规划问题的教学例题
线性规划经典例题
线性规划经典例题一、问题描述假设有一家生产玩具的工厂,该工厂生产两种类型的玩具:A型和B型。
工厂有两个车间可供使用,分别是车间1和车间2。
每一个车间生产一种类型的玩具,并且每一个车间每天的生产时间有限。
玩具A的生产需要1个小时在车间1和2个小时在车间2,而玩具B的生产需要3个小时在车间1和1个小时在车间2。
每一个车间每天的生产能力分别是8个小时和6个小时。
每一个玩具A的利润为100元,而玩具B的利润为200元。
现在的问题是,如何安排每一个车间每天的生产时间,以使得利润最大化?二、数学建模1. 定义变量:设x1为在车间1生产的玩具A的数量(单位:个);设x2为在车间2生产的玩具A的数量(单位:个);设y1为在车间1生产的玩具B的数量(单位:个);设y2为在车间2生产的玩具B的数量(单位:个)。
2. 建立目标函数:目标函数为最大化利润,即:Maximize Z = 100x1 + 200y13. 建立约束条件:a) 车间1每天的生产时间限制:x1 + 3y1 ≤ 8b) 车间2每天的生产时间限制:2x1 + y1 ≤ 6c) 非负约束条件:x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0三、求解线性规划问题使用线性规划求解器,可以求解出最优的生产方案。
1. 求解结果:根据线性规划求解器的结果,最优解为:x1 = 2, x2 = 0, y1 = 2, y2 = 0即在车间1生产2个玩具A,在车间2生产2个玩具B,可以实现最大利润。
2. 最大利润:根据最优解,可以计算出最大利润:Z = 100x1 + 200y1= 100(2) + 200(2)= 600元因此,在给定的生产时间限制下,最大利润为600元。
四、结果分析根据线性规划求解结果,我们可以得出以下结论:1. 最优生产方案:根据最优解,最优生产方案为在车间1生产2个玩具A,在车间2生产2个玩具B。
2. 最大利润:在给定的生产时间限制下,最大利润为600元。
线性规划问题求解例题和知识点总结
线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在经济管理、交通运输、工农业生产等领域都有着广泛的应用。
下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。
一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。
其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。
二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。
1、图解法适用于只有两个决策变量的线性规划问题。
步骤如下:画出直角坐标系。
画出约束条件所对应的直线。
确定可行域(满足所有约束条件的区域)。
画出目标函数的等值线。
移动等值线,找出最优解。
例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。
线性规划经典例题
线性规划经典例题一、问题描述我们考虑一个典型的线性规划问题,假设有一个工厂需要生产两种产品:产品A和产品B。
工厂有两个生产车间:车间1和车间2。
生产产品A需要在车间1和车间2进行加工,而生产产品B只需要在车间2进行加工。
每一个车间的加工时间和加工费用都是不同的。
我们的目标是找到最佳的生产计划,使得总的加工时间和加工费用最小。
二、问题分析1. 定义变量:- x1:在车间1生产产品A的数量- x2:在车间2生产产品A的数量- y:在车间2生产产品B的数量2. 定义目标函数:目标函数是最小化总的加工时间和加工费用。
假设车间1生产产品A的加工时间为t1,车间2生产产品A的加工时间为t2,车间2生产产品B的加工时间为t3,车间1生产产品A的加工费用为c1,车间2生产产品A的加工费用为c2,车间2生产产品B的加工费用为c3,则目标函数可以表示为:Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y3. 约束条件:- 车间1生产产品A的数量不能超过车间1的生产能力:x1 <= capacity1- 车间2生产产品A的数量不能超过车间2的生产能力:x2 <= capacity2- 车间2生产产品B的数量不能超过车间2的生产能力:y <= capacity2 - 产品A的总需求量必须满足:x1 + x2 >= demandA- 产品B的总需求量必须满足:y >= demandB4. 线性规划模型:综上所述,我们可以建立如下的线性规划模型:最小化 Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y满足约束条件:- x1 <= capacity1- x2 <= capacity2- y <= capacity2- x1 + x2 >= demandA- y >= demandB- x1, x2, y >= 0三、数据和解决方案为了展示如何求解该线性规划问题,我们假设以下数据:- 车间1的生产能力为100个产品A- 车间2的生产能力为150个产品A和100个产品B- 产品A的总需求量为200个- 产品B的总需求量为80个- 车间1生产产品A的加工时间为2小时,加工费用为10元/个- 车间2生产产品A的加工时间为1小时,加工费用为8元/个- 车间2生产产品B的加工时间为3小时,加工费用为15元/个根据以上数据,我们可以得到线性规划模型如下:最小化 Z = 2 * x1 + 1 * x2 + 3 * y + 10 * x1 + 8 * x2 + 15 * y满足约束条件:- x1 <= 100- x2 <= 150- y <= 100- x1 + x2 >= 200- y >= 80- x1, x2, y >= 0接下来,我们可以使用线性规划求解器来求解该问题。
线性规划经典例题
线性规划经典例题【题目描述】某公司生产两种产品A和B,每天的生产时间为8小时。
产品A和B的生产时间分别为2小时和3小时。
产品A和B的利润分别为每一个单位的利润为5元和4元。
公司希翼最大化每天的利润。
已知产品A和B的生产过程中,每一个单位所需的原材料分别为2个和3个。
公司每天可用的原材料数量为12个。
请问公司应该如何安排每天的生产计划,以获得最大利润?【解题思路】这是一个典型的线性规划问题,我们可以通过建立数学模型来求解。
首先,我们定义决策变量:x表示每天生产的产品A的数量,y表示每天生产的产品B的数量。
然后,我们需要确定目标函数和约束条件。
【目标函数】公司的目标是最大化每天的利润,即最大化目标函数Z:Z = 5x + 4y【约束条件】1. 生产时间约束:产品A和B的生产时间不能超过每天的生产时间,即:2x + 3y ≤ 82. 原材料约束:产品A和B的生产过程中所需的原材料数量不能超过每天可用的原材料数量,即:2x + 3y ≤ 123. 非负约束:产品A和B的数量不能为负数,即:x ≥ 0y ≥ 0【求解过程】我们可以使用线性规划的求解方法来求解该问题。
首先,我们需要将目标函数和约束条件转化为标准的线性规划形式。
将目标函数Z = 5x + 4y转化为标准形式:Z = 5x + 4y + 0将约束条件2x + 3y ≤ 8转化为标准形式:2x + 3y + s1 = 8,其中s1 ≥ 0将约束条件2x + 3y ≤ 12转化为标准形式:2x + 3y + s2 = 12,其中s2 ≥ 0将约束条件x ≥ 0转化为标准形式:-x + 0y + s3 = 0,其中s3 ≥ 0将约束条件y ≥ 0转化为标准形式:0x - y + s4 = 0,其中s4 ≥ 0得到线性规划的标准形式为:Max Z = 5x + 4y + 02x + 3y + s1 = 82x + 3y + s2 = 12-x + 0y + s3 = 00x - y + s4 = 0x ≥ 0y ≥ 0s1 ≥ 0s2 ≥ 0s3 ≥ 0s4 ≥ 0【求解结果】通过线性规划求解器,我们可以得到最优解:x = 2,y = 2,Z = 5(2) + 4(2) = 18因此,公司应该每天生产2个产品A和2个产品B,以获得最大利润18元。
线性规划经典例题
线性规划经典例题一、问题描述某公司生产两种产品:产品A和产品B。
每个产品的生产需要消耗不同的资源,且每个产品的利润也不同。
公司希望通过线性规划来确定生产计划,以最大化利润。
产品A需要消耗3个单位的资源1和4个单位的资源2,每个单位的产品A的利润为5。
产品B需要消耗6个单位的资源1和2个单位的资源2,每个单位的产品B的利润为8。
公司拥有的资源1和资源2的总量分别为30和20。
二、数学模型设x为生产产品A的数量,y为生产产品B的数量。
目标是最大化利润,即最大化5x + 8y。
约束条件为:3x + 6y ≤ 30,4x + 2y ≤ 20,x ≥ 0,y ≥ 0。
三、线性规划求解使用线性规划求解器求解上述问题。
输入目标函数和约束条件后,求解器将自动计算出最优解。
给定目标函数为:5x + 8y约束条件为:3x + 6y ≤ 30,4x + 2y ≤ 20,x ≥ 0,y ≥ 0求解结果如下:最大利润为:120生产产品A的数量为:5生产产品B的数量为:3四、解释结果根据求解结果,最大利润为120,生产5个产品A和3个产品B可以实现最大利润。
同时,根据约束条件,生产数量不能为负数,因此生产数量均为非负数。
五、敏感性分析敏感性分析用于确定目标函数系数的变化对最优解的影响程度。
在本例中,我们将分别增加产品A和产品B的利润,观察最优解的变化情况。
1. 增加产品A的利润:假设每个单位的产品A的利润增加1,即每个单位的产品A的利润为6。
重新求解线性规划问题,得到最大利润为130,生产产品A的数量为6,生产产品B的数量为2。
可以看出,增加产品A的利润对最优解有正向影响,最大利润和产品A的数量均增加。
2. 增加产品B的利润:假设每个单位的产品B的利润增加1,即每个单位的产品B的利润为9。
重新求解线性规划问题,得到最大利润为135,生产产品A的数量为4,生产产品B的数量为4。
可以看出,增加产品B的利润对最优解有正向影响,最大利润和产品B的数量均增加。
线性规划经典例题
线性规划经典例题引言概述:线性规划是一种运筹学方法,用于解决线性约束条件下的最优化问题。
它在各个领域都有广泛的应用,包括生产计划、资源分配、运输问题等。
本文将介绍几个经典的线性规划例题,以帮助读者更好地理解和应用线性规划方法。
一、生产计划问题1.1 最大利润问题在生产计划中,一个常见的线性规划问题是最大利润问题。
假设一个公司有多个产品,每个产品的生产和销售都有一定的成本和利润。
我们需要确定每个产品的生产数量,以最大化整体利润。
1.2 生产能力限制另一个常见的问题是生产能力限制。
公司的生产能力可能受到设备、人力资源或原材料等方面的限制。
我们需要在这些限制下,确定每个产品的生产数量,以实现最大化的利润。
1.3 市场需求满足除了考虑利润和生产能力,还需要考虑市场需求。
公司需要根据市场需求确定每个产品的生产数量,以满足市场需求,并在此基础上最大化利润。
二、资源分配问题2.1 资金分配问题在资源分配中,一个常见的线性规划问题是资金分配问题。
假设一个公司有多个项目,每个项目需要一定的资金投入,并有相应的回报。
我们需要确定每个项目的资金分配比例,以最大化整体回报。
2.2 人力资源分配另一个常见的问题是人力资源分配。
公司的人力资源可能有限,而各个项目对人力资源的需求也不同。
我们需要在人力资源有限的情况下,确定每个项目的人力资源分配比例,以实现最大化的效益。
2.3 时间分配除了资金和人力资源,时间也是一种有限资源。
在资源分配中,我们需要合理安排时间,以满足各个项目的需求,并在此基础上实现最大化的效益。
三、运输问题3.1 最小成本运输问题在运输领域,线性规划可以用于解决最小成本运输问题。
假设有多个供应地和多个需求地,每个供应地和需求地之间的运输成本不同。
我们需要确定每个供应地和需求地之间的货物运输量,以实现最小化的总运输成本。
3.2 运输能力限制另一个常见的问题是运输能力限制。
运输公司的运输能力可能受到车辆数量、运输距离或运输时间等方面的限制。
简单的线性规划问题(第1课时)课件2
x+2y 8
x 2 y 8
4 4y x
16 12
x y
4 3
x 0
x
0
y 0
y 0
将上述不等式组表示成平面上的区域,图中的阴影部 分中的整点(坐标为整数)就代表所有可能的日生产安排。
若生产一件甲产品获利2万元,生产一件乙产品获 利3万元,采用那种生产安排利润最大?
0.06 0.06
174xx174
y y
6 6
x 0
x 0
y 0
y 0
目标函数为:z=28x+21y
作出二元一次不等式组所表示的平面区域,即可行域
把目标函数z=28x+21y 变形为 y 4 x z
它表示斜率为 4
3 28
3
随z变化的一组平行直
线系
6/7 y
z 28 是直线在y轴上 5/7 M
为它是关于变量x、y的一次解析式,又称线性目标函数。
在线性约束条件下求线性目标函数的最大值或最小值
问题,统称为线性规划问题。y
满足线性约可束行的域解 4 3
最优解
(x,y)叫做可行解。
由所有可可行行解解组成
的集合叫做可行域。
o
4
8x
使目标函数取得最大值或最小值的可行解叫
做这个问题的最优解。
三、例题
设工厂获得的利润为z,则z=2x+3y
把z=2x+3y变形为
y
y 2 x z
4
3
3
3
它表示斜率为
2 3
的
M
直线系,z与这条直线
的截距有关。
o
4
8x
如图可见,当直线经过可行域上的点M时,截距
最大,即z最大。
单纯形法求解线性规划问题例题
单纯形法求解线性规划问题例题线性规划问题(LinearProgrammingProblem,LPP)是指由一系列约束条件和优化目标函数组成的数学最优化模型,它可以用于解决各种单位时间内最高效率的分配问题。
在求解LPP的过程中,单纯形法(Simplex Method)是最主要的优化算法之一。
单纯形法的原理是采用一组基本变量的拿破仑表示法,一步步构造出线性规划问题的最优解。
下面我们来看一个例子:有公司向农户出售两种农药,甲和乙,每瓶甲农药售价3元,每瓶乙农药售价2元,公司每天有200瓶甲农药和150瓶乙农药,问该公司售出多少瓶甲农药和乙农药,能每天获得最大收益?该问题可表示为下述线性规划模型:最大化 $3x_1+2x_2$约束条件:$x_1+x_2le 200$$2x_1+x_2le 150$$x_1,x_2ge 0$由上述模型可知,有两个未知量$x_1$和$x_2$,它们分别代表出售的甲农药和乙农药的瓶数。
单纯形法的基本思想是采用一组基本变量表示未知量,将未知量$x_1$和$x_2$表示为由两个基本变量$y_1$和$y_2$组成的拉格朗日变换系数矩阵形式,即:$x_1+x_2=y_1+y_2$$2x_1+x_2=m(y_1+y_2)$其中,m是一个系数,根据上面的约束条件,m取200/150=4/3,则:$x_1=y_1+frac{1}{3}y_2$$x_2=y_2-frac{1}{3}y_2$由此可以得到该问题的新的线性规划模型:最大化 $3y_1+2(frac{4}{3})y_2$约束条件:$y_1+y_2le 200$$y_2le 150$$y_1,y_2ge 0$可以看出,该问题所构建出来的新的线性规划模型比原来的模型更加容易求解。
我们将建立单纯形表,以便求出最优解。
首先列出单纯形表:$begin{array}{|c|c|c|c|c|c|c|}hline& y_1 & y_2 & S_1 & S_2 & f & b hline1 & 1 & 1 & 1 & 0 & 3 & 200 hline2 & 0 & 1 & 0 & 1 & 4/3 & 150 hlineend{array}$其中,$y_1$和$y_2$是基本变量,$S_1$和$S_2$是可行解系数,$f$是目标函数系数,$b$是右端项。
线性规划标准形式例题
线性规划标准形式例题线性规划是一种数学优化方法,常用于在有限资源条件下,寻找最优解决方案。
在实际应用中,线性规划可以用于生产调度、资源分配、运输优化等方面。
线性规划问题可以通过标准形式来进行建模和求解,下面我们通过一个例题来详细介绍线性规划标准形式的应用。
假设某工厂生产两种产品A和B,产品A每个单位利润为200元,产品B每个单位利润为300元。
工厂有两个生产车间,生产一个单位产品A需要在车间1花费1小时,在车间2花费2小时;生产一个单位产品B需要在车间1花费3小时,在车间2花费1小时。
每个车间每天的工作时间分别为8小时和7小时。
现在工厂希望在有限的资源下,最大化利润,该问题可以用线性规划来解决。
首先,我们需要确定决策变量。
假设工厂生产产品A的单位数量为x,生产产品B的单位数量为y,则我们的目标是最大化利润,即max Z=200x+300y。
其次,我们需要确定约束条件。
根据工厂的生产能力和资源限制,我们可以列出以下约束条件:1. 车间1的工作时间约束,x+3y≤8。
2. 车间2的工作时间约束,2x+y≤7。
3. 产量非负约束,x≥0,y≥0。
将目标函数和约束条件写成标准形式,得到线性规划的标准形式如下:max Z=200x+300y。
s.t.x+3y≤8。
2x+y≤7。
x≥0,y≥0。
现在,我们需要通过线性规划的方法来求解最优解。
我们可以使用单纯形法、对偶单纯形法、内点法等方法来求解线性规划问题。
这里我们以单纯形法为例来进行求解。
首先,将约束条件转化为等式,引入松弛变量,得到初始表格如下:x y s1 s2 b。
1 3 1 0 8。
2 1 0 1 7。
-200 -300 0 0 0。
通过单纯形法的迭代计算,得到最优解为x=2,y=2,最大利润为800元。
通过以上例题,我们可以看到线性规划标准形式的应用过程。
通过确定决策变量、建立目标函数、列出约束条件,并通过线性规划方法求解,我们可以得到最优的决策方案。
线性规划经典例题
线性规划经典例题一、问题描述某公司生产两种产品A和B,每种产品分别需要使用两种原材料X和Y。
已知每种产品的利润和原材料的用量,求解最大利润的生产方案。
二、数据分析1. 产品A的利润为每单位100元,产品B的利润为每单位150元。
2. 产品A每单位需要用2单位的原材料X和1单位的原材料Y;产品B每单位需要用1单位的原材料X和3单位的原材料Y。
3. 公司每天可用的原材料X和Y的数量分别为10单位和15单位。
三、数学建模设产品A的生产数量为x,产品B的生产数量为y。
目标函数:最大化利润,即最大化目标函数Z = 100x + 150y。
约束条件:1. 原材料X的用量约束:2x + y ≤ 10。
2. 原材料Y的用量约束:x + 3y ≤ 15。
3. 非负约束:x ≥ 0,y ≥ 0。
四、求解过程1. 构建线性规划模型:最大化目标函数 Z = 100x + 150y约束条件:2x + y ≤ 10x + 3y ≤ 15x ≥ 0,y ≥ 02. 使用线性规划求解方法(如单纯形法)求解最优解。
五、最优解分析经过计算,得到最优解为:x = 5,y = 3,Z = 100*5 + 150*3 = 950。
六、结论为了实现最大利润,公司应生产5个单位的产品A和3个单位的产品B,此时可以获得最大利润950元。
七、敏感性分析通过敏感性分析可以了解目标函数和约束条件的变化对最优解的影响程度。
1. 原材料X的用量增加1单位,最优解变化情况:- 目标函数值:增加100元。
- 产品A的生产数量:不变。
- 产品B的生产数量:不变。
2. 原材料Y的用量增加1单位,最优解变化情况:- 目标函数值:增加150元。
- 产品A的生产数量:不变。
- 产品B的生产数量:不变。
3. 公司每天可用的原材料X的数量增加1单位,最优解变化情况:- 目标函数值:不变。
- 产品A的生产数量:不变。
- 产品B的生产数量:不变。
4. 公司每天可用的原材料Y的数量增加1单位,最优解变化情况:- 目标函数值:不变。
线性规划经典例题
线性规划经典例题一、问题描述某公司生产两种产品A和B,每个产品的生产需要消耗不同的资源。
现在公司希望通过线性规划来确定每种产品的生产数量,以最大化利润。
已知产品A每个单位的利润为10元,产品B每个单位的利润为15元。
同时,产品A每个单位需要消耗2个资源X和3个资源Y,产品B每个单位需要消耗4个资源X和1个资源Y。
公司总共有40个资源X和30个资源Y可供使用。
二、数学建模1. 假设产品A的生产数量为x,产品B的生产数量为y。
2. 目标函数:最大化利润。
利润可以表示为10x + 15y。
3. 约束条件:a) 资源X的约束条件:2x + 4y ≤ 40b) 资源Y的约束条件:3x + y ≤ 30c) 非负约束条件:x ≥ 0,y ≥ 0三、求解过程1. 根据数学建模中的目标函数和约束条件,可以得到如下线性规划模型:最大化:10x + 15y约束条件:2x + 4y ≤ 403x + y ≤ 30x ≥ 0,y ≥ 02. 使用线性规划求解方法,可以得到最优解。
通过计算,得到最优解为x = 6,y = 6,利润最大化为180元。
四、结果分析根据最优解,可以得知最大利润为180元,其中产品A的生产数量为6个,产品B的生产数量为6个。
同时,资源X还剩余28个,资源Y还剩余24个。
五、灵敏度分析对于线性规划问题,灵敏度分析可以帮助我们了解目标函数系数和约束条件右端项的变化对最优解的影响。
1. 目标函数系数的变化:a) 如果产品A的利润提高到12元,产品B的利润保持不变,重新求解线性规划模型可以得到新的最优解。
新的最优解为x = 8,y = 4,利润最大化为168元。
b) 如果产品A的利润保持不变,产品B的利润提高到20元,重新求解线性规划模型可以得到新的最优解。
新的最优解为x = 4,y = 7,利润最大化为190元。
2. 约束条件右端项的变化:a) 如果资源X的数量增加到50个,资源Y的数量保持不变,重新求解线性规划模型可以得到新的最优解。
线性规划经典例题
线性规划经典例题一、问题描述假设有一家面包店,每天需要生产两种类型的面包:A型和B型。
生产一块A型面包需要3分钟,而生产一块B型面包需要4分钟。
面包店每天可供给的总生产时间为480分钟。
A型面包的利润为5元,B型面包的利润为4元。
面包店希望最大化每天的利润。
二、数学建模为了解决这个问题,我们可以使用线性规划模型来进行数学建模。
首先,我们需要定义决策变量和目标函数,然后列出约束条件。
1. 决策变量:设x为A型面包的生产数量,y为B型面包的生产数量。
2. 目标函数:面包店的每日利润可以表示为目标函数,即最大化利润。
根据题意,A型面包的利润为5元,B型面包的利润为4元,因此目标函数可以表示为: maximize Z = 5x + 4y3. 约束条件:a) 生产时间约束:每天可供给的总生产时间为480分钟,而生产一块A型面包需要3分钟,生产一块B型面包需要4分钟。
因此,生产时间约束可以表示为:3x + 4y ≤ 480b) 非负约束:由于面包的生产数量不能为负数,所以需要添加非负约束条件:x ≥ 0y ≥ 0三、线性规划求解通过将目标函数和约束条件带入线性规划模型,我们可以求解出最优解。
1. 构建线性规划模型:maximize Z = 5x + 4ysubject to:3x + 4y ≤ 480x ≥ 0y ≥ 02. 求解最优解:使用线性规划求解方法,可以得到最优解。
假设最优解为(x*, y*),则最大利润为Z* = 5x* + 4y*。
四、数值计算为了求解最优解,我们可以使用线性规划求解器或手工计算。
1. 使用线性规划求解器:可以使用诸如MATLAB、Python的SciPy库或在线线性规划求解器等工具来得到最优解。
2. 手工计算:为了方便计算,我们可以使用图形法来解决这个问题。
首先,我们将约束条件3x + 4y ≤ 480绘制成直线,然后确定可行解的区域。
接下来,我们将目标函数5x + 4y = Z绘制成直线,并通过移动直线找到最大利润的点。
线性规划经典例题
线性规划经典例题引言概述:线性规划是一种数学优化方法,用于求解线性约束条件下的最优解。
它在实际问题中有着广泛的应用,如生产计划、资源分配、运输问题等。
本文将介绍几个经典的线性规划例题,并详细阐述每个例题的解题思路和步骤。
一、最大化利润问题1.1 目标函数的建立首先,我们需要确定目标函数。
假设有两种产品A和B,每个单位的利润分别为x和y。
令x表示产品A的产量,y表示产品B的产量,我们的目标是最大化总利润。
1.2 约束条件的建立其次,我们需要确定约束条件。
假设产品A和B的生产所需的资源有限,分别为资源1和资源2。
我们需要考虑资源的限制以及产品的需求量。
1.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。
通过线性规划求解器,我们可以得到最优解,即产量x和y的数值,以及最大化的利润。
二、最小化成本问题2.1 目标函数的建立假设有n种原材料,每种原材料的价格为c1、c2、...、cn。
我们需要确定购买每种原材料的数量,以最小化总成本。
2.2 约束条件的建立每种原材料的数量要满足一定的约束条件,如总量限制、质量要求等。
此外,我们还需要考虑生产过程中的限制条件,如生产能力、工时等。
2.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。
通过线性规划求解器,我们可以得到最优解,即每种原材料的购买数量,以及最小化的成本。
三、资源分配问题3.1 目标函数的建立假设有m个任务需要分配给n个人员,每个人员的效率不同。
我们需要确定每个任务分配给哪个人员,以最大化总效率。
3.2 约束条件的建立每个任务只能由一个人员完成,每个人员只能执行一个任务。
此外,我们还需要考虑人员的可用时间、技能匹配等约束条件。
3.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。
通过线性规划求解器,我们可以得到最优解,即每个任务分配给哪个人员,以及最大化的总效率。
四、运输问题4.1 目标函数的建立假设有m个供应地和n个需求地,每个供应地的供应量和每个需求地的需求量已知。
线性规划经典例题
线性规划经典例题一、问题描述:某公司生产两种产品A和B,每天的生产时间为8小时。
产品A每件需要1小时的加工时间,产品B每件需要2小时的加工时间。
公司每天的总加工时间不能超过8小时。
产品A的利润为100元/件,产品B的利润为200元/件。
公司希望最大化每天的利润。
二、数学建模:设公司每天生产的产品A的件数为x,产品B的件数为y。
则目标函数为最大化利润,即:Maximize Z = 100x + 200y约束条件:1. 生产时间约束:x + 2y ≤ 82. 非负约束:x ≥ 0, y ≥ 0三、线性规划模型:Maximize Z = 100x + 200ySubject to:x + 2y ≤ 8x ≥ 0y ≥ 0四、求解方法:可以使用线性规划求解器进行求解,例如使用单纯形法或内点法等。
以下是使用单纯形法求解的步骤:1. 将目标函数和约束条件转化为标准形式:目标函数:Maximize Z = 100x + 200y约束条件:x + 2y ≤ 8x ≥ 0y ≥ 02. 引入松弛变量将不等式约束转化为等式约束:x + 2y + s1 = 8x ≥ 0y ≥ 0s1 ≥ 03. 构建初始单纯形表:基变量 | x | y | s1 | 常数项-----------------------------Z | 0 | 0 | 0 | 0-----------------------------s1 | 1 | 2 | 1 | 84. 进行单纯形法迭代计算:a. 选择进入变量:选择目标函数系数最大的非基变量,即选择y进入基变量。
b. 选择离开变量:计算各个约束条件的最小比值,选择比值最小的非基变量对应的约束条件的基变量离开基变量。
在本例中,计算得到最小比值为4,对应的约束条件为x ≥ 0,所以x对应的基变量离开基变量。
c. 更新单纯形表:基变量 | x | y | s1 | 常数项-----------------------------Z | 0 | 0 | -2 | -400-----------------------------s1 | 1 | 2 | 1 | 8d. 继续迭代计算,直到目标函数系数均为负数或零,达到最优解。
线性规划经典例题
线性规划经典例题引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
本文将介绍几个经典的线性规划例题,以匡助读者更好地理解和应用线性规划的原理和方法。
一、问题一:生产计划问题1.1 生产目标:某公司希翼最大化其利润。
1.2 生产约束:公司有两种产品A和B,每周生产时间有限,每一个产品的生产时间和利润有限制。
1.3 数学建模:设产品A和B的生产时间分别为x和y,利润分别为p和q,则目标函数为Maximize p*x + q*y,约束条件为x + y ≤ 40,3x + 2y ≤ 120,x ≥ 0,y ≥ 0。
二、问题二:资源分配问题2.1 目标:某公司希翼最大化其销售额。
2.2 约束:公司有三个部门,每一个部门需要的资源不同,且资源有限。
2.3 建模:设三个部门分别为A、B和C,资源分别为x、y和z,销售额为p、q和r,则目标函数为Maximize p*x + q*y + r*z,约束条件为x + y + z ≤ 100,2x + y + 3z ≤ 240,x ≥ 0,y ≥ 0,z ≥ 0。
三、问题三:投资组合问题3.1 目标:某投资者希翼最大化其投资组合的收益。
3.2 约束:投资者有多个可选的投资项目,每一个项目的收益和风险不同,且投资金额有限。
3.3 建模:设投资项目分别为A、B和C,收益分别为p、q和r,风险分别为a、b和c,投资金额为x、y和z,则目标函数为Maximize p*x + q*y + r*z,约束条件为x + y + z ≤ 100,a*x + b*y + c*z ≤ 50,x ≥ 0,y ≥ 0,z ≥ 0。
四、问题四:运输问题4.1 目标:某物流公司希翼最小化运输成本。
4.2 约束:公司有多个供应地和多个销售地,每一个供应地和销售地之间的运输成本和需求量不同,且供应量和销售量有限。
4.3 建模:设供应地和销售地分别为A、B和C,运输成本为p、q和r,需求量为x、y和z,供应量为a、b和c,则目标函数为Minimize p*x + q*y + r*z,约束条件为x + y + z ≤ a + b + c,x ≤ a,y ≤ b,z ≤ c,x ≥ 0,y ≥ 0,z ≥ 0。
简单的线性规划典型例题
简单的线性规划典型例题篇一:典型例题:简单的线性规划问题典型例题【例1】求不等式|x-1|+|y-1|≤2表示的平面区域的面积.【例2】某矿山车队有4辆载重量为10 t的甲型卡车和7辆载重量为6 t的乙型卡车,有9名驾驶员此车队每天至少要运360 t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?参考答案例1:【分析】依据条件画出所表达的区域,再根据区域的特点求其面积.【解】|x-1|+|y-1|≤2可化为或其平面区域如图:或或∴面积S=×4×4=8【点拨】画平面区域时作图要尽量准确,要注意边界.例2:【分析】弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解.【解】设每天派出甲型车x辆、乙型车y辆,车队所花成本费为z元,那么z=252x+160y,作出不等式组所表示的平面区域,即可行域,如图作出直线l0:252x+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小.观察图形,可见当直线252x+160y=t经过点(2,5)时,满足上述要求.此时,z=252x+160y取得最小值,即x=2,y=5时,zmin=252×2+160×5=1304.答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低.【点拨】用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.篇二:不等式线性规划知识点梳理及经典例题及解析线性规划讲义【考纲说明】(1)了解线性规划的意义、了解可行域的意义;(2)掌握简单的二元线性规划问题的解法.(3)巩固图解法求线性目标函数的最大、最小值的方法;(4)会用画网格的方法求解整数线性规划问题.(5)培养学生的数学应用意识和解决问题的能力.【知识梳理】简单的线性规划问题一、知识点1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验. 3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一.1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B0时,Ax0+By0+C0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反,即:1.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的同侧,则有(Ax1+By1+C)( Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)①二元一次不等式Ax+By+C>0(或②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
线性规划经典例题
线性规划经典例题引言概述:线性规划是一种数学优化方法,广泛应用于工程、经济、管理等领域。
本文将介绍一些经典的线性规划例题,通过分析这些例题,可以更好地理解线性规划的原理和应用。
正文内容:1. 线性规划的基本概念1.1 目标函数:线性规划的目标是找到使目标函数取得最大(或最小)值的变量取值。
1.2 约束条件:线性规划问题存在一系列约束条件,这些条件限制了变量的取值范围。
2. 线性规划的经典例题2.1 生产计划问题2.1.1 生产成本最小化:在一定的资源限制下,如何安排生产计划以使得总成本最小。
2.1.2 制造产品组合:如何确定生产不同产品的数量,以最大化利润。
2.2 运输问题2.2.1 最优运输问题:如何确定不同供应地和需求地之间的最佳运输方案,以最小化总运输成本。
2.2.2 配送问题:如何合理安排不同配送中心的货物配送路线,以最小化总运输距离。
2.3 投资组合问题2.3.1 资产组合优化:如何在给定的风险和收益要求下,选择最佳的资产组合,以最大化投资回报。
2.3.2 资金分配问题:如何合理分配有限资金到不同投资项目,以最大化总收益。
2.4 人力资源调配问题2.4.1 人员调度问题:如何合理安排员工的工作时间和任务分配,以最大化工作效率。
2.4.2 人员招聘问题:如何确定最佳的招聘策略,以满足组织的人力资源需求。
2.5 能源优化问题2.5.1 能源供应问题:如何确定不同能源供应商的购买量,以最小化总能源成本。
2.5.2 能源分配问题:如何合理分配能源到不同生产设备,以最大化生产效率。
总结:通过上述经典例题的分析,我们可以看到线性规划在各个领域的广泛应用。
线性规划能够帮助我们在资源有限的情况下做出最优决策,以达到特定的目标。
在实际应用中,我们需要根据具体问题的特点来建立数学模型,并运用线性规划算法求解最优解。
通过不断学习和实践,我们可以更好地应用线性规划方法解决实际问题,提高工作效率和经济效益。
简单的线性规划典型例题
简单的线性规划典型例题「_x +y _2 兰0,例1画出不等式组」x+y—4兰0,表示的平面区域.x -3y 3 _ 0.分析:采用“图解法”确定不等式组每一不等式所表示的平面区域,然后求其公共部分.解:把x=0 , y=0 代入-x y-2中得-00-2:::0二不等式-x * y-2乞0表示直线-X,y-2=0下方的区域(包括边界),即位于原点的一侧,同理可画出其他两部分,不等式组所表示的区域如图所示.说明:“图解法”是判别二元一次不等式所表示的区域行之有效的一种方法.例2画出2x-3:m表示的区域,并求所有的正整数解(x,y).分析:原不等式等价于'而求正整数解则意味着x , y "3. '上>0, y >0,x € z y w z有限制条件,即求;y J .j y〉2x-3,yg解:依照二元一次不等式表示的平面区域,知2x-3:::八3表示的区域如下图:x>0, y >0,对于2x-3曲空3的正整数解,先画出不等式组.X Z ,r Z,所表示y>2x-3,八3.的平面区域,如图所示.容易求得,在其区域内的整数解为(1,1)、(1,2)、(1,3)、(2,2)、(2,3). 说明:这类题可以将平面直角坐标系用网络线画出来,然后在不等式组所表示的平面区域内找出符合题设要求的整数点来.y 环+1 _1例3求不等式组< ''所表示的平面区域的面积.“兰-x+1分析:本题的关键是能够将不等式组所表示的平面区域作出来,判断其形状进而求出其面积.而要将平面区域作出来的关键又是能够对不等式组中的两个不等式进行化简和变形,如何变形?需对绝对值加以讨论.解:不等式y A|x+1| -1 可化为y X x(x 兰-1)或y 二-x~2(x v -1);不等式y _ _x 1 可化为y - -x 1(x 一0)或y 1(x :: 0).在平面直角坐标系内作出四条射线AB: y =x(x _ -1),AC : y - -x-2(x :: -1)DE : y = —x 1(x 亠0),DF : y = x 1(x :: 0)则不等式组所表示的平面区域如图由于AB与AC、DE与DF互相垂直,所以平面区域是一个矩形.根据两条平行线之间的距离公式可得矩形的两条边的长度分别为2和注.2 2所以其面积为3.2‘2x + y -12 喳0,例4 若x、y满足条件』3x-2y+10^0,求z = x+ 2y的最大值和最小值.x -4y +10 兰0.分析:画出可行域,平移直线找最优解.解:作出约束条件所表示的平面区域,即可行域,如图所示. 作直线I:x2y = z,即y = -1x -z,它表示斜率为一丄,纵截距2 2 2为2的平行直线系,当它在可行域内滑动时,由图可知,直线l过点时,Z取得最大值,当I过点B时,z取得最小值.二Z max = 2 28 = 18二Z min _ -2 22 =2说明:解决线性规划问题,首先应明确可行域,再将线性目标函数作平移取得最值.例5用不等式表示以A(1,4) , B(-3,0) , C(-2,-2)为顶点的三角形内部的平面区域.分析:首先要将三点中的任意两点所确定的直线方程写出来,然后结合图形考虑三角形内部区域应怎样表示。
线性规划经典例题
线性规划经典例题一、问题描述某工厂生产A、B两种产品,每天生产的产品数量不同,且每种产品的生产时间和利润也不同。
现在需要确定每种产品的生产数量,以使得总利润最大化。
已知每天可用的生产时间为8小时,A产品的生产时间为2小时/件,利润为200元/件;B产品的生产时间为3小时/件,利润为300元/件。
同时,还有以下限制条件:1. A、B产品的总生产数量不能超过100件;2. A产品的生产数量不能超过60件;3. B产品的生产数量不能超过80件。
二、问题分析这是一个典型的线性规划问题,需要确定A、B产品的生产数量,使得总利润最大化。
根据题目中的限制条件,可以得到以下数学模型:目标函数:max Z = 200A + 300B约束条件:1. A + B ≤ 1002. A ≤ 603. B ≤ 804. A, B ≥ 0三、数学模型目标函数:max Z = 200A + 300B约束条件:1. A + B ≤ 1002. A ≤ 603. B ≤ 804. A, B ≥ 0四、求解过程1. 根据数学模型,列出线性规划的标准形式:目标函数:max Z = 200A + 300B约束条件:A +B ≤ 100A ≤ 60B ≤ 80A, B ≥ 02. 根据标准形式,画出目标函数和约束条件的图形:在二维坐标系中,以A为横轴,B为纵轴,画出以下直线:A +B = 100A = 60B = 80并标明非负约束条件。
3. 确定可行解区域:根据约束条件,可得到可行解区域为一个三角形,顶点分别为(60, 40)、(60, 80)和(0, 80)。
4. 确定目标函数的最优解:由于目标函数是线性的,最优解一定在可行解区域的某个顶点上。
计算每一个顶点的目标函数值:(60, 40):Z = 200 * 60 + 300 * 40 = 28,000(60, 80):Z = 200 * 60 + 300 * 80 = 36,000(0, 80):Z = 200 * 0 + 300 * 80 = 24,000可知,目标函数的最优解为Z = 36,000,对应的生产数量为A = 60,B = 80。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规划问题的教学例题规划问题的教学例题两种产品生产。
生产单位、II某工厂在计划期内要安排例1 I两种原材料的消耗以及资源的限制,B产品所需的设备台时及A1-1所示如表
元,问工厂应可以获利100可以获利50元,每生产一单位II另外,工厂每生产一单位I,才能获利最多?和产品II分别生产多少单位产品I货物托运问题例 2
某公司拟用集装箱托运甲、乙两种货物,这两种货物每件的体积、重量,可获利润以及托1-2运限制如表
件,问两种货物各托运多少件,可获利最大。
且甲种货物最多托运4投资场所的选择例3 置个位中,拟议有10立、南西、北四个区建销售门面的划某公司计在市区东、Ai(i=1,2, (10)
可供选择,考虑到各个地区居民消费水平以及居民的居住密度,规定A1,A2,A3三个点中至少选择两个;在东区A4,A5两个点中至少选择一个;在西区两个点中至少选择一个;在南区A6,A7个。
在北区A8,A9,A10三个点中至少选择2 Ai各个点的设备投资以及每年可获利润由于地点不同都不一样,预测情况如下A9A10A6A4A5 A7A8A3A2A1
180投资70908015080160140120100
61
22
20
48
30
25
58
50
36
40
另外,投资总额不能超过720万元,问应该选择哪几家销售点,可使得年利润为最大?
固定成本问题4 例
规划问题的教学例题
高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳动力和机器设备,制造一个容器的各种资源的数量如表1-3所示
不考虑固定费用,每种容器出售一只的利润分别为4万元,5万元,6万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月。
例5 路灯照度问题
在一条20m宽的道路两侧,分别安装了一只2kw和一只3kw的路灯,它们离地面的高度分别为5m和6m。
在漆黑的夜晚,当两只路灯开启时,两只路灯连线路面上最暗的点和最亮的点在哪里?如果3kw路灯的高度可以在3m到9m之间变化,如何使得路面上最暗和最亮的点的位置?如果两只路灯的高度均可以在3m到9m之间变化,结果将如何?
例6 某部门有三个生产同一产品的工厂(产地),生产的产品运往四个销售点(销地)出售,各个工厂的生产量、各销地的销量(单位:吨)、从各个工厂到各个销售点的单位运价(元/吨)如下表,研究如何调运才能使得总运费最小。
例7 多目标供给问题
已知三个工厂生产的产品供应给四个用户,各工厂生产量、用户需求量及从各个工厂到用户的单位产品的运输费用如表4-2所示。
由于总生产量小于总需求量,上级部门经研究决定,制定了调配方案的8项指标,并规定了重要性的次序。
规划问题的教学例题
第二目标:供应用户1的产品中,工厂3的产品不少于100个单位;
第三目标:每个用户的满足率不低于80%;
第四目标:应尽量满足个用户的要求;
第五目标:新方案的总运费不超过原运输问题的总运费的10%;
第六目标:因道路问题,工厂2到用户4的路线尽量避免运输;
第七目标:用户1和用户3的满足率应尽量保持平衡;
第八目标:力求减少总运费;
请列出相应的目标规划模型,并用Lingo求解。
例8 指派问题1
某商业公司计划开办5家新的商店。
为了尽早建成营业,商业公司决定由5家建筑公司分别承包。
已知建筑公司Ai(i=1,2,…,5)对商店Bj的造价(万元)为cij(i,j=1,2,…,n),见表。
商业公司对5家建筑公司怎样分配任务,才能使得总的建造费用最少?
例9 指派问题2
某学校规定,管理学专业的学生毕业时必须至少学习两门数学课、三门经济学课和两门计算机课。
这些课程的编号、名称、学分、所属类别和先选修课要求如下表。
毕业时,学生最少可以学习这些课程中的那些课程。
规划问题的教学例题
例10航班编排问题
某航空公司经营A,B,C三个城市的航线,这些航线每天班次起飞与到达时间如下表所示。
设飞机在机场停留的损失费大致与停留时间的平方成正比,又每架飞机从降落到下班起飞至少需2小时准备时间,试决定一个使停留费用损失为最小的分派飞行方案。
航班号起飞城市起飞时间到达城市到达时间
101 A 9:00 B 12:00
102 A 10:00 B 13:00
103 A 15:00 B 18:00
104 A 20:00 C 24:00
105 A 22:00 C 2:00(次日)
106 B 4:00 A 7:00
107 B 11:00 A 14:00
108 B 15:00 A 18:00
109 C 7:00 A 11:00
110 C 15:00 A 19:00
111 B 13:00 C 18:00
112 B 18:00 C 23:00
113 C 15:00 B 20:00
114 C 7:00 B 12:00
例11运输问题1
甲、乙两个煤矿分别生产煤炭500万吨和600万吨,供应A、B、C、D四个发电厂的需要,各厂的用煤量分别是300,200,500,100(万吨)。
已知煤矿之间、煤矿与电厂之间以及各个电厂之间的距离如下表所示。
每天可以直接运达,也可以转运抵达,试确定从煤矿到每个电厂的煤炭最优调运方案。
例12 运输问题2
)以及水泥日km(平面坐标,单位:(a,b)个建筑工地要开工,每个工地的位置6某公司有.规划问题的教学例题
用量d(单位:t)由下表给出。
目前有两个临时料场位于P(5,1),Q(2,7)。
水泥日储存量为20t。
试回答如下两个问题:
(1)假设料场到工地之间均有直线道路相连,试制定每天的供应计划,即从两个料场分别向各个工地运送水泥多少吨,使总的吨公里数最少?
(2)为了进一步减少吨公里数,打算舍弃目前的两个临时料场,改建两个新的料场(两个新料场与各工地间都有直线道路连接),日储量还是20t,问应该建在何处,与目前两个料场相比,节省的吨公里数是多少?
(3)假设即将由一条高速公路穿过工地群,且规划的高速公路穿过平面上的两点(0,8)和(6,0)。
为了运输原材料方便,公司希望新建的两个料场位于高速公路旁。
又该建于何处,使得运量(吨.公里数)最小?
例13 铜线加工问题
规划问题的教学例题
已知市场对每种规格的裸铜线的需求分别为3000km和2000km,对两种规格塑包机的需求分别为10000km和8000km。
按照规定,新购及改进设备每年按照5%的折旧提取折旧费,老设备不提;每台机器每年最多工作8000h,为了满足需求,确定使得总费用最小的设备备选用方案和生产计划。
例14 有瓶颈设备的多级生产计划问题
某工厂主要任务是通过组装生产产品A,用于满足外部市场需求。
产品A的构成与组装过程如下图。
即D、E、F、G是从外部采购的零件,先将D、E组装成B,零件F、G组装成C,然后部件B、C 组装成A出售。
图中弧上的数字表示的是组装的部件(产品)中包含的零件(部件)的数量(也可以是消耗系数)。
假设该工厂每次生产计划的计划期为6周(即每次制定未来6周的生产计划),只有最终产品A 有外部需求,目前收到的订单需求件数如下表第2行。
规划问题的教学例题
另B、C的能力消耗系数分别是5和8,即生产一件B需要占5个单位的能力,生产1件C需要占8个单位的能力。
对每种部件或产品,如果工厂在某一周定购或者生产该部件或者产品,工厂需要付出一个与订单或者生产无关的固定成本(称为生产准备费用);如果某一周结束时该零部件或者产品有库存,则工厂必须付出一定的库存费用(与库存数量成比例)。
这些数据见下表。
按照工厂的信誉要求,目前接受的订单到期必须交货,不能有缺货发生;此外,不妨设目前该企业没有任何零部件或产品库存,也不希望第6周后留下任何零部件或者产品。
另外不考虑生产
提前期,即假设当周采购的零件马上可以用于组装,组装出来的部件马上可以用于组装产品A。
试制定生产计划。