硅酸盐水泥的水化和硬化
简述硅酸盐水泥的主要水化产物和硬化水泥石的结构。
硅酸盐水泥的主要水化产物是:水化硅酸钙和水化铁酸钙凝胶,氢氧化钙,水化铝酸钙和水化硫铝酸钙晶体。
硬化水泥石的结构是由水泥水化产物(主要是水化硅酸钙凝胶)、未水化水泥颗粒、毛细孔(毛细孔水)等组成的不均质的结构体。
硅酸盐水泥的主要化学成分:氧化钙CaO,二氧化硅SiO2,三氧化二铁Fe2O3,三氧化二铝Al2O3.硅酸盐水泥的主要矿物:硅酸三钙(3CaO·SiO2,简式C3S),硅酸二钙(2CaO·SiO2,简式C2S),铝酸三钙(3CaO·Al2O3,简式C3A),铁铝酸四钙(4CaO·Al2O3·Fe2O3,简式C4AF).水泥的凝结和硬化:1)、3CaO·SiO2+H2O→CaO·SiO2·YH2O(凝胶)+Ca(OH)2;2)、2CaO·SiO2+H2O→CaO·SiO2·YH2O(凝胶)+Ca(OH)2;3)、3CaO·Al2O3+6H2O→3CaO·Al2O3·6H2O(水化铝酸钙,不稳定);3CaO·Al2O3+3CaSO4·2 H2O+26H2O→3CaO·Al2O3·3CaSO4·32H2O(钙矾石,三硫型水化铝酸钙);3CaO·Al2O3·3CaSO4·32H2O+2〔3CaO·Al2O3〕+4 H2O→3〔3CaO·Al2O3·CaSO4·12H2O〕(单硫型水化铝酸钙);4)、4CaO·Al2O3·Fe2O3+7H2O→3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O.水泥速凝是指水泥的一种不正常的早期固化或过早变硬现象.高温使得石膏中结晶水脱水,变成浆状体,从而失去调节凝结时间的能力.假凝现象与很多因素有关,一般认为主要是由于水泥粉磨时磨内温度较高,使二水石膏脱水成半水石膏的缘故.当水泥拌水后,半水石膏迅速与水反应为二水石膏,形成针状结晶网状结构,从而引起浆体固化.另外,某些含碱较高的水泥,硫酸钾与二水石膏生成钾石膏迅速长大,也会造成假凝.假凝与快凝不同,前者放热量甚微,且经剧烈搅拌后浆体可恢复塑性,并达到正常凝结,对强度无不利影响.。
硅酸盐水泥的基本组成水化和硬化机理
硅酸盐水泥的基本组成水化和硬化机理
硅酸盐水泥(Portland cement)是建筑中常用的一种水泥类型,它由若干种矿物质混合制成。
硅酸盐水泥的基本组成包括硅酸盐、铝酸盐、铁酸盐、钙酸盐等矿物质。
硅酸盐水泥的主要性质是其水化反应及硬化机理,其中水化反应是硬化的基础。
硅酸盐水泥的水化反应
硅酸盐水泥的水化反应分为两个阶段,分别是初始水化反应和二次水化反应。
初始水化反应: 初始水化反应是硅酸盐水泥与水开始反应产生物质的重要阶段。
该反应主要是由硅酸盐矿物质和水中的氢氧根离子(OH-)形成硅酸钙凝胶(C-S-H),同时还生成小量结晶状的钙矾土(Ca(OH)2)。
硬化反应: 当硅酸钙凝胶形成后,硬化反应就开始了。
硬化反应是指钙矾土与硅酸钙凝胶再次反应,产生附着在硅酸钙凝胶上的二次水化产物(例:钙硅酸盐、铝酸钙、铁酸钙等),从而导致硬化的过程。
硅酸盐水泥水化反应和硬化机理导致水泥成品逐渐硬化并得到强度的增加。
硅酸盐水泥的硬化机理包括两个阶段。
初始硬化阶段: 在初始硬化阶段中,主要发生的是水泥粉末与水反应生成硅酸钙溶胶,这个阶段是水泥松散质地逐渐变硬的转折点,经历了3-5小时左右时材料开始渐渐变硬,表现出初始硬度。
二次硬化阶段: 在这个阶段中,水泥产物进一步硬化,矿物质之间的结合变得更加紧密。
此时,水泥得到的韧性、强度等性能逐渐增强。
因此,硅酸盐水泥的水化和硬化反应是建筑中非常关键的部分。
这些反应可以向我们展示水泥是如何在混凝土中发挥作用的。
了解这些机制可以帮助建筑师、设计师、土木工程师、建筑工人或其他与建筑相关的人员掌握常用的建筑材料的工作机制并做出相应的设计和施工。
硅酸盐水泥主要水化产物
硅酸盐水泥主要水化产物水泥是一种广泛应用于建筑、工程和建材行业的材料,其中最常见的水泥类型之一是硅酸盐水泥。
硅酸盐水泥的主要水化产物是水化硅酸钙凝胶和水化硅酸钙胶石。
水化硅酸钙凝胶是硅酸盐水泥水化过程中最主要的产物之一。
当硅酸盐水泥与水反应时,发生水化反应,生成硬化的水化硅酸钙凝胶。
这种凝胶是硬化水泥石中的骨架材料,能够提供强度和稳定性。
水化硅酸钙凝胶具有胶状结构,能够填充水泥石中的空隙,并通过硬化过程中的晶体生长来增加水泥石的强度。
水化硅酸钙凝胶的形成是一个复杂的化学反应过程。
在水化反应中,硅酸盐水泥中的三种主要成分——硅酸钙(CaO·SiO2)、硅酸镁(CaO·MgO·2SiO2)和硅酸二钙(CaO·2SiO2)与水反应,形成水化硅酸钙凝胶。
这些成分中的硅酸钙是最主要的反应物,也是最主要的水化产物。
水化硅酸钙凝胶的形成过程可以分为几个阶段。
首先,在水化反应开始时,硅酸钙会与水中的钙离子结合,形成一种称为水合硅酸钙的化合物。
随着水化反应的进行,水合硅酸钙逐渐转变为水化硅酸钙凝胶。
这个过程是一个逐渐形成凝胶结构的过程,其中的水合硅酸钙分子会逐渐凝聚形成凝胶纤维,最终形成凝胶胶石。
水化硅酸钙凝胶的形成对于水泥石的强度和稳定性具有重要作用。
凝胶的形成可以填充水泥石中的空隙,使得水泥石更加致密,并且通过晶体生长的方式增加水泥石的强度。
此外,水化硅酸钙凝胶还能够与其他水化产物相互作用,形成复杂的胶石结构,提供水泥石的抗压强度和抗张强度。
除了水化硅酸钙凝胶,水化硅酸钙胶石也是硅酸盐水泥水化的主要产物之一。
水化硅酸钙胶石是一种凝胶状物质,由水化硅酸钙凝胶和水合硅酸钙等成分组成。
水化硅酸钙胶石具有胶状结构,能够填充水泥石中的空隙,增加水泥石的密实性和强度。
水化硅酸钙胶石的形成过程与水化硅酸钙凝胶类似,也是通过硅酸钙和水的反应形成。
在水化反应中,硅酸钙会与水中的钙离子结合,形成一种水合硅酸钙,随后逐渐转变为水化硅酸钙胶石。
第7章+硅酸盐水泥的水化和硬化
C4AH13+AFt→CH+20H2O+C3A.CS.H12(单硫型水化硫铝酸钙Afm) )
(四)C4AF(铁固相)水化:比C3A水化慢,单独水化,也 不会急凝,其水化反应和产物与C3A相似。 1、在Ca(OH)2环境水化 常温:C4AF+4CH+22 H2O→2C4(A,F)H13 T>50度:C4AF+CH+ H2O→C3(A,F)H6
所以:表面积大:筛余小:早期↗—早期发展↗
后期强度↗:不明显,甚至小下降 4、W/C:浆体稀释度↗→↗ 但:W/C太↗→水太↗→硬化空隙↗:强度↘ W/C太↘→水太↘→↘:→产物↘:强度↗ 5、养护温度↘→↗:图8-19:T=60度:结合水,一天小于1% 25度结合水一 天约为7.5%
T太↗→产物脱水:干缩裂缝:强度下降
1、固相部分: 外部水化产物(55%):颗粒表面向四周生成填充孔隙 内部水化产物:(45%),颗粒水化层内的产物 残存熟料:水年足:未水化完的残核 2、孔隙部分: 毛细孔:未被外部水化产物填充 凝胶孔:凝胶微孔 水::外界温度=100%孔内全为水
二、固相组成的体积
充分水化后:
C-S-H占固相体积:70% Ca(OH)2:固相体积:20% 三硫,单硫占固相体积7% 未水化熟料+微量组分占:3%
1.凝结时间:浆体失去流动性和部分可塑性具有塑性强度 2.硬化:完全失去可塑性:具有塑性强度 3.水泥浆体:经水化而凝结、硬化,为什么能产生强度呢: 将近200年至今还没有统一的看法
7.3
硬化浆体组成和结构
硬化后形成以水化产物为主要的致密结构产物,结构组成:决定其性能 强度 耐 腐蚀 抗冻性
一、硬化浆体(水泥石)组成
(二)C2S水化
第三章-硅酸盐水泥
试饼法
雷氏夹法 检测方法:
6. 强 度
检验方法——软练胶砂法,分别测量抗压强度 和抗折强度。
试件尺寸:4040160mm 胶砂配比:
棱柱体;
水泥 : ISO标准砂 : 水= 1 : 3 : 0.5; 振动成型: 在频率为2800~3000次/min,振幅0.75mm的振实台 上成型。振动时间120s。 试件养护: 在20 C 1C,相对湿度不低于90%的雾室或养护 箱中24h,然后脱模在20C 1 C的水中养护至测试 龄期;
水泥强度发展规律
强度 早期增长快,随后逐渐减慢; (MPa) 28天,基本达到极限强度的80%以上; 在合适的温湿度条件下,强度增长可以持续 几十天 乃至几十年。
时间(d) 3d 28d
水泥石强度的影响因素
影响孔隙率的因素均影响水泥石的强度
水灰比 水灰比越大,孔隙率越大,强度越低
返回
§3.2.3 硅酸盐水泥的技术性质
密度与堆积密度 细度 标准稠度用水量 凝结时间 体积安定性 强度 水化热 不溶物和烧失量 碱含量
1.密度与堆积密度
密度
3.05~3.20,混凝土配合比计算时,一般取3.10。
堆积密度
1000~1600kg/m3,在工地计算水泥仓库时,一般取 1300 kg/m3 。
返回
A B C D
A——凝胶体(C-S-H凝胶,水化 硅酸钙凝胶); B——晶体(氢氧化钙、水化铝酸钙、 水化硫铝酸钙); C——孔隙(毛细孔、凝胶孔、气孔 等); D——未水化的水泥颗粒
水泥石的结构
水化产物+未水化熟料颗粒+孔隙
① 水化产物组成(充分水化时) C-S-H+Ca(OH)2+水化(硫)铝酸钙 70% 20% 7% ② 孔隙组成 = 凝胶孔+毛细孔+气孔
硅酸盐水泥的水化与硬化
硅酸盐水泥的水化与硬化硅酸盐水泥是一种常用的水泥材料,具有较好的水化和硬化性能,广泛应用于建筑和工程领域。
本文将对硅酸盐水泥的水化和硬化进行详细的介绍,包括水泥的成分、水化反应过程、硬化机理以及影响水化和硬化的因素等内容。
硅酸盐水泥是以矿渣、石灰石和黏土为原料,经过磨碎、燃烧和砂浆等工艺加工而成。
一般情况下,硅酸盐水泥的主要成分包括三种物质:硅酸盐矿物、石灰和无定形物质。
硅酸盐矿物是硅酸盐水泥的主要成分,其含有的SiO2和CaO可以发生水化反应,形成具有胶凝性的凝胶体。
石灰则是硅酸盐水泥中的辅助胶凝材料,其主要作用是加速水化反应的进行。
无定形物质是水泥中的杂质,一般情况下不参与水化和硬化过程。
水化反应是硅酸盐水泥的重要特性之一。
当硅酸盐水泥与水接触后,水分子与硅酸盐矿物中的CaO和SiO2发生反应,导致硅酸盐矿物发生水化并形成胶体物质。
水化反应的过程可以分为两个阶段:低水化率的溶解和高水化率的凝胶化。
在溶解阶段,水分子侵入硅酸盐矿物的晶体结构中,使其结构发生破坏并释放出Ca2+和OH-离子。
随着时间的推移,硅酸盐矿物的溶解率逐渐降低,凝胶化过程逐渐主导。
硬化是硅酸盐水泥水化反应的结果,也是水泥材料使用的关键性质。
在硬化过程中,水泥和水反应生成的胶凝体逐渐结晶并与无定形物质相结合,形成稳定的硬质凝胶,从而增强了水泥材料的强度和硬度。
硬化的机理主要涉及胶凝凝胶的形成、晶体生长和无定形物质的变化等过程。
胶凝凝胶的形成使水泥材料具有粘结性,晶体生长则使水泥材料具有硬度和强度。
无定形物质的变化则会影响水泥材料的性能,如开裂、收缩和腐蚀等。
水化和硬化过程受到各种因素的影响,包括水泥成分、水化温度、水化时间、水泥颗粒大小和水泥与水的质量比等因素。
水泥成分的不同会影响水化反应的速率和产物的特性。
水化温度越高,水化反应的速率越快,而水化时间越长,水泥材料的强度和硬度越高。
水泥颗粒的大小和分布会影响水泥的填充效果和反应程度,从而影响水化和硬化的速率和特性。
水泥工艺硅酸盐水泥的水化和硬化
2020/11/22
水泥工艺硅酸盐水泥的水化和硬化
硅酸盐水泥的水化和硬化
水泥加水以后为什么可以凝结硬化?
水泥工艺硅酸盐水泥的水化和硬化
水泥工艺硅酸盐水泥的水化和硬化
水泥工艺硅酸盐水泥的水化和硬化
水泥工艺硅酸盐水泥的水化和硬化
水泥工艺硅酸盐水泥的水化和硬化
水化产物 填充空隙 并将水泥 颗粒连接 在一起
水泥工艺硅酸盐水泥的水化和硬化
1 熟料单矿物的水化
三、铝酸三钙 (一) 无石膏 1.常温下水化
C4AH13和C2AH8在常温下处于介稳状态,且随温度升高而转化 加速。C3A本身水化热高,因而极易按上式转化。
2.在温度较高(35℃以上)的情况下,可直接生成C3AH6晶体。 这些产物均为片状。
水泥工艺硅酸盐水泥的水化和硬化
早期水化产物,大部分在颗粒原始周界以外由水所填充的 空间----这部分C-S-H称外部产物。
后期的生长则在颗粒原始周界以内的区域形成----内部产 物。
随着内部产物的形成和发展,C3S的水化即由减速期向稳定 期转变。
水泥工艺硅酸盐水泥的水化和硬化
1 熟料单矿物的水化
7.C3S的后期水化 泰勒认为:水化过程中存在一个界面区,并逐渐向颗粒内 部推进,H2O离解成的H+在内部产物中从一个氧原子(或水分子) 转移到另一个氧原子,一直到达C3S界面并与之作用;而界面区 内部分Ca2+和Si4+则通过内部产物向外迁移,转入CH和外部C-SH。因此,界面内是得到H+,失去Ca2+和Si4+,原子重新排组, 从而使C3S转化成内部C-S-H。如此,随着界面区向内推进,水 化继续进行。由于空间限制及离子浓度变化,内部C-S-H在形貌 和成分等方面与外部C-S-H会有所不同,通常是较为密实。
硅酸盐水泥的水化和硬化
图3 a
图3 c
图3(a)即为水化12 h 的水泥浆体在SEM 下的形貌. 圈出的位置即为水化产物CSH 凝胶, 呈现不规则絮状, 絮状的尺寸大致为200~500 nm. 从整体来看, 水泥浆体水化12 h后, CSH 凝胶生成量并不大, 产物层较薄, 但各处分布均匀. 在SEM 中使用EDX 对CSH 凝胶进行元 素分析, 结果如图3(c)所示, 大量的元素为Ca 和Si, 从元素构成可以确认产物为CSH 凝胶. 分析结果中还有少量的Al, S, Mg, K 等元素, 这是由于水化早期CSH 凝胶生成量较少, 而 SEM 下EDX 的作用范围约为1μm3, 在这个分辨率下不可避免地有未水化水泥颗粒的干扰, 因此SEM附带的EDX 并不能给出准确的CSH 凝胶的元素分析结果, 只能是一个大概的数值。
硅酸盐水泥的水化和硬化
水泥用适量的水拌合后,形成能与砂石集料结合的可塑性 浆体,随后逐渐失去塑性而凝结硬化为具有一定强度的石状体。 同时,还伴随着水化放热、体积变化和强度增长等现象,这说 明水泥拌水后产生了一系列复杂的物理、化学和物理化学的变
化。
一、 水泥水化过程
二、 水化初期产物形貌
三、 水化模型 四、晶种对硬化水泥的影响
混合材比例、研磨方式以及水泥细度对水泥早期水化热的影响的可行工
具。通过ANFIS 分析可获得一些关于普通水泥和混合水泥早期水化热的
预测结果。且与试验结果相比,ANFIS 获得的结果准确性很好。 ③R. Krstulovic 和P. Dabic 在水化动力学基础上进一步研究了水泥的
水化过程,提出了水泥基材料的多组分和多尺度水化反应的动力学模型,
水化产物 填充空隙 并将水泥 颗粒连接 在一起
已水化的水 泥浆里留下 的孔隙 未水化水 泥颗粒
硅酸盐水泥的水化、凝结与硬化
凝结硬化过程
初始反应期 潜伏期 凝结期 硬化期
初始的溶解和水化,约持续5-10分钟。
流动性可塑性好凝胶体膜层围绕水泥颗 粒成长,1h
凝胶膜破裂、长大并连接、水泥颗粒进 一步水化,6h。多孔的空间网络—凝聚 结构,失去可塑性
凝胶体填充毛细管,6h-若干年硬化石状 体密实空间网
3CaO·Al2O3·6H2O+ H2O+CaSO4·2H2O 3CaO·Al2O3·3CaSO4·31H2O
钙矾石
水泥熟料单矿物水化时特征
矿物种类
硅酸三钙
硅酸二钙
铝酸三钙
缩写 含量(%) 水化速度
C3S 37-60
快Leabharlann C2S 15-37慢
C3A 7-15 最快
水化热
多
少
最多
反应速度: 强放度 热量:
3CaO·SiO2+H2O CaO·2SiO2·3H2O+Ca(OH)2
硅酸二钙水化生成水化硅酸钙凝胶和氢氧化钙晶 体。
该水化反应的速度慢,对后期龄期混凝土强度的 发展起关键作用。水化热释放缓慢。
产物中氢氧化钙的含量减少时,可以生成更多的 水化产物。
2CaO·SiO2+H2O 3CaO·2SiO2·3H2O+Ca(OH)2
铝酸三钙水化生成水化铝酸钙晶体。 该水化反应速度极快,并且释放出大量的热量。 如果不控制铝酸三钙的反应速度,将产生闪凝现象,水泥将 无法正常使用。 通常通过在水泥中掺有适量石膏,可以避免上述问题的发生。
3CaO·Al2O3+H2O
3CaO·Al2O3·6H2O
铁铝酸四钙水化生成水化铝酸钙晶体和水化铁酸钙凝胶
硅酸盐水泥的水化
CCC高 好333AAS>>>CCC332SS早S低好>>>后高CCC443AAAFF>>>低差CCC422ASSF
收缩
中
较大
大
铁铝酸四钙
C4AF 10-18
快 较多
低 极好
小
凝结与硬化
何为凝结? 水泥加水拌和形成具有一定流动性和可塑性的浆体,经过自身的物理
化学变化逐渐变 稠失去可塑性的过程。 何为硬化? 失去可塑性的浆体随着时间的增长产生明显的强度,并逐渐发展成为
坚硬的水泥石的过程。 水泥的凝结与硬化过程由以下四个过程组成。
凝结硬化过程
初始反应期 潜伏期 凝结期 硬化期
初始的溶解和水化,约持续5-10分钟。
流动性可塑性好凝胶体膜层围绕水泥颗 粒成长,1h
凝胶膜破裂、长大并连接、水泥颗粒进 一步水化,6h。多孔的空间网络—凝聚 结构,失去可塑性
凝胶体填充毛细管,6h-若干年硬化石状 体密实空间网
2CaO·SiO2+H2O 3CaO·2SiO2·3H2O+Ca(OH)2
铝酸三钙水化生成水化铝酸钙晶体。 该水化反应速度极快,并且释放出大量的热量。 如果不控制铝酸三钙的反应速度,将产生闪凝现象,水泥将 无法正常使用。 通常通过在水泥中掺有适量石膏,可以避免上述问题的发生。
3CaO·Al2O3+H2O
3CaO·Al2O3·6H2O
铁铝酸四钙水化生成水化铝酸钙晶体和水化铁酸钙凝胶
该水化反应的速度和水化放热量均属中等。
4CaO·Al2O3·Fe2O3+H2O
3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O
石膏调节凝结时间的原理
石膏与水化铝酸钙反应生成水化硫铝酸钙针状晶体(钙矾石)。 该晶体难溶,包裹在水泥熟料的表面上,形成保护膜,阻碍水分进 入水泥内部,使水化反应延缓下来,从而避免了纯水泥熟料水化产生 闪凝现象。 所以,石膏在水泥中起调节凝结时间的作用。
第七章 硅酸盐水泥的水化与硬化
§7.2 硅酸盐水泥的水化
一.水化反应体系的特点
• 水泥的水化基本上是在Ca(OH)2 和石膏的饱和溶液 或过饱和溶液中进行的,并且还会有K+、Na+等离子。
• 熟料首先在此种溶液中解体,分散,悬浮在液相中, 各单体矿物进行水化,水化产物彼此间又化合,之 后水化产物凝结、硬化,发挥强度,因此 ,水化过 程实际上就是熟料解体——水化——水化产物凝 聚——水泥石。开始是解体、水化占主导作用,以 后是凝聚占主导作用。
2.C3A在液相CaO浓度达饱和时
C3A + CH + 12H → C4AH13
瞬凝原因:水泥颗粒表面形成大量C4AH13 (六方片状晶体) ,其数量迅速增多,足以 阻碍粒子的相对运动。
3.在石膏存在条件下的水化
·石膏(充足)、CaO同时存在时 C3A+CH+12H→C4AH13 C4AH13+3CSH2+14H → C3A·3CS·H32 + CH
反应:随时间的增长而下降
原因: 在C3S表面包裹产物—阻碍水化。
• Ⅴ:稳定期
反应:很慢—基本稳定(直到水化结束) 产物扩散困难。
原因:产物层厚:水很少—
Ⅰ-诱导前期; Ⅱ-诱导前期;Ⅲ -加速期; Ⅳ -减速期;Ⅴ -稳定期
◆诱导期的本质
• 保护膜理论 • 晶核形成延缓理论
• 晶格缺陷的类别和数量是决定诱导期长短 的主要因素
· 水泥石的组成:
固相
结晶程度较差的凝胶 C-S-H:70%
结晶程度较好的Ca(OH)2: 20% 结晶程度较好的AFm、 AFt: 7%
及水化铝酸钙等晶体 未水化残留熟料和其它微量组份:3%
孔隙
毛细孔:未被外部水化产物填充 凝胶孔:凝胶微孔 水:100%孔内全为水
硅酸盐水泥的水化过程讲解
硅酸盐水泥的水化
? 水泥水化的液相环境
水泥拌水后,立即发生水化反应,各组分开始溶解。 所以极短的时间后,填充在颗粒之间的液相不再是纯水, 而是含有各种离子的溶液,主要为:
硅酸钙 → Ca 2+,OH -
铝酸钙
→
Ca
2+
,Al(OH)
4
铁铝酸钙 →
Ca 2+
,Fe(OH)
4
硫酸钙
→
Ca 2+
,SO
因而水化是从表面开始,在浓度和温度不断变化的条件下,通 过扩散作用缓慢向中心深入。较大水泥颗粒的中心往往会完全停止 水化,当温度、湿度条件适当时,再重新缓慢水化。
12
硅酸盐水泥的水化
? 硅酸盐水泥的水化过程
13
硅酸盐水泥的水化
? 水化前后固相及其所占体积比的变化14Fra bibliotek 硅酸盐水泥的水化
? 水化产物的基本特征
Cement Water Hydration Products
8
水泥加水以后为什么可以凝结硬化?
Hydration products connect grains
9
水泥加水以后为什么可以凝结硬化?
Pore space remains in hydrated cement paste
Unhydrated grains
15
硅酸盐水泥的水化
? 硅酸盐水泥的水化放热曲线
?钙矾石形成期: C3A率先水化→形成AFt → 第一放热峰 ?C3S水化期:C3S水化→第二放热峰(有时AFt→AFm 形成第三放热峰) ?结构形成和发展期 :放热速率很低并趋于稳定,水化产物相互交织
16
请各位老师批评指正! 非常感谢!
水泥工艺学第六章 硅酸盐水泥的水化与硬化
➢C4AF的水化放热曲线与C3A 很相似,但早期水化受石 膏的延缓更为明显;
➢在氢氧化钙饱和溶液中, 石膏能使其放热速率变得 极为缓慢。
6.2 硅酸盐水泥的水化
➢硅酸盐水泥是由多种熟料矿物、石膏及混合材共同组 成,因此当水泥加水后,石膏要溶解于水,C3A和C3S 很快与水反应,C3S水化时析出Ca(OH)2,故填充在颗 粒之间的液相实际上不是纯水、而是充满多种离子的 溶液。
• 由于水泥熟料是多种矿物的集合体,与 水的作用比较复杂,因此先分析水泥单 矿物的水化反应,然后再探讨水泥总的 水化硬化过程。
熟料矿物水化的原因
硅酸盐水泥熟料矿物结构的不稳定性
➢熟料烧成后的快速冷却,保留了高温介稳状态 的晶体结构
➢工业熟料中的矿物不是纯的C3S、C2S等,而是 Alite和Belite等有限固溶体
➢水泥是多矿物、多组分的体系,各熟料矿物并不可能单独进行水化, 它们之间的相互作用必然对水化进程有一定影响。
➢应用一般的方程式,实际上很难真实地表示水泥的水化过程。
6.3 水化速率
熟料矿物ቤተ መጻሕፍቲ ባይዱ水泥的水化速率常以单位时间内的 水化程度或水化深度来表示。
➢水化程度:是指在一定时间内发生水化作用的 量和完全水化量的比值;
水化产物:
Ca(OH)2的晶体开始可能在C3S表面生长,但有些晶体会远 离颗粒或在浆体的充水孔隙中形成。
由于硅酸根离子比Ca2+较难迁移,C-S-H的生长仅限于表面;
(2)C3S的中期水化
在C3S水化的加速期内,伴随着Ca(OH)2及C-S-H的 形成和长大,液相中Ca(OH)2和C-S-H的过饱和度降 低,又会相应地使Ca(OH)2和C-S-H的生长速度逐渐 变慢。随着水化产物在颗粒周围的形成,C3S的水 化也受到阻碍。因而,水化加速过程就逐渐转入减 速阶段。
硅酸盐水泥水化反应
硅酸盐水泥水化反应
硅酸盐水泥是目前最常用的建筑材料之一,而水化反应则是硅酸盐水泥胶凝固化的关键过程。
硅酸盐水泥水化反应是指硅酸盐水泥与水发生化学反应,形成胶凝体、水化产物和剩余水。
硅酸盐水泥的水化反应主要分为两个阶段:初期和晚期水化反应。
初期水化反应是指水和硅酸盐水泥中的硬质物质反应,形成初期胶凝体。
晚期水化反应则是指先前形成的胶凝体与水中未反应的硅酸盐水泥再次发生反应,形成更加牢固的胶凝体。
在水化反应中,硅酸盐水泥中的主要化合物是三钙硅酸盐(C3S)、双钙硅酸盐(C2S)、三钙铝酸盐(C3A)和四钙铝酸盐(C4AF)。
其中,C3S 和C2S是水化反应的主要产物,其在水中会分解出氢氧化钙(Ca(OH)2)和硅酸钙(C-S-H凝胶),这是硅酸盐水泥胶凝的基本过程。
此外,水化反应还会产生一些副产物,如氢氧化铝和铝酸钙,这些产物能够与氢氧化钙反应,形成硬化的水化产物。
总之,硅酸盐水泥的水化反应是一个复杂的过程,它需要适当的水泥配比、合适的水泥水化时间、水泥质量和水质量等因素的协同作用,才能产生高质量的建筑材料。
- 1 -。
硅酸盐水泥的水化硬化概述
3、硅酸盐水泥的水化产物主要有哪几种,其特征和性能如何?
4、论述硬化水泥浆体强度的形成。
30
三相多孔体
20
一、水泥硬化机理
21
硬化水泥浆体形成的原因
水泥石具有强度的原因
构成三度空间牢固结合、密实的整体
22
二、硬化水泥浆体结构
C/S< 2,在 近程(纳米级)有序:层 1.4~1.6左右 状结构;
初期:纤维状 早期:网络状 中期:等大粒子、球状 后期:内部产物
23
与AFt相比,AFm中的结构水少,其密度更大。当AFm接触到各种来源的 SO42-离子而转变成AFt时,结构水增加,密度减小,从而产生相当的体 积膨胀,是引起硬化水泥浆体体积变化的一个主要原因。
(2)间接法:测定结合水、水化热、Ca(OH)2生成量。较为简单。
17
三、影响水化速率的因素 (1)熟料矿物的组成和性质
水化速率大小:C3A > C4AF > C3S > C2S B矿有四种不同晶型,对水化速率影响很大,β-C2S水化快,γ-C2S水化慢。 熟料矿物晶体中含有杂质、晶格缺陷、晶格畸变,水化速率快。 熟料矿物为固溶状态,如:F固溶在A矿,水化活性高,水化速率快。
凝结:塑性浆体失去流动性和可塑性
水泥水化
硬化:建立具有一定机械强度的结构
硬化之后还在继续水化
硬化水泥浆体:水泥加水发生水化反应后,变成具有一定强度 的固体,叫硬化水泥浆体。由于外观和一些性能与天然石材相 似,又称之为水泥石。
非均质的多相体系
水化产物和残存熟料-固相 孔隙中的水-液相 孔隙中的空气-气相
C3A + 6H = C3AH6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C3 A CS H12 和C4AH13的固溶体。
石膏的存在延缓了C3A的水化
(四)铁相固溶体(C4AF)的水化 水化速率比C3A低。其水化产物与C3A很相似。相当于C3A 中一部分氧化铝被氧化铁所置换,生成水化铝酸钙和水化铁酸 钙的固溶体。
C-S-H(Ⅱ)
定义:水化硅酸钙凝胶体(C-S-H) 组成:不固定,随钙硅比和水硅比变化 结构:微晶,尺寸接近于胶体范畴; 形貌:纤维状,网络状,等大粒子,内部产物; CH:晶体,层状,六方板状,生长在孔洞之间。
C3S水化历程:
五个阶段: 起始期 15min PH=12 急剧 诱导期(静止期)——使硅酸盐水泥保持塑性的原因; 2-4h诱导期结束的时间,即初凝时间。 加速期(4-8h)C-S-H和Ca(OH)2 大量形成,达到终凝。 减速期(12-24h) 稳定期 受扩散控制
C-S-H凝胶的组成与它所处 的溶液中的CaO浓度有关, C-S-H在一定的碱度下才能存 在,如2- 2-3图所示:
下表是对上图的总结:
CaO浓度 g/l
0.06-0.11
0.11-1.12
>1.12
CaO摩尔浓度 mol/l 1-2
2-20
>20
C/S
<1
0.8-1.5
1.5-2
水化产物
水化硅酸钙和硅酸凝胶 C-S-H(Ⅰ)
钙矾石在常温和一般湿度条件下的脱水曲线
四、水泥的凝结、硬化过程
1882年,雷霞特利提出的结晶理论; 1892年,米哈艾利斯又提出了胶体理论; 拜依柯夫将上述两理论加以发展,把水泥的硬化为三个时期: 第一,溶解期;第二,胶化期;第三,结晶期 列宾捷尔提出凝聚-结晶三维网状结构理论; 鲍格提出是巨大表面能的作用引起互相粘结; 洛赫尔提出的三阶段论:
得极为缓慢。如下图所示。
二、硅酸盐水泥的水化
硅酸盐水泥的水化过程
硅酸盐水泥的水化放热曲线如图2-2-6所示。
水泥的水化过程简单地划分为三形成和发展期。
三、水化速率:
水(化一程)度水а化:是速指率一:定单时位间时内间已内水化水的泥水的泥水量化与程完度全或水化深度。
9 硅酸盐水泥的水化和硬化
水化:水泥熟料矿物的水合反应
凝结:水泥加水拌和后,成为可塑的浆体,
逐渐变稠,失去塑性,但尚不具有强度的过 程。
硬化:随后产生明显的强度,并逐渐发展而
成为坚硬的人造石。
一、熟料单矿物的水化
C3S的水化:
C3S在水泥熟料中的含量约占50%,有时高达60%,因此, 它的水化作用、水化产物及其形成的结构,对硬化水泥 浆体的性能有很重要的影响。 C3S的水化产物为C-S-H和Ca2(OH)
C3 A 6H C3 AH6
C3A的水化产物
C3AH6的空间构造能力差,使得强度下降; C4AH19和C2AH8转化为C3AH6, 析水过程使孔隙大大增加。 因此不希望上述反应发生。
在硅酸盐水泥浆体的碱性液相中,CaO浓度往往达 到饱和或过饱和,因此可能产生较多的六方片状C4AH13, 足以阻碍粒子的相对移动,这就是使浆体产生瞬间凝结 的一个主要原因。
水化反应 C3S nH CxSHy (3 x)CH
CxSHy:水化硅酸钙,不同条件下,x、y不同。
完全水化时: 2C3S 6H2O C3S2H3 3CH
水化产物组成不固定,C/S在较大范围内变动。 当C/S在0.8-1.5变动时,生成的C-S-H凝胶称为(Ⅰ)型; 当C/S在1.5-2.0变动时,生成的C-S-H凝胶称为(Ⅱ)型。
C3S水化放热速率和Ca2+浓度变化曲线
解释诱导期结束及 加速期开始的理论:
保护膜理论; 延缓结晶理论; 综合理论要点。
(二)C2S的水化
完全水化式 2C2S 4H 2O C3S2H3 CH
形成的CH少,水化速度慢,相当于C3S水化速度的1/20。 28天C3S提供早期强度,3个月后,C2S提供后期强度,使强 度不断增长。
(三)C3A的水化 水化速度非常快 水化特点:水化速度极快;对温度非常敏感,温度不同时水化 模式不同 ,具有多色性;不加石膏缓凝剂时,会产生急凝。
在常温下,其水化反应为:
2C3 A 27 H C4 AH19 C2 AH8
在常温下,其水化反应为:
2C3 A 27 H C4 AH19 C2 AH8
C4 AF 4CH 22 H 2C4 ( A, F )H13
在20℃以上,六方片状的C4(A,F)H13要转变成C3(A,F)H6。 当温度高于30℃时,C4AF直接水化生成C3(A,F)H6。
掺有石膏时的反应也与C3A大致相同。
C4AF的水化放热曲线与C3A的也很相似,但早期水化受石膏 的延缓更为明显;在氢氧化钙饱和溶液中,石膏能使其放热速率变
水化量的比值。
水化深度 h d (1 3 1 )
2 d—粒径
(二)水化速度的影响因素
1、矿物 C3A>C3S,C4AF>C2S
2、水灰比 水灰比大,水化速度也大。
3、细度 颗粒越细,水化加快。
4、外加剂影响
5、养护条件
温度对C3S水化速率的影响
温度对水泥水化速率的影响(对早期影响较大)
C4AH19在低于85%的相对湿度下会失会6个结晶水分子而 成为C4AH13。C4AH19、C4AH13和C2AH8都是片状晶体, 常温下处于介稳状态,有向C3AH6等轴晶体转化的趋势。
C4 AH13 C2 AH8 2C3 AH6 9H
上述反应随温度升高而加速。在T>350C时,C3A会直接 生成C3AH6:
在有石膏的情况下,C3A水化的最终产物与石膏掺 入量有关。其最初的基本反应是:
C3 A 3CSH2 26 H C3 A 3CS H32
所形成的三硫型水化硫铝酸钙,称为钙矾石。其中的铝可被 铁置换而成为含铝、铁的三硫型水化硫铝酸盐相。故常用 Aft 表示。
若SO3在C3A完全水化前耗尽,则钙矾石与C3A作用转化为单 硫型水化硫铝酸钙(Afm)