硅酸盐水泥的水化过程

合集下载

硅酸盐水泥的水化和硬化

硅酸盐水泥的水化和硬化
C3 A 3CS H32 2C3 A 4H 3(C3 A CS H12 ) 若石膏极少,在所有钙矾石转变成单硫型水化硫铝酸钙后, 还有C3A,那就形成
C3 A CS H12 和C4AH13的固溶体。
石膏的存在延缓了C3A的水化
(四)铁相固溶体(C4AF)的水化 水化速率比C3A低。其水化产物与C3A很相似。相当于C3A 中一部分氧化铝被氧化铁所置换,生成水化铝酸钙和水化铁酸 钙的固溶体。
C-S-H(Ⅱ)
定义:水化硅酸钙凝胶体(C-S-H) 组成:不固定,随钙硅比和水硅比变化 结构:微晶,尺寸接近于胶体范畴; 形貌:纤维状,网络状,等大粒子,内部产物; CH:晶体,层状,六方板状,生长在孔洞之间。
C3S水化历程:
五个阶段: 起始期 15min PH=12 急剧 诱导期(静止期)——使硅酸盐水泥保持塑性的原因; 2-4h诱导期结束的时间,即初凝时间。 加速期(4-8h)C-S-H和Ca(OH)2 大量形成,达到终凝。 减速期(12-24h) 稳定期 受扩散控制
C-S-H凝胶的组成与它所处 的溶液中的CaO浓度有关, C-S-H在一定的碱度下才能存 在,如2- 2-3图所示:
下表是对上图的总结:
CaO浓度 g/l
0.06-0.11
0.11-1.12
>1.12
CaO摩尔浓度 mol/l 1-2
2-20
>20
C/S
<1
0.8-1.5
1.5-2
水化产物
水化硅酸钙和硅酸凝胶 C-S-H(Ⅰ)
钙矾石在常温和一般湿度条件下的脱水曲线
四、水泥的凝结、硬化过程
1882年,雷霞特利提出的结晶理论; 1892年,米哈艾利斯又提出了胶体理论; 拜依柯夫将上述两理论加以发展,把水泥的硬化为三个时期: 第一,溶解期;第二,胶化期;第三,结晶期 列宾捷尔提出凝聚-结晶三维网状结构理论; 鲍格提出是巨大表面能的作用引起互相粘结; 洛赫尔提出的三阶段论:

硅酸盐水泥水化反应

硅酸盐水泥水化反应

硅酸盐水泥水化反应硅酸盐水泥是目前最常用的建筑材料之一,它的水化反应被认为是硬化过程中最为重要的部分。

硅酸盐水泥水化反应主要是指硅酸盐水泥与水反应,产生水化产物的反应过程。

硅酸盐水泥水化反应过程可以分为三个阶段:溶解期、凝胶期和晶化期。

在溶解期,水会溶解硅酸盐水泥中的化学物质,然后发生水化反应产生凝胶体。

在凝胶期,凝胶体逐渐形成并变得更加坚固。

在晶化期,凝胶体中的化合物继续水化反应,然后形成硬化的水泥石。

硅酸盐水泥水化反应是一个复杂的过程,其中涉及许多化学物质和反应。

主要涉及到硅酸盐水泥(主要成分为C3S、C2S、C3A、C4AF)、水、钙离子、铝离子、矽酸离子以及氢氧根离子等。

C3S具有产生水化硬化物的能力,而C2S主要用于增强密实性,C3A 和C4AF会分解产生钙离子、氢氧根离子、矽酸离子和铝离子等。

水化反应需要一定的水分,适量的水可以提高水化反应速度,水的过多则会破坏硅酸盐水泥的力学性质。

除了化学物质的反应之外,水泥水化反应还受到许多因素的影响。

这些因素包括水泥成分、水与水泥的比例、水的质量、水的温度等。

水的温度可以影响硅酸盐水泥的水化反应速率。

在水温较高的情况下,硅酸盐水泥的水化反应速率会加快,因为水的热量可以促进化学反应。

水泥的数量和比例会直接影响水泥的强度和硬度。

综上所述,硅酸盐水泥的水化反应是建筑工程中非常重要的一环。

虽然这是一个复杂的过程,但其中的每一个步骤都有其重要的作用。

在使用硅酸盐水泥进行建筑施工时,我们应该合理选取水泥的种类和比例,控制水的含量和温度,以保证水泥的强度和硬度。

第四章 硅酸盐水泥的水化

第四章  硅酸盐水泥的水化

硅酸盐水泥的水化放热曲线与C3S的基本相同,图2-2-5-10 中出现了三个放热峰。第一个峰一般认为是由于AFt的形成,第 二个峰则是由于C3S水化形成C-S-H和CH相,第三个峰是由于石 膏消耗完后AFt向AFm相的转化。
多数研究者认为水化硅酸钙的组成随着水化反应的进程而改变,其C/S 比随龄期的增长而下降,例如从水化1天的1.9,到2,3年后可减少至1.4~1.6 左右。
C3S的水化过程的5个阶段:
I.初始水解期:加水后立即发生急剧反应,但该阶段时间 很短,在15min以内结束。又称诱导前期。 2.诱导期:这一阶段反应速率极其缓慢,又称静止期,一 般持续2~4h,是硅酸盐水泥浆体能在几小时内保持塑性的原 因。初凝时间基本上相当于诱导期的结束。 3.加速期:反应重新加快,反应速率随时间而增长,出现 第二个放热峰,在到达峰顶时本阶段即告结束(4~8h)。此 时终凝已过,开始硬化。 4.衰退期:反应速率随时间下降的阶段,又称减速期,约 持续12一24h,水化作用逐渐受扩散速率的控制。 5.稳定期:反应速率很低、基本稳定的阶段,水化作用完 全受扩散速率控制。
水化重新加速的第二放热峰,也足以说明由于石膏的 存在,水化延缓。所以,石膏的参量是决定C3A水化速率、 水化产物的类别及其数量的主要因素。但石膏的溶解速 率也很重要,如果石膏不能及时向溶液中供应足够的硫 酸根离子,就有可能在形成钙矾石之前,先生成单硫型 水化硫铝酸钙。所以,硬石膏、半水石膏等不同类型的 石膏,对于C3A水化过程的影响,就与通常所用的二水石 膏有着明显的差别。 按照一般硅酸盐水泥的石膏掺量,其最终的铝酸盐水 化物常为钙矾石与单硫型水化硫铝酸钙。同时在常用水 灰比的水泥浆体中,离子的迁移受到一定程度的限制, 较难充分地进行上述各种反应,因此钙矾石很有可能与 其它几种水化铝酸盐产物在局部区域同时并存。

硅酸盐水泥的水化

硅酸盐水泥的水化

硅酸盐水泥的水化硅酸盐水泥加水后,首先石膏迅速溶解于水,C3A立即发生反应,C4AF与C3S亦很快水化而&beta;-C2S则稍慢。

几分钟后在电子显微镜下可以观察到水泥颗粒表面生成针状晶体、立方片状晶体和无定型的水化硅酸钙凝胶(C-S-H)。

尺寸相对较大的立方板状晶体是氢氧化钙,针状晶体(或立方棱柱状晶体)是三硫型水化硫铝酸钙晶体(钙矾石AFt)。

以后由于不断地生成三硫型水化硫铝酸钙,使液相中SO42-离子逐渐耗尽后,C3A与C4AF和三硫型水化硫铝酸钙作用生成单硫型水化硫铝酸钙(AFm)。

生成的3Ca0&middot;(A1203&middot;Fe203)&middot;CaS04&middo t;12H20可再和4Ca0&middot;(A1204&middot;Fe304)&middot;13H20形成固溶体,如果石膏不足,还有C3A或C4AF剩留,则会生成单硫型水化硫铝酸钙和C4(AF)H13的固溶体,甚至单独的C4(AF)H13,而后再逐渐变成稳定的等轴晶体C3(AF)H6。

综上所述,硅酸盐水泥水化生成的主要水化产物有:C-S-H 凝胶、氢氧化钙、水化铝(铁)酸钙和水化硫铝(铁)酸钙晶体。

在充分水化的水泥石中,C-S-H凝胶约占70%,Ca(OH)2约占20%,钙矾石和单硫型水化硫铝酸钙约占70%。

水泥石结构是由未水化的水泥颗粒、水化产物以及孔隙组成,水化产物晶体共生和交错,形成结晶网络结构,在水泥石中起重要的骨架作用,水化硅酸钙凝胶填充于其中。

C-S-H凝胶比表面积很大,表面能高,相互间受到分子间的引力作用,相互接触而发展了水泥石的强度。

因此,随着水化龄期的推移,C-S-H凝胶生成量增加,有助于水泥石强度增长。

水泥石的强度与其他多孔材料一样,取决于内部孔隙的数量,这类影响强度的孔隙,是指拌合水泥浆时形成的气孔及不参与水化反应的自由水所形成的毛细孔,但不包括极为微小的凝胶孔。

硅酸盐水泥的水化过程课件

硅酸盐水泥的水化过程课件
挑战
随着全球气候变化和环境问题的加剧,硅酸盐水泥行业面临着减少碳排放、提高能源利用效率、降低环境污染等 重大挑战。此外,随着市场竞争的加剧和消费者对产品品质和服务质量的要求提高,硅酸盐水泥行业还需要加强 技术创新和产品升级,提高企业核心竞争力。
THANKS
感谢观看
的目的。
此外,硅酸盐水泥还可以用于制 造涂料、油漆等涂层材料,提高
涂层的硬度和耐候性。
07
CATALOGUE
结论与展望
硅酸盐水泥水化过程的结论
硅酸盐水泥熟料是水化反应的主要来源,其组成和性质对水化过程有重要影响。
硅酸盐水泥熟料中的硅酸三钙和硅酸二钙含量较高,它们的水化反应速度快,对混 凝土的早期强度贡献较大。
硅酸盐水泥的其他应用
在土木工程中的应用
硅酸盐水泥在土木工程中是一 种常用的建筑材料,具有高强 度、耐久性和良好的耐火性。
在桥梁、道路、建筑等土木工 程中,硅酸盐水泥被广泛用于 混凝土的配制,以提高结构的 强度和耐久性。
此外,硅酸盐水泥也常用于砌 筑砂浆的配制,具有良好的保 水性和易操作性。
在化学工业中的应用
水化产物。
水化产物的种类与性质
硅酸钙
硅酸钙是硅酸盐水泥的主要水化产物,它对水泥 石的强度、耐久性和化学稳定性都有重要影响。
氢氧化钙
氢氧化钙是水泥水化的副产物,它的溶解度较高 ,对水泥石的强度和耐久性产生不利影响。
铝酸钙
铝酸钙是水泥水化的中间产物,它对水泥石的强 度和耐久性也有重要影响。
水化过程中的能量变化
硅酸盐水泥是一种重要的无机非 金属材料,在化学工业中有着广
泛的应用。
例如,硅酸盐水泥可以用于生产 硫酸钙、磷酸钙等重要的化工原
料。

硅酸盐水泥水化

硅酸盐水泥水化

• 随比表面积增加,水化初期反应加速, 延缓凝结所需的石膏量随之增加。
• 硅酸盐水泥熟料中的碱几乎全部结合为 易溶的硫酸盐。随碱含量增加,石膏溶 解度增加,Ca(OH)2的溶解度降低,使硫 酸盐离子优先进入CSH凝胶。
• Fe2O3的影响还不能解释。
C3A、R2O、SO3的关系
C3A(%)
>6 <6 >10 >10
微结构特征
• 纤维状CSH凝胶形成 • 水化12小时后,开始在水化水泥颗粒周
围形成Hadley空壳。 • 小于3μm的水泥颗粒可全部水化。 • 水化16小时后,出现针状AFt相
水化后期
• 反应衰退期 • 反应产物开始在反应物层(Hadley壳)
内部沉积。 • AFt向AFm转变 • 反应为局部化学反应,受扩散控制。 • 浆体逐渐致密。
烧失(%)
20 18 16 14 12 10
0
5
10 15
20 25
30
(d)
cef3 cef4 cef5
水泥硬化浆体的化学结合水量
影响水泥水化的因素
• 水泥水化速率受水泥中各个组分的水化 速率的影响。C3S和C3A控制着水泥的水 化速率。
• 各相的化学和矿物组成,水化环境同样 影响水泥的水化速率。
硅酸盐水泥的水化
水泥“水化”是在水泥中各组分和水之 间发生的化学过程。水化具有物理和机械 作用,影响水泥材料的工程性能,即新拌 浆体的流变性能、凝结和硬化、徐变、水 化放热、微观结构和耐久性等。
流变性能
(流动性、凝结、硬化、徐变)

水 化 热
热 晗
水化引起的变化

微观结构
(孔隙率、形貌)



组 成

硅酸盐水泥水化过程

硅酸盐水泥水化过程

硅酸盐水泥水化过程1、硅酸盐水泥的化学成分和矿物成分分析我们知道硅酸盐水泥中由于人为设计加入了许多的钙、铁、铝等阳离子,这些离子在水泥煅烧过程与二氧化硅网络结合,在网络中形成离子缺陷,而这些离子的多与少、相互之间的比例都会对二氧化硅网络的稳定性产生决定性的影响,所以无论如何强调水泥的化学成份都不为过。

而这些阳离子与二氧化硅网络的结合是完全无序的,有的地方或许钙离子会富集多一点而某些地方其它阳离子为富集得多一些,所以我们常常依据这一特点,将硅酸盐水泥的矿物成份区别为硅酸三钙(C3S)、硅酸二钙(C2S)、铝酸三钙(C3A)和铁铝酸四钙(C4AF)但考虑到它的空间网络结构,在水泥中很难分离出这四种矿物,可以设想每一粒水泥颗粒中包含了这四种矿物,只是在不同的空间位置,可能某种矿物会更为富集而已。

硅酸盐水泥中,由于硅酸三钙的钙离子含量更高,所以它的反应速度一定会超过硅酸二钙,而铝酸三钙的反应最快,铁铝酸四钙相对于铝酸三钙要慢,但也快于硅酸三钙,所以这四种矿物成分的水化反应速度依次为C3A、C4AF、C3S、C2S。

硅酸盐水泥的化学成分会极大地影响这四种矿物在水泥中的比例。

2、硅酸盐水泥的水化硬化过程硅酸盐水泥的水化硬化过程由水泥与水发生化学反应主导,四种主要矿物都会发生反应,是一个连续且漫长的过程。

这些反应不仅受到各种矿物成分的水化反应的直接影响,还受到反应物和反应产物在空间位置的影响,表现出一定的阶段性。

在宏观上,硅酸盐水泥从与水接触开始,处于软化状态,随着水化反应的进行,会放出热量,生成反应产物,反应物的生成以及水分的消耗,导致其稠度也会增加,水泥浆会逐渐失去流动性;随着反应进一步增加,会在水泥颗粒周围成纤维状排列;这些纤维搭接在一起,整个系列开始失去软塑性而开始硬化。

在简单介绍了水泥的水化硬化前提下,我们还要探讨硅酸盐水泥不同矿物的水化特性都会影响它的水化硬化过程,而且对于混凝土的水泥硬化过程具有决定性的影响,并最终影响混凝土的各项性能。

硅酸盐水泥的水化反应

硅酸盐水泥的水化反应

硅酸盐水泥水化反应
嘿,朋友们,你们知道吗?硅酸盐水泥这家伙,一碰到水,那化学反应可是热闹非凡,简直就像是一场盛大的派对!
想象一下,水泥熟料里的硅酸三钙和硅酸二钙,它们就像是两个活泼的孩子,一见到水就迫不及待地开始玩耍。

它们与水反应,生成了水化硅酸钙和氢氧化钙。

这就像是在派对上,孩子们找到了自己的玩伴,开始尽情地玩耍,生成了新的、更有趣的东西。

而铝酸三钙和铁铝酸四钙呢,它们更像是派对上的摇滚明星,与水反应后,生成了水化铝酸钙。

这水化铝酸钙还不甘寂寞,又与氢氧化钙进一步反应,生成了水化铝酸四钙。

这就像是在派对上,摇滚明星们找到了自己的乐队,开始演奏起激情四溢的音乐,让整个派对更加火热。

但是,派对上怎么可能少了石膏这位重要的嘉宾呢?当有石膏存在时,水化铝酸钙会与石膏反应,生成钙矾石。

这就像是在派对上,石膏这位神秘的嘉宾与水化铝酸钙这位摇滚明星合作,共同演绎了一首令人惊叹的歌曲,让整个派对达到了高潮。

当然,这场派对不仅仅只有这些化学反应,还有二氧化碳与氢氧化钙的碳化反应,就像是派对上的小游戏,给整个派对增添了一丝乐趣。

经过这场盛大的派对,硅酸盐水泥的主要水化产物有C-S-H 凝胶、氢氧化钙、钙矾石和水化硫铝酸钙。

它们就像是派对后的纪念品,记录着这场热闹非凡的化学反应。

你看,硅酸盐水泥的水化反应就是这么有趣,就像是一场盛大的派对,充满了活力和激情。

下次当你看到硅酸盐水泥与水反应时,不妨想象一下这场热闹的派对,感受一下其中的乐趣吧!。

硅酸盐水泥的水化和硬化

硅酸盐水泥的水化和硬化

在液相CaO浓度达到饱和时,C3A还可能依下式水化:
3CaO·A12O3十Ca(OH)2十12H2O = 4CaO·A12O3·13H2O
即:
C3A十CH十12H = C4AH13
在硅酸盐水泥浆体的碱性液相中,CaO浓度往往 达到饱和或过饱和,因此,可能产生较多的六方 片状C4AH13,足以阻碍粒子的相对移动,据认为 这是使浆体产生瞬时凝结的一个主要原因。
水泥用适量的水拌和后,形成能粘结砂石 集料的可塑性浆体,随后逐渐失去塑性而凝结硬 化为具有一定强度的石状体。同时,还伴随着水 化放热、体积变化和强度增长等现象,这说明水 泥拌水后产生了一系列复杂的物理、化学和物理 化学的变化。
8.1 熟料矿物的水化
一、硅酸三钙(C3S)的水化 二、硅酸二钙(C2S)的水化 三、铝酸三钙(C3A)的水化 四、铁相固溶体(C4AF)的水化
始周界向内部生长 的C-S-H。实际上, C-S-H的形貌不止这 四种。C-S-H的形成 和水灰比、温度、
龄期等水化条件有 关。
硅酸三钙水化的五个阶段(Five periods)
硅酸三钙水化速率很快,其水化过程根据水化放热速率— 时间曲线可分为五个阶段(如图8-1-2) :
Ⅰ-诱导前期;
Ⅱ-诱导期;
• 当CaO浓度<1mmol/L时,生成氢
氧化钙和硅酸凝胶。
• 当CaO浓度为l~2mmo1/L时,生成
水化硅酸钙和硅酸凝胶。
• 当CaO浓度为2~20mmol/L时,生
成C/S比为0.8~1.5的水化硅酸钙:
图8-1-1 水化硅酸钙与溶液间的平衡
(0.8~1.5)CaO·SiO2·(0.5~2.5)H2O, 称为C—S—H (I)。
的六方板状晶体。

硅酸盐水泥的水化和硬化

硅酸盐水泥的水化和硬化

图3 a
图3 c
图3(a)即为水化12 h 的水泥浆体在SEM 下的形貌. 圈出的位置即为水化产物CSH 凝胶, 呈现不规则絮状, 絮状的尺寸大致为200~500 nm. 从整体来看, 水泥浆体水化12 h后, CSH 凝胶生成量并不大, 产物层较薄, 但各处分布均匀. 在SEM 中使用EDX 对CSH 凝胶进行元 素分析, 结果如图3(c)所示, 大量的元素为Ca 和Si, 从元素构成可以确认产物为CSH 凝胶. 分析结果中还有少量的Al, S, Mg, K 等元素, 这是由于水化早期CSH 凝胶生成量较少, 而 SEM 下EDX 的作用范围约为1μm3, 在这个分辨率下不可避免地有未水化水泥颗粒的干扰, 因此SEM附带的EDX 并不能给出准确的CSH 凝胶的元素分析结果, 只能是一个大概的数值。
硅酸盐水泥的水化和硬化
水泥用适量的水拌合后,形成能与砂石集料结合的可塑性 浆体,随后逐渐失去塑性而凝结硬化为具有一定强度的石状体。 同时,还伴随着水化放热、体积变化和强度增长等现象,这说 明水泥拌水后产生了一系列复杂的物理、化学和物理化学的变
化。
一、 水泥水化过程
二、 水化初期产物形貌
三、 水化模型 四、晶种对硬化水泥的影响
混合材比例、研磨方式以及水泥细度对水泥早期水化热的影响的可行工
具。通过ANFIS 分析可获得一些关于普通水泥和混合水泥早期水化热的
预测结果。且与试验结果相比,ANFIS 获得的结果准确性很好。 ③R. Krstulovic 和P. Dabic 在水化动力学基础上进一步研究了水泥的
水化过程,提出了水泥基材料的多组分和多尺度水化反应的动力学模型,
水化产物 填充空隙 并将水泥 颗粒连接 在一起
已水化的水 泥浆里留下 的孔隙 未水化水 泥颗粒

硅酸盐水泥的主要水化产物

硅酸盐水泥的主要水化产物

硅酸盐水泥的主要水化产物引言硅酸盐水泥是一种常用的建筑材料,它在水化过程中会产生多种化合物。

本文将深入探讨硅酸盐水泥的主要水化产物及其性质和应用。

一、硅酸盐水泥水化过程概述硅酸盐水泥的水化过程是指水与硅酸盐水泥颗粒中的化学物质发生反应,生成新的化合物的过程。

硅酸盐水泥的主要水化产物包括水化硅酸钙(C-S-H)胶凝物、水化硅酸钙(C-H)胶凝物、水化硬铝酸钙(C-A-H)胶凝物等。

二、硅酸盐水泥的主要水化产物及其性质1. 水化硅酸钙(C-S-H)胶凝物水化硅酸钙是硅酸盐水泥水化的主要产物,它占据了水泥基材料中的大部分体积。

水化硅酸钙胶凝物具有以下性质: - 无定形结构:水化硅酸钙的结构并非规则的晶体结构,而是无定形胶体结构; - 坚固的胶凝性:水化硅酸钙具有较高的胶凝强度和粘附能力,是水泥胶结材料中的主要胶凝相; - 优良的保湿性:水化硅酸钙能够吸附并保持一定量的水分,有助于水泥基材料的稳定性。

2. 水化硅酸钙(C-H)胶凝物水化硅酸钙胶凝物是硅酸盐水泥水化过程中的重要产物之一,它与水化硅酸钙(C-S-H)胶凝物不同,具有以下特点: - 结晶结构:水化硅酸钙胶凝物具有有序的结晶结构,形成针状晶体; - 硬度较大:水化硅酸钙胶凝物硬度较高,能够增加水泥基材料的强度; - 稳定性较差:水化硅酸钙胶凝物容易发生脱水反应,导致颗粒收缩。

3. 水化硬铝酸钙(C-A-H)胶凝物水化硬铝酸钙胶凝物是硅酸盐水泥水化的另一个重要产物,它具有以下特性: - 结晶相:水化硬铝酸钙胶凝物中的钙硅石矿物相对较多,形成有序的结晶结构; -胶凝强度:水化硬铝酸钙胶凝物具有较高的胶凝强度,能够提高水泥基材料的力学性能; - 耐久性:水化硬铝酸钙胶凝物能够改善水泥基材料的耐久性,增加其抗冻融和耐酸碱等性能。

三、硅酸盐水泥的主要水化产物应用硅酸盐水泥的主要水化产物在建筑材料领域具有广泛应用: 1. 水化硅酸钙(C-S-H)胶凝物可作为主要胶结相,提供水泥基材料的强度和稳定性,广泛应用于混凝土、砂浆等建筑材料; 2. 水化硅酸钙(C-H)胶凝物具有较高的硬度,可用于制作高强度的水泥制品,如高强度混凝土、水泥砖等; 3. 水化硬铝酸钙(C-A-H)胶凝物能够提高水泥基材料的力学性能和耐久性,适用于特殊环境下的建筑工程,如桥梁、地下洞室等。

硅酸盐水泥的水化硬化概述

硅酸盐水泥的水化硬化概述
四、铁相的水化
C4AF的水化速率比C3A略慢,水化热较低,其水化反应及 其产物与C3A极为相似。
Fe2O3基本上起着与Al2O3相同的作用,在水化产物中铁置 换部分铝,形成水化硫铝酸钙和水化硫铁酸钙的固溶体, 或水化铝酸钙和水化铁酸钙的固溶体。
如:
C3A + CH + 12H = C4AH13 C4AF + 4CH + 22H = 2C4 (A、F)H13
内)
早 速率下降
就超过12,而后浓度增长减慢
诱导期 期 反应缓慢,放热速率很小, Ca2+浓度持续增长并超过饱
(1~4小时)
水泥浆体保持塑性,诱导期 和浓度,在诱导期结束时达到
结束相当于初凝时间
最大
加速期
反应重新加快,放热速率随 随反应进行Ca2+浓度下降,
(4~8小时) 减速期
时间增长,出现第二放热峰,但始终超过饱和浓度 在达到峰顶时本阶段结束, 中 终凝已过,开始硬化 期 反应速率下降,放热速率由 Ca2+浓度继续下降
水泥水化
硬化:建立具有一定机械强度的结构
硬化之后还在继续水化
硬化水泥浆体:水泥加水发生水化反应后,变成具有一定强度 的固体,叫硬化水泥浆体。由于外观和一些性能与天然石材相 似,又称之为水泥石。
非均质的多相体系
水化产物和残存熟料-固相 孔隙中的水-液相 孔隙中的空气-气相
三相多孔体
一、水泥硬化机理
硬化机理 结晶理论 胶体理论
结晶度极差
近程(纳米级)有序:层 状结构;
远程无序胶体,取决水 化龄期,初期溶胶,中 后期凝胶
取决水化龄期-与生长 空间有关:水化龄期长, 尺寸越小,2~0.1µm 初期:纤维状
早期:网络状

硅酸盐水泥的凝结和硬化过程影响水泥凝结硬化的主要因素

硅酸盐水泥的凝结和硬化过程影响水泥凝结硬化的主要因素

当加入石膏以后
水化铝酸三钙 (C3AH6)+石膏+水 → 3CaO.Al2O3.3CaSO4.31H2O(高硫型水化硫铝酸钙) 矾石(Aft)
3CaO.Al2O3.3CaSO4.31H2O+ C3AH6 → 3CaO.Al2O3.CaSO4.12H2O(单硫型水化硫铝酸钙) Afm
硅酸盐水泥水化后的主要水化产物有:
本节课结束
通常有利于水泥强度增长的养护温度在5~20℃之间。 水是水泥水化、硬化的必要条件。若环境湿度大,水分不易蒸发,则可保证水泥水化充分
进行;若环境干燥,水泥浆体中的水分很快蒸发,水泥浆体缺水,则水泥无法进行正常的 水化反应,强度增长困难。
(5)水灰比(W/C):水与水泥的质量比
水灰比越大,水泥浆越稀,水泥颗粒的间隙越大,凝结硬化越慢,多余的水分蒸发后再水泥石 中形成的毛细孔越多,导致水泥石强度、抗冻性、抗渗性下降。
快 多 高 较高 中 中
硅酸二钙
慢 少 低 高 良 小
铝酸三钙
最快 最多
低 低 差 大
铁铝酸四钙
中 中 低 低 好 小
(2)水泥细度(fineness)的影响
细度是指水泥颗粒总体的粗细程度。 水泥颗粒越细,与水发生反应的表面积越大,因而水化反应速度较快,而且较完全,早
期强度也越高,但在空气中硬化收缩性较大,成本也较高。如水泥颗粒过粗则不利于水泥 活性的发挥。 水泥细度用比表面积表示。比表面积是水泥单位质量的总表面积(㎡/kg)。 国家标准(GB175-2007)规定,硅酸盐水泥比表面积应大于300㎡/kg。
各种水化硅酸钙凝胶C-S-H、 晶体(氢氧化钙、水化铝酸钙和水化硫铝酸钙(Aft、Afm)) 除此之外还有没有水化的水泥颗粒、凝胶孔、毛细孔

简述硅酸盐水泥的凝结硬化过程与特点

简述硅酸盐水泥的凝结硬化过程与特点

硅酸盐水泥是一种常用的建筑材料,它在建筑领域具有重要的应用价值。

它的凝结硬化过程与特点对于理解其在建筑中的作用具有重要意义。

本文将对硅酸盐水泥的凝结硬化过程与特点进行简要的阐述,以便读者对其有一个清晰的认识。

一、硅酸盐水泥的凝结硬化过程1. 凝结过程硅酸盐水泥在加水后会发生水化反应,形成胶凝体,然后在适当的条件下开始凝结。

水化反应的化学方程式为:4CaO·SiO2 + 2CaO·SiO2·2H2O + 3CaSO4 + 32H →3CaO·2SiO2·4H2O + 3CaSO4·2H2O此过程是一个放热反应,可以产生大量的热量。

硅酸盐水泥的初凝时间一般在30~120分钟,凝结时间为几十小时至几天。

在这个过程中,水泥逐渐凝固成坚硬的体积稳定的水化硅酸盐凝胶体系。

2. 硬化过程硅酸盐水泥的硬化过程是水化反应的延续。

在一定的条件下,水泥的强度随着时间的推移而不断增加。

硅酸盐水泥的硬化特点是初期强度低、中后期强度高,长期强度稳定的特点。

二、硅酸盐水泥的特点1. 抗渗透性能硅酸盐水泥在水化硬化后,形成的凝胶体系具有良好的致密性,抗渗透性能较好。

在一定程度上能够抵御外部水分的侵蚀,保护混凝土结构的耐久性。

2. 抗压抗折性能硅酸盐水泥在水化硬化后,其强度随时间增长而不断提高,最终形成坚固的凝结体系,具有较高的抗压抗折性能。

在混凝土结构中能够承受一定的荷载。

3. 与混凝土的黏结性能硅酸盐水泥在水化硬化过程中,会与骨料及混凝土基材发生化学反应,形成良好的结合力,因此与混凝土的黏结性能较好。

能够有效地将混凝土的各部分紧密连接起来。

4. 抗碱骨料反应性能硅酸盐水泥在水化硬化后,其凝胶体系具有较低的碱骨料反应性,可以有效防止混凝土中的碱骨料反应,提高混凝土的耐久性。

硅酸盐水泥的凝结硬化过程是一个复杂而又精细的化学过程,它决定了水泥的性能和应用。

而硅酸盐水泥的特点使其在建筑领域具有广泛的应用前景,为建筑结构的强度与耐久性提供了有力的保证。

9 硅酸盐水泥的水化和硬化

9 硅酸盐水泥的水化和硬化

9.1 熟料单矿物的水化
三、铝酸三钙 (二) 有石膏 3.当石膏量再少(石膏: C3A=1.0),则钙矾石全部转换为 AFm,此时的水化产物只有AFm。
4.再少(石膏: C3A<1.0),钙矾石全部转换为AFm后,还 有C3A剩余,则C3A与单硫型水化硫铝酸钙反应生成单硫型固溶体
9.1 熟料单矿物的水化
918cs水化各阶段的化学过程和动力学过程时期反应阶段化学过程动力学过程早期诱导前期诱导期初始水解离子进入溶液继续溶解早期csh形成反应很快反应慢中期加速期减速期稳定水化产物开始生长水化产物继续生长微结构发展反应快反应变慢后期稳定期微结构逐渐密实反应很慢91二硅酸二钙1
9 硅酸盐水泥的水化和硬化
水泥用适量的水拌合后,形成能砂石集料的可塑性浆体, 随后逐渐失去塑性而凝结硬化为具有一定强度的石状体。同时, 还伴随着水化放热、体积变化和强度增长等现象,这说明水泥 拌水后产生了一系列复杂的物理、化学和物理化学的变化。
硅酸盐水泥的水化和硬化
水泥加水以后为什么可以凝结硬化?
水化产物 填充空隙 并将水泥 颗粒连接 在一起
已水化的水 泥浆里留下 的孔隙 未水化水 泥颗粒
9 硅酸盐水泥的水化和硬化
水化速度与矿物水化快慢有关; 强度与浆体结构形成有关。
水化-物质由无水状态变为含水状态,由低含水变为高含水, 统称为水化。 水解-物质加水分解的作用叫水解作用。 水泥孰料的水化作用包括水解作用。 凝结-水泥加水拌和初期形成具有可塑性的浆体,然后逐渐 变稠并失去可塑性的过程称为凝结。 硬化-此后,浆体的强度逐渐提高并变成坚硬的石状固体 (水泥石),这一过程称为硬化。
9 硅酸盐水泥的水化和硬化
为了更好地应用水泥,必须了解水化硬化过程的机理,以 便控制和改善水泥性能。但由于水泥熟料是多矿物的集合体, 与水的作用比较复杂,因而通常先研究水泥单矿物的水化,然 后再研究水泥总的水化和硬化过程。 各矿物与水的作用,称为“一次水化作用” 水化物之间的相互作用称“二次水化作用”

硅酸盐水泥的水化过程课件

硅酸盐水泥的水化过程课件

生产工艺与原料
生产工艺
硅酸盐水泥的生产工艺主要包括生料 制备、熟料烧成、水泥粉磨和包装等 阶段。
原料
硅酸盐水泥的主要原料包括石灰石、 黏土、铁矿粉等,其中石灰石是主要 原料,提供钙质成分。
性质与特点
性质
硅酸盐水泥硬化后具有较高的抗压强度、耐久性、耐磨性等 特点。
特点
硅酸盐水泥水化热较高,早期强度增长快,适用于大型工程 和混凝土结构的施工。
硅酸盐水泥的水化过程课件
• 硅酸盐水泥简介 • 硅酸盐水泥的水化反应 • 硅酸盐水泥的水化机理 • 硅酸盐水泥的水化性能 • 硅酸盐水泥的应用与展望
01
硅酸盐水泥简介
定义与分类
定义
硅酸盐水泥是一种以硅酸钙为主 要成分的水硬性胶凝材料,通过 与水反应后形成坚硬的水泥石。
分类
根据熟料矿物组成和混合材料的 种类,硅酸盐水泥可分为普通硅 酸盐水泥、早强硅酸盐水泥、低 热硅酸盐水泥等。
提高能效和资源利用率
改进生产工艺,提高硅酸盐水泥的能效和资源利用率,降低生产成 本。
THANKS
感谢观看
水化热对于大体积混 凝土施工和冬季施工 有一定的技术指导意 义。
水化热的大小和速度 与水泥的种类、掺合 料和水的温度有关。
硬化速度与强度发展
硅酸盐水泥的硬化速度较快, 可以在数小时内初凝,并在28 天内达到设计强度。
水泥的强度发展与水灰比、温 度和湿度等条件有关。
适当控制硬化速度和强度发展 可以提高混凝土结构的耐久性 和稳定性。
水化产物的种类与结构
总结词
硅酸盐水泥的水化产物主要包括氢氧化钙、水化硅酸钙、水化铝酸钙等,这些产物的结构复杂,对水泥石的强度 和稳定性起着重要作用。
详细描述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硅酸盐水泥的水化
1
水泥+水(流体)-可塑性浆体(塑性体)-固体
水泥


熟石 合

料膏 材

水化 凝结 硬化2 Nhomakorabea水泥的水化、凝结、硬化
➢ 水化:物质由无水状态变为有水状态,由低含水变为 高含水,统称为水化。
➢ 凝结:水泥加水拌和初期形成具有可塑性的浆体,然 后逐渐变稠并失去可塑性的过程称为凝结。
➢ 硬化:浆体的强度逐渐提高并变成坚硬的石状固体(水 泥石),这一过程称为硬化。
Cement Water Hydration Products
8
水泥加水以后为什么可以凝结硬化?
Hydration products connect grains
9
水泥加水以后为什么可以凝结硬化?
Pore space remains in hydrated cement paste
Unhydrated grains
因而水化是从表面开始,在浓度和温度不断变化的条件下,通 过扩散作用缓慢向中心深入。较大水泥颗粒的中心往往会完全停止 水化,当温度、湿度条件适当时,再重新缓慢水化。
12
硅酸盐水泥的水化
❖ 硅酸盐水泥的水化过程
13
硅酸盐水泥的水化
❖ 水化前后固相及其所占体积比的变化
14
硅酸盐水泥的水化
❖ 水化产物的基本特征
10
硅酸盐水泥的水化
❖ 水泥水化的液相环境
水泥拌水后,立即发生水化反应,各组分开始溶解。 所以极短的时间后,填充在颗粒之间的液相不再是纯水, 而是含有各种离子的溶液,主要为:
硅酸钙 → Ca2+,OH-
铝酸钙 → Ca2+ ,Al(OH)4-
铁铝酸钙 → Ca2+ ,Fe(OH)4-
硫酸钙 → Ca2+ ,SO42-
15
硅酸盐水泥的水化
❖ 硅酸盐水泥的水化放热曲线
钙矾石形成期:C3A率先水化→形成AFt →第一放热峰 C3S水化期:C3S水化→第二放热峰(有时AFt→AFm形成第三放热峰) 结构形成和发展期:放热速率很低并趋于稳定,水化产物相互交织
16
请各位老师批评指正! 非常感谢!
17
3
水泥加水以后为什么可以凝结硬化?
4
水泥加水以后为什么可以凝结硬化? Cement Water
5
水泥加水以后为什么可以凝结硬化?
Cement Water Hydration Products
6
水泥加水以后为什么可以凝结硬化?
Cement Water Hydration Products
7
水泥加水以后为什么可以凝结硬化?

→ K+,Na+,SO42-
即水泥的水化作用开始后基本上是在含碱的CH、硫酸
钙的饱和溶液中进行。
11
硅酸盐水泥的水化
❖ 水化过程中各矿物间的相互作用
C3A、C4AF与石膏间关系; C3S对C2S的水化有一定的促进作用; 碱的影响:对不同矿物影响不一样; 当水泥颗粒周围C-S-H凝胶层不断增厚,水在C-S-H凝胶层内的 扩散速度逐渐成为影响各矿物水化的决定性因素; 浆体中拌水量不多,且水化过程中不断减少,水化是在浓度不断 变化的情况下进行的。
相关文档
最新文档