2011年第九届小学希望杯6年级培训题
希望杯第4-10届小学六年级全国数学竞赛题及解答
第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.•2×1.•2•4+ 1927=________.4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是________。
9.将一个数A 的小数点向右移动两位,得到数B 。
那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。
则三个面涂漆的小正方体有________块。
13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。
第九届小学“希望杯”全国数学邀请赛六年级第1试 答案
x♦ y=x× y-x÷2, x⊕ y= x+ y÷ 2。
按此规则计算:3.6♦2=____________,
0. 12 ♦(7.5⊕4.8)=____________。
g g
4、在方框里分别填入两个相邻的自然数,使下式成立。 □<
1 1 1 1 ×3<□ 150 101 102 103
ห้องสมุดไป่ตู้
19、一批饲料可供 10 只鸭子和 10 只鸡共吃 6 天,或供 12 只鸭子和 6 只鸡共吃 7 天,则这批饲料可供 _________只鸭子吃 21 天。 20、小明从家出发去奶奶家,骑自行车每小时行 12 千米,他走后 2.5 小时,爸爸发现小明忘带作业,便 骑摩托车以每小时 36 千米的速度去追,结果小明到奶奶家后半小时爸爸就赶到了。小明家距离奶奶 家___________千米。
g
5、 在循环小数 0. 1 2345678 9 中, 将表示循环节的圆点移动到新的位置, 使新的循环小数的小数点后第 2011 位上的数字是 6,则新的循环小数是___________。 6、一条项链上共串有 99 颗珠子,如图 1,其中第 1 颗珠子是白色的,第 2、3 颗珠子是红色的,第 4 颗珠 子是白色的,第 5、6、7、8 颗珠子是红色的,第 9 颗珠子是白色的,„„。则这条项链中共有红色珠 子___________颗。
1
11、图 5 中一共有________个长方形(不包含正方形)。
12、图 6 中,每个圆圈内的汉字代表 1~9 中的一个数字,汉字不同,数字也不同,每个小三角形三个顶 点上的数字之和相等。若 7 个数字之和等于 12,则“杯”所代表的数字是____________。 13、如图 7,沿着圆周放置黑、白棋子各 100 枚,并且各自相邻排列。若将圆周上任意两枚棋子换位一次 称为一次交换,则最少经过____________次对换可使全部的黑棋子彼此不相邻。 14、人口普查员站在王阿姨门前问王阿姨:“您的年龄是 40 岁,您收养的三个孤儿的年龄各是多少岁?” 王阿姨说: “他们年龄的乘积等于我的年龄,他们年龄的和等于我家的门牌号。”普查员看了看门牌, 说:“我还是不能确定他们的年龄。”那么,王阿姨家的门牌号是____________。 15、196 名学生按编号从 1 到 196 顺次排成一列。令奇数号位(1,3,5…)上的同学离队,余下的同学顺 序不变,重新自 1 从小到大编号,再令新编号中奇数位上的同学离队,依次重复上面的做法,最后留 下一位同学。这位同学开始的编号是___________号。 16、 甲、 乙两人同时从 A 地出发到 B 地, 若两人都匀速行进,甲用 4 小时走完全程, 乙用 6 小时走完全程。 则当乙所剩路程是甲所剩路程的 4 倍时,他们已经出发了___________小时。 17、某电子表在 6 时 20 分 25 秒时,显示 6:20:25,那么从 5 时到 6 时这 1 个小时里,此表显示的 5 个 数字都不相同的情况共有__________种。 18、有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞。根据图 8 中的信息计算,若甲、乙、丙三只蚂蚁 共同搬运这堆粮食,那么,蚂蚁乙搬运粮食__________粒。
希望杯第六届六年级到第九届第二试试题
第五届小学“希望杯”全国数学邀请赛六年级 第2试一、填空题(每小题5分,共60分。
)1.小华拿一个矩形木框在阳光下玩,她看到矩形木框在地面上形成的影子不可能是图中的______。
2.气象台预报“本市明天降水概率是80%”。
对此信息,下列说法中正确的是______。
(填序号) ①本市明天将有80%的地区降水。
②本市明天将有80%的时间降水。
③明天肯定下雨。
④明天降水的可能性比较大。
3.将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,再展开正方形纸片,得到下图中的______。
(填序号)4.下图是华联商厦3月份甲、乙、丙三种品牌彩电的销售量的统计图,预测4月份甲、乙、丙三种品牌彩电的销售量将分别增长5%,10%和2O %。
根据预测,甲、丙两种品牌彩电4月份的销售量之和为______台。
5.对于非零自然数a 和b ,规定符号⊗的含义是:ba ba mb a ⨯⨯+⨯=⊗2 (m 是一个确定的整数)。
如果3241⊗=⊗,那么=⊗43______。
6.112005+ 12006+ 12007+ 12008的整数部分是______。
7.在一次动物运动会的60米短跑项目结束后,小鸡发现:小熊、小狗和小兔三人的平均用时为4分钟,而小熊、小狗、小兔和小鸭四人的平均用时为5分钟。
请问,小鸭在这项比赛中用时______分钟。
8. 2007年4月15日(星期日)是第5届小学“希望杯”全国数学邀请赛举行第2试的日子,那么这天以后的第2007+4×15天是星期______。
9.将16个相同的小正方体拼成一个体积为16立方厘米的长方体,表面涂上漆,然后分开,则3个面涂漆的小正方体最多有______个,最少有______个。
10.已知n 个自然数之积是2007,这n 个自然数之和也是2007,那么n 的值最大是______。
11.如图,三角形田地中有两条小路AE 和CF ,交叉处为D ,张大伯常走这两条小路,他知道DF =DC ,且AD =2DE 。
小六希望杯赛数学试题
考点分析:应用题在”新希望杯”的六年级试题中以分数、百分数应用题为主。
六年级新希望杯试题的应用题模块的命题有如下特点:1、考查频率较高:对三、四年级的基本应用题作专门的考查较少,但是会糅合到某些综合大题中,对于六年级的分数应用常做考查,是小升初和杯赛中的常考题型;2、题型难度不大:主要是画图的数形结合分析法和方程法的应用;3、题型与题量较稳定:六年级基本以填空题的形式出现 2 道左右。
1、参加某选拔赛第一轮比赛的男女生人数之比是4:3,所有参加第二轮比赛的91人中男女生人数之比是8:5,第一轮中被淘汰的男女生人数之比是3:4,那么第一轮比赛的学生共多少人?2. 抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的.如果3人合抄只需8天就完成了,那么乙一人单独抄需要多少天才能完成?3、服装厂出售6000件男女服装,男式皮衣件数占男衣的12.5%,女式皮衣的件数占女衣的25%,男女皮衣件数之和占这批服装件数的1/5.男式皮衣有多少件?女式皮衣有多少件?4、某商品按定价出售,每个可以获得45元钱的利润.现在按定价打85折出售8个,所能获得的利润,与按定价每个减价35元出售12个所能获得的利润一样.问这一商品每个定价是多少元?5、甲、乙、丙三村准备合作修筑一条公路,他们原计划按派工,后因丙村不出工,将他承担的任务由甲、乙两村分担,由丙村出工资360元,结果甲村共派出45人,乙村共派出35人,完成了修路任务,问甲、乙两村各应分得丙村所付工资的多少元?考点分析:图形问题对于新希望杯的图形模块的命题有如下特点:1、六年级图形相对较难。
2、比较倾向于三视图求表面积或者求物体个数和格点面积计算。
(注:第九届六年级新希望杯决赛选择第5题出现三视图,但是一个计数问题)3、新希望杯考试范围中提到课本,五年级上册课本观察物体,五年级上册三角形面积计算会出现一些同底等高或等底等高的三角形,六年级上册课本中的圆,所以备考时可以向这几个知识点倾斜。
六年级第九届希望杯部分培训题及答案
六年级第九届希望杯部分培训题及答案(原创)1、有一个整数,用它去除160、110、70得到的三个余数之和是50,则这个整数是。
首先因为这三数除以未知数的余数必定都小于这个未知数,故未知数定大于50/3也就是17以上,其次三者之和减去50(也就是290)必定能整除这个数,所以只有29 58 和145,所以只有2970+110+160-50=290....这个整数的倍数由于三个余数的和为50,从而可知这个整数比50要小,再把290折成两个数的乘积,其中一个一定要小于50290=29*10故这个数为29.2、11+22+33+……+20020+20031除以7,余数是。
11+22+33+...20020+20031)/7=(11+20031)/2*20031/11/7=10021*1821/7=18248241/7=2606891 (4)3、有三个分子相同的最简假分数,化成带分数后为。
已知a,b,c都小10,则(a+b)÷c= 。
a=7,b=3,c=2 2+1=3,5+1=6,7+1=8 所以公共分子d再加1为3,6,8的公倍数设d+1=e 因为abc都小于10 所以e小于10*3=30 e只能取24 则d=23 易得a=7,b=3,c=2由题意可知,8c+7=6b+5 6b+5=3a+2 经过化简,得到:c=(3b-1)……①a=2b+1……②由②和abc都小于10知,b<5再由①,知:只有当b=3时符合题意。
此时,c=2,a=7由题意知,3a+2=6b+5=8c+7(abc是1-10之间的自然数)c=(3b-1)/4,所以3b-1是4-40之间的,且为4的倍数的自然数;a=2b+1,所以b是1,2,3,4中的一个。
(因a<10)分别代入3b-1中,只有b=3时,3b-1=8是4的倍数。
所以,b=3,a=7,c=24、分母是455的所有最简真分数的和等于。
分母是455的所有最简真分数的和等于?【最经典解析】:455=5*7*13455/5+455/7+455/13-455/(7*5)-455/(7*13)-455/(5*13)+455/(5*7*13)=91+65+35-13-5-7+1=167455-167=288而真分数是成对出现的,且每对的和是1,所以分母是455的最简真分数的和是288/2=144【解析2】455=5*7*13能被5整除的分子总和:5*[(1+7*13)*(7*13)/2]=20930能被7整除的分子总和:7*[(1+5*13)*(5*13)/2]=15015能被13整除的分子总和:13*[(1+5*7)*(5*7)/2]=8190同理:能被35整除的分子总和=3185 能被65整除的分子总和=1820 能被91整除的分子总和=1365 能被455整除的分子总和=455所以可约分的分子总和为20930+15015+8190-3185-1820-1365+455=38220所有分子之和:(1+455)*455/2=103740所以最简真分数之和为(103740-38220)/455=1445、将自然数从左到右依次写下来,得到一个数字串123456789101112131415……。
2011第九届小学“希望杯”全国数学邀请赛复赛六年级试题及解答word版
第九届小学“希望杯”全国数学邀请赛试题及解答六年级 第2试2011年4月10日上午9:00-11:00 一、填空题(5'×12=60')1、计算:=-+••114154.0625.3________________. 分析:原式=625.3+••54.0-••63.1=625.2+(••54.1-••63.1)=625.2+••90.0=••09715.2或 原式=8823911108291115115829=-=-+ 2、对于任意两个数x 和y ,定义新运算◆和⊗,规则如下:x ◆y =y x y x 22++,x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯,1⊗2=5115632121==+⨯, 由此计算••63.0◆=⊗)2114(__________. 分析:=⊗)2114(345.465.045.14==+⨯,而11463.0=••,所以原式=25173211132112342114341142=++=⨯++⨯3、用4根火柴,在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…,如图1,拼成的图形中,若最下面一层有15个正方形,则需火柴__________根。
分析:第二个图形比第一个图形多9根火柴,第三个图形比第二个图形多13根火柴,经尝试,第四个图形比第三个图形多17根火柴,而最下面一层有15根火柴的是第8个图形,所以共需要火柴4+(9+13+17+21+25+29+33)=151根。
4、若自然数N 可以表示城3个连续自然数的和,也可以表示成11个连续自然数的和,还可以表示成12个连续自然数的和,则N 的最小值是_________。
(注:最小的自然数是0)分析:因为奇数个连续自然数之和等于中间数乘以数的个数,所以N 能被3和11整除,也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数,所以N 等于一个整数加上0.5再乘以12,也就是被12除余6,最小为66。
2011 第九届小学“希望杯”全国数学邀请赛六年级 第一试 详细解析
第九届小学“希望杯”全国数学邀请赛六年级 第I 试1.计算: 831-5.75+316-7.625 =___________. 解析:分数和小数的简便混合运算。
原式325=316-5.75+1.375-7.625= 2.计算: .513.963.54.32118.2949.642⨯⨯+⨯⨯⨯⨯+⨯⨯=__________. 解析:分数巧算。
原式742271.54.321819.642333.54.321.54.3212229.6429.642=+⨯⨯⨯+⨯⨯⨯=⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯=)()( 3.对于任意两个数x, y 定义新运算,运算规则如下:x ♦ y=x ×y –x ÷2,x y =x+y÷2,按此规则计算,3.6 ♦ 2=_________,∙∙21.0♦ (7.5 4.8) = __________.解析:定义新运算和循环小数与分数的互化。
3.6 ♦ 2=3.6×2-3.6÷2=5.4,∙∙21.0=9912;7.5 4.8=7.5+4.8÷2=9.9,∙∙21.0♦ (7.5 4.8)= 9912♦9.9 9912♦9.9=16523116510-165331332-.212334-.99334===÷⨯ 4.在方框里分别填入两个相邻的自然数,使下式成立。
解析:极限法估算求值1501×50<1501103110211011++++ <1001×50 即1<31501103110211011⨯++++)( <23 所以方框内填1和2.5.在循环小数∙∙923456781.0中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是__________.解析:循环小数。
易想新循环小数的循环节的末位是9,第2011位上的数字是6,则第2012位上的数字是7,第2013位上的数字是8,2014位上的数字是9。
六年级希望杯初赛试题
六年级希望杯初赛试题六年级希望杯初赛试题一、填空题Ⅰ(每题8分,共40分)1、算式(2011-9)÷0.7÷1.1的计算结果是。
2、全世界胡杨90%在中国,中国胡杨90%在新疆,新疆胡杨90%在塔里木,塔里木的胡杨占全世界的%。
3、半径为10、20、30的三个扇形如下放置,S2是S1的倍。
4、50个不同的正整数,它们的总和是2011,那么这些数里奇数至多有个。
5、A、B、C三队比赛篮球,A队以83∶73战胜B队,B队以88∶79战胜C队,C队以84∶76战胜A队,三队中得失分率最高的出线。
一个队的得失分率为(得的总分)/(失的总分),如,A队得失分率为(83+76)/(73+84)。
三队中队出线。
二、填空题Ⅱ(每题10分,共50分)6、一个边长为120cm的等边三角形被分成了面积相等的五等份,那么,AB=cm。
7、某校六年级学生中男生占52%,男生中爱踢球的占80%,女生中不爱踢球的占70%。
那么,在该校六年级全体学生中,爱踢球的学生占%。
8、在每个方框中填入一数字,使得乘法竖式成立。
已知乘积有两种不同的得数,那么这两个得数的差是。
9、大小相同的金、银、铜、铁、锡正方体各一个,拼成如的`十字,一共有种不同的拼法(旋转后可以重合的拼法看成是相同的拼法)。
10、在右的每个格子中填入1~6中的一个,使得每行、每列所填的数字各不相同。
每个粗框左上角的数和“+”、“-”、“×”、“÷”分别表示粗框内所填数字的和、差、积、商(例如“600×”表示它所在的粗框内的四个数字的乘积是600)。
三、填空题Ⅲ(每题12分,共60分)11、用1、3、5、7、9这五个数字组成若干个合数,每个数字恰好用一次。
那么,这些合数的总和最小是。
12、1盒子高为20cm,底面数据如2,这个盒子的容积是cm3。
(π取3.14)13、一件工程按甲、乙、丙各一天的顺序工作,恰需要整天数工作完毕。
小学“希望杯”培训100题(六年级)及解析
小学“希望杯”培训100题(六年级)一、解答题(共100小题)1.计算:=.2.计算:2012×2014×().3..4.计算:(0.+0.3)×0.×0.7×=.5.计算:=.6.计算:=7.兄弟俩都有点傻,一位只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是岁,岁.8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有粒.9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=.(π取3)10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长米,井深米.15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到个梨.16.31500的约数中与6互质的共有个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=.18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要分钟.20.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点km.22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了元.24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是,最大是.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.29.甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是________米/秒.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是.36.在1到2013这2013个数中,共有个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是.38.若整数x满足不等式,则x=.39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是.40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(,).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是 .42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有 天.43.计算:.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).45.如图,在△ABC 中,,E ,G 分别是AD ,ED 的中点,若△EFG 的面积为1,则△ABC 的面积是 .46.如图 (1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是 .47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了 厘米.48.建筑公司计划修一条隧道.当完成任务的时,公司引进新设备,修建速度提高了20%,每天的工作时间缩短为原来的80%,实际185天完成了任务.若按原计划,则 天可完成任务.49.如果一个自然数能表示成两个非零自然数的平方差,则称这个数为”吉祥数”,如:9=52﹣42,9是”吉祥数”.那么从1开始的自然数中,第2013个”吉祥数”是 .50.有3个整数,如果第2个数的5倍是第1个数与1的差的4倍,第3个整数的5倍是第2个数与1的差的4倍,那么第1个数的最小值是.51.春蕊班的每位同学都参加了课外体操班或围棋班,有的同学还同时参加了两个班.如果同时参加两个班的人数是参加围棋班的,是参加体操班人数的.那么这个班只参加体操与只参加围棋班的人数之比是.52.甲乙两个硬盘的成本共1600元,甲按30%的利润定价,乙按40%的利润定价,甲按定价的90%出售,乙按定价的85%出售,供货的利润290元.那么甲的成本是元.53.已知,其中a,b,c,d,e都是整数,则其中最大的数的值是.54.咖啡店新推出一款杯子,定价是88元/个,实际销售时降了价,结果销量比预计的增加了,收入增加了,则每个杯子被降价元.55.若三个连续自然数的平方的和等于245,则这三个连续自然数的和是.56.已知长方体表面积是148cm2,底面面积是30cm2,底面的周长是22cm,则这个长方体的体积是cm3.57.用棱长为2厘米的小正方体,如图所示层层重叠放置.则当重叠了5层时,这个立方体的表面积是平方厘米.58.由长度分别为2,3,4,5,6的五条线段为边,可以组成个不同的三角形.59.若字母a,b,c分别表示不同的非零数字,则由a,b,c组成的各个数位上数字不同的三位数共有个,若除三位数外,其余几个的和为2874,则=.60.如图,边长为2a的正方形ABCD内有一个最大的圆圆O,圆O内有一个最大的正方形EFGH.用S1,S2,S3依次表示△EOF的面积,弓形EmF的面积,带弧边EmF的△EBF的面积,则S1*S2*S3=.(圆周率π取3)61.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.62.已知一列数:1,1,2,3,5,8,13,21,34,55,89,144,233,…,若第n个数比第n+2个数小233,则n=.63.一只蚂蚁沿边长为240cm的等边三角形ABC的三条边由A点顺时针爬行一周.它在三条边上的速度分别是每秒3cm,4cm,5cm(如图).且当它到达拐点(A,B,C)时会休息26秒,当它爬完一周回到点A时,行程结束.这期间,蚂蚁的平均速度是cm/s.64.至多含有一个奇数数字且能被25整除的四位数共有个.65.观察下面的数表:(横排为行,竖排为列)表中第1列都是单位分数,分母依次为1,2,3…,每行自第2个分数起,每个分数的分子等于左边分数的分子加1,分母等于左边分数的分母减1,直到分数的分母等于1.则位于第行,第列.66.从最小的质数算起,若连续n(n是大于1的自然数)个质数的和是完全平方数,则n 最小是.67.现有3个互不相等的数,甲说是2,a+1,b+2;乙说是2b﹣1,3,a.若两人都说对了,则这三个数的乘积是.68.若×=6657,其中x,y,z都代表非零数字,则=.69.两个直角三角板如图放置,则∠BFE的度数是∠CAF的倍.70.一个长方体相邻的两个面的面积之和是130,它的长,宽,高都是不超过13的整数,且均为互不相等的质数,则这个长方体的体积是.71.如图,一个物体由2个圆柱组成,它们的半径分别是3厘米和6厘米,而高分别是5厘米和10厘米,则这个物体的表面积是平方厘米.72.植树节,5名小朋友给5棵树浇水,每个小朋友至少浇一棵树,但一个小朋友不能重复给同一棵树浇水,一桶水也只能浇一棵树.活动结束后,5个小朋友分别浇了2,2,3,5,x桶水,5棵树分别被浇了1,1,2,4,y 桶水,那么x=,y=.73.小明出去散步前看了一下手表,回来时又看了一下手表,发现此时手表的时针,分针的位置正好与出去时的分针,时针位置相同.若他在外逗留的时间不足一小时,则他在外待了分钟.74.如图所示,共有个三角形.75.一个长为4,宽为3的长方形如图竖直放置,在其右上角有一个红点A,长方形绕右下角旋转90°,成为一个横放的长方形,再绕右下角旋转90°,成为一个竖放的长方形,…,当小红点A第一次回到右上角时所走过的路程是.76.书架第一层有依次排列的10本不同的故事书,现将2本不同的漫画书也放入第一层,则不同的放法共有种.77.分母是385的所有最简真分数的和等于.78.有价值总和为174万元的三批货物,这三批货物的质量比是3:4:5,单位质量的价格比是6:5:4.这三批货物各价值万元.79.将分数化成小数后,如果小数点后第一位起连续N个数位上数字之和等于2013,那么N=.80.如图所示是一个边长为120m的等边三角形,甲乙同时分别从A点,B点按顺时针方向出发,甲每分钟走120m,乙每分钟走180m,但经过每个顶点时,因转弯都要耽误5s,则乙出发s后第一次追上甲.81.原来,单独打开进水管3小时能将水池注满,单独打开出水管4小时可排完一池水.后来,这个水池漏水了,同时打开进水管与出水管14小时才能将水池注满,则只打开进水管需要小时可以注满这个漏的水池.82.图书馆,游泳馆,少年宫三个站在一条笔直的公路上,且游泳馆到图书馆,少年宫两站的距离相等.小明和小华分别从图书馆,少年宫两站同时出发相向而行.小明超过游泳馆站100米后与小华相遇.然后二人继续前进.小明到达少年宫站后立即沿原路返回,经过游泳馆站后300米追上小华.则图书馆,少年宫两站相距米.83.马和狗约好去牛哥家做客,牛哥说他忘了去超市买面包,狗说他去,一会儿,马到了牛哥家,听说狗去买东西了,他急了,他说,狗跑5步的时间我能跑6步,我跑4步的距离相当于狗跑7步.而且我比他力气大,买东西的活儿我去,于是马也奔超市去了,此时狗已跑出550米了.超市离牛哥家有2000米,则马要跑米才能追上狗,此时离超市还有米.84.12和60是很有趣的两个数,这两个数的积恰好是这两个数的和的10倍:12×60=720=10×(12+60).满足这两个条件的非零自然数对还有:.85.明明,亮亮,军军三人都参加了数学竞赛,他们共解出了100道题,每人都解出了其中的60道题目,若三个人都解出来的题称为基础题;只有两个人解出来的题称为中等题;只有一个人解出来的题称为难题,则在他们解出的100道题中,难题的数量比基础题的数量(填:多或少)道.86.一块木片沿河漂流,从河边的A地到B地,用了24小时.一只快艇在静水中的速度是18千米/小时,它从A驶到B所用的时间是从B驶到A所用时间的.则AB间的距离是千米.87.如图,AB∥CE,AC∥DE,且CE=DE=2AB=2AC,则=.88.小明和小林是两个集邮爱好者,他们共有邮票400多张,如果小明给小林a张邮票,小明就比小林少;如果小林给小明a张邮票,则小林就比小明少.那么小明原有张邮票,小林原有张邮票.89.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.90.为确保信息安全,信息需加密传输,发送方将明文加密成密文,接收方收到密文后解密可得明文.已知有一种加密方式是将英文26个小写字母a,b,c,…,依次对应0,1,2,…,25这26个整数(见下表),当明文中的字母对应的序号为a时,将a+10除以26后所得的余数作为密文中的字母对应的序号,例如明文”a”对应密文”k”.””91.如图,在正方形场地ABCD的四周有32个洞(每边9个洞),一个工人扛着32面旗子,从A洞开始插旗,按顺时针方向,每隔5个洞就插一面旗,当他绕着正方形走完5圈时,发现有n个洞不能插旗,求n.92.某校有960套桌凳需要维修.现有甲乙两个木工,甲单独修理这批桌凳比乙多用20天;乙每天比甲多修8套;甲乙每天的修理费分别是80元,120元.在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案共选择:①由甲单独修理;②由乙单独修理;③由甲乙共同合作修理.你认为哪种方案即省时又省钱?试比较说明.93.甲乙丙三辆汽车分别从A地开往千里之外的B地.乙比甲晚出发40分钟,出发后160分钟后能追上甲;丙比乙晚出发20分钟,出发后5小时追上乙.那么如果甲比乙先出发10分钟,乙比丙先出发10分钟,那么乙追上甲之后过多久丙能追上甲?94.已知甲乙丙三位同学在北京,广州,上海的大学学习软件设计,服装设计,城市规划.有下列判断:①甲不在北京学习;②乙不在广州学习;③在北京学习的同学不学城市规划;④在广州学习的同学是学软件设计的;⑤乙不学服装设计.三位同学各在什么城市学习什么专业?95.如图,长方形ABCD,ABEF,AGHF的长与宽的比相同,且,长方形BEHG的周长是22,求长方形ECDF的面积.96.在小于30的所有质数中,是否存在差与平方和都是质数的两个质数?若存在,有几组?若不存在,请说明理由.97.甲容器内有物质A和物质B,其质量比是2:3,乙容器内有物质B和物质C,其质量比是1:2,丙容器内有物质A和物质C.现将甲乙丙三容器中的物质以1:2:3的比例取出,混合,则所得新的混合物中,A,B,C三种物质的质量比是183:152:385.求丙容器内物质A和物质C的质量比.98.程序员设计了一款新游戏,共20级.小刚一次晋级2级游戏,或一次晋级3级游戏,那么他从入门(0级)晋级到第20级共有多少种不同的方法?10月份,小强的家里用了23m的居民用水,他开的餐厅,用了102m的餐饮用水,则这个月他应该交多少元水费?100.0.买一盒牙膏,一瓶沐浴露和一瓶洗发露共付款100元.若1瓶沐浴露比2盒牙膏贵,2瓶洗发露比7瓶沐浴露贵,8盒牙膏比1瓶洗发露贵,且每个产品的单价都是整数元,分别求一盒牙膏,一瓶沐浴露,一瓶洗发露的价格.小学“希望杯”培训100题(六年级)参考答案与试题解析一、解答题(共100小题,满分0分)1.计算:=.2.计算:2012×2014×()=2.3.(2010•成都校级自主招生).解:++…+,=×(﹣+﹣+…+﹣),=×(﹣)=×()=×=.4.计算:(0.+0.3)×0.×0.7×=.+0.3)×0.7×,(+×××,×××(×××,=××=×=5.=102.解:,=(1+3+5+..+19)+3×=102+3×(1﹣)=100+=102.6.=.解:设n=++,m=,则:(1+++)×(+++)﹣(1++++)×(++),=(1+n)×m﹣(1+m)×n=m+mn﹣n﹣mn=m﹣n,=()﹣(++)=.7.兄弟俩都有点傻,以为只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是6岁,9岁.解:弟弟:(3+3)÷(2﹣1)=6(岁);哥哥:6+3=9(岁).8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有180粒.解:取了:20÷(6﹣5)=20(次),共有:20×3×(1+2)=180(粒);9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=48cm2.(π取3)S1﹣S2=(S1+S阴)﹣(S2+S阴)=S圆﹣S正=3×(16÷2)2﹣122=192﹣144=48(平方厘米);10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是23×34×52×72×11×13.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有121块糖,丙最多有19块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.)×=3﹣×=3班的人数与总人数的比值是;故答案为:.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是84.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长42米,井深12米.对应的分率的差额是:﹣)()15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到15个梨.16.31500的约数中与6互质的共有8个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=4.S=S18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是153,154,155.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要27分钟.则苏老师与公车速度和为问题;苏老师与公车速度差为,因为这时是相遇问题;那么苏老师速度(+),所以苏老师与公车速度比:,,+),公车速度(﹣),苏老师与公车速度比:=520.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是3.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点136.96km.t=﹣,22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有12个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了120元.=,丙占总数的;;﹣﹣)÷,24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是24,最大是72.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现51个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以102次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=81.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有6组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是45:61.29.(2011•成都)甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是乙丙丁甲.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是米/秒.,那么上坡的时间就是,下坡的时间就是;用总路程+)÷,(米故答案为:.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是48.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是123.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的75%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有102座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是600.36.在1到2013这2013个数中,共有51个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是18.38.若整数x满足不等式,则x=3.因为不等式,<3,2,39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是1:3.厘米的圆面积的厘米的圆面积的,圆中,据此40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(4,60).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是18.42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有132天.43.计算:.2+))﹣,)2+)2+),.,2012+.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).的分子、分母同时扩大倍,变成的分子、分母同时扩大倍,变成===﹣=﹣﹣,==++++,==﹣﹣=+,45.如图,在△ABC中,,E,G分别是AD,ED的中点,若△EFG的面积为1,则△ABC的面积是18.中,,且,据此利用分数除法的意义即可解答问题.中,的面积的,÷=1846.如图(1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S1,S2,S3,则S1,S2,S3的大小关系是相等.47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了厘米.。
2020年第九届小学数学“梦想杯”全国数学邀请赛试卷(六年级第2试)
【解答】解:45m=4m+5;
第 5页(共 12页)
54n=5n+4; 那么: 4m+5=5n+4 即:4(m﹣1)=5(n﹣1), 如果 m﹣1=5,n﹣1=4,则 m=6,n=5,但此时 n 进制中不能出现数字 5; 如果 m﹣1=10,n﹣1=8,则 m=11,n=9,符合题意. 即 m 最小是 11,n 最小是 9. 故答案为:11,9. 6.(5 分)我国除了用公历纪年外,还采用干支纪年,根据图 2 中的信息回答:公历 1949 年按干支纪年法是 己丑 年.
第 3页(共 12页)
2011 年第九届小学“希望杯”全国数学邀请赛试卷(六
年级第 2 试)
参考答案与试题解析
一、填空题(5'×12=60')
1.(5 分)计算:3.625+
﹣=
.
【解答】解:3.625+
﹣,
=+﹣,
=+﹣,
= ﹣( ﹣ ),
=﹣,
=.
2.(5 分)对于任意两个数 x 和 y,定义新运算◆和⊗,规则如下:
头号新闻网:## 头号新闻网为您及时提供科技、互联网、房产、家居、美食等相关领域的新闻资讯,方便大家的生活。
金马医药招商网:## 金马医药招商网是专业提供医药代理招商的资讯信息发布平台,医药代理招商网即医药视频招商网或 医药火爆招商网这里提供专业的医药代理招商服务。
16.(15 分)将两个不同的自然数中较大的数换成他们的差,称为一次操作,如此继续下去, 直到这两个数相同为止.如对 20 和 26 进行这样的操作,过程如下: (20,26)→(20,6)→(14,6)→(8,6)→(2,6)→(2,4)→(2,2) (1)对 45 和 80 进行上述操作. (2)若对两个四位数进行上述操作,最后得到的相同数是 17.求这两个四位数的和的最 大值.
2011第九届小学“希望杯”全国数学邀请赛第二式模拟
2011第九届小学“希望杯”全国数学邀请赛模拟题四年级 第2试一、 填空题(每小题5分,共60分)1、计算:()()=+++÷⨯⨯⨯1132111321 。
2、有一个两位数,它除以3,得余数2,它乘以3,乘积的个位数字是4,百位数字是2,这个两位数是 。
3、规定1234111111111141,24622222232,3633323=+++=⊗=++=⊗=+=⊗ 如果一位数a,b 满足49380=⊗b a ,求b a 和分别是 。
4、 图1是由25个面积等于1的小正方形组成的大正方形,图中面积是6的长方形有个。
5、 图2中的五个问号分别表示五个连续的自然数,它们的和等于130,三角形内两个数的和等于53,圆内三个数的和等于79,正方形内两个数的和等于50。
那么,从左向右,这五个问号依次是 。
6、 如图3,正六边形(各边相等,各内角相等)ABCDEF 的面积是24,M ,N 分别是AF ,CD 的中点,若M P ∥AB ,MO ∥EF ,PN ∥BC ,ON ∥ED ,那么,菱形(四条边相等)MPNO 的面积是 。
?????O P NMFEDCBA图1 图2 图3B'A'CBA30︒图47、 如图4,将△BAC 绕点C 按顺时针方向旋转30°,得到△B ’A ’C ,若A C ⊥A’B’,则∠BAC 的度8、 在半径为7厘米的圆形场地边缘等距离地插6面彩旗, 则相邻的两面彩旗的距离等于 米。
9、 图5是某月的日历,已知图中两个月的几号,则?代表的日期是该和为和?所表示的日期数之52∇ 。
ψψψψψψψψ∆ψ∆ψψψψψψTψψψψψψψψψ?图510、在下列算式的∆中填入5个互不相等的自然数:111111=∆+∆+∆+∆+∆, (写出一个就好)11、小明从家出发,先向东偏北30°的方向跑了350米到达点A ,接着向北偏西30°的方向跑了200米到达点B ,然后又向西偏南30°的方向跑了350米到达点C ,这时小明距家 米。
2011年希望杯培训题六年级
2011年小学希望杯数学邀请赛6年级培训题1、计算:4.8×17.4×6.25—37.5×0.174×5.∙3=_________。
2、计算: 0.∙6+0.∙1∙8+0.4∙3∙9=_________。
3、计算:120092008200920072008-⨯⨯++120102009201020082009-⨯⨯++120112010201120092010-⨯⨯++120122011201220102011-⨯⨯+=_________。
4、计算:212122⨯++323222⨯++…+10110010110022⨯+=_________。
5、在 10个连续自然数中,最多有_________个质数。
6、一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字的和,如 123,235等等,这类三位数共有________个。
7、已知一串分数:31,32,61,62,63,64,65,91,92,93,94,95,96,97,98,121,122,…1211,151,152,…其中第 2011个分数是_________。
8、已知 A={1,3,5,7},B={1,4,7},C={2,5,7,8}。
规定: A ∩B={1,3,5,7}∩{1,4,7}={1,7}; A ∪B={1,3,5,7}∪{1,4,7}={1,3,4,5,7}。
根据此规定,可求得( A ∪C )∩B={_________}.9、某月的日历如图 1所示。
若用 2×3(2行3列)的长方形框出 6个数,使它们的和是 81.那么这 6个数中最小的是_________。
10、某些数除以 11余 1,除以 13余 3,除以 15余 13,那么这些数中最小的数是_________.11、已知:43201312111=+++x ,则x=_________。
12、在自然数 1—2011中,最多可以取出________个数,使得这些数中任意四个数的和都不能被 11整除。
第九届全国小学六年级希望杯试题解答
奥数网首页|论坛|.旗下网站专业媒体育儿网幼教网奥数网中考网高考网留学网作文网英语网社区应用e度教育网e度论坛e度空间e度访谈字典词典成语订阅辅导报班学而思培优智康1对1 学而思网校摩比思维馆搜索|登录|注册e度通行证搜索|退出|消息(0)站内信(0)互动请求(0)关注粉丝(0)系统通知(0)|你好,我的首页我的日志个人主页我的相册个人设置我的关注我的投稿我的应用首页小升初重点中学杯赛竞赛学区房小升初真题奥数题库教学资源趣味乐园一年级二年级三年级四年级五年级六年级小升初论坛. 奥数石家庄站> 杯赛> 希望杯> 历年真题> 正文第九届希望杯数学邀请赛六年级一试真题讲解(1)来源:石家庄奥数网整理2011-11-21 14:07:02[标签:希望杯学习资料]奥数精华资讯免费订阅原题1:小明从家出发去奶奶家,骑自行车每小时行12千米,他走后2.5小时,爸爸发现小明忘带作业,便骑摩托车以每小时36千米的速度去追。
结果小明到奶奶家后半小时爸爸就赶到了。
小明家离奶奶家多少千米。
解析:作为一道压轴的题,这道题的难度显然是不大的。
它与培训题的第89题相对应,都是行程问题中的“不同时出发、不同时到达”类题型。
具体到该题,很明显我们可以看出,走这段路,小明比爸爸多用了(2.5-0.5=2)小时。
又知道两人的速度比是36:12=3:1,所以很容易算出爸爸在路上所用时间是1时间,所以,到奶奶家的距离是36千米。
这道题70%以上的同学都做对了。
原题2:一批饲料可供10只鸭子和15只鸡共吃6天,或供12只鸭子和6只鸡共吃7天,则这批饲料可供多少只鸭子吃21天。
解析:这道题可用代入法来解。
(10鸭子+15鸡)*6=(12鸭+6鸡)*7得:1鸭=2鸡则这批饲料有:(12鸭+6鸡)*7=(12鸭+3鸭)*7=105鸭,105鸭/21=5(鸭)答:可供5只鸭吃21天。
原题3:有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞;蚂蚁甲说:我单独搬运要10小时,他们两个共同搬运要8小时;蚂蚁乙说:你们两个共同搬运要6小时;蚂蚁丙说:我们三个共同搬运,甲会比我多搬运24粒。
定义新运算
1、对于非零自然数 a 和 b ,规定符号 ⊗的含义是: ba b a m b a ⨯⨯+⨯=⊗2(m 是一个确定的整数),如果3241⊗=⊗, 那么43⊗= 。
【题说】2007 年第五届小学“希望杯”全国数学邀请赛六年级第2试第5题 【答案】1211 【解析】由条件4124141⨯⨯+⨯=⊗m ,3223232⨯⨯+⨯=⊗m ,得322324124⨯⨯+=⨯⨯+m m ,得6=m 。
则121143243643=⨯⨯+⨯=⊗。
2、规定:如果B A > ,则B A B A -=-;如果 B A =,则0=-B A ;如果B A <,则A B B A -=-。
根据上述规律计算:2.32.36.53.23.12.4-+-+-= 。
【题说】2009年第七届小学“希望杯”全国数学邀请赛六年级第1试第2题【答案】6.2【解析】原式2.63.26.53.12.4)2.32.3()3.26.5()3.12.4(=-+-=-+-+-=3、若用“*”表示一种运算,且满足如下关系:(1)11*1=;(2))1*(31*)1(n n ⨯=+。
则=-1*21*5 。
【题说】2010年第八届小学“希望杯”全国数学邀请赛六年级第1试第3题【答案】78【解析】11*1=,3)1*1(31*2=⨯=,9)1*2(31*3=⨯=,27)1*3(31*4=⨯=, 81)1*4(31*5=⨯=。
则783811*21*5=-=-。
4、对于任意两个数 x , y 定义新运算,运算规则如下:x ◆ y 2÷-⨯=x y x , x ⊕ y 2÷+=y x按此规则计算:3.6◆2= ,21.0 ◆(7.5⊕4.8)= 。
【题说】2011年第九届小学“希望杯”全国数学邀请赛六年级第1试第3题【答案】5.4;165188 【解析】3.6◆24.58.12.726.326.3=-=÷-⨯=;7.5⊕4.89.928.45.7=÷+=,21.0 ◆(7.5⊕4.8)=21.0 ◆9.91651883325623349.9334=-=÷-⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
克.
35.小宇过生日时,妈妈送给小宇一盒圆珠笔,他把好朋友小刚和小强找来,他把这盒圆珠笔的一
半给了小刚,然后又给小刚加了 1 支.接着,他又把剩下的一半分给了小强,也同样给小强又
加了 1 支,最后剩下 5 支圆珠笔,他自己留下了.这盒圆珠笔共有
支.
36.毛毛和丫丫要到同一地方去旅游,乘船可直接到达该地,也可骑马沿河岸前进,但其中还有13
正视图
左视图
图2
48.如图 3,已知正方形 ABCD 和正方形 CEFG 的边长分别是 8 厘米和 6 厘米,那么阴影部分的面
积是
平方厘米.
A
D
G
F
H
B
C
E
图3
49.如图 4 所示的两个同心圆的半径分别为 R 和 r,R 和 r 都是自然数,若圆环(阴影部分)的面
积是 493π,则 R—r=
.
R r
N=1124+ 1422+ ⋅4⋅ ⋅4+312 (1≤ m ≤2011)是一个完全平方数,则这样的 N 有
个.
m个12
14.有 4 个不同的自然数 a,b, c, d 而且 0﹤ a ﹤ b ﹤ c ﹤ d .如果 b − a =5, d − c =7, a,b, c, d 的平
均数是 17,那么 d 最大是
+2021001+0×22000191×—20111
+2021011+1×22001102×—20112
=
.
4.计算: 12 + 22 + 22 + 32 +…+ 1002 + 1012 =
.
1× 2 2× 3
100 ×101
5.在 10 个连续自然数中,做多有
个质数.
6.一类自然数,从第三个数字开始,,
是
.
28.已知一个五位数1a75b 能被 72 整除,则这个五位数是
.
29.将一个数的所有的约数两两求和,在所有的和中,若最小的是 4,最大的是 180,则这个数是
.
30.有 100 种食品,其中含钙的有 86 种,含铁的有 43 种,含锌的有 15 种,那么,其中既含钙又含铁的食
品最少有
种,同时含钙、铁、锌的食品最多有
的路途必须下马步行,若骑马的速度是船速的 3 倍,步行的速度是船速的25 ,若毛毛、丫丫骑
马同时出发,那么,先到达旅游地点的是
.
37.某建筑公司 2010 年元月 1 日签订某公路修筑工程合同,限定 2010 年 12 月 31 日完工,结果
92 名工人上半年(即元月 2 日到 6 月 30 日)只完成了工程的25 .如果照此速度要在限期内全
就同意了.可最后发现狐狸分得的饼最多,狐狸共分得到
千克饼.
45.上午 8 时,甲、乙两人同时出发,都从 A 地到 B 地,若两人匀速行进,甲用 3 小时走完全程,
乙用 4 小时走完全程,当乙所剩路程是甲所剩路程的 2 倍时,是
时
分.
46.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好
这类三位数共有
个.
7.已知一串分数:13 ,23 ,16 ,26 ,36 ,46 ,56 ,19 ,29 ,39 ,49 ,59 ,69 ,79 ,89 ,112 ,122 ,…,
11 12
,115
,125
,…,其中第 2011 个分数是
.
8.已知 A={1,3,5,7},B={1,4,7},C={2,5,7,8}.规定:A∩B={1,3,5,7}∩{1,4,7}={1,7};
部完工,下半年(从 7 月 1 日到 12 月 31 日)应增加
名工人.
38.某商场销售 MP4,去年按定价的 90℅出售,能获得 20℅的利润,今年由于进价降低,按去年定
价的 80℅出售,能获得 25℅的利润.今年进价是去年进价的
℅.
39.师徒俩人加工同样多的零件,当师傅完成12 时,徒弟完成 120 个.当师傅完成任务时,徒弟完
岁时,小丽
岁.
57.如图 9 所示,某桌球桌面为长方形 ABCD,小球从 A 沿 45°角击出,恰好经过 5 次碰撞到达 B
处.则 AB:BC=
.
A
D
B
C
图9 58.沪宁高铁通车后,一列动车早晨 8 时从南京开往上海,途中停靠 5 个车站,每站各停车车 2 分
钟.8 时 25 分一列高速列车也从南京开往上海,途中不停车,高速列车的速度比动车快15 ,
页.
33.某校有 201 人参加数学竞赛,按百分制计分且得分均为整数,若总分为 9999 分,则至少有 人 的分数相同.
34.甲、乙、丙三杯盐水的浓度分别为 38℅,87.5℅和34 .已知三杯盐水共 200 克,其中甲与乙丙两
杯盐水的质量和相等,三杯盐水混合后,盐水的浓度变为 60℅,那么,丙杯中有盐水
份书稿要 24 小时.这份书稿共有
个字.
42.三块重量相等的锡与铁的比是 1:5,第二块合金中锡与铁的比是 2:7,第三块合金中锡与铁的比
是 3:4,如果把三块合金溶合成一块,那么新溶合成的合金中锡与铁的比是
.
43.从 1、2、3、4 这四个数字中取一个,或两个,或三个,或四个组成的自然数共有_个,将它
52.图 7 中共有
30cm2
40cm2
20cm2
10cm2
图6 个长方体.
图7
53.图 8 是一个 400 米和跑道,两头是两个半圆,每一个半圆的弧长是 100 米,中间是一个长方形,
长为 100 米,那么 400 米跑道所围成的面积是
平方米.
图8 54.一个大正方体,表面全涂上红色后,被分割成若干个体积都等于 1 的小正方体,如果在这些小
图1
10.某些数除以 11 余 1,除以 13 余 3,除以 15 余 13,那么这些数中最小的数是
.
11.已知:
1 1
=
30 43
,则 x =
.
1+
1
2+ 1
3+ x
12.在自然数 1—2011 中,最多可以取出 11 整除.
个数,使得这些数中任意四个数的和都不能被
13.在自然数中,1 2 =1,2 2 =4,3 2 =9,…,数 1,4,9,…称为完全平方数.若自然数
正方体中,六个面都没有涂红色的小正方体的个数占全部小正方体个数的287 ,那么大正方体的
边长是
.
55.一个底面半径是 10 厘米,高 30 厘米的圆柱形容器中,水深 8 厘米,要在容器中放入长和宽都
是 8 厘米,高是 15 厘米的长方体状的铁块,铁块竖放在水中,那么水面上升
厘米(π
取 3.14).
56.小丽的妈妈今年 35 岁,她的年龄是小丽年龄的 5 倍,当妈妈的年龄是小丽年龄的 3 倍还多 2
2011 年小学希望杯数学邀请赛 6 年级培训题
⋅
1.计算:4.8×17.4×6.25—37.5×0.174×5. 3 =
.
⋅
⋅⋅
⋅⋅
2.计算:0. 6 +0.18 +0.4 39 =
.
3.计算:
2008+2007×2009 2008×2009—1
+2020090+9×22000180×—20110
种.
31.今年,张老师与他的三个学生的年龄和为 76 岁,且三个学生的年龄比为 5:5:6,六年后张老
师的年龄和三个学生的年龄之和相等,今年三个学生中年龄最大的是
岁.
32.小庆看一本故事书,第一天了全书的16 多 2 页,第二天看了全书的19 少 5 页,第三天看完剩下
的 133 页.这本故事书共有
A∪B={1,3,5,7}∪{1,4,7}={1,3,4,5,7}.根据此规定,可求得(A∪C)∩B={
}.
9.某月的日历如图 1 所示.若用 2×3(2 行 3 列)的长方形框出 6 个数,使它们的和是 81.那么
这 6 个数中最小的是
.
123456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
看完动画片后,时针和分针刚好又一次反向成一条直线,则此刻是
时
分.
61.有两种酒精溶液,甲溶液的浓度是 75﹪,乙溶液的浓度是 15﹪,现在要将这两种溶液混合成浓
度是 50﹪的酒精溶液 18 升,应取甲溶液
升,乙溶液
升.
62.已知 2011 年 3 月中,星期二的天数比星期一的天数多,那么植树节是星期
.
63.一项工程先由甲单独做 18 天,再由乙接着单独做 8 天可以完成;若甲乙二人合作,12 天可以
完成,现甲先单独做 6 天,然后由乙接着做完余下的工程,则乙需要做
天.
64.有 6 级台阶,小明从下向上走,若每次只能跨过一级或两级,他有
.
15.在数学竞赛中取得前四名的方方、园园、宝宝、贝贝年龄依次是相差 1 岁,而且他们年龄的乘
积是 1180,则他们的年龄分别是
、
、
、
.
16.一个多位数是 149162536496481…,从左向右数的第 100 个数字是
.
17.有 100 个连续自然数,请你按某种顺序排列,然后计算相邻三个数的和,其中和为偶数的最多
成45 .则师傅加工零件
个.
40.某停车场中共有三轮摩托车,四轮小轿车和六轮大卡车 30 辆,各种轮子共 116 个.已知四轮
小轿四比六轮大卡车的 5 倍多 2 辆,那么这个停车场中共有
辆小轿车.
41.小王和小张在假期进行勤式俭学,他们在印刷公司任打字员.有一次,他们共同输入一份书稿,
完成任务时,小王输入了全部书稿的58 ,小张每小时输入 6000 个字.如果单独让小王输入这