2017年全国初中数学联赛(初三组)初赛试卷
2017年数学竞赛初中初赛答案
伊
1 006 1 007
伊…伊
2 004 2 005
伊
2 005 2 006
……………………………… 2 分
= 2 伊(1 + 2 + 3 + … + 2 005 + 2 006)
4分
= 2 006 伊 2 007
5分
= 4 026 042.
6分
14.(员)设爸爸追上乐乐用了 x 分钟援由题意列方程,得
5分
所以甲说的“801 班得第四”是对的;则丙说“803 班得第三”的对的;乙说“802 班得冠军”是对的.所以 804 班
是亚军.
9分
四、一鼓作气(本大题共 2 道小题,17 题 12 分,18 题 12 分,总计 24 分)
17. 当 a > 1 时,a >
1 a
;
1分
当 a = 1 时,a =
1 a
;当 a = 0 时,1a
不存在,没法比较;当 0 < a
< 1 或 a < -1 时,a <
1 a
.
12 分
18.(1)设年降水量为 x 万 m3,每人年平均用水量为 y m3.
1分
嗓 由题意,得
12 12
000 000
+ +
20x 15x
= 16 伊 20y, =(16 + 4)伊 15y.
9分
所以 a + b + c + d = 45,俞
11 分
将俞代入虞,愚,舆,余得
a = 3,b = 9,c = 12,d = 21,
13 分
所以 d - a = 21 - 3 = 18.
2008—2017年全国初中数学竞赛试题含答案
“《数学周报》杯”2008年全国初中数学竞赛试题班级__________学号__________姓名______________得分______________一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的,请将正确选项的代号填入题后的括号里.不填、多填或错填都得0分)1.已知实数x,y满足:4x4-2x2=3,y4+y2=3,则4x4+y4的值为()(A)7 (B)1+132(C)7+132(D)52.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x2+mx+n的图象与x轴有两个不同交点的概率是()(A)512(B)49(C)1736(D)123.有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可确定的不同直线最少有()(A)6条(B)8条(C)10条(D)124.已知AB是半径为1的圆O的一条弦,且AB=a<1.以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,则AE的长为()(A)52a(B)1 (C)32(D)a5.将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有()(A)2种(B)3种(C)4种(D)5种二、填空题(共5小题,每小题6分,满分30分)6.对于实数u,v,定义一种运算“*”为:u*v=uv+v.若关于x的方程x*(a*x)=-1 4有两个不同的实数根,则满足条件的实数a的取值范围是_______.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_____分钟.8.如图,在△ABC中,AB=7,AC=11,点M是BC的中点,AD是∠BAC的平分线,MF∥AD,则FC的长为______.9.△ABC中,AB=7,BC=8,CA=9,过△ABC的内切圆圆心I作DE∥BC,分别与AB,AC相交于点D,E,则DE的长为______.10.关于x,y的方程x2+y2=208(x-y)的所有正整数解为________.三、解答题(共4题,每题15分,满分60分)FMD C BA11.在直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与x轴、y轴的正半轴分别交于A,B两点,且使得△OAB的面积值等于|OA|+|OB|+3.(1)用b表示k;(2)求△OAB面积的最小值.12.是否存在质数p,q,使得关于x的一元二次方程px2-qx+p=0有有理数根?13.是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC?证明你的结论.14.从1,2,…,9中任取n个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n的最小值.简答: 一. 选择题 ACBBD ; 二.填空题 6. a > 0 或 a <-1; 7. 4; 8. 9; 9.163; 10. x =48, x =160,y =32; y =32. 三.解答题:11. (1)k =2b -b 22(b +3),b > 2; (2)当 b =2+10, k =-1时,△OAB 面积的最小值为7+210; 12. 存在满足题设条件的质数p ,q . 当p =2,q =5时,方程2x 2-5x + 2=0 的两根为 x 1=12, x 2=2. 它们都是有理数; 13. 存在满足条件的三角形. △ABC 的边 a =6,b =4,c =5,且∠A =2∠B ,证明略. 14. n 的最小值是5,证明略.中国教育学会中学数学教学专业委员会“《数学周报》杯”2009年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.已知非零实数a ,b 满足 2242(3)42a b a b a -+++-+=,则a b +等于( ).(A )-1 (B )0 (C )1 (D )2 【答】C .解:由题设知a ≥3,所以,题设的等式为22(3)0b a b ++-=,于是32a b ==-,,从而a b +=1.2.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a 等于( ).(A )512+ (B )512- (C )1 (D )2【答】A .解:因为△BOC ∽ △ABC ,所以BO BCAB AC=,即11aa a =+, 所以, 210a a --=.由0a >,解得152a +=. 3.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y 的方程组322ax by x y +=⎧⎨+=⎩,只有正数解的概率为( ). (A )121 (B )92 (C )185 (D )3613 【答】D .解:当20a b -=时,方程组无解.当02≠-b a 时,方程组的解为62,223.2b x a b a y a b -⎧=⎪⎪-⎨-⎪=⎪-⎩由已知,得⎪⎪⎩⎪⎪⎨⎧>-->--,0232,0226b a a b a b即⎪⎪⎩⎪⎪⎨⎧<>>-,3,23,02b a b a 或⎪⎪⎩⎪⎪⎨⎧><<-.3,23,02b a b a由a ,b 的实际意义为1,2,3,4,5,6,可得2345612a b =⎧⎨=⎩,,,,,,,共有 5×2=10种情况;或1456a b =⎧⎨=⎩,,,,共3种情况. 又掷两次骰子出现的基本事件共6×6=36种情况,故所求的概率为3613. 4.如图1所示,在直角梯形ABCD 中,AB ∥DC ,90B ∠=︒. 动点P 从点B 出发,沿梯形的边由B →C →D →A 运动. 设点P 运动的路程为x ,△ABP 的面积为y . 把y(第2题)看作x 的函数,函数的图像如图2所示,则△ABC 的面积为( ).(A )10 (B )16 (C )18 (D )32【答】B .解:根据图像可得BC =4,CD =5,DA =5,进而求得AB =8,故S △ABC =12×8×4=16.5.关于x ,y 的方程22229x xy y ++=的整数解(x ,y )的组数为( ). (A )2组 (B )3组 (C )4组 (D )无穷多组 【答】C .解:可将原方程视为关于x 的二次方程,将其变形为 22(229)0x yx y ++-=.由于该方程有整数根,则判别式∆≥0,且是完全平方数. 由 2224(229)7116y y y ∆=--=-+≥0, 解得 2y ≤11616.577≈.于是 2y 01 4 9 16 ∆11610988534显然,只有216y =时,4∆=是完全平方数,符合要求. 当4y =时,原方程为2430x x ++=,此时121,3x x =-=-; 当y =-4时,原方程为2430x x -+=,此时341,3x x ==. 所以,原方程的整数解为111,4;x y =-⎧⎨=⎩ 223,4;x y =-⎧⎨=⎩ 331,4;x y =⎧⎨=-⎩ 443,4.x y =⎧⎨=-⎩ 二、填空题(共5小题,每小题7分,共35分)6.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装(第4题)图1 图2在后轮,则自行车行驶 3000 km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km .【答】3750.解:设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1 km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了x km ,交换位置后走了y km.分别以一个轮胎的总磨损量为等量关系列方程,有,50003000,50003000kxky k ky kx k ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相加,得()()250003000k x y k x y k +++=, 则 237501150003000x y +==+.7.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD =AC ;再以点D 为圆心,DA 的长为半径作圆,与⊙A 分别相交于F ,G 两点,连接FG 交AB 于点H ,则AHAB的值为 . 解:如图,延长AD 与⊙D 交于点E ,连接AF ,EF . 由题设知13AC AD =,13AB AE =,在△FHA 和△EFA 中,90EFA FHA ∠=∠=︒,FAH EAF ∠=∠所以 Rt △FHA ∽Rt △EFA ,AH AF AF AE=.而AF AB =,所以AH AB 13=. 8.已知12345a a a a a ,,,,是满足条件123459a a a a a ++++=的五个不同的整数,若b 是关于x 的方程()()()()()123452009x a x a x a x a x a -----=的整数根,则b 的值为 .【答】 10.(第7题)解:因为()()()()()123452009b a b a b a b a b a -----=,且12345a a a a a ,,,,是五个不同的整数,所有12345b a b a b a b a b a -----,,,,也是五个不同的整数.又因为()()2009117741=⨯-⨯⨯-⨯,所以1234541b a b a b a b a b a -+-+-+-+-=.由123459a a a a a ++++=,可得10b =.9.如图,在△ABC 中,CD 是高,CE 为ACB ∠的平分线.若AC =15,BC =20,CD =12,则CE 的长等于 .【答】6027. 解:如图,由勾股定理知AD =9,BD =16,所以AB =AD +BD =25 . 故由勾股定理逆定理知△ACB 为直角三角形,且90ACB ∠=︒.作EF ⊥BC ,垂足为F .设EF =x ,由1452ECF ACB ∠=∠=︒,得CF =x ,于是BF =20-x .由于EF ∥AC ,所以EF BFAC BC =, 即 201520x x-=,解得607x =.所以60227CE x ==.10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是 . 【答】2-.解:设报3的人心里想的数是x ,则报5的人心里想的数应是8x -.于是报7的人心里想的数是 12(8)4x x --=+,报9的人心里想的数是16(4)12x x -+=-,报1的人心里想的数是 20(12)8x x --=+,报3的人心里想的数是4(8)4x x -+=--.所以(第9题)(第10题)4x x =--, 解得2x =-.三、解答题(共4题,每题20分,共80分)11.已知抛物线2y x =与动直线c x t y --=)12(有公共点),(11y x ,),(22y x ,且3222221-+=+t t x x . (1)求实数t 的取值范围;(2)当t 为何值时,c 取到最小值,并求出c 的最小值. 解:(1)联立2y x =与c x t y --=)12(,消去y 得二次方程2(21)0x t x c --+= ①有实数根1x ,2x ,则121221,x x t x x c +=-=.所以2221212121[()()]2c x x x x x x ==+-+=221[(21)(23)]2t t t --+-=21(364)2t t -+. ②………………5分把②式代入方程①得221(21)(364)02x t x t t --+-+=. ③………………10分t 的取值应满足2221223t t x x +-=+≥0, ④且使方程③有实数根,即22(21)2(364)t t t ∆=---+=2287t t -+-≥0, ⑤解不等式④得 t ≤-3或t ≥1,解不等式⑤得 222-≤t ≤222+. 所以,t 的取值范围为222-≤t ≤222+. ⑥ ………………15分(2) 由②式知22131(364)(1)222c t t t =-+=-+.由于231(1)22c t =-+在222-≤t ≤222+时是递增的,所以,当222t =- 时,2min 3211162(21)2224c -=--+=. ………………20分12.已知正整数a 满足3192191a +,且2009a <,求满足条件的所有可能的正整数a 的和.解:由3192191a +可得31921a -.619232=⨯,且()[]311(1)1(1)(1)(1)a a a a a a a a -=-++=-++-.………………5分因为()11a a ++是奇数,所以6321a -等价于621a -,又因为3(1)(1)a a a -+,所以331a -等价于31a -.因此有1921a -,于是可得1921a k =+.………………15分 又02009a <<,所以0110k =,,,.因此,满足条件的所有可能的正整数a 的和为11+192(1+2+…+10)=10571. ………………20分13.如图,给定锐角三角形ABC ,BC CA <,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过点D ,E 分别作l 的垂线,垂足分别为F ,G .试比较线段DF 和EG 的大小,并证明你的结论.解法1:结论是DF EG =.下面给出证明. ………………5分 因为FCD EAB ∠=∠,所以Rt △FCD ∽ Rt △EAB .于是可得CDDF BE AB=⋅. 同理可得 CEEG AD AB=⋅.………………10分又因为tan AD BE ACB CD CE∠==,所以有BE CD AD CE ⋅=⋅,于是可得 DF EG =. ………………20分(第13A题)解法2:结论是DF EG =.下面给出证明.……………… 5分连接DE ,因为90ADB AEB ∠=∠=︒,所以A ,B ,D ,E 四点共圆,故CED ABC ∠=∠. ………………10分又l 是⊙O 的过点C 的切线,所以ACG ABC ∠=∠. ………………15分 所以,CED ACG ∠=∠,于是DE ∥FG ,故DF =EG .………………20分14.n 个正整数12n a a a ,,,满足如下条件:1212009n a a a =<<<=;且12n a a a ,,,中任意n -1个不同的数的算术平均数都是正整数.求n 的最大值.解:设12n a a a ,,,中去掉i a 后剩下的n -1个数的算术平均数为正整数i b ,12i n =,,,.即 12()1n ii a a a a b n +++-=-.于是,对于任意的1≤i j <≤n ,都有1j i i j a a b b n --=-,从而 1()j i n a a --. ………………5分由于 11200811n n a a b b n n --==--是正整数,故 312251n -⨯. ………………10分由于 ()()()112211n n n n n a a a a a a a ----=-+-++-≥()()()2111(1)n n n n -+-++-=-,所以,2(1)n -≤2008,于是n ≤45.结合312251n -⨯,所以,n ≤9. ………………15分另一方面,令123801,811,821a a a =⨯+=⨯+=⨯+,…,8871a =⨯+,982511a =⨯+,则这9个数满足题设要求.综上所述,n 的最大值为9. ………………20分(第13A题)中国教育学会中学数学教学专业委员会“《数学周报》杯”2010年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分) 1.若20 10a b b c==,,则a bb c ++的值为( ). (A )1121 (B )2111 (C )11021 (D )21011解:D 由题设得12012101111110a ab bc b c b +++===+++. 代数式变形,同除b2.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( ).(A )a ≤2- (B )a ≥4 (C )a ≤2-或 a ≥4 (D )2-≤a ≤4 解.C因为b 是实数,所以关于b 的一元二次方程21202b ab a -++=的判别式 21()41(2)2a a ∆--⨯⨯+=≥0,解得a ≤2-或 a ≥4.方程思想,未达定理;要解一元二次不等式3.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =23,BC =422-,CD =42,则AD 边的长为( ). (A )26 (B )64 (C )64+ (D )622+解:D如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F .由已知可得BE =AE =6,CF =22,DF =26,(第3题)于是 EF =4+6.过点A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得AD 222(46)(6)(224)=++=+=226+.勾股定理、涉及双重二次根式的化简,补全图形法4.在一列数123x x x ,,,……中,已知11=x ,且当k ≥2时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭ (取整符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2010x 等于( ).(A) 1 (B) 2 (C) 3 (D) 4 解:B由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得 11x =,22x =,33x =,44x =,51x =,62x =,73x =,84x =,……因为2010=4×502+2,所以2010x =2. 高斯函数;找规律。
2017年全国初中数学联合竞赛试题(初三组)
2017年全国初中数学联合竞赛试题参考答案及评分标准第一试(A) 一、选择题:(本题满分42分,每小题7分)1.已知实数满足213390a b c ++=,3972a b c ++=,则32b ca b++= ( )A. 2.B. 1.C. 0.D. 1-.2.已知△ABC 的三边长分别是,,a b c ,有以下三个结论: (1)以(2)以222,,a b c 为边长的三角形一定存在;(3)以||1,||1,||1a b b c c a -+-+-+为边长的三角形一定存在.其中正确结论的个数为 ( ) A .0. B .1. C .2. D .3.3.若正整数满足a b c ≤≤且2()abc a b c =++,则称为好数组.那么,好数组的个数为 ( )A. 1. B .2. C .3. D .4.,,a b c (,,)a b c 4.设O 是四边形ABCD 的对角线AC 、BD 的交点,若180BAD ACB ∠+∠=︒,且3BC =,4AD =,5AC =,6AB =,则DOOB= ( )A. 109.B. 87. C. 65. D. 43.5.设A 是以BC 为直径的圆上的一点,AD BC ⊥于点D ,点E 在线段DC 上,点F 在CB 的延长线上,满足BAF CAE ∠=∠.已知15BC =,6BF =,3BD =,则AE = ( ) A. B. C..D..6.对于正整数n ,设n a 1232001111a a a a ++++=A.1917. B. 1927. C. 1937. D. 1947.二、填空题:(本题满分28分,每小题7分) 1.=的值为_______.a 2.如图,平行四边形中,72ABC ∠=︒,AFBC ⊥于点F ,AF交于点,若2DE AB =,则AED ∠=_______.ABCD BD ,,a b c.3.设,m n 是正整数,且m n >.若9m与9n的末两位数字相同,则m n -的最小值为 .4.若实数,x y 满足3331x y xy ++=,则22x y +的最小值为 .第一试(B)一、选择题:(本题满分42分,每小题7分)1.已知二次函数2(0)y ax bx c c =++≠的图象与x 轴有唯一交点,则二次函数3233y a x b x c =++的图象与x 轴的交点个数为 ( )A .0.B .1.C .2.D .不确定.2.题目和解答与(A )卷第1题相同. 3. 题目和解答与(A )卷第3题相同. 4.已知正整数,,a b c 满足26390ab c --+=,260a b c -++=,则222a b c ++= ( )A. 424.B. 430.C. 441.D. 460. 5.设O 是四边形ABCD 的对角线AC 、BD 的交点,若180BAD ACB ∠+∠=︒,且3BC =,4AD =,5AC =,6AB =,则DOOB= ( ) A. 43. B. 65. C. 87. D. 109.6.题目和解答与(A )卷第5题相同.二、填空题:(本题满分28分,每小题7分) 1.题目和解答与(A )卷第1题相同. 2.设O 是锐角三角形ABC 的外心,,D E 分别为线段,BC OA 的中点,7ACB OED ∠=∠,5ABC OED ∠=∠,则OED ∠=_________.3. 题目和解答与(A )卷第3题相同.4. 题目和解答与(A )卷第4题相同.第二试 (A )一、(本题满分20分)已知实数,x y 满足3x y +=,221112x y x y +=++,求55x y +的值.二、(本题满分25分)如图,△ABC 中,AB AC >,45BAC ∠=︒,E 是BAC ∠的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF AB ⊥.已1AF =,5BF =,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(,)a b ,使得34938b a=⨯+.第二试 (B )一、(本题满分20分)已知实数,,a b c 满足a b c ≤≤,16a b c ++=,22211284a b c abc +++=,求c 的值.二、(本题满分25分)求所有的正整数m ,使得21221m m --+是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,OAD OCB ∠=∠,OA OD ⊥,OB OC ⊥.求证:2222AB CD AD BC +=+.。
2017年全国初中数学联赛试题-含详细解析
2017年全国初中数学联合竞赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题(本题满分42分,每小题7分)1. 已知实数a b c ,,满足2133903972a b c a b c ++=++= ,,则32b ca b+=+ ( ) A .2 B .1 C .0 D .1− 2. 已知△ABC 的三边长分别是a ,b ,c ,有以下三个结论:(1) (2)以a 2,b 2,c 2为边长的三角形一定存在;(3)以|a -b |+1,|b -c |+1,|c -a |+1为边长的三角形一定存在. 其中正确结论的个数为( )A .0B .1C .2D .33. 若正整数a ,b ,c 满足a b c ≤≤且()2abc a b c =++,则称(a ,b ,c )为好数组.那么,好数组的个数为( )A .1B .2C .3D .44. 设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180︒,且BC =3,AD =4,AC =5,AB =6,则DOOB=( ) A .109 B .87 C .65 D .435. 设A 是以BC 为直径的圆上的一点,AD ⊥BC 于点D ,点E 在线段DC 上,点F 在CB的延长线上,满足∠BAF =∠CAE .已知BC =15,BF =6,BD =3,则AE =( ) A .43 B .213 C .214 D .2156. 对于正整数n ,设a n 是最接近n 的整数,则1a 1+1a 2+1a 3+…+1a 200=( )A .1917B .1927C .1937D .1947二、填空题(本题满分28分,每小题7分)7.成立的实数a 的值为______.8. 如图,平行四边形ABCD 中,∠ABC =72︒,AF ⊥BC 于点F ,AF 交BD 于点E ,若DE =2AB ,则∠AED =______.9. 设m ,n 是正整数,且m >n .若9m 与9n 的末两位数字相同,则m -n 的最小值为____.10. 若实数x ,y 满足x 3+y 3+3xy =1,则x 2+ y 2的最小值为______.第一试(B)一、选择题(本题满分42分,每小题7分)1.已知二次函数y =ax 2+bx +c (c ≠0)的图象与x 轴有唯一交点,则二次函数y =a 3x 2+b 3x +c 3的图象与x 轴的交点个数为( )A .0B .1C .2D .不确定 2.题目与(A )卷第1题相同. 3.题目与(A )卷第3题相同.4.已知正整数a ,b ,c 满足a 2-6b -3c +9=0,-6a +b 2+c =0,则a 2+b 2+c 2=( ) A .424. B .430. C .441. D .460.5.设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180,且BC =3,AD =4,AC =5,AB =6,DOOB=( )A .43B .65C .87D .1096.题目与(A )卷第5题相同.二、填空题(本题满分28分,每小题7分) 1.题目与(A )卷第1题相同.2.设O 是锐角三角形ABC 的外心,D ,E 分别为线段BC ,OA 的中点,∠ACB =7∠OED ,∠ABC =5∠OED ,则∠OED =______. 3.题目与(A )卷第3题相同. 4.题目与(A )卷第4题相同.第二试(A)一、(本题满分20分)已知实数x ,y 满足x + y =3,1x +y 2+1x 2+y =12,求x 5+y 5的值.二、(本题满分25分)如图,△ABC 中,AB >AC ,∠BAC =45︒,E 是∠BAC 的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF ⊥AB .已知AF =1,BF =5,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(a ,b ),使得a 3=49×3b +8.第二试(B)一、(本题满分20分)已知实数a ,b ,c 满足a ≤b ≤c ,a +b +c =16,a 2+b 2+c 2+14abc = ,求c 的值.二、(本题满分25分)求所有的正整数m ,使得22m -1-2m +1是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,∠OAD =∠OCB ,OA ⊥OD ,OB ⊥OC .求证:AB 2+CD 2=AD 2+BC 2.7。
2017年全国初中数学联合竞赛福建省赛区初赛试题参考答案及评分标准(1)
l 4a2b2 (a2 b2 c2 )2 ,则 l ( p a)( p b)( p c)
(D)
A. 8. 解析
B. 16.
C.32.
D.64.
l
4a2b2 (a2 b2 c2 )2
8(2ab a2 b2 c2 )(2ab a2 b2 c2 )
因此, AHE ≌ ABC ,则 HE BC , 所以
EG
GH
HE
BA BC
12 5 17 ,故 SBCE
1 2
BC EG
1 517 2
85 2
.
9. 设 A、B、C 为 1—9 中的任意数字, BC,CA, AB 都表示两位数, 那么
D
E H
D G
A BC BCA C AB 一定能被11 整除.
(a b c a)(a b c b)(a b c c)
(a b c)(a b c)(a b c)
2
2
2
8[(a b)2 c2 ][c2 (a b)2 ] 8(a b c)(a b c)(a b c)(a b c)
解析一 由二次函数的三项系数特征和 y1 0 ,可画出二次函数的图象,由图可得 y2 大
于 0.
解析二 由于 x m 时, y m2 2m a2 0 ,即
(m 1)2 (1 a2 ) 0 ,得到 1 a2 m 1 1 a2 ,
于是, m 2 1 1 a2 0 ,由此得到当 x m+2 时
(C)
A. 2015.
B.2016.
2017年全国初中数学联合竞赛试题及详细解答(含一试二试)
2. 设 O是 锐 角 三 角 形 ABC的 外 心 , D,E分 别 为 线 段 BC,OA的 中 点 ,
,
,则
_________.
3.题目与(A)卷第 3题相同. 4.题目与(A)卷第 4题相同
第二试 (A)
一、(本题满分 20分)已知实数 x,y满足 x+y=3,
,求
的值.
二、(本题满分25分)如图,△ABC中,AB AC, BAC 45,E是 BAC的 外角平分线与△ABC 的外接圆的交点,点F在AB 上且EF AB.已知AF 1,BF
1.已知二次函数 y ax2 bx c(c 0)的图象与x轴有唯一交点,则二次函
数
y a3x2 b3x c3 的图象与x轴的交点个数为 ( )
A.0
B.1
C.2
D.不确定.
2.题目与(A)卷第1 题相同.
3.题目与(A)卷第3 题相同.
4.已知正整数a,b,c满足 a2 6b 3c 9 0, 6a b2 c 0,则a2 b2 c2
CB的延长线上, 满足
.已知BC=15,BF=6,BD=3,则AE= ( )
A.
B.
C.
D.
6.对于正整数 n,设 an是最接近 的整数,则
A.191/7
B.192/7
C.193/7
() D.194/7
二、填空题(本题满分 28分,每小题 7分) (本题共有 4个小题,要求直接将答案写在横线上.)
1.使得等式
2017 年全国初中数学联合竞赛试题
2017年3月26日(星期日)上午8:30-11:30
第一试(A)
一、选择题(本题满分 42分,每小题 7分) (本题共有 6个小题,每题均给出了代号为 A,B,C,D的四个答案,其中有且仅
2017年全国初中数学联赛(初三组)初赛试卷参考答案及评分细则详解
2017年全国初中数学联赛(初三组)初赛试卷参考答案及评分细则详解2017年全国初中数学联赛(初三组)初赛试卷试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
选择题和填空题只设7分和分两档;解答题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
一、选择题(本题满分42分,每小题7分)1、设实数a、b满足a-b=-1,则a³-b³+3ab的值为(B)A、-3B、-1C、1D、3解析:a³-b³+3ab=(a-b)(a²+ab+b²)+3ab=-(a-b)=-12、若实数a为常数,关于x的不等式组{x+a²≤2a x≤-7}的整数解只有8个,则a的值为(C)A、-1B、0C、1D、2解析:{x+a²≤2a x≤-7}⇒-7≤x≤-a²+2a⇒1≤-a²+2a⇒(a-1)≤0⇒a≤1因为a是常数,所以a=13、在菱形ABCD中,AB=4,E为AB的中点,若在线段BD上取一点P,则PA+PE∠A=60°,的最小值是(D)A、23B、4C、25D、27解析:如图,连结AC,EC交BD于点P,则点P是所求的菱形ABCD中,AB=4,∠A=60°,E为AB的中点DE=√3×AB/2=2√3CE=DE+DC=2√3+4AE=√(CE²+AC²)=√(28²+16)=4√10PA+PE∠A=AE×sin(∠APE)=4√10×sin(60°+∠BPD)令∠BPD=θ,则∠APE=60°+θPA+PE∠A=4√10×(cosθ+√3sinθ)=4√10×(sinθ+√3cosθ+2)/24√10×(sin(θ-60°)+2)/2=2√10×(√3cosθ+sinθ+1)≥2√10所以最小值为2√10,即274、对于任意实数a,b,c,用M{a,b,c}表示三个数的平均数,用min{a,b,c}表示这三个数中最小的数,若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=(A)A、-4B、-2C、2D、4解析:不妨设a最小,则M{a,b,c}=aa+b+c=3ab-a)+(c-a)=ab-a≥0,c-a≥0b=a,c=a2x+y+2=x+2y=2x-yx=-3,y=-1x+y=-45、如图,RtΔABC的斜边AB与⊙O相切于点P,直角顶点C在⊙O上,若AC=22,BC=4,则⊙O的半径是(B)A、3B、23C、4D、26解析:如图,由射影定理得:BC²=AC×DCCD=4²/22BD²=CD²+BC²=48BO=BD/2=√48/2=2√3OP=OB-√AB²-AP²=2√3-√22²-4²=2√3-2r=OP=2√3-2=2(√3-1)=2∙236、不超过1142无明显问题的段落,不需修改)即有:x2kx5x 2x25x k x 2将两式相减,得:10x52x化XXX:2x210x50由于方程只有一个公共实根,所以判别式为0,即:24250解得:2或 5又因为x2kx k的实根为0或k,所以:当2时,实根为0,k,所以实根之和为k;当5时,实根为0,k,所以实根之和为k;综上所述,关于x的方程x2kx k所有的实根之和为k k0.题目一:已知方程组 $\begin{cases}\alpha^2-k\alpha+5=0 \\\alpha^2+5\alpha-k=0\end{cases}$,求所有实数根的和。
2017年全国初中数学联赛(初三组)初赛试卷
2017年全国初中数学联赛(初三组)初赛试卷(考试时间:2017年3月3日下午3:00—5:00)题号五合计得分评卷人复核人考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。
一、选择题(本题满分42分,每小题7分)1、设实数a 、b 满足1b a ,则ab ba333的值为()A 、3B 、1C 、1D 、32、若实数a 为常数,关于x 的不等式组722xaax 的整数解只有8个,则a 的值为()A 、1B 、0C 、1D 、23、在菱形ABCD 中,4AB ,60A ,E 为AB 的中点,若在线段BD 上取一点P ,则PEPA 的最小值是()A 、32B 、4C 、52D 、724、对于任意实数a ,b ,c ,用c b a M ,,表示三个数的平均数,用c b a ,,min 表示这三个数中最小的数,若yxy xyxM 2222,,y xy xyx2222min ,,,则y x()A 、4B 、2C 、2D 、4 5、如图,ABC Rt 的斜边AB 与⊙O 相切于点P ,直角顶点C 在⊙O 上,若22AC ,4BC,则⊙O 的半径是()A 、3B 、32C 、4D 、626、不超过615的最大整数是()BAC OA 、1142B 、1145C 、1148D 、1151二、填空题(本大题满分28分,每小题7分)7、若012x x,则11124xx x x的值为.8、在正方形ABCD 中,点E 、F 分别在线段BC 、CD 上,且20BAE ,25DAF ,则C E F等于.9、小丽与小明一起用A 、B 两个骰子玩游戏,以小丽掷的A 骰子朝上的数字为x ,小明掷的B骰子朝上的数字为y ,来确定点(x ,y ),那么,他们各掷一次所确定的点P (x ,y )落在已知抛物线542xxy的概率为.10、如图,设点P 在函数xy 6的图像上,x PC轴于点C ,交函数xy2的图像于点A ,yPD 轴于点D ,交函数xy2的图像于点B ,则四边形PAOB 的面积为.三、(本大题满分20分)11、已知关于x 的一元二次方程052kx x与052k x x只有一个公共的实根,求关于x 的方程k kxx2所有的实根之和。
2017年全国初中数学联合竞赛试题含答案
2017 年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设 7 分和 0 分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分 42 分,每小题 7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则3b+c=()a +2bA. 2.B. 1.C. 0.D.-1.【答】B.已知等式可变形为 2( a+ 2b) + 3(3b+c ) = 90 , 3( a+ 2b) + (3b+c ) = 72 ,解得a+2b=18,3b+c=18 ,所以3b+c=1.a +2b2.已知△ABC的三边长分别是a,b,c,有以下三个结论:(1)以a,b,c为边长的三角形一定存在;(2)以 a 2, b 2, c2为边长的三角形一定存在;(3)以 | a-b | +1,| b-c | +1,| c-a | +1 为边长的三角形一定存在.其中正确结论的个数为()A.0.B.1.C.2.D.3.【答】C.不妨设 a ≥ b ≥ c ,则有 b + c > a .(1)因为 b + c > a ,所以 b + c +222b +c > a ,故以a,b,c为bc > a ,即( b + c ) >( a),即边长的三角形一定存在;(2)以 a =2, b =3, c =4为边长可以构成三角形,但以 a 2= 4, b2= 9, c2=16 为边长的三角形不存在;(3)因为 a ≥ b ≥ c ,所以| a - b |+1= a - b +1,| b - c |+1= b - c +1,| c - a |+1= a - c +1,故三条边中| c - a |+1大于或等于其余两边,而(| a-b | +1)+(| b-c | +1)=(a-b+ 1)+(b-c+1)=a-c+ 1 + 1 >a -c+ 1 =| c-a | +1 ,故以 | a-b | +1 , | b-c | +1 , | c-a | +1 为边长的三角形一定存在.3.若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么,好数组的个数为()A. 1.B.2.C.3.D.4.【答】C.若( a, b, c) 为好数组,则abc= 2( a+b+c ) ≤ 6c,所以ab≤6.显然,a只能为1或2.若a =2,由ab≤6可得b=2或3,b=2时可得c=4,b=3时可得c=52(不是整数);若a =1,则bc=2(1+b+c),于是可得(b-2)(c-2)=6,可求得(a,b,c)=(1,3,8)或(1,4,5).综合可知:共有 3 个好数组,分别为(2,2,4),(1,3,8)和(1,4,5).4.设 O 是四边形 ABCD 的对角线 AC 、BD 的交点,若 ∠BAD + ∠ACB = 180︒,且 BC = 3,AD = 4 ,AC = 5 , AB = 6 ,则 DO = ( )OB10 8 64A..B..C..D..D9 7 5 3E【答】A.C过 B 作 BE // AD ,交 AC 的延长线于点 E ,则 ∠ABE = 180︒ - ∠BAD= ∠ACB ,所以△ ABC ∽△ AEB ,所以AC = BC ,所以4O3AB EBAB ⋅ BC6 ⨯318BEB = = = .A6AC 5 5再由 BE // AD ,得 DO = AD = 4 = 10 .BEOB 18 955.设 A 是以 BC 为直径的圆上的一点,AD ⊥ BC 于点 D ,点 E 在线段 DC 上,点 F 在 CB 的延长线上,满足 ∠BAF = ∠CAE .已知 BC =15 , BF = 6 , BD = 3 ,则 AE = ( )AA. 4 3 .B. 2 13 .C. 2 14 .D. 2 15 .【答】B.FBDEC如图,因为 ∠BAF = ∠CAE ,所以 ∠BAF + ∠BAE = ∠CAE + ∠BAE ,即 6 3∠FAE = ∠BAC = 90︒ .又因为 AD ⊥ BC ,故 AD 2 = DE ⋅ DF = DB ⋅ DC .而 DF = BF + BD = 6 + 3 = 9 ,DC = BC - BD = 15 - 3 =12 ,所以 AD 2 = DE ⋅ 9 = 3 ⋅ 12 ,所以 AD = 6 ,DE= 4 . 从而 AE = AD 2 + DE 2 = 62 + 42 = 213 .6.对于正整数 n ,设 a 是最接近的整数,则 1 + 1 + 1 + +1 = ( n)na 1 a 2 a 3a200A. 191 .B. 192 .C. 193 .D. 194 .777 7 【答】A.对于任意自然数 k , ( k +1 )2 = k 2 + k + 1不是整数,所以,对于正整数 n ,- 1 一定不是整数.n24 2的整数,则| m - |< 1 , m ≥1.设 m 是最接近 nn2易知:当 m ≥1时,| m - |< 1 ⇔ ( m - 1 ) 2 < n < ( m + 1 )2⇔ m 2 - m + 1 < n < m 2 + m + 1 .n 2 2 24 4 于是可知:对确定的正整数 m ,当正整数 n 满足 m 2 - m + 1 ≤ n ≤ m 2+ m 时,m 是最接近的整数,n 即 a n = m .所以,使得 a n = m 的正整数 n 的个数为 2m .注意到132 + 13 = 182 < 200 < 14 2 + 14 = 210 ,因此, a , a , ,8 个 4,……,26 个 13,18 个 14.所以1+1+1+ +1= 2 ⨯1+ 4 ⨯1+ 6 ⨯1+ + 26 ⨯1+ 18⨯1=191.a a a a12313147 123200二、填空题:(本题满分 28 分,每小题 7 分)1.使得等式 1 + 1+a=3a 成立的实数 a 的值为_______.【答】 8 .由所给等式可得 (1 + 1 +a )3=a2.令 x =1+a,则 x ≥0,且a=x2-1,于是有(1+ x )3=( x2-1)2,整理后因式分解得x ( x -3)( x +1)2=0,解得 x= 0 ,x= 3 ,x= -1 (舍去),所以a= -1或a=8.123验证可知: a = -1是原方程的增根, a =8是原方程的根.所以, a =8.2.如图,平行四边形ABCD中,∠ABC=72︒,AF⊥BC于点F, AFM交 BD 于点 E ,若 DE =2AB ,则∠AED =_______.【答】 66︒.BE 取 DE 的中点 M ,在Rt△ ADE中,有 AM = EM =1DE = AB .2设∠AED =α,则∠AME =180︒ -2α,∠ABM =α-18︒.又∠ABM = ∠AMB ,所以180︒ -2α=α-18︒,解得α=66︒.3.设m,n是正整数,且m>n.若9m与9n的末两位数字相同,则m-n的最小值为.【答】10.由题意知,9m- 9n= 9n⋅ (9m-n-1) 是100的倍数,所以9m-n-1是100的倍数,所以9m-n的末两位数字是 01,显然,m-n是偶数,设m-n=2t(t是正整数),则9m-n=92t=81t .计算可知: 812的末两位数字是61, 813的末两位数字是41, 814的末两位数字是21, 815的末两位数字是 01.所以 t 的最小值为5,从而可得 m - n 的最小值为10.4.若实数 x, y 满足 x 3+ y 3+3 xy =1,则 x 2+ y2的最小值为.1【答】2 .因为0= x 3+ y 3+3 xy -1=( x + y )3+(-1)3-3 x 2 y -3 xy 2+3xy=( x+y- 1)( x2+y2-xy+x+y+1) =12(x+y-1)[(x-y)2+(x+1)2+(y+1)2],所以 x = y = -1或x+y=1.若x = y = -1,则 x 2+ y2=2.若x + y =1,则x2+y2=12[(x+y)2+(x-y)2]=12[1+(x-y)2]≥12,当且仅当x=y=12时等号成立.所以, x 2+ y2的最小值为12.第一试(B)一、选择题:(本题满分 42 分,每小题 7 分)1.已知二次函数y=ax2+bx+c(c≠0)的图象与x轴有唯一交点,则二次函数y=a3x2+b3x+c3的图象与 x 轴的交点个数为()A.0.B.1.C.2.D.不确定.【答】C.因为二次函数 y = ax 2+ bx + c 的图象与 x 轴有唯一交点,所以∆1=b2-4ac=0,所以b2=4ac≠0.故二次函数 y = a 3 x 2+ b3 x + c3的判别式∆2=(b3)2-4a3c3=b6-161(4ac)3=b6-161(b2)3=1615b6>0 ,所以,二次函数y=a3x2+b3x+c3的图象与x轴有两个交点.2.题目和解答与(A)卷第 1 题相同.3.题目和解答与(A)卷第 3 题相同.4.已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2=()A. 424.B. 430.C. 441.D. 460.【答】C.由已知等式消去 c 整理得( a -9)2+3(b -1)2=75,所以3(b -1)2≤75,又b为正整数,所以1≤b≤6.若b =1,则( a -9)2=75,无正整数解;若b =2,则( a -9)2=72,无正整数解;若b =3,则( a -9)2=63,无正整数解;若b =4,则( a -9)2=48,无正整数解;若b =5,则( a -9)2=27,无正整数解;若b =6,则( a -9)2=0,解得a=9,此时c=18.因此, a =9,b=6, c =18,故a2+b2+c2==441.5.设O是四边形ABCD的对角线AC、BD的交点,若∠BAD+ ∠ACB=180︒,且BC=3,AD=4,AC =5, AB =6,则DO=()OBA.4.B.6.C.8.D.10.3579【答】D.解答过程与(A)卷第 4 题相同.6.题目和解答与(A)卷第 5 题相同.二、填空题:(本题满分 28 分,每小题 7 分)1.题目和解答与(A)卷第 1 题相同.2 .设O是锐角三角形ABC的外心,D,E分别为线段BC,OA的中点,∠ACB=7∠OED,∠ABC =5∠OED ,则∠OED =_________.A 【答】10︒.如图,设∠OED = x ,则∠A B =C5,x ∠ACB =7x ,∠DOC= ∠BAC =180︒ -12x ,∠AOC =10x ,所以∠AOD =180︒ -2x ,∠ODE =180︒ - x -(180︒ -2 x)= x ,所以OD=OE=1OA =1OC ,所22B 以∠DOC =60︒,从而可得 x =10︒.3.题目和解答与(A)卷第 3 题相同.4.题目和解答与(A)卷第 4 题相同.EODC第二试(A)一、(本题满分20分)已知实数 x, y 满足x+y=3,1+1=1,求 x 5+ y5的值. x+ y 2x 2+ y2解由1+1=1可得 2( x+y+x2+ y 2)= x 3+ y 3+ x 2 y 2+ xy . x + y 2x 2+ y2设xy = t ,则 x 2+ y 2=( x + y )2-2xy =9-2t , x 3+ y 3=( x + y )[( x + y )2-3 xy ]=3(9-3t ),代入上式可得 2(3 + 9 - 2t ) = 3(9 - 3t ) +t2+t,解得t=1或t=3.……………………10分当 t =3时,xy=3,又x+y=3,故x,y是一元二次方程m2-3m+3=0的两实数根,但易知此方程没有实数根,不合题意.……………………15分当 t =1时,xy=1,又x+y=3,故x,y是一元二次方程m2-3m+1=0的两实数根,符合题意.此时x 5+ y 5=( x 2+ y 2)( x 3+ y 3)-( x + y ) x 2 y 2=(9-2t )⋅[3(9-3t )]-3t 2=123.……………………20分二(、本题满分 25 分)如图,△ ABC 中,AB > AC ,∠BAC = 45︒ ,E 是 ∠BAC的外角平分线与 △ ABC 的外接圆的交点,点 F 在 AB 上且 EF ⊥ AB . 已知 AF =1, BF = 5,求△ ABC 的面积.解 在 FB 上取点 D ,使 FD =AF ,连接 ED 并延长,交△ ABC 的外接圆于点 G.由 EF ⊥AD ,AF =FD 知△AED 是等腰三角形,所以∠AED =180︒ - 2 ∠EAD =∠BAC , ……………………10 分EAFDCGB……………………15 分 所以 AG = BC ,所以 AC = BG ,所以 AC =BG. 又∠BGE =∠BAE =∠ADE =∠BDG ,所以 BG =BD ,所以 AC =BD =5-1=4, ……………………20 分△ ABC 的 AB 边上的高 h = AC sin 45︒ = 2 2 .所以,△ ABC 的面积 S = 1 ⋅ AB ⋅ h = 1 ⨯ 6 ⨯ 2 = 6 .2 2 ……………………25 分22三、(本题满分 25 分)求所有的正整数数对 ( a , b ) ,使得 a 3 = 49 ⨯ 3b +8 . 解 显然, 49 ⨯ 3b +8 为奇数,所以 a 为奇数.又因为 a 3 = 49 ⨯ 3b + 8 ≥ 49 ⨯ 3 + 8 > 53 ,所以 a > 5 .……………………5 分由 a 3 = 49 ⨯ 3b +8 可得 a 3 - 8 = 49 ⨯3b ,即 ( a - 2)( a 2 + 2a + 4) = 7 2 ⨯3b . ……………………10 分设 ( a - 2, a 2 + 2a + 4) = d ,则 d 为奇数.注意到 a 2 + 2a + 4 = ( a - 2)( a + 4) +12 ,所以 d | 12 ,所以 d=1 或 3. ……………………15 分⎧a - 2 = 7 2,⎧a - 2 = 3b,均无正整数解.……………………20 分若 d =1,则有 ⎨a 2 + 2 a + 4 或 ⎨a 2 + 2 a + 4 = 7 2 ⎪ = 3b ,⎪ , ⎩⎩⎧a - 2 = 3 ⨯7 2, ⎧a - 2 = 3b -1,解得 a =11, b = 3 . 若 d =3,则有 ⎨ 2 + 2 a + 4 b -1或 ⎨ 2 + 2 a + 4 = 3 ⨯7 2 ⎪ a = 3 , ⎪ a ,⎩⎩所以,满足条件的正整数对只有一个,为(11,3).……………………25 分第二试 (B )一、(本题满分 20 分)已知实数 a , b , c 满足 a ≤ b ≤ c , a + b + c =16 , a 2 + b 2 + c 2 +14 abc =128 ,求 c 的值.解 设 a + b = x , ab = y ,依题意有 x 2 - 2 y + (16 - x ) 2 +14 y (16 - x ) =128 ,整理得( x - 8) 2 = 1y ( x -8) ,8所以 x = 8 或 y = 8( x -8) .……………………10 分(1)若 x =8,则 a + b =8,此时 c =8.(2)若 y =8( x -8),即 ab =8( a + b -8),则( a -8)(b -8)=0,所以a=8或b=8.当a =8时,结合 a ≤ b ≤ c 可得 a + b + c ≥24,与 a + b + c =16矛盾.当b =8时,结合 a ≤ b ≤ c 及 a + b + c =16可得 a =0, c =8.综合可知: c =8.……………………20分二、(本题满分 25 分)求所有的正整数m,使得22m-1-2m+1是完全平方数.解当 m =1时,22m-1-2m+1=1是完全平方数.……………………5分当 m >1时,设22m-1-2m+1=n2( n 为正整数).注意到 22m-1- 2m+ 1 = 2 ⋅ (2m-1 ) 2- 2 ⋅ 2 m-1+ 1 = (2 m-1- 1) 2+ (2 m-1 )2,故可得(2 m-1- 1) 2+ (2 m-1 )2=n2,……………………10分所以 22m-2=n2- (2m-1- 1) 2= ( n+ 2 m-1- 1)( n- 2 m-1+1) .……………………15分设 x = n -2m-1+1, y = n +2m-1-1,则x<y, xy =22m-2,所以x,y均为2的方幂.……………………20分又 y - x =2m-2被4除余数为2,所以,只可能x=2, y =2m,故2⨯2m=22m-2,解得m=3.综上可知:满足条件的正整数 m 有两个,分别为1和3.……………………25分三、(本题满分 25 分)如图,O为四边形ABCD内一点,∠OAD= ∠OCB,DOA ⊥ OD , OB ⊥ OC .求证:AB2+CD2=AD2+BC2.AOP 证明由题设条件可知∠AOD = ∠BOC =90︒,又∠OAD =∠OCB,所以△ AOD ∽△ COB ,……………………5分OD AO OC AOB所以OB=CO,从而OB=OD .……………………10分C 又∠AOC = ∠AOB + ∠BOC = ∠AOB + ∠AOD = ∠DOB ,所以△ AOC ∽ △ DOB ,所以∠OAC = ∠ODB .……………………15分设AC 和BD交于点P,则∠APD = ∠AOD =90︒,所以 AC ⊥ DB ,……………………20分所以 AB 2+ CD 2=( AP 2+ PB 2)+( PD 2+ PC 2)=( AP 2+ PD 2)+( PB 2+ PC 2)= AD 2+ BC2.……………………25分。
初三数学竞赛试题及答案
初三数学竞赛试题及答案一、选择题(每题5分,共30分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.33333...D. -12. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 以上都不是4. 某工厂生产的产品数量y与时间x(小时)成正比,已知2小时生产了40个产品,那么4小时生产的产品数量是:A. 80B. 100B. 120D. 1605. 一个圆的半径是5,那么这个圆的面积是:A. 25πB. 50πC. 75πD. 100π6. 下列哪个是二次根式的化简结果?A. \(\sqrt{48}\)B. \(\sqrt{64}\)C. \(\sqrt{81}\)D. \(\sqrt{144}\)二、填空题(每题4分,共20分)1. 一个数的立方根是2,这个数是________。
2. 若一个等差数列的第3项是10,第5项是14,那么这个等差数列的公差是________。
3. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么这个长方体的体积是________cm³。
4. 一个多项式\(ax^2 + bx + c\)的系数a、b、c满足\(a + b + c = 6\),且\(a - b + c = 0\),那么\(2a - 2b + 2c\)的值是________。
5. 若一个二次方程\(x^2 - 4x + 4 = 0\),那么这个方程的判别式Δ是________。
三、解答题(每题15分,共50分)1. 已知一个直角三角形的两条直角边分别为3和4,求这个直角三角形的斜边长。
2. 一个水池的底部有一个排水口,水池的容积是100立方米。
如果打开排水口,水池的水在2小时内可以排完。
现在同时打开排水口和进水口,进水口每小时可以注入20立方米的水。
2017全国初中数学邀请赛
一、选择题(每小题7分,共35分)1.已知m>2,直线l 1:22m y x m-=+,直m 线l 2:y=-x+2m 与y 轴围成的三角形面积为30.则m 的值为( ).(A )6 (B )12 (C (D ) 2.已知五个互不相同的正整数之和为10001.则这五个正整数的最小公倍数的最小值为( ).(A )2016 (B )4032 (C )2130 (D )43803.记[x]表示不超过实数x 的最大整数设数列{}n a 满足a 1=1,n a = .则a 2017的值为( ). (A )2015 (B )2016 (C )2017 (D )20184.在四边形ABCD 中,AB=2,BC=3,CD=1,∠ABC=75°,∠BCD=120°.则∠CDA=( ).(A )45° (B )60° (C )75° (D )90°5.将1,2,…,9这九个数分别填入3×3的方格表中,使得相邻(具有公共边)两格中的数之差的绝对值之和达到最大.则此最大值为( ).(A )57(B )58(C )59(D )60二、填空题(每小题7分,共35分)6.求所有满足方程组[x 3+9x 2y=10,①1y 3+xy 2=2, ②的实数对(x ,y )=7.在八进制的十位自然数中能被7整除且各位数字均为0或5的自然数有 个.8.若a 、b 、c 为不同的整数,则3a 2+2b 2+4c 2-ab -3bc -5ca 的最小值为 .9.如图1,在△ABC 中,AB=9,BC=8,CA=7,⊙O 1经过点A ,且与直线BC 切于点B ,⊙O 2经过点A ,且与直线BC 切于点C.设⊙O 1与⊙O 2除点A 之外的另一个交点为D.则AD=10.已知二次三项式ax 2+bx+b 的一个根与二次三项式ax 2+ax+b 的一个根的乘积等于1.则这两个根的平方和为三、解答题(每小题20分,共80分)11.已知二次函数y=x 2+2mx -3m+1,自变量x 及实数p 、q 满足221492,312p q x pq +=+= ,且y 的最小值为1.求m 的值. 12.已知正整数N 恰有九个正约数,其中三个正约数a 、b 、c 满足a+b+c=2017,ac=b2.求N 的值.13.如图2,△ABC的内切圆⊙I与边BC、CA、AB的切点分别为A1、B1、C1,△BC1B1,的外接圆⊙O1,与直线BC交于另一点K,△CB1C1的外接圆⊙O2与直线BC交于另一点L证明:C1L、B1K、A1I三线共点.14.已知半径为1的圆的内部共有130个互不相同的点,任意两点间有直线段联结.证明:这些直线段中至少有20173.如图1,在边长为10的正六边形ABCDEF中,H为边DE的中点,G为边BC上的一点,满足∠AGB=∠CGH.则五边形AFEHG的面积为4.已知甲、乙两个施工队各有若干名工人.若甲队借调给乙队90名工人,则乙队的工人总数将为甲队的2倍;若乙队借调给甲队若干名工人,则甲队的工人总数将为乙队的6倍.甲施工队原来最少有名工人.5.在平面上有200个点,任何三个点均不共线,且每个点均标注了数1、2、3中的一个,将标有不同数的所有点对均用线段联结,每条线段上均标注一个数1、2或3,此数与该线段端点标注的数不同,结果呈现出写在平面上的三个数1、2或3中的每一个均恰有n次.则n的值为二、(15分)能否选出10个连续的偶数,且将其分为五个对子(a k,b k)(k=1,2,…,5),使得方程x2+a k x+b=0(k=1,2,…,5)均具有整数根?若能,试举一例;若不能,请说明理由.三、(15分)如图2,D为锐角△ABC内一点,使得∠ADB=∠ACB+90°,且AC·BD=AD·BC,延长AD、BD、CD,分别与△ABC的外接圆Γ交于点G、E、F.证明:(1)EF=FG;(2)1 EFGSSπ∆ΘΓ=四、(15分)(1)证明:2018可表示为两个正整数的平方和;(2)证明:存在这样的三角形,可把它分割为2018个全等的三角形..。
2017年全国初中数学竞赛试题及答案
“《数学周报》杯”2017年全国初中数学竞赛 (天津赛区)试题参考答案及评分标准一、选择题(共5小题,每小题7分,满分35分) (1)设x =(1)(2)(3)x x x x +++的值为( ). (A )0 (B )1(C )﹣1(D )2【答】C . 解:由已知得2310x x ++=, 于是2222(1)(2)(3)(3)(32)(31)1 1.x x x x x x x x x x +++=+++=++-=-(2)已知x y z ,,为实数,且满足253x y z +-=,25x y z --=-,则222x y z ++的最小值为( ).(A )111(B )0 (C )5 (D )5411【答】D .解:由 25325x y z x y z +-=⎧⎨--=-⎩,, 可得 312.x z y z =-⎧⎨=+⎩,于是 22221125xy z z z ++=-+.因此,当111z =时,222x y z ++的最小值为5411. (3)若1x >,0y >,且满足3yy xxy x x y==,,则x y +的值为( ). (A )1 (B )2(C )92(D )112【答】C .解:由题设可知1y yx -=,于是 341y y x yx x -==,所以411y -=.故12y =,从而4=x .于是92x y +=.(4)设333311111232011S =++++,则4S 的整数部分等于( ). (A )4 (B )5(C )6(D )7【答】A .解:当2 3 2011k =,,,,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以333111111511123201122201120124S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.(5)点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( ).(A )1324S S S S < (B )1324S S S S = (C )1324S S S S > (D )不能确定 【答】C .解:如图,连接DE ,设1DEF S S ∆'=, 则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >. 二、填空题(共5小题,每小题7分,共35分)(6)两条直角边长分别是整数a b ,(其中2011b <),斜边长是1b +的直角三角形的个数为 .【答】31.解:由勾股定理,得 12)1(222+=-+=b b b a .因为b 是整数,2011<b ,所以2a 第(5)题是1到4023之间的奇数,而且是完全平方数,这样的数共有31个,即2223 5 63,,,.因此a 一定是3,5,…,63,故满足条件的直角三角形的个数为31.(7)一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数之和为7的概率是 .【答】16. 解: 在36对可能出现的结果中,有6对:(1,6), (2,5), (2,5), (3,4),(3,4),(4,3)的和为7,所以朝上的面两数字之和为7的概率是61366=.(8)若y =a ,最小值为b ,则22a b +的值为 . 【答】32. 解:由1x -≥0,且12x -≥0,得12≤x ≤1.21122y =+=+ 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =.当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=.(9)如图,双曲线xy 2=(x >0)与矩形OABC 的边CB , BA 分别交于点E ,F ,且AF=BF ,连接EF ,则△OEF 的面积为 .【答】32. 解:如图,设点B 的坐标为a b (,),则点F 的坐标为2b a (,).因为点F 在双曲线2y x=上,所以 4.ab = 又点E 在双曲线上,且纵坐标为b ,所以点E 的坐标为2(,)b b.于是11212222221312.22OEF OEC FBEOFBC S S S S b b b a b a b b ab ∆∆∆=--=+-⨯⨯-⨯⨯-=+-=梯形()()() (10)如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .【答】84.解:如图,设BC =a ,AC =b , 则22235a b +==1225. ① 又Rt △AFE ∽Rt △ACB , 所以FE AF CB AC =,即1212b a b-=, 故12()a b ab +=. ②由①②得 2222122524a b a b ab a b +=++=++()(),解得a +b =49(另一个解-25舍去),所以 493584a b c ++=+=. 三、解答题(共4题,每题20分,共80分)(11)已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得 ()()11a a αβαβ+=-++=,, ………………………………5分两式相加,得2210αβαβ+++=,即 (2)(2)3αβ++=,第(10)题第(9)题所以,2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,………………………………10分解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(), 所以012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29. ………………………………………………20分 (12)如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.证明:如图,延长AP 交⊙2O 于点Q , 连接 AH BD QB QC QH ,,,,.因为AB 为⊙1O 的直径,所以∠ADB =∠90=︒BDQ .…………5分 故BQ 为⊙2O 的直径.于是CQ BC BH HQ ⊥⊥,. ……………………………………………………10分 又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. ………………………………………………15分 所以点P 为CH 的中点. ………………………………………………20分 (13) 如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x =于P ,Q 两点. (Ⅰ)求证:∠ABP =∠ABQ ; (Ⅱ)若点A 的坐标为(0,1), 且∠PBQ =60º,试求所有满足条件的 直线PQ 的函数解析式.解:(Ⅰ)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , . 设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ). 设直线PQ 的函数解析式为y kx t =+,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是,222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P Q Q P Q Q Q P x x x x x x x x x x x x x x --===--- …………5分又因为P Q x PC QD x =-,所以BC PCBD QD=. 因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ .故∠ABP =∠ABQ . …………………………………………………………10分(Ⅱ)解法一 设PC a =,DQ b =,不妨设a ≥b >0, 由(Ⅰ)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以 AC 2-,AD =2. 因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PC ACDQ AD=,即a b .所以a b +=.由(Ⅰ)中32P Q x x t =-,即32ab -=-,所以32ab a b =+=,于是,可求得2==a b将b =代入223y x =,得到点Q ,12). …………………15分再将点Q 的坐标代入1y kx =+,求得=k所以直线PQ 的函数解析式为1y x =+. 根据对称性知,所求直线PQ 的函数解析式为1y x =+,或1y =+. ………………20分 解法二 设直线PQ 的函数解析式为y kx t =+,其中1t =. 由(Ⅰ)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x =将223Q Q y x =代入上式,平方并整理得 4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由(Ⅰ),得3322P Q x x t =-=-,32P Q x x k +=.若Q x =代入上式得P x = 从而2()3P Q k x x =+=.同理,若Q x =可得2P x =-从而2()3P Q k x x =+.所以,直线PQ 的函数解析式为1y =+,或1y x =+. ………………………………………20分 (14)已知0122011i a i >=,, , , ,且122011a a a <<<,证明:122011a a a ,,,中一定存在两个数i j a a i j <,(),使得(1)(1)2010i j j i a a a a ++-<.证明:令20101 2 20111i ix i a ==+,,,,, ……………………………………5分 则20112010102010x x x <<<<<. …………………………………10分故一定存在1≤k ≤2017, 使得11k k x x +-<,从而120102010111k k a a +-<++. …………………………………15分即 11(1)(1)2010k k k k a a a a ++++-<. …………………………………………20分。
2017年全国初中数学联赛(整理好)
2017年全国初中数学联合竞赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题(本题满分42分,每小题7分)1.已知实数a ,b ,c 满足2a +13b +3c =90,3a +9b +c =72,则3b +c a +2b=( ) A .2 B .1 C .0 D .-12.已知△ABC 的三边长分别是a ,b ,c ,有以下三个结论:(1)以a ,b ,c 为边长的三角形一定存在;(2)以a 2,b 2,c 2为边长的三角形一定存在;(3)以|a -b |+1,|b -c |+1,|c -a |+1为边长的三角形一定存在.其中正确结论的个数为( )A .0B .1C .2D .33.若正整数a ,b ,c 满足a ≤b ≤c 且abc =2(a +b +c ),则称(a ,b ,c )为好数组.那么,好数组的个数为( )A .1B .2C .3D .44.设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180 ,且BC =3,AD =4,AC =5,AB =6,则DO OB =( )A .109B .87C .65D .435.设A 是以BC 为直径的圆上的一点,AD ⊥BC 于点D ,点E 在线段DC 上,点F 在CB 的延长线上,满足∠BAF =∠CAE .已知BC =15,BF =6,BD =3,则AE =( )A .43B .213C .214D .2156.对于正整数n ,设a n 是最接近n 的整数,则1a 1+1a 2+1a 3+…+1a 200=( ) A .1917 B .1927 C .1937 D .1947二、填空题(本题满分28分,每小题7分)1.使得等式1+1+a =3a 成立的实数a 的值为______. 2.如图,平行四边形ABCD 中,∠ABC =72︒,AF ⊥BC 于点F ,AF 交BD 于点E ,若DE =2AB ,则∠AED =______.3.设m ,n 是正整数,且m >n .若9m 与9n 的末两位数字相同,则m -n 的最小值为____.4.若实数x ,y 满足x 3+y 3+3xy =1,则x 2+ y 2的最小值为______.第一试(B)一、选择题(本题满分42分,每小题7分)1.已知二次函数y =ax 2+bx +c (c ≠0)的图象与x 轴有唯一交点,则二次函数y =a 3x 2+b 3x +c 3的图象与x 轴的交点个数为( )A .0B .1C .2D .不确定2.题目与(A )卷第1题相同.3.题目与(A )卷第3题相同.4.已知正整数a ,b ,c 满足a 2-6b -3c +9=0,-6a +b 2+c =0,则a 2+b 2+c 2=( )A .424.B .430.C .441.D .460.5.设O 是四边形ABCD 的对角线AC ,BD 的交点,若∠BAD +∠ACB =180,且BC =3,AD=4,AC =5,AB =6,DO OB =( ) A .43 B .65 C .87 D .1096.题目与(A )卷第5题相同.二、填空题(本题满分28分,每小题7分)1.题目与(A )卷第1题相同.2.设O 是锐角三角形ABC 的外心,D ,E 分别为线段BC ,OA 的中点,∠ACB =7∠OED ,∠ABC =5∠OED ,则∠OED =______.3.题目与(A )卷第3题相同.4.题目与(A )卷第4题相同.第二试(A)一、(本题满分20分)已知实数x ,y 满足x + y =3,1x +y 2+1x 2+y =12,求x 5+y 5的值.二、(本题满分25分)如图,△ABC 中,AB >AC ,∠BAC =45︒,E 是∠BAC 的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF ⊥AB .已知AF =1,BF =5,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(a ,b ),使得a 3=49×3b +8.第二试(B)一、(本题满分20分)已知实数a ,b ,c 满足a ≤b ≤c ,a +b +c =16,a 2+b 2+c 2+14abc =128,求c 的值.二、(本题满分25分)求所有的正整数m ,使得22m -1-2m +1是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,∠OAD =∠OCB ,OA ⊥OD ,OB ⊥OC .求证:AB 2+CD 2=AD 2+BC 2.。
2017年初中数学竞赛试题及答案
2017年初中数学竞赛试题(含答案)一、选择题(共5小题,每小题6分,满分30分)1、设N=,其中a、b为相邻的两个整数,c=a.b,则N( )(A) 必为偶数(B) 必为奇数(C) 必为无理数(D) 以上三种都可能2、等腰△ABC中,AB=AC=6,P为BC上一点,且PA=4,则PB·PC的值等于( )(A) 10 (B) 15 (C) 20 (D) 253、若x-1=2 (y+1)=3 (z+2),则x2+y2+z2可取得的最小值为( )(A) 6 (B) (C) (D)4、已知正方形ABCD的边长为2,E、F分别是AB,BC的中点,AF分别交DE,DB于G,H两点,则四边形BEGH的面积是( )(A)(B) (C) (D)15、如图所示,边长为12的正三角形ABC内接于圆,弦DE∥BC分别交AB,AC于F,G,若AF长x,DF长y都是正整数,则y的值为( )(A) 2 (B) 3 (C) 4 (D) 6二、填空题(共5小题,每小题6分,满分30分)6、己知方程x2-x-1=0的根是方程x6-px2+q=0的根,则p=________,q=________.7、已知:如图所示,凸五边形ABCDE中,S△ABC=S△BCD=S△CDE=S△DEA=S△EAB=1,则S五边形ABCDE=__________.8、如图,把10个两两互不相等的正整数,a1a2…a10写成下列图表的形式,其中两个箭头所指的数等于这两个箭头始点两个数的和,例如表示a2=a1+a5,那么,满足该图表的a4的最小可能值为___________.9、已知二次函数y=ax2+bx+c与一次函数y=mx+n的图象交点为(-1,2),(2,5),且二次函数的最小值为1,则这个二次函数的解析式为_________________________.10、将四十个自然数1,2……,40任意排成一排,总可以找到连续排列的八个数,它们的和不小于A,则A的最大值等于_____________.三、解答题(共4题,每小题15分,满分60分)11、已知正实数a、b、c满足方程组a+b2+2ac=29b+c2+2ab=18c+a2+2bc=25求a+b+c的值12、设计一套邮票,设计要求如下:该套邮票由四种不同面值的邮票组成,面值数为正整数,并且对于连续整数1,2…,R中的任一面值数,都能够通过适当选取面值互相不同且不超过三枚的邮票实现。
2017年秋九年级数学竞赛试题(含答案)
九年级数学竞赛试题一.选择题:(每题4分,共32分)1.若m 为实数,则代数式||m +m 的值一定是( ).A .正数B .0C .负数D .非负数2.若10<<a ,化简2211()4()4a a a a-+++-的结果为( )A .2a -B .2aC .-2aD .2a 3.如果a ,b ,c 都不为零且0a b c ++=,则222222222111b c a c a b a b c +++-+-+-的值是( ) A .零 B .正数 C .负数 D .不能确定4.已知四边形的边长分别是m ,n ,p ,q ,且满足222222m n p q mn pq +++=+,则这个四边形是( )A .平行四边形B .对角线互相垂直的四边形C .对角线相等的四边形D .平行四边形或对角线互相垂直的四边形5.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .143≤<mB .43≥mC .10≤≤mD .143≤≤m6.如下图,已知函数y ax b =+和2(0)y ax bx c a =++≠,那么它们的图象可以是( )A B C D7.记35311+-=x y ,25212+=x y ,523+-=x y ,对每一个实数x ,都有唯一的一个值y 1,y 2,y 3与之对应,取y 为三数之中的最小值,当x 取遍所有实数时,所有y 值中的最大值为( )A .1B .2C .3D .58.如图,矩形ABCD 中,AB =4,BC =12.5,O 在BC 上,OB =3.5.以O 为坐标原点,建立如图所示的平面直角坐标系,M 坐标为(5,0),以OM 为一边作等腰△OMP ,P 点落在矩形ABCD 的边上,则符合条件的P 点共有( )个A .5B .6C .7D .8二.填空题:(每题4分,共32分)9.规定][a 表示不超过a 的最大整数,当1-=x 时,代数式6323+-nx mx 的值为16,则]32[n m -的值为________.10.若52=a ,94=a ,并且所有正整数n 满足1611=+++-n n n a a a ,则2016a = . 11.在△ABC 中,AB =3,AC =4,BC =5,△ABD .△ACE .△BCF 是等边三角形,则四边形AEFD的面积为_______.12.如图,在平面直角坐标系中,⊙O 的半径为1,点P 在经过点A (-4,0),B (0,4)的直线上,PQ 切⊙O 于点Q ,则切线长PQ 的最小值为________.yxO MDC B AEFDACB PBA O yx第8题图 第11题图 第12题图 13.设抛物线452)12(2++++=a x a x y 与x 轴只有一个交点.则243-+a a 的值为_________. 14.已知实数x ,y 满足0332=-++y x x ,则y x +的最大值为 .15.如图,把一副三角板如图甲放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =6cm ,DC =7cm ,把三角板DCE 绕点C 顺时针旋转15°得到△D ′CE ′,如图乙.这时AB 与CD ′相交于点O ,D ′E ′与AB 相交于点F .则线段AD ′的长为___________.16.如图①,在正方形ABCD 中,点P 沿边DA 从点D 开始向点A 以1cm /s 的速度移动;同时,点Q沿折线A —B —C 从点A 开始向点C 以2cm /s 的速度移动.当点P 移动到点A 时,P ,Q 同时停止移动.设点P 出发x 秒时,△P AQ 的面积为ycm 2,y 与x 的函数图象如图②,写出线段EF 所对应的函数关系式并指出自变量的取值范围:____________________.图①PQDCB A第15题图 第16题图ACB E D(甲)E 'ACBOF D '(乙)三.解答题:(56分) 17.(8分)在学校文化艺术节中,有A ,B ,C ,D 四个班的同学参加集体舞表演,已知A ,B 两个班共16名演员,B ,C 两个班共20名演员,C ,D 两个班共34名演员,且各班演员的人数正好按A ,B ,C ,D 次序从小到大排列,求各班演员的人数. 18.(8分)△ABC 三边长分别为a ,b ,c ,满足下列条件:①c b a >>;②b c a 2=+;③b 为正整数,a ,c 不一定是正整数;④842222=++c b a .根据以上条件: (1)用含b 的代数式表示ac ;(3分)(2)求b 的值.(5分)19.(8分)如图,在△ABC 中,AC =BC ,∠ACB =90°,D ,E 是边AB 上的两点,AD =3,BE =4,∠DCE =45°.(1)求证:AD 2+BE 2=DE 2;(4分) (2)求△ABC 的面积.(4分)EDB CA20.(8分)如图,△ABC 内接于⊙O ,AC >BC ,点D 为的中点.(1)求证:CD 平分∠ACE ;(3分)(2)求证:AD 2=AC ·BC +CD 2.(5分)EODCBA21.(12分)某公司市场信息部经过调研发现:如果单独投资A 产品,则所获利润y A (万元)与投资金额x (万元)之间存在一次函数关系1+=kx y A .并且当投资5万元时,获得利润3万元;如果单独投资B 产品,则所获利润y B (万元)与投资金额x (万元)之间存在二次函数关系bx ax y B +=2.并且当投资2万元时,获得利润2.4万元;投资4万元时,获得利润3.2万元. (1)分别求出上述的一次函数和二次函数的解析式;(4分)(2)如果该公司只投资一种产品,当投资金额在什么范围内,投资B 产品合算?(4分)(3)如果该公司同时对A ,B 两种产品投资,共投资10万元.请设计一种投资方案,使获得的总利润最大,最大总利润是多少万元?(4分)22.(12分)如图,已知抛物线()2y ax bx c a 0=++≠的对称轴为x =-1,且经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)求抛物线和直线BC 的解析式;(4分)(2)N 点是抛物线上第二象限的一个动点,当△NBC 面积最大时,求N 点坐标;(4分) (3)设点P 在抛物线的对称轴x =-1上,且△BPC 是直角三角形,直接写出点P 的坐标.(4分)九年级数学竞赛题参考答案一.选择题(每题4分,共32分)1.D2.B3.A4.D5.A6.C7.B8.C二.填空题(每题4分,共32分)9.-410.211.612.13.814.415.516.三.解答题:17.设A班有x名演员,则B班有(16-x)名演员,C班有20-(16-x)=(x+4)名演员,D 班有34-(x+4)=(30-x)名演员.由已知得:,解得:.∵x为整数,所以.所以:A班有7名演员,B班有9名演员,C班有11名演员,D班有23名演员.18.(1)由④得:,由②得:,即:,∴,.………………3分(2)于是a,c可以看作方程两根,∵a,c是三角形的边长,所以,解得.∵b为正整数,所以,b=4.…………………8分19.(1)将△BCE绕点C顺时针旋转90°到△ACF位置,连接DF.这时,∠DCF=∠DCA+∠FCA=∠DCA+∠BCE=90°-∠DCE=45°.在△DEC和△DFC中,CE=CF,∠DCE=∠DCF,CD=CD,∴△DEC≌△DFC,∴DE=DF.∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=∠BAC=45°,∴∠DAF=90°.在△DAF中,由勾股定理可得:AD2+AF2=DF2.∵AF=BE,DF=DE,所以:AD2+BE2=DE2.…………………4分(2)由(1)得:DE=5,所以:AB=3+4+5=12.过C作CH⊥AB,垂足为H,则CH=AB=6,所以:△ABC的面积S==36.…………………8分20.(1)∵D为的中点,∴∠ACD=∠BAD.∵四边形ABCD是圆内接四边形,∴∠DCE=∠BAD,∴∠ACD=∠DCE,∴CD平分∠ACE.………………3分(2)连接BD,过D作DM⊥AC于M,DN⊥BE于N.∵D为的中点,∴AD=BD.∵CD平分∠ACE,DM⊥AC,DN⊥BE,∴DM=DN.在Rt△ADM和Rt△BDN中,,所以Rt△ADM≌Rt△BDN,∴AM=BN.在Rt△DCM和Rt△DCN中,,所以Rt△DCM≌Rt△DCN,∴CM=CN.在△ADM和△CDM中,由勾股定理得:,.∴=.……………8分21.(1),;…………………4分(2)当时,=,解得:,.∴当时,;…………………8分(3)设对B产品投资t万元,则A产品投资(10-t)万元,总利润为w万元,则:.,当时,w的最大值为6.8万元.即对A产品投资7万元,B产品投资3万元,所获利润最大,最大利润是6.8万元.………………12分22.(1)抛物线的解析式为:;…………………2分直线的解析式为:.…………………4分(2)过N点作x轴的垂线交直线BC于M,设N点的横坐标为t,则N点坐标为(t,),M点的坐标为(t,),则MN=; e则△NBC的面积S===.………7分即当时,S的最大值是,此时,N点的坐标为(,).………8分(3)P1(-1,4),P2(-1,-2),P3(-1,),P3(-1,).…………………12分。
2017~2017年全国初中数学竞赛试题及答案.doc
2002年全国初中数学竞赛试题一、选择题1.设a <b <0,a 2+b 2=4ab ,则ba b a -+的值为【 】A 、3B 、6C 、2D 、32.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab -bc -ca 的值为【 】A 、0B 、1C 、2D 、33.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则A B C DA G C D S S 矩形四边形等于【 】A 、65 B 、54 C 、43 D 、32ABC D EFG4.设a 、b 、c 为实数,x =a 2-2b +3π,y =b 2-2c +3π,z =c 2-2a +3π,则x 、y 、z 中至少有一个值【 】A 、大于0B 、等于0C 、不大于0D 、小于0 5.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】A 、72-<a <52 B 、a >52 C 、a <72-D 、112-<a <06.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】 A 、22b a + B 、22b ab a ++ C 、()b a +21 D 、a +b二、填空题7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。
8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则b c c a -+-的值为 。
9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年全国初中数学联赛(初三组)初赛试卷
(考试时间:2017年3月3日下午3:00—5:00)
班级:: 姓名: 成绩:
考生注意:
1、本试卷共五道大题,全卷满分140分;
2、用圆珠笔、签字笔或钢笔作答;
3、解题书写不要超出装订线;
4、不能使用计算器。
一、选择题(本题满分42分,每小题7分)
1、设实数a 、b 满足1-=-b a ,则ab b a 333+-的值为( ) A 、3-
B 、1-
C 、1
D 、3
2、若实数a 为常数,关于x 的不等式组⎩⎨⎧-≤+722 x a
a x 的整数解只有8个,则a 的值为( )
A 、1-
B 、0
C 、1
D 、2
3、在菱形ABCD 中,4=AB ,︒=∠60A ,E 为AB 的中点,若在线段BD 上取一点P ,则PE
PA +的最小值是( )
A 、32
B 、4
C 、52
D 、72
4、对于任意实数a ,b ,c ,用{}c b a M ,,表示三个数的平均数,用{}c b a ,,m in 表示这三个数中最小的数,若{}=-+++y x y x y x M 2222,,{}y x y x y x -+++2222m in ,,,则=+y x ( )
A 、4-
B 、2-
C 、2
D 、4
5、如图,ABC Rt ∆的斜边AB 与⊙O 相切于点P ,直角顶点C 在⊙
O 上,若22=AC ,4=BC ,则⊙O 的半径是( )
A 、3
B 、32
C 、4
D 、62
6、不超过
()6
15+的最大整数是( )
B
A 、1142
B 、1145
C 、1148
D 、1151
二、填空题(本大题满分28分,每小题7分)
7、若012
=-+x x ,则()()
11
12
4---+x x x x 的值为 .
8、在正方形ABCD 中,点E 、F 分别在线段BC 、CD 上,且︒=∠20BAE ,︒=∠25DAF ,则CEF
∠等于 .
9、小丽与小明一起用A 、B 两个骰子玩游戏,以小丽掷的A 骰子朝上的数字为x ,小明掷的B 骰子朝上的数字为y ,来确定点(x ,y ),那么,他们各掷一次所确定的点P (x ,y )落在已知抛物线542+-=x x y 的概率为 .
10、如图,设点P 在函数x y 6=的图像上,x PC ⊥轴于点C ,交函数x
y 2
=的图像于点A ,
y PD ⊥轴于点D ,交函数x
y 2
=
的图像于点B ,则四边形P AOB 的面积为 . 三、(本大题满分20分)
11、已知关于x 的一元二次方程052=+-kx x 与052=-+k x x 只有一个公共的实根,求关于
x 的方程k kx x =+2所有的实根之和。
12、如图,已知圆O的直径AB与CD互相垂直,E为OB中点,CE的延长线交圆O于G,
AG交CD于F,求DF
FC
的值。
B
E
G
F
D
A
C
O
13、已知a 、b 、c 、d 、x 、y 、z 、w 是互不相等的非零实数,且222222a b a y b x +=222222
b c b z c y +=
222222c d c w d z +=abcd xyzw .求22a x +22b y +22c z +22d w
的值.。