2019年高考数学考点45立体几何中的向量方法必刷题理

合集下载

2019届高三理科数学第二轮专题复习配套文档专题四 第3讲立体几何中的向量方法

2019届高三理科数学第二轮专题复习配套文档专题四 第3讲立体几何中的向量方法

第3讲立体几何中的向量方法[真题再现]1.(2018·课标Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC使点C到达点P的位置,且PF⊥BF。

(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.[解](1)证明:由已知可得BF⊥PF,BF⊥EF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD。

(2)解:如图,作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD。

以H为坐标原点,错误!的方向为y轴正方向,|错误!|为单位长,建立如图所示的空间直角坐标系H.xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=错误!.又PF=1,EF=2,所以PE⊥PF.所以PH=错误!,EH=错误!.则H(0,0,0),P错误!,D错误!,错误!=错误!,错误!=错误!.又错误!为平面ABFD的法向量,设DP与平面ABFD所成角为θ,则sin θ=错误!=错误!=错误!。

所以DP与平面ABFD所成角的正弦值为错误!.2.(2018·课标Ⅱ)如图,在三棱锥P-ABC中,AB=BC=22,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M。

P A-C为30°,求PC与平面P AM所成角的正弦值[解](1)证明:因为P A=PC=AC=4,O为AC的中点,所以OP⊥AC,且OP=2错误!.如图,连接OB.因为AB=BC=错误!AC,所以△ABC为等腰直角三角形,且OB ⊥AC,OB=错误!AC=2。

由OP2+OB2=PB2知PO⊥OB.由OP⊥OB,OP⊥AC,OB∩AC=O,得PO⊥平面ABC.(2)解:如图,以O为坐标原点,错误!的方向为x轴正方向,建立空间直角坐标系O。

xyz。

由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,2错误!),错误!=(0,2,2错误!).取平面P AC的一个法向量错误!=(2,0,0).设M (a ,2-a,0)(0≤a ≤2),则错误!=(a ,4-a,0).设平面P AM 的法向量为n =(x ,y ,z ).由AP ,→·n =0,错误!·n =0得错误!可取y =错误!a ,得平面P AM 的一个法向量为n =(错误!(a -4),错误!a ,-a ),所以cos 错误!,n =错误!。

立体几何中的向量方法真题与解析

立体几何中的向量方法真题与解析

立体几何中的向量方法A 级 基础一、选择题1.如图,F 是正方体ABCD-A 1B 1C 1D 1的棱CD 的中点.E 是BB 1上一点,若D 1F ⊥DE ,则有( )A .B 1E =EB B .B 1E =2EBC .B 1E =12EBD .E 与B 重合2.如图,点A ,B ,C 分别在空间直角坐标系O-xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C-AB-O 的大小为θ,则cos θ等于( )A.43B.53C.23D .-233.在三棱柱ABC-A 1B 1C 1中,底面是边长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是( )A.32B.22C.104D.644.如图所示,在平行六面体ABCD-A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则:①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1. 以上说法正确的个数为( ) A .1B .2C .3D .45.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.22二、填空题6.(2019·东莞中学检测)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成的角的大小是________.7.如图所示,在正方体ABCD-A 1B 1C 1D 1中,AB =2,A 1C 1∩B 1D 1=E ,直线AC 与直线DE 所成的角为α,直线DE 与平面BCC 1B 1所成的角为β,则cos(α-β)=________.三、解答题8.(2018·北京卷)如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,D,E,F,G分别为AA1,AC,A1C1,BB1的中点,AB=BC=5,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B-CD-C1的余弦值;(3)证明:直线FG与平面BCD相交.9.(2019·长郡中学模拟)如图1,直角梯形ABCD中,AD∥BC 中,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4.将四边形EFCD沿EF折起成如图2的位置,使AD=AE.(1)求证:AF∥平面CBD;(2)求平面CBD与平面DAE所成锐角的余弦值.B级能力提升10.(2019·天津卷)如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC=2.(1)求证:BF∥平面ADE;(2)求直线CE与平面BDE所成角的正弦值;(3)若二面角E-BD-F的余弦值为13,求线段CF的长.11.(2019·六安一中模拟)如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.A 级 基础一、选择题1.解析:以D 为坐标原点,以DA ,DC ,DD 1所在直线为坐标轴建立坐标系,设正方体的棱长为2,则D (0,0,0),F (0,1,0),D 1(0,0,2),设E (2,2,z ),则D 1F →=(0,1,-2),DE →=(2,2,z ),因为D 1F →·DE →=0×2+1×2-2z =0,所以z =1,所以B 1E =EB.答案:A2.解析:由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C-AB-O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.答案:C3.解析:如图,建立空间直角坐标系,易求点D ⎝ ⎛⎭⎪⎫32,12,1,平面AA 1C 1C 的一个法向量是n =(1,0,0),所以sin α=|cos 〈n ,AD →〉|=322=64.答案:D4. 解析:A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,所以A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥平面DCC 1D 1,A 1M ∥平面D 1PQB 1.①③④正确.答案:C5.解析:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.由条件可知D (0,0,0),A (1,0,0),D 1(0,0,3),B 1(1,1,3),所以AD 1→=(-1,0,3),DB 1→=(1,1,3). 则cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→|·|DB 1→|=225=55.故异面直线AD 1与DB 1所成角的余弦值为55.答案:C 二、填空题 6.解析:依题意,以C 为原点,建立如图所示的直角坐标系,设AB =BC =CD =a ,AB ⊥平面BCD .则B (a ,0,0),D (0,a ,0),C (0,0,0),A (a ,0,a ). 所以BD →=(-a ,a ,0),CA →=(a ,0,a ).所以cos 〈BD →,CA →〉=BD →·CA→|BD →|·|CA →|=-a 22a ·2a=-12,则〈BD →,CA →〉=2π3,故AC 与BD 所成角为π3.答案:π37. 解析:因为AC ⊥BD 且AC ⊥BB 1,BD ∩BB 1=B , 所以AC ⊥平面BB 1D 1D ⇒AC ⊥DE ,所以α=π2.取A 1D 1的中点F ,连EF ,FD ,易知EF ⊥平面ADD 1A 1,则β=∠EDF .cos(α-β)=cos ⎝ ⎛⎭⎪⎫π2-∠EDF =sin ∠EDF =EFED =66.答案:66三、解答题8.(1)证明:在三棱柱ABC-A1B1C1中,因为CC1⊥平面ABC,所以四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,所以AC⊥EF.因为AB=BC,所以AC⊥BE.又EF∩BE=E,所以AC⊥平面BEF.(2)解:由(1)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,所以EF⊥平面ABC.因为BE⊂平面ABC,所以EF⊥BE.如图建立空间直角坐标系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),E(0,0,0),F(0,0,2),G(0,2,1).所以BC→=(-1,-2,0),BD→=(1,-2,1).设平面BCD的法向量为n=(x0,y0,z0).则⎩⎪⎨⎪⎧n·BC→=0,n·BD→=0,即⎩⎪⎨⎪⎧x0+2y0=0,x0-2y0+z0=0.令y0=-1,则x0=2,z0=-4.于是n =(2,-1,-4).又因为平面CC 1D 的法向量为EB →=(0,2,0), 所以cos 〈n ,EB →〉=n ·EB →|n ||EB →|=-2121.由题意知二面角B -CD -C 1为钝角,所以其余弦值为-2121. (3)证明:由(2)知平面BCD 的法向量为n =(2,-1,-4),FG →=(0,2,-1).因为n ·FG →=2×0+(-1)×2+(-4)×(-1)=2≠0, 所以直线FG 与平面BCD 相交.9.(1)证明:取DE 中点G ,连接FG ,AG ,CG . 由条件CFDG ,所以CFGD 为平行四边形,所以FG ∥CD .又FG ⊄平面CBD ,CD ⊂平面CBD , 所以FG ∥平面CBD . 同理AG ∥平面CBD .又FG ∩AG =G ,FG ⊂平面AFG ,AG ⊂平面AFG . 所以平面AFG ∥平面CBD . 又AF ⊂平面AFG , 所以AF ∥平面CBD .(2)解:因为EF ⊥AE ,EF ⊥DE ,AE ∩DE =E ,所以EF ⊥平面ADE .又AD =AE =DE ,以AE 中点H 为原点,AE 为x 轴建立如图所示的空间直角坐标系,则A (-1,0,0),D (0,0,3),B (-1,-2,0),E (1,0,0), F (1,-2,0).因为CF →=12DE →,所以C ⎝ ⎛⎭⎪⎫12,-2,32,所以BC →=⎝ ⎛⎭⎪⎫32,0,32,BD →=(1,2,3).易知BA →是平面ADE 的一个法向量,BA →=n 1=(0,2,0), 设平面BCD 的一个法向量为n 2=(x ,y ,z ),由⎩⎨⎧n 2·BC →=(x ,y ,z )·⎝ ⎛⎭⎪⎫32,0,32=32x +32z =0,n 2·BD →=(x ,y ,z )·(1,2,3)=x +2y +3z =0,令x =2,则y =2,z =-23,所以n 2=(2,2,-23). cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=2×0+2×2-23×02×25=55.所以平面CBD 与平面DAE 所成锐角的余弦值为55.B 级 能力提升10.(1)证明:依题意,建立以A 为原点,分别以AB →,AD →,AE →的方向为x 轴、y 轴、z 轴正方向的空间直角坐标系(如图),可得A (0,0,0),B (1,0,0),C (1,2,0),D (0,1,0),E (0,0,2).设CF =h (h >0),则F (1,2,h ).依题意,AB →=(1,0,0)是平面ADE 的法向量. 又BF →=(0,2,h ),可得BF →·AB →=0, 又因为直线BF ⊄平面ADE . 所以BF ∥平面ADE .(2)解:依题意,BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·BD →=0,n ·BE →=0.即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0.不妨令z =1,可取n =(2,2,1). 因此有cos 〈CE →·n 〉=CE →·n |CE →||n |=-49.所以直线CE 与平面BDE 所成角的正弦值为49.(3)解:设m =(x 1,y 1,z 1)为平面BDF 的法向量,则⎩⎪⎨⎪⎧m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0,不妨令y 1=1,可得m =⎝ ⎛⎭⎪⎫1,1,-2h .由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪⎪⎪4-2h 32+4h2=13, 解得h =87 .经检验,符合题意.所以线段CF 的长为87.11.(1)证明:连接BD ,设AC 交BD 于点O ,连接SO ,由题意知SO ⊥平面ABCD ,以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立坐标系O-xyz , 设底面边长为a ,则高SO =62a ,于是S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,于是,OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a .则OC →·SD →=0,故OC ⊥SD ,从而AC ⊥SD .(2)解:由题设知,平面PAC 的一个法向量DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,平面DAC 的一个法向量OS →=⎝⎛⎭⎪⎫0,0,62a .设所求二面角为θ,则cos θ=OS →·DS →|OS →||DS →|=32,所以所求二面角的大小为30°.(3)解:在棱SC 上存在一点E 使BE ∥平面PAC .根据第(2)问知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝⎛⎭⎪⎫0,-22a ,62a .设CE →=tCS →.则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at .由BE →·DS →=0,得-a 22+0+64a 2t =0,则t =13.所以当SE ∶EC =2∶1时,BE →⊥DS →. 由于BE ⊄平面PAC ,故BE ∥平面PAC .因此在棱SC 上存在点E ,使BE ∥平面PAC ,此时SE ∶EC =2∶1.。

高考数学复习立体几何中的向量方法

高考数学复习立体几何中的向量方法

高考数学复习立体几何中的向量方法一、定义向量(Vector)是数量的一种,表示有方向和大小的量。

它是由两个实数构成的有序对,可以用一个点作为起点,另一个点作为终点去表示。

向量用大写字母表示,例如标准格式:$$\vec{A}=\left(\begin{array}{ccc}A_x\\A_y\\A_z\end{array}\right)$$ 其中A_x、A_y、A_z分别表示向量A的x轴、y轴、z轴的分量。

二、向量的加法和减法1、向量的加法:向量的加法指两个向量相加,相加的结果即为这两个向量的矢量和,而不是数字的和,表示为:$$\vec{A}+\vec{B}=\left(\begin{array}{ccc}A_x+B_x\\A_y+B_y\\A_z+B_z\end{array}\right)$$2、向量的减法:向量的减法指把第二个向量变成相反方向,然后与第一个向量进行加法,表示为:$$\vec{A}-\vec{B}=\left(\begin{array}{ccc}A_x-B_x\\A_y-B_y\\A_z-B_z\end{array}\right)$$三、向量的数乘1、向量的数乘指把向量乘以一个实数,表示为:$$k\vec{A}=\left(\begin{array}{ccc}k\cdot A_x\\k\cdot A_y\\k\cdot A_z\end{array}\right)$$四、向量的点积1、向量的点积是把两个向量乘以一个实数,表示为:$$\vec{A}\cdot \vec{B}=A_x\cdot B_x + A_y\cdot B_y + A_z\cdotB_z$$五、向量的叉积\vec{i} & \vec{j} & \vec{k}\\A_x&A_y&A_z\\B_x&B_y&B_z\end{array}\right,$$六、向量的应用1、在中学地理中可以通过向量的加减法求解地图上定点之间的距离;。

2019版高考数学复习第一部分专题十立体几何中的向量方法讲义理(重点生,含解析)

2019版高考数学复习第一部分专题十立体几何中的向量方法讲义理(重点生,含解析)

专题十 立体几何中的向量方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为u =(a 2,b 2,c 2),v =(a 3,b 3,c 3).(1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 2+b 1b 2+c 1c 2=0.(2)线面垂直:l ⊥α⇔a ∥u ⇔a =ku ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.(3)面面平行:α∥β⇔u ∥v ⇔u =kv ⇔a 2=ka 3,b 2=kb 3,c 2=kc 3. (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.[典例] 如图,在四棱锥P ­ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.求证:(1)BE ⊥DC ; (2)BE ∥平面PAD ; (3)平面PCD ⊥平面PAD. [破题思路] 第(1)问第(2)问第(3)问 [规范解答]依题意知,AB ,AD ,AP 两两垂直,故以点A 为坐标原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)因为BE ―→=(0,1,1),DC ―→=(2,0,0),故BE ―→·DC ―→=0.所以BE ⊥DC .(2)易知AB ―→=(1,0,0)为平面PAD 的法向量, 而BE ―→·AB ―→=(0,1,1)·(1,0,0)=0,所以BE ⊥AB , 又BE ⊄平面PAD ,所以BE ∥平面PA D. (3)PD ―→=(0,2,-2),DC ―→=(2,0,0), 设平面PCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD ―→=0,n ·DC ―→=0,即⎩⎪⎨⎪⎧2y -2z =0,2x =0,不妨令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 因为平面PAD 的一个法向量AB ―→=(1,0,0), 所以n ·AB ―→=(0,1,1)·(1,0,0)=0,所以n ⊥AB ―→. 所以平面PCD ⊥平面PAD. [题后悟通]利用空间向量证明空间垂直、平行的一般步骤(1)建立空间直角坐标系,建系时要尽可能地利用条件中的垂直关系.(2)建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素.(3)通过空间向量的运算求出直线的方向向量或平面的法向量,再研究平行、垂直关系. (4)根据运算结果解释相关问题.[对点训练]如图,在直三棱柱ABC ­A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD.证明:(1)根据题意,以B 为坐标原点,BA ,BC ,BB 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图 所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),C 1(0,2,4),设BA =a , 则A (a,0,0),所以BA ―→=(a,0,0),BD ―→=(0,2,2), B 1D ―→=(0,2,-2),所以B 1D ―→·BA ―→=0, B 1D ―→·BD ―→=0+4-4=0, 即B 1D ⊥BA ,B 1D ⊥BD.又BA ∩BD =B ,BA ⊂平面ABD ,BD ⊂平面ABD , 所以B 1D ⊥平面ABD.(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a2,1,4,F (0,1,4), 则EG ―→=⎝ ⎛⎭⎪⎫a 2,1,1, EF ―→=(0,1,1),所以B 1D ―→·EG ―→=0+2-2=0, B 1D ―→·EF ―→=0+2-2=0, 即B 1D ⊥EG ,B 1D ⊥EF .又EG ∩EF =E ,EG ⊂平面EGF ,EF ⊂平面EGF , 因此B 1D ⊥平面EGF .结合(1)可知平面EGF ∥平面ABD.[考法二 利用空间向量求空间角] 1.向量法求异面直线所成的角若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a ·b || a || b |.2.向量法求线面所成的角求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n ·a || n || a |.3.向量法求二面角求出二面角α­l ­β的两个半平面α与β的法向量n 1,n 2,若二面角α­l ­β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2|| n 1|| n 2|;若二面角α­l ­β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1||n 2|.题型·策略(一)| 求异面直线所成的角[例1] (2015·全国卷Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.[破题思路]第(1)问第(2)问(1)证明:连接BD,设BD∩AC于点O,连接EO,FO,EF.在菱形ABCD中,不妨设OB=1.由∠ABC=120°,可得AO=OC= 3.由BE⊥平面ABCD,AB=BC,可知AE=EC,故EO⊥AC.由DF⊥平面ABCD,AD=DC,可知AF =FC ,故FO ⊥AC .所以二面角E ­AC ­F 的平面角为∠EOF . 又AE ⊥EC ,所以EO = 3.在Rt △EBO 中,可得BE =2,故DF =22. 在Rt △FDO 中,可得FO =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22, 可得EF =322.从而EO 2+FO 2=EF 2,所以EO ⊥FO . 所以二面角E ­AC ­F 为直角, 所以平面AEC ⊥平面AFC .(2)以O 为坐标原点,分别以OB ―→,OC ―→的方向为x 轴,y 轴正方向,|OB ―→|为单位长度,建立空间直角坐标系O ­xyz .由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0), 所以AE ―→=(1,3,2),CF ―→=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈AE ―→,CF ―→〉=AE ―→·CF ―→|AE ―→||CF ―→|=-33.所以直线AE 与直线CF 所成角的余弦值为33. [题后悟通][对点训练]1.将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC 长为2π3,11A B 长为π3,其中B 1与C 在平面AA 1O 1O的同侧.(1)求三棱锥C ­O 1A 1B 1的体积;(2)求异面直线B 1C 与AA 1所成的角的大小. 解:(1)∵11A B =π3,∴∠A 1O 1B 1=π3,∴S △O 1A 1B 1=12·O 1A 1·O 1B 1·sin π3=34,∴VC ­O 1A 1B 1=13·OO 1·S △O 1A 1B 1=13×1×34=312,∴三棱锥C ­O 1A 1B 1的体积为312. (2)以O 为坐标原点,OA ,OO 1所在直线为y 轴,z 轴建立如图所示的平面直角坐标系,则A (0,1,0),A 1(0,1,1),B 1⎝⎛⎭⎪⎫32,12,1, C ⎝⎛⎭⎪⎫32,-12,0.∴AA 1―→=(0,0,1), B 1C ―→=(0,-1,-1),∴cos 〈AA 1―→,B 1C ―→〉=AA 1―→·B 1C ―→|AA 1―→||B 1C ―→|=-22,∴〈AA 1―→,B 1C ―→〉=3π4,∴异面直线B 1C 与AA 1所成的角为π4.题型·策略(二)| 求直线与平面所成的角[例2] (2018·合肥质检)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM∥平面EFC;(2)若DE=2AB,求直线AE与平面BDM所成角的正弦值.[破题思路]第(1)问第(2)问[规范解答](1)证明:连接AC交BD于点N,则N为AC的中点,连接MN,又M为AE的中点,∴MN∥EC.∵MN⊄平面EFC,EC⊂平面EFC,∴MN∥平面EFC.∵BF,DE都垂直底面ABCD,∴BF∥DE.∵BF=DE,∴四边形BDEF 为平行四边形,∴BD ∥EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴BD ∥平面EFC . 又MN ∩BD =N , ∴平面BDM ∥平面EFC .(2)∵DE ⊥平面ABCD ,四边形ABCD 是正方形,∴DA ,DC ,DE 两两垂直,以D 为坐标原点,DA ,DC ,DE 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系D ­xyz .设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),A (2,0,0),E (0,0,4),M (1,0,2), ∴DB ―→=(2,2,0), DM ―→=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DM ―→=0,即⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量. ∵AE ―→=(-2,0,4),设直线AE 与平面BDM 所成的角为θ,则sin θ=|cos 〈n ·AE ―→〉|=|n ·AE ―→||n |·|AE ―→|=4515,∴直线AE 与平面BDM 所成角的正弦值为4515.[题后悟通][对点训练]2.(2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 解:(1)证明:由已知可得BF ⊥PF ,BF ⊥EF , 又PF ∩EF =F , 所以BF ⊥平面PEF . 又BF ⊂平面ABFD , 所以平面PEF ⊥平面ABFD. (2)如图,作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD.以H 为坐标原点, HF ―→的方向为y 轴正方向,|BF ―→|为单位长,建立如图所示的空间直角坐标系H ­xyz .由(1)可得,DE ⊥PE . 又因为DP =2,DE =1, 所以PE = 3. 又PF =1,EF =2, 所以PE ⊥PF . 所以PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝⎛⎭⎪⎫-1,-32,0, DP ―→=⎝ ⎛⎭⎪⎫1,32,32,HP ―→=⎝ ⎛⎭⎪⎫0,0,32.又HP ―→为平面ABFD 的法向量, 设DP 与平面ABFD 所成角为θ, 则sin θ=|HP ―→·DP ―→||HP ―→||DP ―→|=343=34.所以DP 与平面ABFD所成角的正弦值为34.题型·策略(三)| 求平面与平面所成角[例3](2018·沈阳质监)如图,在四棱锥P­ABCD中,平面PAD⊥平面ABCD,底面ABCD是正方形,且PA=PD,∠APD=90°.(1)证明:平面PAB⊥平面PCD;(2)求二面角A­PB­C的余弦值.[破题思路]第(1)问第(2)问[规范解答](1)证明:∵底面ABCD为正方形,∴CD⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴CD⊥平面PA D.又AP⊂平面PAD,∴CD⊥AP.∵∠APD=90°,即PD⊥AP,又CD∩PD=D,∴AP⊥平面PC D.∵AP⊂平面PAB,∴平面PAB⊥平面PC D.(2)取AD的中点为O,BC的中点为Q,连接PO,O Q,易得PO⊥底面ABCD,O Q⊥AD,以O 为原点,OA ―→,O Q ―→,OP ―→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,不妨设正方形ABCD 的边长为2,可得A (1,0,0),B (1,2,0),C (-1,2,0),P (0,0,1). 设平面APB 的法向量为n 1=(x 1,y 1,z 1), 而PA ―→=(1,0,-1),PB ―→=(1,2,-1), 则⎩⎪⎨⎪⎧ n 1·PA ―→=0,n 1·PB ―→=0,即⎩⎪⎨⎪⎧x 1-z 1=0,x 1+2y 1-z 1=0,取x 1=1,得n 1=(1,0,1)为平面APB 的一个法向量. 设平面BCP 的法向量为n 2=(x 2,y 2,z 2), 而PB ―→=(1,2,-1),PC ―→=(-1,2,-1), 则⎩⎪⎨⎪⎧n 2·PB ―→=0,n 2·PC ―→=0,即⎩⎪⎨⎪⎧x 2+2y 2-z 2=0,-x 2+2y 2-z 2=0,取y 2=1,得n 2=(0,1,2)为平面BCP 的一个法向量.∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=105,由图知二面角A ­PB ­C 为钝角, 故二面角A ­PB ­C 的余弦值为-105. [题后悟通][对点训练]3. (2019届高三·昆明调研)如图,在四棱锥P ­ABCD 中,底面ABCD 是直角梯形,∠ADC =90°,AB ∥CD ,AB =2CD.平面PAD ⊥平面ABCD ,PA =PD ,点E 在PC 上,DE ⊥平面PAC .(1)证明:PA ⊥平面PCD ;(2)设AD =2,若平面PBC 与平面PAD 所成的二面角为45°,求DE 的长.解:(1)证明:由DE ⊥平面PAC ,得DE ⊥PA .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,CD ⊥AD ,所以CD ⊥平面PAD ,所以CD ⊥PA .又CD ∩DE =D ,所以PA ⊥平面PC D.(2)取AD 的中点O ,连接PO ,因为PA =PD ,所以PO ⊥AD ,则PO ⊥平面ABCD , 以O 为坐标原点建立如图所示的空间直角坐标系O ­xyz ,由(1)得PA ⊥PD ,由AD =2得PA =PD =2,OP =1, 设CD =a ,则P (0,0,1),D (0,1,0),C (a,1,0),B (2a ,-1,0),则BC ―→=(-a,2,0),PC ―→=(a,1,-1),设m =(x ,y ,z )为平面PBC 的法向量, 则⎩⎪⎨⎪⎧m ·BC ―→=0,m ·PC ―→=0,即⎩⎪⎨⎪⎧-ax +2y =0,ax +y -z =0,令x =2,则y=a ,z =3a ,故m =(2,a,3a )为平面PBC 的一个法向量,由(1)知n =DC ―→=(a,0,0)为平面PAD 的一个法向量, 由|cos 〈m ,n 〉|=|m ·n ||m ||n |=|2a |a 10a 2+4=22,解得a =105,即CD =105, 所以在Rt △PCD 中,PC =2155,由等面积法可得DE =CD ·PD PC =33.[考法三 利用空间向量求解探索性问题][典例] (2018·山东潍坊三模)如图,在四棱锥E ­ABCD 中,底面ABCD 为矩形,平面ABCD ⊥平面ABE ,∠AEB =90°,BE =BC ,F 为CE的中点.(1)求证:平面BDF⊥平面ACE;(2)若2AE=EB,在线段AE上是否存在一点P,使得二面角P­DB­F的余弦值的绝对值为10.请说明理由.10[破题思路]第(1)问第(2)问[规范解答](1)证明:因为平面ABCD⊥平面ABE,BC⊥AB,平面ABCD∩平面ABE=AB,所以BC⊥平面ABE,又AE⊂平面ABE,所以BC⊥AE.因为AE⊥BE,BC∩BE=B,所以AE⊥平面BCE,因为BF⊂平面BCE,所以AE⊥BF,在△BCE中,因为BE=BC,F为CE的中点,所以BF⊥CE,又AE∩CE=E,所以BF⊥平面ACE,又BF⊂平面BDF,所以平面BDF⊥平面ACE.(2)存在.如图,建立空间直角坐标系E­xyz,设AE=1,则E(0,0,0),B(2,0,0),D(0,1,2),C (2,0,2),F (1,0,1),BD ―→=(-2,1,2),BF ―→=(-1,0,1),设P (0,a,0),a ∈[0,1],则PB ―→=(2,-a,0),结合(1)易知EC ⊥平面BDF ,故EC ―→=(2,0,2)为平面BDF 的一个法向量, 设n =(x ,y ,z )为平面BDP 的法向量, 则⎩⎪⎨⎪⎧n ⊥BD ―→,n ⊥PB ―→,即⎩⎪⎨⎪⎧-2x +y +2z =0,2x -ay =0,令x =a ,可得平面BDP 的一个法向量为n =(a,2,a -1), 所以cos 〈EC ―→,n 〉=EC ―→·n |EC ―→||n |=2a -12·a 2+4+a -2,由|cos 〈EC ―→,n 〉|=1010,解得a =0或a =1.故在线段AE 上存在点P ,使得二面角P ­DB ­F 的余弦值的绝对值为1010,且此时点P 在E 处或A 处.[题后悟通][对点训练]如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,DE =EF =1,DC =BF =2,∠EAD =30°.(1)求证:AE ⊥平面CDEF ;(2)在线段BD 上确定一点G ,使得平面EAD 与平面FAG 所成的角为30°. 解:(1)证明:因为四边形ABCD 是正方形, 所以AD =CD =2.在△ADE 中,由正弦定理得,ADsin ∠AED =DEsin ∠EAD,即2sin ∠AED =1sin 30°,解得sin ∠AED =1,所以∠AED =90°,即AE ⊥ED.在梯形ABFE 中,过点E 作EP ∥BF 交AB 于点P , 因为EF ∥AB ,所以EP =BF =2,PB =EF =1,AP =1.在Rt △ADE 中,AE =3, 所以AE 2+AP 2=EP 2, 所以AE ⊥AB , 所以AE ⊥EF , 又EF ∩DE =E , 所以AE ⊥平面CDEF . (2)由(1)可得,AE ⊥EF , 又AD ⊥DC ,DC ∥EF ,AD ∩AE =A , 所以DC ⊥平面AED , 又DC ⊂平面ABCD , 所以平面AED ⊥平面ABCD.以D 为坐标原点,建立如图所示的空间直角坐标系,其中z 轴为在平面AED 内过点D作AD 的垂线所在的直线,则B (2,2,0),A (2,0,0),E ⎝ ⎛⎭⎪⎫12,0,32,F ⎝ ⎛⎭⎪⎫12,1,32,所以DB ―→=(2,2,0),AF ―→=⎝ ⎛⎭⎪⎫-32,1,32.设DG ―→=λDB ―→=(2λ,2λ,0)(0≤λ≤1), 则AG ―→=(2λ-2,2λ,0),设平面FAG 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1·AF ―→=0,n 1·AG ―→=0,即⎩⎪⎨⎪⎧-32x 1+y 1+32z 1=0,λ-x 1+2λy 1=0,取x 1=-3λ,可得平面FAG 的一个法向量为n 1=(-3λ,3λ-3,2-5λ), 易知平面EAD 的一个法向量为n 2=(0,1,0), 所以cos 30°=|n 1·n 2||n 1||n 2|=3|λ-1|3λ2+λ-2+-5λ2=32, 化简可得9λ2-6λ+1=0,解得λ=13,故当点G 满足DG ―→=13DB ―→时,平面EAD 与平面FAG 所成的角为30°.[高考大题通法点拨]立体几何问题重在“建”——建模、建系[思维流程][策略指导]立体几何解答题的基本模式是论证推理与计算相结合,以某个几何体为依托,分步设问,逐层加深.解决这类题目的原则是建模、建系.建模——将问题转化为平行模型、垂直模型、平面化模型及角度、距离等的计算模型.建系——依托于题中的垂直条件,建立空间直角坐标系,利用空间向量求解.[典例] 如图,四边形ABCD 是矩形,AB =1,AD =2,E 是AD的中点,BE 与AC 交于点F ,GF ⊥平面ABCD.(1)求证:AF ⊥平面BEG ;(2)若AF =FG ,求直线EG 与平面ABG 所成角的正弦值.[破题思路] 第(1)问第(2)问[规范解答](1)证明:因为四边形ABCD 为矩形, 所以△AEF ∽△CBF ,所以AF CF =EF BF =AE BC =12.又在矩形ABCD 中,AB =1,AD =2, 所以AE =22,AC = 3. 在Rt △BEA 中,BE =AB 2+AE 2=62, 所以AF =13AC =33,BF =23BE =63.在△ABF 中,AF 2+BF 2=⎝ ⎛⎭⎪⎫332+⎝ ⎛⎭⎪⎫632=1=AB 2, 所以∠AFB =90°, 即AF ⊥BE .因为GF ⊥平面ABCD ,AF ⊂平面ABCD ,所以AF ⊥GF .又BE ∩GF =F ,BE ⊂平面BEG ,GF ⊂平面BEG , 所以AF ⊥平面BEG .(2)由(1)得AC ,BE ,FG 两两垂直,以点F 为原点,FA ,FE ,FG 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则A ⎝⎛⎭⎪⎫33,0,0,B ⎝ ⎛⎭⎪⎫0,-63,0,G ⎝ ⎛⎭⎪⎫0,0,33,E ⎝⎛⎭⎪⎫0,66,0,AB ―→=⎝ ⎛⎭⎪⎫-33,-63,0, AG ―→=⎝ ⎛⎭⎪⎫-33,0,33,EG ―→=⎝ ⎛⎭⎪⎫0,-66,33.设n =(x ,y ,z )是平面ABG 的法向量, 则⎩⎪⎨⎪⎧AB ―→·n =0,AG ―→·n =0,即⎩⎪⎨⎪⎧-33x -63y =0,-33x +33z =0,取x =2,得n =(2,-1,2)是平面ABG 的一个法向量. 设直线EG 与平面ABG 所成角的大小为θ, 则sin θ=|EG ―→·n || EG ―→||n |=⎪⎪⎪⎪⎪⎪0×2+⎝ ⎛⎭⎪⎫-66-+33×20+16+13×2+1+2=155, 所以直线EG 与平面ABG 所成角的正弦值为155. [关键点拨]利用法向量求解空间角的关键在于“四破”[对点训练](2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­PA ­C 为30°,求PC 与平面PAM 所成角的正弦值.解:(1)证明:因为PA =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3. 连接OB ,因为AB =BC =22AC , 所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥O B.又因为OB ∩AC =O , 所以PO ⊥平面ABC .(2)以O 为坐标原点,OB ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系O ­xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP ―→=(0,2,23).取平面PAC 的一个法向量OB ―→=(2,0,0). 设M (a,2-a,0)(0<a ≤2),则AM ―→=(a,4-a,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧AP ―→·n =0, AM ―→·n =0,得⎩⎨⎧2y +23z =0,ax +-a y =0,令y =3a ,得z =-a ,x =3(a -4),所以平面PAM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB ―→,n〉=23a -2a -2+3a 2+a2.由已知可得|cos 〈OB ―→,n 〉|=cos 30°=32,所以23|a -4|2a -2+3a 2+a2=32, 解得a =43或a =-4(舍去).所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC ―→=(0,2,-23),所以cos 〈PC ―→,n 〉=833+8334+12·643+163+169=34. 所以PC 与平面PAM 所成角的正弦值为34. [总结升华]立体几何的内容在高考中的考查情况总体上比较稳定,因此,复习备考时往往有“纲”可循,有“题”可依.在平时的学习中,要加强“一题两法(几何法与向量法)”的训练,切勿顾此失彼;要重视识图训练,能正确确定关键点或线的位置,将局部空间问题转化为平面模型;能依托于题中的垂直条件,建立适当的空间直角坐标系,将几何问题化归为代数问题的计算模型.其中,平行、垂直关系的判定与性质是立体几何的核心内容,空间角的计算是重点内容.[专题跟踪检测](对应配套卷P188)1.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.解:(1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为C D.因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C , 所以DM ⊥平面BMC . 因为DM ⊂平面AMD , 所以平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz .当三棱锥M ­ABC 的体积最大时,M 为CD 的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ―→=(-2,1,1),AB ―→=(0,2,0),DA ―→=(2,0,0), 设n =(x ,y ,z )是平面MAB 的法向量, 则⎩⎪⎨⎪⎧n ·AM ―→=0,n ·AB ―→=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2),又DA ―→是平面MCD 的一个法向量,所以cos 〈n ,DA ―→〉=n ·DA ―→|n||DA ―→|=55,sin 〈n ,DA ―→〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.2.(2018·唐山模拟)如图,在四棱锥P ­ABCD 中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD ,E 是PB 的中点.(1)求证:平面EAC ⊥平面PBC ; (2)若二面角P ­AC ­E 的余弦值为63,求直线PA 与平面EAC 所成角的正弦值.解:(1)证明:因为PC ⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥PC . 因为AB =2AD =2CD , 所以AC =BC =2AD =2CD , 所以AC 2+BC 2=AB 2,故AC ⊥BC . 又BC ∩PC =C ,所以AC ⊥平面PBC . 因为AC ⊂平面EAC ,所以平面EAC ⊥平面PBC .(2)如图,以C 为坐标原点, CB ―→,CA ―→, CP ―→的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,并设CB =2,CP =2a (a >0).则C (0,0,0),A (0,2,0),B (2,0,0),P (0,0,2a ),则E (1,0,a ),CA ―→=(0,2,0),CP ―→=(0,0,2a ), CE ―→=(1,0,a ), 易知m =(1,0,0)为平面PAC 的一个法向量. 设n =(x ,y ,z )为平面EAC 的法向量, 则⎩⎪⎨⎪⎧n ·CA ―→=0,n ·CE ―→=0,即⎩⎪⎨⎪⎧2y =0,x +az =0,取x =a ,则z =-1,n =(a,0,-1).依题意,|cos 〈m ,n 〉|=|m ·n||m| |n|=a a 2+1=63,解得a = 2.于是n =(2,0,-1),PA ―→=(0,2,-22). 设直线PA 与平面EAC 所成角为θ,则sin θ=|cos 〈PA ―→,n 〉|=|PA ―→·n||PA ―→||n|=23.即直线PA 与平面EAC 所成角的正弦值为23. 3.(2018·西安质检)如图,四棱柱ABCD ­A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B ­OB 1­C 的余弦值. 解:(1)证明:∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD. ∴A 1O ⊥BD.∵四边形ABCD 是菱形, ∴CO ⊥BD.∵A 1O ∩CO =O , ∴BD ⊥平面A 1CO . ∵BD ⊂平面BB 1D 1D , ∴平面A 1CO ⊥平面BB 1D 1D.(2)∵A 1O ⊥平面ABCD ,CO ⊥BD ,∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB ―→,OC ―→,OA 1―→的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°, ∴OB =OD =1,OA =OC =3,OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6), ∴OB ―→=(1,0,0),BB 1―→=AA 1―→=(0,3,6), OB 1―→=OB ―→+BB 1―→=(1,3,6),OC ―→=(0,3,0). 设平面OBB 1的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧OB ―→·n =0, OB 1―→·n =0,即⎩⎨⎧x 1=0,x 1+3y 1+6z 1=0.令y 1=2,得n =(0,2,-1)是平面OBB 1的一个法向量. 设平面OCB 1的法向量m =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧OC ―→·m =0,OB 1―→·m =0,即⎩⎨⎧3y 2=0,x 2+3y 2+6z 2=0,令z 2=-1,得m =(6,0,-1)为平面OCB 1的一个法向量, ∴cos 〈n ,m 〉=n ·m |n |·|m|=13×7=2121,由图可知二面角B ­OB 1­C 是锐二面角, ∴二面角B ­OB 1­C 的余弦值为2121. 4.(2018·长春质检)如图,在四棱锥P ­ABCD 中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面ACE ;(2)设PA =1,∠ABC =60°,三棱锥E ­ACD 的体积为38,求二面角D ­AE ­C 的余弦值. 解:(1)证明:连接BD 交AC 于点O ,连接OE . 在△PBD 中,PE =DE ,BO =DO ,所以PB ∥OE . 又PB ⊄平面ACE ,OE ⊂平面ACE ,所以PB ∥平面ACE .(2)由题易知V P ­ABCD =2V P ­ACD =4V E ­ACD =32, 设菱形ABCD 的边长为a ,则V P ­ABCD =13S ▱ABCD ·PA =13×⎝ ⎛⎭⎪⎫2×34a 2×1=32,解得a = 3.取BC 的中点为M ,连接AM ,则AM ⊥A D.以点A 为坐标原点,分别以AM ―→,AD ―→,AP ―→的方向为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系,则A (0,0,0),E ⎝ ⎛⎭⎪⎫0,32,12,C ⎝ ⎛⎭⎪⎫32,32,0, AE ―→=⎝ ⎛⎭⎪⎫0,32,12,AC ―→=⎝ ⎛⎭⎪⎫32,32,0,设n 1=(x ,y ,z )为平面AEC 的法向量, 则⎩⎪⎨⎪⎧n 1·AE ―→=0,n 1·AC ―→=0,即⎩⎪⎨⎪⎧32y +12z =0,32x +32y =0,取x =1,则n 1=(1,-3,3)为平面AEC 的一个法向量. 又易知平面AED 的一个法向量为n 2=(1,0,0), 所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=11+3+9=1313,由图易知二面角D ­AE ­C 为锐二面角,所以二面角D ­AE ­C 的余弦值为1313. 5.(2018·郑州质检)如图,在三棱锥P ­ABC 中,平面PAB ⊥平面ABC ,AB =6,BC =23,AC =26,D ,E 分别为线段AB ,BC 上的点,且AD =2DB ,CE =2EB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若直线PA 与平面ABC 所成的角为45°,求平面PAC 与平面PDE 所成锐二面角的大小.解:(1)证明:∵AC =26,BC =23,AB =6, ∴AC 2+BC 2=AB 2,∴∠ACB =90°, ∴cos ∠ABC =236=33.易知BD =2,∴CD 2=22+(23)2-2×2×23cos ∠ABC =8, ∴CD =22,易知AD =4, ∴CD 2+AD 2=AC 2,∴CD ⊥AB.∵平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,∴CD ⊥平面PAB , ∴CD ⊥PD ,∵PD ⊥AC ,AC ∩CD =C , ∴PD ⊥平面ABC .(2)由(1)知PD ,CD ,AB 两两互相垂直, ∴可建立如图所示的空间直角坐标系D ­xyz ,∵直线PA 与平面ABC 所成的角为45°,即∠PAD =45°, ∴PD =AD =4,则A (0,-4,0),C (22,0,0),B (0,2,0),P (0,0,4), ∴CB ―→=(-22,2,0),AC ―→=(22,4,0), PA ―→=(0,-4,-4).∵AD =2DB ,CE =2EB ,∴DE ∥AC . 由(1)知AC ⊥BC ,∴DE ⊥BC , 又PD ⊥平面ABC ,∴PD ⊥BC , ∵PD ∩DE =D ,∴CB ⊥平面PDE ,∴CB ―→=(-22,2,0)为平面PDE 的一个法向量. 设平面PAC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·PA ―→=0,∴⎩⎨⎧22x +4y =0,-4y -4z =0,令z =1,得x =2,y =-1,∴n =(2,-1,1)为平面PAC 的一个法向量. ∴cos 〈n ,CB ―→〉=-4-24×12=-32,∴平面PAC 与平面PDE 所成的锐二面角的余弦值为32, 故平面PAC 与平面PDE 所成的锐二面角为30°.6.(2019届高三·洛阳联考)如图1,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,BD ⊥DC ,点E 是BC 边的中点,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,得到如图2所示的几何体.(1)求证:AB ⊥平面ADC ;(2)若AD =1,二面角C ­AB ­D 的平面角的正切值为6,求二面角B ­AD ­E 的余弦值. 解:(1)证明:因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BD ⊥DC ,所以DC ⊥平面AB D.因为AB ⊂平面ABD ,所以DC ⊥AB. 又因为AD ⊥AB ,DC ∩AD =D , 所以AB ⊥平面ADC .(2)由(1)知AB ⊥平面ADC ,所以二面角C ­AB ­D 的平面角为∠CAD. 又DC ⊥平面ABD ,AD ⊂平面ABD ,所以DC ⊥AD. 依题意tan ∠CAD =CD AD= 6. 因为AD =1,所以CD = 6. 设AB =x (x >0),则BD =x 2+1.依题意△ABD ∽△DCB ,所以AB AD =CD BD ,即x 1=6x 2+1.解得x =2,故AB =2,BD =3,BC =BD 2+CD 2=3.法一:以D 为坐标原点,DB ,DC 所在直线为x 轴,y 轴建立如图所示的空间直角坐标系D ­xyz ,则D (0,0,0),B (3,0,0),C (0,6,0),E ⎝⎛⎭⎪⎫32,62,0,A ⎝ ⎛⎭⎪⎫33,0,63, 所以DE ―→=⎝ ⎛⎭⎪⎫32,62,0,DA ―→=⎝ ⎛⎭⎪⎫33,0,63.由(1)知平面BAD 的一个法向量n =(0,1,0). 设平面ADE 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·DE ―→=0,m ·DA ―→=0,即⎩⎪⎨⎪⎧32x +62y =0,33x +63z =0.令x =2,得y =-1,z =-1,所以m =(2,-1,-1)为平面ADE 的一个法向量. 所以cos 〈n ,m 〉=n ·m |n |·|m|=-12.由图可知二面角B ­AD ­E 的平面角为锐角, 所以二面角B ­AD ­E 的余弦值为12.法二:因为DC ⊥平面ABD , 所以过点E 作EF ∥DC 交BD 于F , 则EF ⊥平面ABD.因为AD ⊂平面ABD ,所以EF ⊥AD. 过点F 作FG ⊥AD 于G ,连接GE , 所以AD ⊥平面EFG ,因此AD ⊥GE , 所以二面角B ­AD ­E 的平面角为∠EGF . 由平面几何的知识求得EF =12CD =62,FG =12AB =22, 所以EG =EF 2+FG 2=2,所以cos ∠EGF =FG EG =12.所以二面角B ­AD ­E 的余弦值为12.7.如图,在四棱锥P ­ABCD 中,侧面PAD ⊥底面ABCD ,底面ABCD 是平行四边形,∠ABC =45°,AD =AP =2,AB =DP =22,E 为CD 的中点,点F 在线段PB 上.(1)求证:AD ⊥PC ;(2)试确定点F 的位置,使得直线EF 与平面PDC 所成的角和直线EF 与平面ABCD 所成的角相等.解:(1)证明:连接AC ,因为AB =22,BC =2,∠ABC =45°, 由余弦定理得,AC 2=AB 2+BC 2-2·AB ·BC ·cos 45°=4,得AC =2,所以AC 2+BC 2=AB 2,所以∠ACB =90°,即BC ⊥AC . 又AD ∥BC ,所以AD ⊥AC , 因为AD =AP =2,DP =22, 所以AD 2+AP 2=DP 2,所以∠PAD =90°,即PA ⊥AD , 又AP ∩AC =A ,所以AD ⊥平面PAC . 又PC ⊂平面PAC ,所以AD ⊥PC .(2)因为侧面PAD ⊥底面ABCD ,侧面PAD ∩底面ABCD =AD ,PA ⊥AD ,所以PA ⊥底面ABCD ,所以直线AC ,AD ,AP 两两互相垂直,以A 为坐标原点,直线AD ,AC ,AP 分别为x 轴,y 轴,z轴建立如图所示的空间直角坐标系A ­xyz ,则A (0,0,0),D (-2,0,0),C (0,2,0),B (2,2,0),E (-1,1,0),P (0,0,2),所以PC ―→=(0,2,-2),PD ―→=(-2,0,-2),PB ―→=(2,2,-2). 设PF PB=λ(λ∈[0,1]),则PF ―→=(2λ,2λ,-2λ),F (2λ,2λ,-2λ+2),所以EF ―→=(2λ+1,2λ-1,-2λ+2), 易得平面ABCD 的一个法向量为m =(0,0,1). 设平面PDC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PC ―→=0,n ·PD ―→=0,即⎩⎪⎨⎪⎧2y -2z =0,-2x -2z =0,令x =1,得n =(1,-1,-1).因为直线EF 与平面PDC 所成的角和直线EF 与平面ABCD 所成的角相等, 所以|cos 〈EF ―→,m 〉|=|cos 〈EF ―→,n 〉|, 即|EF ―→·m ||EF ―→||m|=|EF ―→·n ||EF ―→|| n |,所以|-2λ+2|=⎪⎪⎪⎪⎪⎪2λ3, 即3|λ-1|=|λ|(λ∈[0,1]), 解得λ=3-32,所以PF PB =3-32.即当PF PB =3-32时,直线EF 与平面PDC 所成的角和直线EF 与平面ABCD 所成的角相等.8. 如图,C 是以AB 为直径的圆O 上异于A ,B 的点,平面PAC ⊥平面ABC ,PA =PC =AC =2,BC =4,E ,F 分别是PC ,PB 的中点,记平面AEF 与平面ABC 的交线为直线l .(1)证明:直线l ⊥平面PAC ;(2)在直线l 上是否存在点Q ,使直线P Q 分别与平面AEF ,直线EF 所成的角互余?若存在,求出A Q 的长;若不存在,请说明理由.解:(1)证明:∵E ,F 分别是PC ,PB 的中点,∴BC ∥EF , 又EF ⊂平面EFA ,BC ⊄平面EFA , ∴BC ∥平面EFA ,又BC ⊂平面ABC ,平面EFA ∩平面ABC =l ,∴BC ∥l , 又BC ⊥AC ,平面PAC ∩平面ABC =AC ,平面PAC ⊥平面ABC , ∴BC ⊥平面PAC , ∴l ⊥平面PAC .(2)以C 为坐标原点,CA 为x 轴,CB 为y 轴,过C 垂直于平面ABC 的直线为z 轴,建立如图所示的空间直角坐标系,则C (0,0,0),A (2,0,0),B (0,4,0),P (1,0,3),E ⎝ ⎛⎭⎪⎫12,0,32,F ⎝ ⎛⎭⎪⎫12,2,32. AE ―→=⎝ ⎛⎭⎪⎫-32,0,32,EF ―→=(0,2,0), 设Q(2,y,0),平面AEF 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ AE ―→·m =0,EF ―→·m =0,即⎩⎪⎨⎪⎧ -32x +32z =0,2y =0,取z =3,得m =(1,0,3).又P Q ―→=(1,y ,-3),|cos 〈P Q ―→,EF ―→〉|=|2y |24+y 2=|y |4+y2, |cos 〈P Q ―→,m 〉|=|1-3|24+y 2=14+y2, 依题意,得|cos 〈P Q ―→,EF ―→〉|=|cos 〈P Q ―→,m 〉,∴y =±1.∴直线l 上存在点Q ,使直线P Q 分别与平面AEF ,直线EF 所成的角互余,A Q 的长为1.。

2019届高三数学(理)一轮课件:第45讲-立体几何中的向量方法(含答案)

2019届高三数学(理)一轮课件:第45讲-立体几何中的向量方法(含答案)

.
课前双基巩固
4.[教材改编] 在长方体 ABCD - A1B1C1D1
中,AB=2,BC=AA1=1,则 BB1与平面 A1BC1所
的正弦值为
.
课前双基巩固
4.[教材改编] 在长方体 ABCD - A1B1C1D1
中,AB=2,BC=AA1=1,则 BB1与平面 A1BC1所
的正弦值为
.
课前双基巩固
课堂考点探究
变式题 [2016·全国卷Ⅲ] 如图 7-45-7,四棱
ABCD 中,PA⊥底面 ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4 段 AD 上一点,AM=2MD,N 为 PC 的中点.
课堂考点探究
变式题 [2016·全国卷Ⅲ] 如图 7-45-7,四棱
ABCD 中,PA⊥底面 ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4 段 AD 上一点,AM=2MD,N 为 PC 的中点.
值为
.
课前双基巩固
2.[教材改编] 如果平面的一条斜线和斜线 面上的射影的方向向量分别是 a=(0,2,1),b=( 2, 5, 5),那么这条斜线与
课前双基巩固
3.[教材改编] 如图 7-45-3 所示,在正方体
A1B1C1D1 中,M,N 分别为棱 AA1 和 BB1 的
sin<������������,������1������>的值为
第1课时
空间
课堂考点探究
探究点一
例 1 (1)[2018·扶余一中月考] 在正方体 ABC E,F 分别是 BB1,D1B1 的中点,则 EF 与 A1D 所 ()
课堂考点探究
例 1 (1)[2018·扶余一中月考] 在正方体 AB

[精品]2019年高考数学考点45立体几何中的向量方法必刷题理

[精品]2019年高考数学考点45立体几何中的向量方法必刷题理

考点45 立体几何中的向量方法1.如图,在直三棱柱中,平面平面,且.(1)求证:;(2)若直线与平面所成的角为,求锐二面角的大小.【答案】(1)见解析;(2)....................5分又,从而侧面,又侧面,故...........6分(2)2.如图,α∩β=l,二面角α-l-β的大小为θ,A∈α,B∈β,点A在直线l上的射影为A1,点B在l上的射影为B1.已知AB=2,AA1=1,BB1=.(1)若θ=120°,求直线AB与平面β所成角的正弦值;(2)若θ=90°,求二面角A1-AB-B1的余弦值.【答案】(1);(2)。

【解析】(1)如图,过点A作平面β的垂线交于点G,连接GB、GA1,因为AG⊥β,所以∠ABG是AB与β所成的角.Rt△GA1A中, GA1A=60°,AA1=1,则A1(0,0,0),A(0,0,1),B1(0,1,0),B(,1,0).3.如图,四棱锥的底面为平行四边形,,.(1)求证:;(2)若,,,求平面与平面所成角的余弦值.【答案】(1)见解析;(2)设平面由,得,∴∴故所求的二面角的余弦值为4.如图所示,在四棱锥中,底面ABCD为直角梯形,,,,点E 为AD的中点,,平面ABCD,且求证:;线段PC上是否存在一点F,使二面角的余弦值是?若存在,请找出点F的位置;若不存在,请说明理由.【答案】(1)见解析;(2)见解析.二面角的余弦值是,,由,解得,,,线段PC上存在一点F,当点F满足时,二面角的余弦值是.5.如图,在四棱锥中,底面是平形四边形,平面,点,分别为,的中点,且,.(1)证明:平面;(2)设直线与平面所成角为,当在内变化时,求二面角的平面角余弦值的取值范围. 【答案】(1)见解析(2)∴四边形,6.如图长方体的,底面的周长为4,为的中点. (Ⅰ)判断两直线与的位置关系,不需要说明理由;(Ⅱ)当长方体体积最大时,求二面角的大小;(Ⅲ)若点满足,试求出实数的值,使得平面.由,得,7.如图,在四棱锥中,,平分,平面,,点在上,.(1)求证:平面;(2)若,,求二面角的余弦值. 【答案】(1)见解析.(2).8.如图,在四棱锥中,底面,,点为棱的中点。

2019年高考数学考纲解读专题15立体几何中的向量方法热点难点突破理含解析

2019年高考数学考纲解读专题15立体几何中的向量方法热点难点突破理含解析

立体几何中的向量方法1.已知平面ABC ,点M 是空间上任意一点,点M 满足条件OM →=34OA →+18OB →+18OC →,则直线AM ( )A .与平面ABC 平行B .是平面ABC 的斜线C .是平面ABC 的垂线D .在平面ABC 内 答案 D解析 由已知得M ,A ,B ,C 四点共面,所以AM 在平面ABC 内,故选D.2.如图,点A ,B ,C 分别在空间直角坐标系O -xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C -AB -O 的大小为θ,则cos θ等于( )A.43B.53C.23 D .-23 答案 C解析 由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C -AB -O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.3.在正方体ABCD -A 1B 1C 1D 1中,点P 在A 1C 上运动(包括端点),则BP 与AD 1所成角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π4,π3B.⎣⎢⎡⎦⎥⎤π4,π2C.⎣⎢⎡⎦⎥⎤π6,π2D.⎣⎢⎡⎦⎥⎤π6,π3 答案 D解析 以点D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系(图略),设正方体棱长为1,点P 坐标为(x,1-x ,x )(0≤x ≤1), 则BP →=(x -1,-x ,x ),BC 1→=(-1,0,1), 因为BC 1∥AD 1, 设BP →,BC 1→的夹角为α,所以cos α=BP →·BC 1→|BP →||BC 1→|=1x -2+2x 2×2=13⎝ ⎛⎭⎪⎫x -132+23×2,所以当x =13时,cos α取得最大值32,α=π6.当x =1时,cos α取得最小值12,α=π3.故选D.4.正方体ABCD ­A 1B 1C 1D 1的棱长为1,点M 在AC 1→上,且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( )A.216 B.66C.156 D.1535.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30° B.60°C .120°D .150°解析 设l 与α所成角为θ,∵cos〈m ,n 〉=-12,又直线与平面所成角θ满足0°≤θ≤90°,∴sinθ=⎪⎪⎪⎪⎪⎪-12.∴θ=30°. 答案 A6.在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为( ) A.19 B.459C.259D.23解析 设正方体棱长为2,以D 为坐标原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立如图所示空间直角坐标系,可知CM →=(2,-2,1),D 1N →=(2,2,-1),cos 〈CM →,D 1N →〉=-19,sin 〈CM →,D 1N →〉=459.答案 B7.设正方体ABCD ­A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( ) A.32B.22 C.223 D.233解析 如图,建立空间直角坐标系,则D 1(0,0,2),A 1(2,0,2),D (0,0,0),B (2,2,0),∴D 1A 1→=(2,0,0),DA 1→=(2,0,2),DB →=(2,2,0), 设平面A 1BD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=2x +2z =0,n ·DB →=2x +2y =0.令x =1,则n =(1,-1,-1).∴点D 1到平面A 1BD 的距离 d =|D 1A 1→·n ||n |=23=233.答案 D8.二面角α­l ­β等于120°,A 、B 是棱l 上两点,AC 、BD 分别在半平面α、β内,AC ⊥l ,BD ⊥l ,且AB =AC =BD =1,则CD 的长等于( )A. 2B. 3 C .2 D. 5解析 如图,∵二面角α­l ­β等于120°, ∴CA →与BD →夹角为60°.由题设知,CA →⊥AB →, AB →⊥BD →,|AB →|=|AC →|=|BD →|=1,|CD →|2=|CA →+AB →+BD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=3+2×cos 60°=4,∴|CD →|=2. 答案 C9.如图,在三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.(1)求证:C 1B ⊥平面ABC ;(2)设CE →=λCC 1→(0≤λ≤1),且平面AB 1E 与BB 1E 所成的锐二面角的大小为30°,试求λ的值.(2)解 由(1)可知,AB ,BC ,BC 1两两垂直.以B 为原点,BC ,BA ,BC 1所在直线为x ,y ,z 轴建立空间直角坐标系.则B (0,0,0),A (0,1,0),C (1,0,0),C 1(0,0,3),B 1(-1,0,3).所以CC 1→=(-1,0,3), 所以CE →=(-λ,0,3λ),∴E (1-λ,0,3λ),则AE →=(1-λ,-1,3λ),AB 1→=(-1,-1,3).设平面AB 1E 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥AE →,n ⊥AB 1→,得⎩⎨⎧(1-λ)x -y +3λz =0,-x -y +3z =0,令z =3,则x =3-3λ2-λ,y =32-λ,,∴n =⎝⎛⎭⎪⎫3-3λ2-λ,32-λ,3,∵AB ⊥平面BB 1C 1C ,BA →=(0,1,0)是平面的一个法向量,∴|cos〈n ,BA →〉|=n ·BA →|n |·|BA →|=32-λ1×⎝ ⎛⎭⎪⎫3-3λ2-λ2+⎝ ⎛⎭⎪⎫32-λ2+(3)2=32. 两边平方并化简得2λ2-5λ+3=0,所以λ=1或λ=32(舍去).∴λ=1.10.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的的菱形,∠BAD =60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3,G 和H 分别是CE 和CF 的中点.(1)求证:平面BDGH ∥平面AEF ; (2)求二面角H -BD -C 的大小.(1)证明 在△CEF 中,因为G ,H 分别是CE ,CF 的中点. 所以GH ∥EF ,又因为GH ⊄平面AEF ,EF ⊂平面AEF , 所以GH ∥平面AEF . 设AC ∩BD =O ,连接OH , 因为ABCD 为菱形, 所以O 为AC 中点,在△ACF 中,因为OA =OC ,CH =HF , 所以OH ∥AF ,又因为OH ⊄平面AEF ,AF ⊂平面AEF , 所以OH ∥平面AEF.又因为OH ∩GH =H ,OH ,GH ⊂平面BDGH , 所以平面BDGH ∥平面AEF . (2)解 取EF 的中点N ,连接ON ,因为四边形BDEF 是矩形,O ,N 分别为BD ,EF 的中点,所以ON ∥ED ,因为平面BDEF ⊥平面ABCD , 所以ED ⊥平面ABCD , 所以ON ⊥平面ABCD ,因为ABCD 为菱形,所以AC ⊥BD ,得OB ,OC ,ON 两两垂直. 所以以O 为原点,OB ,OC ,ON 所在直线分别为x 轴,y 轴,z 轴, 如图建立空间直角坐标系.因为底面ABCD 是边长为2的菱形,∠BAD =60°,BF =3,所以B (1,0,0),D (-1,0,0),E (-1,0,3),F (1,0,3),C (0,3,0),H ⎝ ⎛⎭⎪⎫12,32,32,所以BH →=⎝ ⎛⎭⎪⎫-12,32,32,DB →=(2,0,0).设平面BDH 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BH →=0n ·DB →=0⇒⎩⎨⎧-x +3y +3z =0,2x =0,令z =1,得n =(0,-3,1).由ED ⊥平面ABCD ,得平面BCD 的法向量为DE →=(0,0,3), 则cos 〈n ,DE →〉=n ·DE →|n||DE →|=0×0+(-3)×0+1×32×3=12. 所以二面角H -BD -C 的大小为60°.11.如图,△ABC 是以∠ABC 为直角的三角形,SA ⊥平面ABC ,SA =BC =2,AB =4.M ,N ,D 分别是SC ,AB ,BC 的中点.(1)求证:MN ⊥AB ;(2)求二面角S ­ND ­A 的余弦值;(3)求点A 到平面SND 的距离.解 以B 为坐标原点,BC ,BA 为x ,y 轴的正方向,垂直于平面ABC 的直线为z 轴,建立空间直角坐标系(如图).(1)证明 由题意得A (0,4,0),B (0,0,0),M (1,2,1),N (0,2,0),S (0,4,2),D (1,0,0). 所以:MN →=(-1,0,-1),AB →=(0,-4,0),MN →·AB →=0,∴MN ⊥AB . (2)设平面SND 的一个法向量为m =(x ,y ,z ), 则:m ·SN →=0,且m ·DN →=0.∵SN →=(0,-2,-2),DN →=(-1,2,0),∴⎩⎪⎨⎪⎧-2y -2z =0,-x +2y =0,即⎩⎪⎨⎪⎧y +z =0,x =2y . 令z =1,得:x =-2,y =-1, ∴m =(-2,-1,1).又平面AND 的法向量为n =(0,0,1),cos 〈m ,n 〉=m ·n |m ||n |=66.由题图易知二面角S ­ND ­A 为锐角,故其余弦值为66. (3)∵AN →=(0,-2,0), ∴点A 到平面SND 的距离 d =|AN →·m ||m |=63.12.如图,将长为4,宽为1的长方形折叠成长方体ABCD -A 1B 1C 1D 1的四个侧面,记底面上一边AB =t (0<t <2),连接A 1B ,A 1C ,A 1D .(1)当长方体ABCD -A 1B 1C 1D 1的体积最大时,求二面角B -A 1C -D 的值;(2)线段A 1C 上是否存在一点P ,使得A 1C ⊥平面BPD ,若有,求出P 点的位置,没有请说明理由解法一 (1)根据题意,长方体体积为V =t (2-t )×1=t (2-t )≤⎝ ⎛⎭⎪⎫t +2-t 22=1,当且仅当t =2-t ,即t =1时体积V 有最大值为1,所以当长方体ABCD -A 1B 1C 1D 1的体积最大时,底面四边形ABCD 为正方形, 作BM ⊥A 1C 于M ,连接DM ,BD ,因为四边形ABCD 为正方形,所以△A 1BC 与△A 1DC 全等,故DM ⊥A 1C ,所以∠BMD 即为所求二面角的平面角. 17.如图,已知圆锥OO 1和圆柱O 1O 2的组合体(它们的底面重合),圆锥的底面圆O 1的半径为r =5,OA 为圆锥的母线,AB 为圆柱O 1O 2的母线,D ,E 为下底面圆O 2上的两点,且DE =6,AB =6.4,AO =52,AO ⊥AD .(1)求证:平面ABD ⊥平面ODE; (2)求二面角B —AD —O 的正弦值. (1)证明 依题意知,圆锥的高为h =22-52=5,又圆柱的高为AB =6.4,AO ⊥AD ,所以OD 2=OA 2+AD 2, 因为AB ⊥BD , 所以AD 2=AB 2+BD 2,连接OO 1,O 1O 2,DO 2,易知O ,O 1,O 2三点共线,OO 2⊥DO 2,所以OD 2=OO 22+O 2D 2,所以BD 2=OO 22+O 2D 2-AO 2-AB 2=(6.4+5)2+52-(52)2-6.42=64, 解得BD =8,又因为DE =6,圆O 2的直径为10,圆心O 2在∠BDE 内, 所以∠BDE =90°,所以DE ⊥BD .因为AB ⊥平面BDE ,DE ⊂平面BDE ,所以DE ⊥AB , 因为AB ∩BD =B ,AB ,BD ⊂平面ABD , 所以DE ⊥平面ABD . 又因为DE ⊂平面ODE , 所以平面ABD ⊥平面ODE .(2)解 如图,以D 为原点,DB ,DE 所在直线为x ,y 轴,建立空间直角坐标系.则D (0,0,0),A (8,0,6.4),B (8,0,0),O (4,3,11.4).所以DA →=(8,0,6.4),DB →=(8,0,0),DO →=(4,3,11.4), 设平面DAO 的法向量为u =(x ,y ,z ), 所以DA →·u =8x +6.4z =0, DO →·u =4x +3y +11.4z =0,令x =12,则u =(12,41,-15).可取平面BDA 的一个法向量为v =(0,1,0), 所以cos 〈u ,v 〉=u·v |u||v |=41582=8210, 所以二面角B —AD —O 的正弦值为3210.18.如图所示的几何体中,四边形ABCD 为等腰梯形,AB ∥CD ,AB =2AD =2,∠DAB =60°,四边形CDEF 为正方形,平面CDEF ⊥平面ABCD .(1)若点G 是棱AB 的中点,求证:EG ∥平面BDF ; (2)求直线AE 与平面BDF 所成角的正弦值;(3)在线段FC 上是否存在点H ,使平面BDF ⊥平面HAD ?若存在,求FH HC的值;若不存在,说明理由.(2)解 因为四边形CDEF 为正方形,所以ED ⊥DC . 因为平面CDEF ⊥平面ABCD ,平面CDEF ∩平面ABCD =DC ,DE ⊂平面CDEF , 所以ED ⊥平面ABCD .在△ABD 中,因为∠DAB =60°,AB =2AD =2, 所以由余弦定理,得BD =3, 所以AD 2+BD 2=AB 2, 所以AD ⊥BD .在等腰梯形ABCD 中,可得DC =CB =1.如图,以D 为原点,DA ,DB ,DE 所在直线分别为x ,y ,z 轴,建立空间直角坐标系D -xyz , 则D (0,0,0),A (1,0,0),E ()0,0,1,B ()0,3,0,F ⎝ ⎛⎭⎪⎫-12,32,1,所以AE →=()-1,0,1,DF →=⎝ ⎛⎭⎪⎫-12,32,1,DB →=()0,3,0.设平面BDF 的法向量为n =(x ,y ,z ),因为⎩⎪⎨⎪⎧ n ·DB →=0,n ·DF →=0, 所以⎩⎪⎨⎪⎧ 3y =0,-12x +32y +z =0.取z =1,则x =2,y =0,则n =()2,0,1. 设直线AE 与平面BDF 所成的角为θ,则sin θ=||cos 〈AE →,n 〉=||AE →·n ||AE →||n =1010, 所以AE 与平面BDF 所成角的正弦值为1010. (3)解 线段FC 上不存在点H ,使平面BDF ⊥平面HAD .证明如下:假设线段FC 上存在点H ,设H ⎝ ⎛⎭⎪⎫-12,32,t ()0≤t ≤1, 则DH →=⎝ ⎛⎭⎪⎫-12,32,t . 设平面HAD 的法向量为m =()a ,b ,c ,因为⎩⎪⎨⎪⎧ m ·DA →=0,m ·DH →=0, 所以⎩⎪⎨⎪⎧ a =0,-12a +32b +tc =0. 取c =1,则a =0,b =-2t 3,得m =⎝ ⎛⎭⎪⎫0,-2t 3 ,1. 要使平面BDF ⊥平面HAD ,只需m·n =0, 即2×0-2t 3×0+1×1=0,此方程无解. 所以线段FC 上不存在点H ,使平面BDF ⊥平面HAD .。

2019届高考数学一轮复习 第7单元 立体几何 第45讲 立体几何中的向量方法课件 理

2019届高考数学一轮复习 第7单元 立体几何 第45讲 立体几何中的向量方法课件 理

PAD 为等边三角形且垂直于底面 ABCD,AB=BC=12AD,∠BAD= ∠ABC=90°,E 是 PD 的中点.
(1)证明:直线 CE∥平面 PAB;
(2)点 M 在棱 PC 上,且直线 BM 与底面 ABCD 所
又 BF⊂平面 PAB,CE⊄平面 PAB,故 CE∥平面 PAB. (2)由已知得 BA ⊥AD,以 A 为坐标 原点,������������的方向为 x 轴正方向,|������������|为 单位长,建立如全国卷Ⅱ] 如图,四棱锥 P-ABCD 中,侧面
PAD 为等边三角形且垂直于底面 ABCD,AB=BC=12AD,∠BAD= ∠ABC=90°,E 是 PD 的中点. (1)证明:直线 CE∥平面 PAB; (2)点 M 在棱 PC 上,且直线 BM 与底面 ABCD 所
设 n=(x2,y2,z2)是平面 ACD'的法向量,则
������·������������ = 0, 即 ������·������������' = 0,
6������2 3������2
= +
0, ������2
+
3������2
=
0,
所以可取 n=(0,-3,1).于是
cos<m,n>=|������������|·|������������
������·������������ = 0,即 ������·������������ = 0,
(2- 2)������0 + 2������0 + 6������0 = 0, ������0 = 0,
所以可取 m=(0,- 6,2).
于是 cos<m,n>=
= 510,

2019届高三数学(理)二轮专题复习文档:专题三立体几何第3讲立体几何中的向量方法含解析

2019届高三数学(理)二轮专题复习文档:专题三立体几何第3讲立体几何中的向量方法含解析

第3讲 立体几何中的向量方法高考定位 以空间几何体为载体考查空间角是高考命题的重点,常与空间线面关系的证明相结合,热点为二面角的求解,均以解答题的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上.真 题 感 悟1.(2017·全国Ⅱ卷)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32 B.155 C.105 D.33解析 法一 以B 为原点,建立如图(1)所示的空间直角坐标系.图(1) 图(2)则B (0,0,0),B 1(0,0,1),C 1(1,0,1).又在△ABC 中,∠ABC =120°,AB =2,则A (-1,3,0).所以AB 1→=(1,-3,1),BC 1→=(1,0,1),则cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→|·|BC 1→|=(1,-3,1)·(1,0,1)5×2=25×2=105, 因此,异面直线AB 1与BC 1所成角的余弦值为105. 法二 如图(2),设M ,N ,P 分别为AB ,BB 1,B 1C 1中点,则PN ∥BC 1,MN ∥AB 1,∴AB 1与BC 1所成的角是∠MNP 或其补角.∵AB =2,BC =CC 1=1,∴MN =12AB 1=52,NP =12BC 1=22.取BC 的中点Q ,连接PQ ,MQ ,则可知△PQM 为直角三角形,且PQ =1,MQ =12AC ,在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC=4+1-2×2×1×⎝ ⎛⎭⎪⎫-12=7,AC =7, 则MQ =72,则△MQP 中,MP =MQ 2+PQ 2=112,则△PMN 中,cos ∠PNM =MN 2+NP 2-PM 22·MN ·NP=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫222-⎝ ⎛⎭⎪⎫11222×52×22=-105, 又异面直线所成角范围为⎝ ⎛⎦⎥⎤0,π2,则余弦值为105. 答案 C2.(2018·全国Ⅲ卷)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.(1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC⊥平面CMD ,又DM ⊂平面CDM ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC .由于DM ⊂平面AMD ,故平面AMD ⊥平面BMC .。

【精品试题】高考数学一轮必刷题 专题45 立体几何中的向量方法(含解析)

【精品试题】高考数学一轮必刷题 专题45 立体几何中的向量方法(含解析)

考点45 立体几何中的向量方法1.(辽宁省沈阳市2019届高三教学质量监测三数学理)如图,四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,侧面PAB ⊥底面ABCD ,E 为PC 上的点,且BE ⊥平面APC(1)求证:平面PAD ⊥平面PBC ;(2)当三棱锥ABC P -体积最大时,求二面角B AC P --的余弦值.2.(湖南省长沙市第一中学2019届高三下学期高考模拟卷一数学理)如图所示,圆O 的直径AB =6,C 为圆周上一点,BC =3,平面PAC 垂直圆O 所在平面,直线PC 与圆O 所在平面所成角为60°,PA ⊥PC .(1)证明:AP ⊥平面PBC(2)求二面角P —AB 一C 的余弦值3.(四川省绵阳市2019届高三下学期第三次诊断性考试数学理)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且2PA AD ==,120PAD BAD ∠=∠=︒,E ,F 分别为PD ,BD 的中点,且6EF =.(1)求证:平面PAD ⊥平面ABCD ; (2)求锐二面角E AC D --的余弦值.4.(四川省宜宾市2019届高三第三次诊断性考试数学理)如图,在四棱锥中,,平面,二面角为为中点.(1)求证:;(2)求与平面所成角的余弦值.5.(安徽省黄山市2019届高三毕业班第三次质量检测数学理)如图,在以,,,,,A B C D E F 为顶点的五面体中,面ABEF 为正方形,23AF FD =,90AFD ︒∠=,且二面角E AF D --与二面角C BE F --都是30.(1)证明:⊥AF 平面EFDC ;(2)求直线BF 与平面BCE 所成角的正弦值.6.(湖南省师范大学附属中学2019届高三考前演练(五)数学(理)在五边形AEBCD 中,BC CD ⊥,C //D AB ,22AB CD BC ==,AE BE ⊥,AE BE =(如图).将△ABE 沿AB 折起,使平面ABE ⊥平面ABCD ,线段AB 的中点为O(如图).(1)求证:平面ABE ⊥平面DOE ;(2)求平面EAB 与平面ECD 所成的锐二面角的大小.7.(河北省保定市2019年高三第二次模拟考试理)如图,已知四棱锥中,四边形ABCD 为矩形,22AB =,2BC SC SD ===,BC SD ⊥.(1)求证:SC ⊥平面SAD ; (2)设12AE EB =,求平面SEC 与平面SBC 所成的二面角的正弦值. 8.(陕西省西安市2019届高三第三次质量检测理)如图,在三棱柱111ABC A B C -中,AB ⊥平面11BB C C ,E 是1CC 的中点,1BC =,12BB =,160BCC ∠=°.(1)证明:1B E AE ⊥; (2)若2AB =,求二面角11A B E A --的余弦值.9.(河南省重点高中2019届高三4月联合质量检测数学理)在四棱锥中,底面为平行四边形,平面平面,是边长为4的等边三角形,,是的中点.(1)求证:;(2)若直线与平面所成角的正弦值为,求平面与平面所成的锐二面角的余弦值. 10.(天津市北辰区2019届高考模拟考试数学理)如图,在四棱柱中,侧棱底面,,,,,且点和分别为和的中点(I)求证:平面;(II)求二面角的正弦值;(III)设为棱上的点,若直线和平面所成角的正弦值为,求的长。

2019年高考数学(理)一轮复习精品资料专题40立体几何中的向量方法(押题专练)含解析

2019年高考数学(理)一轮复习精品资料专题40立体几何中的向量方法(押题专练)含解析

2019年高考数学(理)一轮复习精品资料1.平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k =( ) A .2 B .-4 C .4 D .-2 解析:∵α∥β,∴两平面法向量平行, ∴-21=-42=k-2,∴k =4. 答案:C2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相关 B .平行C .在平面内D .平行或在平面内解析:∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面.则AB 与平面CDE 的位置关系是平行或在平面内. 答案:D3.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A .P(2,3,3)B .P(-2,0,1)C .P(-4,4,0)D .P(3,-3,4)答案:A4.如图,在长方体ABCD A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 的位置关系为( )A.平行 B.异面C.垂直 D.以上都不对解析:以D点为原点,分别以DA,DC,DD1所在直线为x,y,z轴,建立如图所示的空间直角坐标系D-xyz.答案:C5.如图所示,在平行六面体ABCD A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1.以上正确说法的个数为( ) A .1 B .2 C .3 D .4解析:A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥面DCC 1D 1,A 1M ∥面D 1PQB 1.①③④正确.答案:C6.已知正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( ) A.1010 B.15 C.31010 D.35解析:以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D(0,0,0),C(0,1,0),B(1,1,0),E(1,0,1),D 1(0,0,2).答案:C7.正方体ABCD A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( )A.216 a B.66a C.156 a D.153a 解析:以D 为原点建立如图所示的空间直角坐标系D xyz ,则A(a ,0,0),C 1(0,a ,a),N(a ,a ,a2).设M(x ,y ,z),答案:A8.在正方体ABCD A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22解析:以A 为原点建立如图所示的空间直角坐标系A xyz ,设棱长为1,则A 1(0,0,1),E(1,0,12),D(0,1,0),答案:B9.已知三棱柱ABC A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( )A.5π12 B.π3 C.π4 D.π6解析:如图所示:S △ABC =12×3×3×sin 60°=334.∴VABC A 1B 1C 1=S △ABC ·OP =334·OP =94,∴OP = 3. 又OA =32×3×23=1,∴tan ∠OAP =OPOA=3, 又0<∠OAP<π2,∴∠OAP =π3.答案:B10.在四面体P-ABC 中,PA ,PB ,PC 两两垂直,设PA =PB =PC =a ,则点P 到平面ABC 的距离为( ) A.63 B.33a C.a3D.6a 解析:根据题意,可建立如图所示的空间直角坐标系P xyz ,则P(0,0,0),A(a ,0,0),B(0,a ,0),C(0,0,a).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的距离.答案:B11.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B.135° C.45°或135° D .90° 答案 C解析 ∵cos 〈m ,n 〉=m ·n |m ||n |=12=22,∴〈m ,n 〉=45°.∴二面角为45°或135°.故选C.12.在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于( )A .4B .2C .3D .1 答案B13.如图所示,已知正方体ABCD -A 1B 1C 1D 1,E ,F 分别是正方形A 1B 1C 1D 1和ADD 1A 1的中心,则EF 和CD 所成的角是()A .60°B .45°C .30°D .135° 答案 B解析 以D 为原点,分别以射线DA ,DC ,DD 1为x 轴、y 轴、z 轴的非负半轴建立空间直角坐标系Dxyz ,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫12,12,1,F ⎝ ⎛⎭⎪⎫12,0,12,EF →=⎝⎛⎭⎪⎫0,-12,-12,DC →=(0, 1,0),∴cos 〈EF →,DC →〉=EF →·DC→|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°.故选B.14.在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为( )A.15B.255C.55D.25 答案 C设平面DEF 的法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0,取z =1,则n =(2,0,1),设PA 与平面DEF 所成的角为θ,则sin θ=|PA →·n ||PA →||n |=55,∴PA 与平面DEF 所成角的正弦值为55.故选C.15.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22 答案 B解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎪⎫1,0,12,D (0,1,0),即所成的锐二面角的余弦值为23.故选B.16.在长方体ABCD A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________. 解析:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设n =(x ,y ,z)为平面A 1BC 1的法向量.答案:1317.如图所示,在三棱柱ABCA 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是________.解析:以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E(0,1,0),F(0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°. 答案:60°18.正△ABC 与正△BCD 所在平面垂直,则二面角A BD C 的正弦值为________. 解析:取BC 中点O ,连接AO ,DO.建立如图所示坐标系,设BC =1,∴y 02+32z 0=0且32x 0+y 02=0, 解之得y 0-3z 0,且y 0=-3x 0,取x 0=1,得平面ABD 的一个法向量n =(1,-3,1), 由于OA →=⎝ ⎛⎭⎪⎫0,0,32为平面BCD 的一个法向量.∴cos 〈n ,OA →〉=55,∴sin 〈n ,OA →〉=255.答案:25519.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的序号是________.答案:①②③20.如图所示,在正方体ABCD A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是________.解析:以C 1为坐标原点建立如图所示的坐标系.又C 1D 1→是平面BB 1C 1C 的法向量,且MN ⊄平面BB 1C 1C , ∴MN ∥平面BB 1C 1C. 答案:MN ∥平面BB 1C 1C21.如图,四棱锥P ABCD 的底面为正方形,侧棱PA ⊥底面ABCD ,且PA =AD =2,E ,F ,H 分别是线段PA ,PD ,AB 的中点.求证:(1)PB∥平面EFH;(2)PD⊥平面AHF.证明:建立如图所示的空间直角坐标系A xyz.∴A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),H(1,0,0).(2)PD →=(0,2,-2),AH →=(1,0,0),AF →=(0,1,1), ∴PD →·AF →=0×0+2×1+(-2)×1=0, PD →·AH →=0×1+2×0+(-2)×0=0, ∴PD ⊥AF ,PD ⊥AH ,又∵AF∩AH=A ,∴PD ⊥平面AHF.22.如图,四棱柱ABCD A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2.证明:A 1C ⊥平面BB 1D 1D.证明:由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立空间直角坐标系,如图.∵AB =AA 1=2,∴OA =OB =OA 1=1,∴A(1,0,0),B(0,1,0),C(-1,0,0),D(0,-1,0),A 1(0,0,1). 由A 1B 1→=AB →,易得B 1(-1,1,1).23.如图,在直棱柱ABCD-A1B1C1D1中AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(1)证明:AC⊥B1D;(2)求直线B1C1与平面ACD1所成角的正弦值.(1)证明:易知,AB,AD,AA1两两垂直.如图,以A为坐标原点,AB,AD,AA1所成直线分别为x轴,y轴,z 轴建立空间直角坐标系.设AB=t,则相关各点的坐标为A(0,0,0),B(t,0,0),B1(t,0,3),C(t,1,0),C1(t,1,3),D(0,3,0),D1(0,3,3).(2)解:由(1)知,AD 1→=(0,3,3),AC →=(3,1,0),B 1C 1→=(0,1,0). 设n =(x ,y ,z)是平面ACD 1的一个法向量, 则⎩⎪⎨⎪⎧n·AC →=0,n·AD 1→=0,即⎩⎨⎧3x +y =0,3y +3z =0,令x =1,则n =(1,-3,3).设直线B 1C 1与平面ACD 1所成角为θ,则sin θ=|cos 〈n ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪n·B 1C 1→|n|·|B 1C 1→|=37=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217. 24.如图,正方形AMDE 的边长为2,B ,C 分别为AM ,MD 的中点.在五棱锥P -ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD ,PC 分别交于点G ,H .(1)求证:AB ∥FG ;(2)若PA ⊥底面ABCDE ,且PA =AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.(2)因为PA ⊥底面ABCDE ,所以PA ⊥AB ,PA ⊥AE .如图建立空间直角坐标系Axyz ,则A (0,0,0),B (1,0,0),C (2,1,0),P (0,0,2),F (0,1,1),BC →=(1,1,0).设平面ABF 的法向量为n =(x ,y ,z ). 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AF →=0,即⎩⎪⎨⎪⎧x =0,y +z =0.令z =1,则y =-1,所以n =(0,-1,1). 设直线BC 与平面ABF 所成角为α,则sin α=|cos 〈n ,BC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·BC →|n ||BC →|=12.因此直线BC 与平面ABF 所成角的大小为π6.所以|PH |=⎝ ⎛⎭⎪⎫432+⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫-432=2.。

2019年高考数学考纲解读与热点难点突破专题15立体几何中的向量方法理

2019年高考数学考纲解读与热点难点突破专题15立体几何中的向量方法理

立体几何中的向量方法【2019年高考考纲解读】以空间几何体为载体考查空间角是高考命题的重点,常与空间线面关系的证明相结合,热点为二面角的求解,均以解答题的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上. 【重点、难点剖析】1.直线与平面、平面与平面的平行与垂直的向量方法设直线l 的方向向量分别为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0..(2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.(3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥ν⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0. 2.空间角的计算 (1)两条异面直线所成的角设直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a ·b ||a ||b |(其中φ为异面直线a ,b 所成的角). (2)直线和平面所成的角如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.(3)二面角如图所示,二面角α-l -β,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面有α-l -β的大小为θ或π-θ.3.用向量法证明平行、垂直问题的步骤(1)建立空间图形与空间向量的关系(可以建立空间直角坐标系,也可以不建系),用空间向量表示问题中涉及的点、直线、平面. (2)通过向量运算研究平行、垂直问题. (3)根据运算结果解释相关问题.4.空间向量求角时考生易忽视向量的夹角与所求角之间的关系(1)求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,而不是线面角的余弦; (2)求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. 【题型示例】题型一 向量法证明平行与垂直例1、如图,在直三棱柱ADE -BCF 中,面ABFE 和面ABCD 都是正方形且互相垂直,M 为AB 的 中点,O 为DF 的中点,运用向量方法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明:由题意,得AB ,AD ,AE 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝ ⎛⎭⎪⎫12,0,0,O ⎝ ⎛⎭⎪⎫12,12,12.(1)OM →=⎝ ⎛⎭⎪⎫0,-12,-12,BA →=(-1,0,0),所以OM →·BA →=0,所以OM →⊥BA →. 因为棱柱ADE -BCF 是直三棱柱,所以AB ⊥平面BCF ,所以BA →是平面BCF 的一个法向量,且OM ⊄平面BCF ,所以OM ∥平面BCF .(2)设平面MDF 与平面EFCD 的一个法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为DF →=(1,-1,1),DM →=(12,-1,0),DC →=(1,0,0),CF →=(0,-1,1),由n 1·DF →=n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,解得⎩⎪⎨⎪⎧y 1=12x 1,z 1=-12x 1.令x 1=1,则n 1=⎝ ⎛⎭⎪⎫1,12,-12.同理可得n 2=(0,1,1).因为n 1·n 2=0,所以平面MDF ⊥平面EFCD . 【方法技巧】利用空间向量证明平行与垂直的步骤(1)建立空间直角坐标系,建系时,要尽可能地利用载体中的垂直关系;(2)建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;(3)通过空间向量的运算研究平行、垂直关系; (4)根据运算结果解释相关问题.【变式探究】如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥底面ABCD ,点E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ; (2)求证:平面PAD ⊥平面PDC .证明 (1)以点A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1).∵点E ,F 分别是PC ,PD 的中点, ∴E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF →=⎝ ⎛⎭⎪⎫-12,0,0,AB →=(1,0,0).∵EF →=-12AB →,∴EF →∥AB →, 即EF ∥AB ,又AB ⊂平面PAB ,EF ⊄平面PAB , ∴EF ∥平面PAB .【感悟提升】用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.【变式探究】如图,在直三棱柱ADE —BCF 中,平面ABFE 和平面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明 方法一 (1)由题意,得AB ,AD ,AE 两两垂直,以点A 为原点建立如图所示的空间直角坐标系A -xyz .设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝ ⎛⎭⎪⎫12,0,0,O ⎝ ⎛⎭⎪⎫12,12,12.OM →=⎝⎛⎭⎪⎫0,-12,-12,BA →=(-1,0,0),∴OM →·BA →=0,∴OM →⊥BA →. ∵棱柱ADE —BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF .(2)设平面MDF 与平面EFCD 的一个法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝ ⎛⎭⎪⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1),由⎩⎪⎨⎪⎧n 1·DF →=0,n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,令x 1=1,则n 1=⎝ ⎛⎭⎪⎫1,12,-12.同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD . 方法二 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA →=12(DB →+BF →)-BF →+12BA → =-12BD →-12BF →+12BA →=-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量BF →,BC →共面,BF ,BC ⊂平面BCF , 又OM ⊄平面BCF ,∴OM ∥平面BCF .(2)由题意及(1)知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →,∴OM →·CD →=⎝ ⎛⎭⎪⎫-12BC →-12BF →·BA →=0,OM →·FC →=⎝ ⎛⎭⎪⎫-12BC →-12BF →·(BC →-BF →)=-12BC →2+12BF →2=0,∴OM →⊥CD →,OM →⊥FC →, 即OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C ,CD ,FC ⊂平面EFCD , ∴OM ⊥平面EFCD .又OM ⊂平面MDF ,∴平面MDF ⊥平面EFCD .【变式探究】如图,△ABC 和△BCD 所在平面互相垂直, 且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F 分别为AC ,DC 的中点.设异面直线所成的角为α, 则cos α=|cos θ|=1-y 52·4y 2+5=255·1-y 4y 2+5, 令t =1-y ,则y =1-t , ∵0≤y ≤1,∴0≤t ≤1,那么cos α=|cos θ|=255·t 4t 2-8t +9 =255t 24t 2-8t +9=25514-8t +9t2, 令x =1t,∵0≤t ≤1,∴x ≥1,那么cos α=25514-8x +9x2,又∵z =9x 2-8x +4在[1,+∞)上单增, ∴x =1,z min =5,此时cos α的最大值=255·15=255·55=25. 答案 25【变式探究】如图所示,在多面体A 1B 1D 1­DCBA ,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F .(1)证明:EF ∥B 1C .(2)求二面角E ­A 1D ­B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE .又B 1C ⊂面B 1CD 1.面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C .(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1. 设面A 1DE 的法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →.n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0, (-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E ­A 1D ­B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.【举一反三】如图,三棱锥P -ABC 中,PC ⊥平面ABC ,PC =3,∠ACB =π2.D ,E 分别为线段AB ,BC 上的点,且CD =DE =2,CE =2EB =2.(1)证明:DE ⊥平面PCD ; (2)求二面角A -PD -C 的余弦值.(1)证明 由PC ⊥平面ABC ,DE ⊂平面ABC ,故PC ⊥DE . 由CE =2,CD =DE =2得△CDE 为等腰直角三角形,故CD ⊥DE . 由PC ∩CD =C ,DE 垂直于平面PCD 内两条相交直线,故DE ⊥平面PCD . (2)解 由(1)知,△CDE 为等腰直角三角形,∠DCE =π4,如图,过D 作DF 垂直CE 于F ,易知DF =FC =FE =1,又已知EB =1,故FB =2.由∠ACB =π2得DF ∥AC ,DF AC =FB BC =23,故AC =32DF =32.以C 为坐标原点,分别以CA →,CB →,CP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A ⎝ ⎛⎭⎪⎫32,0,0,E (0,2,0),D (1,1,0),ED →=(1,-1,0),DP →=(-1,-1,3),DA →=⎝ ⎛⎭⎪⎫12,-1,0.设平面PAD 的法向量为n 1=(x 1,y 1,z 1),由n 1·DP →=0,n 1·DA →=0, 得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0,故可取n 1=(2,1,1).由(1)可知DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED →,即n 2=(1,-1,0). 从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=36,故所求二面角A -PD -C 的余弦值为36. 【感悟提升】1.运用空间向量坐标运算求空间角的一般步骤(1)建立恰当的空间直角坐标系;(2)求出相关点的坐标;(3)写出向量坐标;(4)结合公式进行论证、计算;(5)转化为几何结论. 2.利用空间向量求空间角的思路(1)异面直线所成的角θ,可以通过两直线的方向向量的夹角φ求得,即cos θ=|cos φ|; (2)直线与平面所成的角θ主要可以通过直线的方向向量与平面的法向量的夹角φ求得,即sin θ=|cos φ|;(3)二面角的大小可以利用分别在两个半平面内与棱垂直的直线的方向向量的夹角(或其补角)或通过二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.提醒:当通过二面角的两个面的法向量求解时,其中一个法向量可从题中与该面垂直的直线的方向向量得到,而不必都求.【变式探究】如图所示,在三棱柱ABC -A 1B 1C 1中,H 是正方形 AA 1B 1B 的中心,AA 1=22,C 1H ⊥平面AA 1B 1B ,且C 1H = 5.(1)求异面直线AC 与A 1B 1所成角的余弦值; (2)求二面角A -A 1C 1-B 1的正弦值;(3)设N 为棱B 1C 1的中点,点M 在平面AA 1B 1B 内,且MN ⊥平面A 1B 1C 1,求线段BM 的长. 【解析】(1)如图所示,建立空间直角坐标系,点B 为坐标原点. 依题意得A (22,0,0),B (0,0,0),C (2,-2,5),A 1(22,22,0),B 1(0,22,0),C 1(2,2,5).(1)易得AC →=(-2,-2,5),A 1B 1→=(-22,0,0),于是cos 〈AC →,A 1B 1→〉=AC →·A 1B 1→|AC →||A 1B 1→|=43×22=23. 所以异面直线AC 与A 1B 1所成角的余弦值为23. (2)易知AA 1→=(0,22,0),A 1C 1→=(-2,-2,5). 设平面AA 1C 1的法向量m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·AA 1→=0,即⎩⎨⎧-2x -2y +5z =0,22y =0.不妨令x =5,可得m =(5,0,2). 同样地,设平面A 1B 1C 1的法向量n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1B 1→=0,即⎩⎨⎧-2x 1-2y 1+5z 1=0,-22x 1=0.不妨令y 1=5, 可得n =(0,5,2).于是cos 〈m ,n 〉=m ·n |m ||n |=27·7=27,从而sin 〈m ,n 〉=357.所以二面角A -A 1C 1-B 1的正弦值为357.(3)由N 为棱B 1C 1的中点,得N ⎝ ⎛⎭⎪⎫22,322,52,设M (a ,b,0),则MN →=⎝ ⎛⎭⎪⎫22-a ,322-b ,52.由MN ⊥平面A 1B 1C 1,得⎩⎪⎨⎪⎧MN →·A 1B 1→=0,MN →·A 1C 1→=0,即⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫22-a -22=0,⎝ ⎛⎭⎪⎫22-a -2+⎝⎛⎭⎪⎫322-b -2+52·5=0.解得⎩⎪⎨⎪⎧a =22,b =24,故M ⎝⎛⎭⎪⎫22,24,0, 因此BM →=⎝ ⎛⎭⎪⎫22,24,0,所以线段BM 的长|BM →|=104.【规律方法】异面直线所成角的余弦等于两条异面直线方向向量夹角余弦的绝对值;线面所成角的正弦等于平面的法向量与直线方向向量夹角余弦的绝对值;二面角平面角余弦与二面角两平面法向量夹角的余弦绝对值相等,其正负可以通过观察二面角是锐角还是钝角进行确定. 题型三 利用空间向量解决探索性问题要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由,这类问题常用“肯定顺推”的方法.【例3】如图,四棱锥P -ABCD 中,PA ⊥平面ABCD ,△ABC 是边长为2的等边三角形,直线PB 与底面ABCD 所成的角为45°,PA =2CD ,PD =7,E 是棱PD 的中点.(1)求证:CD ⊥AE ;(2)在棱PB 上是否存在一点T ,使得平面ATE 与平面APB 所成锐二面角的余弦值为105? 若存在,请指出T 的位置;若不存在,请说明理由.【解析】(1)证明:∵PA ⊥平面ABCD ,AB ⊂平面ABCD ,CD ⊂平面ABCD ,AD ⊂平面ABCD , ∴PA ⊥AB ,PA ⊥CD ,PA ⊥AD .∵直线PB 与底面ABCD 所成的角为45°, ∴∠PBA =45°.∵△ABC 是边长为2的等边三角形,∴PA =AB =2. 又PA =2CD ,∴CD =1.在Rt △PAD 中,PD =7,PA =2,∴AD =7-4= 3.在△ADC 中,AD =3,CD =1,AC =2,∴AD 2+CD 2=(3)2+1=22=AC 2,∴CD ⊥AD . 又AD ∩PA =A ,∴CD ⊥平面PAD . 又AE ⊂平面PAD ∴CD ⊥AE .(2)假设在棱PB 上存在一点T 满足题意,PT →=λPB →(0<λ≤1),由(1)可知∠DAC =30°,所以∠DAB =90°,以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A -xyz ,如图所示,则A (0,0,0),B (2,0,0),P (0,0,2),D (0,3,0),E (0,32,1),设T (x 1,y 1,z 1),则PT →=(x 1,y 1,z 1-2),又λPB →=(2λ,0,-2λ),∴(x 1,y 1,z 1-2)=(2λ,0,-2λ),得x 1=2λ,y 1=0,z 1=2-2λ, ∴AT →=(x 1,y 1,z 1)=(2λ,0,2-2λ),AE →=(0,32,1), 设平面ATE 的法向量为n =(x 2,y 2,z 2), 则有⎩⎨⎧n ·AT →=0,n ·AE →=0,可得⎩⎪⎨⎪⎧2λx 2+2-2λz 2=0,32y 2+z 2=0令y 2=2,则z 2=-3,x 2=3-λλ,∴n =(3-λλ,2,-3)是平面ATE 的一个法向量.易知AD →=(0,3,0)为平面PAB 的一个法向量, ∴|cos 〈n ,AD →|=|n ·AD →|n |·|AD →||=23-λ2λ2+7×3=2-λ2λ2+7=105,故 -λ2λ2+7=10,即-λ2λ2+7=10,解得λ=12,故在棱PB 上存在点T 且T 为PB 的中点,使得平面ATE 与平面APB 所成锐二面角的余弦值为105. 【方法技巧】空间向量最适合于解决这类立体几何中的探索性问题,它无须进行复杂的作图、论证、推理,只需通过坐标运算进行判断;解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.【变式探究】在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =AD =1,AB =2,∠PAD =45°,E 是PA 的中点,F 在线段AB 上,且满足CF →·BD →=0.(1)求证:DE ∥平面PBC ; (2)求二面角F -PC -B 的余弦值;(3)在线段PA 上是否存在点Q ,使得FQ 与平面PFC 所成角的余弦值是63,若存在,求出AQ 的长;若不存在,请说明理由.(1)证明 方法一 取PB 的中点M ,连接EM 和CM ,∵CD ∥AB 且CD =12AB , 且E ,M 分别为PA ,PB 的中点. ∴EM ∥AB 且EM =12AB ,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM ,又CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC .方法二 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (1,2,0),C (0,1,0),P (0,0,1),E ⎝ ⎛⎭⎪⎫12,0,12,设平面PBC 的法向量为m =(x ,y ,z ), BC →=(-1,-1,0),CP →=(0,-1,1),由⎩⎪⎨⎪⎧m ·BC →=-x -y =0,m ·CP →=-y +z =0,得⎩⎪⎨⎪⎧x =-y ,y =z ,令y =1,则x =-1,z =1,∴m =(-1,1,1).又DE →=⎝ ⎛⎭⎪⎫12,0,12,∴m ·DE →=0,∴DE →⊥m , 又DE ⊄平面PBC , ∴DE ∥平面PBC .(2)解 设点F 的坐标为(1,t,0), 则CF →=(1,t -1,0),DB →=(1,2,0), 由CF →·DB →=0,得t =12,∴F ⎝ ⎛⎭⎪⎫1,12,0.设平面FPC 的法向量为n =(x ,y ,z ), CF →=⎝ ⎛⎭⎪⎫1,-12,0, 由⎩⎪⎨⎪⎧n ·CP →=0,n ·CF →=0,得⎩⎪⎨⎪⎧-y +z =0,x -12y =0,即⎩⎪⎨⎪⎧y =z ,y =2x ,令x =1,则y =2,z =2, ∴n =(1,2,2),则cos 〈n ,m 〉=n ·m |n ||m |=333=33,又由图可知,该二面角为锐角, 故二面角F -PC -B 的余弦值为33.【感悟提升】空间向量最适合解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解、是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.【变式探究】如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,AC =BC =AA 1=2,点P 为棱B 1C 1的中点,点Q 为线段A 1B 上一动点.(1)求证:当点Q 为线段A 1B 的中点时,PQ ⊥平面A 1BC ;(2)设BQ →=λBA 1→,试问:是否存在实数λ,使得平面A 1PQ 与平面B 1PQ 所成锐二面角的余弦值为3010?若存在,求出这个实数λ;若不存在,请说明理由. (1)证明 连接AB 1,AC 1,∵点Q为线段A1B的中点,∴A,Q,B1三点共线,且Q为AB1的中点,∵点P为B1C1的中点,∴PQ∥AC1.在直三棱柱ABC-A1B1C1中,AC⊥BC,∴BC⊥平面ACC1A1,又AC1⊂平面ACC1A1,∴BC⊥AC1.∵AC=AA1,∴四边形ACC1A1为正方形,∴AC1⊥A1C,又A1C,BC⊂平面A1BC,A1C∩BC=C,∴AC1⊥平面A1BC,而PQ∥AC1,∴PQ⊥平面A1BC.(2)解由题意可知,CA,CB,CC1两两垂直,以C为原点,分别以CA,CB,CC1所在直线为x轴、y轴、z轴建立空间直角坐标系C-xyz,连接B1Q,PB,设Q(x,y,z),B(0,2,0),A1(2,0,2),P (0,1,2),B 1(0,2,2),∵BQ →=λBA 1→,∴(x ,y -2,z )=λ(2,-2,2),∴⎩⎪⎨⎪⎧x =2λ,y =2-2λ,z =2λ,∴Q (2λ,2-2λ,2λ).∵点Q 在线段A 1B 上运动,∴平面A 1PQ 的法向量即为平面A 1PB 的法向量, 设平面A 1PB 的法向量为n 1=(x ,y ,z ), BP →=(0,-1,2),PA 1→=(2,-1,0),由⎩⎪⎨⎪⎧ n 1·BP →=0,n 1·PA 1→=0,得⎩⎪⎨⎪⎧-y +2z =0,2x -y =0,令y =2,得n 1=(1,2,1),设平面B 1PQ 的法向量为n 2=(x ,y ,z ),PB 1→=(0,1,0),B 1Q →=(2λ,-2λ,2λ-2).由⎩⎪⎨⎪⎧n 2·PB 1→=0,n 2·B 1Q →=0,得⎩⎪⎨⎪⎧y =0,2λx -2λy +λ-z =0,令z =1得n 2=⎝ ⎛⎭⎪⎫1-λλ,0,1=1λ(1-λ,0,λ),取n 2=(1-λ,0,λ),由题意得|cos 〈n 1,n 2〉|=|()1,2,1·()1-λ,0,λ|6·-λ2+λ2=16×2λ2-2λ+1=3010, ∴9λ2-9λ+2=0, 解得λ=13或λ=23,∴当λ=13或λ=23时,平面A 1PQ 与平面B 1PQ 所成锐二面角的余弦值为3010.【举一反三】如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值.【解析】依题意,以A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)证明:BE →=(0,1,1),DC →=(2,0,0), 故BE →·DC →=0.所以BE ⊥DC . (2)BD →=(-1,2,0),PB →=(1,0,-2).设n =(x ,y ,z )为平面PBD 的法向量. 则⎩⎪⎨⎪⎧n ·BD →=0,n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0,x -2z =0.不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量,于是有cos 〈n ,BE →〉=n ·BE→|n ||BE →|=26×2=33.所以,直线BE 与平面PBD 所成角的正弦值为33. (3)BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0).由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1. 故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ).由BF ⊥AC ,得BF →·AC →=0, 因此2(1-2λ)+2(2-2λ)=0, 解得λ=34,即BF →=⎝ ⎛⎭⎪⎫-12,12,32. 设n 1=(x ,y ,z )为平面FAB 的法向量, 则⎩⎪⎨⎪⎧n 1 ·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0.不妨令z =1,可得n 1=(0,-3,1)为平面FAB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-310×1=-31010.易知,二面角F -AB -P 是锐角,所以其余弦值为31010.【感悟提升】(1)空间向量最适合于解决立体几何中的探索性问题,它无需进行复杂的论证推理,只需通过坐标运算进行判断,但对运算有较高要求,运算结论要准确.(2)解题时,注意把要成立的结论做为已知条件,据此列方程或方程组,把存在性问题转化为“点的坐标是否存在,在限制范围内是否有解”等,因此把空间问题转化为运算问题,使问题的解决变的简单更有效.(3)利用空间向量坐标运算求空间角的一般步骤为:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论. 【变式探究】如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD=1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由; (3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.【解析】(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a 2,1,0,B 1(a,0,1),故AD 1→=(0,1,1),B 1E →=⎝ ⎛⎭⎪⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝ ⎛⎭⎪⎫a 2,1,0.∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ). ∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a2,-a .要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.(3)解 连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1, ∴AD 1⊥平面DCB 1A 1,∴AD 1→是平面A 1B 1E 的一个法向量,此时AD 1→=(0,1,1). 设AD 1→与n 所成的角为θ,则cos θ=n ·AD 1→|n ||AD 1→|=-a2-a2·1+a 24+a2.∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos 30°,即3a 22·1+5a24=32, 解得a =2,即AB 的长为2.【规律方法】空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断;解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.【变式探究】 如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求证:二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BDBC 1的值. 【解析】(1)证明 在正方形AA 1C 1C 中,A 1A ⊥AC . 又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC , ∴AA 1⊥平面ABC .(2)解 在△ABC 中,AC =4,AB =3,BC =5, ∴BC 2=AC 2+AB 2,AB ⊥AC∴以A 为坐标原点,建立如图所示空间直角坐标系A -xyz .A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4),A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4).设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1),平面B 1BC 1的法向量n 2=(x 2,y 2,z 2). ∴⎩⎪⎨⎪⎧A 1C 1→·n 1=0,A 1B →·n 1=0⇒⎩⎪⎨⎪⎧4x 1=0,3y 1-4z 1=0,∴取向量n 1=(0,4,3), 由⎩⎪⎨⎪⎧B 1C 1→·n 2=0,BB 1→·n 2=0⇒⎩⎪⎨⎪⎧4x 2-3y 2=0,4z 2=0.取向量n 2=(3,4,0) ∴cos θ=n 1·n 2|n 1||n 2|=165×5=1625.(3)证明 设D (x ,y ,z )是直线BC 1上一点,且BD →=λBC 1→. ∴(x ,y -3,z )=λ(4,-3,4), 解得x =4λ,y =3-3λ,z =4λ, ∴AD →=(4λ,3-3λ,4λ)又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0则λ=925,因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B 此时BD BC 1=925.题型四 空间距离例4.(2015·江苏,22)如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长. 解 以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33,所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0), 则CQ →=CB →+BQ →=(-λ,-1,2λ), 又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,此时直线CQ 与DP 所成角取得最小值.又因为BP =12+22=5,所以BQ =25BP =255.【变式探究】(2015·山东,17)如图,在三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE, ∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.(1)证明 法一 连接DG ,CD ,设CD ∩GF =O ,连接OH ,在三棱台DEF -ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形.则O 为CD 的中点,又H 为BC 的中点, 所以OH ∥BD ,又OH ⊂平面FGH ,BD ⊄平面FGH , 所以BD ∥平面FGH .法二 在三棱台DEF -ABC 中,由BC =2EF ,H 为BC 的中点, 可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形,可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点,所以GH ∥AB . 又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD ⊂平面ABED , 所以BD ∥平面FGH .(2)解 法一 设AB =2,则CF =1.在三棱台DEF -ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形,因此DG ∥FC ,又FC ⊥平面ABC , 所以DG ⊥平面ABC .在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 中点. 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G -xyz . 所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝⎛⎭⎪⎫22,22,0,F (0,2,1), 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的一个法向量, 则由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2). 因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0). 所以cos 〈GB →,n 〉=GB →·n |GB →|·|n|=222=12.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.法二 作HM ⊥AC 于点M ,作MN ⊥GF 于点N ,连接NH . 由FC ⊥平面ABC ,得HM ⊥FC , 又FC ∩AC =C , 所以HM ⊥平面ACFD . 因此GF ⊥NH ,所以∠MNH 即为所求的角.在△BGC 中,MH ∥BG ,MH =12BG =22,由△GNM ∽△GCF ,可得MN FC =GM GF, 从而MN =66. 由HM ⊥平面ACFD ,MN ⊂平面ACFD , 得HM ⊥MN ,因此tan ∠MNH =HM MN=3, 所以∠MNH =60°,所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.。

高考数学考点45立体几何中的向量方法必刷题理

 高考数学考点45立体几何中的向量方法必刷题理

——————————教育资源共享步入知识海洋————————考点45 立体几何中的向量方法1.如图,在直三棱柱中,平面平面,且.(1)求证:;(2)若直线与平面所成的角为,求锐二面角的大小.【答案】(1)见解析;(2)....................5分又,从而侧面,又侧面,故...........6分(2)2.如图,α∩β=l,二面角α-l-β的大小为θ,A∈α,B∈β,点A在直线l上的射影为A1,点B 在l上的射影为B1.已知AB=2,AA1=1,BB1=.(1)若θ=120°,求直线AB与平面β所成角的正弦值;(2)若θ=90°,求二面角A1-AB-B1的余弦值.【答案】(1);(2)。

【解析】(1)如图,过点A作平面β的垂线交于点G,连接GB、GA1,因为AG⊥β,所以∠ABG是AB与β所成的角.Rt△GA1A中, GA1A=60°,AA1=1,则A1(0,0,0),A(0,0,1),B1(0,1,0),B(,1,0).3.如图,四棱锥的底面为平行四边形,,.(1)求证:;(2)若,,,求平面与平面所成角的余弦值.【答案】(1)见解析;(2)设平面的法向量,由,得,∴∴故所求的二面角的余弦值为4.如图所示,在四棱锥中,底面ABCD为直角梯形,,,,点E为AD的中点,,平面ABCD,且求证:;线段PC上是否存在一点F,使二面角的余弦值是?若存在,请找出点F的位置;若不存在,请说明理由.【答案】(1)见解析;(2)见解析.二面角的余弦值是,,由,解得,,,线段PC上存在一点F,当点F满足时,二面角的余弦值是.5.如图,在四棱锥中,底面是平形四边形,平面,点,分别为,的中点,且,.(1)证明:平面;(2)设直线与平面所成角为,当在内变化时,求二面角的平面角余弦值的取值范围.【答案】(1)见解析(2)∴四边形,6.如图长方体的,底面的周长为4,为的中点. (Ⅰ)判断两直线与的位置关系,不需要说明理由;(Ⅱ)当长方体体积最大时,求二面角的大小;(Ⅲ)若点满足,试求出实数的值,使得平面.由,得,7.如图,在四棱锥中,,平分,平面,,点在上,.(1)求证:平面;(2)若,,求二面角的余弦值. 【答案】(1)见解析.(2).8.如图,在四棱锥中,底面,,点为棱的中点。

2019年高考数学(理)一轮复习精品资料专题40立体几何中的向量方法(教学案)含解析

2019年高考数学(理)一轮复习精品资料专题40立体几何中的向量方法(教学案)含解析

2019年高考数学(理)一轮复习精品资料1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.4.能用向量方法解决直线与直线,直线与平面,平面与平面的夹角的计算问题;5.了解向量方法在研究立体几何问题中的应用.1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为ν1和ν2,则l 1∥l 2(或l 1与l 2重合)⇔ν1∥ν2⇔v 1=λν2.(2)设直线l 的方向向量为ν,与平面α共面的两个不共线向量ν1和ν2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使ν=x ν1+y ν2.(3)设直线l 的方向向量为ν,平面α的法向量为u ,则l ∥α或l ⊂α⇔ν⊥u ⇔u ·ν=0. (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2⇔u 1=λu 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为ν1和ν2,则l 1⊥l 2⇔ν1⊥ν2⇔ν1·ν2=0. (2)设直线l 的方向向量为ν,平面α的法向量为u ,则l ⊥α⇔ν∥u ⇔v =λu . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 4.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=__|cos 〈m 1,m 2〉|=|m 1·m 2||m 1|·|m 2|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|=|m ·n ||m |·|n |.(3)求二面角的大小(ⅰ)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(ⅱ)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).5.点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.高频考点一 利用空间向量证明平行问题【例1】 如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .以A 为坐标原点,建立如右图所示的空间直角坐标系A ­xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).法二 PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1).设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →, 又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 【方法规律】(1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【变式探究】 如图,平面PAC ⊥平面ABC ,△ABC 是以AC 为斜边的等腰直角三角形,E ,F ,O 分别为PA ,PB ,AC 的中点,AC =16,PA =PC =10.设G 是OC 的中点,证明:FG ∥平面BOE ; 证明 如图,连接OP ,∵PA =PC ,O 是AC 的中点,∴PO ⊥AC ,又∵面PAC ⊥面ABC ,∴PO ⊥面ABC ,∵△ABC 是以AC 为斜边的直角三角形,∴BO ⊥AC .所以点O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,则O (0,0,0),A (0,-8,0),B (8,0,0),C (0,8,0),P (0,0,6),E (0,-4,3),F (4,0,3).由题意,得G (0,4,0).因为OB →=(8,0,0),OE →=(0,-4,3),设n =(x ,y ,z )为面BOE 的法向量,则n ·OB →=0,n ·OE →=0,∴⎩⎪⎨⎪⎧x =0,-4y +3z =0,令z =4,得y =3.所以平面BOE 的一个法向量n =(0,3,4). 由FG →=(-4,4,-3),得n ·FG →=0.又直线FG 不在平面BOE 内,所以FG ∥平面BOE . 高频考点二 利用空间向量证明垂直问题【例2】如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .证明 (1)如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系O -xyz . 则O (0,0,0),A (0,-3,0),(2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上,∴AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125,又BA →=(-4,-5,0),∴BM →=BA →+AM →=⎝⎛⎭⎪⎫-4,-165,125,则AP →·BM →=(0,3,4)·⎝⎛⎭⎪⎫-4,-165,125=0,∴AP →⊥BM →,即AP ⊥BM , 又根据(1)的结论知AP ⊥BC ,∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM .【方法规律】(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明线线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可.当然也可证直线的方向向量与平面法向量平行.其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.【变式探究】如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2.证明:A 1C ⊥平面BB 1D 1D .证明 由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立空间直角坐标系,如图.∵AB =AA 1=2,∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0),A 1(0,0,1).由A 1B 1→=AB →,易得B 1(-1,1,1). ∵A 1C →=(-1,0,-1),BD →=(0,-2,0),BB 1→=(-1,0,1), ∴A 1C →·BD →=0,A 1C →·BB 1→=0, ∴A 1C ⊥BD ,A 1C ⊥BB 1,又BD ∩BB 1=B , ∴A 1C ⊥平面BB 1D 1D .高频考点三 利用空间向量解决探索性问题【例3】 在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点. (1)求证:EF ⊥CD ;(2)在平面PAD 内是否存在一点G ,使GF ⊥平面PCB .若存在,求出点G 坐标;若不存在,试说明理由. (1)证明 如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝ ⎛⎭⎪⎫a ,a2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2. EF →=⎝ ⎛⎭⎪⎫-a 2,0,a 2,DC →=(0,a ,0).∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .规律方法 对于“是否存在”型问题的探索方式有两种:(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,然后再加以证明,得出结论;(2)假设所求的点或线存在,并设定参数表达已知条件,根据题目进行求解,若能求出参数的值且符合已知限定的范围,则存在这样的点或线,否则不存在.本题是设出点G 的坐标,借助向量运算,判定关于P 点的方程是否有解.【变式探究】如图所示,四棱锥P -ABCD 的底面是边长为1的正方形,PA ⊥CD ,PA =1,PD =2,E 为PD 上一点,PE =2ED .(1)求证:PA ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,说明理由.(1)证明 ∵PA =AD =1,PD =2, ∴PA 2+AD 2=PD 2,即PA ⊥AD .又PA ⊥CD ,AD ∩CD =D ,∴PA ⊥平面ABCD .(2)解 以A 为原点,AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝⎛⎭⎪⎫0,23,13,AC →=(1,1,0), AE →=⎝ ⎛⎭⎪⎫0,23,13.设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1),使得BF ∥平面AEC ,则BF →·n =0. 又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ),∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点. 高频考点四 求异面直线所成的角【例4】 [2017·江苏高考]如图,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B -A 1D -A 的正弦值.解 在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E . 因为AA 1⊥平面ABCD , 所以AA 1⊥AE ,AA 1⊥AD .如图,以{AE →,AD →,AA →1}为正交基底,建立空间直角坐标系Axyz .因为AB =AD =2,AA 1=3,∠BAD =120°,则A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3).(1)A 1B →=(3,-1,-3),AC 1→=(3,1,3),则cos 〈A 1B →,AC 1→〉=A 1B →·AC 1→|A 1B →||AC 1→|=3,-1,-33,1,37=-17,因此异面直线A 1B 与AC 1所成角的余弦值为17.【举一反三】如图,在四棱锥P ­ABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2.求:(1)△PCD 的面积.(2)异面直线BC 与AE 所成的角的大小. 解 (1)因为PA ⊥底面ABCD ,所以PA ⊥CD . 又AD ⊥CD ,所以CD ⊥平面PAD ,从而CD ⊥PD . 因为PD =22+(22)2=23,CD =2, 所以△PCD 的面积为12×2×23=2 3.(2)法一 如图1,取PB 中点F ,连接EF ,AF ,则EF ∥BC ,从而∠AEF (或其补角)是异面直线BC 与AE 所成的角.在△AEF 中,由于EF =2,AF =2,AE =12PC =2.则△AEF 是等腰直角三角形,所以∠AEF =π4.因此,异面直线BC 与AE 所成的角的大小是π4.法二 如图2,建立空间直角坐标系,则B (2,0,0),C (2,22,0),规律方法 本题可从两个不同角度求异面直线所成的角,一是几何法:作—证—算;二是向量法:把角的求解转化为向量运算,应注意体会两种方法的特点,“转化”是求异面直线所成角的关键,一般地,异面直线AC ,BD的夹角β的余弦值为cos β=|AC →·BD →||AC →||BD →|.【变式探究】 如右图所示正方体ABCD -A ′B ′C ′D ′,已知点H 在A ′B ′C ′D ′的对角线B ′D ′上,∠HDA =60°.求DH 与CC ′所成的角的大小.解 如图所示,以D 为原点,DA 为单位长度建立空间直角坐标系D -xyz ,高频考点五利用空间向量求直线与平面所成的角【例5】[2017·浙江高考]如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE∥平面PAB;(2)求直线CE与平面PBC所成角的正弦值.以O 为原点,OB 所在直线为x 轴,OD 所在直线为y 轴,OM 所在直线为z 轴,建立空间直角坐标系,如图.设CD =1,则有A (0,-1,0),B (1,0,0),C (1,1,0),D (0,1,0).设P (x,0,z )(z >0),由PC =2,OP =1,得⎩⎪⎨⎪⎧x -2+1+z 2=4,x 2+z 2=1,得x =-12,z =32.即点P ⎝ ⎛⎭⎪⎫-12,0,32,而E 为PD 的中点,∴E ⎝ ⎛⎭⎪⎫-14,12,34. 设平面PAB 的法向量为n =(x 1,y 1,z 1),∵A P →=⎝ ⎛⎭⎪⎫-12,1,32,A B →=(1,1,0),∴⎩⎪⎨⎪⎧-12x 1+y 1+32z 1=0,x 1+y 1=0⇒⎩⎨⎧x 1=-y 1,z 1=-3y 1,取y 1=-1,得n =(1,-1,3).而C E →=⎝ ⎛⎭⎪⎫-54,-12,34,则C E →·n =0,而CE ⊄平面PAB ,∴CE ∥平面PAB .【方法规律】利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.【变式探究】在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD ,将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.(1)证明 ∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD , ∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD .(2)解 过点B 在平面BCD 内作BE ⊥BD ,如图.设平面MBC 的法向量为n =(x 0,y 0,z 0),则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量为n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ,则 sin θ=| cos 〈n ,AD →〉|=|n ·AD →||n |·|AD →|=63,即直线AD 与平面MBC 所成角的正弦值为63. 高频考点六 利用空间向量求二面角【例6】[2017·全国卷Ⅰ]如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,求二面角A -PB -C 的余弦值.(2)在平面PAD 内作PF ⊥AD ,垂足为点F .由(1)可知,AB ⊥平面PAD ,故AB ⊥PF ,可得PF ⊥平面ABCD .以F 为坐标原点,FA →的方向为x 轴正方向,|AB →|为单位长度建立如图所示的空间直角坐标系Fxyz . 由(1)及已知可得A ⎝⎛⎭⎪⎫22,0,0, P ⎝ ⎛⎭⎪⎫0,0,22,B ⎝⎛⎭⎪⎫22,1,0,C ⎝ ⎛⎭⎪⎫-22,1,0, 所以PC →=⎝ ⎛⎭⎪⎫-22,1,-22,CB →=(2,0,0),PA →=⎝ ⎛⎭⎪⎫22,0,-22,AB →=(0,1,0).设n =(x 1,y 1,z 1)是平面PCB 的一个法向量,则⎩⎪⎨⎪⎧n ·PC →=0,n ·CB →=0,即⎩⎪⎨⎪⎧-22x 1+y 1-22z 1=0,2x1=0.【举一反三】如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =30°,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E .(1)证明:CF ⊥平面ADF ; (2)求二面角D -AF -E 的余弦值.(1)证明 ∵ED ⊥平面ABCD ,AD ⊂平面ABCD , ∴ED ⊥AD .又∵四边形ABCD 为正方形,因此AD ⊥CD . ∵ED ∩CD =D , ∴AD ⊥平面CDEF . 由于CF ⊂平面CDEF , ∴AD ⊥CF .又AF ⊥CF ,AF ∩AD =A . 故CF ⊥平面ADF .(2)解 如图所示,建立空间直角坐标系,点D 为坐标原点,设DC =1.EF →=(0,34,0).设平面AEF 的法向量为n 1=(x 1,y 1,z 1), 则n 1⊥EF →,n 1⊥FA →,因此⎩⎨⎧y 1=0,-3x 1-3y 1+4z 1=0,取x 1=4,则n 1=(4,0,3)为平面AEF 的一个法向量. 由于CF ⊥平面ADF ,故平面ADF 的一个法向量n 2=(3,-1,0). 由图可见所求二面角θ的余弦值为cos θ=|n 1·n 2||n 1||n 2|=4316+3×(3)2+(-1)2=25719. 规律方法 求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.【变式探究】 如图,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F 分别为AC ,DC 的中点.(1)求证:EF ⊥BC ;(2)求二面角E -BF -C 的正弦值.(1)证明 由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系.易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0).因而E ⎝ ⎛⎭⎪⎫0,12,32,F ⎝ ⎛⎭⎪⎫32,12,0.(2)解 平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量n 2=(x ,y ,z ), 又BF →=⎝⎛⎭⎪⎫32,12,0,BE →=⎝ ⎛⎭⎪⎫0,12,32. 由⎩⎪⎨⎪⎧n 2·BF →=0n 2·BE →=0得其中一个n 2=(1,-3,1).设二面角E -BF -C 大小为θ,且由题意知θ为锐角,则 cos θ=| cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=15,因此 sin θ=25=255,即所求二面角的正弦值为255.高频考点七 利用空间向量求空间距离例7、如图,三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)设AA 1=2,A 1B 1的中点为P ,求点P 到平面BDC 1的距离.以C 为坐标原点,CA →的方向为x 轴的正方向,建立如图所示的空间直角坐标系Cxyz .由题意知B (0,1,0),D (1,0,1),C 1(0,0,2),B 1(0,1,2),P ⎝ ⎛⎭⎪⎫12,12,2,则BD →=(1,-1,1),DC 1→=(-1,0,1),PC 1→=⎝ ⎛⎭⎪⎫-12,-12,0.设m =(x ,y ,z )是平面BDC 1的法向量, 则⎩⎪⎨⎪⎧m ·BD →=0,m ·DC 1→=0,即⎩⎪⎨⎪⎧x -y +z =0,-x +z =0,可取m =(1,2,1).设点P 到平面BDC 1的距离为d ,则d =⎪⎪⎪⎪⎪⎪⎪⎪PC 1→·m |m |=64.【方法技巧】求平面α外一点P 到平面α的距离的步骤 (1)求平面α的法向量n ;(2)在平面α内取一点A ,确定向量PA →的坐标;(3)代入公式d =|n ·PA →||n |求解.【变式探究】 如图,已知四边形ABCD ,EADM 和MDCF 都是边长为a 的正方形,点P是ED 的中点.(1)求点D 到直线BF 的距离; (2)求点P 到平面EFB 的距离.解 由已知得DM ⊥DA ,DM ⊥DC ,DA ⊥DC ,如图,以D 为坐标原点,分别以DA ,DC ,DM 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系.则D (0,0,0),A (a,0,0),B (a ,a,0),C (0,a,0),M (0,0,a ),E (a,0,a ),F (0,a ,a ),则由中点坐标公式可得P ⎝ ⎛⎭⎪⎫a 2,0,a2.(2)设n =(x ,y ,z )是平面EFB 的单位法向量,即|n |=1,n ⊥平面EFB ,所以n ⊥EF →,n ⊥BE →.又EF →=(-a ,a,0),EB →=(0,a ,-a ),则⎩⎪⎨⎪⎧x 2+y 2+z 2=1,-ax +ay =0,ay -az =0.令x =33,则y =z =33. 所以n =⎝⎛⎭⎪⎫33,33,33,又PE →=⎝ ⎛⎭⎪⎫a 2,0,a 2,设所求距离为d 1,则d 1=|PE →·n |=33a .1. (2018年浙江卷)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值. 【答案】(Ⅰ)见解析 (Ⅱ)【解析】(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.由得,所以,故.因此,直线与平面所成的角的正弦值是.方法二:(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:因此由得.由得.所以平面.(Ⅱ)设直线与平面所成的角为.由(Ⅰ)可知设平面的法向量.由即可取.所以.因此,直线与平面所成的角的正弦值是.2. (2018年天津卷)如图,且AD=2BC,,且EG=AD,且CD=2FG,,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:;(II)求二面角的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.3. (2018年北京卷)如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).∴,(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.4. (2018年全国Ⅱ卷理数)如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.【答案】(1)见解析(2)【解析】(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量. 设,则.设平面的法向量为.由得,可取,所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.1.[2017·江苏高考]如图,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B -A 1D -A 的正弦值.解 在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E . 因为AA 1⊥平面ABCD , 所以AA 1⊥AE ,AA 1⊥AD .如图,以{AE →,AD →,AA →1}为正交基底,建立空间直角坐标系Axyz .因为AB =AD =2,AA 1=3,∠BAD =120°,则A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3).(1)A 1B →=(3,-1,-3),AC 1→=(3,1,3),则cos 〈A 1B →,AC 1→〉=A 1B →·AC 1→|A 1B →||AC 1→|=3,-1,-33,1,37=-17,因此异面直线A 1B 与AC 1所成角的余弦值为17.不妨取x =3,则y =3,z =2,所以m =(3,3,2)为平面BA 1D 的一个法向量.从而cos 〈AE →,m 〉=AE →·m|AE →||m |=3,0,,3,3×4=34. 设二面角B -A 1D -A 的大小为θ,则|cos θ|=34.因为θ∈[0,π],所以sin θ=1-cos 2θ=74. 因此二面角B -A 1D -A 的正弦值为74. 2、[2017·天津高考]如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2.(1)求证:MN ∥平面BDE ; (2)求二面角C -EM -N 的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 解 如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2), M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的一个法向量, 则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1,可得n =(1,0,1). 又MN →=(1,2,-1),可得MN →·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE .(2)易知n 1=(1,0,0)为平面CEM 的一个法向量.设n 2=(x 1,y 1,z 1)为平面EMN 的一个法向量,则⎩⎪⎨⎪⎧n 2·EM →=0,n 2·MN →=0.(3)依题意,设AH =h (0≤h ≤4),则H (0,0,h ),进而可得NH →=(-1,-2,h ),BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721,整理得10h 2-21h +8=0,解得h =85或h =12.所以线段AH 的长为85或12.3、[2017·浙江高考]如图,已知四棱锥P -ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD,PC =AD =2DC =2CB ,E 为PD 的中点.(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 解 (1)证明:设AD 的中点为O ,连接OB ,OP . ∵△PAD 是以AD 为斜边的等腰直角三角形,∴OP ⊥AD . ∵BC =12AD =OD ,且BC ∥OD ,∴四边形BCDO 为平行四边形,又∵CD ⊥AD , ∴OB ⊥AD ,∵OP ∩OB =O ,∴AD ⊥平面OPB . 过点O 在平面POB 内作OB 的垂线OM ,交PB 于M ,以O 为原点,OB 所在直线为x 轴,OD 所在直线为y 轴,OM 所在直线为z 轴,建立空间直角坐标系,如图.设CD =1,则有A (0,-1,0),B (1,0,0),C (1,1,0),D (0,1,0).设P (x,0,z )(z >0),由PC =2,OP =1,得⎩⎪⎨⎪⎧x -2+1+z 2=4,x 2+z 2=1,得x =-12,z =32.即点P ⎝ ⎛⎭⎪⎫-12,0,32,而E 为PD 的中点,∴E ⎝ ⎛⎭⎪⎫-14,12,34. 设平面PAB 的法向量为n =(x 1,y 1,z 1),∵A P →=⎝ ⎛⎭⎪⎫-12,1,32,A B →=(1,1,0),∴⎩⎪⎨⎪⎧-12x 1+y 1+32z 1=0,x 1+y 1=0⇒⎩⎨⎧x 1=-y 1,z 1=-3y 1,取y 1=-1,得n =(1,-1,3).而C E →=⎝ ⎛⎭⎪⎫-54,-12,34,则C E →·n =0,而CE ⊄平面PAB ,∴CE ∥平面PAB .4、[2017·全国卷Ⅰ]如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,求二面角A -PB -C 的余弦值. 解 (1)证明:由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD . 因为AB ∥CD ,所以AB ⊥PD . 又AP ∩DP =P ,所以AB ⊥平面PAD .因为AB ⊂平面PAB ,所以平面PAB ⊥平面PAD . (2)在平面PAD 内作PF ⊥AD ,垂足为点F.由(1)可知,AB ⊥平面PAD ,故AB ⊥PF ,可得PF ⊥平面ABCD .以F 为坐标原点,FA →的方向为x 轴正方向,|AB →|为单位长度建立如图所示的空间直角坐标系Fxyz .由(1)及已知可得A ⎝⎛⎭⎪⎫22,0,0, P ⎝ ⎛⎭⎪⎫0,0,22,B ⎝ ⎛⎭⎪⎫22,1,0,C ⎝ ⎛⎭⎪⎫-22,1,0,所以PC →=⎝ ⎛⎭⎪⎫-22,1,-22,CB →=(2,0,0), PA →=⎝⎛⎭⎪⎫22,0,-22,AB →=(0,1,0).设n =(x 1,y 1,z 1)是平面PCB 的一个法向量,则 ⎩⎪⎨⎪⎧ n ·PC →=0,n ·CB →=0,即⎩⎪⎨⎪⎧-22x 1+y 1-22z 1=0,2x 1=0.所以可取n =(0,-1,-2).设m =(x 2,y 2,z 2)是平面PAB 的一个法向量,则 ⎩⎪⎨⎪⎧m ·PA →=0,m ·AB →=0,即⎩⎪⎨⎪⎧22x 2-22z 2=0,y 2=0.所以可取m =(1,0,1),则cos 〈n ,m 〉=n ·m |n ||m |=-23×2=-33.易知二面角A -PB -C 的平面角为钝角, 所以二面角A -PB -C 的余弦值为-33.5.[2017·北京高考]如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,PA =PD =6,AB =4.(1)求证:M 为PB 的中点; (2)求二面角B -PD -A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值. 解 (1)证明:设AC ,BD 交于点E ,连接ME , 因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME , 所以PD ∥ME .因为四边形ABCD 是正方形, 所以E 为BD 的中点, 所以M 为PB 的中点.(2)取AD 的中点O ,连接OP ,OE . 因为PA =PD ,所以OP ⊥AD .又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD , 所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE . 因为四边形ABCD 是正方形,所以OE ⊥AD .如图,建立空间直角坐标系Oxyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2).(3)由题意知M ⎝ ⎛⎭⎪⎫-1,2,22,C (2,4,0),MC →=⎝ ⎛⎭⎪⎫3,2,-22.设直线MC 与平面BDP 所成角为α,则 sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269,所以直线MC 与平面BDP 所成角的正弦值为269.1.【2016高考新课标2理数】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)25. 【解析】(Ⅱ)如图,以H 为坐标原点,HF 的方向为x 轴正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,()3,1,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,x y z =m 是平面ABD '的法向量,则00AB AD ⎧⋅=⎪⎨'⋅=⎪⎩m m ,即11111340330x y x y z -=⎧⎨++=⎩,所以可取()4,3,5=-m .设()222,,x y z =n 是平面ACD '的法向量,则0AC AD ⎧⋅=⎪⎨'⋅=⎪⎩n n ,即222260330x x y z =⎧⎨++=⎩,所以可取()0,3,1=-n .于是cos ,25⋅<>===m n m n m n ,sin ,25<>=m n .因此二面角B D A C '--的正弦值是25.2.【2016高考山东理数】在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(I )已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (II )已知EF =FB =12AC=AB =BC .求二面角F BC A --的余弦值.【答案】(Ⅰ)见解析;7【解析】(II )解法一:连接'OO ,则'OO ⊥平面ABC ,又,AB BC =且AC 是圆O 的直径,所以.BO AC ⊥ 以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,由题意得(0,B,(C -,过点F 作FM OB 垂直于点M ,所以3,FM ==可得F故(23,23,0),(0,BC BF =--=-. 设(,,)m x y z =是平面BCF 的一个法向量.由0,0m BC m BF ⎧⋅=⎪⎨⋅=⎪⎩可得0,30z ⎧--=⎪⎨+=⎪⎩ 可得平面BCF的一个法向量(1,1,3m =- 因为平面ABC 的一个法向量(0,0,1),n =所以7cos ,||||m n m n m n⋅<>==. 所以二面角F BC A --的余弦值为7.从而422FN=,可得7cos7FNM∠=所以二面角F BC A--.3.【2016高考天津理数】(本小题满分13分)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2. (I)求证:EG∥平面ADF;(II)求二面角O-EF-C的正弦值;(III)设H为线段AF上的点,且AH=23HF,求直线BH和平面CEF所成角的正弦值.【答案】【解析】依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF 的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G -------,.(I )证明:依题意,()(2,0,0),1,1,2AD AF ==-.设()1,,n x y z =为平面ADF 的法向量,则110n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩ .不妨设1z =,可得()10,2,1n =,又()0,1,2EG =-,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面.(III )解:由23AH HF =,得25AH AF =.因为()1,1,2AF =-,所以2224,,5555AH AF ⎛⎫==- ⎪⎝⎭,进而有334,,555H ⎛⎫- ⎪⎝⎭,从而284,,555BH ⎛⎫= ⎪⎝⎭,因此222cos ,BH n BH n BH n ⋅<>==-⋅.所以,直线BH 和平面CEF 所成角的正弦值为721. 4.【2016年高考北京理数】(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由. 【答案】(1)见解析;(2(3)存在,14AM AP =(2)取AD 的中点O ,连结PO ,CO , 因为PA PD =,所以AD PO ⊥.又因为⊂PO 平面PAD ,平面⊥PAD 平面ABCD , 所以⊥PO 平面ABCD .因为⊂CO 平面ABCD ,所以⊥PO CO . 因为CD AC =,所以AD CO ⊥.如图建立空间直角坐标系xyz O -,由题意得,)1,0,0(),0,1,0(),0,0,2(),0,1,1(),0,1,0(P D C B A -.设平面PCD 的法向量为),,(z y x n =,则⎪⎩⎪⎨⎧=⋅=⋅,0,0PC n PD n 即⎩⎨⎧=-=--,02,0z x z y 令2=z ,则2,1-==y x . 所以)2,2,1(-=.又)1,1,1(-=,所以33,cos -=<PB n . 所以直线PB 与平面PCD 所成角的正弦值为33.(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得AM λ=. 因此点),,1(),,1,0(λλλλ--=-M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅, 即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM . 5.【2016高考浙江理数】(本题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠,BE =EF =FC =1,BC =2,AC =3.(I)求证:EF ⊥平面ACFD ;(II)求二面角B -AD -F 的平面角的余弦值.【答案】(I )证明见解析;(II )4. 【解析】(Ⅰ)延长AD ,BE ,CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以AC ⊥平面BCK ,因此BF AC ⊥. 又因为//EF BC ,1BE EF FC ===,2BC =,所以BCK △为等边三角形,且F 为CK 的中点,则BF CK ⊥. 所以BF ⊥平面ACFD .方法二:如图,延长AD ,BE ,CF 相交于一点K ,则BCK △为等边三角形. 取BC 的中点O ,则KO BC ⊥,又平面BCFE ⊥平面ABC ,所以,KO ⊥平面ABC . 以点O 为原点,分别以射线OB ,OK 的方向为x ,z 的正方向,建立空间直角坐标系Oxyz .由题意得()1,0,0B ,()1,0,0C -,K ,()1,3,0A --,1(,0,22E ,1F(,0,)22-.因此,()0,3,0AC =,(AK =,()2,3,0AB =.设平面ACK 的法向量为()111,,x y z =m ,平面ABK 的法向量为()222,,x y z =n .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点45 立体几何中的向量方法
1.如图,在直三棱柱中,平面平面,且.
(1)求证:;
(2)若直线与平面所成的角为,求锐二面角的大小.
【答案】(1)见解析;(2).
...................5分
又,从而侧面,又侧面,故...........6分
(2)
2.如图,α∩β=l,二面角α-l-β的大小为θ,A∈α,B∈β,点A在直线l上的射影为A1,点B 在l上的射影为B1.已知AB=2,AA1=1,BB1=.
(1)若θ=120°,求直线AB与平面β所成角的正弦值;
(2)若θ=90°,求二面角A1-AB-B1的余弦值.
【答案】(1);(2)。

【解析】(1)如图,过点A作平面β的垂线交于点G,连接GB、GA1,
因为AG⊥β,
所以∠ABG是AB与β所成的角.
Rt△GA1A中, GA1A=60°,AA1=1,
则A1(0,0,0),A(0,0,1),B1(0,1,0),B(,1,0).
3.如图,四棱锥的底面为平行四边形,,.
(1)求证:;
(2)若,,,求平面与平面所成角的余弦值.
【答案】(1)见解析;(2)
设平面的法向量,
由,得,∴

故所求的二面角的余弦值为
4.如图所示,在四棱锥中,底面ABCD为直角梯形,,,,点E为AD的中点,,平面ABCD,且
求证:;
线段PC上是否存在一点F,使二面角的余弦值是?若存在,请找出点F的位置;若不存在,请说明理由.
【答案】(1)见解析;(2)见解析.
二面角的余弦值是,

由,解得,


线段PC上存在一点F,当点F满足时,二面角的余弦值是.
5.如图,在四棱锥中,底面是平形四边形,平面,点,分别为,的中点,
且,.
(1)证明:平面;
(2)设直线与平面所成角为,当在内变化时,求二面角的平面角余弦值的取值范围.
【答案】(1)见解析(2)
∴四边形

6.如图长方体的,底面的周长为4,为的中点. (Ⅰ)判断两直线与的位置关系,不需要说明理由;
(Ⅱ)当长方体体积最大时,求二面角的大小;
(Ⅲ)若点满足,试求出实数的值,使得平面.
由,得, 7.如图,在四棱锥
中,

平分

平面

,点在
上,
.
(1)求证:平面;
(2)若,,求二面角的余弦值. 【答案】(1)见解析.
(2).
8.如图,在四棱锥中,底面,,点为棱的中点。

(1)证明:;
(2)若为棱上一点,满足,求二面角的余弦值。

【答案】(1)证明见解析.
(2) .
9.如图所示,三棱锥中,平面平面,是边长为的正三角形,是顶角的等腰三角形,点为的上的一动点.
(1)当时,求证:;
(2)当直线与平面所成角为时,求二面角的余弦值.
【答案】(1)证明见解析;(2).
从而,,,于是,
10.如图,在多面体中,已知四边形为平行四边形,平面平面,为的中点,,
,,.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值
【答案】(1)证明见解析.
(2) .
【解析】分析:(1)通过面面垂直的性质定理得出线面垂直;(2)以点为坐标原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系,写出每个点的坐标,分别求出平面DBM,BME的一个法向量,由向量夹角公式,求出二面角的平面角的余弦值即可。

详解:(Ⅰ)在中,∵,,,∴
∴由勾股定理的逆定理,得
∵二面角为锐二面角,故其余弦值为.
11.如图,在梯形中,,四边形为矩形,平面,
点是线段的中点.
(1)求证:平面;
(2)求平面与平面所成的锐二面角的余弦值.
【答案】(1)见解析;(2).
12.如图,四棱锥中,底面为菱形,,,点为的中点.
(1)证明:;
(2)若点为线段的中点,平面平面,求二面角的余弦值.
【答案】(1)证明见解析;(2).
13.如图,在斜三棱柱中,已知,,且.
(Ⅰ)求证:平面平面;
(Ⅱ)若,求二面角的余弦值.【答案】(1)见解析;(2)余弦值为.
14.如图,已知直三棱柱中,.
(1)求的长.
(2)若,求二面角的余弦值.
【答案】(1) .
(2) .
15.已知等腰直角分别为的中点,将沿折到的位置,,取线段的中点为.
(I)求证://平面;
(Ⅱ)求二面角的余弦值【答案】(1)见解析.
(2).
【解析】
(1)证明:
取中点,连接

四边形为平行四边形
16.如图,在四棱锥中,底面,底面为梯形,,,且,
.
(1)求二面角的大小;
(2)在线段上是否存在一点,使得?若存在,求出的长;若不存在,说明理由.
【答案】(1);(2).
【解析】
所以,所以,解得, 所以存在点,且.
17.如图,在四棱锥中,底面为矩形,平面平面,,,为的中点..
(1)求证:平面平面;
(2),在线段上是否存在一点,使得二面角的余弦值为.请说明理由.
18.如图,三棱柱中,已知四边形是菱形,与交于点,且,
,,.
(1)连接,证明:直线平面.
(2)求平面和平面所成的角(锐角)的余弦值.
【答案】(1)见解析(2)
所以平面和平面所成的角(锐角)的余弦值为.
【点睛】
空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.
19.如图,四边形与均为菱形,,且.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
【答案】(1)证明见解析.
(2) .
20.如图,已知多面体的底面是边长为2的菱形,底面,,且.
(1)证明:平面平面;
(2)若直线与平面所成的角为,求二面角的余弦值. 【答案】(1)证明见解析.
(2).
21.如图,四棱锥中,底面为梯形,,.是的中点,底面
,在平面上的正投影为点,延长交于点.
(1)求证:为中点;
(2)若,,在棱上确定一点,使得平面,并求出与面所成角的正弦值. 【答案】(1)见解析(2)
∴以为原
22.如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.
(1)求异面直线BP与AC1所成角的余弦值;
(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)
(2)
23.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A, B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
(Ⅰ)证明:AB1⊥平面A1B1C1;
(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.
【答案】(Ⅰ)见解析;(Ⅱ).
【解析】分析:方法一:(Ⅰ)通过计算,根据勾股定理得,再根据线面垂直的判定定理得结论,(Ⅱ)找出直线AC1与平面ABB1所成的角,再在直角三角形中求解.
(Ⅰ)根据条件建立空间直角坐标系,写出各点的坐标,根据向量之积为0得出, 方法二:
所以是与平面所成的角.
由得,
所以,故.
因此,直线与平面所成的角的正弦值是.
24.如图,在三棱柱ABC−中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.
(1)求证:AC⊥平面BEF;
(2)求二面角B−CD−C1的余弦值;
(3)证明:直线FG与平面BCD相交.
【答案】(1)见解析(2);(3)见解析.
25.如图,在三棱柱中,四边形是矩形, ,平面平面.
(1)证明: ;
(2)若, ,求二面角的余弦值.
【答案】(1)证明见解析;(2).。

相关文档
最新文档