信号与系统6-2

合集下载

信号与系统第三章答案2

信号与系统第三章答案2

y ''(t ) + 4 y '(t ) + 3 y (t ) = f (t )
(1)对上式两边取傅里叶变换得:
( jw ) 2 Y ( jw ) + 4( jw )Y ( jw ) + 3Y ( jw ) = F ( jw )
1 1 Y ( jw ) 1 1 2 2 H ( jw ) = = = = 2 F ( jw ) ( jw ) + 4( jw ) + 3 ( jw + 3)( jw + 1) ( jw + 1) ( jw + 3) 1 h(t ) = F -1[ H ( jw )] = (e- t - e-3t )U (t ) 2
jw =-2
= -1
d [Y ( jw )g( jw + 2) 2 ] =2 j w =2 dw
jw =-3
K 3 = Y ( jw )g( jw + 3)

= -2
Y ( jw ) =
-1 2 -2 + + ( jw + 2) 2 jw + 2 jw + 3
根据傅里叶变换的性质:
- jtf (t ) «
1 1 g jw + 2 ( jw + 3)( jw + 1) K3 K1 K2 = + + jw + 2 jw + 3 jw + 1
用部分分式展开法:
K1 = Y ( jw )g( jw + 2) K 2 = Y ( jw )g( jw + 3) K 3 = Y ( jw )g( jw + 1)
h(t ) = F -1[ H ( jw )] = (2e -3t - e -2t )U (t )

《信号与线性系统》 东南大学 管致中 夏恭恪 孟桥著 高等教育出版社第六章-2

《信号与线性系统》 东南大学 管致中 夏恭恪 孟桥著 高等教育出版社第六章-2
第2行 第3行 第4行
An-1n -1 a An-2 An-3 Bn-1 n -3 Cn-1n -5 Dn-1 -7 a a an … Bn-2 Bn-3 B2 0 0 Cn-2 Cn-3 0 0 0 Dn-2 … Dn-3 …
Ai −1 =
M
第(n-1)行 A2 第n行 第(n+1)行
An − 2 =
3
∴ H 3 ( s ) 系统不稳定
以上两个性质是判断系统稳定的必要条件
第六章 连续时间系统的系统函数
(二) 罗斯-霍维茨(Routh-Hurwitz)准则(判据) 罗斯-霍维茨( 准则(
内容: 若 内容: D(s) = an sn + an−1sn−1 +L+ a1s + a0 的根全部位于s左半平面的充要条件是 左半平面的充要条件是: 则 D(s) = 0 的根全部位于 左半平面的充要条件是: (ⅰ)D ( s ) 的全部系数 a i 为正,无缺项; 为正,无缺项; 罗斯-霍维茨阵列中第一列数字( )符号相同 (ⅱ)罗斯-霍维茨阵列中第一列数字( A i )符号相同 -6 R-H阵列: 1行 An an Bn an -2 Cnan -4 Dnan… … 阵列: - 阵列 第
第六章 连续时间系统的系统函数
例 4 反馈系统
F(s) + _ E(s) G(s)
H(s)
Y(s)
前向通道 , 反馈通道 H ( s ) = K 问当常数满足什么条件时,系统是稳定的? 解: E ( s) = F ( s) − H ( s)Y ( s)
Y ( s ) = E ( s )G ( s ) = G ( s ) F ( s ) − G ( s ) H ( s )Y ( s )

《信号与系统》第一二章自测题及参考答案

《信号与系统》第一二章自测题及参考答案

第一、二章自测题1、判断题(1)若x (t )是一连续时间周期信号,则y (t )=x (2t )也是周期信号。

(2)两个周期信号之和一定是周期信号。

(3)所有非周期信号都是能量信号。

(4)两个连续线性时不变系统相互串联的结果仍然是线性时不变系统。

(5)若)()()(t h t x t y *=,则)1()2()1(+*-=-t h t x t y 。

(6)一个系统的自由响应就等于它的零输入响应。

(7)一个系统的零状态响应就等于它的自由响应。

(8)零状态响应是指系统没有激励时的响应。

(9)系统的单位冲激响应是指系统在冲激信号作用下的全响应。

(10)两个功率信号之和必为功率信号。

2、判断下列信号是能量信号还是功率信号? (1)3cos(15)0()0t t f t t π≥⎧=⎨<⎩(2)50()0te tf t t -⎧≥=⎨<⎩ (3)()6sin 23cos3f t t t =+ (4)|2|()20sin 2t f t e t -=3、填空题(1)已知)()4()(2t t t f ε+=,则)(''t f =__________________。

(2)=+-⋅+⎰∞∞-dt t t t )1()2(2δ__________________________。

(3)=-⎰∞∞-dt t )(92δ_________________________ 。

(4)=-⎰∞∞-dt t t e t j )(0δω_________________________ 。

(5)信号cos(15)cos(30)t t -的周期为 。

4、试画出下列各函数的波形图 (1)100()(), 0f t u t t t =-> (2)2()cos3[()(4)]f t t u t u t π=-- (3)3()[sin ]f t u t π=5、已知f (t )的波形如图1.1所示,求f (2-t )与f (6-2t )的表达式,并画出波形图。

信号与系统第六章习题答案

信号与系统第六章习题答案

第六章 离散系统的Z域分析 6.1学习重点 1、离散信号z 域分析法—z变换,深刻理解其定义、收敛域以及基本性质;会根据z变换的定义以及性质求常用序列的z变换;理解z变换与拉普拉斯变换的关系。

2、熟练应用幂级数展开法、部分分式法及留数法,求z 反变换。

3、离散系统z 域分析法,求解零输入响应、零状态响应以及全响应。

4、z 域系统函数()z H 及其应用。

5、离散系统的稳定性。

6、离散时间系统的z 域模拟图。

7、用MATLAB 进行离散系统的Z 域分析。

6.2 教材习题同步解析 6.1 求下列序列的z 变换,并说明其收敛域。

(1)n 31,0≥n (2)n−−31,0≥n(3)nn−+ 3121,0≥n (4)4cos πn ,0≥n(5)+42sin ππn ,0≥n 【知识点窍】本题考察z 变换的定义式 【逻辑推理】对于有始序列离散信号[]n f 其z 变换的定义式为()[]∑∞=−=0n nzn f z F解:(1)该序列可看作[]n nε31()[][]∑∑∞=−∞=− == =010313131n n n nn n z z n n Z z F εε对该级数,当1311<−z ,即31>z 时,级数收敛,并有 ()13331111−=−=−z zz z F其收敛域为z 平面上半经31=z 的圆外区域 (2)该序列可看作[]()[]n n nnεε331−=−−()()[][]()[]()∑∑∞=−∞=−−=−=−=010333n nn nnnzzn n Z z F εε对该级数,当131<−−z ,即3>z 时,级数收敛,并有()()33111+=−−=−z zz z F 其收敛域为z 平面上半经3=z 的圆外区域(3)该序列可看作[][]n n nn n n εε+ = + −3213121()[][]()∑∑∑∞=−∞=−∞=−+ =+ = + =01010*********n nn n n nn n n n z z z n n Z z F εε对该级数,当1211<−z 且131<−z ,即3>z 时,级数收敛,并有 ()3122311211111−+−=−+−=−−z zz z z zz F 其收敛域为z 平面上半经3=z 的圆外区域(4)该序列可看作[]n n επ4cos()[]∑∑∑∑∞=−−∞=−−∞=−∞=−+=+== =0140140440*******cos 4cos n nj n nj nn j j n n z e z e z e e z n n n Z z F πππππεπ对该级数,当114<−ze j π且114<−−zejπ,即1>z 时,级数收敛,并有()122214cos 24cos 21112111212222441414+−−=+−−=−+−=−×+−×=−−−−z z zz z z z z e z z e z z z eze z F j j j j ππππππ其收敛域为z 平面上半经1=z 的圆外区域 (5)该序列可看作[][][]n n n n n n n n εππεππππεππ+=+= +2cos 2sin 222sin 4cos 2cos 4sin 42sin()[]()122212212212cos 22cos 2212cos 22sin 222cos 222sin 222cos 2sin 222222222200++=+++=+−−++−=+=+=∑∑∞=−∞=−z z z z z z z z z z z z z z z n z n n n n Z z F n nn n ππππππεππ 其收敛域为z 平面上半经1=z 的圆外区域 6.2 已知[]1↔n δ,[]a z z n a n −↔ε,[]()21−↔z z n n ε, 试利用z 变换的性质求下列序列的z 变换。

信号与系统第三版 第六章习题答案

信号与系统第三版 第六章习题答案
1
2 t 2
cos
2 2
t ]u (t )
6.13 一个因果LTI系统的频率响应为:
5 jw 7 H ( jw) ( jw 4)[( jw) 2 jw 1]
(a) 求该系统的冲激响应
(b) 试确定由一阶系统和二阶系统构成的串联型结构 (c)试确定由一阶系统和二阶系统构成的串联型结构 解:(a) 5 jw 7 1 jw 2
I 2 (w) 2 jw H ( jw) E (w) 8 jw 3
(b) 对H(jw)作反傅立叶变换可得h(t)
2 jw 1 H ( jw) 8 jw 3 4
h(t ) F 1{H ( jw)}
3 32 3 jw 8 3t 1 3 8 (t ) e u (t ) 4 32
(b) 对H(jw)作反傅立叶变换可得h(t)
3 3 3( jw 3) 2 H ( jw) 2 ( jw 2)( jw 4) ( jw 2) jw 4
3 2t h(t ) F {H ( jw)} (e e 4t )u (t ) 2 (c) 3( jw 3) 3 jw 9 Y ( w) H ( jw) 2 ( jw 2)( jw 4) ( jw) 6 jw 8 X ( w)
1 X ( w) ( jw 2) 2
Y (w) H ( jw) X (w)
2 Y ( w) 3 ( jw 2) ( jw 4)
1 1 4 2 3 ( jw 2) ( jw 2) ( jw 2) ( jw 4) 1 4 1 2
1 2t 1 2t 1 2 2t 1 4t y (t ) F {Y ( w)} ( e te t e e )u (t ) 4 2 2 4 2 2 ( jw ) 2 (c) H ( jw) ( jw) 2 2 jw 1

信号与系统matlab课后作业-北京交通大学

信号与系统matlab课后作业-北京交通大学

信号与系统MATLAB平时作业学院:电子信息工程学院班级::学号:教师:钱满义MATLAB 习题M3-1 一个连续时间LTI系统满足的微分方程为y ’’(t)+3y ’(t)+2y(t)=2x ’(t)+x(t)(1)已知x(t)=e -3t u(t),试求该系统的零状态响应y zs (t); (2)用lism 求出该系统的零状态响应的数值解。

利用(1)所求得的结果,比较不同的抽样间隔对数值解精度的影响。

解:(1) 由于''()3'()2()2'()(),0h t h t h t t t t δδ++=+≥则2()()()t t h t Ae Be u t --=+ 将()h t 带入原方程式化简得(2)()()'()2'()()A B t A B t t t δδδδ+++=+所以1,3A B =-=2()(3)()t t h t e e u t --=-+又因为3t ()()x t e u t -= 则该系统的零状态响应3t 23t 2t ()()()()(3)()0.5(6+5)()zs t t t y t x t h t e u t e e u t e e e u t ----=*=*-+=-- (2)程序代码 1、ts=0;te=5;dt=0.1;sys=tf([2 1],[1 3 2]);t=ts:dt:te;x=exp(-3*t).*(t>=0);y=lsim(sys,x,t)2、ts=0;te=5;dt=1;sys=tf([2 1],[1 3 2]);t=ts:dt:te;x=exp(-3*t).*(t>=0);y1=-0.5*exp(-3*t).*(exp(2*t)-6*exp(t)+5).*[t>=0];y2=lsim(sys,x,t)plot(t,y1,'r-',t,y2,'b--')xlabel('Time(sec)')legend('实际值','数值解')用lism求出的该系统的零状态响应的数值解在不同的抽样间隔时与(1)中求出的实际值进行比较将两种结果画在同一幅图中有图表 1 抽样间隔为1图表 2 抽样间隔为0.1图表 3 抽样间隔为0.01当抽样间隔dt减小时,数值解的精度越来越高,从图像上也可以看出数值解曲线越来越逼近实际值曲线,直至几乎重合。

信号与系统教学大纲

信号与系统教学大纲

信号与系统教学大纲一、课程基本信息课程名称:信号与系统课程类别:专业基础课课程学时:XX 学时课程学分:XX 学分二、课程性质与目标(一)课程性质信号与系统是电子信息类专业的一门重要的专业基础课程,是通信工程、电子信息工程、自动化等专业的必修课。

它主要研究信号与系统的基本概念、基本理论和基本分析方法,为后续的专业课程如通信原理、数字信号处理等提供必要的理论基础。

(二)课程目标1、使学生掌握信号与系统的基本概念和基本理论,包括信号的分类、描述和运算,系统的分类、描述和特性等。

2、让学生熟练掌握连续时间信号与系统和离散时间信号与系统的时域分析方法,包括卷积积分和卷积和的计算。

3、使学生掌握连续时间信号与系统和离散时间信号与系统的频域分析方法,包括傅里叶级数、傅里叶变换、离散傅里叶变换等。

4、培养学生运用信号与系统的基本理论和方法分析和解决实际问题的能力。

5、为学生进一步学习后续专业课程和从事相关领域的工作打下坚实的基础。

三、课程内容与教学要求(一)信号与系统的基本概念1、信号的定义、分类和描述(1)理解信号的概念,掌握信号的分类方法,如确定性信号与随机信号、连续时间信号与离散时间信号、周期信号与非周期信号等。

(2)掌握信号的描述方法,包括时域描述、频域描述和复频域描述等。

2、系统的定义、分类和描述(1)理解系统的概念,掌握系统的分类方法,如线性系统与非线性系统、时不变系统与时变系统、因果系统与非因果系统等。

(2)掌握系统的描述方法,包括输入输出描述法、状态变量描述法等。

(二)连续时间信号与系统的时域分析1、连续时间信号的时域表示和运算(1)掌握连续时间信号的时域表示方法,如函数表达式、波形图等。

(2)熟练掌握连续时间信号的基本运算,如相加、相乘、平移、反褶、尺度变换等。

2、连续时间系统的时域描述和响应(1)掌握连续时间系统的时域描述方法,如微分方程。

(2)熟练掌握连续时间系统的零输入响应、零状态响应和全响应的求解方法。

信号与系统课后习题参考答案

信号与系统课后习题参考答案

信号与系统课后习题参考答案1试分别指出以下波形就是属于哪种信号?题图1-11-2试写出题1-1图中信号得函数表达式。

1-3已知信号与波形如题图1-3中所⽰,试作出下列各信号得波形图,并加以标注。

题图1-3⑴⑵⑶⑷⑸⑹⑺⑻⑼1-4已知信号与波形如题图1-4中所⽰,试作出下列各信号得波形图,并加以标注。

题图1-4⑴⑵⑶⑷⑸⑹⑺⑻⑼1-5已知信号得波形如题图1-5所⽰,试作出信号得波形图,并加以标注。

题图1-51-6试画出下列信号得波形图:⑴⑵⑶⑷1-7试画出下列信号得波形图:⑴⑵⑶⑷⑸⑹1-8试求出以下复变函数得模与幅⾓,并画出模与幅⾓得波形图。

⑴⑵⑶⑷1-9已知信号,求出下列信号,并画出它们得波形图。

1-10试作出下列波形得奇分量、偶分量与⾮零区间上得平均分量与交流分量。

题图1-101-11试求下列积分:⑴⑵⑶⑷⑸⑹1-12试求下列积分:⑴⑵⑴(均为常数)⑵⑶⑷⑸⑹⑺⑻1-14如题图1-14中已知⼀线性时不变系统当输⼊为时,响应为。

试做出当输⼊为时,响应得波形图。

题图1-14 1-15已知系统得信号流图如下,试写出各⾃系统得输⼊输出⽅程。

题图1-151-16已知系统⽅程如下,试分别画出她们得系统模拟框图。

⑴⑵⑶1-17已知⼀线性时不变系统⽆起始储能,当输⼊信号时,响应,试求出输⼊分别为与时得系统响应。

第⼆章习题2-1试计算下列各对信号得卷积积分:。

⑴(对与两种情况)⑵⑶⑷⑸⑹2-2试计算下列各对信号得卷积与:。

⑴(对与两种情况)⑵⑶⑷⑸⑹2-3试计算下图中各对信号得卷积积分:,并作出结果得图形。

题图2-32-4试计算下图中各对信号得卷积与:,并作出结果得图形。

题图2-42-5已知,试求:⑴⑵⑶2-7系统如题图2-7所⽰,试求系统得单位冲激响应。

已知其中各⼦系统得单位冲激响应分别为:题图2-72-8设已知LTI 系统得单位冲激响应,试求在激励作⽤下得零状态响应。

2-9⼀LTI 系统如题图2-9所⽰,由三个因果LTI ⼦系统级联⽽成,且已知系统得单位样值响应如图中。

信号与系统(程耕国)下册课后习题答案

信号与系统(程耕国)下册课后习题答案

信号与系统(程耕国)下册课后习题答案6.2 精选例题例 1 设一个LTI 离散系统的初始状态不为零,当激励为)()(1n u n f =时全响应为)(121)(1n u n y n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=,当激励为)()(2n u n f -=时全响应为)(121)(2n u n y n ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-=。

(1)当系统的初始状态保持不变,且激励为)(4)(3n u n f =时,求系统的全响应)(3n y 。

(2)当系统的初始状态增加一倍,且激励为)2(4)(4-=n u n f 时,求系统的全响应)(4n y 。

(3)求该系统的单位序列响应)(n h 。

解:设系统的初始状态保持不变,当激励为)()(1n u n f =时系统的零输入响应和零状态响应分别为)(n y x 、)(n y f 。

依题意,有:)(121)()()(1n u n y n y n y n f x ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛=+= ○1根据LTI 系统的性质,当激励为)()(2n u n f -=时全响应为)(121)(()(2n u n y n y n y n f x ⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛-=-=) ○2联立式○1、○2,可解得:⎪⎪⎩⎪⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=++++)(12121)()(2121(1111n u n y n u n y n n f n n x )同样,根据LTI 系统的基本性质,不难得到:(1)当系统的初始状态保持不变,且激励为)(4)(3n u n f =时,系统的全响应为:)(4)()(3n y n y n y f x +=)(121214)(21211111n u n u n n n n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=++++)(421321511n u n n ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=++(2)当系统的初始状态增加一倍,且激励为)2(4)(4-=n u n f 时,系统的全响应为:)2(4)(2)(4-+=n y n y n y f x)2(121214)(21211111-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=--++n u n u n n n n(3)由于)1()()(--=n u n u n δ,所以该系统的单位序列响应为:)1()()(--=n y n y n h f f)1(12121)(1212111-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=++n u n u n n n n 例2 一个LTI 连续系统对激励)(sin )(t tu t f =的零状态响应)(t y f 如例2图所示,求该系统的冲激响应)(t h 。

2020年智慧树知道网课《信号与系统(宁夏大学)》课后章节测试满分答案

2020年智慧树知道网课《信号与系统(宁夏大学)》课后章节测试满分答案

绪论单元测试1【判断题】(1分)信号到的运算中,若a>1,则信号的时间尺度缩小a倍,其结果是将信号的波形沿时间轴放大a倍。

A.错B.对第一章测试1【判断题】(1分)信号到的运算中,若a>1,则信号的时间尺度缩小a倍,其结果是将信号的波形沿时间轴放大a倍。

A.对B.错2【判断题】(1分)如果某连续时间系统同时满足叠加性和齐次性,则称该系统为线性系统。

A.错B.对3【判断题】(1分)直流信号与周期信号都是功率信号。

A.错B.对4【单选题】(1分)将信号变换为()称为对信号的平移或移位。

A.B.C.D.5【单选题】(1分)下列各表达式正确的是()。

A.B.C.D.6【单选题】(1分)积分的结果为()。

A.3B.C.1D.97【单选题】(1分)设输入为、时系统产生的响应分别为、,并设、为任意实常数,若系统具有如下性质:,则系统为()。

A.时不变系统B.因果系统C.非线性系统D.线性系统8【单选题】(1分)()。

A.B.C.D.9【单选题】(1分),该序列是()。

A.非周期序列B.周期C.周期D.周期10【多选题】(1分)连续时间系统系统结构中常用的基本运算有()。

A.微分器B.标量乘法器C.积分器D.加法器11【多选题】(1分)下列等式成立的是()。

A.B.C.D.12【判断题】(1分)一系统,该系统是线性系统。

()A.错B.对第二章测试1【判断题】(1分)强迫响应是零状态响应与部分自由响应之差。

()A.对B.错2【判断题】(1分)连续时间系统的单位阶跃响应是系统在单位阶跃信号作用下的响应。

()A.对B.错3【判断题】(1分)零状态响应是由激励引起的响应。

()A.错B.对4【判断题】(1分)某连续时间系统是二阶的,则其方框图中需要两个积分器。

()A.错B.对5【单选题】(1分)若系统的输入信号为,冲激响应为,则系统的零状态响应是()。

A.B.C.D.6【单选题】(1分)卷积的结果是()。

A.B.C.D.7【单选题】(1分)卷积积分等于()。

信号与线性系统分析第四版(吴大正)习题答案

信号与线性系统分析第四版(吴大正)习题答案

第一章 信号与系统(一)1-1画出下列各信号的波形【式中)()(t t t r ε=】 为斜升函数。

(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t (5))tf=r(sin)(t(7))tf kε(k=(2)(10))f kεk-=(k+]()1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

信号与系统(郑君里)课后答案 第六章习题解答

信号与系统(郑君里)课后答案  第六章习题解答

6-1 解题过程:图6-5所示的矩形波如解图所示,它表示为()()()1012πππ+<<⎧⎪=⎨−<<⎪⎩t f t t在[]0,2π内()()()()()()()20020cos cos cos 11sin sin 01,2,3ππππππ=+−⎡⎤⎣⎦=−==∫∫∫"f t nt dt nt dt nt dtnt nt n n n故有()f t 与信号()()cos ,cos 2,cos "t t nt ,正交(n 为整数)。

6-2 解题过程: 在区间()02π,内,有()()()21212120cos cos π≠∫n t n t dt n n n n ,且均为不为零的整数()()()()2121202212121212001cos cos 21111sin sin 220πππ=++−⎡⎤⎣⎦=⋅++⋅−+−=∫n n t n n t dt n n t n n t n n n n ()()()222220001cos 2cos 21222nt nt cos nt dt dt dt dt πππππ+==+=∫∫∫∫满足正交函数集的条件,故()()cos ,cos 2,cos "t t nt ,正交(n 为整数)是区间()02π,中的正交函数集。

6-3 解题过程: 在区间02π⎛⎞⎜⎟⎝⎠,内()()()21212120cos cos π≠∫n t n t dt n n n n ,且均为不为零的整数()()()()()()212120221212121200121212121cos cos 21111sin sin 221111sin sin 2222πππππ=++−⎡⎤⎣⎦=⋅++⋅−+−+−⎡⎤⎡⎤=⋅+⋅⎢⎥⎢⎥+−⎣⎦⎣⎦∫n n t n n t dt n n t n n t n n n n n n n n n n n n只有当()12+n n 和()12−n n 均为偶数时上式为零,因此不满足函数之间的正交性条件,()()cos ,cos 2,cos "t t nt ,正交(n 为整数)不是区间02π⎛⎞⎜⎟⎝⎠,中的正交函数集。

信号与系统第二版课后答案

信号与系统第二版课后答案
系数
所以三角级数为
3-2求周期冲激序列信号
的指数形式的傅里叶级数表示式,它是否具有收敛性?
解冲激串信号的复系数为
所以
因Fn为常数,故无收敛性。
3-3设有周期方波信号f(t),其脉冲宽度= 1ms,问该信号的频带宽度(带宽)为多少?若压缩为0.2ms,其带宽又为多少?
解对方波信号,其带宽为 Hz,
当1= 1ms时,则
(2)
(3)
(4)
解(1)t(t1 )=(t1 )
(2)
(3)
(4)
2-6设有题2-6图示信号f(t),对(a)写出f(t)的表达式,对(b)写出f(t)的表达式,并分别画出它们的波形。
题2-6图
解(a)
f(t) =(t2 ),t= 2
2(t4 ),t= 4
(b)f(t) =2(t)2(t1)2(t3)+ 2(t4)
图p2-6
2-7如题2-7图一阶系统,对(a)求冲激响应i和uL,对(b)求冲激响应uC和iC,并画出它们的波形。
题2-7图
解由图(a)有

当uS(t) =(t),则冲激响应
则电压冲激响应
对于图(b)RC电路,有方程

当iS=(t)时,则
同时,电流
2-8设有一阶系统方程
试求其冲激响应h(t)和阶跃响应s(t)。
故对应的变换
所以
5-4用部分分式法求下列象函数的拉氏反变换。
(1)
(2)
(3)
(4)
解(1)
故有
所以
(2)
可得

可得
B= 0,C= 1
所以
证明不失一般性,设输入有两个分量,且
则有
相加得

信号与系统-第6章

信号与系统-第6章

z3 2z2 1
zz 1z 0.5
,
z 1, 求 f(n).
解:
Fz
z
z3 2z2 1
z2z 1z 0.5
A1 z2
A2 z
A3 z 1
z
A4 0.5
其中
A2
ddzz2
Fz
z
z0
3z2 4z z1z0.5 z3 2z2 1z0.5z1
z12z0.52
z0 6
所以
Fz
6
2 z
8z z 1
σ>0
r>1,θ任意
② s 平面上的实轴映射为 z 平面的正实轴.

Im[z]
1
σ
Re[z]
ω=0, s=σ θ=0, r任意
8
6.2 z 变换的基本性质
1. 线性 a1 f1n a2 f2 n a1F1z a2F2 z
例6-5:求 cos0nUn和 sin0nUn的 z 变换.
解: 欧拉公式 由指数变换:
① z 变换函数在收敛域内是解析函数, 且无任何极点.
② 有限长序列 z 变换的ROC为整个平面, 可能不包括 0 或∞.
③ 因果序列 z 变换的ROC为极点半径圆外.
④ 非因果序列 z 变换的ROC为极点半1 径2圆内.
⑤ 双边序列 z 变换的ROC为极点半径圆环内.
6
3. 常用信号的 z 变换
24
例6-15:已知 yn2yn1 f n
(1) 求H(z) 和 h(n), 并说明因果性与稳定性;
(2) 求因果系统 f(n)=U(n+1)时的零状态响应.
n
n0
由等比级数, 当 az1 1, 即 z a 时才收敛.

《信号与系统》管致中 ch6_1~5

《信号与系统》管致中 ch6_1~5
波特图的横坐标上只能表示 0 或者 f 0 频率下
的系统特性。图中的二、三象限并非表示频率小于零的 部分,而是表示频率小于 1(大于零)部分频率特性。 ➢ 根据系统频率特性的共扼对称性,不难得到频率小
于零部分的特性。 在波特图的纵坐标上,可以标注系统幅频特性值(如图
中红字所示),也可以标注分贝值。
东南大学 信息科学与工程学院
H ( j )
1
2
H ( j ) * ( )
1
j
1 H ( j ) * ( ) 1 H ( j ) * 1
2
2
j
1 H ( j ) 1 H ( j ) * 1
2
2j
1 H( j) 1 H( j) * 1
2
2j
R( j) jX( j) 1 R( j) jX( j)* 1
东南大学 信息科学与工程学院
三、线性系统的波特图
1、一般系统的波特图
m
H ( j) H0
i1 n
j zi
m
n
e j
i 1
i
i 1
i
j pi
i1
G() 20log H ( j)
m
n
20log H0 20log j zi 20log j pi
i 1
i 1
m
n
20log H0 Gzi ( ) Gpi ( )
率变化规律的幅频特性曲线和反映相位特性随频率变 化规律的相频特性曲线描述。 频率特性主要用于研究系统的频率特性分析。 对于 H (s) ,没有必要研究其随任意复频率变化的规律,
只需要令 s j ,得到 H ( j ) ,研究沿 s 平面虚轴变
化的规律。
东南大学 信息科学与工程学院

信号系统-6分解

信号系统-6分解

即:激励为est 时, H(s) 为系统零状态响应的加权函数。
3)系统s域数学模型,取决于系统自身结构和参数
1
二、分类: 策动点函数:激励与响应在同一端口
策动点阻抗
Z
策动点导纳
in
s
U1(s) I1 ( s)
Z
out
s
U 2 (s) I2 (s)
Yin
s
I1 ( s) U1 (s)
Yout
s
I2 (s) U 2 (s)
8)判断系统稳定性
9)系统模拟仿真 10)系统零极点分析 例1:求级联系统的系统函数H(s);
H(s) H1(s) H2(s)
求并联系统的系统函数H(s)。
H(s) H1(s) H2(s)
6
例2: 线性时不变电路的模型如下,且已知激励i(t)=U(t),响应为u(t),且 iL(o-)=1A,uc(o-)=1V。求: 1) H(s); 2) h(t); 3) 全响应u(t)。
解:1) 零状态下求H(s)
H
(s)
s2
s 4s
3
2)求单位冲激响应 h(t)
h(t) ( 3 e3t 1 et )U (t)
2
2
3)
求全响应: I (s) 1 s
零状态分量 u f (t) L1{HsI(s)}
( 1 et 1 e3t )U (t) 22
7
零输入分量
H
(s)
s2
s 4s
解: 1) H(s)收敛域 1
含j 轴,有 H j H (s) s j
H
j
(
4( j) j 1)2
1
H jω 4ω
4 ω2
2

陈后金《信号与系统》(第2版)名校考研真题(系统的频域分析)

陈后金《信号与系统》(第2版)名校考研真题(系统的频域分析)

第6章系统的频域分析一、选择题1.选择题已知信号f(t)的最高频率,则对信号取样时,其频谱不混叠的最大取样间隔等于()。

[北京交通大学研]A.B.C.D.【答案】A【解析】信号f(t)的最高频率为,根据Fourier变换的展缩特性可得信号的最高频率为(Hz),再根据时域抽样定理,可得对信号取样时,其频谱不混叠的最大取样间隔2.下列说法中正确的是()。

[东南大学研]A.罗斯—霍维茨准则也能判断离散系统的稳定性B.信号经调制后带宽一定增加C.抽样频率必须是信号最高频率的2倍以上才不产生混叠D.积分器是线性运算,不改变信号的带宽【答案】AD【解析】本题考查信号与系统的综合应用。

罗斯霍维茨准则是稳定性判定准则,信号经调制后带宽不一定增加,有时只是频谱的搬移,积分运算是累加运算,也即线性运算,抽样频率必须是信号最高频率的2倍或者2倍以上才不产生混叠。

因此选择AD。

3.系统的幅频特性和相频特性如图6-1(a)、(b)所示,则下列信号通过该系统时,不产生失真的是()。

[西安电子科技大学研]A.B.C.D.【答案】B【解析】由系统的幅频特性和相频特性可知:若输入信号的频率均处于之间,既不产生幅度失真又不产生相位失真。

只有(B)满足这一条件。

图6-1二、填空题1.已知一连续时间LTI系统的频响特性该系统的幅频特性相频特性是否是无失真传输系统______。

[北京交通大学研] 【答案】否【解析】由于的分子分母互为共轭,故有所以系统的幅度响应和相位响应分别为由于系统的相位响应不是的线性函数,所以系统不是无失真传输系统。

三、解答题1.某因果数字滤波器的零、极点如图6-2所示,并已知其H(π)=-1试求:图6-2(1)它的系统函数H(z)及其收敛域,且回答它是IIR、还是FIR的什么类型(低通、高通、带通、带阻或全通)滤波器;(2)写出图6-2(b)所示周期信号x[n研]的表达式,并求其离散傅里叶级数的系数;(3)该滤波器对周期输入x[n研]的响应y[n研]。

信号与系统 第6章-作业参考答案

信号与系统 第6章-作业参考答案

Hd
(z)
=
Hc(z)
s
=1− 1+
z z
−1 −1
证明:H������(z)有一个位于单位圆内的极点和一个位于单位圆外的零点
c)对于系统函数H������(z),证明�H�������ejω�� = 1
证明:
16
第六章 z 变换
第 6 章 习题参考答案
6-4 计算机设计题 答案暂略
17
和 x2(n) = �14�n u(n)
设序列x1(n)的单边和双边 变换分别为 X1( X2(z) 和 X2d (z) 。
1) 根据双边 z 变换的定义和卷积定理,求出g(n) = x1(n) ∗ x2(n); 2) 根据单边 z 变换的定义和卷积定理,求出g(n) = x1(n) ∗ x2(n); 3) 解释 1)和 2)的结果为何不同。 解:
,试用
z
变换的初值
和终值性质确定离散序列 x(n) 的初值 x(0) 和终值 x(∞) 。
6
第六章 z 变换 解:直接求出。
第 6 章 习题参考答案
6-2-26 某离散LTI系统由差分方程
y(n)

10 3
y(n)
+
y(n
+
1)
=
x(n)
描述。试求系统的单位样值响应 h(n) ,并确定系统的稳定性。
解:
5
第六章 z 变换
第 6 章 习题参考答案

∑ 6-2-21 序列 x(n) 的自相关序列定义为φxx (n) = x(k)x(n + k) 。试利用 x(n) 的 z 变换 k =−∞
求出φxx (n) 的 z 变换。
解:

信号与系统课件SandS-6-2

信号与系统课件SandS-6-2

b
,或
1 z 1
b
a
11
第六章 z变换
双边z变换的性质
时间反转性质主要有两方面的应用。
1.与序列的对称性有关: 对于偶对称序列,有 x(n) x(n) ,则由反转性质得 X (z) X (z1) 对于奇对称序列,有 x(n) x(n),则由反转性质得 X (z) X (z1)
12
第六章 z变换
1z
Y (z)
4
(z 1 4)(z 1 2)
应用线性性质,有:
ROC : 1 z 3
2
2
ROC : z 1 2
Z[ax(n) by(n)] aX (z) bY (z)
a
z
1z
b
4
(z 1 2)(z 3 2) (z 1 4)(z 1 2)
3
第六章 z变换
z1 2
双边z变换的性质
一般而言,上式的收敛域是等式右端两项收敛域的交集,也就是ROC : 1 z 3
z 1 (1 az1)2
10
第六章 z变换
双边z变换的性质
时间反转(或倒置)性质
Z[x(n)] X (z1) (7-2-4)
收敛域 ROC : 1 Rx
如果 Rx 具有 z
a
1 的形式,则其映射序列的ROC就为 z
a,或 z
1 a
如果 Rx 具有 a
z
b
的形式,则其映射序列的ROC就为
a
1 z
双边z变换的性质
2.与反因果序列有关
若已知:x(n)u(n) X (z), ROC : z a 则有 x(n)u(n 1) X (z1) x(0), z 1 a
(7-2-5) (7-2-6)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p1 × × M1

N
z1 0
1
| H( jω) |
π
2
ϕ(ω)
× × p∗
1
M2
σ
0.707

0
ω1 ω0 ω2
ω
π
0
ω0
ω
2
ω = 0, H( jω) = 0, ϕ(ω) =
π
1 ω = ω0 = , H( jω) =1 , ϕ(ω) = 0 2 LC 半功率带宽
ω = ∞, H( jω) = 0, ϕ(ω) = −
0

ω
半功率点频率
电信学院
带宽为无穷络的频率特性
+
L
C
+
U1(s)

R U2 (s)

R R s s R L L H(s) = = = , 1 R 1 (s − p1)(s − p2 ) R + sL + s2 + s + sC L LC
p1,2 = −α ± jβ 为极点,z1=0为零点 为极点, 为零点

H( jω) =
1 RC 1 jω + RC
1 p1 = − 为极点 RC
1 1+ jωτ
其频率响应为: 其频率响应为: H( jω) =
H( jω) =
幅频响应
电信学院
1 1+ω τ
2 2
ϕ(ω) = −arctan(ωτ )
相频响应
第六章第2讲
4
低通网络的频率特性

M
× × p
| H( jω) |
ϕ(ω)
1
π
σ × 可见,全通网络的幅频特性为常数,对于全 × 可见,全通网络的幅频特性为常数, ω −α 部频率的正弦信号都能按同样的幅度传输系 0 α 0 0 jω 数通过。但相频特性不受什么约束。因而, 数通过。但相频特性不受什么约束。因而, | H( jω) | ϕ(ω) × × 全通网络可以保证不影响待传送信号的幅度 π 1 频谱特性,只改变信号的相位频谱特性, 频谱特性,只改变信号的相位频谱特性,在 × × 0 σ 传输系统中常用来进行相位校正。 传输系统中常用来进行相位校正。 ω − 2π 0 × ×
| 其中: 其中: H( jω) |= N1 称为幅频特性; 称为幅频特性; M1M2 ϕ(ω) = ∠φ1 −θ1 −θ2 称为相频特性。 称为相频特性。
第六章第2讲
×p ×
∗ 1
θ2
电信学院
3
低通网络的频率特性
+
R
C
U1(s)

1 1 H(s) = sC = RC , + 1 1 R+ s+ U2 (s) sC RC
其频率响应为: 其频率响应为: H( jω) =
H( jω) =
幅频响应
电信学院
ωτ
1+ω τ
jωτ 1+ jωτ
2 2
ϕ(ω) = − arctan(ωτ )
2
相频响应
第六章第2讲
π
6
高通网络的频率特性

M
p1
| H( jω) |
× ×
0
σ
相位超前网络
ϕ(ω)
90° 45°
1
0.707
0

ω
1
0.707
1
0
σ
ϕ(ω)
相位滞后网络

0
−45°

ω
0
ω
−90°
半功率点频率
电信学院
带宽为1/τ 带宽为 τ
第六章第2讲
5
高通网络的频率特性
+
C
+
H(s) =
R 1 R+ sC
=
s 1 s+ RC
,
H( jω) =
jω 1 jω + RC
U1(s)

R
U2 (s)

p1 = −
1 为极点, 为极点,z1=0为零点 为零点 RC
H(s)在s=sa的值为 在
H0 H(sa ) = M1M2∠θ1 +θ2
第六章第2讲
电信学院
1
零极点图确定某一值的图解法
H0 (s − z1) 例2:设 H(s) = : 令 ∗ (s − p1)(s − p1 )
s = sa
p1× ×
M1
sa •

N1
H(s)在s=sa的值为 在
θ1
M2
H0 N1∠φ1 H(sa ) = M1M2∠θ1 +θ2
电信学院
第六章第2讲
12
例 6.13
(2) 画零极点图、幅频和相频特性图。 画零极点图、幅频和相频特性图。

−1 τ
×
0

σ
ϕ(ω)
| H( jω) |
12
π
0
电信学院
ω
0
第六章第2讲
ω
13
例 6.14
考虑如下所示的稳定系统的系统函数
H1(s) = (s +1)(s + 2) (s + 3)(s + 4)(s + 5)
i
H( jω) =
K∏( jω − z j )
若系统频率特性为 作图法可分析系统的频率特性。 作图法可分析系统的频率特性。
p1× ×
M1


N1
θ1
M2
( jω − z1) N1 H( jω) = = ∠φ1 −θ1 −θ2 ( jω − p1)( jω − p2 ) M1M2
0
o z
φ1
1
σ
→∞( 点向上移动) 当ω从0→∞(在虚轴从 点向上移动) →∞ 在虚轴从0点向上移动 的幅值和相位也随之变化。 时,H(jω)的幅值和相位也随之变化。 ω 的幅值和相位也随之变化
电信学院
第六章第2讲
11
例 6.13
如图所示电路, 如图所示电路, (1)证明它们是全通滤波器。 证明它们是全通滤波器。 证明它们是全通滤波器 (2) 画出系统函数的零极点 幅频和相频特性图。 图、幅频和相频特性图。 解:(1)系统函数为 系统函数为
R
+
C
R 1
ui

+ u0 −
R
R 1
1 U (s) − Ui (s) U0 (s) = 1 i 2 R+ sC 1 s− U0 (s) R 1 1 RC H(s) = = − = ⋅ Ui (s) R + 1 2 2 s + 1 sC RC 显然,这是一阶全通滤波器。 显然,这是一阶全通滤波器。
其频率响应为:(令 其频率响应为:(令 R =1Ω, L =1H, C =1F) :( jω H( jω) = (1−ω2 ) + jω
H( jω) =
ω
(1−ω2 )2 +ω2
ω ϕ(ω) = − arctan 2 1−ω2
相频响应
第六章第2讲
π
幅频响应
电信学院
8
带通网络的频率特性
电信学院
第六章第2讲
14
课堂练习题
设系统函数如下,试用矢量作图法绘出粗略的幅频响应曲线 设系统函数如下, 与相频响应曲线。 与相频响应曲线。 (1) H(s) = s + 2
s
(2) H(s) = 3(s −1)(s − 2)
(s +1)(s + 2)
电信学院
第六章第2讲
15
课堂练习题

2
−2
(s −1)(s + 2) H2 (s) = (s + 3)(s + 4)(s + 5)
H3 (s) =
(s −1)(s − 2) (s + 3)(s + 4)(s + 5)
显然,这些系统函数具有相同的幅度, 显然,这些系统函数具有相同的幅度,而它们的 相位即不同。 具有最小的相位, 相位即不同。H1(s)具有最小的相位,因为在右半平面 具有最小的相位 没有零点,是最小相位系统。 没有零点,是最小相位系统。
π
B=ω2-ω1 ω
2
半功率点频率
电信学院
中心频率
半功率点频率
第六章第2讲
9
全通网络
系统函数的极点位于左半平面,零点位于右半平面, 系统函数的极点位于左半平面,零点位于右半平面,而且零 点与极点对于虚轴互为镜像,则系统函数称为全通函数。 点与极点对于虚轴互为镜像,则系统函数称为全通函数。

| H( jω) |
φ1
0
o z
1
σ
H0 N1 | H(sa ) |= M1M2
p× ×
∗ 1
θ2
∠H(sa ) = φ1 −θ1 −θ2
电信学院
第六章第2讲
2
零极点与系统的频域响应
系统函数就变成系统频率特性: 当s = jω时,系统函数就变成系统频率特性: ω
jω − p ) ∏(极点图上用矢量 平面零、 ∴ 在S平面零、 平面零
ω
ω
90º+90 ω=∞时,极点相位为270 ,零点相位为90 +90 -270 =-90 。 极点相位为270º,零点相位为90 +90º-270º= 90º。 270
电信学院
第六章第2讲
10
最小相移网络
×

×
σ

ϕ(ω)
ϕ1(ω)
σ
相关文档
最新文档