .
第一试
一、选择题:(本题满分 42 分,每小题 7 分)
1.已知实数 a,b, c 满足 2a 13b 3c 90, 3a 9b c 72 ,则 3b c = a 2b
A. 2.
B. 1.
C. 0.
D. 1.
【答】B.
()
已知等式可变形为 2(a 2b) 3(3b c) 90 , 3(a 2b) (3b c) 72 ,解得 a 2b 18 ,
A
2017年全国初中数学联合竞赛试题及详细解答(含一试二试)
2017 年全国初中数学联合竞赛试题2017年3月26日(星期日)上午8:30-11:30第一试(A)一、选择题(本题满分42分,每小题7分)(本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.)1.已知实数a,b,c 满足213390a b c ++=,3972a b c ++=,则32b ca b+=+ ( )A. 2B. 1C. 0D. -2.已知△ABC 的三边长分别是a,b,c ,有以下三个结论:(1 (2)以222,,a b c 为边长的三角形一定存在;(3)以为1,1,1a b b c c a -+-+-+为边长的三角形一定存在. 其中正确结论的个数为 ( ) A .0 B .1 C .2 D .33.若正整数a,b,c 满足a b c ≤≤且=2()abc a b c ++,则称()a b c ,,为好数组.那么,好数组的个数为 ( )A. 1 B .2 C .3 D .44.设O 是四边形ABCD 的对角线AC 、BD 的交点,若0180BAD ACB ∠+∠=,且BC=3,AD=4,AC=5 ,AB=6 ,则DOOB= ( ) A. 10/9 B .8/7 C .6/5 D .4/3第4题图第5题图5.设A是以BC为直径的圆上的一点,AD⊥BC于点D,点E在线段DC上,点F在CB的延长线上,满足BAF CAE∠=∠.已知BC=15,BF=6,BD=3,则AE=()A.B.C.D.6.对于正整数n,设a n的整数,则1232001111...a a a a++++=()A. 191/7 B.192/7 C.193/7 D.194/7二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1=a的值为______ _.2.如图,平行四边形ABCD中,072ABC∠=,AF BC⊥于点F,AF交BD于点E,若DE=2AB,则AED∠=______.3.设m,n是正整数,且m>n. 若9m与9n的末两位数字相同,则m-n的最小值为.4.若实数x,y满足3331+的最小值为.x y++=,则22x y xy第一试(B)一、选择题(本题满分42分,每小题7分)1.已知二次函数y ax2bx c(c 的图象与x轴有唯一交点,则二次函数y a3 x2b3x c3的图象与x 轴的交点个数为()A.0 B.1 C.2 D.不确定.2.题目与(A)卷第1 题相同.3. 题目与(A)卷第3 题相同.4.已知正整数a,b,c满足a2 b c , a b2 c ,则a2 b2c2=()A. 424B. 430C. 441D. 460.5.设O是四边形ABCD的对角线AC、BD的交点,若BAD ACB ,且BC ,AD ,AC ,AB ,则DO/OB=()A. 4/3B. 6/5C. 8/7D. 10/96.题目与(A)卷第5 题相同.二、填空题:(本题满分28 分,每小题7 分)1.题目与(A)卷第1 题相同.2.设O是锐角三角形ABC的外心,D,E分别为线段BC,OA的中点,∠=∠,则OED∠=_________.ABC OED∠=∠,57ACB OED3. 题目与(A )卷第3 题相同.4. 题目与(A )卷第4 题相同第二试 (A )一、(本题满分20 分)已知实数x,y 满足x+y=3,221112x y x y +=++ ,求55x y +的值. 二、(本题满分25分)如图,△ABC 中,AB AC ,BAC ,E 是BAC的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF AB .已知AF,BF ,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(a, b),使得34938b a =⨯+第二试 (B )一、(本题满分20分)已知实数a,b,c 满足a b c ≤≤,++=16a b c ,2221+++=1284a b c abc , 求c 的值.二、(本题满分25 分)求所有的正整数m ,使得212-2+1m m -是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,OAD OCB ,OA OD ,OB OC .求证: AB 2 CD 2 AD 2 BC 2 .。
2017初中数学联合竞赛省初赛试题解答及评分标准(八年)
)
B
D E
C
2 SADC CD AF 7 12 28 法可得 CE . AD AD 15 5 1 1 6.已知 a = 5 , 那么代数式 a 最大值与最小值之差等于 a a
A. 2. B. 4.
1
( B )
C. 6.
D.8.
解析
欲使代数式
1 a 取到最大值,则 a 0 , 于是 a
(15 分)
(18 分) (20 分) (5 分)
a 2b b2c c2a ab2 bc2 ca 2 (a b)(b c)(c a) 0 .
(a 1)(b 1) (b 1)(c 1) (c 1)(a 1)=k 1 ,
令 ab a b bc b c ac c a =k , 则 因此 [(a 1)(b 1)(c 1)] (k 1) ,
4.设 a,b 是实数,若 a b 2 a 1 4 b 1 5 ,则 a b 的值等于 A. 3 . 解析
a b 2 a 1 4 b 1 5 ( a 1 1)2 ( b 1 2)2 0
a 2 , b 3 a b 1. 5 . 如 图 , 在 △ ABC 中 , AB=13,BC 21, CA 20 . D 是 BC 上 一 点 , 满 足
1 1 1 . 3 1 7 1 7
解析
1 1 1 7 1 7 1 7 1 7 1
7
1 1
7 1
7
. 7 3
1
A
8. 如图, ABC 、 CDE 均为等边三角形, 且 A, D, E 三 点共线, 点 D 在 A, E 之间, BDE 30 . 则 解析
2017全国数学竞赛试题及答案
按2017年全国初中数学竞赛试题考试时间2017年3月20日9︰30-11︰30满分150答题时注意:1、用圆珠笔或钢笔作答2、解答书写时不要超过装订线3、草稿纸不上交。
一、选择题(共5小题,每小题7分,共35分。
每道小题的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1、设532x -=,则代数式(1)(2)(3)x x x x +++的值为( C ) A .0 B .1 C .-1 D .22、对于任意实数,,,a b c d ,定义有序实数对(,)a b 与(,)c d 之间的运算“△”为:(,)(,)(,)a b c d ac bd ad bc ∆=++。
如果对于任意实数,u v ,都有(,)(,)(,)u v x y u v ∆=,那么(,)x y 为( B )。
A .(0,1)B .(1,0)C .(1,0)-D .(0,1)-3、已知,A B 是两个锐角,且满足225sin cos 4A B t +=,2223cos sin 4A B t +=,则实数t 所有可能值的和为( C )A .83-B .53-C .1D .1134、如图,点,D E 分别在△ABC 的边AB ,AC 上,BE ,CD 相交于点F ,设1EADF S S 四边形=,BDF 2S S ∆=,BCF 3S S ∆=,CEF 4S S ∆=,则13S S 与24S S 的大小关系为( C )A .13S S <24S SB .13S S =24S SC .13S S >24S SD .不能确定5、设33331111S 1232011=++++,则4S 的整数部分等于( A )A .4B .5C .6D .7二、填空题(共5小题,每小题7分,共35分)6、两条直角边长分别是整数,a b (其中2011b <),斜边长是1b +的直角三角形的个数为31。
2017年全国初中数学联赛试题-含详细解析
2017年全国初中数学联合竞赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题(本题满分42分,每小题7分)1. 已知实数a b c ,,满足2133903972a b c a b c ++=++= ,,则32b ca b+=+ ( ) A .2 B .1 C .0 D .1− 2. 已知△ABC 的三边长分别是a ,b ,c ,有以下三个结论:(1) (2)以a 2,b 2,c 2为边长的三角形一定存在;(3)以|a -b |+1,|b -c |+1,|c -a |+1为边长的三角形一定存在. 其中正确结论的个数为( )A .0B .1C .2D .33. 若正整数a ,b ,c 满足a b c ≤≤且()2abc a b c =++,则称(a ,b ,c )为好数组.那么,好数组的个数为( )A .1B .2C .3D .44. 设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180︒,且BC =3,AD =4,AC =5,AB =6,则DOOB=( ) A .109 B .87 C .65 D .435. 设A 是以BC 为直径的圆上的一点,AD ⊥BC 于点D ,点E 在线段DC 上,点F 在CB的延长线上,满足∠BAF =∠CAE .已知BC =15,BF =6,BD =3,则AE =( ) A .43 B .213 C .214 D .2156. 对于正整数n ,设a n 是最接近n 的整数,则1a 1+1a 2+1a 3+…+1a 200=( )A .1917B .1927C .1937D .1947二、填空题(本题满分28分,每小题7分)7.成立的实数a 的值为______.8. 如图,平行四边形ABCD 中,∠ABC =72︒,AF ⊥BC 于点F ,AF 交BD 于点E ,若DE =2AB ,则∠AED =______.9. 设m ,n 是正整数,且m >n .若9m 与9n 的末两位数字相同,则m -n 的最小值为____.10. 若实数x ,y 满足x 3+y 3+3xy =1,则x 2+ y 2的最小值为______.第一试(B)一、选择题(本题满分42分,每小题7分)1.已知二次函数y =ax 2+bx +c (c ≠0)的图象与x 轴有唯一交点,则二次函数y =a 3x 2+b 3x +c 3的图象与x 轴的交点个数为( )A .0B .1C .2D .不确定 2.题目与(A )卷第1题相同. 3.题目与(A )卷第3题相同.4.已知正整数a ,b ,c 满足a 2-6b -3c +9=0,-6a +b 2+c =0,则a 2+b 2+c 2=( ) A .424. B .430. C .441. D .460.5.设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180,且BC =3,AD =4,AC =5,AB =6,DOOB=( )A .43B .65C .87D .1096.题目与(A )卷第5题相同.二、填空题(本题满分28分,每小题7分) 1.题目与(A )卷第1题相同.2.设O 是锐角三角形ABC 的外心,D ,E 分别为线段BC ,OA 的中点,∠ACB =7∠OED ,∠ABC =5∠OED ,则∠OED =______. 3.题目与(A )卷第3题相同. 4.题目与(A )卷第4题相同.第二试(A)一、(本题满分20分)已知实数x ,y 满足x + y =3,1x +y 2+1x 2+y =12,求x 5+y 5的值.二、(本题满分25分)如图,△ABC 中,AB >AC ,∠BAC =45︒,E 是∠BAC 的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF ⊥AB .已知AF =1,BF =5,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(a ,b ),使得a 3=49×3b +8.第二试(B)一、(本题满分20分)已知实数a ,b ,c 满足a ≤b ≤c ,a +b +c =16,a 2+b 2+c 2+14abc = ,求c 的值.二、(本题满分25分)求所有的正整数m ,使得22m -1-2m +1是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,∠OAD =∠OCB ,OA ⊥OD ,OB ⊥OC .求证:AB 2+CD 2=AD 2+BC 2.7。
全国初中数学竞赛试题及答案(2017年)
2017年全国初中数学竞赛试题考试时间2017年3月20日9︰30-11︰30满分150答题时注意:1、用圆珠笔或钢笔作答2、解答书写时不要超过装订线3、草稿纸不上交。
一、选择题(共5小题,每小题7分,共35分。
每道小题均给出了代号为A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1、设x =,则代数式(1)(2)(3)x x x x +++的值为( C ) A .0 B .1 C .-1 D .22、对于任意实数,,,a b c d ,定义有序实数对(,)a b 与(,)c d 之间的运算“△”为:(,)(,)(,)a b c d ac bd ad bc ∆=++。
如果对于任意实数,u v ,都有(,)(,)(,)u v x y u v ∆=,那么(,)x y 为( B )。
A .(0,1) B .(1,0) C .(1,0)- D .(0,1)-3、已知,A B 是两个锐角,且满足225sin cos 4A B t +=,2223cos sin 4A B t +=,则实数t 所有可能值的和为( C )A .83-B .53-C .1D .1134、如图,点,D E 分别在△ABC 的边AB ,AC 上,BE ,CD 相交于点F ,设1EADF S S 四边形=,BDF 2S S ∆=,BCF 3S S ∆=,CEF 4S S ∆=,则13S S 与24S S 的大小关系为( C ) A .13S S <24S SB .13S S =24S SC .13S S >24S SD .不能确定5、设33331111S 1232011=++++,则4S 的整数部分等于( A ) A .4 B .5 C .6 D .7二、填空题(共5小题,每小题7分,共35分)6、两条直角边长分别是整数,a b (其中2011b <),斜边长是1b +的直角三角形的个数为__31__。
2017年全国初中数学联合竞赛试题及详细解答(含一试二试)
2. 设 O是 锐 角 三 角 形 ABC的 外 心 , D,E分 别 为 线 段 BC,OA的 中 点 ,
,
,则
_________.
3.题目与(A)卷第 3题相同. 4.题目与(A)卷第 4题相同
第二试 (A)
一、(本题满分 20分)已知实数 x,y满足 x+y=3,
,求
的值.
二、(本题满分25分)如图,△ABC中,AB AC, BAC 45,E是 BAC的 外角平分线与△ABC 的外接圆的交点,点F在AB 上且EF AB.已知AF 1,BF
1.已知二次函数 y ax2 bx c(c 0)的图象与x轴有唯一交点,则二次函
数
y a3x2 b3x c3 的图象与x轴的交点个数为 ( )
A.0
B.1
C.2
D.不确定.
2.题目与(A)卷第1 题相同.
3.题目与(A)卷第3 题相同.
4.已知正整数a,b,c满足 a2 6b 3c 9 0, 6a b2 c 0,则a2 b2 c2
CB的延长线上, 满足
.已知BC=15,BF=6,BD=3,则AE= ( )
A.
B.
C.
D.
6.对于正整数 n,设 an是最接近 的整数,则
A.191/7
B.192/7
C.193/7
() D.194/7
二、填空题(本题满分 28分,每小题 7分) (本题共有 4个小题,要求直接将答案写在横线上.)
1.使得等式
2017 年全国初中数学联合竞赛试题
2017年3月26日(星期日)上午8:30-11:30
第一试(A)
一、选择题(本题满分 42分,每小题 7分) (本题共有 6个小题,每题均给出了代号为 A,B,C,D的四个答案,其中有且仅
2017全国初中数学联赛初二卷及详解
2017年全国初中数学联合竞赛试题 初二卷第一试一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1,1110135a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2的值为( ). A.125 B.120 C.100 D.813.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.14.已知正整数a,b,c 满足a 2-6b-3c+9=0,-6a+b 2+c=0,则a 2+b 2+c 2的值为( ). A.424 B.430 C.441 D.4605.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). A.1023 B.1033C.32D.33 6.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________.9.设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD与EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c 55a bb c++为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.解析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证. 解析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无与之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().A.1023B.1033C.32D.33答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则BE=BC-CE=BC-AD=3=AB,则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得423AH =. 所以梯形ABCD 的面积为()14210214233⨯+⨯=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.解析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得(321a =.令x ,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 解析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 解析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11, ………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 与EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.解析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°.………5分由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC. ………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 为有理数,求222a b c a b c ++++的最小值.答案:3 对应讲次: 所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b cb c +--+-==--b 2=ac. …10分()()22222a c ba b c a c b a b c a c b +-++==+-++++.………15分不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分 若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3.所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时.………25分。
2017年全国初中数学联赛初二试题及参考答案(详解版)
2017年全国初中数学联合竞赛试题(初二)第一试一、选择题(本题满分 42 分,每小题 7 分)1.已知实数,,a b c 满足213390a b c ++=,3972a b c ++=,则32b ca b++的值为( ) A .2 B . 1 C . 0 D .1- 2.已知实数,,a b c 满足1a b c ++=,1110135a b c ++=+++,则()()()222135a b c +++++的值为( )A . 125B . 120C . 100D . 813.若正整数,,a b c 满足a b c ≤≤且()2abc a b c =++,则称(),,a b c 为好数组.那么好数组的个数为( )A . 4B . 3C . 2D . 14.已知正整数,,a b c 满足26390a b c --+=,260a b c -++=,则222a b c ++的值为( ) A .424 B . 430 C . 441 D . 4605.梯形ABCD 中,AD ∥BC ,3AB =,4BC =,2CD =,1AD =,则梯形的面积为( ) ABC. D.6.如图,梯形ABCD 中,AD ∥BC ,90A ∠=︒,点E 在AB 上,若42AE =,28BE =,70BC =,45DCE ∠=︒,则DE 的值为( )A . 56B . 58C . 60D . 62二、填空题:(本题满分 28 分,每小题 7 分)7.=a 的值为________.8.已知ABC 的三个内角满足100A B C <<<︒.用θ表示100,,C C B B A ︒---中的最小者,则θ的最大值为________.9.设,a b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分 20 分)设,A B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果22A B -是完全平方数,求A 的值.二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分ADB ∠,DF 平分ADC ∠,BE DE ⊥,CF DF ⊥,P 为AD 与EF 的交点.证明:2EF PD =.三、(本题满分 25 分)已知,,a b c 是不全相等的正整数,求222a b c a b c ++++的最小值.2017年全国初中数学联合竞赛试题 初二卷参考答案第一试一、选择题(本题满分 42 分,每小题 7 分)1.已知实数,,a b c 满足213390a b c ++=,3972a b c ++=,则32b ca b++的值为( ) A .2 B . 1 C . 0 D .1- 【答案】B【思路】因为所求分式的特点可以想到把2a b +,3b c +看成一个整体变量求解方程. 【解析】已知等式可变形为()()223390a b b c +++=,()()32372a b b c +++=,解得218a b +=,318b c +=,所以312b ca b+=+. 2.已知实数,,a b c 满足1a b c ++=,1110135a b c ++=+++,则()()()222135a b c +++++的值为( )A . 125B . 120C . 100D . 81 【答案】C 【思路】换元法【解析】设1x a =+,3y b =+,5z c =+,则10x y z ++=,1110x y z++=, 0xy xz yz ∴++=,由()()22222100x y z x y z xy xz yz ++=++-++=.则()()()222135100a b c +++++=.3.若正整数,,a b c 满足a b c ≤≤且()2abc a b c =++,则称(),,a b c 为好数组.那么好数组的个数为( )A . 4B . 3C . 2D . 1 【答案】B【思路】先通过a b c ≤≤且()2abc a b c =++的限定关系确定可能的种类,再通过枚举法一一验证.【解析】若(),,a b c 为好数组,则()26abc a b c c =++≤,即6ab ≤,显然1a =或2. 若1a =,则()21bc b c =++,即()()226b c --=,可得()(),,1,3,8a b c =或()1,4,5,共2个好数组.若2a =,则2b =或3,可得2,4b c ==;53,2b c ==,不是整数舍去,共1个好数组. 共3个好数组()()()(),,1,3,8,1,4,5,2,2,4a b c =.4.已知正整数,,a b c 满足26390a b c --+=,260a b c -++=,则222a b c ++的值为( ) A .424 B . 430 C . 441 D . 460 【答案】C【思路】由已知等式消去c 整理后,通过,a b 是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.【解析】联立方程可得()()2293175a b -+-=,则()23175b -≤,即16b ≤≤. 当1,2,3,4,5b =时,均无与之对应的正整数a ;当6b =时,9a =,符合要求,此时18c =,代入验证满足原方程. 因此,9a =,6b =,18c =,则222441a b c ++=.5.梯形ABCD 中,AD ∥BC ,3AB =,4BC =,2CD =,1AD =,则梯形的面积为( ) ABC. D.【答案】A【思路】通过作平行四边形把边长关系转化到一个三角形中来.【解析】作AE ∥DC ,AH ⊥BC ,则ADCE 是平行四边形,则3BE BC CE BC AD AB =-=-==, 则ABE 是等腰三角形,3BE AB ==,2AE =,经计算可得AH =. 所以梯形ABCD 的面积为()1142⨯+. 6.如图,梯形ABCD 中,AD ∥BC ,90A ∠=︒,点E 在AB 上,若42AE =,28BE =,70BC =,45DCE ∠=︒,则DE 的值为( )A . 56B . 58C . 60D . 62【答案】B【思路】补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.【解析】作CF △AD ,交AD 的延长线于点F ,将CDF 绕点C 逆时针旋转90︒至CGB ,则ABCF 为正方形,可得ECG △ECD ,EG ED ∴=. 设DE x =,则28DF BG x ==-,98AD x =-. 在RtEAD 中,有()2224298x x +-=,解得58x =.二、填空题:(本题满分 28 分,每小题 7 分) 7.=a 的值为________. 【答案】8【思路】通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.【解析】易得(321a =.令x ,则0x ≥,代入整理可得()()2310x x x -+=,解得1230,3,1x x x ===-,舍负,即1a =-或8,验证可得8a =.8.已知△ABC 的三个内角满足100A B C <<<︒.用θ表示100,,C C B B A ︒---中的最小者,则θ的最大值为________. 【答案】20︒【思路】一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况.【解析】100C θ≤︒-,C B θ≤-,B A θ≤-()()()131002206C C B B A θ∴≤︒-+-+-=︒⎡⎤⎣⎦ 又当40,60,80A B C =︒=︒=︒时,20θ=︒可以取到. 则θ的最大值为20︒.9.设,a b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.【答案】7【思路】因为p 是质数,只能拆成1和p ,另一方面通过a b +、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.【解析】因为,a b 互质,所以a b +、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得1a b ==,4p =,不是质数舍; 381ab p a b⎧=⎪⎨=⎪+⎩可得7a =,1b =,7p =,符合题意. 则7p =.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 【答案】34【思路】考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.【解析】设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34. 由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设,A B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果22A B -是完全平方数,求A 的值.【思路】对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a b +,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果.【解析】设()101,9,,A a b a b a b N =+≤≤∈,则10B b a =+,由,A B 不同得a b ≠,()()()()22221010911A B a b b a a b a b -=+-+=⨯⨯+-.由22A B -是完全平方数,则a b >,()()11|a b a b +-,可得11a b +=,a b -也是完全平方数,所以1a b -=或4.若1a b -=,则6a =,5b =; 若4a b -=,则没有正整数解. 因此6a =,5b =,65A =.二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分ADB ∠,DF 平分ADC ∠,BE DE ⊥,CF DF ⊥,P 为AD 与EF 的交点.证明:2EF PD =.【思路】因为EF 、PD 都在DEF 中,所以想办法推出其性质,比较容易得出90EDF ∠=︒,此时若能得出EP PD =,则自然可以得到结论.【解析】由DE 平分ADB ∠,DF 平分ADC ∠,可得90EDF ∠=︒. 由BE DE ⊥得BE △DF ,则EBD FDC ∠=∠.又BD DC =,90BED DFC ∠=∠=︒,则BED △DFC ,BE DF =. 得四边形BDFE 是平行四边形,PED EDB EDP ∠=∠=∠,EP PD =. 又△EDF 是直角三角形,2EF PD ∴=.三、(本题满分 25 分)已知,,a b c 是不全相等的正整数,求222a b c a b c ++++的最小值.【思路】通过,,a b c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用,,a b c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b c b c +--+-==--可得2b ac =.()()22222a c ba b c a c b a b c a c b+-++==+-++++.不妨设a c <,若1a =,2c b =,因为a b ≠,则()113a c b b b +-=+-≥,取等号当且仅当2b =时.若2a ≥,因为1c b ≠≠,则()1243a c b a b b a +-=+-≥+≥>.所以222a b c a b c++++的最小值为3,当1a =,2b =,4c =时.。
2017年全国初中数学联赛
2017年全国初中数学联赛(初二决赛)试卷(3月26日上午8:45---11:15)一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的。
将你选择的答案的代号填在题后的括号内。
每小题选对得7分;不选或错选或选出的代号字母超过一个(不论是否写在括号内),一律得0分。
1、六位朋友一起去吃饭,实行AA 制,即大家均摊费用。
因为小王忘了带钱,所以其他人每人多付了5元钱,则这顿饭共花费 ( )A.90元B.120元C.150元D.180元x-m <02、若关于x 的不等式组 9-2x <1,的整数解共有5个,则实数m 的取值范围为( )A.8≤m <9B.8<m ≤9C.9≤m < 10D.9<m ≤103、如图,在矩形ABCD 中,AB=2,AD=3,E 是AB 边的中点,F 是BC 边上的动点,将△EFB 沿EF 所在直线折叠得到△EFB ′,连接DB ′,则DB ′的最小值为 ( ) A.10-1 B.3 C.13-1 D.24、已知三角形的三条边长为a ,b ,13,且a ,b 为整数,a <b <13,则(a ,b)的组数共有 ( )A.26组B.30组C.36组 D49组5、已知△ABC 中,AB=210,BC=6,CA=2,点M 是BC 的中点,过点B 作AM 延长线的垂线,垂足为D.则BD= ( ) A.1 B.313 C.13136 D.13 6、已知非零实数x 、y 、z 满足x 2+20171+y =y 2+20171+z =z 2+20171+x ,则zx yz xy z y x ++++222的值为( )A.1或3B.1或-3C.-1或3D.-1或-3二、填空题(本题满分28分,每小题7分)本题共有4个小题,要求直接将答案写在横线上。
7、已知a=321+,b=321-,则2a 2-5ab+2b 2的值为 . 8、如图,梯形ABCD 中,AD ∥BC ,AC 、BD 相交于M ,且AB=AC ,AB ⊥AC ,BC=BD ,那么∠AMB 的度数为 .9、从0,1,2,3,4,5这六个数字中任选两个不同的数字组成一个两位数,则这个两位数为偶数的概率为 .10、如图,已知在Rt △ABC 中,∠C=90°,AC=BC=10,点D 、E 在线段BC 上,且CD=2,BE=5,点P ,Q 分别是线段AC 、AB 上的动点,则四边形PQED 周长的最小值为 .11、已知关于x 的方程12--x =a 有且仅有两个解,求实数a 的取值范围.四、解答题(本题满分25分)12、如图,已知等腰直角三角形ABC 中,∠B=90°,D 为BC 的中点,E 为线段AC 上一点,且∠EDC=∠ADB.求BDED BE +的值.13、从连续的自然数1,2,……,2017中可以取出n个不同的数,使所取的这n个不同的数中任意三个数之和都能被21整除.求正整数n的最大值.。
2017年全国初中数学联合竞赛试题含答案
2017 年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分 42 分,每小题 7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则3b+c=()a +2bA. 2.B. 1.C. 0.D.-1.【答】B.已知等式可变形为 2( a+ 2b) + 3(3b+c ) = 90 , 3( a+ 2b) + (3b+c ) = 72 ,解得a+2b=18,3b+c=18 ,所以3b+c=1.a +2b2.已知△ABC的三边长分别是a,b,c,有以下三个结论:(1)以a,b,c为边长的三角形一定存在;(2)以 a 2, b 2, c2为边长的三角形一定存在;(3)以 | a-b | +1,| b-c | +1,| c-a | +1 为边长的三角形一定存在.其中正确结论的个数为()A.0.B.1.C.2.D.3.【答】C.不妨设 a ≥ b ≥ c ,则有 b + c > a .(1)因为 b + c > a ,所以 b + c +222b +c > a ,故以a,b,c为bc > a ,即( b + c ) >( a),即边长的三角形一定存在;(2)以 a =2, b =3, c =4为边长可以构成三角形,但以 a 2= 4, b2= 9, c2=16 为边长的三角形不存在;(3)因为 a ≥ b ≥ c ,所以| a - b |+1= a - b +1,| b - c |+1= b - c +1,| c - a |+1= a - c +1,故三条边中| c - a |+1大于或等于其余两边,而(| a-b | +1)+(| b-c | +1)=(a-b+ 1)+(b-c+1)=a-c+ 1 + 1 >a -c+ 1 =| c-a | +1 ,故以 | a-b | +1 , | b-c | +1 , | c-a | +1 为边长的三角形一定存在.3.若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么,好数组的个数为()A. 1.B.2.C.3.D.4.【答】C.若( a, b, c) 为好数组,则abc= 2( a+b+c ) ≤ 6c,所以ab≤6.显然,a只能为1或2.若a =2,由ab≤6可得b=2或3,b=2时可得c=4,b=3时可得c=52(不是整数);若a =1,则bc=2(1+b+c),于是可得(b-2)(c-2)=6,可求得(a,b,c)=(1,3,8)或(1,4,5).综合可知:共有 3 个好数组,分别为(2,2,4),(1,3,8)和(1,4,5).4.设 O 是四边形 ABCD 的对角线 AC 、BD 的交点,若 ∠BAD + ∠ACB = 180︒,且 BC = 3,AD = 4 ,AC = 5 , AB = 6 ,则 DO = ( )OB10 8 64A..B..C..D..D9 7 5 3E【答】A.C过 B 作 BE // AD ,交 AC 的延长线于点 E ,则 ∠ABE = 180︒ - ∠BAD= ∠ACB ,所以△ ABC ∽△ AEB ,所以AC = BC ,所以4O3AB EBAB ⋅ BC6 ⨯318BEB = = = .A6AC 5 5再由 BE // AD ,得 DO = AD = 4 = 10 .BEOB 18 955.设 A 是以 BC 为直径的圆上的一点,AD ⊥ BC 于点 D ,点 E 在线段 DC 上,点 F 在 CB 的延长线上,满足 ∠BAF = ∠CAE .已知 BC =15 , BF = 6 , BD = 3 ,则 AE = ( )AA. 4 3 .B. 2 13 .C. 2 14 .D. 2 15 .【答】B.FBDEC如图,因为 ∠BAF = ∠CAE ,所以 ∠BAF + ∠BAE = ∠CAE + ∠BAE ,即 6 3∠FAE = ∠BAC = 90︒ .又因为 AD ⊥ BC ,故 AD 2 = DE ⋅ DF = DB ⋅ DC .而 DF = BF + BD = 6 + 3 = 9 ,DC = BC - BD = 15 - 3 =12 ,所以 AD 2 = DE ⋅ 9 = 3 ⋅ 12 ,所以 AD = 6 ,DE= 4 . 从而 AE = AD 2 + DE 2 = 62 + 42 = 213 .6.对于正整数 n ,设 a 是最接近的整数,则 1 + 1 + 1 + +1 = ( n)na 1 a 2 a 3a200A. 191 .B. 192 .C. 193 .D. 194 .777 7 【答】A.对于任意自然数 k , ( k +1 )2 = k 2 + k + 1不是整数,所以,对于正整数 n ,- 1 一定不是整数.n24 2的整数,则| m - |< 1 , m ≥1.设 m 是最接近 nn2易知:当 m ≥1时,| m - |< 1 ⇔ ( m - 1 ) 2 < n < ( m + 1 )2⇔ m 2 - m + 1 < n < m 2 + m + 1 .n 2 2 24 4 于是可知:对确定的正整数 m ,当正整数 n 满足 m 2 - m + 1 ≤ n ≤ m 2+ m 时,m 是最接近的整数,n 即 a n = m .所以,使得 a n = m 的正整数 n 的个数为 2m .注意到132 + 13 = 182 < 200 < 14 2 + 14 = 210 ,因此, a , a , ,8 个 4,……,26 个 13,18 个 14.所以1+1+1+ +1= 2 ⨯1+ 4 ⨯1+ 6 ⨯1+ + 26 ⨯1+ 18⨯1=191.a a a a12313147 123200二、填空题:(本题满分 28 分,每小题 7 分)1.使得等式 1 + 1+a=3a 成立的实数 a 的值为_______.【答】 8 .由所给等式可得 (1 + 1 +a )3=a2.令 x =1+a,则 x ≥0,且a=x2-1,于是有(1+ x )3=( x2-1)2,整理后因式分解得x ( x -3)( x +1)2=0,解得 x= 0 ,x= 3 ,x= -1 (舍去),所以a= -1或a=8.123验证可知: a = -1是原方程的增根, a =8是原方程的根.所以, a =8.2.如图,平行四边形ABCD中,∠ABC=72︒,AF⊥BC于点F, AFM交 BD 于点 E ,若 DE =2AB ,则∠AED =_______.【答】 66︒.BE 取 DE 的中点 M ,在Rt△ ADE中,有 AM = EM =1DE = AB .2设∠AED =α,则∠AME =180︒ -2α,∠ABM =α-18︒.又∠ABM = ∠AMB ,所以180︒ -2α=α-18︒,解得α=66︒.3.设m,n是正整数,且m>n.若9m与9n的末两位数字相同,则m-n的最小值为.【答】10.由题意知,9m- 9n= 9n⋅ (9m-n-1) 是100的倍数,所以9m-n-1是100的倍数,所以9m-n的末两位数字是 01,显然,m-n是偶数,设m-n=2t(t是正整数),则9m-n=92t=81t .计算可知: 812的末两位数字是61, 813的末两位数字是41, 814的末两位数字是21, 815的末两位数字是 01.所以 t 的最小值为5,从而可得 m - n 的最小值为10.4.若实数 x, y 满足 x 3+ y 3+3 xy =1,则 x 2+ y2的最小值为.1【答】2 .因为0= x 3+ y 3+3 xy -1=( x + y )3+(-1)3-3 x 2 y -3 xy 2+3xy=( x+y- 1)( x2+y2-xy+x+y+1) =12(x+y-1)[(x-y)2+(x+1)2+(y+1)2],所以 x = y = -1或x+y=1.若x = y = -1,则 x 2+ y2=2.若x + y =1,则x2+y2=12[(x+y)2+(x-y)2]=12[1+(x-y)2]≥12,当且仅当x=y=12时等号成立.所以, x 2+ y2的最小值为12.第一试(B)一、选择题:(本题满分 42 分,每小题 7 分)1.已知二次函数y=ax2+bx+c(c≠0)的图象与x轴有唯一交点,则二次函数y=a3x2+b3x+c3的图象与 x 轴的交点个数为()A.0.B.1.C.2.D.不确定.【答】C.因为二次函数 y = ax 2+ bx + c 的图象与 x 轴有唯一交点,所以∆1=b2-4ac=0,所以b2=4ac≠0.故二次函数 y = a 3 x 2+ b3 x + c3的判别式∆2=(b3)2-4a3c3=b6-161(4ac)3=b6-161(b2)3=1615b6>0 ,所以,二次函数y=a3x2+b3x+c3的图象与x轴有两个交点.2.题目和解答与(A)卷第 1 题相同.3.题目和解答与(A)卷第 3 题相同.4.已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2=()A. 424.B. 430.C. 441.D. 460.【答】C.由已知等式消去 c 整理得( a -9)2+3(b -1)2=75,所以3(b -1)2≤75,又b为正整数,所以1≤b≤6.若b =1,则( a -9)2=75,无正整数解;若b =2,则( a -9)2=72,无正整数解;若b =3,则( a -9)2=63,无正整数解;若b =4,则( a -9)2=48,无正整数解;若b =5,则( a -9)2=27,无正整数解;若b =6,则( a -9)2=0,解得a=9,此时c=18.因此, a =9,b=6, c =18,故a2+b2+c2==441.5.设O是四边形ABCD的对角线AC、BD的交点,若∠BAD+ ∠ACB=180︒,且BC=3,AD=4,AC =5, AB =6,则DO=()OBA.4.B.6.C.8.D.10.3579【答】D.解答过程与(A)卷第 4 题相同.6.题目和解答与(A)卷第 5 题相同.二、填空题:(本题满分 28 分,每小题 7 分)1.题目和解答与(A)卷第 1 题相同.2 .设O是锐角三角形ABC的外心,D,E分别为线段BC,OA的中点,∠ACB=7∠OED,∠ABC =5∠OED ,则∠OED =_________.A 【答】10︒.如图,设∠OED = x ,则∠A B =C5,x ∠ACB =7x ,∠DOC= ∠BAC =180︒ -12x ,∠AOC =10x ,所以∠AOD =180︒ -2x ,∠ODE =180︒ - x -(180︒ -2 x)= x ,所以OD=OE=1OA =1OC ,所22B 以∠DOC =60︒,从而可得 x =10︒.3.题目和解答与(A)卷第 3 题相同.4.题目和解答与(A)卷第 4 题相同.EODC第二试(A)一、(本题满分20分)已知实数 x, y 满足x+y=3,1+1=1,求 x 5+ y5的值. x+ y 2x 2+ y2解由1+1=1可得 2( x+y+x2+ y 2)= x 3+ y 3+ x 2 y 2+ xy . x + y 2x 2+ y2设xy = t ,则 x 2+ y 2=( x + y )2-2xy =9-2t , x 3+ y 3=( x + y )[( x + y )2-3 xy ]=3(9-3t ),代入上式可得 2(3 + 9 - 2t ) = 3(9 - 3t ) +t2+t,解得t=1或t=3.……………………10分当 t =3时,xy=3,又x+y=3,故x,y是一元二次方程m2-3m+3=0的两实数根,但易知此方程没有实数根,不合题意.……………………15分当 t =1时,xy=1,又x+y=3,故x,y是一元二次方程m2-3m+1=0的两实数根,符合题意.此时x 5+ y 5=( x 2+ y 2)( x 3+ y 3)-( x + y ) x 2 y 2=(9-2t )⋅[3(9-3t )]-3t 2=123.……………………20分二(、本题满分 25 分)如图,△ ABC 中,AB > AC ,∠BAC = 45︒ ,E 是 ∠BAC的外角平分线与 △ ABC 的外接圆的交点,点 F 在 AB 上且 EF ⊥ AB . 已知 AF =1, BF = 5,求△ ABC 的面积.解 在 FB 上取点 D ,使 FD =AF ,连接 ED 并延长,交△ ABC 的外接圆于点 G.由 EF ⊥AD ,AF =FD 知△AED 是等腰三角形,所以∠AED =180︒ - 2 ∠EAD =∠BAC , ……………………10 分EAFDCGB……………………15 分 所以 AG = BC ,所以 AC = BG ,所以 AC =BG. 又∠BGE =∠BAE =∠ADE =∠BDG ,所以 BG =BD ,所以 AC =BD =5-1=4, ……………………20 分△ ABC 的 AB 边上的高 h = AC sin 45︒ = 2 2 .所以,△ ABC 的面积 S = 1 ⋅ AB ⋅ h = 1 ⨯ 6 ⨯ 2 = 6 .2 2 ……………………25 分22三、(本题满分 25 分)求所有的正整数数对 ( a , b ) ,使得 a 3 = 49 ⨯ 3b +8 . 解 显然, 49 ⨯ 3b +8 为奇数,所以 a 为奇数.又因为 a 3 = 49 ⨯ 3b + 8 ≥ 49 ⨯ 3 + 8 > 53 ,所以 a > 5 .……………………5 分由 a 3 = 49 ⨯ 3b +8 可得 a 3 - 8 = 49 ⨯3b ,即 ( a - 2)( a 2 + 2a + 4) = 7 2 ⨯3b . ……………………10 分设 ( a - 2, a 2 + 2a + 4) = d ,则 d 为奇数.注意到 a 2 + 2a + 4 = ( a - 2)( a + 4) +12 ,所以 d | 12 ,所以 d=1 或 3. ……………………15 分⎧a - 2 = 7 2,⎧a - 2 = 3b,均无正整数解.……………………20 分若 d =1,则有 ⎨a 2 + 2 a + 4 或 ⎨a 2 + 2 a + 4 = 7 2 ⎪ = 3b ,⎪ , ⎩⎩⎧a - 2 = 3 ⨯7 2, ⎧a - 2 = 3b -1,解得 a =11, b = 3 . 若 d =3,则有 ⎨ 2 + 2 a + 4 b -1或 ⎨ 2 + 2 a + 4 = 3 ⨯7 2 ⎪ a = 3 , ⎪ a ,⎩⎩所以,满足条件的正整数对只有一个,为(11,3).……………………25 分第二试 (B )一、(本题满分 20 分)已知实数 a , b , c 满足 a ≤ b ≤ c , a + b + c =16 , a 2 + b 2 + c 2 +14 abc =128 ,求 c 的值.解 设 a + b = x , ab = y ,依题意有 x 2 - 2 y + (16 - x ) 2 +14 y (16 - x ) =128 ,整理得( x - 8) 2 = 1y ( x -8) ,8所以 x = 8 或 y = 8( x -8) .……………………10 分(1)若 x =8,则 a + b =8,此时 c =8.(2)若 y =8( x -8),即 ab =8( a + b -8),则( a -8)(b -8)=0,所以a=8或b=8.当a =8时,结合 a ≤ b ≤ c 可得 a + b + c ≥24,与 a + b + c =16矛盾.当b =8时,结合 a ≤ b ≤ c 及 a + b + c =16可得 a =0, c =8.综合可知: c =8.……………………20分二、(本题满分 25 分)求所有的正整数m,使得22m-1-2m+1是完全平方数.解当 m =1时,22m-1-2m+1=1是完全平方数.……………………5分当 m >1时,设22m-1-2m+1=n2( n 为正整数).注意到 22m-1- 2m+ 1 = 2 ⋅ (2m-1 ) 2- 2 ⋅ 2 m-1+ 1 = (2 m-1- 1) 2+ (2 m-1 )2,故可得(2 m-1- 1) 2+ (2 m-1 )2=n2,……………………10分所以 22m-2=n2- (2m-1- 1) 2= ( n+ 2 m-1- 1)( n- 2 m-1+1) .……………………15分设 x = n -2m-1+1, y = n +2m-1-1,则x<y, xy =22m-2,所以x,y均为2的方幂.……………………20分又 y - x =2m-2被4除余数为2,所以,只可能x=2, y =2m,故2⨯2m=22m-2,解得m=3.综上可知:满足条件的正整数 m 有两个,分别为1和3.……………………25分三、(本题满分 25 分)如图,O为四边形ABCD内一点,∠OAD= ∠OCB,DOA ⊥ OD , OB ⊥ OC .求证:AB2+CD2=AD2+BC2.AOP 证明由题设条件可知∠AOD = ∠BOC =90︒,又∠OAD =∠OCB,所以△ AOD ∽△ COB ,……………………5分OD AO OC AOB所以OB=CO,从而OB=OD .……………………10分C 又∠AOC = ∠AOB + ∠BOC = ∠AOB + ∠AOD = ∠DOB ,所以△ AOC ∽ △ DOB ,所以∠OAC = ∠ODB .……………………15分设AC 和BD交于点P,则∠APD = ∠AOD =90︒,所以 AC ⊥ DB ,……………………20分所以 AB 2+ CD 2=( AP 2+ PB 2)+( PD 2+ PC 2)=( AP 2+ PD 2)+( PB 2+ PC 2)= AD 2+ BC2.……………………25分。
2017年全国初中数学联赛初二卷和详解
2017年全国初中数学联合竞赛试题初二卷第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-12.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.813.若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.14.已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.4605.梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().C. D.6.如图,梯形ABCD中,AD∥BC,∠A=90°,点E在AB上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE的值为().A.56B.58C.60D.62二、填空题:(本题满分28分,每小题7分)7.=a的值为________.8.已知△ABC的三个内角满足A<B<C<100°.用θ表示100°-C,C-B,B-A中的最小者,则θ的最大值为________.9.设a,b是两个互质的正整数,且38abpa b=+为质数.则p的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD与EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.解析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证. 解析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无与之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().C. D.答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则BE=BC-CE=BC-AD=3=AB,则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得AH =所以梯形ABCD 的面积为()1142⨯+=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.解析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.=a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得(321a =.令x ,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 解析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 解析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11, ………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 与EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.解析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°.………5分由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC. ………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 为有理数,求222a b c a b c ++++的最小值.答案:3 对应讲次: 所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b cb c +--+-==--b 2=ac. …10分()()22222a c ba b c a c b a b c a c b +-++==+-++++.………15分不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分 若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3.所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时.………25分。
2017年全国初中数学竞赛试题及答案
2017年全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分.每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设非零实数a ,b ,c ,满足⎩⎪⎨⎪⎧a +2b+3c =02a +3b+4c =0则ab +bc +caa 2+b 2+c 2的值为( )(A )—12 (B )0 (C )12 (D )12.已知a ,b ,c 是实常数,关于x 的一元二次方程ax 2+bx +c =0有两个非零实根x 1,x 2,则下列关于x 的一元二次方程中,以1 x 12,1x 22为两个实根的是( )(A )c 2x 2+(b 2-2ac )x +a 2=0 (B )c 2x 2—(b 2-2ac )x +a 2=0 (C )c 2x 2+(b 2-2ac )x —a 2=0 (D )c 2x 2—(b 2-2ac )x —a 2=03.如图,在R t △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E ,若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ) (A )OD (B )OE (C )DE (D )AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC =4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( )(A )3 (B )4 (C )6 (D )85.对于任意实数x ,y ,z ,定义运算“*”为:x y *=3x 3y +3x 2y 2+xy 3+45(x +1)3+(y +1)3—60,且x y z=x y z ****(),则2013201232****…的值为( ) (A )607967 (B )1821 967 (C )5463 967 (D )16389967二、填空题(共5小题,每小题7分,共35分)6.设a,b 是a 2的小数部分,则(b +2)3的值为____________.7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别为3,4,5,则四边形AEFD 的面积是____________.8.已知正整数a ,b ,c 满足a +b 2—2c —2=0,3a 2—8b +c =0,则abc 的最大值为__________.9.实数a ,b ,c ,d 满足:一元二次方程x 2+cx +d =0的两根为a ,b ,一元二次方程x 2+ax +b =0的两根为c ,d ,则所有满足条件的数组(a ,b ,c ,d )为___________________________________. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有卖完,但是他的销售收入恰好是2013元,则他至少卖出了__________支圆珠笔.三、解答题(共4题,每题20分,共80分)11.如图,抛物线y =ax 2+bx —3,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA ,直线y =—13x 2+1与y 轴交于点D ,求∠DBC -∠CBE .(第4题)ABED (第7题)ABCO DE (第3题)12.设△ABC的外心,垂心分别为O,H,若B,C,H,O共圆,对于所有的△ABC,求∠BAC所有可能的度数.13.设a,b,c是素数,记x=b+c-a,y=c+a-b,z=a+b-c,当z2=y,x-y=2时,a,b,c能否构成三角形的三边长?证明你的结论.14.如果将正整数M放在正整数m左侧,所得到的新数可被7整除,那么称M为m的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数a1,a2,…,a n,满足对任意一个正整数m,在a1,a2,…,a n中都至少有一个为m的魔术数.2017年全国初中数学竞赛试题参考答案一、选择题1.【答案】A【解答】由已知得(234)(23)0a b c a b c a b c++=++-++=,故2()0a b c++=.于是2221()2ab bc ca a b c++=-++,所以22212ab bc caa b c++=-++.2.【答案】B【解答】由于20ax bx c++=是关于x的一元二次方程,则0a≠.因为12bx xa+=-,12cx xa=,且12x x≠,所以0c≠,且221212222221212()2112x x x x b a cx x x x c+--+==,22221211ax x c⋅=,于是根据方程根与系数的关系,以211x,221x为两个实根的一元二次方程是22222b ac ax xc c--+=,即2222(2)0c x b ac x a--+=.3.【答案】D【解答】因AD,DB,CD的长度都是有理数,所以,OA=OB=OC=2AD BD+是有理数.于是,OD=OA-AD是有理数.由Rt△DOE∽Rt△COD,知2ODOEOC=,·DC DODEOC=都是有理数,而AC4.【答案】C【解答】因为DCFE是平行四边形,所以DE//CF,且EF//DC.连接CE,因为DE//CF,即DE//BF,所以S△DEB = S△DEC,因此原来阴影部分的面积等于△ACE的面积.连接AF,因为EF//CD,即EF//AC,所以S△ACE = S△ACF.因为4BC CF=,所以S△ABC = 4S△ACF.故阴影部分的面积为6.5.【答案】C【解答】设201320124m***=,则()20132012433m****=*32323339274593316460m m mm m m⨯+⨯+⨯+==++++-,于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题6.【答案】9【解答】由于2123a a<<<<,故222b a=-=-,因此33(2)9b+==.7.【答案】20413【解答】如图,连接AF,则有:45=3AEF AEF BFE BCFAFD AFD CDFS S S BF SS S FD S∆∆∆∆∆∆∆++===,354AFD AFD CDF BCFAEF AEF BEFS S S CF SS S FE S∆∆∆∆∆∆∆++====,解得10813AEFS∆=,9613AFDS∆=.所以,四边形AEFD的面积是20413.8.【答案】2013【解答】由已知2220+--=a b c,2380-+=a b c消去c,并整理得()228666b a a-++=.由a为正整数及26a a+≤66,可得1≤a≤3.若1a=,则()2859b-=,无正整数解;若2a=,则()2840b-=,无正整数解;若3a=,则()289b-=,于是可解得11=b,5b=.(i)若11b=,则61c=,从而可得311612013abc=⨯⨯=;(ii)若5b=,则13c=,从而可得3513195abc=⨯⨯=.综上知abc的最大值为2013.9.【答案】(1212),,,--,(00),,,-t t(t为任意实数)(第3题答题)(第7题答题)(第3题)(第4题)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b cab dc d acd b由上式,可知b a c d=--=.若0b d=≠,则1==dab,1==bcd,进而2b d a c==--=-.若0b d==,则c a=-,有()(00),,,,,,=-a b c d t t(t为任意实数).经检验,数组(1212)--,,,与(00),,,-t t(t为任意实数)满足条件.10.【答案】207【解答】设x,y分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x yx y所以201371(5032)44y yx y-+==-+,于是14y+是整数.又20134()343503x y y y=++<⨯+,所以204y>,故y的最小值为207,此时141x=.三、解答题11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC-∠CBE.【解答】将0x=分别代入y=113x-+,23y ax bx=+-知,D(0,1),C(0,3-),所以B(3,0),A(1-,0).直线y=113x-+过点B.将点C(0,3-)的坐标代入y=(1)(3)a x x+-,得1a=.抛物线223y x x=--的顶点为E(1,4-).于是由勾股定理得BC=CE,BE=因为BC2+CE2=BE2,所以,△BCE为直角三角形,90BCE∠=︒.因此tan CBE∠=CECB=13.又tan∠DBO=13ODOB=,则∠DBO=CBE∠.所以,45DBC CBE DBC DBO OBC∠-∠=∠-∠=∠=︒.12.设△ABC的外心,垂心分别为O H,,若B C H O,,,共圆,对于所有的△ABC,求BAC∠所有可能的度数.【解答】分三种情况讨论.(i)若△ABC为锐角三角形.因为1802BHC A BOC A∠=︒-∠∠=∠,,所以由BHC BOC∠=∠,可得1802A A︒-∠=∠,于是60A∠=︒.(ii)若△ABC为钝角三角形.当90A∠>︒时,因为()1802180BHC A BOC A∠=︒-∠∠=︒-∠,,所以由180BHC BOC∠+∠=︒,可得()3180180A︒-∠=︒,于是120A∠=︒。
2017年全国初中数学联赛(整理好)
2017年全国初中数学联合竞赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题(本题满分42分,每小题7分)1.已知实数a ,b ,c 满足2a +13b +3c =90,3a +9b +c =72,则3b +c a +2b=( ) A .2 B .1 C .0 D .-12.已知△ABC 的三边长分别是a ,b ,c ,有以下三个结论:(1)以a ,b ,c 为边长的三角形一定存在;(2)以a 2,b 2,c 2为边长的三角形一定存在;(3)以|a -b |+1,|b -c |+1,|c -a |+1为边长的三角形一定存在.其中正确结论的个数为( )A .0B .1C .2D .33.若正整数a ,b ,c 满足a ≤b ≤c 且abc =2(a +b +c ),则称(a ,b ,c )为好数组.那么,好数组的个数为( )A .1B .2C .3D .44.设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180 ,且BC =3,AD =4,AC =5,AB =6,则DO OB =( )A .109B .87C .65D .435.设A 是以BC 为直径的圆上的一点,AD ⊥BC 于点D ,点E 在线段DC 上,点F 在CB 的延长线上,满足∠BAF =∠CAE .已知BC =15,BF =6,BD =3,则AE =( )A .43B .213C .214D .2156.对于正整数n ,设a n 是最接近n 的整数,则1a 1+1a 2+1a 3+…+1a 200=( ) A .1917 B .1927 C .1937 D .1947二、填空题(本题满分28分,每小题7分)1.使得等式1+1+a =3a 成立的实数a 的值为______. 2.如图,平行四边形ABCD 中,∠ABC =72︒,AF ⊥BC 于点F ,AF 交BD 于点E ,若DE =2AB ,则∠AED =______.3.设m ,n 是正整数,且m >n .若9m 与9n 的末两位数字相同,则m -n 的最小值为____.4.若实数x ,y 满足x 3+y 3+3xy =1,则x 2+ y 2的最小值为______.第一试(B)一、选择题(本题满分42分,每小题7分)1.已知二次函数y =ax 2+bx +c (c ≠0)的图象与x 轴有唯一交点,则二次函数y =a 3x 2+b 3x +c 3的图象与x 轴的交点个数为( )A .0B .1C .2D .不确定2.题目与(A )卷第1题相同.3.题目与(A )卷第3题相同.4.已知正整数a ,b ,c 满足a 2-6b -3c +9=0,-6a +b 2+c =0,则a 2+b 2+c 2=( )A .424.B .430.C .441.D .460.5.设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180,且BC =3,AD=4,AC =5,AB =6,DO OB =( ) A .43 B .65 C .87 D .1096.题目与(A )卷第5题相同.二、填空题(本题满分28分,每小题7分)1.题目与(A )卷第1题相同.2.设O 是锐角三角形ABC 的外心,D ,E 分别为线段BC ,OA 的中点,∠ACB =7∠OED ,∠ABC =5∠OED ,则∠OED =______.3.题目与(A )卷第3题相同.4.题目与(A )卷第4题相同.第二试(A)一、(本题满分20分)已知实数x ,y 满足x + y =3,1x +y 2+1x 2+y =12,求x 5+y 5的值.二、(本题满分25分)如图,△ABC 中,AB >AC ,∠BAC =45︒,E 是∠BAC 的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF ⊥AB .已知AF =1,BF =5,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(a ,b ),使得a 3=49×3b +8.第二试(B)一、(本题满分20分)已知实数a ,b ,c 满足a ≤b ≤c ,a +b +c =16,a 2+b 2+c 2+14abc =128,求c 的值.二、(本题满分25分)求所有的正整数m ,使得22m -1-2m +1是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,∠OAD =∠OCB ,OA ⊥OD ,OB ⊥OC .求证:AB 2+CD 2=AD 2+BC 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在 Rt △ EAD 中,有 422 (98 x)2 x2 ,解得 x 58 .
2017 年全国初中数学联合竞赛试题(初二年级)参考答案及评分标准 第 2 页(共 5 页)
二、填空题:(本题满分 28 分,每小题 7 分)
1.使得等式 1 1 a 3 a 成立的实数 a 的值为_______. 【答】 8 . 由所给等式可得 (1 1 a)3 a2 .令 x 1 a ,则 x 0 ,且 a x2 1,于是有 (1 x)3 (x2 1)2 ,
4.已知正整数 a,b, c 满足 a2 6b 3c 9 0 , 6a b2 c 0 ,则 a2 b2 c2 = ( )
A. 424. 【答】C.
B. 430.
C. 441.
D. 460.
由已知等式消去 c 整理得 (a 9)2 3(b 1)2 75 ,所以 3(b 1)2 75 ,又 b 为正整数,解得1 b 6 .
2
2
Байду номын сангаас
3
A
D
F
所以梯形的面积为 1 (1 4) 4 2 10 2 .
2
3
3
E
6.如图,梯形 ABCD 中, AD // BC , A 90 ,点 E 在 AB 上,若 AE 42 ,
BE 28, BC 70 , DCE 45 ,则 DE =
()
B
C
A. 56.
B. 58.
C.60.
D. 62.
为 A. 4. 【答】B.
B.3.
C.2.
D.1.
()
若 (a,b, c) 为好数组,则 abc 2(a b c) 6c ,所以 ab 6 .显然, a 只能为 1 或 2.
若 a =2,由 ab 6 可得 b 2 或 3, b 2 时可得 c 4 , b 3 时可得 c 5 (不是整数); 2
整理后因式分解得 x(x 3)(x 1)2 0 ,解得 x1 0 , x2 3 , x3 1 (舍去),所以 a 1或 a 8 . 验证可知: a 1是原方程的增根, a 8 是原方程的根. 所以, a 8.
2.已知△ ABC 的三个内角满足 A B C 100 ,用 表示100 C,C B, B A 中的最小者,则 的最大值为_______.
因此, a 9 , b =6, c 18 ,故 a2 b2 c2 =441.
5.梯形 ABCD 中, AD // BC , AB 3 , BC 4 , CD 2 , AD 1,则梯形的面积为 ( )
A. 10 2 . 3
B. 10 3 . 3
C. 3 2 . D. 3 3 .
【答】A.
2017 年全国初中数学联合竞赛(初二年级)试题参考答案及评分标准
说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题, 请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在 评卷时请参照本评分标准划分的档次,给予相应的分数.
由 1 1 1 0 得 1 1 1 0 ,所以 xy yz zx 0 .
a 1 b 3 c 5
xyz
所以 (a 1)2 (b 3)2 (c 5)2 x2 y2 z2 (x y z)2 2(xy yz zx) 100 .
3.若正整数 a,b, c 满足 a b c 且 abc 2(a b c) ,则称 (a,b, c) 为好数组.那么,好数组的个数
【答】B.
作 CF AD ,交 AD 的延长线于点 F ,将△ CDF 绕点 C 逆时针方向旋转 90 至 G
△ CGB ,则 ABCF 为正方形,且 ECG 45 ECD , CG CD , CE CE ,所以,△ ECG ≌
△ ECD ,所以 EG ED .
设 DE x ,则 DF BG x 28 , AD 70 DF 98 x .
第一试
一、选择题:(本题满分 42 分,每小题 7 分)
1.已知实数 a,b, c 满足 2a 13b 3c 90, 3a 9b c 72 ,则 3b c = a 2b
A. 2.
B. 1.
C. 0.
D. 1.
【答】B.
()
已知等式可变形为 2(a 2b) 3(3b c) 90 , 3(a 2b) (3b c) 72 ,解得 a 2b 18 ,
若 a =1,则 bc 2(1 b c) ,于是可得 (b 2)(c 2) 6 ,可求得 (a,b, c) =(1,3,8)或(1,4,
5). 综合可知:共有 3 个好数组,分别为(2,2,4),(1,3,8)和(1,4,5).
2017 年全国初中数学联合竞赛(初二年级)试题参考答案及评分标准 第 1 页(共 5 页)
3b c 18 ,所以 3b c 1. a 2b
2.已知实数 a,b, c 满足 a b c 1, 1 1 1 0 ,则 (a 1)2 (b 3)2 (c 5)2 = a 1 b 3 c 5
()
A.125.
B.120.
C.100.
D.81.
【答】C.
令 a 1 x , b 3 y , c 5 z ,则 x y z (a 1) (b 3) (c 5) 10 ,且
若 b =1,则 (a 9)2 75 ,无正整数解;
若 b =2,则 (a 9)2 72 ,无正整数解;
若 b =3,则 (a 9)2 63 ,无正整数解;
若 b =4,则 (a 9)2 48 ,无正整数解;
若 b =5,则 (a 9)2 27 ,无正整数解;
若 b =6,则 (a 9)2 0 ,解得 a 9 ,此时 c 18 .
作 AE // DC , AH BC ,则 ADCE 是平行四边形,所以 CE AD 1, AE CD 2 ,从而 BE BC CE 4 1 3 AB ,所以△ ABE 是等腰三角
B
形,底边 AE 边上的高为 32 12 2 2 .
A
D
H
E
C
所以△ ABE 的面积 S 1 AE 2 2 1 BE AH ,故可得 AH 4 2 .