冷机群控控制逻辑说明

合集下载

冷机群控控制逻辑说明

冷机群控控制逻辑说明

冷机群控逻辑说明一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下:(1)冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵.1. 冷冻水泵切换条件如下:1.1冷冻水泵有故障;1.2冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期1.3当冷冻水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2.冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID调节冷冻水泵频率. 供回水压力差值越小,频率越高; 冷冻水泵最小频率目前设定38Hz.3.根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID调节冷冻水旁通阀.压差越高,旁通阀开度越大.(2)冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵.1. 冷却水泵切换条件如下:1.1冷却水泵有故障;1.2冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3当冷却水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却水泵频率.温度越高,频率越高;冷冻水泵最小频率目前设定40Hz.3.根据各自冷却水回水温度与设定值比较PID调节冷却水旁通阀.温度越高,旁通阀开度越小(3)冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量是一致的.同时会开启相应的电动蝶阀.1. 冷却塔风机切换条件如下:1.1冷却塔风机有故障;1.2冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3当发出了开冷却塔风机指令后,延时8秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个,就会造成风机锁定不能开启. 能开启的条件就是: 风机无故障,手自动转换开关打到”自动”档,水泵无开启失败.当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组.2. 冷却塔风机的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却塔风机频率. 温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz.3. 如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持5分钟以上,则会减少一组塔,但开启的塔组数不会少于冷机数量.二蓄冷罐充冷(1)充冷条件1.至少要有一台冷水机组开启;2.放冷结速后至少要两个小时后才能充冷;以上两个条件必须要同时满足才能充冷.(2)充冷模式在满足上述两个充冷条件下,充冷有两种模式.1.一种是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况.2.另一种是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行;3.一次只能有一个蓄冷罐充冷,无论在手动还是自动模式.三蓄冷罐放冷(1)放冷条件在放冷总开关处于启用状态下:1. 没有一台冷水机组开启;2.冷冻水总管平均供水温度高于设定值并维持一定时间;3.所有机组都处于失电报警状态下.当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就会放冷.(2)放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量是一样的,同时也会执行与正常供冷时的轮换与故障切泵.四系统加减机功能增加制冷需求Additional Cooling Required – ACR 加载的流程a. 当ACR温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器=南北侧集分水器温度平均值,冷冻水供水温度设定点=12 o C,温度偏差值=0.6 o C,平均温度>(12+0.6)即12.6 o C时条件满足b. 运行冷水机组的温度降低速率小于1.5oC /分钟c. 有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal(未报警)*以上各项要求a~c均能满足,才进入以下机组加载程序d. 新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC:延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12根据供水要求2)温度偏差0.6和延时15分钟为了在满足正常使用情况下,系统更稳定加载减少制冷需求Reduce Cooling Required – RCR 卸载的流程a. 目前运行的机组台数多于一台(均运行于CCN模式)b. 运行机组的平均负载电流百分比小于卸载电流百分比IDC:例如已运行2台机组,1号负载电流百分比51%,2号负载电流百分比47%,如运算卸载电流百分比=54%,平均负载=(51%+47%)/2=49%)则条件满足c. 当RCR温度传感器所测的冷冻水供水温度,小于当前的冷冻水供水温度设定点与一个可调整温度偏差值的0.6倍相加后的所得值。

冷机群控控制逻辑说明

冷机群控控制逻辑说明

一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下:(1)冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵.1. 冷冻水泵切换条件如下:1.1冷冻水泵有故障;1.2冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期1.3当冷冻水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2.冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID调节冷冻水泵频率. 供回水压力差值越小,频率越高; 冷冻水泵最小频率目前设定38Hz.3.根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID调节冷冻水旁通阀.压差越高,旁通阀开度越大.(2)冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵.1. 冷却水泵切换条件如下:冷却水泵有故障;冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.当冷却水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却水泵频率. 温度越高,频率越高;冷冻水泵最小频率目前设定40Hz.3.根据各自冷却水回水温度与设定值比较PID调节冷却水旁通阀.温度越高,旁通阀开度越小(3)冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量是一致的.同时会开启相应的电动蝶阀.1. 冷却塔风机切换条件如下:冷却塔风机有故障;冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.当发出了开冷却塔风机指令后,延时8秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个,就会造成风机锁定不能开启. 能开启的条件就是: 风机无故障,手自动转换开关打到”自动”档,水泵无开启失败.当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组.2. 冷却塔风机的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却塔风机频率. 温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz.3. 如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持5分钟以上,则会减少一组塔,但开启的塔组数不会少于冷机数量.二蓄冷罐充冷(1)充冷条件1.至少要有一台冷水机组开启;2.放冷结速后至少要两个小时后才能充冷;以上两个条件必须要同时满足才能充冷.(2)充冷模式在满足上述两个充冷条件下,充冷有两种模式.1.一种是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况.2.另一种是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行;3.一次只能有一个蓄冷罐充冷,无论在手动还是自动模式.三蓄冷罐放冷(1)放冷条件在放冷总开关处于启用状态下:1. 没有一台冷水机组开启;2.冷冻水总管平均供水温度高于设定值并维持一定时间;3.所有机组都处于失电报警状态下.当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就会放冷.(2)放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量是一样的,同时也会执行与正常供冷时的轮换与故障切泵.四系统加减机功能增加制冷需求 Additional Cooling Required – ACR 加载的流程a.当ACR温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器=南北侧集分水器温度平均值,冷冻水供水温度设定点=12 o C,温度偏差值= o C,平均温度>(12+)即 o C时条件满足b.运行冷水机组的温度降低速率小于 /分钟c.有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal(未报警)*以上各项要求a~c均能满足,才进入以下机组加载程序d.新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC:延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12根据供水要求2)温度偏差和延时15分钟为了在满足正常使用情况下,系统更稳定加载减少制冷需求 Reduce Cooling Required – RCR 卸载的流程a.目前运行的机组台数多于一台(均运行于CCN模式)b.运行机组的平均负载电流百分比小于卸载电流百分比IDC:例如已运行2台机组,1号负载电流百分比51%,2号负载电流百分比47%,如运算卸载电流百分比=54%,平均负载=(51%+47%)/2=49%)则条件满足c.当RCR温度传感器所测的冷冻水供水温度,小于当前的冷冻水供水温度设定点与一个可调整温度偏差值的倍相加后的所得值。

冷源群控逻辑

冷源群控逻辑

冷却塔出水温度>32℃
加一组冷却塔风机(5台)
延时5秒,打开对应冷却塔风 扇
冷却塔出水温度>35℃
加两组冷却塔风机(10台)

延时30分钟, 关闭冷冻泵
分水器蝶阀是 否打开

延时10秒, 关闭冷冻泵
延时40秒,打开对应冷冻泵
冷冻/却泵是否 运行
延迟20秒,打开主机
运行时出现故障延时40秒
参数自动调节
冷却塔出水温度设定=室外湿球温度+5
注:如果主机已运行,冷源的模式自动锁定不可更改
五、大商业指令
慧云关机指令
是否 打到一键模式
主机及配套设 备是否投入
延时10秒,关闭主机 延时10秒,关闭冷却塔风扇
主机是否关闭
水泵、冷却塔 主机是否自动 并且无故障

去现场检查; 自动切换下一组
冷却塔出水温度 >设定值+偏差
调大冷却泵频 率,反之调小
调大冷却塔频 率,反之调小
冷冻泵单台运行且 频率低于35HZ
否 旁通阀0%
冷冻总管压差 >设定值+偏差
调大旁通阀, 反之调小
主机是否定供水温 度控制
减机设定>主机负载率 ,并保持20分钟
减开一组
注:如果故障修复后不投入使用,需把该主机及配套设备 勾选不投入,否则修复后会自动投入群控!

延时30分钟, 关闭冷冻泵
分水器蝶阀是 否打开

延时10秒, 关闭冷冻泵
手动开主机
延时40秒,打开对应冷冻泵
冷冻/却泵是否 运行
延迟20秒,打开主机
运行时出现故障延时40秒
手动关主机 手动关冷却塔风扇
主机已关 手动关冷却泵 手动关冷冻泵

CCN冷机群控系统功能介绍及操作说明

CCN冷机群控系统功能介绍及操作说明

CCN冷机群控系统功能介绍及操作说明一、功能介绍:1.监控功能:CCN冷机群控系统能够实时监控每台冷机的运行状态,包括冷却水温度、压力和流量等参数。

通过监控功能,用户可以随时了解冷机的运行情况,及时发现异常并采取相应的措施。

2.控制功能:CCN冷机群控系统能够远程控制每台冷机的开关机状态和运行模式。

用户可以根据需要,设置每台冷机的运行时间和模式,调整冷机的输出功率,以实现能源的合理利用和降低能耗。

3.调度功能:CCN冷机群控系统能够自动调度多台冷机的运行时间和运行模式,合理分配冷机的负载。

通过调度功能,系统能够根据需求实时调整冷机的运行状态,以实现冷机的优化运行和降低运维成本。

4.报警功能:CCN冷机群控系统具备报警功能,可以监测冷机运行中的异常情况,并及时发送报警信息给用户。

用户可以通过系统接收报警信息,并迅速采取措施修复故障,避免损失。

5.数据分析功能:CCN冷机群控系统能够对冷机的运行数据进行收集和分析,包括能耗数据、负载分布和运行效率等。

通过数据分析功能,用户可以了解冷机的实际运行情况,优化能源管理策略,提高冷机的运行效率。

二、操作说明:1.系统登录:用户在使用CCN冷机群控系统时,首先需要登录系统。

用户可以通过输入用户名和密码登录系统。

如果是首次登录,用户需要进行账号注册和设置登录密码。

2.设备连接:用户在登录系统后,需要将每台冷机与系统进行连接。

冷机需要具备相应的接口和通信功能,以便能够与系统进行通信和控制。

用户可以通过系统提供的连接指南,将冷机与系统进行配对和连接。

3.监控功能:在系统登录和设备连接成功后,用户可以查看每台冷机的监控数据。

系统会实时显示冷却水温度、压力和流量等参数。

用户可以根据需要选择查看单个冷机或多台冷机的监控数据。

4.控制功能:用户可以通过系统对每台冷机进行开关机和运行模式的控制。

用户可以手动控制,也可以根据实际需求设置自动控制模式。

系统提供了简单直观的操作界面,用户可以通过鼠标点击或者手动输入来实现冷机的控制。

冷机群控控制方案

冷机群控控制方案

冷机群控控制方案背景:随着现代工业和商业活动的发展,人们对冷却设备的需求日益增长。

冷机作为主要的冷却设备之一,被广泛应用于建筑、工厂、医院、超市等场所,带来了许多便利。

然而,随着冷机数量的增加,如何有效地管理和控制这些冷机成为了重要的问题。

为了提高冷机的运行效率和降低能耗,冷机群控技术应运而生。

一、冷机群控系统的基本原理冷机群控系统是一种将多台冷机集中控制的技术方案。

它通过集中控制器实时监测和调度冷机的运行状态,以达到统一管理、优化调度、提高能效的目的。

冷机群控系统的基本组成包括以下几个方面:1.集中控制器集中控制器是冷机群控系统的核心设备,负责实时监测和调度冷机的运行状态。

它可以通过与冷机的通信接口实现对冷机的远程监控和控制。

2.数据采集器数据采集器负责采集冷机运行相关的数据,并将数据传输给集中控制器。

数据采集器可以直接连接到冷机,也可以通过无线传输的方式实现与集中控制器的通信。

3.远程监控终端远程监控终端允许用户通过电脑、手机等设备实时监控冷机群控系统的运行状态。

用户可以在远程监控终端上查看冷机的运行数据、历史记录、报警信息等。

4.云平台云平台是冷机群控系统的数据存储和管理中心。

它可以存储和管理冷机运行数据、历史记录、报警信息等,并提供数据分析和报表生成功能。

二、冷机群控系统的优势冷机群控系统相比传统的单独控制方式具有以下优势:1.能耗优化通过冷机群控系统,可以对冷机进行统一调度和优化控制,根据场所的需求实时调整冷机的运行状态,从而达到最佳能效的目的。

这将显著降低能耗并降低运营成本。

2.故障预警冷机群控系统可以实时监测冷机的运行状态,并根据设定的阈值进行故障预警。

一旦冷机发生故障或运行异常,系统将立即发送报警信息给相关人员,以便及时处理并减少停机时间。

3.远程监控冷机群控系统具有远程监控功能,可以通过电脑、手机等设备随时随地监控冷机的运行状态,提供实时数据和报警信息,方便管理人员进行决策和调度。

冷机群控控制逻辑说明.doc

冷机群控控制逻辑说明.doc

一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组, 主机接到开机指令后, 主机会发出水泵需求指令, 控制器接到水泵需求指令后, 开启相应冷水机组冷凝器和蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀,同时开启冷冻水泵, 冷却水泵 , 冷却塔风机 .冷冻水泵以及冷却水泵的数量与主机开启的数量是一致的, 冷却塔风机最少开启的数量是主机的两倍, 如果冷却塔冷却后的温度还高于设定值 1 度以上含 1 度 , 并维持 5 分钟以上, 则加一组冷却塔, 以此类推, 一直加到没有可加冷却塔为止. 具体如下:(1)冷冻水侧逻辑当主机接到开机指令时, 延时一定时间后会发出一个水泵需求指令给相应的控制器 , 控制器接到指令后, 会开启相应冷水机组蒸发器侧的出水电动蝶阀, 同时会开启相应数量的冷冻水泵.1.冷冻水泵切换条件如下 :1.1 冷冻水泵有故障 ;1.2 冷冻水泵检测不到自动状态, 既冷冻水泵强电控制柜上的手自动没转到”自动”时 , 电脑上显示”本地”时期1.3 当冷冻水泵接到了开泵指令后 , 延时 8 秒钟后 , 控制器还没检测到水泵运行状态开启时 , 程序会认为此水泵开启失败 .以上三个条件只要有一个,冷冻水泵就会切换到另一台水泵. 相应的 , 水泵能开启的条件就是 : 水泵无故障 , 手自动转换开关打到”自动”档, 水泵无开启失败.水泵切换时 , 会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2.冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID 调节冷冻水泵频率 . 供回水压力差值越小 , 频率越高 ; 冷冻水泵最小频率目前设定 38Hz.3. 根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID 调节冷冻水旁通阀.压差越高 , 旁通阀开度越大.(2)冷却水侧逻辑当主机接到开机指令时, 延时一定时间后会发出一个冷却水泵需求指令给相应的控制器, 控制器接到指令后, 会开启相应冷水机组冷凝器侧的出水电动蝶阀, 同时会开启相应数量的冷却水泵 .1.冷却水泵切换条件如下 :冷却水泵有故障 ;, 冷却水泵检测不到自动状态, 既冷却水泵强电控制柜上的手自动没转到”自动”时电脑上显示”本地”时期.当冷却水泵接到了开泵指令后, 延时8 秒钟后 , 控制器还没检测到水泵运行状态开启时 , 程序会认为此水泵开启失败.以上三个条件只要有一个,冷却水泵就会切换到另一台水泵. 相应的 , 水泵能开启的条件就是 : 水泵无故障 , 手自动转换开关打到”自动”档, 水泵无开启失败.水泵切换时 , 会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2.冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID 调节冷却水泵频率 . 温度越高 , 频率越高 ; 冷冻水泵最小频率目前设定40Hz.3.根据各自冷却水回水温度与设定值比较 PID 调节冷却水旁通阀 . 温度越高 , 旁通阀开度越小(3)冷却塔逻辑当主机接到开机指令时, 延时一定时间后会发出一个冷却水泵需求指令给相应的控制器 , 控制器接到指令后, 除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外, 还会发出冷却塔的需求指令, 刚开始时 , 冷却塔组( 每个塔组含两个风机, 两个进水阀 , 两个出水阀 ) 的数量与主机开启的数量是一致的. 同时会开启相应的电动蝶阀 .1.冷却塔风机切换条件如下 :冷却塔风机有故障 ;冷却塔风机塔检测不到自动状态, 既冷却水泵强电控制柜上的手自动没转到”自动”时 , 电脑上显示”本地”时期.当发出了开冷却塔风机指令后, 延时8 秒钟后 , 控制器还没检测到冷却塔风机运行状态开启时 , 程序会认为此水泵开启失败.以上三个条件只要有一个, 就会造成风机锁定不能开启.能开启的条件就是: 风机无故障 , 手自动转换开关打到”自动”档, 水泵无开启失败. 当以上条件造成了同一组冷塔里的两台风机同时不能开启时,会自动选择同时满足以上三点并运行时间最少的冷却塔组.2.冷却塔风机的频率调节是根据冷却平均回水温度及设定值比较,PID 调节冷却塔风机频率 .温度越高,频率越高;冷却塔风机最小频率目前设定40Hz.3.如果冷却塔冷却后的温度还高于设定值 1 度以上含 1 度, 并维持 5 分钟以上 , 则加一组冷却塔 , 以此类推 , 一直加到没有可加冷却塔为止 , 与此相反 , 如果冷却塔冷却后的温度低于设定值 1 度以上含 1 度 , 并维持 5 分钟以上 , 则会减少一组塔 , 但开启的塔组数不会少于冷机数量 .二蓄冷罐充冷(1)充冷条件1. 至少要有一台冷水机组开启;2. 放冷结速后至少要两个小时后才能充冷;以上两个条件必须要同时满足才能充冷.(2)充冷模式在满足上述两个充冷条件下, 充冷有两种模式.1.一种是手动模式 , 在手动模式下 , 用户可以自行开启 , 关闭各个蓄冷罐的充冷工况 .2.另一种是自动模式 , 在自动模式下 , 当蓄冷罐里的平均温度高于设定值时 , 充冷工况开始运行 ;3.一次只能有一个蓄冷罐充冷 , 无论在手动还是自动模式 .三蓄冷罐放冷(1)放冷条件在放冷总开关处于启用状态下 :1.没有一台冷水机组开启 ;2. 冷冻水总管平均供水温度高于设定值并维持一定时间;3. 所有机组都处于失电报警状态下.当放冷总开关处于启用状态时, 以上三个条件只要任何一个, 同时相应充许放冷的蓄冷罐平均温度不高于设定值, 以及单个蓄冷罐的放冷开关打到”ON”时,此时相应的蓄冷罐就会放冷 .(2)放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量是一样的, 同时也会执行与正常供冷时的轮换与故障切泵.四系统加减机功能增加制冷需求Additional Cooling Required–ACR加载的流程a.当 ACR温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器 =南北侧集分水器温度平均值,o冷冻水供水温度设定点=12C,o温度偏差值 =C,o平均温度 >( 12+)即 C 时条件满足b. 运行冷水机组的温度降低速率小于/ 分钟c.有可加载的机组IDC:有未开启的机组,且该机组的控制模式 =CCN,且该机组的报警状态 =Normal(未报警)*以上各项要求 a~c 均能满足,才进入以下机组加载程序d.新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC:延时时间 =15 分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12 根据供水要求2)温度偏差和延时15 分钟为了在满足正常使用情况下,系统更稳定加载否增机条件 =NO开始否系统处于预备是是否符合下列增机条件?1.冷冻水供水温度> ( 冷冻水设定温度+温度偏差值 )2.冷冻水温下降速率<每分钟o C3.有可加载机组是增机条件 =YES,延时计时器倒计时开始否延时计时器 =0CSM系统处于备用状是启用待命机组退出减少制冷需求Reduce Cooling Required–RCR卸载的流程a. 目前运行的机组台数多于一台(均运行于CCN模式)b.运行机组的平均负载电流百分比小于卸载电流百分比IDC:例如已运行 2 台机组, 1 号负载电流百分比51%,2 号负载电流百分比47%,如运算卸载电流百分比=54%,平均负载 =( 51%+47%) /2=49%)则条件满足c.当 RCR温度传感器所测的冷冻水供水温度,小于当前的冷冻水供水温度设定点与一个可调整温度偏差值的倍相加后的所得值。

冷源群控逻辑

冷源群控逻辑

冷却塔出水温度 >设定值+偏差
调大冷却泵频 率,反之调小
调大冷却塔频 率,反之调小
冷冻泵单台运行且 频率低于35HZ
否 旁通阀0%
冷冻总管压差 >设定值+偏差
调大旁通阀, 反之调小
主机是否定供水温 度控制
减机设定>主机负载率 ,并保持20分钟
减开一组
注:如果故障修复后不投入使用,需把该主机及配套设备 勾选不投入,否则修复后会自动投入群控!

延时30分钟, 关闭冷冻泵
分水器蝶阀是 否打开

延时10秒, 关闭冷冻泵
手动开主机
延时40秒,打开对应冷冻泵
冷冻/却泵是否 运行
延迟20秒,打开主机
运行时出现故障延时40秒
手动关主机 手动关冷却塔风扇
主机已关 手动关冷却泵 手动关冷冻泵
注:如果故障修复后不投入使用,需把该主机及配套设备 勾选不投入,否则修复后会自动投入群控!
加机设定<主机负载率 ,并保持20分钟
冷冻总管供水温度>(3台主机
冷冻水出水温度设定值/3+4℃) 保持20分钟
已开主机 <最大台数
加开一组
联锁控制
自动修正
冷却塔出水温度<设定值偏差,且频率<=30HZ,并 保持200秒,或者冷却塔
出水温度<25℃
过渡季 是
否 冷却塔出水温度设定=室外湿球温度+3
关闭冷却塔 发出报警
ÿ 五、大商业群控控制逻辑 1、一键模式
一键开机指令
一键关机指令
是否 打到一键模式
主机及配套设 备是否投入
延时10秒,关闭主机 延时10秒,关闭冷却塔风扇

空调主机和暖通系统群控(含冷机群控)的知识分享

空调主机和暖通系统群控(含冷机群控)的知识分享

一、冷机群控的逻辑
二、冷冻水泵变频
拓展问题: 1、压差旁通阀的作用是什么? 2、水泵的变频下限为什么是35HZ?
一、冷机群控的逻辑
三、冷却塔风扇变频
4) 冷却塔风机的自动控制逻辑 根据冷却塔出水温度自动调整冷却塔风机的运行台数及频率(偏差值可设定): ●冷却塔开始运行时,所有风机均开启;冷却塔停止运行时,风机均关闭。 ● 出塔温度高于设定值+偏差时,整体提高风机运行频率。 ● 出塔温度低于设定值-偏差时,整体降低风机运行频率,频率不应低于30Hz。 ● 频率达到下限其出塔温度仍低于设定值-偏差时,应按组关闭风机。 设定值低于冷却塔出水极限温度时,自动修正为极限温度。用户在子系统上应能选 择是否启用自动修正功能。冷却塔出水极限温度取“室外湿球温度+3~5℃”,其中 夏季取小值,过渡季取大值。
机组根据回风温度与设定值偏差自动调节送风机转速,机组回风温度比设定值高2度时, 自动提高风机转速;机组回风温度比设定值低2度时,自动降低风机转速;
二、空调末端调控的逻辑
二、新风机组
a) 新风机组根据送风温度与设定值偏差自动调节空调水阀开度。 ● 夏季工况下,当送风温度高于设定值2℃时,自动加大水阀开度;当送风温度 低于设定值2℃时,自动减小水阀开度。 ● 冬季工况下,当送风温度高于设定值2℃时,自动减小水阀开度;当送风温度 低于设定值2℃时,自动加大水阀开度。 ● 过渡季通风工况下,水阀关闭。
二、空调末端调控的逻辑
一、组合式空调机组
当室外空气焓值低于室内空气焓值时,新风阀全开,回风阀关闭,按最大新风比运行;
当室外空气焓值高于室内空气焓值时,新风量根据室内CO2浓度控制,但不得高于设计 最小新风量(阀位不大于30%),且不得低于设计最小新风量的50%(阀位不小于15%); 空调机组控 制功能(制 冷季) 机组根据送风温度,应能调节水阀开度,当送风温度比设定温度高2℃时,水阀开大; 当送风温度比设定温度低2℃时,水阀关小;

冷机群控方案

冷机群控方案

冷机群控方案随着科技的不断发展和进步,冷机群控方案在工业和商业领域中得到了广泛应用。

冷机群控方案基于先进的控制系统和网络技术,能够实现对多台冷机的集中控制和调度,有效提高冷却系统的性能和运行效率。

本文将介绍冷机群控方案的运作原理、优势和应用场景。

一、冷机群控方案的原理冷机群控方案采用了现代化的监控和控制技术,通过与冷机系统的传感器和执行器连接,实现对冷机的智能控制。

具体而言,冷机群控方案主要包括以下几个方面:1. 传感器网络:通过在冷机系统中安装传感器,实时监测冷却水温度、冷却水流量、冷机负荷等参数,并将数据传输给控制中心。

2. 控制中心:冷机群控方案的核心是控制中心,它采集来自传感器的数据,并根据预设的控制策略进行冷机的控制和调度。

控制中心还可以实现对冷机系统的参数设置、故障诊断和报警处理等功能。

3. 通信网络:冷机群控方案通过通信网络将传感器和控制中心连接起来,实现数据的传输和控制指令的下发。

通信网络可以采用有线或无线的方式,如以太网、Modbus、CAN等。

4. 控制策略:冷机群控方案基于先进的控制算法,结合实时的冷机工作条件和运行要求,自动调节冷机的工作模式,以满足系统的冷却需求,并尽量降低能耗。

二、冷机群控方案的优势冷机群控方案相比传统的单机控制方式,具有以下几个显著的优势:1. 高效节能:通过对多台冷机进行集中控制和调度,可以实现冷机的最优运行,避免冷机的空转和重复操作,从而提高冷却系统的能效。

2. 系统可靠性提高:冷机群控方案具备故障诊断和报警功能,能够及时发现和处理冷机系统中的故障,保证系统的正常运行,减少故障停机时间。

3. 远程监控和管理:控制中心可以通过互联网远程监控和管理冷机系统,实时获取冷机运行数据和报警信息,方便运维人员进行远程诊断和维护。

4. 灵活可扩展性:冷机群控方案支持冷机系统的灵活扩展,可以方便地增加或替换冷机设备,满足不同负载工况下的需求。

三、冷机群控方案的应用场景冷机群控方案适用于各种规模的冷却系统,特别是那些需要同时控制多台冷机的场景。

冷水机组群控

冷水机组群控

1、冷水机组群控的意义1.1 节能–根据系统负荷的大小,开启相应的机组,从而节能,并节省运行费用。

–停开相应水泵,或降低水泵电机转速,从而达到节能的目的。

1.2 长寿命运转–积极群控,有助于延长机组寿命,提高设备利用效率。

1.3 设备保护–合理群控,使系统更舒适,避免过冷,更容易达到设计要求2、几种可能的群控模式分析2.1 回水温度控制法2.1.1 回水温度控制法原理通过测量空调系统中冷冻水系统回水的温度,根据其值的大小,从而决定开启冷水机组的台数,达到控制冷水机组台数的目的。

2.1.2 回水温度控制法控制流程图12.1.3 回水温度控制法的分析1:回水温度适应性较差,尤其温差小时,误差大,对节能不利。

2:可用于冷冻机的低温保护和报警。

3:但装置简单,价格便宜。

4:判据不明确。

2.2 流量控制法2.2.1 流量控制法控制原理通过测量冷冻水流量获得流量信号,然后再把此流量值与冷水机组的额定流量进行比较,从而实现对冷水机组的台数控制。

2.2.2 有关流量控制法的分析流量控制的原理是基于这样三个假定1:负荷与流量成正比2:冷冻水供回水温差恒定3:在设计工况之下运行但实际上,这三个假定一个也不能成立,更不可能同时成立。

流量控制法虽能保证系统流量,避免冷水机组蒸发器结冰,但并不能很好的适应系统负荷的变化。

因为盘管的传热量和流量并不是线性关系。

实验和研究表明,冷冻水流量和建筑物热负荷之间呈对数关系。

这种关系伴随着冷冻水入口温度、盘管尺寸结构和盘管表面积和盘管表面接触的空气温度以及气流速度的不同而变化,所以它不仅是非线性的,还是一个随着多种因素变动的曲线。

不能反映负荷的变化,因而不能有效节能。

2.2 热量控制法2.3.1 热量控制法控制原理通过测量冷冻水供回水温度和供(回)水流量获得温差和流量信号,然后将两个信号依据热力学公式计算实际的需冷量,再把此冷量值与冷水机组的产冷量进行比较,从而实现对冷水机组的台数控制。

冷水机组群控系统方案

冷水机组群控系统方案

冷水机组群控系统方案冷水机组群控系统是指控制多台冷水机组同时运行、停止、调节参数和故障报警等功能的系统。

随着制冷技术的发展和应用需求的不断提高,冷水机组群控系统越来越受到工程设计和用户的重视。

本文将就冷水机组群控系统的方案进行详细的介绍,从系统组成、工作原理、控制策略、应用优势等方面进行论述。

一、系统组成冷水机组群控系统由主控制器、冷水机组控制器、监控显示器、传感器和执行器等部分组成。

主控制器负责整个系统的调度和协调,冷水机组控制器负责单台冷水机组的控制和运行,监控显示器用于实时显示系统运行状态,传感器和执行器用于检测和执行系统的各种操作。

二、工作原理三、控制策略冷水机组群控系统的控制策略一般包括负荷分配、轮换运行和故障自动切换等。

负荷分配是根据系统负荷需求,动态调整各个冷水机组的运行状态,保证系统在部分负荷和全负荷时的运行效果。

轮换运行是指在系统负荷需求较小时,通过轮换运行各个冷水机组,延长设备寿命和提高效能。

故障自动切换则是在某个冷水机组出现故障时,系统能够自动切换到其他正常运行的冷水机组,保证系统的连续运行。

四、应用优势冷水机组群控系统相比单台冷水机组的控制具有以下优势:1. 提高运行效率:通过对多台冷水机组的协同控制和轮换运行,提高了系统的运行效率,降低了能耗和运行成本。

2. 提高稳定性:系统可以根据系统的负荷需求和运行状态,动态调整各个冷水机组的运行状态,保证系统的稳定运行。

3. 提高可靠性:系统故障自动切换功能可以在某个冷水机组出现故障时,自动切换到其他正常运行的冷水机组,保证系统连续运行。

5. 减少维护成本:通过对冷水机组的协同控制和轮换运行,延长了各个设备的使用寿命,降低了设备的维护成本。

冷水机组群控系统在大型制冷系统中的应用前景广阔,可以提高能源利用率、减少运行成本、提高系统稳定性和可靠性,是制冷技术领域的一项重要技术创新。

通过不断改进和完善系统方案,将能够更好地满足用户的实际需求,推动制冷技术的发展和应用。

冷机群控控制逻辑说明讲课教案

冷机群控控制逻辑说明讲课教案

冷机群控逻辑说明一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持 5 分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下:(1)冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵.1. 冷冻水泵切换条件如下:1.1 冷冻水泵有故障;1.2 冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期1.3 当冷冻水泵接到了开泵指令后,延时8 秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2. 冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID调节冷冻水泵频率.供回水压力差值越小,频率越高;冷冻水泵最小频率目前设定38Hz.3. 根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID 调节冷冻水旁通阀.压差越高,旁通阀开度越大.2)冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵.1. 冷却水泵切换条件如下:1.1 冷却水泵有故障;1.2 冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3 当冷却水泵接到了开泵指令后,延时8 秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却水泵频率.温度越高,频率越高;冷冻水泵最小频率目前设定40Hz.3. 根据各自冷却水回水温度与设定值比较PID 调节冷却水旁通阀.温度越高,旁通阀开度越小3)冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量是一致的.同时会开启相应的电动蝶阀.1. 冷却塔风机切换条件如下:1.1 冷却塔风机有故障;1.2 冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3 当发出了开冷却塔风机指令后,延时8 秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 就会造成风机锁定不能开启. 能开启的条件就是: 风机无故障,手自动转换开关打到”自动”档,水泵无开启失败.当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组.2. 冷却塔风机的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却塔风机频率. 温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz.3. 如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5 分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持 5 分钟以上,则会减少一组塔,但开启的塔组数不会少于冷机数量.二蓄冷罐充冷1)充冷条件1. 至少要有一台冷水机组开启2. 放冷结速后至少要两个小时后才能充冷 以上两个条件必须要同时满足才能充冷 .2) 充冷模式 在满足上述两个充冷条件下 ,充冷有两种模式 .1. 一种是手动模式 ,在手动模式下 ,用户可以自行开启 ,关闭各个蓄冷罐的充冷工况 .2. 另一种是自动模式 ,在自动模式下 ,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行 ;3. 一次只能有一个蓄冷罐充冷 ,无论在手动还是自动模式 .三 蓄冷罐放冷(1) 放冷条件在放冷总开关处于启用状态下 : 1. 没有一台冷水机组开启 ;2. 冷冻水总管平均供水温度高于设定值并维持一定时间3. 所有机组都处于失电报警状态下 .当放冷总开关处于启用状态时 ,以上三个条件只要任何一个 ,同时相应充许放冷的蓄冷 罐平均温度不高于设定值 ,以及单个蓄冷罐的放冷开关打到 ” ON 寸,此时相应的蓄冷罐就会放冷 .2) 放冷时 ,冷冻水泵开启的数量与蓄冷罐放冷的数量是一样的 冷时的轮换与故障切泵 .四 系统加减机功能增加制冷需求 Additional Cooling Requireda. 当ACR 温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值 IDC :,同时也会执行与正常供-ACR 加载的流程冷冻水供水温度设定点=12 °C,温度偏差值=0.6 °C,b. 运行冷水机组的温度降低速率小于 1.5oC /分钟c. 有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal (未报警)*以上各项要求a~c均能满足,才进入以下机组加载程序d. 新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC :延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12根据供水要求2)温度偏差0.6和延时15分钟为了在满足正常使用情况下,系统更稳定加载增机条件=YES 延时计时器倒计时开始系统处于预备 否 使用时间内是是否符合下列增机条件? 1 2 有可加载机组3冷冻水供水温度 > (冷冻水设定温度+温度偏差值) 冷冻水温下降速率 < 每分钟1.5 °C 开始是CSM 系统处于备用 状态延时计时器=0 启用待命机组增机条件=NO减少制冷需求Reduce Cooli ng Required -RCR 卸载的流程a. 目前运行的机组台数多于一台(均运行于CCN模式)b. 运行机组的平均负载电流百分比小于卸载电流百分比IDC:例如已运行2台机组,1号负载电流百分比51%,2号负载电流百分比47%,如运算卸载电流百分比=54%,平均负载=(51%+47%)/2=49%)则条件满足c. 当RCR温度传感器所测的冷冻水供水温度,小于当前的冷冻水供水温度设定点与一个可调整温度偏差值的0.6倍相加后的所得值。

冷机群控控制逻辑说明讲课教案

冷机群控控制逻辑说明讲课教案

冷机群控逻辑说明一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下:(1)冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵.1. 冷冻水泵切换条件如下:1.1冷冻水泵有故障;1.2冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期1.3当冷冻水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2.冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID调节冷冻水泵频率. 供回水压力差值越小,频率越高; 冷冻水泵最小频率目前设定38Hz.3.根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID调节冷冻水旁通阀.压差越高,旁通阀开度越大.(2)冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵.1. 冷却水泵切换条件如下:1.1冷却水泵有故障;1.2冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3当冷却水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却水泵频率.温度越高,频率越高;冷冻水泵最小频率目前设定40Hz.3.根据各自冷却水回水温度与设定值比较PID调节冷却水旁通阀.温度越高,旁通阀开度越小(3)冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量是一致的.同时会开启相应的电动蝶阀.1. 冷却塔风机切换条件如下:1.1冷却塔风机有故障;1.2冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3当发出了开冷却塔风机指令后,延时8秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个,就会造成风机锁定不能开启. 能开启的条件就是: 风机无故障,手自动转换开关打到”自动”档,水泵无开启失败.当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组.2. 冷却塔风机的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却塔风机频率. 温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz.3. 如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持5分钟以上,则会减少一组塔,但开启的塔组数不会少于冷机数量.二蓄冷罐充冷(1)充冷条件1.至少要有一台冷水机组开启;2.放冷结速后至少要两个小时后才能充冷;以上两个条件必须要同时满足才能充冷.(2)充冷模式在满足上述两个充冷条件下,充冷有两种模式.1.一种是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况.2.另一种是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行;3.一次只能有一个蓄冷罐充冷,无论在手动还是自动模式.三蓄冷罐放冷(1)放冷条件在放冷总开关处于启用状态下:1. 没有一台冷水机组开启;2.冷冻水总管平均供水温度高于设定值并维持一定时间;3.所有机组都处于失电报警状态下.当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就会放冷.(2)放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量是一样的,同时也会执行与正常供冷时的轮换与故障切泵.四系统加减机功能增加制冷需求Additional Cooling Required – ACR 加载的流程a. 当ACR温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器=南北侧集分水器温度平均值,冷冻水供水温度设定点=12 o C,温度偏差值=0.6 o C,平均温度>(12+0.6)即12.6 o C时条件满足b. 运行冷水机组的温度降低速率小于1.5oC /分钟c. 有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal(未报警)*以上各项要求a~c均能满足,才进入以下机组加载程序d. 新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC:延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12根据供水要求2)温度偏差0.6和延时15分钟为了在满足正常使用情况下,系统更稳定加载减少制冷需求Reduce Cooling Required – RCR 卸载的流程a. 目前运行的机组台数多于一台(均运行于CCN模式)b. 运行机组的平均负载电流百分比小于卸载电流百分比IDC:例如已运行2台机组,1号负载电流百分比51%,2号负载电流百分比47%,如运算卸载电流百分比=54%,平均负载=(51%+47%)/2=49%)则条件满足c. 当RCR温度传感器所测的冷冻水供水温度,小于当前的冷冻水供水温度设定点与一个可调整温度偏差值的0.6倍相加后的所得值。

冷机群控控制逻辑说明

冷机群控控制逻辑说明

冷机群控逻辑说明一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器与蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机、冷冻水泵以及冷却水泵的数量与主机开启的数量就是一致的,冷却塔风机最少开启的数量就是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止、具体如下:(1)冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵、1、冷冻水泵切换条件如下:1.1冷冻水泵有故障;1.2冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期1.3当冷冻水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败、以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵、相应的,水泵能开启的条件就就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败、水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵、2.冷冻水泵的频率调节就是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID调节冷冻水泵频率、供回水压力差值越小,频率越高; 冷冻水泵最小频率目前设定38Hz、3.根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID调节冷冻水旁通阀、压差越高,旁通阀开度越大、(2)冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵、1、冷却水泵切换条件如下:1、1冷却水泵有故障;1、2冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期、1、3当冷却水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败、以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵、相应的,水泵能开启的条件就就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败、水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵、2、冷却水泵的频率调节就是根据冷却平均回水温度及设定值比较,PID调节冷却水泵频率、温度越高,频率越高;冷冻水泵最小频率目前设定40Hz、3、根据各自冷却水回水温度与设定值比较PID调节冷却水旁通阀、温度越高,旁通阀开度越小(3)冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量就是一致的、同时会开启相应的电动蝶阀、1、冷却塔风机切换条件如下:1、1冷却塔风机有故障;1、2冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期、1、3当发出了开冷却塔风机指令后,延时8秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败、以上三个条件只要有一个,就会造成风机锁定不能开启、能开启的条件就就是: 风机无故障,手自动转换开关打到”自动”档,水泵无开启失败、当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组、2、冷却塔风机的频率调节就是根据冷却平均回水温度及设定值比较,PID调节冷却塔风机频率、温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz、3、如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持5分钟以上,则会减少一组塔,但开启的塔组数不会少于冷机数量、二蓄冷罐充冷(1)充冷条件1.至少要有一台冷水机组开启;2.放冷结速后至少要两个小时后才能充冷;以上两个条件必须要同时满足才能充冷、(2)充冷模式在满足上述两个充冷条件下,充冷有两种模式、1.一种就是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况、2.另一种就是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行;3.一次只能有一个蓄冷罐充冷,无论在手动还就是自动模式、三蓄冷罐放冷(1)放冷条件在放冷总开关处于启用状态下:1、没有一台冷水机组开启;2.冷冻水总管平均供水温度高于设定值并维持一定时间;3.所有机组都处于失电报警状态下、当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就会放冷、(2)放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量就是一样的,同时也会执行与正常供冷时的轮换与故障切泵、四系统加减机功能增加制冷需求Additional Cooling Required – ACR 加载的流程a. 当ACR温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器=南北侧集分水器温度平均值,冷冻水供水温度设定点=12 o C,温度偏差值=0、6 o C,平均温度>(12+0、6)即12、6 o C时条件满足b. 运行冷水机组的温度降低速率小于1、5oC /分钟c. 有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal(未报警) *以上各项要求a~c均能满足,才进入以下机组加载程序d. 新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC:延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12根据供水要求2)温度偏差0、6与延时15分钟为了在满足正常使用情况下,系统更稳定加载。

最新冷机群控控制逻辑说明资料

最新冷机群控控制逻辑说明资料

冷机群控逻辑说明一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下:(1)冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵.1. 冷冻水泵切换条件如下:1.1冷冻水泵有故障;1.2冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期1.3当冷冻水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2.冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID调节冷冻水泵频率. 供回水压力差值越小,频率越高; 冷冻水泵最小频率目前设定38Hz.3.根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID调节冷冻水旁通阀.压差越高,旁通阀开度越大.(2)冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵.1. 冷却水泵切换条件如下:1.1冷却水泵有故障;1.2冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3当冷却水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却水泵频率.温度越高,频率越高;冷冻水泵最小频率目前设定40Hz.3.根据各自冷却水回水温度与设定值比较PID调节冷却水旁通阀.温度越高,旁通阀开度越小(3)冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量是一致的.同时会开启相应的电动蝶阀.1. 冷却塔风机切换条件如下:1.1冷却塔风机有故障;1.2冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3当发出了开冷却塔风机指令后,延时8秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个,就会造成风机锁定不能开启. 能开启的条件就是: 风机无故障,手自动转换开关打到”自动”档,水泵无开启失败.当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组.2. 冷却塔风机的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却塔风机频率. 温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz.3. 如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持5分钟以上,则会减少一组塔,但开启的塔组数不会少于冷机数量.二蓄冷罐充冷(1)充冷条件1.至少要有一台冷水机组开启;2.放冷结速后至少要两个小时后才能充冷;以上两个条件必须要同时满足才能充冷.(2)充冷模式在满足上述两个充冷条件下,充冷有两种模式.1.一种是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况.2.另一种是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行;3.一次只能有一个蓄冷罐充冷,无论在手动还是自动模式.三蓄冷罐放冷(1)放冷条件在放冷总开关处于启用状态下:1. 没有一台冷水机组开启;2.冷冻水总管平均供水温度高于设定值并维持一定时间;3.所有机组都处于失电报警状态下.当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就会放冷.(2)放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量是一样的,同时也会执行与正常供冷时的轮换与故障切泵.四系统加减机功能增加制冷需求Additional Cooling Required – ACR 加载的流程a. 当ACR温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器=南北侧集分水器温度平均值,冷冻水供水温度设定点=12 o C,温度偏差值=0.6 o C,平均温度>(12+0.6)即12.6 o C时条件满足b. 运行冷水机组的温度降低速率小于1.5oC /分钟c. 有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal(未报警)*以上各项要求a~c均能满足,才进入以下机组加载程序d. 新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC:延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12根据供水要求2)温度偏差0.6和延时15分钟为了在满足正常使用情况下,系统更稳定加载减少制冷需求Reduce Cooling Required – RCR 卸载的流程a. 目前运行的机组台数多于一台(均运行于CCN模式)b. 运行机组的平均负载电流百分比小于卸载电流百分比IDC:例如已运行2台机组,1号负载电流百分比51%,2号负载电流百分比47%,如运算卸载电流百分比=54%,平均负载=(51%+47%)/2=49%)则条件满足c. 当RCR温度传感器所测的冷冻水供水温度,小于当前的冷冻水供水温度设定点与一个可调整温度偏差值的0.6倍相加后的所得值。

中央空调冷热源群控系统PLC逻辑控制说明

中央空调冷热源群控系统PLC逻辑控制说明

一、冷机启停逻辑(DDC内控制程序)1、冷机启动→平台选择了冷机模式,并且发送了启动命令(开始计时)→水泵、冷却塔、冷机没有故障,且没有切为本地,否则报故障,机组停机,切机→冷机模式对应的1个阀门开到位,否则报故障,机组停机,切机→冷却塔进水阀开度>80%,否则报故障,切机→开启冷却水循环泵,冷却水循环泵频率>(设定启动频率-5)→开启冷却塔,冷却塔频率>25HZ→开启冷冻水泵,冷冻水泵频率>(设定启动频率-5)→开启冷机,系统运行状态返回(计时清零,正常启动完成,如果超过3分钟没有状态返回,启动故障处理程序)→冷机启动完成2、冷机关闭→平台选择了冷机模式,并且发送了关机命令(开始计时)→给冷机发送关机指令,冷机停机,冷机运行状态为OFF,开始计时→计时时间=300S(5分钟),关闭冷冻水循环泵→计时时间=360S(6分钟),冷冻水泵运行状态为OFF,关闭冷却水循环泵→冷冻水流量<20且冷却水流量<20,关闭冷却塔→冷机关闭完成3、板换启动→平台选择了板换模式,并且发送了启动命令(开始计时)→水泵、冷却塔、冷机没有故障,且没有切为本地,否则报故障,机组停机,切机→板换模式对应的4个阀门开到位,否则报故障,机组停机,切机→冷却塔进水阀开度>80%,否则报故障,切机→开启冷却水循环泵,冷却水循环泵频率>(设定启动频率-5)→开启冷却塔,冷却塔频率>25HZ→开启冷冻水泵→板换启动完成4、板换关闭→平台选择了板换模式,并且发送了关机命令(开始计时)→计时时间=30S(半分钟),关闭冷冻水循环泵→计时时间=60S(6分钟),冷冻水泵运行状态为OFF,关闭冷却水循环泵→冷冻水流量<20且冷却水流量<20,关闭冷却塔→板换关闭完成二、冷机故障切换逻辑1、故障条件➢大前提:制冷单元发送了开机命令或者在运行中➢设备(冷机、冷冻水泵、冷却水泵、冷却塔)切换到本地模式➢设备(冷机、冷冻水泵、冷却水泵、冷却塔)故障➢冷机断电(延时10S(可设置)时间没有恢复)。

楼控(含冷机群控)技术的分享

楼控(含冷机群控)技术的分享
目录
一、冷机群控的逻辑
二、末端设备调控的逻辑 三、实操分享
一、冷机群控的逻辑
一、冷机加减载
1) 冷水机组的自动控制逻辑 群控系统应具备自动加减冷水机组运行台数的功能。加减机逻辑可根据供水温度、冷 机负载率、温降速度等因素确定。
2)冷冻主机调节标准: (1)、单台冷冻机负荷达到95%时,负荷无变化持续5分钟冷机群控自动加载另
机组根据回风温度与设定值偏差自动调节送风机转速,机组回风温度比设定值高2度时, 自动提高风机转速;机组回风温度比设定值低2度时,自动降低风机转速;
二、空调末端调控的逻辑
二、新风机组
a) 新风机组根据送风温度与设定值偏差自动调节空调水阀开度。 ● 夏季工况下,当送风温度高于设定值2℃时,自动加大水阀开度;当送风温度 低于设定值2℃时,自动减小水阀开度。 ● 冬季工况下,当送风温度高于设定值2℃时,自动减小水阀开度;当送风温度 低于设定值2℃时,自动加大水阀开度。 ● 过渡季通风工况下,水阀关闭。
二、空调末端调控的逻辑
一、组合式空调机组
当室外空气焓值低于室内空气焓值时,新风阀全开,回风阀关闭,按最大新风比运行;
当室外空气焓值高于室内空气焓值时,新风量根据室内CO2浓度控制,但不得高于设计 最小新风量(阀位不大于30%),且不得低于设计最小新风量的50%(阀位不小于15%); 空调机组控 制功能(制 冷季) 机组根据送风温度,应能调节水阀开度,当送风温度比设定温度高2℃时,水阀开大; 当送风温度比设定温度低2℃时,水阀关小;
一、冷机群控的逻辑
二、冷冻水泵变频
拓展问题: 1、压差旁通阀的作用是什么? 2、水泵的变频下限为什么是35HZ?
一、冷机群控的逻辑
三、冷却塔风扇变频
4) 冷却塔风机的自动控制逻辑 根据冷却塔出水温度自动调整冷却塔风机的运行台数及频率(偏差值可设定): ●冷却塔开始运行时,所有风机均开启;冷却塔停止运行时,风机均关闭。 ● 出塔温度高于设定值+偏差时,整体提高风机运行频率。 ● 出塔温度低于设定值-偏差时,整体降低风机运行频率,频率不应低于30Hz。 ● 频率达到下限其出塔温度仍低于设定值-偏差时,应按组关闭风机。 设定值低于冷却塔出水极限温度时,自动修正为极限温度。用户在子系统上应能选 择是否启用自动修正功能。冷却塔出水极限温度取“室外湿球温度+3~5℃”,其中 夏季取小值,过渡季取大值。

冷机群控控制逻辑说明

冷机群控控制逻辑说明

枯藤老树昏鸦,小桥流水人家,古道西风瘦马。

夕阳西下,断肠人在天涯。

冷机群控逻辑说明一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下:(1)冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵.1. 冷冻水泵切换条件如下:冷冻水泵有故障;冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期当冷冻水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2.冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID调节冷冻水泵频率. 供回水压力差值越小,频率越高; 冷冻水泵最小频率目前设定38Hz.3.根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID调节冷冻水旁通阀.压差越高,旁通阀开度越大.(2)冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵.1. 冷却水泵切换条件如下:1.1冷却水泵有故障;1.2冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3当冷却水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却水泵频率.温度越高,频率越高;冷冻水泵最小频率目前设定40Hz.3.根据各自冷却水回水温度与设定值比较PID调节冷却水旁通阀.温度越高,旁通阀开度越小(3)冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量是一致的.同时会开启相应的电动蝶阀.1. 冷却塔风机切换条件如下:1.1冷却塔风机有故障;1.2冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期.1.3当发出了开冷却塔风机指令后,延时8秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个,就会造成风机锁定不能开启. 能开启的条件就是: 风机无故障,手自动转换开关打到”自动”档,水泵无开启失败.当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组.2. 冷却塔风机的频率调节是根据冷却平均回水温度及设定值比较,PID调节冷却塔风机频率. 温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz.3. 如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持5分钟以上,则会减少一组塔,但开启的塔组数不会少于冷机数量.二蓄冷罐充冷(1)充冷条件1.至少要有一台冷水机组开启;2.放冷结速后至少要两个小时后才能充冷;以上两个条件必须要同时满足才能充冷.(2)充冷模式在满足上述两个充冷条件下,充冷有两种模式.1.一种是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况.2.另一种是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行;3.一次只能有一个蓄冷罐充冷,无论在手动还是自动模式.三蓄冷罐放冷(1)放冷条件在放冷总开关处于启用状态下:1. 没有一台冷水机组开启;2.冷冻水总管平均供水温度高于设定值并维持一定时间;3.所有机组都处于失电报警状态下.当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就会放冷.(2)放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量是一样的,同时也会执行与正常供冷时的轮换与故障切泵.四系统加减机功能增加制冷需求Additional Cooling Required – ACR 加载的流程a. 当ACR温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器=南北侧集分水器温度平均值,冷冻水供水温度设定点=12 o C,温度偏差值=0.6 o C,平均温度>(12+0.6)即12.6 o C时条件满足b. 运行冷水机组的温度降低速率小于1.5oC /分钟c. 有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal(未报警)*以上各项要求a~c均能满足,才进入以下机组加载程序d. 新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC:延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12根据供水要求2)温度偏差0.6和延时15分钟为了在满足正常使用情况下,系统更稳定加载减少制冷需求Reduce Cooling Required – RCR 卸载的流程a. 目前运行的机组台数多于一台(均运行于CCN模式)b. 运行机组的平均负载电流百分比小于卸载电流百分比IDC:例如已运行2台机组,1号负载电流百分比51%,2号负载电流百分比47%,如运算卸载电流百分比=54%,平均负载=(51%+47%)/2=49%)则条件满足c. 当RCR温度传感器所测的冷冻水供水温度,小于当前的冷冻水供水温度设定点与一个可调整温度偏差值的0.6倍相加后的所得值。

冷机群控控制逻辑说明

冷机群控控制逻辑说明

冷机群控逻辑说明一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主时机发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,那么加一组冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下:〔1〕冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵.1. 冷冻水泵切换条件如下:1.1冷冻水泵有故障;1.2冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到〞自动〞时,电脑上显示〞本地〞时期1.3当冷冻水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到〞自动〞档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2.冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比拟,PID调节冷冻水泵频率. 供回水压力差值越小,频率越高; 冷冻水泵最小频率目前设定38Hz.3.根据冷冻水供回水压差值与冷冻水供回水压差设定值比拟PID调节冷冻水旁通阀.压差越高,旁通阀开度越大.〔2〕冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵.1. 冷却水泵切换条件如下:1.1冷却水泵有故障;1.2冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到〞自动〞时,电脑上显示〞本地〞时期.1.3当冷却水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启的条件就是:水泵无故障,手自动转换开关打到〞自动〞档,水泵无开启失败. 水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比拟,PID调节冷却水泵频率.温度越高,频率越高;冷冻水泵最小频率目前设定40Hz.3.根据各自冷却水回水温度与设定值比拟PID调节冷却水旁通阀.温度越高,旁通阀开度越小〔3〕冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量是一致的.同时会开启相应的电动蝶阀.1. 冷却塔风机切换条件如下:1.1冷却塔风机有故障;1.2冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到〞自动〞时,电脑上显示〞本地〞时期.1.3当发出了开冷却塔风机指令后,延时8秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败.以上三个条件只要有一个,就会造成风机锁定不能开启. 能开启的条件就是: 风机无故障,手自动转换开关打到〞自动〞档,水泵无开启失败.当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组.2. 冷却塔风机的频率调节是根据冷却平均回水温度及设定值比拟,PID调节冷却塔风机频率. 温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz.3. 如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,那么加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持5分钟以上,那么会减少一组塔,但开启的塔组数不会少于冷机数量.二蓄冷罐充冷(1)充冷条件1.至少要有一台冷水机组开启;2.放冷结速后至少要两个小时后才能充冷;以上两个条件必须要同时满足才能充冷.(2)充冷模式在满足上述两个充冷条件下,充冷有两种模式.1.一种是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况.2.另一种是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行;3.一次只能有一个蓄冷罐充冷,无论在手动还是自动模式.三蓄冷罐放冷(1)放冷条件在放冷总开关处于启用状态下:1. 没有一台冷水机组开启;2.冷冻水总管平均供水温度高于设定值并维持一定时间;3.所有机组都处于失电报警状态下.当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到〞ON〞时, 此时相应的蓄冷罐就会放冷.(2)放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量是一样的,同时也会执行与正常供冷时的轮换与故障切泵.四系统加减机功能增加制冷需求Additional Cooling Required – ACR 加载的流程a. 当ACR温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器=南北侧集分水器温度平均值,冷冻水供水温度设定点=12 o C,温度偏差值=0.6 o C,平均温度>〔12+0.6〕即12.6 o C时条件满足b. 运行冷水机组的温度降低速率小于1.5oC /分钟c. 有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal〔未报警〕*以上各项要求a~c均能满足,才进入以下机组加载程序d. 新冷水机组启动的延迟时间已经结束〔延迟时间可以设定〕IDC:延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原那么,1)上述温度设定12根据供水要求2)温度偏差0.6和延时15分钟为了在满足正常使用情况下,系统更稳定加载减少制冷需求Reduce Cooling Required – RCR 卸载的流程a. 目前运行的机组台数多于一台〔均运行于CCN模式〕b. 运行机组的平均负载电流百分比小于卸载电流百分比IDC:例如已运行2台机组,1号负载电流百分比51%,2号负载电流百分比47%,如运算卸载电流百分比=54%,平均负载=〔51%+47%〕/2=49%〕那么条件满足c. 当RCR温度传感器所测的冷冻水供水温度,小于当前的冷冻水供水温度设定点与一个可调整温度偏差值的0.6倍相加后的所得值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷机群控逻辑说明
一 正常供冷
正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机 会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出 水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷 冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机 的两倍,如果冷却塔冷却后的温度还高于设定值 1 度以上含 1 度,并维持 5 分钟以上,则加一组 冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下: (1)冷冻水侧逻辑
以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启 的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换 时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.
2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID 调节冷却水泵频率. 温度越高,频率越高;冷冻水泵最小频率目前设定 40Hz.
始运行; 3. 一次只能有一个蓄冷罐充冷,无论在手动还是自动模式.
三 蓄冷罐放冷
(1) 放冷条件 在放冷总开关处于启用状态下: 1. 没有一台冷水机组开启; 2. 冷冻水总管平均供水温度高于设定值并维持一定时间; 3. 所有机组都处于失电报警状态下.
当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷 罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就 会放冷.
2. 放冷结速后至少要两个小时后才能充冷; 以上两个条件必须要同时满足才能充冷.
(2) 充冷模式 在满足上述两个充冷条件下,充冷有两种模式.
1. 一种是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况. 2. 另一种是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开
相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同 时会开启相应数量的冷却水泵. 1. 冷却水泵切换条件如下: 1.1 冷却水泵有故障; 1.2 冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时, 电脑上显示”本地”时期. 1.3 当冷却水泵接到了开泵指令后,延时 8 秒钟后,控制器还没检测到水泵运行状态 开启时,程序会认为此水泵开启失败.
*以上各项要求 a~c 均能满足,才进入以下机组加载程序 d. 新冷水机组启动的延迟时间已经结束(延迟时间可以设定)
IDC: 延时时间=15 分钟 以上各项要求均能满足,新冷水机组立即启动
参数设置原则, 1) 上述温度设定 12 根据供水要求 2) 温度偏差 0.6 和延时 15 分钟为了在满足正常使用情况下,系统更稳定加载
开始

系统处于预备
使用时间内

是否符合下列增机条件?
1. 冷冻水供水温度> (冷冻水设定温度+温度偏差值)

2. 冷冻水温下降速率<每分钟 1.5 oC
3. 有可加载机组
增机条件=NO
是 增机条件=YES,延统处于 备用
状态

启用待命机组
退出
减少制冷需求 Reduce Cooling Required – RCR 卸载的流程
IDC:
ACR 温度传感器=南北侧集分水器温度平均值,
冷冻水供水温度设定点=12 oC,
温度偏差值=0.6 oC,
平均温度>(12+0.6)即
12.6
o
C
时条件满足
b. 运行冷水机组的温度降低速率小于 1.5oC /分钟
c. 有可加载的机组 IDC: 有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal(未报 警)
3. 如果冷却塔冷却后的温度还高于设定值 1 度以上含 1 度,并维持 5 分钟以上,则加一组 冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度 低于设定值 1 度以上含 1 度,并维持 5 分钟以上,则会减少一组塔,但开启的塔组数不会 少于冷机数量.
二 蓄冷罐充冷
(1) 充冷条件 1. 至少要有一台冷水机组开启;
IDC: 延迟时间=10 分钟 以上要求 d 能满足,设定机组马上停机
参数设置原则, 1) 上述温度设定 12 根据供水要求 2) 延时 10 分钟为了在满足正常使用情况下,系统更稳定卸载
开始

系统处于预备
使用时间内

是否符合下列减机条件?
4. 正在运行的主机多于一台 否
5. 冷水机组负载电流百分比<卸载电流百分 比
2. 冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比 较,PID 调节冷冻水泵频率. 供回水压力差值越小,频率越高; 冷冻水泵最小频率目 前设定 38Hz.
3. 根据冷冻水供回水压差值与冷冻水供回水压差设定值比较 PID 调节冷冻水旁通阀. 压差越高,旁通阀开度越大.
(2)冷却水侧逻辑 当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给
(2) 放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量是一样的,同时也会执行与正常供 冷时的轮换与故障切泵.
四 系统加减机功能
增加制冷需求 Additional Cooling Required – ACR 加载的流程
a. 当 ACR 温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一 个可调整的温度偏差值相加后的所得值
以上三个条件只要有一个,就会造成风机锁定不能开启. 能开启的条件就是: 风 机无故障,手自动转换开关打到”自动”档,水泵无开启失败.当以上条件造成了同一组 冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少 的冷却塔组.
2. 冷却塔风机的频率调节是根据冷却平均回水温度及设定值比较,PID 调节冷却塔风机 频率. 温度越高,频率越高; 冷却塔风机最小频率目前设定 40Hz.
3.根据各自冷却水回水温度与设定值比较 PID 调节冷却水旁通阀.温度越高,旁通阀开度 越小
(3)冷却塔逻辑 当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应
的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以 及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每 个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量是一致的.同 时会开启相应的电动蝶阀. 1. 冷却塔风机切换条件如下: 1.1 冷却塔风机有故障; 1.2 冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自 动”时,电脑上显示”本地”时期. 1.3 当发出了开冷却塔风机指令后,延时 8 秒钟后,控制器还没检测到冷却塔风机运 行状态开启时,程序会认为此水泵开启失败.
a. 目前运行的机组台数多于一台(均运行于 CCN 模式)
b. 运行机组的平均负载电流百分比小于卸载电流百分比 IDC: 例如已运行 2 台机组,1 号负载电流百分比 51%,2 号负载电流百分比 47%,
如运算卸载电流百分比=54%,
平均负载=(51%+47%)/2=49%)
则条件满足
c. 当 RCR 温度传感器所测的冷冻水供水温度,小于当前的冷冻水供水温度设定点与 一个可调整温度偏差值的 0.6 倍相加后的所得值。
6. 冷冻供水温度<(冷冻水温度设定值+偏差 值*0.6)
减机条件=NO
是 减机条件=YES,延时计时器倒计时开始

延时计时器=0
CSM 系统处于 备用
状态

关闭待命机组
退出
在自动运行模式下,当有冷水机组因故障报警停机时,会自动切换到另外可用的冷水机组. 完
IDC:
ACR 温度传感器=南北侧集分水器温度平均值,
冷冻水供水温度设定点=12 oC,
温度偏差值=1.1 oC,
平均温度<(12+0.6*0.6=12.36
oC)即
12.36
o
C
时条件满足
*以上各项要求 a~c 均能满足,才进入以下机组卸载程序 d. 机组停机的延迟时间已经结束(延迟时间可以设定)
电脑上显示”本地”时期 1.3 当冷冻水泵接到了开泵指令后,延时 8 秒钟后,控制器还没检测到水泵运行状态开
启时,程序会认为此水泵开启失败.
以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵.相应的,水泵能开启 的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换 时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.
当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控 制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启 相应数量的冷冻水泵. 1. 冷冻水泵切换条件如下: 1.1 冷冻水泵有故障; 1.2 冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,
相关文档
最新文档