非线性规划ppt

合集下载

非线性规划ppt课件

非线性规划ppt课件

g3(x) x1 x2 x3 0
;
20
一维搜索方法
目标函数为单变量的非线性
规划问题称为一维搜索问题
min t0 (0ttmax )
其中 t R 。
(t)
➢精确一维搜索方法 0.618法 Newton法
➢非精确一维搜索方法 Goldstein法 Armijo法
;
21
0.618法(近似黄金分割法)
定义 4.1.2 对于非线性规划(MP),若 x* X ,并且存在 x* 的一个
领域 N ( x* ) x Rn x x* ( 0, R) ,使
f (x* ) f (x), x N (x* ) X ,
则称 x* 是(MP)的局部最优解或局部极小点,称 f ( x* ) 是(MP)的局部
函数(t) 称为在[a,b]上是单谷的,如果存在一个 t * [a, b] ,使得(t) 在[a, t * ]上严格递减,且在[t * , b] 上严格递增。区间[a,b]称为(t) 的单 谷区间。
第 1 步 确定单谷区间[a,b],给定最后区间精度 0 ;
第 2 步 计算最初两个探索点
t1 a 0.382(b a) b 0.618(b a)
;
22
0.618法例题
• 例4.3.1 用0.618法求解
min(t) t3 2t 1 t0
(t) 的单谷区间为[0,3], 0.5
解答
例4.3.1解答 • 迭换换代tbtb 过程0311..62..∧✓18可0036145436481由-00下101.2.∧...0✓871110650431表48611 给0-0100.2.∨...0✓1470出2064308168821 --000100...∨...00✓4178376340791868681 01..7140486 a2112a

非线性规划基本概念.ppt

非线性规划基本概念.ppt

)
,
x 0
n
)
2、非线性规划问题的解的相关概念 一般来说,非线性规划的求解,比线性规划的求
解困难得多。线性规划有统一的单纯形求解方法,而 非线性规划目前还没有统一的一般算法。
1.1 可行集(可行域)
给定非线性规划问题《1》
min f (x1, x2, , xn )
s.t.
ghii
(x1, (x1,
数学模型3
max(min) I(x,h1, h2 ) k[ 2h1 3
3h 2
3 ];
(x2 h12 ) 2
((20

x)2

h
2 2
)
2
0 x 20, s.t. 3 h1 9,
3 h2 9.
即求三元函数I(x,h1,h2)在所给条件下的上的最大 值与最小值。
D

x
gi (x1,..., xn ) hi (x1,..., xn )

0, i 0, i
1, 2,..., L; L 1,..., m
1.2 局部极小点(局部最优解)
对于非线性规划《1》,若存在 x*D ,且对一切
满足 || x x*|| (即x为x*附近的点),都有 f (x*) f (x)
4、建立规划模型的注意点
4.1 线性规划问题的最优解一定在可行域的边界的顶 点处达到,任何一个最优解,就是全局最优解。
4.2 非线性规划的最优解可以在可行域内任何一点处达 到,非线性规划求解出来的只是局部最优解。所以在 针对非线性规划求解时,具体问题,有具体的搜索最 优解的方法,一般注意:
(1)尽可能给出靠近全局最优解附近的初始可行解; (2)尽可能给出每个决策分量的比较准确的上下界; (3)能够线性化的表达式,尽量线性化; (4)尽量每个表达式连续可导(起码二阶); (5)非线性规划每次求解结果不一定相同。

第13讲 非线性规划.ppt

第13讲  非线性规划.ppt

6
信息与计算科学系
数学 建模
在一组等式或不等式的约束下,求一个函数的最大 值(或最小值)问题,其中至少有一个非线性函数,这 类问题称之为非线性规划问题。可概括为一般形式
min f ( x),
s.t. hj ( x) 0, j 1, , q, (3.1) gi ( x) 0, i 1, , p.
其中 x [x1, , xn]T 称为模型(3.1)的决策变量, f 称 为目标函数, gi (i 1, , p)和hj ( j 1, ,q)称为约束函 数。另外,gi ( x) 0 (i 1, , p)称为等式约束,hj ( x) 0
3
信息与计算科学系
数学 建模
例 3.1 (投资决策问题)某企业有n个项目可供选择
投资,并且至少要对其中一个项目投资。已知该企业拥有
总资金 A元,投资于第i(i 1, ,n)个项目需花资金ai 元, 并预计可收益bi 元。试选择最佳投资方案。
解 设投资决策变量为
xi
1, 决定投资第i个项目 ,i 1, , n,
x(1)+x(2)^2+x(3)^3-20]; %非线性不等式约束
h=[-x(1)-x(2)^2+2;
x(2)+2*x(3)^2-3]; %非线性等式约束
11
信息与计算科学系
数学 建模
(3)编写主程序文件如下 [x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[],'fu n2')
14
信息与计)是极小值点,对应的极小值 f (1,0) 5; 点(1,2),( 3,0)不是极值点; 点( 3,2)是极大值点,对应的极大值 f ( 3,2) 31。

非线性规划培训课件.ppt

非线性规划培训课件.ppt

k
xk
f(xk)
||f(xk)||
pk
0

2 2

1040 100.079968
1040
1
1.901.09083572
3.803.9178054
3.844158 30.8.13895704
格局部最优解。
精品
全局最优解的充分条件
定理 4.4.4 设 f : R n R , x* Rn ,f 是 Rn 上的可微凸函 数。若有 f (x*) 0 ,则 x* 是(UMP)的全局最优解。 证:因为 f 是 Rn 上的可微凸函数,由凸函数的判别定理
4.2.3,可知 x Rn ,有 f x* x x* f x f x* 。 由于 f (x*) 0 ,因此 x Rn , 0 f x f x* ,即
f x* tp f x* 。 取 t 充分小,可使 x* tp N x* ,与(1)矛盾。
精品
局部最优解的充分条件
定理 4.4.3 设 f : R n R 在点 x Rn 处的 Hesse 矩阵 2 f (x*)
存在。若 f x* 0 ,并且 2 f x* 正定,则 x* 是(UMP)的严
df
小点,因此
xk tpk dt
0。
令 xk tpk x1k tp1k , xnk tpnk ,, xnk tpnk u1, u2 ,, un u ,
由复合函数求导法则,
df xk tpk f u du1 f u du2 f u dun
即, t 0, , f x tp f x。可知 p 是 f 在 x 处的下降
方向(定义 4.1.3)。

非线性规划课件

非线性规划课件
得 X(1)=(x₁ (0),x₂ (1))T,S(1)=f(X(1))
②再固定x₂=x₂ (1): 求以x₁为单变量的目标函数的极值点,
得 X(2)=(x,(2),x₂ (1))T ,S(2)=f(X(2))
此时S(2)优于S(1), 且搜索区间缩短为x₁*∈[x,(2),b,],x₂*∈[x₂ (1),b₂] 第二步:如此交替搜索,直至满足给定精度ε为止
否则,继续缩短区间,
直至满足给定的精度为
①f(x₂)≥f(xq), 取[aq=ao,b,=x,]
X₁ =X2
x'2=b₁-λ(b₁-aq) ②f(x₂)<f(x₁), 取[a=x2,b,=b,]
x=aq+λ(b₁-aq)
10
x₂ =x₁
例 求 解 f(x)=-18x²+72x+28 的极大值点,δ≤0.1,起始搜索区间为[0,3] 解:①用间接法:令 f'(x)=-36x+72=0, 得驻点 x=2
xq*∈[aq,b,],x²*∈[a₂ ,b₂ ],.,x*∈[an,b,]
1、原理: ①从起点 X(0) 出发,沿平行于 x, 轴的方向P(1)进行一维搜索,
求得 f(X) 在该方向P(1)上近似极值点 X(1);
②从点 X(1) 出发,沿平行于 x₂ 轴的方向P(2)进行一维搜索,
求得 f(X) 在该方向P(2)上近似极值点 X(2); ③从点 X(2) 出发,照此交替进行下去,直至满足给定的精度ε为止
六、 寻优方法概述:
1、N.L.P.问题分类
① 无约束条件的NLP问题。 ② 有约束条件的NLP问题。 2、寻优方法
① 间接法(解析法):适应于目标函数有简单明确的数学表达式。

非线性规划PPT演示文稿

非线性规划PPT演示文稿
正是由于局部最优解的存在,使得非线性规划问 题的求解要比线性规划问题的求解复杂得多。当求 得一个最优解时,常常无法确定该解是否为全局最 优解。但是在某些情况下,可以保证所求得的解就 是全局最优解。下面7.2节、7.3节所介绍的边际收 益递减的二次规划和可分离规划就属于这种情况。
RUC, Information School, Ye Xiang
RUC, Information School, Ye Xiang
求总风险(方差)的一种简便方法
第7章 非线性规划
由于目标函数“总风险(方差)”的公式是非线性的,也 复杂,希望找到一种不容易出错且简便的办法
构造协方差矩阵(方差、协方差)
总风险(方差)=

SUMPRODUCT(MMULT(投资组合,协方差矩阵),投资
第7章 非线性规划
这种方法是将3.2节的成本收益平衡问题非 线性化。在这种情况下,成本是与投资有关 的风险,收益是投资组合的预期回报。
因此,该模型的一般表达形式为:
最小化 风险
约束条件 预期回报≥最低可接受水平
这个模型关注投资组合的风险和预期收益 之间的平衡。
RUC, Information School, Ye Xiang
例7.1 给定一根长度为400米
的绳子,用来围成一块矩形菜 地,问长和宽各为多少,使菜 地的面积最大? 解:这是一个小学数学问题, 现在把它当作一个规划问题来 求解。
RUC, Information School, Ye Xiang
7.1 非线性规划基本概念 第7章 非线性规划
(1) 决策变量
7.2.2 运用非线性规划优化 有价证券投资组合
第7章 非线性规划
投资组合优化,就是确定投资项目中的一 组最优投资比例。这里所说的“最优”,可 以是在一定风险水平下使得投资回报最大, 也可以是在一定的投资回报水平下使得风险 最小。

非线性规划基础PPT课件

非线性规划基础PPT课件

f
(
xk
tkdk
)
min t 0
f(xk
tdk
),
令 xk 1 xk tk dk ;k=k+1,转第1步。
第32页/共35页
• 一维搜索的方法很多,归纳起来,可分为试探 法和函数逼近法。试探法中包括如黄金分割法、 Fibonacci法等;函数逼近法中包括如牛顿法、 割线法等。
第33页/共35页
x (3,1)T
• 例13.6:
是下列优化问题的最优解,验
证x满足Fmrixitnzf-(Jxo) h(nx1定 7理)2 。 (x2 3)2
s.t.gg12((xx))
x12 x1
x22 x2
10 0, 4 0,
g
3
(
x)
x2
0,
第23页/共35页
紧指标集 I={1,2}
f(x)
-
• 在x点取到局部最优值的条件为:F0 G0
g f
i (x)T (x)T
d d
0 0
无解
第21页/共35页
• 定理13.11(Gorden):
设 A (A1,, Am ), Ai Rn ,i 1,, m ,则Ax<0有解
y( Rm ) 0
的充A分T y必 0要(i 条 1件,为, m:) 不存在非零向量
G {d | d 0, x D, 0, (0, ), x d D}
定理13.6 若f(x)在点 x 可微,如果存在方向d,
使 f (x)T d 0 ,则 0 使 (0, ) 有
f (x d) f (x)
第17页/共35页
一、无约束优化的最优性条件
• 在无约束规划问题中,由于不涉及到可行域的 问题,因此,只涉及下降方向。不涉及可行方 向的问题。

运筹学-第3版-课件-第4章 非线性规划.

运筹学-第3版-课件-第4章 非线性规划.
第19页
§4.3 一维搜索方法
2. Newton法
考虑一维搜索问题 min (t),其中(t) 是 二次可微的,且 (t) 0 。
第 1 步 给定初始点 t , 0 , k : 1 ; 1
第 2 步 如果 ( t ) ,停止迭代,输出 k
t 。 否则,当 ( t ) 0 时,停止,
1. 0.618法(近似黄金分割法)
函数(t) 称为在[a,b]上是单谷的,如果存在一个 t * [a, b] ,使得(t) 在[a, t * ] 上严格递减,且在[t * , b] 上严格递增。区间[a,b]称为(t) 的单谷区间。
第 1 步 确定单谷区间[a,b],给定最后区间精度 0 ;
约束集或可行域
xX
MP的可行解或可行点
MP中目标函数和约束函数中至少有一个不是x的
线性函数,称(MP)为非线性规划
第5页
§4.1 基本概念
向令
g(x) (g1(x),...,g p (x))T

h(x) (h1(x),...,hp (x))T ,

其中, g : Rn R p , h : Rn Rq ,那么(MP)可简记为
max V
s.t. x1
(1 a / 3)x12 x2
x12
a
2
x
2 2
2x1 x2
x12
S
x1 0, x2 0
x3 x2 x1
第4页
§4.1 基本概念
设 x ( x1 ,..., xn )T Rn , f ( x); gi ( x), i 1,..., p;hj ( x), j 1,..., q : R n R ,

f ( x* ) f ( x), x X

非线性规划无约束问题.pptx

非线性规划无约束问题.pptx
器在单位时间内的经济效益是最好的?
4
非线性规划
目标函数或约束条件中有非线性函 数的规划问题
5
非线性规划的最优解可能在其可行域中的任 意一点达到
不一定是全局最优解
6
背景 理论计算 相对于计算要求,计算能力仍十分有限
7
8
背景 为加快计算速度,必须明确各种方法的特点,
以针对不同问题选择最合适的方法
f(x2)>f(x1),去掉[a0,x2],此时x*[x2,b0]
f(x)
o a0 x2 x1 x*
b0 x
x1,x2 在x*的左侧
39
f(x2)=f(x1): a.去掉[x1,b0],此时x*[a0,x1] b.去掉[a0,x2],此时x*[x2,b0]
f(x)
o a0 x2 x* x1 b x x1,x2 在x*的两侧0
2
f
(1.941,
3.854)
31.794 9.764
9.764 4
H
(
x2
)
2
f
(1.053,1.028)
11.194 2.212
2.212 4
H
(
x3
)
2
f
(0.6117,1.4929)
0.519 4.447
4.447
4
31
求得各点的H特征值和稳定点类型如下:
32
33
一维搜索法 多项式近似
斐波那契(Fibonacci)法(分数法) 0.618法 无需求导,根据函数值判断搜索方向 适用于求解已知极值区间的单峰函数
37
一维搜索法(消去法)
f(x2)<f(x1),去掉[x1,b0],此时x*[a0,x1]

非线性规划模型PPT课件

非线性规划模型PPT课件

且提供数据如表5所示:
第12页/共45页
表5 数据表
石油的
种类
ai
1
9
bi
hi
ti
3
0.50
2
2
4
5
0.20
4
已知总存储空间
T 24
第13页/共45页
代入数据后得到的模型为:
min
f
(x1, x2 )
27 x1
0.25x1
20 x2
0.10x2
s.t. 2x1 4x2 24
第23页/共45页
变的问题 P1:
min f1( x) f1 s.t. gi ( x) 0,i 1, 2, , m
的最优解 x(1)及最优值 f1,再求问题 P2:
min
f2(1
的最优解 x(2)及最优值
f
2
,即
min xR
第6页/共45页
① 适当选取初始点 x0,令k 0. ② 检验 xk 是否满足停止迭代的条件,如是,则停 止迭代,用 xk 来近似问题的最优解,否则转至③. ③ 按某种规则确定 xk 处的搜索方向.
④ 从 xk 出发,沿方向dk ,按某种方法确定步长k ,
使得:
f (xk kdk ) f (xk ) ⑤ 令 xk1 xk kdk ,然后置k k 1,返回②.
h( x) i fi ( x)作为新的目标函数,成为评价(目标) i 1
函数,再求解问题
p
min h( x) i fi ( x) i 1
s.t. gi ( x) 0,i 1,2, , m
得最优解 x(0),取 x x(0)作为多目标规划问题的解.
第27页/共45页
在一定条件下,用线性加权求和法求得的最 优解必是原多目标规划问题的有效解或弱有效 解.

非线性规划11学习.pptx

非线性规划11学习.pptx
调用格式: X = fseminf(‘F’, x0, n, ‘seminfcon’,A,b,Aeq, beq, l, u)
半无限约 束的个数
计算非线性不等式及等式约 束,半无限约束在X, S的值
第187页/共54页
1、无约束非线性规划情形
标准形式 Min F(x) MATLAB求解步骤 ① 首先建立一个M文件函数,如fun.m ② 调用格式:[x, fval] = fminunc(‘fun’, x0, options)
第112页/共54页
主要内容
投资决策问题 一般模型与算法概述 Matlab软件求解简介
范例:选址问题
实 验内容
第132页/共54页
MATLAB优化工具箱的主要功能
一元函数极小 Min F(x) s.t. x1 ≤x ≤x2 调用格式: [x, fval]=fminbnd(‘F’, x1,x2)
无约束非线性规划 Min F(X) 调用格式: [X, fval]=fminunc(‘F’, X0, options)
大规模和中等 规模算法中用 到的优化参数
第265页/共54页
第276页/共54页
只在大规模 算法中用到 的优化参数
只在中等 算法中用 到的优化
参数
第287页/共54页
第298页/共54页
2. 二次规划的情形 min Z=0.5*X’HX+f’X
s.t. A . X≤b , Aeq . X=beq, lb ≤ X≤ub
在该节帮助文本中的表4-3给出了options中的 各参数及其作用,用在哪些优化程序中。
第221页/共54页
第232页/共54页
控制参数结构options的设置
利用命令optimset来建立和编辑优化程序中 options的参数结构。常用调用格式为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性规划
撰写:刘伟 董小刚 林玎 制作:李慧玲 李刚健
吉林建工学院基础科学系
1
实验目的 实验内容
1、直观了解非线性规划的基本内容。 2、掌握用数学软件求解优化问题。
1、非线性规划的基本理论。 2、用数学软件求解非线性规划。 3、钢管订购及运输优化模型 4、实验作业。
2
非线性规划
非线性规划的基本概念 *非线性规划的基本解法
数,简记: f : En E1, gi : En E1, h j : En E1
其它情况: 求目标函数的最大值或约束条件为小于等于零 的情况,都可通过取其相反数化为上述一般形式.
4
定义1 把满足问题(1)中条件的解 X ( En )称为可行解(或可行
点),所有可行点的集合称为可行集(或可行域).记为D.即
2、 输入命令:
s.t.
1 1
21
x1 x2

0



x1 x2

H=[1 -1; -1 2]; c=[-2 ;-6];A=[1 1; -1 2];b=[2;2]; Aeq=[];beq=[]; VLB=[0;0];VUB=[]; [x,z]=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)
T

X
,
M


T
(
X
k
,
M
k
)

3、若存在 i 1 i m ,使 gi X k ,则取Mk>M(Mk1 M, 10)
令k=k+1返回(2),否则,停止迭代.得最优解 X * X k .
m
计算时也可将收敛性判别准则 gi X k 改为 M min0, gi X 2 0 .
function [G,Ceq]=nonlcon(X)
G=...
Ceq=...
17
3. 建立主程序.非线性规划求解的函数是fmincon,命令的基本格 式如下:
(1) x=fmincon(‘fun’,X0,A,b) (2) x=fmincon(‘fun’,X0,A,b,Aeq,beq) (3) x=fmincon(‘fun’,X0,A,b, Aeq,beq,VLB,VUB)
的向量,其它变量的含义与线性规划、二次规划中相同.用
Matlab求解上述问题,基本步骤分三步: 1. 首先建立M文件fun.m,定义目标函数F(X):
function f=fun(X);
f=F(X);
2. 若约束条件中有非线性约束:G(X) 0 或Ceq(X)=0, 则建立M文件nonlcon.m定义函数G(X)与Ceq(X):


k j
j 1,, n,k=k+1,返回步骤(2).
返回
14
标准型为:
1、二次规划
Min Z=1 XTHX+cTX
2
s.t. AX<=b Aeq X beq
VLB≤X≤VUB
用MATLAB软件求解,其输入格式如下:
1. x=quadprog(H,C,A,b);
2. x=quadprog(H,C,A,b,Aeq,beq); 3. x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB); 4. x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0); 5. x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0,options); 6. [x,fval]=quaprog(...); 7. [x,fval,exitflag]=quaprog(...); 8. [x,fval,exitflag,output]=quaprog(...);
3、运算结果为:
MATLAB(youh1)
x =0.6667 1.3333 z = -8.2222
16
标准型为:
2、一般非线性规划
min F(X)
s.t AX<=b Aeq X beq G(X) 0
Ceq(X)=0 VLB X VUB
其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成
(4) x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’) (5)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’,options)
输出极值点 M文件 迭代的初值 变量上下限 参数说明
(6) [x,fval]= fmincon(...) (7) [x,fval,exitflag]= fmincon(...) (8)[x,fval,exitflag,output]= fmincon(...)
(1)
设集合D0 X | gi X 0,i 1,2,, m ,D0是可行域中
所有严格内点的集合。
构造障碍函数
m
I X , r:I X , r f X r lngi X
i 1

I (X , r)

f
(X ) r
m i 1
1
giX
X X* 时,若f X * f X ,则称X*是f(X)在D上的严格全局极小值点
(严格全局最优解). 返回
5
非线性规划的基本解法
1、罚函数法
SUTM外点法 SUTM内点法(障碍罚函数法)
2、近似规划法
返回
6
罚函数法
罚函数法基本思想是通过构造罚函数把 约束问题转化为一系列无约束最优化问题, 进而用无约束最优化方法去求解.这类方法 称为序列无约束最小化方法.简称为SUMT 法.
m
其中称r lngi X
i 1

m
r
i 1
gi
1
X
为障碍项,r为障碍因子
这样问题(1)就转化为求一系列极 值问题:
min
X D0
I
X
,
rk


X (k rk)
10
内点法的迭代步骤
(1) 给定允许误差 0,取r1 0,0 1;
(2) 求出约束集合 D 的一个内点X 0 D0,令k 1;
返回
3
非现性规划的基本概念
定义 如果目标函数或约束条件中至少有一个是非线性函数 时的最优化问题就叫做非线性规划问题.
一般形式:
min f X
s.t.hgij
X X


0 0
i 1,2,...,m; j 1,2,...,l.
(1)
其中 X x1, x2,, xn T En,f , gi , hj 是定义在 En 上的实值函
必gi有X 0或hi X 0 的约束条件,故罚项>0,要受惩罚.
8
SUTM外点法(罚函数法)的迭代步骤
1、任意给定初始点X0,取M1>1,给定允许误差 0 ,令k=1;
2、求无约束极值问题XmiEnn T X , M 的最优解,设为Xk=X(Mk),即
min
X E n
i 1,, m
j 1,,l ;
13
(3)在上述近似线性规划问题的基础上增加一组限制步长的线
性约束条件.因为线性近似通常只在展开点附近近似程度较
高,故需要对变量的取值范围加以限制,所增加的约束条件是:
xj

x
k j


k j
j 1,, n
求解该线性规划问题,得到最优解X k1 ;
(3)

X
k 1

D0







min
X D 0
I
X
, rk




X D0的最优解,设为X k X rk D0 ;
(4)
检验是否满足

r
m
ln
i1
gi
Xk



rk
m1

i1gi X



,满
足,停止迭代, X * X k ;否则取rk1 rk ,令k k 1 ,
局部极小值点(局部最优解).特别地当 X X*时,若 f X * f X ,
则称X*是f(X)在D上的严格局部极小值点(严格局部最优解).
定义3 对于问题(1),设 X * D ,对任意的X D ,都有 f X * f X
则称X*是f(X)在D上的全局极小值点(全局最优解).特别地当
i1
j 1
将问题(1)转化为无约束问题: min TX , M
( 3)
X E n
其中T(X,M)称为罚函数,M称为罚因子,带M的项称为罚项,这
里的罚函数只对不满足约束条件的点实行惩罚:当X D 时,满
足各gi X 0,hi X 0 ,故罚项=0,不受惩罚.当X D 时,
D X | gi X 0,hj X 0,X En
问题(1)可简记为 min f X . X D
定义2 对于问题(1),设 X * D,若存在 0 ,使得对一切
X D,且 X X * ,都有 f X * f X ,则称X*是f(X)在D上的
n

步长缩小系数 0,1,允许误差 ,令 k=1;
(2) 在点X k 处,将 f X , gi X , hj X 按泰勒级数展开并
取一阶近似,得到近似线性规划问题:
min f X f X k f X k T X X k
gi X gi X k gi X k T X X k 0 hj X hj X k hj X k T X X k 0
相关文档
最新文档