Abstract A Fast Algorithm for ICP-Based 3D Shape

合集下载

点集配准技术(ICP、RPM、KC、CPD)

点集配准技术(ICP、RPM、KC、CPD)

点集配准技术(ICP、RPM、KC、CPD) 在计算机视觉和模式识别中,点集配准技术是查找将两个点集对齐的空间变换过程。

寻找这种变换的⽬的主要包括:1、将多个数据集合并为⼀个全局统⼀的模型;2、将未知的数据集映射到已知的数据集上以识别其特征或估计其姿态。

点集的获取可以是来⾃于3D扫描仪或测距仪的原始数据,在图像处理和图像配准中,点集也可以是通过从图像中提取获得的⼀组特征(例如⾓点检测)。

点集配准研究的问题可以概括如下:假设{M,S}是空间R d中的两个点集,我们要寻找⼀种变换T,或者说是⼀种从R d空间到R d空间的映射,将其作⽤于点集M后,可以使得变换后的点集M和点集S之间的差异最⼩。

将变换后的点集M记为T(M),那么转换后的点集T(M)与点集S的差异可以由某种距离函数来定义,⼀种最简单的⽅法是对配对点集取欧式距离的平⽅: 点集配准⽅法⼀般分为刚性配准和⾮刚性配准。

刚性配准:给定两个点集,刚性配准产⽣⼀个刚性变换,该变换将⼀个点集映射到另⼀个点集。

刚性变换定义为不改变任何两点之间距离的变换,⼀般这种转换只包括平移和旋转。

⾮刚性配准:给定两个点集,⾮刚性配准产⽣⼀个⾮刚性变换,该变换将⼀个点集映射到另⼀个点集。

⾮刚性变换包括仿射变换,例如缩放和剪切等,也可以涉及其他⾮线性变换。

下⾯我们来具体介绍⼏种点集配准技术。

⼀. Iterative closest point(ICP) ICP算法是⼀种迭代⽅式的刚性配准算法,它为点集M中每个点m i寻找在点集S中的最近点s j,然后利⽤最⼩⼆乘⽅式得到变换T,算法伪代码如下: ICP算法对于待配对点集的初始位置⽐较敏感,当点集M的初始位置与点集S⽐较接近时,配准效果会⽐较好。

另外ICP算法在每次计算迭代过程中都会改变最近点对,所以其实很难证明ICP算法能准确收敛到局部最优值,但是由于ICP算法直观易懂且易于实现,因此它⽬前仍然是最常⽤的点集配准算法。

深度优先局部聚合哈希

深度优先局部聚合哈希

Vol.48,No.6Jun. 202 1第48卷第6期2 0 2 1年6月湖南大学学报)自然科学版)Journal of Hunan University (Natural Sciences )文章编号:1674-2974(2021 )06-0058-09 DOI : 10.16339/ki.hdxbzkb.2021.06.009深度优先局艺B 聚合哈希龙显忠g,程成李云12(1.南京邮电大学计算机学院,江苏南京210023;2.江苏省大数据安全与智能处理重点实验室,江苏南京210023)摘 要:已有的深度监督哈希方法不能有效地利用提取到的卷积特征,同时,也忽视了数据对之间相似性信息分布对于哈希网络的作用,最终导致学到的哈希编码之间的区分性不足.为了解决该问题,提出了一种新颖的深度监督哈希方法,称之为深度优先局部聚合哈希(DeepPriority Local Aggregated Hashing , DPLAH ). DPLAH 将局部聚合描述子向量嵌入到哈希网络 中,提高网络对同类数据的表达能力,并且通过在数据对之间施加不同权重,从而减少相似性 信息分布倾斜对哈希网络的影响.利用Pytorch 深度框架进行DPLAH 实验,使用NetVLAD 层 对Resnet18网络模型输出的卷积特征进行聚合,将聚合得到的特征进行哈希编码学习.在CI-FAR-10和NUS-WIDE 数据集上的图像检索实验表明,与使用手工特征和卷积神经网络特征的非深度哈希学习算法的最好结果相比,DPLAH 的平均准确率均值要高出11%,同时,DPLAH 的平均准确率均值比非对称深度监督哈希方法高出2%.关键词:深度哈希学习;卷积神经网络;图像检索;局部聚合描述子向量中图分类号:TP391.4文献标志码:ADeep Priority Local Aggregated HashingLONG Xianzhong 1,覮,CHENG Cheng1,2,LI Yun 1,2(1. School of Computer Science & Technology ,Nanjing University of Posts and Telecommunications ,Nanjing 210023, China ;2. Key Laboratory of Jiangsu Big Data Security and Intelligent Processing ,Nanjing 210023, China )Abstract : The existing deep supervised hashing methods cannot effectively utilize the extracted convolution fea ­tures, but also ignore the role of the similarity information distribution between data pairs on the hash network, result ­ing in insufficient discrimination between the learned hash codes. In order to solve this problem, a novel deep super ­vised hashing method called deep priority locally aggregated hashing (DPLAH) is proposed in this paper, which em ­beds the vector of locally aggregated descriptors (VLAD) into the hash network, so as to improve the ability of the hashnetwork to express the similar data, and reduce the impact of similarity distribution skew on the hash network by im ­posing different weights on the data pairs. DPLAH experiment is carried out by using the Pytorch deep framework. Theconvolution features of the Resnet18 network model output are aggregated by using the NetVLAD layer, and the hashcoding is learned by using the aggregated features. The image retrieval experiments on the CIFAR-10 and NUS - WIDE datasets show that the mean average precision (MAP) of DPLAH is11 percentage points higher than that of* 收稿日期:2020-04-26基金项目:国家自然科学基金资助项目(61906098,61772284),National Natural Science Foundation of China(61906098, 61772284);国家重 点研发计划项目(2018YFB 1003702) , National Key Research and Development Program of China (2018YFB1003702)作者简介:龙显忠(1985—),男,河南信阳人,南京邮电大学讲师,工学博士,硕士生导师覮 通信联系人,E-mail : *************.cn第6期龙显忠等:深度优先局部聚合哈希59non-deep hash learning algorithms using manual features and convolution neural network features,and the MAP of DPLAH is2percentage points higher than that of asymmetric deep supervised hashing method.Key words:deep Hash learning;convolutional neural network;image retrieval;vector of locally aggregated de-scriptors(VLAD)随着信息检索技术的不断发展和完善,如今人们可以利用互联网轻易获取感兴趣的数据内容,然而,信息技术的发展同时导致了数据规模的迅猛增长.面对海量的数据以及超大规模的数据集,利用最近邻搜索[1(Nearest Neighbor Search,NN)的检索技术已经无法获得理想的检索效果与可接受的检索时间.因此,近年来,近似最近邻搜索[2(Approximate Near­est Neighbor Search,ANN)变得越来越流行,它通过搜索可能相似的几个数据而不再局限于返回最相似的数据,在牺牲可接受范围的精度下提高了检索效率.作为一种广泛使用的ANN搜索技术,哈希方法(Hashing)[3]将数据转换为紧凑的二进制编码(哈希编码)表示,同时保证相似的数据对生成相似的二进制编码.利用哈希编码来表示原始数据,显著减少了数据的存储和查询开销,从而可以应对大规模数据中的检索问题.因此,哈希方法吸引了越来越多学者的关注.当前哈希方法主要分为两类:数据独立的哈希方法和数据依赖的哈希方法,这两类哈希方法的区别在于哈希函数是否需要训练数据来定义.局部敏感哈希(Locality Sensitive Hashing,LSH)[4]作为数据独立的哈希代表,它利用独立于训练数据的随机投影作为哈希函数•相反,数据依赖哈希的哈希函数需要通过训练数据学习出来,因此,数据依赖的哈希也被称为哈希学习,数据依赖的哈希通常具有更好的性能.近年来,哈希方法的研究主要侧重于哈希学习方面.根据哈希学习过程中是否使用标签,哈希学习方法可以进一步分为:监督哈希学习和无监督哈希学习.典型的无监督哈希学习包括:谱哈希[5(Spectral Hashing,SH);迭代量化哈希[6](Iterative Quantization, ITQ);离散图哈希[7(Discrete Graph Hashing,DGH);有序嵌入哈希[8](Ordinal Embedding Hashing,OEH)等.无监督哈希学习方法仅使用无标签的数据来学习哈希函数,将输入的数据映射为哈希编码的形式.相反,监督哈希学习方法通过利用监督信息来学习哈希函数,由于利用了带有标签的数据,监督哈希方法往往比无监督哈希方法具有更好的准确性,本文的研究主要针对监督哈希学习方法.传统的监督哈希方法包括:核监督哈希[9](Su­pervised Hashing with Kernels,KSH);潜在因子哈希[10](Latent Factor Hashing,LFH);快速监督哈希[11](Fast Supervised Hashing,FastH);监督离散哈希[1(Super-vised Discrete Hashing,SDH)等.随着深度学习技术的发展[13],利用神经网络提取的特征已经逐渐替代手工特征,推动了深度监督哈希的进步.具有代表性的深度监督哈希方法包括:卷积神经网络哈希[1(Con­volutional Neural Networks Hashing,CNNH);深度语义排序哈希[15](Deep Semantic Ranking Based Hash-ing,DSRH);深度成对监督哈希[16](Deep Pairwise-Supervised Hashing,DPSH);深度监督离散哈希[17](Deep Supervised Discrete Hashing,DSDH);深度优先哈希[18](Deep Priority Hashing,DPH)等.通过将特征学习和哈希编码学习(或哈希函数学习)集成到一个端到端网络中,深度监督哈希方法可以显著优于非深度监督哈希方法.到目前为止,大多数现有的深度哈希方法都采用对称策略来学习查询数据和数据集的哈希编码以及深度哈希函数.相反,非对称深度监督哈希[19](Asymmetric Deep Supervised Hashing,ADSH)以非对称的方式处理查询数据和整个数据库数据,解决了对称方式中训练开销较大的问题,仅仅通过查询数据就可以对神经网络进行训练来学习哈希函数,整个数据库的哈希编码可以通过优化直接得到.本文的模型同样利用了ADSH的非对称训练策略.然而,现有的非对称深度监督哈希方法并没有考虑到数据之间的相似性分布对于哈希网络的影响,可能导致结果是:容易在汉明空间中保持相似关系的数据对,往往会被训练得越来越好;相反,那些难以在汉明空间中保持相似关系的数据对,往往在训练后得到的提升并不显著.同时大部分现有的深度监督哈希方法在哈希网络中没有充分有效利用提60湖南大学学报(自然科学版)2021年取到的卷积特征.本文提出了一种新的深度监督哈希方法,称为深度优先局部聚合哈希(Deep Priority Local Aggre­gated Hashing,DPLAH).DPLAH的贡献主要有三个方面:1)DPLAH采用非对称的方式处理查询数据和数据库数据,同时DPLAH网络会优先学习查询数据和数据库数据之间困难的数据对,从而减轻相似性分布倾斜对哈希网络的影响.2)DPLAH设计了全新的深度哈希网络,具体来说,DPLAH将局部聚合表示融入到哈希网络中,提高了哈希网络对同类数据的表达能力.同时考虑到数据的局部聚合表示对于分类任务的有效性.3)在两个大型数据集上的实验结果表明,DPLAH在实际应用中性能优越.1相关工作本节分别对哈希学习[3]、NetVLAD[20]和Focal Loss[21]进行介绍.DPLAH分别利用NetVLAD和Fo­cal Loss提高哈希网络对同类数据的表达能力及减轻数据之间相似性分布倾斜对于哈希网络的影响. 1.1哈希学习哈希学习[3]的任务是学习查询数据和数据库数据的哈希编码表示,同时要满足原始数据之间的近邻关系与数据哈希编码之间的近邻关系相一致的条件.具体来说,利用机器学习方法将所有数据映射成{0,1}r形式的二进制编码(r表示哈希编码长度),在原空间中不相似的数据点将被映射成不相似)即汉明距离较大)的两个二进制编码,而原空间中相似的两个数据点将被映射成相似(即汉明距离较小)的两个二进制编码.为了便于计算,大部分哈希方法学习{-1,1}r形式的哈希编码,这是因为{-1,1}r形式的哈希编码对之间的内积等于哈希编码的长度减去汉明距离的两倍,同时{-1,1}r形式的哈希编码可以容易转化为{0,1}r形式的二进制编码.图1是哈希学习的示意图.经过特征提取后的高维向量被用来表示原始图像,哈希函数h将每张图像映射成8bits的哈希编码,使原来相似的数据对(图中老虎1和老虎2)之间的哈希编码汉明距离尽可能小,原来不相似的数据对(图中大象和老虎1)之间的哈希编码汉明距离尽可能大.h(大象)=10001010h(老虎1)=01100001h(老虎2)=01100101相似度尽可能小相似度尽可能大图1哈希学习示意图Fig.1Hashing learning diagram1.2NetVLADNetVLAD的提出是用于解决端到端的场景识别问题[20(场景识别被当作一个实例检索任务),它将传统的局部聚合描述子向量(Vector of Locally Aggre­gated Descriptors,VLAD[22])结构嵌入到CNN网络中,得到了一个新的VLAD层.可以容易地将NetVLAD 使用在任意CNN结构中,利用反向传播算法进行优化,它能够有效地提高对同类别图像的表达能力,并提高分类的性能.NetVLAD的编码步骤为:利用卷积神经网络提取图像的卷积特征;利用NetVLAD层对卷积特征进行聚合操作.图2为NetVLAD层的示意图.在特征提取阶段,NetVLAD会在最后一个卷积层上裁剪卷积特征,并将其视为密集的描述符提取器,最后一个卷积层的输出是H伊W伊D映射,可以将其视为在H伊W空间位置提取的一组D维特征,该方法在实例检索和纹理识别任务[23別中都表现出了很好的效果.NetVLAD layer(KxD)x lVLADvectorh------->图2NetVLAD层示意图⑷Fig.2NetVLAD layer diagram1201NetVLAD在特征聚合阶段,利用一个新的池化层对裁剪的CNN特征进行聚合,这个新的池化层被称为NetVLAD层.NetVLAD的聚合操作公式如下:NV((,k)二移a(x)(血⑺-C((j))(1)i=1式中:血(j)和C)(j)分别表示第i个特征的第j维和第k个聚类中心的第j维;恣&)表示特征您与第k个视觉单词之间的权.NetVLAD特征聚合的输入为:NetVLAD裁剪得到的N个D维的卷积特征,K个聚第6期龙显忠等:深度优先局部聚合哈希61类中心.VLAD的特征分配方式是硬分配,即每个特征只和对应的最近邻聚类中心相关联,这种分配方式会造成较大的量化误差,并且,这种分配方式嵌入到卷积神经网络中无法进行反向传播更新参数.因此,NetVLAD采用软分配的方式进行特征分配,软分配对应的公式如下:-琢II Xi-C*II 2=—e(2)-琢II X-Ck,II2k,如果琢寅+肄,那么对于最接近的聚类中心,龟&)的值为1,其他为0.aS)可以进一步重写为:w j X i+b ka(x i)=—e-)3)w J'X i+b kk,式中:W k=2琢C k;b k=-琢||C k||2.最终的NetVLAD的聚合表示可以写为:N w;x+b kv(j,k)=移—----(x(j)-Ck(j))(4)i=1w j.X i+b k移ek,1.3Focal Loss对于目标检测方法,一般可以分为两种类型:单阶段目标检测和两阶段目标检测,通常情况下,两阶段的目标检测效果要优于单阶段的目标检测.Lin等人[21]揭示了前景和背景的极度不平衡导致了单阶段目标检测的效果无法令人满意,具体而言,容易被分类的背景虽然对应的损失很低,但由于图像中背景的比重很大,对于损失依旧有很大的贡献,从而导致收敛到不够好的一个结果.Lin等人[21]提出了Fo­cal Loss应对这一问题,图3是对应的示意图.使用交叉爛作为目标检测中的分类损失,对于易分类的样本,它的损失虽然很低,但数据的不平衡导致大量易分类的损失之和压倒了难分类的样本损失,最终难分类的样本不能在神经网络中得到有效的训练.Focal Loss的本质是一种加权思想,权重可根据分类正确的概率p得到,利用酌可以对该权重的强度进行调整.针对非对称深度哈希方法,希望难以在汉明空间中保持相似关系的数据对优先训练,具体来说,对于DPLAH的整体训练损失,通过施加权重的方式,相对提高难以在汉明空间中保持相似关系的数据对之间的训练损失.然而深度哈希学习并不是一个分类任务,因此无法像Focal Loss一样根据分类正确的概率设计权重,哈希学习的目的是学到保相似性的哈希编码,本文最终利用数据对哈希编码的相似度作为权重的设计依据具体的权重形式将在模型部分详细介绍.正确分类的概率图3Focal Loss示意图[21】Fig.3Focal Loss diagram12112深度优先局部聚合哈希2.1基本定义DPLAH模型采用非对称的网络设计.Q={0},=1表示n张查询图像,X={X i}m1表示数据库有m张图像;查询图像和数据库图像的标签分别用Z={Z i},=1和Y ={川1表示;i=[Z i1,…,zj1,i=1,…,n;c表示类另数;如果查询图像0属于类别j,j=1,…,c;那么z”=1,否则=0.利用标签信息,可以构造图像对的相似性矩阵S沂{-1,1}"伊”,s”=1表示查询图像q,和数据库中的图像X j语义相似,S j=-1表示查询图像和数据库中的图像X j语义不相似.深度哈希方法的目标是学习查询图像和数据库中图像的哈希编码,查询图像的哈希编码用U沂{-1,1}"",表示,数据库中图像的哈希编码用B沂{-1,1}m伊r表示,其中r表示哈希编码的长度.对于DPLAH模型,它在特征提取部分采用预训练好的Resnet18网络[25].图4为DPLAH网络的结构示意图,利用NetVLAD层聚合Resnet18网络提取到的卷积特征,哈希编码通过VLAD编码得到,由于VLAD编码在分类任务中被广泛使用,于是本文将NetVLAD层的输出作为分类任务的输入,利用图像的标签信息监督NetVLAD层对卷积特征的利用.事实上,任何一种CNN模型都能实现图像特征提取的功能,所以对于选用哪种网络进行特征学习并不是本文的重点.62湖南大学学报(自然科学版)2021年conv1图4DPLAH结构Fig.4DPLAH structure图像标签soft-max1,0,1,1,0□1,0,0,0,11,1,0,1,0---------*----------VLADVLAD core)c)l・>:i>数据库图像的哈希编码2.2DPLAH模型的目标函数为了学习可以保留查询图像与数据库图像之间相似性的哈希编码,一种常见的方法是利用相似性的监督信息S e{-1,1}n伊"、生成的哈希编码长度r,以及查询图像的哈希编码仏和数据库中图像的哈希编码b三者之间的关系[9],即最小化相似性的监督信息与哈希编码对内积之间的L损失.考虑到相似性分布的倾斜问题,本文通过施加权重来调节查询图像和数据库图像之间的损失,其公式可以表示为:min J=移移(1-w)(u T b j-rs)专,B i=1j=1s.t.U沂{-1,1}n伊r,B沂{-1,1}m伊r,W沂R n伊m(5)受FocalLoss启发,希望深度哈希网络优先训练相似性不容易保留图像对,然而Focal Loss利用图像的分类结果对损失进行调整,因此,需要重新进行设计,由于哈希学习的目的是为了保留图像在汉明空间中的相似性关系,本文利用哈希编码的余弦相似度来设计权重,其表达式为:1+。

引导编辑系统研究进展

引导编辑系统研究进展

华南农业大学学报 Journal of South China Agricultural University 2024, 45(2): 159-171DOI: 10.7671/j.issn.1001-411X.202309002林秋鹏, 朱秀丽, 马琳莎, 等. 引导编辑系统研究进展[J]. 华南农业大学学报, 2024, 45(2): 159-171.LIN Qiupeng, ZHU Xiuli, MA Linsha, et al. Recent advances in prime editing system[J]. Journal of South China Agricultural University, 2024, 45(2): 159-171.特约综述引导编辑系统研究进展林秋鹏†,朱秀丽†,马琳莎,姚鹏程(广东省植物分子育种重点实验室/华南农业大学 农学院, 广东 广州 510642)摘要: 引导编辑(Prime editing,PE)系统是一种全新的、革命性的基因组编辑策略。

该系统由引导编辑器(Primeeditor)组成,包括nCas9(H840A)与逆转录酶(Reverse transcriptase,RT)的融合蛋白;以及包含PBS(Primerbinding site)序列和RT模板(RT template,RTT)序列的pegRNA(Prime editing guide RNA)两大部分。

PE系统可以在双链不断裂的情况下实现所有12种类型的碱基替换及小片段DNA增删,是精准编辑的全新范式。

自2019年开发至今不到4年时间,PE系统作为一种通用的技术平台,已广泛应用于医疗、农业等各个领域,产生了一大批新种质资源、基因治疗药物等优秀应用案例。

PE作为目前最灵活、最具发展前景的基因组精准编辑新手段,仍旧存在效率偏低、大片段操纵能力不足、系统组分设计复杂(如pegRNA)、安全性未全面评估等问题,仍需要深入研究。

激光slam中的icp算法

激光slam中的icp算法

激光SLAM中的ICP算法激光SLAM (Simultaneous Localization and Mapping) 是指通过激光传感器获取环境的三维信息,实现机器人在未知环境中同时实现自我定位和地图构建的算法。

其中,ICP (Iterative Closest Point) 算法是激光SLAM中最常用的配准方法之一,通过迭代优化对应点对之间的误差,来估计机器人的姿态和构建准确的地图。

本文将详细介绍激光SLAM中的ICP算法,包括算法原理、基本步骤、参数设置和优化策略等内容,以帮助读者深入了解和应用ICP算法。

1. ICP算法原理ICP算法是一种基于最小二乘法的点云配准方法,通过计算匹配点对之间的最小距离来估计机器人的位姿变换,并通过迭代优化来逼近最佳匹配结果。

算法的基本原理如下:1.初始化位姿估计:首先需要给定机器人的初始位姿估计,可以通过初始传感器读数或其他方式获得。

2.匹配点对搜索:根据当前位姿估计,将参考点云(地图)中的点变换到当前点云坐标系下,然后通过搜索找到当前点云中与参考点云最近的点作为匹配点对。

3.计算误差:根据匹配点对,计算其坐标差异,并定义为误差。

4.优化位姿估计:通过迭代优化,调整当前位姿估计,使得匹配误差最小化。

5.终止条件检查:根据设定的终止条件(如最大迭代次数或误差阈值),判断是否满足终止条件,若满足则停止迭代,否则返回第3步。

6.重复步骤2至步骤5,直到算法收敛或达到设定的迭代次数。

2. ICP算法步骤ICP算法的基本步骤如下:Step 1: 初始化位姿估计根据传感器读数或其他方式,给定机器人的初始位姿估计。

Step 2: 匹配点对搜索将参考点云变换到当前点云坐标系下,然后通过搜索找到当前点云中与参考点云最近的点作为匹配点对。

Step 3: 计算误差计算匹配点对之间的坐标差异,定义为误差。

Step 4: 优化位姿估计通过迭代优化,调整当前位姿估计,使得匹配误差最小化。

211081693_基于SHOT与目标函数对称ICP的低重叠率术前术中点云配准算法

211081693_基于SHOT与目标函数对称ICP的低重叠率术前术中点云配准算法

Copyright©博看网. All Rights Reserved.
· 112·
北京生物医学工程 第 42 卷
registration more challenging. This paper adopts the combination of local geometric features and distance
算法能应对 低 重 叠 配 准 问 题,具 有 较 高 的 鲁 棒 性
和计算效率。
特征的配准方法 [14-20] 能够稳健地找到点云之间的
对应关系,且局部描述子在有遮挡的场景中更稳健;
标准,单独使用在迭代过程中存在歧义。
因此,本文提出局部几何特征与距离度量相结
合的方式应对低重叠配准问题。 方向直方图描述子
优。 Raposo 等[11] 用两点及其法向量代替 Super 4PCS
0 引言
椎弓根螺钉内固定术广泛应用于胸腰椎骨折、
脊柱退变、外伤等疾病的治疗
[1]
,准确的螺钉置入
能提高固定强度并减少对周围重要解剖结构的损
伤。 以往手术以解剖学辅助影像定位为主,根据医
生的经验和术中二维射线透视结果来确定螺钉的位
通过增加
角度约束减少无效点对的生成。 但这两种方法只适
用于重叠率相对较高的场景,否则仍会陷入局部最
好的平衡;Rusinkiewicz [27] 提出的目标函数对称 ICP
量,允许更多的位置集。 本文针对术前术中点云数
据低重叠率且存在噪声、异常值的情况,采用 SHOT
特征描述子与目标函数对称 ICP 结合的方法,以实
symmetric point⁃to⁃surface objective function. Registration experiments were performed on five groups of lumbar

网络工程师英文缩写

网络工程师英文缩写

网络工程师英文缩写ACF/VTAM Advanced communication facility/Virtual telecommunication access method ★APA 图形方式★AMI Alternate mark inversion 信号交替反转编码★ALU 逻辑运算单元★A/N 字符/数字方式★APPN Advanced peer-to-peer networking 高级点对点网络★ASN.1 Abstract syntax notation 1 第一个抽象语法★ASCE Association control service Element 联系控制服务元素★ASE Application service element 应用服务元素★ASK 幅度键控★ACK 应答信号★ARQ Automatic repeat request 自动重发请求★ARP Address resolution protocol 地址分解协议★ARIS Aggragateroute-based IP switching ★ADCCP Advanced data communication control procedure ★ATM Asynchronous transfer mode 异步传输模式★ABM Asynchronous balanced mode 异步平衡方式★ARM Asynchronous response mode 异步响应方式★AFI Authority and format identifier ★ABR Available bit rate 有效比特率★AAL ATM adaptation layer ATM适配层★AC Acknowledged connectionless 无连接应答帧★ACL 访问控制清单★AS Autonomous system 自治系统★ABR Available bit rate 可用比特率★AP Access point 接入点★ANS Advanced network services 先进网络服务★ARP Address resolution protocol 地址解析协议★ANSI 美国国家标准协会★AMPS Advanced mobile phone system 先进移动电话系统★ARQ Automatic repeat request 自动重发请求★ADCCP Advanced data communication control procedure 高级数据通信过程★ACTS Advanced communication technology satellite 先进通信技术卫星★ACR Actual cell rate 当前速率★ASN.1 Abstract syntax notation one 抽象语法符号1 ★ADSL Asymmetric digital subscriber line 非对称数字用户线路★ADSI Active directory scripting interface ★ADC Analog digital converter 模数转换器★API 应用程序接口★ARPA Advanced research projects agency 美国高级研究规划局★ACE 访问控制条目★ASP Active server pages ★ARC Advanced RISC computing ★AH 认证头★ADS Active directory service 活动目录服务★ATU-C ADSL transmission Unit-Central 处于中心位置的ADSL Modem ★ATI-R ADSL transmission Unit-Remote 用户ADSL Modem ★BMP Burst mode protocol 突发模式协议★BECN 向后拥塞比特★B-ISDN Broadband integrated service digital network 宽带ISDN ★BSA Basic service area 基本业务区★BSS Basic service set 基本业务区★BGP Border gateway protocol 边界网关协议★BER Basic encoding rules 基本编码规则★BAP Bandwidth allocation protocol 动态带宽分配协议★BACP Bandwidth allocation control protocol 动态带宽分配控制协议★BRI Basic rate interface 基本速率接口★BIND Berkeley internet name domain UNIX/Linux域名解析服务软件包★BPDU Bridge protocol data unit 桥接协议数据单元★BER Basic encoding rule ★CRT 阴极射线管★CCW 通道控制字★CSWR 通道状字寄存器★CAWR 通道地址字寄存器★CN Campus network 校园网★CNNIC 中国互联网络信息中心★ChinaNET 中国公用计算机互联网★CERNET 中国教育科研网★CSTNET 中国科学技术网★CHINAGBN 国家公用经济信息能信网络★CCITT Consultative committee international telegraph and telephone ★CEP Connection end point 连接端点★CP Control point 控制点★CONS 面向连接的服务★CCR Commitment concurrency and recovery 并发和恢复服务元素★CMIP Common management information protocol 公共管理信息协议★CMIS Common management information service 公共管理信息服务★CATV 有线电视系统★CRC Cyclic redundancy check 循环冗余校验码★CBC 密码块链接★CLLM Consolidated link layer management 强化链路层管理★CLP Cell loss priority ★CSMA/CD Carrier sense multiple access/collision detection 带冲突检测介质访问控制★CBR Constant bit rate 固定比特率★CEPT 欧洲邮电委员会★CCK Complementary code keying ★CLNP Connectionless network protocol 无连接的网络协议★CIDR Classless inter-domain routing 无类别的域间路由★CERN The European center for Nuclear Research 欧洲核子研究中心★CGI Common gateway interface 公共网关接口★CIX Commercial internet exchange 商业internet交换★CAU Controlled access unit 中央访问单元★CDDI Copper distributed data interface ★CDPD Celluar digital packet data 单元数字分组数据★CS Convergence sublayer 汇集子层★CDMA Code division multiple access 码分多址★CBR Constant bit rate 恒定比特率★CVDT Cell variation delay tolerance 信元可变延迟极值★CLR Cell loss ratio 信元丢失比率★CHAP Challenge handshake authentication protocol 挑战握手认证协议★CTD Cell transfer delay 信元延迟变化★CER Cell error ratio 信元错误比率★CMR Cell misinsertion rate 错误目的地信元比率★CPI Common part indicator 公用部分指示器★CGI Common gateway interface 公共网关接口★CLUT Color look up table 颜色查找表★CCITT 国际电报电话咨询委会会★CLSID 类标识符★CCM 计算机配置管理★CAP Carrierless amplitude-phase modulation ★Capture trigger 捕获触发器★CSNW Client service for netware Netware客户服务★CA 证书发放机构★CRL Certificate revocation list 证书吊销列表★CPK/CDK Conbined public or double key 组合公钥/双钥★CAE 公共应用环境★CM Cable modem 电缆调制解调器★CMTS 局端系统★CCIA 计算机工业协会★CMIS Common management information service 公共管理信息服务★CMIP Common management information protocol 公共管理信息协议★CGMP 分组管理协议★★★DBMS 数据库管理系统★DS Data Stream 数据流★DS Directory service 目录服务★DSL Digital subscriber line 数字用户线路★DSLAM DSL access multiplexer ★DSSS Direct swquence spread spectrum 直接序列扩展频谱★DARPA 美国国防部高级研究计划局★DNA Digital Network Architecture 数字网络体系结构★DCA Distributed Communication Architecture 分布式通信体系结构★DLC Data link control 数据链路控制功能★DLCI Data link connection identifier 数据链路连接标识符★DTE Data terminal equipment 数据终端设备★DCE Date circuit equipment 数据电路设备★DPSK Differential phase shift keying 差分相移键控★DTMF 双音多频序列★DCC Data county code ★DSP Domain specific part ★DPSK 差分相移键控★DQDB Distributed queue dual bus 分布队列双总线★DFIR Diffused IR 漫反射红外线★DCF Distributed coordination function 分布式协调功能★DOD 美国国防部★DNS Domain name system 域名系统★DLS Directory location service ★DAT Dynamic address translation 动态地址翻译★DCS Distributed computing system ★DIS Draft internation standard 国际标准草案★DSMA Digital sense multiple access 数字侦听多路访问★DES Data encrytion standard 数据加密标准★DSS Digital signature standard 数字签名标准★DSA 目录服务代理★DMSP Distributed mail system protocol 分布式电子邮件系统协议★DPCM Differential pulse code modulation 差分脉冲码调制★DCT Discrete cosine trasformation 离散余弦变换★DVMRP Distant vector multicast routing protocol 距离向量多点播送路由协议★DHCP Dynamic host configuration protocol 动态主机配置协议★DFS 分布式文件系统★DES 数据加密标准★DCD 数据载波检测★DSMN Directory server manager for netware Netware目录服务管理器★DSL Digital subscriber line 数字用户线路★DDN Digital data network 数字数据网★DDR Dial on demand routing 按需拨号路由★DOS Denial of service 拒绝服务★DAS Direct attached storage 直接存储模式★EDI Electronic data interchange 电子数据交换★Enterprise network 企业网★EN End node 端节点★ES-IS 端系统和中间系统★ECMA European computer manufacturers association ★EIA Electronic industries association 美国电子工业协会★ESI End system identifier ★ESS Extended service set 扩展服务集★EDLC Ethernet data link controller 以太网数据链路控制器★EGP Exterior gateway protocol 外部网关协议★EFS 加密文件系统★EAP Extensible authentication protocol 扩展授权协议★ESP 封装安全载荷★FTAM File transfer access and management ★FDM Frequency division multiplexing 频分多路复用★FDMA 频分多址★FSK 频移键控★FSM File system mounter 文件系统安装器★FECN 向前拥塞比特★FLP Fast link pulse 快速链路脉冲★FTP File transfer protocol 文件传输协议★FDDI Fiber distributed data interface 光纤分布数据接口★FHSS Frequency-Hopping spread spectrum 频率跳动扩展频谱★FTTH Fiber to the home 光纤到户★FTTC Fiber to the curb 光纤到楼群、光纤到路边★FAQ Frequently asked question 常见问题★FQDN Fully qualified domain name 主机域名全称★FPNW File and print service for netware ★FWA 固定无线接入★FD 光纤结点★FEC Fast Ethernet channel 快速以太网通道★GTT Global title translation 全局名称翻译★GFC General flow control ★GACP Gateway access control protocol ★GEA Gibabit Ethernet alliance 千兆以太网联盟★GEC Giga Ethernet channel 千兆以太网通道★GSMP General switch management protocol 通用交换机管理协议★GGP Gateway-to-gateway prtotcol 核心网关协议★GSM Global systems for mobile communications 移动通信全球系统★GCRA Generic cell rate algorithm 通用信元速率算法★GSNW Gateway service for netware Netware网关服务★GPO Group policy object 组策略对象★GBE Giga band ethernet 千兆以太网★GD Generic decryption 类属解密★GPL General public license 通用公共许可协议★GBIC 千兆位集成电路★Hamming 海明★HDLC High level data link control 高级数据链路控制协议★HEC Header error check 头部错误控制★HNS Host name server 主机名字服务★HTML Hyper text Markup language 超文本标记语言★HTTP Hyper text transfer protocol 超文本传输协议★HIPPI High performance parallel interface 高性能并行接口★HDTV High definition television 高清晰度电视★HDT 主数字终端★HFC Hybrid fiber coax 混合光纤/同轴电缆网★HAL Hardware abstraction layer 硬件抽象层★HCL 硬件认证程序★HDSL High-bit-rate DSL 高速率DSL ★HFC Hybrid fiber/coax network 混合光纤-同轴电缆★HE 视频前端★HSDPA 高速下行包数据接入★HSRP 热等待路由协议★★★IR 指令寄存器★ID 指令译码器★IS Instruction Stream 指令流★IS-IS 中间系统与中间系统★ICN 互联网络★IMP Interface Message Processor 接口信息处理机★ISP Internet service provider 因特网服务供应商★ICP Internet Content Provider 网络信息服务供应商★IPX Internet protocol eXchange ★ILD Injection laser diode 注入式激光二极管★IDP Internet datagram protocol ★ISUP ISDN user part ★IDC International code designator ★IDI Initial domain identifier ★ILMI Interim local management interface 本地管理临时接口★ISM Industrial scientific and medical ★IR ifrared 红外线★IRC Internet relay chat ★Infrastructure networking ★IFS Inter frame spqcing 帧间隔★IP Internet protocol 网络互连协议★IPSec Internet protocol Security Internet安全协议★ICMP Internet control message protocol 互联网络报文控制协议★IMAP Interim mail access protocol ★IGP Interior gateway protocol 内部网关协议★IFMP Ipsilon flowmanagement protocol 流管理协议★IDN Integrated digital network 综合数字网★IDU Interface data unit 接口数据单元★IMP Interface message processor 接口信息处理机★ITU International telecommunication union 国际电信联盟★ISO International standards organization 国际标准化组织★IEEE Institute of electrical and electronics engineers 电子电器工程师协会★IAB Internet activities board 因特网活动委员会★IAB Internet Architecture board Internet体系结构委员会★IRTF Internet research task force 因特网研究特别任务组★IPC Inter process communication 进程间通信★IXC Interexchange carrier 内部交换电信公司★IMTS Improved mobile telephone system 该进型移动电话系统★IGMP Internet group management protocol 因特网组管理协议★IDEA International data encryption Algorithm国际数据加密算法★IMAP Interactive mail access protocol 交互式电子邮件访问协议★IPRA Internet policy registration authority 因特网策略登记机构★ISP 因特网服务提供商★ICA 独立客户机结构★IPX/SPX 互联网分组交换/顺序分组交换★InterNIC Internet network information center ★ISM Internet service manager ★ISAP Internet information server 应用程序编程接口★IRC Internet relay chat 互联网中继交换★ISL Inter switch link 内部交换链路★IRP I/O请求分组★IIS Internet information server Internet信息服务器★ISU 综合业务单元★ISDN Integrated service digital network 综合业务数字网★IGRP Interior gateway routing protocol 内部网关路由协议★JPEG Joint photographic experts group 图像专家联合小组★KDC Key distribution center 密钥分发中心★LCD 液晶显示器★LIFO 后进先出★LED Light emitting diode 发光二极管★LEN Low-entry node 低级入口节点★LNP Local number portability 市话号码移植★LAP Link access procedure 链路访问过程★LAP-B Link access procedure-Balanced ★LAN Local area networks 局域网★LANE LAN emulated LAN 仿真标准★LEC LAN仿真客户机★LES LAN emulaion server LAN仿真服务器★LECS LAN仿真配置服务器★LLC Logic link control 逻辑链路控制★LC 迟到计数器★LCP Link control protocol 链路控制协议★LDAP Lightweight directory access protocol ★LSR 标记交换路由器★LER 标记边缘路由器★LDP 标记分发协议★LATA Local access and transport areas 本地访问和传输区域★LEC Local exchange carrier 本地交换电信公司★LIS Logical IP subnet 逻辑IP子网★LI Length indicator 长度指示★LDAP Light directory access protocol 轻型目录访问协议★LILO The Linux loader ★L2TP Layer2 tunneling protocol 第2层通道协议★LMI 本地管理接口★LPK/LDK Lapped public or double key 多重公钥/双钥★LMDS Local multipoint distribution services 本地多点分配业务★LSA Link state advertisement 链路状态通告★★★MAN Metropolitan area networks 城域网★MISD 多指令流单数据流★MIMD 多指令流多数据流★MIMO 多输入输出天线系统★MOTIS Message-oriented text interchange system ★MC Manchester Code 曼彻斯特骗码★Modulation and demodulation modem 调制解调器★MTP Message transfer part 报文传输部分★MAC Media access control 介质访问控制★MAC Message authentication code 报文认证代码★MAU Multi Access Unit 多访问部件★MAP Manufacturing automation protocol ★MSP Message send protocol 报文发送协议★MPLS Multi protocol label wsitching 多协议标记交换★MFJ Modified final judgement 最终判决★MTSO Mobile telephone switching office 移动电话交换站★MSC Mobile switching center 移动交换中心★MCS Master control station 主控站点★MCR Minimum cell rate 最小信元速率★MTU Maximum trasfer unit 最大传送单位★MID Multiplexing ID 多路复用标识★MIB Management information base 管理信息库★MIME Multipurpose internet mail extensions 多用途因特网邮件扩展★MPEG Moring picture experts group 移动图像专家组★MIDI Music instrument digital interface 乐器数字接口★MTU Maximum transfer unit 最大传输单元★MCSE Microsoft 认证系统工程师★MPR Multi protocol routing 多协议路由器★MIBS 管理信息数据库★MVL Multiple virtual line 多虚拟数字用户线★MPLS 多协议标记交换★MD5 Message digest 5 报文摘要5 ★MX Mail eXchanger 邮件服务器★MUD 多用户检测技术★MMDS Multichannel multipoint distribution system 多通道多点分配业务★★★NBS 美国国家标准局★NSF National Science Foundation 美国国家科学基金会★NII National Information Infrastructure 美国国家信息基础设施★NCFC 教育与科研示范网络★NN Network node 网络结点★NCP Netware core protocol Netware核心协议★NCP Network control protocol 网络控制协议★NAP Network access point 网络接入点★NDS Netware directory services Netware目录服务★NRZ Not return to zero 不归零码★Nyquist 尼奎斯特★NAK Negative acknowledgement 否定应答信号★NRM Normal response mode 正常响应方式★N-ISDN Narrowband integrated service digital network 窄带ISDN ★NLP Normal link pulse 正常链路脉冲★NAT Network address translators 网络地址翻译★NAPT Network address port translation 网络地址和端口翻译★NVT Network virtual terminal 网络虚拟终端★NCSA National center for supercomputing Applications ★NFS 美国国家科学基金会★NVP Network voice protocol 网络语音协议★NSP Name service protocol 名字服务协议★NIC Network information center 网络信心中心★NIC Network interface card 网卡★NOS Network operating system 网络操作系统★NDIS Network driver interface specification ★NREN National research and educational network 国家研究和教育网★NIST National instrtute of standards and technology 国际标准和技术协会★NNI Network network interface 网络-网络接口★NNTP Network news transfer protocol 网络新闻传输协议★NCSA National center for supercomputing applications 国家超级计算机应用中心★NTSC National television standards committee 美国电视标准委员会★NDIS Network drive interface specification 网络驱动程序接口规范★NETBIOS 网络基本输入输出系统★NETBEUI BetBIOS Extended user interface NETBIOS扩展用户界面★NBI Network binding interface 网络关联接口★NFS Network file system 网络文件系统★NIST 美国国家标准和技术协会★NCSC 国家计算机安全中心★NNTP Network news transfer protocol 网络新闻传输协议★NVOD Near video ondemand 影视点播业务★NIU 网络接口单元★NAS 网络接入服务★NAS Network attached storage 网络连接存储★OAM Operation and maintenance 操作和维护★OSI/RM Open system interconnection/Reference model 开放系统互联参考模型★OMAP Operations maintenance and administration part 运行、维护和管理部分★OAM Operation and maintenance ★OFDM Orthogonal frequency division multiplexing ★OSPF Open shortest path first 开放最短路径优先★OGSA Open Grid Services Architecture 开放式网格服务架构★ONU Optical network unit 光纤网络单元★OLE 对象链接和嵌入★ODI Open data link interface 开放数据链路接口★ODBC 开放数据库连接★OSA 开放的业务结构★PC 程序计数器★PEM 局部存储器★PTT Post telephone&telegraph ★PLP 分组级协议★PSK 相移键控★PCM Pulse code modulation 脉码调制技术★PAD Packet assembly and disassembly device 分组拆装设备★PCS 个人通信服务★PSE 分组交换机★PDN Public data network 公共数据网★PLP Packet layer protocol ★PVC Permanent virtual circuit 永久虚电路★PBX Private branch eXchange 专用小交换机★PMD Physical medium dependent sublayer 物理介质相关子层★PTI Payload type 负载类型★PAM 脉冲幅度调制★PPM 脉冲位置调制★PDM 脉宽度调制★PDA Personal digital assistant 个人数字助理★PAD Packet assembler-Disassembler 分组打包/解包★PDU Protocol data unit 协议数据单元★PLCP Physical layer convergence protocol 物理层会聚协议★PMD Physical medium dependent 物理介质相关子层★PCF Point coordination function 点协调功能★PPP Point to point protocol 点对点协议★PSTN Public switched telephone network 公共电话交换网★PSDN Packet Switched data network 公共分组数据网络★Packet switching node 分组交换节点★PAP Password authentication protocol 口令认证协议★PAM Pluggable authentication modules 可插入认证模块★POTS Plain old telephone service 老式电话服务★PCS Personal communications service 个人通信服务★PCN Personal communications network 个人通信网络★PCR Peak cell rate 峰值信元速率★POP Post office protocol 邮局协议★PGP Pretty good privacy 相当好的保密性★PCA Policy certification authorities 策略认证机构★PPTP Point to point Tunneling protocol 点对点隧道协议★POSIX 可移植性操作系统接口★PTR 相关的指针★PDH Plesiochronous digital hierarchy 准同步数字系列★PPPoE Point-to-point protocol over ethernet 基于局域网的点对点通信协议★PXC 数字交叉连接★PRI Primary rate interface 主要率速接口★QAM Quadrature amplitude modulation 正交副度调制★QOS Quality of service 服务质量★RTSE Reliable transfer service element 可靠传输服务元素★ROSE Remote operations service element 远程操作服务元素★RZ Return to zero 归零码★Repeater 中继器★RJE Remote job entry 远程作业★RARP Reverse address resolution protocol 反向ARP协议★RPC Remote procedure call 远程过程调用★RFC Request for comments 请求评注★RAID Redundant array of inexpensive disks 廉价磁盘冗余阵列★RADIUS 远端验证拨入用户服务★RAS Remote access services 远程访问服务★RISC Reduced instruction set computer 最简指令系统★RIP Routing information protocol 路由信息协议★RRAS 路由与远程访问服务★RDP 远程桌面协议★RADSL 速率自适应用户数字线★RAN 无线接入网★RAS Remote access server 远程访问服务器★RSVP Resource ReSerVation Protocol 资源预约协议★SISD 单指令单流数据流★SIMD 单指令多流数据流★SP 堆栈指针寄存器★SNA System Network Architecture 系统网络体系结构★SNA/DS SNA Distribution service 异步分布处理系统★SAP Service access point 服务访问点★SAP Service advertising protocol 服务公告协议★SPX Sequential packet eXchange ★SNIC 子网无关的会聚功能★SNDC 子网相关的会聚功能★SNAC 子网访问功能★SNACP Subnetwork access ptotocol 子网访问协议★SNDCP SubNetwork dependent convergence protocol 子网相关的会聚协议★SNICP SubNetwork independent convergence protocol 子网无关的会聚协议★STP Shielded twisted pair 屏蔽双绞线★STP Signal transfer point 信令传输点★STP Spanning Tree Protocol 生成树协议★SONET Synchronous optical network ★SDH Synchronous digital hierarchy 同步数字系列★SS7 Signaling system No.7 ★SSP Service switching point 业务交换点★SCP Service control point 业务控制点★SCCP Signaling connection control part 信令连接控制部分★SDLC Synchronous data link control 同步数据链路控制协议★SIM 初始化方式命令★SVC Switched virtual call 交换虚电路★STM Synchronous transfer mode 同步传输模式★SAR Segmentation and reassembly 分段和重装配★SMTP Simple mail transfer protocol 简单邮件传送协议★SFTP Simple file transfer protocol ★SNMP Simple network management 简单网络管理协议★SNPP Simple network paging protocol ★SCSI 小型计算机系统接口★SLIP Serial line IP 串行IP协议★SMB Server message block 服务器报文快协议★SRT Source routing transparent 源路径透明★SDU Service data unit 服务数据单元★SMDS Switched multimegabit data service 交换式多兆比特数据服务★SAR Segmentation and reassembly 分解和重组★SONET Synchronous optical network 同步光纤网络★SDH Synchronous digital hierarchy 同步数字分级结构★STS-1 Synchronous transport signal-1 同步传输信号★SPE Synchronous payload envelope 同步净荷包★SIPP Simple internet protocol plus 增强的简单因特网协议★SCR Sustained cell rate 持继信元速率★SECBR Severly-errored cell block ratio 严重错误信元块比率★SEAL Simple efficient adaptation layer 简单有效的适配层★SSCOP Service specific connection oriented protocol 特定服务的面向连接协议★SHA Secure hash algorithm 保密散列算法★SMI Structer of management information 管理信息的结构★SGML Standard generalized markup language 标准通用标记语言★SBS Server based setup ★SAM Security account manager 安全帐号管理器★SPS Standby power supplies 后备电源★SPK Seeded public-Key 种子化公钥★SDK Seeded double key 种子化双钥★SLED Single large expensive drive ★SID 安全识别符★SDSL Symmetric DSL 对称DSL ★SAT 安全访问令牌★SMS System management server 系统管理服务器★SSL 安全套接字层★SQL 结构化查询语言★STB Set top box 电视机顶盒★SIPP Simple internet protocol plus ★SGML Standark generalized markup language 交换格式标准语言★SN 业务接点接口★SNI Service node interface 业务接点接口★SOHO 小型办公室★SIP Session initiation protocol 会话发起协议★SCS Structured cabling system 结构化综合布线系统★SMFs System management functions 系统管理功能★SMI Structure of management information 管理信息结构★SGMP Simple gateway monitoring protocol 简单网关监控协议★SFT System fault tolerance 系统容错技术★SAN Storage Area Network 存储区域网络★TCP Transmission control protocol 传输控制协议★TTY 电传打字机★TDM Time division multiplexing 时分多路复用★TDMA 时分多址★TCM Trellis coded modulation 格码调制★TCAP Transaction capabilities applications part 事务处理能力应用部分★TE1 1型终端设备★TE2 2型终端设备★TA 终端适配器★TC Transmission convergence 传输聚合子层★TRT 令牌轮转计时器★THT 令牌保持计时器★TFTP Trivial file transfer protocol 小型文件传输协议★TDI Transport driver interface 传输驱动程序接口★TIP Terminal interface processor 终端接口处理机★TPDU Transport protocol unit 传输协议数据单元★TSAP Transport service access point 传输服务访问点★TTL Time to live 使用的时间长短期★TLS 运输层安全★TAPI Telephone application programming interface 电话应用程序接口★TTB Trusted tomputing base 可信计算基★TCSEC Trusted computer system evaluation criteria 可信任计算机系统评量基准★TMN Telecommunications management network 电信管理网★TDD 低码片速率★TIA 美国电信工业协会★UTP Unshielede twisted pair 无屏蔽双绞电缆★UTP Telephone user part 电话用户部分★UDP User datagram protocol 用户数据报协议★UA 无编号应答帧★UI 无编号信息帧★UNI User-network interface 用户网络接口★UBR Unspecified bit rate 不定比特率★U-NII Unlicensed national information infrastructure ★URL Uniform resource locator 通用资源访问地址★统一资源定位器★URI Universal resource identifiers 全球资源标识符★UNC Universal naming convention 通用名称转换★UPS Uninterruptible power supplies 不间断电源★UDF Uniqueness database file 独一无二的数据库文件★UE 终端★USM User security mode 用户的安全模型★VT Virtual terminal 虚拟终端★VC Virtual circuit 虚电路★VSAT Very small aperture terminal 甚小孔径终端系统★Virtual path 虚通路★Virtual channel 虚信道★VPI Virtual path identifiers 虚通路标识符★VCI Virtual channe identifiers 虚信道标识符★VBR Variable bit rate 变化比特率★VLSM Valiable length subnetwork mask 可变长子网掩码★VOD Video on demand 视频点播★VLL 虚拟租用线路★VPRN 虚拟专用路由网络★VPDN 虚拟专用拨号网络★VPLS 虚拟专用LAN片断★VPN Virtual private network 虚拟私用网络★VSM 话音服务模块★VTP VLAN Trunking Protocol VLAN中继协议★WDM Wave division multiplexing 波分多路复用★WLAN Wireless local area networks 无线局域网★WWW World wide web 环球网、万维网★WAIS Wide area information server 广域信息服务器★WINS Windows internet name service Windows网间网命名系统★WTS Iwndows终端服务器★WSH Windows scripting Host ★WML Wireless markup language 无线标记语言★WCDMA Wideband code division multiple access 宽带码分多址★XID 交换标识★X.500 用于目录管理方面最常见的协议★XNS 施乐网络服务系统★XML Exbensible markup languge 可延伸的标识语言★ZAW 零管理窗口错误!未找到引用源。

基于SIFT_特征点提取的ICP_配准算法

基于SIFT_特征点提取的ICP_配准算法
效率ꎮ
1 传统 ICP 算法机理和特性分析
传统 ICP 算法机理框图如图 1 所示ꎮ 通过分
抽样一致性算法ꎬ随机选择四对局内点进行多次
析源点云与目标点云之间的对应关系ꎬ求解最优
迭代ꎬ计算出最佳变换矩阵ꎬ该方法具有较好的鲁
刚体变换矩阵ꎬ 使用该矩阵更新源点云的位置ꎮ
棒性ꎬ能够处理含有异常值的点云数据ꎬ但耗时较
为最优刚体变换矩阵中的旋转矩阵和平移矩阵ꎮ
令 Rk = R(q Rk )ꎬR 表示矩阵旋转操作ꎬt k = q tk ꎮ
3) 求得最优 R k 和 t k ꎬ按照 S k + 1 = R k S0 + t k 更
新位置ꎬS0 表示初次迭代的源点云集ꎮ 计算距离
均方误差值 d k ꎬ计算式为
dk =

∑ ‖x iꎬk - S iꎬk +1 ‖2
N i =1

(1)
式中:S iꎬk +1 和 x iꎬk 分别为源点云集和对应点集合
中的第 i 个点ꎻN 为对应点个数ꎮ
沈 阳 理 工 大 学 学 报
50
图 1
第 43 卷
传统 ICP 算法机理框图
Fig. 1 Block diagram of the mechanism of traditional ICP algorithm
Key words: point cloud registrationꎻ the iterative closest point algorithmꎻ scale invariant feature
transformꎻfeature pointsꎻfast point feature histogram
点云配准通常分为两个步骤:初始配准和精

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II

计算机网络专业英语词汇

计算机网络专业英语词汇
有效比特率
AAL
ATM adaptation layer
ATM适配层
AC
Acknowledged connectionless
无连接应答帧
ACL
访问控制清单
AS
Autonomous system
自治系统
ABR
Available bit rate
可用比特率
AP
Access point
接入点
ANS
Advanced network services
Distant vector multicast routing protocol
距离向量多点播送路由协议
DHCP
Dynamic host configuration protocol
动态主机配置协议
DFS
分布式文件系统
DES
数据加密标准
DCD
数据载波检测
DSMN
Directory server manager for netware
动态地址翻译
DCS
Distributed computing system
DIS
Draft internation standard
国际标准草案
DSMA
Digital sense multiple access
数字侦听多路访问
DES
Data encrytion standard
数据加密标准
DSS
Digital signature standard
目录服务
DSL
Digital subscriber line
数字用户线路
DSLAM
DSL access multiplexer

代码特征自动提取方法

代码特征自动提取方法

代码特征自动提取方法史志成1,2,周宇1,2,3+1.南京航空航天大学计算机科学与技术学院,南京2100162.南京航空航天大学高安全系统的软件开发与验证技术工信部重点实验室,南京2100163.南京大学软件新技术国家重点实验室,南京210023+通信作者E-mail:***************.cn 摘要:神经网络在软件工程中的应用极大程度上缓解了传统的人工提取代码特征的压力。

已有的研究往往将代码简化为自然语言或者依赖专家的领域知识来提取代码特征,简化为自然语言的处理方法过于简单,容易造成信息丢失,而引入专家制定启发式规则的模型往往过于复杂,可拓展性以及普适性不强。

鉴于以上问题,提出了一种基于卷积和循环神经网络的自动代码特征提取模型,该模型借助代码的抽象语法树(AST )来提取代码特征。

为了缓解因AST 过于庞大而带来的梯度消失问题,对AST 进行切割,转换成一个AST 序列再作为模型的输入。

该模型利用卷积网络提取代码中的结构信息,利用双向循环神经网络提取代码中的序列信息。

整个流程不需要专家的领域知识来指导模型的训练,只需要将标注类别的代码作为模型的输入就可以让模型自动地学习如何提取代码特征。

应用训练好的分类编码器,在相似代码搜索任务上进行测试,Top1、NDCG 、MRR 的值分别能达到0.560、0.679和0.638,对比当下前沿的用于代码特征提取的深度学习模型以及业界常用的代码相似检测工具有显著的优势。

关键词:代码特征提取;代码分类;程序理解;相似代码搜索文献标志码:A中图分类号:TP391Method of Code Features Automated ExtractionSHI Zhicheng 1,2,ZHOU Yu 1,2,3+1.College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China2.Key Laboratory for Safety-Critical Software Development and Verification,Ministry of Industry and Information Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China3.State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210023,ChinaAbstract:The application of neural networks in software engineering has greatly eased the pressure of traditional method of extracting code features manually.Previous code feature extraction models usually regard code as natural language or heavily depend on the domain knowledge of experts.The method of transferring code into natural计算机科学与探索1673-9418/2021/15(03)-0456-12doi:10.3778/j.issn.1673-9418.2005048基金项目:国家重点研发计划(2018YFB1003902);国家自然科学基金(61972197);中央高校基本科研业务费专项资金(NS2019055);江苏高校“青蓝工程”。

北邮计算机网络常用英文缩写

北邮计算机网络常用英文缩写

AALATM适配层ATMAdaptationLayerABR可用比特率AvailableBitRateACK 响应AcknowledgementACR衰减串扰比ADPCM自适应差分PCMADSL非对称数字环路AsymmetricDigitalSubscriberLine AMIATMManagementInterfaceAMPS先进型移动电话系统AdvancedMobilePhoneSystem ANS高级网络与服务AdvancedNetworksandServices ANSI美国国家标准协会AmericanNationalStandardInstitute APON无源光纤网络ARP地址解析协议AddressResolutionProtocolARQ自动重发请求AutomaticRepeatRequestAS自制系统AutonomousSystem ASICApplicationSpecificIntegratedCircuit(Chip)ASN.1AbstractSyntaxNotationOneATD异步时分复用AsynchronousTimeDivisionATM异步传输模式AsynchronousTransferModeBBS电子公告板BulletinBoardSystemBER误比特率biterrorrateBGP边界网关协议BorderGatewayProtocolBICMOS双极型CMOSBIP-8BitInterleavedParity-8B-ISDN宽带综合业务数字网BroadbandIntegratedServicesDigitalNetwork BMIBus-MemoryInterfaceBOOTP引导协议BOOTstrappingProtocolBRI单一ISDN基本速率BUS广播和未知服务器Broadcast/UnknownServerCAC连接接纳控制ConnectionAdmissionControlCATV公用天线电视CBDS无连接宽带数据服务CBR连续比特率ContinuousBitRateCCITT国际电话电报咨询委员会CDCarrierDetectCDBConfigurationDatabaseCDMA码分多址CodeDivisionMultipleAccessCDPD蜂窝数字分组数据CellularDigitalPacketDataCDV信元延时变化CellDelayVariationCECCommonEquipmentCardCERNET中国教育科研网CIDR无类型域间路由ClasslessInterDomainRoutingCLIPClassicalIPCLP信元丢失优先级CMIS/CMIPtheCommonManagementInformationService/ProtocolCMOS互补型金属氧化物半导体CMOTCMIS/CMIPonTCP/IPCNOM网络营运与管理专业委员会CommitteeofNetworkOperationandManagement CORBA公共对象请求代理结构CommonObjectRequestBrokerArchitecture CPANComprehensivePerlarchieveNetwork CPECustomerPremisesEquipmentCPCS公共部分会聚子层CommonPartConvergenceSublayerCRCarriageReturnCRC 循环冗余码Cyclic Redundancy CodeCS会聚子层ConvergenceSublayerCSDN电路交换数据网CSMA/CD载波侦听多路访问/冲突检测CarrierSenseMulti-Access/CollisionDetection DACDualAttachConcentratorDASDualAttachStationDCDDataCarrierDetectDCE数据电路端接设备DigitalCircuit-terminatingEquipmentDHCP动态主机控制协议DIME直接内存执行DirectMemoryExecuteDME分布式管理环境DistributedManagementEnvironmentDNS域名系统DomainNameSystemDPI每英寸可打印的点数DotPerInchDQDB分布式队列双总线DistributedQueueDualBusDS-3DigitalStandard-3DSMA数字侦听多重访问DigitalSenseMultipleAccessDSPDigitalSignalProcessingDTE数据终端设备DataTerminalEquipmentDTRDataTerminalReadyDUP(Data User Part )区别UDP用户数据报协议UserDatagramProtocolDWDM 高密度波分多路复用技术(Dense WaveLength Division Multiplexing)DVMRP距离向量多目路径协议DistanceVectorMulticastRoutingProtocolECL硅双极型ECSRN华东南地区网EGP外部网关协议ExteriorGatewayProtocolEIA/TIAElectronicIndustriesAssociationandtheTelecommunicationIndustriesAssociati onEMA以太网卡EthernetMediaAdapterE-mail电子邮件ElectronicMailEPD提前舍弃分组数据包FAQ常见问题解答FrequentlyAnswerQuestionFCS快速电路交换FastCircuitSwitchingFDDI光纤分布式数据接口FiberDistributedDataInterfaceFDM频分多路复用FrequencyDivisionMultiplexingFEC前向差错纠正ForwardErrorCorrectionFEMA快速以太网卡FastEthernetMediaAdapterFEXT远端串扰Far End Cross-TalkFIB 转发信息库forwarding information baseFITL光纤环路(fiber in the loopFMAFDDI网卡FDDIMediaAdapterFOIRLFiberOpticInter-repeaterLinkFTP文件传输协议FileTransferProtocolFTTC光纤到楼群FiberToTheCurbFTTH光纤到户FiberToTheHomeGCRA通用信元速率算法GenericCellRateAlgorithmGGP网关-网关协议Gateway-GatewayProtocolGSM移动通信全球系统(全球通)GlobalSystemsforMobilecommunications HEC信头错误控制HeaderErrorControlHCS头校验序列HeaderCheckSequenceHDLC高级数据链路控制(协议)High-LevelDataLinkControlHDTV数字高清晰度电视HighDefinitionTeleVisionHFC混合光纤同轴HybridFiberCoaxHIPPI高性能并行接口HighPerformanceParallelInterfaceHOL队头阻塞HTTP超文本传输协议HyperTextTransferProtocolHTML 超文本标记语言(Hypertext Markup Language)Hub集线器IAB因特网结构委员会InternetArchitectureBoardICCBInternet控制与配置委员会InternetControlandConfigurationBoard ICMP因特网控制信息协议InternetControlMessageProtocol ICPInternetContentProviderICX部件间交换Inter-CartridgeExchangeIDP网间数据报协议InternetworkDatagramProtocolIDU接口数据单元InterfaceDataUnitIEEE电子和电气工程师协会InstituteofElectricalandElectronicsEngineers IETF因特网工程特别任务组InternetEngineeringTaskForce IGMPInternet组管理协议InternetGroupManagementProtocolIGRP内部网关路由协议(Interior Gateway Routing Protocol)IGP内部网关协议InteriorGatewayProtocolIISP间歇交换机信令协议ILMI过渡性局域管理界面(?)IMP接口信息处理机InterfaceMessageProcessorIMTS改进型移动电话系统EmprovedMobileTelephoneSystemIP因特网协议InternetProtocolIRCInternetRelayChatIRTF因特网研究特别任务组InternetResearchTaskForceISDN综合业务数字网IntegratedServicesDigitalNetworkISO国际标准化组织InternationalOrganizationforStandardization(或简称InternationalStandardOrganization)ISUP ISDN User PartIT信息技术InformationTechnologyITU国际电信联盟InternationalTelecommunicationsUnion JPEG图像专家联合小组JointPhotographicExpertsGroup L2F第二层转发L2TP第二层隧道协议LAN局域网LocalAreaNetworkLANE局域网仿真LANEmulationLAP链路访问过程LinkAccessProcedureLCP链路控制协议LinkControlProtocolLE_ARPLAN仿真地址转换协议LEC局域网仿真客户端LANEmulationClientLECS局域网仿真配置服务LANEmulationConfigureService LED发光二极管LES局域网仿真服务器LANEmulationServerLFLineFeedLI长度指示LIM插件板LLC逻辑链路控制LogicalLinkControlMAC介质访问控制MediaAccessControlMAN城域网MetropolitanAreaNetworkMAP Mobile Application Part,移动应用部分MACA避免冲突的多路访问(协议)(IEEE802.11无线局域网标准的基础)MultipleAccesswithAccessAvoidance MARSMAUMediumAccessUnitMIB管理信息库ManagementInformationBase MICMediainterfaceconnectorModem调制解调器MOTD当日消息MessageOfTheDayMPCMPOAClientMPEG活动图像专家组MotionPictureExpertsGroupMRFCS多速率快速电路交换MultirateFastCircuitSwitchingMPOAMulti-ProtocolOverATMMPSMPOAServerMRCS多速率电路交换MultirateCircuitSwitchingMSC移动交换中心MobileSwitchingCenterMTBF两次故障间的平均时间MediaTimeBetweenFaultsMTOR故障修复所需平均时间MediaTimeofRepairMTP邮件传输协议MailTransferProtocolMTSO移动电话交换站MobileTelephoneSwitchingOfficeMTTD故障诊断所需平均时间MediaTimetoDiagnoseMTU最大传输单元MaximumTransferUnitNAP网络接入点NetworkAccessPointNAT网路地址变换(network address translation)NCA网络计算结构NetworkComputingArchitectureNCFC中国国家计算机网络设施,国内也称中关村网TheNationalComputingandNetworkFacilityofChinaNCP网络控制协议NetworkControlProtocolNCP网络核心协议NetworkCoreProtocolNEXT近端串扰NFS网络文件系统NetworkFileSystemNHRP下一个节点路由协议Next Hop Resolution ProtocolNHSNHRPServerNICNull-AttachConcentratorNIC网卡NetworkInterfaceCardNIC网络信息中心NetworkInformationCentreNIM网络接口模块NetworkInterfaceModuleNISDN窄带ISDNNarrowbandIntegritedServicesDigitalNetworkNLAM网络层地址管理NNI网络-网络接口Network-NetworkInterfaceNNPT 网络新闻传输协议Network News Transfer ProtocolNOMS网络营运与管理专题讨论会NetworkOperationandManagementSymposium NREN(美国)国家研究和教育网NationalResearchandEducationNetworkNSAP网络服务接入点NetworkServiceAccessPointNSF(美国)国会科学基金会NTP网路时间协定(network time protocol)网路终端机协定(network terminal protocol)网路终止处理机(network termination processor)网路异动处理(network transaction processing) NVRAMNon-volatileRAMNVT网络虚拟终端NetworkVirtualTerminalOAM操作与维护OperationAndMaintenanceODBC开放数据库互连OpenDatabaseConnection ORB对象请求代理ObjectREquestBrokerOSF开放软件基金会OpenSoftwareFundationOSI开放系统互联OpenSystemInterconnection OSPF开放最短路径优先(协议)OpenShortestPathFirst PBX用户交换机PrivateBrancheXchangePCM脉冲编码调制PulseCodeModulationPCN个人通信网络PersonalCommunicationsNetwork PCR峰值信元速率PeakCellRatePCS个人通信服务PersonalCommunicationsService PDH准同步数字系列Plesiochronous Digital Hierarchy PDA个人数字助理PersonalDigitalAssistantPDN公用数据网PublicDataNetworkPDU协议数据单元ProtocolDataUnitPER分组差错率packeterrorratePEMPortExpansionModulePIR分组插入率packetinsertionratePI/SOPrimaryIn/SecondaryOutPLCP物理层会聚协议PhysicalLayerConvergenceProtocolPLR分组丢失率packetlossratePMD物理媒体相关(子层)PhysicalMediumDependentPOH通道开销PON无源光纤网POPPostOfficeProtocolPO/SIPrimaryOut/SecondaryInPOTS普通老式电话业务PlainOldTelephoneServicePPD部分舍弃分组数据包PartialPacketDiscardPPP点到点协议PointtoPointProtocolPPTP点对点隧道协议PRM每分钟可打印输出的页数PagePerMinutePRM协议参考模型ProtocolReferenceModelPRN分组无线网PacketRadioNetworkPSN分组交换节点PacketSwitchNodePSDN分组交换数据网PSTN公用电话交换网PublicSwitchedTelephoneNetworkPVC永久虚电路(包括PVPC和PVCC)PermanentVirtualCircuitPVPCpermanentvirtualpathconnection PVCCpermanentvirtualchannelconnectionPVP永久虚路径PermanentVirtualPathQoS服务质量QualityofServiceRADIUS远端授权拨号上网用户服务RARP逆向地址解析协议ReverseAddressResolutionProtocol RAS远程访问服务器Remote Access ServiceRFC请求评注RequestforComments RFTRequestforTechnologyRIP路由信息协议RoutingInformationProtocolRMON远程网络管理Remote Network MonitoringRouter路由器RPC远程过程调用RemoteProcedureCallRSVP资源预留协议Resource Reservation Protocol RTMPRoutingTableMaintenanceProtocol(用于Appletalk) RTMP Real Time Message Protocol(实时信息传输协议) RTP接收和发送端口RTS往返样本RoundTripSampleRTS剩余时间标签SAP业务接入点ServiceAccessPointSAP服务公告协议ServiceAdvertisingProtocolSAR分段和重组(子层)SegmentationandReassemblySASSingleAttachedStationSCCP信号连接控制部件(Signaling Control Connection Part)SCStickandClickconnectorSCR信号串扰比SCR持续信元速率SustainedCellRateSCS交换控制软件SDH同步数字系列SynchronousDigitalHierarchySDLCc(协议)AdvancedDataCommunicationControlProcedure SDLC 同步数据链路控制(Synchronous Data Link Control)SDTV标准数字电视SDU业务数据单元ServiceDataUnitSIP(Session Initiation Protocol,会话初始协议)SIPP增强的简单因特网协议SimpleInternetProtocolPlusSLIP串行线路IPSerialLineInterfaceProtocolSMB服务器信息块(Server Message Block)SMDS交换式多兆比特数据业务SwitchedMultimegabitDataServices SMF单模光纤Single-modeFiber SMIStructureofManagementInformation(MIB的结构)SMT站点管理StationManagementSMTP简单邮件传输协议SimpleMailTransferProtocolSNA系统网络体系结构SystemNetworkArchitectureSNAP子网络访问协议SubNetwork Access ProtocolSNMP简单网络管理协议SimpleNetworkManagementProtocolSNR信噪比Signal-NoiseratioSOH段开销Start of HeadingSONET同步光纤网络SynchronousOpticalNetworkSPE同步净荷包SynchronousPayloadEnvelopeSPP定序分组协议(XNS中,相当于TCP)SequentialPacketProtocolSRTS同步剩余时间标签法SS7 七号信令系统Signaling System No. 7SSCS业务特定部分会聚子层SSI服务器端包含ServerSideIncludeSTStickandTurnconnectorSTM同步传输方式SynchronousTransferModeSTP屏蔽双绞线ShieldedTwistedPairSTS同步传输信号SynchronousTransportSignalSVC交换虚电路SwitchedVirtualCircuitSwitch交换机TACTechnicalAssistanceCenterTAST时间分配话音插空技术TimeAssignmentbySpeechInterpolationTC传输汇集(子层)TransmissionConvergenceTCAP事务处理能力应用部分(Transaction Capabilities Application Part)TCP传输控制协议TransmissionControlProtocolTDM时分多路复用TimeDivisionMultiplexingTFTP单纯文件传输协议TrivialFileTransferprotocolTIP终端接口处理机TerminalInterfaceProcessorTP双绞线TwistedPairTSAP传输层服务访问点TransportServiceAccessPointTTL生存时间TimeToLiveTTR定时令牌旋转UBR未定义比特率UndefinedBitRateUEM通用以太网模块UniversalEthernetModuleUDP用户数据报协议UserDatagramProtocol区分DUP(Data User Part )UIUnix国际UNI用户-网络接口User-NetworkInterfaceUPC使用参数控制UsageParameterControlURL统一资源定位UniversalResourceLocatorUSB通用串行总线UniversalSerialBusUTP非屏蔽双绞线UnshieldedTwistedPair UUCPUnixtoUnixCopyProgramVAN增值网ValueAddedNetworkVBR可变比特率VariableBitRateVCC虚信道连接VirtualChannelConnectionVCIvirtualchannelidentifierV-D向量-距离(算法)又叫Bellman-Ford算法)vector-distance VLANVirtualLANVLSI超大规模集成电路VLSM 可变长子网掩码Variable-Length Subnet Masks VOD点播图像VideoonDemandVPC虚路径连接VirtualPathConnectionVPI虚路径标识virtualpathidentifierVPN虚拟专用网络VirtualPrivateNetworkVRML虚拟现实造型语言VirtualRealityModelingLanguage VTP虚拟隧道协议WAN广域网WideAreaNetworkWDM波分多路复用WavelengthDivisionMultiplexing WDMA波分多路访问WavelengthDivisionMultipleAccess WRBWeb请求代理WebRequestBrokerWWW万维网WorldWideWeb或者W3C。

基于改进ICP算法的三维点云刚体配准方法

基于改进ICP算法的三维点云刚体配准方法

西北大学学报(自然科学版)2021年4月,第51卷第2期,Apr.,2021,VoU51,No.2Journal of Northwest University(Natural Science Edition)-深度信息感知与理解-基于改进ICP算法的三维点云刚体配准方法汪霖#,郭佳琛1,张璞#,万腾2,刘成1,杜少毅2(1.西北大学信息科学与技术学院,陕西西安710127;2.西安交通大学人工智能学院,陕西西安710149)摘要:针对含有噪声和外点的三维,点云刚体配准问题,由于迭代最近点(iterative closestpoint,ICP)算法的配准精度较低,为此,该文提出了一种基于改进ICP算法的三维点云刚体配准方法。

考虑到伪Huber损失函数对噪声和外点不敏感、鲁棒性强,首先,建立了基于伪Huber损失函数的三维点云刚体配准模型。

其次,利用RGB-D点云数据中颜色信息辅助建立点云对应关系,以提高改进ICP算法中对应点匹配的准确性。

最后,结合奇异值分解'singular value decomposition,SVD)和Levenberg-Marquardt(LM)的优化算法对三维点云刚体配准模型进行优化求解。

实验结果表明,该文所提三维点云刚体配准方法的配准精度高,能够有效抑制噪声和外点对配准精度的影响。

关键词:三维点云刚体配准;伪Huber损失函数&RGB-D点云数据;噪声和外点中图分类号:TP391.41DOI:10.16152/j.enki.cdxbzr.2021-02-002开放科学(资源服务)标识码(OSID):Rigit registration method of3D point cloud basedon improved ICP algorithmWANG Lin1,GUO Jiachen1,ZHANG Pu1,WAN Teng2,LI Cheng1,DU ShaoyC(1.School of Information Science and Technolovy,Northwest University,Xi'an710127,China;2.Collexe of Artificial Intellixencc,Xi'an Jiao t ong University,Xi'an710049,China)Abstract:Aiming at the problem q U ogid rexistration q U tUree-dimensionai(3D)point cloud with noise and outliers,due to the low rexistration accuocy of the iterative closest point(ICP)algorithm,a ogid rexistration method of3D point cloud based on improved ICP algorithm is proposed in this paper.Firstly,consideong tUat the pseudo Huber loss function is insensitive to noise and outliers,and has strong obustness,a3D point cloud eogod eegoteatoon modeoba7ed on p7eudoHubeeoo7eunctoon oe7taboohed.Secondoy,on oedeetoompeoeethe matchongaccueacyoetheco e e7pondongpoont on theompeoeed ICPaogoeothm,coooeoneoematoon oeRGBrD poontcooud dataou7ed toa7oton e7taboohongtheco e e7pondongeeoatoon7hop between poontcooud7.Fona o y, 7onguoaeeaouedecompo7otoon(SVD)and LeeenbeegrMaequaedt(LM)optomoeatoon aogoeothm7aeecomboned to optomoeethe3Dpoontcooud eogod eegoteatoon modeo.Etpeeomentaoee7uot7howthatthepeopo7ed eogod eegotear收稿日期:2020-12-15基金项目:国家自然科学基金资助项目(61971343);陕西省重点研发计划资助项目(2020KWD10);陕西省自然科学基础研究计划资助项目(2020JMD12)第一作者:汪霖,男,浙江杭州人,副教授,从事智能机器人环境感知、群体智能优化、三维点云处理研究&通信作者:杜少毅,男,福建龙岩人,教授,博士生导师,博士,从事图像点集配准、智能车、医学图像处理研究& E-mail:dushaoyi@・184・西北大学学报(自然科学版)第51卷tion method of3D point cloud csii ensure high reaistration accurace and egectWgy suppress Wa influence of noisc and outliers on tha reaistration accurace as well.Key words:igid reaistration of3D point cloud;pseudo Hubar loss function;RGB-D point cloud data;noisc and outliers对于不同光照、角度等条件下获取的两个三维点云,其刚体配准的目的是建立两个点云间的空间对应关系,并寻找它们之间的最优刚体变换关系[1],从而对齐空间中的两个点云。

顾及杆状物和车道线的城市道路场景轻量化快速点云自动配准

顾及杆状物和车道线的城市道路场景轻量化快速点云自动配准

第 32 卷第 4 期2024 年 2 月Vol.32 No.4Feb. 2024光学精密工程Optics and Precision Engineering顾及杆状物和车道线的城市道路场景轻量化快速点云自动配准赵辉友,吴学群*,夏永华(昆明理工大学国土资源工程学院,云南昆明 600093)摘要:针对激光扫描获取城市场景出现不同时期位置偏差,传统点云配准方法存在效率低和鲁棒性低等局限性,本文提出了顾及杆状物和车道线的点云配准改进方法。

首先对滤波后的点云进行体素格网降采样,再利用布料模型滤波对地面点滤波,后使用K均值无监督分类非地面点云,后用先验的随机一致抽样法提取杆状物作为目标特征,并根据点云反射强度提出点云灰度图和空间密度分割法提取车道线。

利用改进迭代最近点(ICP)算法和法向量约束,将杆状物作和车道线作为配准基元,几何一致算法剔除错误点对,并使用双向KD-tree快速对应特征点的关系,加快配准速度和提高精度。

经实验证明,在低重叠度的城市点云场景耗时不到20 s,且只迭代20次,精度可达1.987 7×10-5 m,可实现城市道路场景点云的高效准确配准。

关键词:车载激光扫描;杆状物;地面点滤波;K均值;车道线;改进ICP中图分类号:TP394.1;TH691.9 文献标识码:A doi:10.37188/OPE.20243204.0535Urban road scenes utilize lightweight fast point cloudauto-registration of poles-like and lane linesZHAO Huiyou,WU Xuequn*,XIA Yonghua(College of Mechanical Engineering, Kunming University of Science and Technology,Kunming 600093, China)* Corresponding author, E-mail: wuxuequn520@163. comAbstract: In view of the position deviation of vehicle laser scanning to obtain urban scenes in different peri⁃ods, the Traditional point cloud registration methods still have the limitations of low efficiency and low ro⁃bustness, and an improved point cloud registration method using rods and lane lines was proposed in this pa⁃per. Firstly, the filtered point cloud was voxel grid down-sampled, and then the cloth model was used to fil⁃ter the ground points,and then the K-means unsupervised classification of non-ground point clouds was used, and then the rods were extracted as the target features, and the point cloud grayscale map and spatial density segmentation method were proposed according to the reflection intensity of the point cloud.Then,the improved iterative closest point (ICP)algorithm and normal constraint were used to use rods and lane lines as registration primitives, geometric consistency algorithms were used to eliminate wrong point pairs,and bidirectional KD-trees were used to quickly correspond to the relationship of feature points, so as to ac⁃文章编号1004-924X(2024)04-0535-14收稿日期:2023-08-11;修订日期:2023-09-08.基金项目:国家自然科学基金地区基金项目(No.42161067,No.42261074)第 32 卷光学精密工程celerate the registration speed and improve accuracy. Experiments show that it takes less than 20 s in urban point cloud scenarios with low overlap, and only 20 iterations, and the accuracy can reach 1.987 7×10-5 me⁃ters, which can realize the efficient and accurate registration of laser point clouds in urban road scenes.Key words: vehicle laser scan;pole-like object;ground point filtering;K-means;lane lines;improved Iterative Closest Point(ICP)1 引言随着智慧城市和数字化城市的迅猛发展,对各大场景三维信息获取的效率和精度有着更高的要求,出现了许多可以获取三维信息的方法,如傅里叶变换轮廓术(Fourier Transform Pro⁃filometry,FTP),相移测量轮廓术(Phase Shift⁃ing Profilometry,PSP),调制测量轮廓术(Modu⁃lation Measurement Profilometry,MMP),空间相位检测法(Spatial Phase Detection,SPD),锁相环轮廓法(Phase Lock Loop Profilometry,PLLP),计算莫尔轮廓术(Computer-Generated Moire Profilometry ,CGMP),激光雷达距离测量等(Light Detection and Ranging Measurement,Li⁃DAR)[1-4]。

区块链技术在物联网设备安全定位中的应用

区块链技术在物联网设备安全定位中的应用

物联网技术Internet of Things《自动化技术与应用》2020年第39卷第12期区块链技术在物联网设备安全定位中的应用马宗保,任强(西安文理学院信息工程学院,陕西西安710065)摘要:针对物联网定位算法很易受注入错误位置的影响,提出了一种基于区块链的物联网安全定位算法。

该算法使用区块链分布式账本在物联网设备之间的共享方式。

物联网设备被定位后,新位置和相邻节点的列表将添加到区块链中,共享的定位数据会被其他设备用于其定位。

为了避免恶意节点发送虚假位置攻击,位置信息添加到区块链之前需进行真实性、正确性、完整性验证。

研究结果表明:将安全机制集成到定位过程中,可排除错误数据,降低定位错误概率。

在存在恶意节点的情况下运行时,添加该安全机制可以提高算法的定位精度。

关键词:物联网;区块链;恶意节点;安全定位中图分类号:TP311.13文献标识码:A文章编号:1003-7241(2020)012-0096-05Application of Blockchai n Tech no l ogy in Security Positio n ingof Internet of Things DevicesMA Zong-bao,REN Qiang(School of Information Engineering,Xi'an University,Xi'an710065China)Abstract:In view of the fact that the location algorithm of the Internet of things is easily affected by the wrong injection location,a security location algorithm of the Internet of things based on blockchain is proposed.The algorithm uses blockchain dis­tributed ledgers to share among IOT devices.After the IOT devices are located,the list of new locations and adjacent nodes are added to the blockchain,and the shared location data is used by other devices for their location.In order to avoid malicious nodes sending false location attacks,the authenticity,correctness and integrity of location information should be verified before it is added to the blockchain.The results show that integrating the security mechanism into the positioning process can eliminate the wrong data and reduce the probability of positioning errors.When running in the presence of malicious nodes,adding this security mechanism can improve the positioning accuracy of the algorithm.Key words:Internet of things;Block chain;malicious node;safety orientation1引言由于物联网中上下文感知应用程序的出现,定位算法引起了专业技术人员的兴趣「t。

Efficient Variants of the ICP Algorithm

Efficient Variants of the ICP Algorithm

Efficient Variants of the ICP AlgorithmSzymon RusinkiewiczMarc LevoyStanford UniversityAbstractThe ICP(Iterative Closest Point)algorithm is widely used for ge-ometric alignment of three-dimensional models when an initial estimate of the relative pose is known.Many variants of ICP have been proposed,affecting all phases of the algorithm from the se-lection and matching of points to the minimization strategy.We enumerate and classify many of these variants,and evaluate their effect on the speed with which the correct alignment is reached. In order to improve convergence for nearly-flat meshes with small features,such as inscribed surfaces,we introduce a new variant based on uniform sampling of the space of normals.We conclude by proposing a combination of ICP variants optimized for high speed.We demonstrate an implementation that is able to align two range images in a few tens of milliseconds,assuming a good initial guess.This capability has potential application to real-time 3D model acquisition and model-based tracking.1Introduction–Taxonomy of ICP Variants The ICP(originally Iterative Closest Point,though Iterative Corre-sponding Point is perhaps a better expansion for the abbreviation) algorithm has become the dominant method for aligning three-dimensional models based purely on the geometry,and sometimes color,of the meshes.The algorithm is widely used for registering the outputs of3D scanners,which typically only scan an object from one direction at a time.ICP starts with two meshes and an initial guess for their relative rigid-body transform,and itera-tively refines the transform by repeatedly generating pairs of cor-responding points on the meshes and minimizing an error metric. Generating the initial alignment may be done by a variety of meth-ods,such as tracking scanner position,identification and index-ing of surface features[Faugeras86,Stein92],“spin-image”sur-face signatures[Johnson97a],computing principal axes of scans [Dorai97],exhaustive search for corresponding points[Chen98, Chen99],or user input.In this paper,we assume that a rough ini-tial alignment is always available.In addition,we focus only on aligning a single pair of meshes,and do not address the global reg-istration problem[Bergevin96,Stoddart96,Pulli97,Pulli99].Since the introduction of ICP by Chen and Medioni[Chen91] and Besl and McKay[Besl92],many variants have been intro-duced on the basic ICP concept.We may classify these variants as affecting one of six stages of the algorithm:1.Selection of some set of points in one or both meshes.2.Matching these points to samples in the other mesh.3.Weighting the corresponding pairs appropriately.4.Rejecting certain pairs based on looking at each pair indi-vidually or considering the entire set of pairs.5.Assigning an error metric based on the point pairs.6.Minimizing the error metric.In this paper,we will look at variants in each of these six cat-egories,and examine their effects on the performance of ICP.Al-though our main focus is on the speed of convergence,we also consider the accuracy of thefinal answer and the ability of ICP to reach the correct solution given“difficult”geometry.Our compar-isons suggest a combination of ICP variants that is able to align a pair of meshes in a few tens of milliseconds,significantly faster than most commonly-used ICP systems.The availability of such a real-time ICP algorithm may enable significant new applications in model-based tracking and3D scanning.In this paper,wefirst present the methodology used for com-paring ICP variants,and introduce a number of test scenes used throughout the paper.Next,we summarize several ICP variants in each of the above six categories,and compare their convergence performance.As part of the comparison,we introduce the con-cept of normal-space-directed sampling,and show that it improves convergence in scenes involving sparse,small-scale surface fea-tures.Finally,we examine a combination of variants optimized for high speed.2Comparison MethodologyOur goal is to compare the convergence characteristics of several ICP variants.In order to limit the scope of the problem,and avoid a combinatorial explosion in the number of possibilities,we adopt the methodology of choosing a baseline combination of variants, and examining performance as individual ICP stages are varied. The algorithm we will select as our baseline is essentially that of [Pulli99],incorporating the following features:Random sampling of points on both meshes.Matching each selected point to the closest sample in the other mesh that has a normal within45degrees of the source normal.Uniform(constant)weighting of point pairs.Rejection of pairs containing edge vertices,as well as a per-centage of pairs with the largest point-to-point distances.Point-to-plane error metric.The classic“select-match-minimize”iteration,rather than some other search for the alignment transform.We pick this algorithm because it has received extensive use in a production environment[Levoy00],and has been found to be robust for scanned data containing many kinds of surface features.In addition,to ensure fair comparisons among variants,we make the following assumptions:The number of source points selected is always2,000.Since the meshes we will consider have100,000samples,this cor-responds to a sampling rate of1%per mesh if source points are selected from both meshes,or2%if points are selected from only one mesh.All meshes we use are simple perspective range images,as opposed to general irregular meshes,since this enables com-parisons between“closest point”and“projected point”vari-ants(see Section3.2).Surface normals are computed simply based on the four nearest neighbors in the range grid.(a)Wave(b)Fractal landscape(c)Incised planeFigure1:Test scenes used throughout this paper.Only geometry is used for alignment,not color or intensity. With the exception of the last one,we expect that changing any of these implementation choices would affect the quantitative,but not the qualitative,performance of our tests.Although we will not compare variants that use color or intensity,it is clearly ad-vantageous to use such data when available,since it can provide necessary constraints in areas where there are few geometric fea-tures.2.1Test ScenesWe use three synthetically-generated scenes to evaluate variants. The“wave”scene(Figure1a)is an easy case for most ICP vari-ants,since it contains relatively smooth coarse-scale geometry. The two meshes have independently-added Gaussian noise,out-liers,and dropouts.The“fractal landscape”test scene(Figure1b) has features at all levels of detail.The“incised plane”scene(Fig-ure1c)consists of two planes with Gaussian noise and grooves in the shape of an“X.”This is a difficult scene for ICP,and most variants do not converge to the correct alignment,even given the small relative rotation in this starting position.Note that the three test scenes consist of low-frequency,all-frequency,and high-frequency features,respectively.Though these scenes certainly do not cover all possible classes of scanned objects,they are representative of surfaces encountered in many classes of scan-ning applications.For example,the Digital Michelangelo Project [Levoy00]involved scanning surfaces containing low-frequency features(e.g.,smooth statues),fractal-like features(e.g.,unfin-ished statues with visible chisel marks),and incisions(e.g.,frag-ments of the Forma Urbis Romæ).The motivation for using synthetic data for our comparisons is so that we know the correct transform exactly,and can evaluate the performance of ICP algorithms relative to this correct align-ment.The metric we will use throughout this paper is root-mean-square point-to-point distance for the actual corresponding points in the two ing such a“ground truth”error metric al-lows for more objective comparisons of the performance of ICP variants than using the error metrics computed by the algorithms themselves.We only present the results of one run for each tested variant. Although a single run clearly can not be taken as representing the performance of an algorithm in all situations,we have tried to show typical results that capture the significant differences in performance on various kinds of scenes.Any cases in which the presented results are not typical are noted in the text.All reported running times are for a C++implementation run-ning on a550MHz Pentium III Xeon processor.3Comparisons of ICP VariantsWe now examine ICP variants for each of the stages listed in Sec-tion1.For each stage,we summarize the variants in the literature and compare their performance on our test scenes.3.1Selection of PointsWe begin by examining the effect of the selection of point pairs on the convergence of ICP.The following strategies have been proposed:Always using all available points[Besl92].Uniform subsampling of the available points[Turk94].Random sampling(with a different sample of points at each iteration)[Masuda96].Selection of points with high intensity gradient,in variants that use per-sample color or intensity to aid in alignment [Weik97].Each of the preceding schemes may select points on only one mesh,or select source points from both meshes[Godin94].In addition to these,we introduce a new sampling strategy: choosing points such that the distribution of normals among se-lected points is as large as possible.The motivation for this strat-egy is the observation that for certain kinds of scenes(such as our“incised plane”data set)small features of the model are vi-tal to determining the correct alignment.A strategy such as ran-dom sampling will often select only a few samples in these fea-tures,which leads to an inability to determine certain compo-nents of the correct rigid-body transformation.Thus,one way to improve the chances that enough constraints are present to determine all the components of the transformation is to bucket the points according to the position of the normals in angular space,then sample as uniformly as possible across the buckets. Normal-space sampling is therefore a very simple example of using surface features for alignment;it has lower computational cost,but lower robustness,than traditional feature-based methods [Faugeras86,Stein92,Johnson97a].Let us compare the performance of uniform subsampling,ran-dom sampling,and normal-space sampling on the“wave”scene (Figure2).As we can see,the convergence performance is sim-ilar.This indicates that for a scene with a good distribution of normals the exact sampling strategy is not critical.The results for the“incised plane”scene look different,however(Figure3).Only the normal-space sampling is able to converge for this data set.The reason is that samples not in the grooves are only help-ful in determining three of the six components of the rigid-body transformation(one translation and two rotations).The other three components(two translations and one rotation,within the plane)0.20.40.60.811.20246810R M S a l i g n m e n t e r r o rIterationConvergence rate for "wave" sceneUniform sampling Random sampling Normal-space samplingFigure 2:Comparison of convergence rates for uniform,random,and normal-space sampling for the “wave”meshes.00.20.40.60.811.205101520R M S a l i g n m e n t e r r o rIterationConvergence rate for "incised plane" sceneUniform sampling Random sampling Normal-space samplingFigure 3:Comparison of convergence rates for uniform,random,and normal-space sampling for the “incised plane”meshes.Note that,on the lower curve,the ground truth error increases briefly in the early iterations.This illustrates the difference between the ground truth error and the algo-rithm’s estimate of its own error.(a)(b)(c)(d)Figure 4:Corresponding point pairs selected by the (a)“random sam-pling”and (b)“normal-space sampling”strategies for an incised ing random sampling,the sparse features may be overwhelmed by pres-ence of noise or distortion,causing the ICP algorithm to not converge to a correct alignment (c).The normal-space sampling strategy ensures that enough samples are placed in the feature to bring the surfaces into align-ment (d).“Closest compatible point”matching (see Section 3.2)was used for this example.The meshes in (c)and (d)are scans of fragment 165d of the Forma Urbis Romæ.0.511.520246810R M S a l i g n m e n t e r r o rIterationConvergence rate for "wave" sceneSource points in one mesh Source points in both meshesFigure 5:Comparison of convergence rates for single-source-mesh and both-source-mesh sampling strategies for the “wave”meshes.0.511.520246810R M S a l i g n m e n t e r r o rIterationConvergence rate for "wave" scene using "normal shooting"Source points in one mesh Source points in both meshesFigure 6:Comparison of convergence rates for single-source-mesh and both-source-mesh sampling strategies for the “wave”meshes,using nor-mal shooting as the matching algorithm.are determined entirely by samples within the incisions.The ran-dom and uniform sampling strategies only place a few samples in the grooves (Figure 4a).This,together with the fact that noise and distortion on the rest of the plane overwhelms the effect of those pairs that are sampled from the grooves,accounts for the inability of uniform and random sampling to converge to the correct align-ment.Conversely,normal-space sampling selects a larger number of samples in the grooves (Figure 4b).Sampling Direction:We now look at the relative advantages of choosing source points from both meshes,versus choosing points from only one mesh.For the “wave”test scene and the base-line algorithm,the difference is minimal (Figure 5).However,this is partly due to the fact that we used the closest compatible point matching algorithm (see Section 3.2),which is symmetric with respect to the two meshes.If we use a more “asymmetric”matching algorithm,such as projection or normal shooting (see Section 3.2),we see that sampling from both meshes appears to give slightly better results (Figure 6),especially during the early stages of the iteration when the two meshes are still far apart.In addition,we expect that sampling from both meshes would also improve results when the overlap of the meshes is small,or when the meshes contain many holes.3.2Matching PointsThe next stage of ICP that we will examine is correspondence finding.Algorithms have been proposed that,for each sample point selected:Find the closest point in the other mesh [Besl 92].This com-putation may be accelerated using a k-d tree and/or closest-point caching [Simon 96].Find the intersection of the ray originating at the source point in the direction of the source point’s normal with the desti-nation surface[Chen91].We will refer to this as“normal shooting.”Project the source point onto the destination mesh,from the point of view of the destination mesh’s range camera [Blais95,Neugebauer97].This has also been called“re-verse calibration.”Project the source point onto the destination mesh,thenperform a search in the destination range image.The search might use a metric based on point-to-point distance [Benjemaa97],point-to-ray distance[Dorai98],or compat-ibility of intensity[Weik97]or color[Pulli97].Any of the above methods,restricted to only matching points compatible with the source point according to a given metric.Compatibility metrics based on color[Godin94]and anglebetween normals[Pulli99]have been explored.Since we are not analyzing variants that use color,the particu-lar variants we will compare are:closest point,closest compat-ible point(normals within45degrees),normal shooting,normalshooting to a compatible point(normals within45degrees),pro-jection,and projection followed by search.Thefirst four of these algorithms are accelerated using a k-d tree.For the last algorithm,the search is actually implemented as a steepest-descent neighbor-to-neighbor walk in the destination mesh that attempts tofind the closest point.We chose this variation because it works nearly aswell as projection followed by exhaustive search in some window, but has lower running time.Wefirst look at performance for the“fractal”scene(Figure7).For this scene,normal shooting appears to produce the best re-sults,followed by the projection algorithms.The closest-point algorithms,in contrast,perform relatively poorly.We hypothesizethat the reason for this is that the closest-point algorithms are more sensitive to noise and tend to generate larger numbers of incorrect pairings than the other algorithms(Figure8).The situation in the“incised plane”scene,however,is different (Figure9).Here,the closest-point algorithms were the only ones that converged to the correct solution.Thus,we conclude thatalthough the closest-point algorithms might not have the fastest convergence rate for“easy”scenes,they are the most robust for “difficult”geometry.Though so far we have been looking at error as a function of thenumber of iterations,it is also instructive to look at error as a func-tion of running time.Because the matching stage of ICP is usuallythe one that takes the longest,applications that require ICP to run quickly(and that do not need to deal with the geometrically“dif-ficult”cases)must choose the matching algorithm with the fastestperformance.Let us therefore compare error as a function of time for these algorithms for the“fractal”scene(Figure10).We see that although the projection algorithm does not offer the best con-vergence per iteration,each iteration is faster than an iteration of closest pointfinding or normal shooting because it is performed in constant time,rather than involving a closest-point search(which,even when accelerated by a k-d tree,takes O log n time).As a re-sult,the projection-based algorithm has a significantly faster rateof convergence vs.time.Note that this graph does not include the time to compute the k-d trees used by all but the projection algo-rithms.Including the precomputation time(approximately0.64seconds for these meshes)would produce even more favorable re-sults for the projection algorithm.0.511.5205101520RMSalignmenterrorIterationConvergence rate for "fractal" sceneClosest pointClosest compatible pointNormal shootNormal shoot compatibleProjectProject and walkFigure7:Comparison of convergence rates for the“fractal”meshes,for a variety of matching algorithms.ing algorithm potentially generates large numbers of incorrect pairings when the meshes are still relatively far from each other,slowing the rate of convergence.(b)The“projection”matching strategy is less sensitive to the presence of noise.0.511.520510152025303540RMSalignmenterrorIterationConvergence rate for "incised plane" sceneClosest pointClosest compatible pointNormal shootNormal shoot compatibleProjectProject and walkFigure9:Comparison of convergence rates for the“incised plane”meshes,for a variety of matching algorithms.Normal-space-directed sam-pling was used for these measurements.0.511.5200.20.40.60.81 1.2RMSalignmenterrorTime (sec.)Convergence rate vs. time for "fractal" sceneClosest pointClosest compatible pointNormal shootNormal shoot compatibleProjectProject and walkFigure10:Comparison of convergence rate vs.time for the“fractal”meshes,for a variety of matching algorithms(cf.Figure7).Note that these times do not include precomputation(in particular,computing the k-d trees used by thefirst four algorithms takes0.64seconds).00.20.40.60.811.21.4012345678R M S a l i g n m e n t e r r o rIterationConvergence rate for "wave" sceneConstant weight Linear with distanceUncertaintyCompatibility of normalsFigure 11:Comparison of convergence rates for the “wave”meshes,for several choices of weighting functions.In order to increase the differences among the variants we have doubled the amount of noise and outliers in the mesh.00.20.40.60.811.21.405101520R M S a l i g n m e n t e r r o rIterationConvergence rate for "incised plane" sceneConstant weight Linear with distanceUncertaintyCompatibility of normalsFigure 12:Comparison of convergence rates for the “incised plane”meshes,for several choices of weighting functions.Normal-space-directed sampling was used for these measurements.3.3Weighting of PairsWe now examine the effect of assigning different weights to the corresponding point pairs found by the previous two steps.We consider four different algorithms for assigning these weights:Constant weightAssigning lower weights to pairs with greater point-to-point distances.This is similar in intent to dropping pairs with point-to-point distance greater than a threshold (see Section 3.4),but avoids the discontinuity of the latter approach.Fol-lowing [Godin 94],we useWeight =1−Dist p 1,p 2(b)(a)Figure 13:(a)When two meshes to be aligned do not overlap completely (as is the case for most real-world data),allowing correspondences involv-ing points on mesh boundaries can introduce a systematic bias into the alignment.(b)Disallowing such pairs eliminates many of these incorrect correspondences.0.20.40.60.811.20246810R M S a l i g n m e n t e r r o rIterationConvergence rate for "wave" sceneUse all pairs Reject worst 10%Reject incompatible pairs2.5 SigmaFigure 14:Comparison of convergence rates for the “wave”meshes,for several pair rejection strategies.As in Figure 11,we have added extra noise and outliers to increase the differences among the variants.relatively far from aligned.Thus,we conclude that outlier rejec-tion,though it may have effects on the accuracy and stability with which the correct alignment is determined,in general does not improve the speed of convergence.3.5Error Metric and MinimizationThe final pieces of the ICP algorithm that we will look at are the error metric and the algorithm for minimizing the error metric.The following error metrics have been used:Sum of squared distances between corresponding points.For an error metric of this form,there exist closed-form solutions for determining the rigid-body transforma-tion that minimizes the error.Solution methods based on singular value decomposition [Arun 87],quaternions [Horn 87],orthonormal matrices [Horn 88],and dual quater-nions [Walker 91]have been proposed;Eggert et.al.have evaluated the numerical accuracy and stability of each of these [Eggert 97],concluding that the differences among them are small.The above “point-to-point”metric,taking into account both the distance between points and the difference in colors [Johnson 97b].Sum of squared distances from each source point to the plane containing the destination point and oriented perpendicu-lar to the destination normal [Chen 91].In this “point-to-plane”case,no closed-form solutions are available.The least-squares equations may be solved using a generic non-linear method (e.g.Levenberg-Marquardt),or by simply lin-earizing the problem (i.e.,assuming incremental rotations are small,so sin ∼and cos ∼1).There are several ways to formulate the search for the align-ment:0.511.5205101520R M S a l i g n m e n t e r r o rIterationConvergence rate for "fractal" scenePoint-to-pointPoint-to-point with extrapolationPoint-to-planePoint-to-plane with extrapolationFigure 15:Comparison of convergence rates for the “fractal”meshes,for different error metrics and extrapolation strategies.0.511.5205101520R M S a l i g n m e n t e r r o rIterationConvergence rate for "incised plane" scenePoint-to-pointPoint-to-point with extrapolationPoint-to-planePoint-to-plane with extrapolationFigure 16:Comparison of convergence rates for the “incised plane”meshes,for different error metrics and extrapolation strategies.Normal-space-directed sampling was used for these measurements.Repeatedly generating a set of corresponding points using the current transformation,and finding a new transformation that minimizes the error metric [Chen 91].The above iterative minimization,combined with extrapola-tion in transform space to accelerate convergence [Besl 92].Performing the iterative minimization starting with several perturbations in the initial conditions,then selecting the best result [Simon 96].This avoids spurious local minima in the error function,especially when the point-to-point error met-ric is used.Performing the iterative minimization using various randomly-selected subsets of points,then selecting the optimal result using a robust (least median of squares)metric [Masuda 96].Stochastic search for the best transform,using simulated an-nealing [Blais 95].Since our focus is on convergence speed,and since the latter three approaches tend to be slow,our comparisons will focus on the first two approaches described above (i.e.,the “classic”ICP iteration,with or without extrapolation).The extrapolation algo-rithm we use is based on the one described by Besl and McKay [Besl 92],with two minor changes to improve effectiveness and reduce overshoot:When quadratic extrapolation is attempted and the parabola opens downwards,we use the largest x intercept instead of the extremum of the parabola.We multiply the amount of extrapolation by a dampening factor,arbitrarily set to 12in our implementation.We have found that although this occasionally reduces the benefit ofextrapolation,it also increases stability and eliminates many problems with overshoot.On the“fractal”scene,we see that the point-to-plane error met-ric performs significantly better than the point-to-point metric, even with the addition of extrapolation(Figure15).For the“in-cised plane”scene,the difference is even more dramatic(Figure 16).Here,the point-to-point algorithms are not able to reach the correct solution,since using the point-to-point error metric does not allow the planes to“slide over”each other as easily.4High-Speed VariantsThe ability to have ICP execute in real time(e.g.,at video rates) would permit significant new applications in computer vision and graphics.For example,[Hall-Holt01]describes an inexpensive structured-light range scanning system capable of returning range images at60Hz.If it were possible to align those scans as they are generated,the user could be presented with an up-to-date model in real time,making it easy to see andfill“holes”in the model.Al-lowing the user to be involved in the scanning process in this way is a powerful alternative to solving the computationally difficult “next best view”problem[Maver93],at least for small,hand-held objects.As described by[Simon96],another application for real-time ICP is model-based tracking of a rigid object.With these goals in mind,we may now construct a high-speed ICP algorithm by combining some of the variants discussed above. Like Blais and Levine,we propose using a projection-based algo-rithm to generate point correspondences.Like Neugebauer,we combine this matching algorithm with a point-to-plane error met-ric and the standard“select-match-minimize”ICP iteration.The other stages of the ICP process appear to have little effect on con-vergence rate,so we choose the simplest ones,namely random sampling,constant weighting,and a distance threshold for reject-ing pairs.Also,because of the potential for overshoot,we avoid extrapolation of transforms.All of the performance measurements presented so far have been made using a generic ICP implementation that includes all of the variants described in this paper.It is,however,possible to make an optimized implementation of the recommended high-speed algorithm,incorporating only the features of the particu-lar variants used.When this algorithm is applied to the“fractal”testcase of Figure10,it reaches the correct alignment in approxi-mately30milliseconds.This is considerably faster than our base-line algorithm(based on[Pulli99]),which takes over one second to align the same scene.It is also faster than previous systems that used the constant-time projection strategy for generating corre-spondences;these used computationally expensive simulated an-nealing[Blais95]or Levenberg-Marquardt[Neugebauer97]al-gorithms,and were not able to take advantage of the speed of projection-based matching.Figure17shows an example of the algorithm on real-world data:two scanned meshes of an elephant figurine were aligned in approximately30ms.This paper is not thefirst to propose a high-speed ICP algorithm suitable for real-time use.David Simon,in his Ph.D.dissertation [Simon96],demonstrated a system capable of aligning meshes in 100-300ms.for256point pairs(one-eighth of the number of pairs considered throughout this paper).His system used closest-point matching and a point-to-point error metric,and obtained much of its speed from a closest-point cache that reduced the number of necessary k-d tree lookups.As we have seen,however,the point-to-point error metric has substantially slower convergence than the point-to-plane metric we use.As a result,our system appears to converge almost an order of magnitude faster,even allowingfor Figure17:High-speed ICP algorithm applied to scanned data.Two scans of an elephantfigurine from a prototype video-rate structured-light range scanner were aligned by the optimized high-speed algorithm in30ms. Note the interpenetration of scans,suggesting that a good alignment has been reached.increase in processor speeds.In addition,our system does not require preprocessing to generate a k-d tree.5ConclusionWe have classified and compared several ICP variants,focusing on the effect each has on convergence speed.We have introduced a new sampling method that helps convergence for scenes with small,sparse features.Finally,we have presented an optimized ICP algorithm that uses a constant-time variant forfinding point pairs,resulting in a method that takes only a few tens of millisec-onds to align two meshes.Because the present comparisons have focused largely on the speed of convergence,we anticipate future surveys that focus on the stability and robustness of ICP variants.In addition,a bet-ter analysis of the effects of various kinds of noise and distortion would yield further insights into the best alignment algorithms for real-world,noisy scanned data.Algorithms that switch between variants,depending on the local error landscape and the probable presence of local minima,might also provide increased robust-ness.References[Arun87]Arun,K.,Huang,T.,and Blostein,S.“Least-Squares Fitting of Two3-D Point Sets,”Trans.PAMI,V ol.9,No.5,1987. [Benjemaa97]Benjemaa,R.and Schmitt,F.“Fast Global Registration of3D Sampled Surfaces Using a Multi-Z-Buffer Technique,”Proc.3DIM,1997.[Bergevin96]Bergevin,R.,Soucy,M.,Gagnon,H.,and Laurendeau,D.“Towards a General Multi-View Registration Technique,”Trans.PAMI,V ol.18,No.5,1996.[Besl92]Besl,P.and McKay,N.“A Method for Registration of3-D Shapes,”Trans.PAMI,V ol.14,No.2,1992.[Blais95]Blais,G.and Levine,M.“Registering Multiview Range Data to Create3D Computer Objects,”Trans.PAMI,V ol.17,No.8,1995. [Chen91]Chen,Y.and Medioni,G.“Object Modeling by Registration of Multiple Range Images,”Proc.IEEE Conf.on Robotics and Au-tomation,1991.[Chen98]Chen,C.,Hung,Y.,and Cheng,J.“A Fast Automatic Method for Registration of Partially-Overlapping Range Images,”Proc.ICCV, 1998.[Chen99]Chen, C.,Hung,Y.,and Cheng,J.“RANSAC-Based DARCES:A New Approach to Fast Automatic Registration of Par-tially Overlapping Range Images,”Trans.PAMI,V ol.21,No.11,1999. [Dorai97]Dorai,C.,Weng,J.,and Jain,A.“Optimal Registration of Object Views Using Range Data,”Trans.PAMI,V ol.19,No.10,1997. [Dorai98]Dorai,C.,Weng,J.,and Jain,A.“Registration and Integration of Multiple Object Views for3D Model Constrution,”Trans.PAMI, V ol.20,No.1,1998.。

ICP算法——精选推荐

ICP算法——精选推荐

ICP算法ICP(Iterative Closest Point),即迭代最近点算法,是经典的数据配准算法。

其特征在于,通过求取源点云和⽬标点云之间的对应点对,基于对应点对构造旋转平移矩阵,并利⽤所求矩阵,将源点云变换到⽬标点云的坐标系下,估计变换后源点云与⽬标点云的误差函数,若误差函数值⼤于阀值,则迭代进⾏上述运算直到满⾜给定的误差要求.ICP算法采⽤最⼩⼆乘估计计算变换矩阵,原理简单且具有较好的精度,但是由于采⽤了迭代计算,导致算法计算速度较慢,⽽且采⽤ICP 进⾏配准计算时,其对配准点云的初始位置有⼀定要求,若所选初始位置不合理,则会导致算法陷⼊局部最优。

Align 3D Data如果空间中两组点云之间的对应关系已经明确,则很容易求得两者之间的刚性变换,即旋转和平移共6个参数,但这种对应关系⼀般很难事先知道。

ICP算法假设两组点云之间的对应关系由最近点确定,⼀步步将源点云P匹配到⽬标点云Q。

ICP算法主要包含对应点确定和变换计算更新,简要流程如下1. 在源点云P中选择⼀些随机点p i,i=1,2,⋯,n2. 在⽬标点云Q中找到每个点p i的最近点q i3. 剔除⼀些距离较远的点对4. 构建距离误差函数E5. 极⼩化误差函数,如果对应点距离⼩于给定阈值设置,则算法结束;否则根据计算的旋转平移更新源点云,继续上述步骤。

Basic ICP传统的ICP算法主要有两种度量函数,即point-to-point和point-to-plane距离,⼀般来说,point-to-plane距离能够加快收敛速度,也更加常⽤。

Point-to-Point Error MetricE point=∑i‖Point-to-Plane Error MetricE_{plane} = \sum_{i}\left[\left(\mathrm{R} p_{i}+t-q_{i}\right) \cdot n_{q_i}\right]^{2}Colored ICPColored ICP算法[Park2017]针对有颜⾊的点云,在原始point-to-plane能量项的基础上,增加了⼀个对应点对之间的颜⾊约束,能够有更好的配准结果。

ICP算法

ICP算法
要唯一确定这六个未知参数需要六个线性方程即至少需要在待匹配点云重叠区域找到3组对应点对且3组对应点对丌能共线才可以得到这几个未知数的值进而完成刚性矩阵的参数估计
This paper insight into the registration process and some existing problems of thetraditional ICP algorithm and its improved algorithm, and puts forward an improved ICPalgorithm based on the feature descriptor of spin-image..
通过最小化目标函数来求解最优变换矩阵,即R和t。
Do onething at a time, and do well. Never forget to say thanks”. Keep on going never give up. Whatever
ICP算法的基本原理是:分别在带匹配的目标点云P和源点云Q中,按照一定的 约束条件,找到最邻近点(pi,qi),然后计算出最优匹配参数R和t,使得误差函 数最小。误差函数为E(R,t)为:
Lobal Standard
A designer can use default text to simulate what text would look like. It looks even better with you using this text. Whoever evaluates your text cannot evaluate the way you write. Your design looks awesome by the way.

fofa icp语法

fofa icp语法

fofa icp语法摘要:1.FOFA ICP 语法简介2.FOFA ICP 语法的特点3.FOFA ICP 语法的应用领域4.FOFA ICP 语法的优缺点正文:FOFA ICP(Input-Output-Function-Algorithm)语法是一种用于描述复杂系统功能的形式化方法。

ICP 语法起源于德国计算机科学家Zuse 的ICP 理论,后来被FOFA(Formal Description of Functioning Systems)研究组发展为一种功能描述语法。

FOFA ICP 语法具有以下特点:1.抽象性:FOFA ICP 语法使用简单的符号和规则描述复杂的系统功能,可以忽略具体的实现细节,突出问题的本质。

2.层次性:FOFA ICP 语法从高层次的功能描述到低层次的算法实现,可以逐层细化,有助于分析和设计复杂的系统。

3.模块化:FOFA ICP 语法将系统功能划分为多个模块,每个模块具有独立的功能和接口,便于系统的开发和维护。

FOFA ICP 语法广泛应用于计算机科学、系统工程、自动控制等领域。

例如,在软件开发中,可以使用FOFA ICP 语法描述软件系统的功能需求和设计方案,以便进行系统分析、设计和测试。

在系统工程中,FOFA ICP 语法可以用于描述和分析复杂的工程系统,以便进行系统优化和改进。

FOFA ICP 语法的优点包括:1.简洁明了:FOFA ICP 语法使用简单的符号和规则,易于理解和掌握。

2.通用性强:FOFA ICP 语法可以描述各种类型的系统功能,具有较强的通用性。

3.可验证性:FOFA ICP 语法可以通过形式化证明方法验证系统功能的正确性和可靠性。

然而,FOFA ICP 语法也存在一些缺点,如语法较为繁琐,描述系统功能时需要较多的文字和符号,对初学者不太友好。

此外,FOFA ICP 语法虽然可以描述复杂的系统功能,但并不能提供完整的系统实现方案,还需要结合其他方法和技术进行系统设计和实现。

一种新的点云拼接算法_左超

一种新的点云拼接算法_左超

Abstract Iterative closest point(ICP)algorithm is widely used in multi-view fine registration of 3D point clouds, while its accuracy and convergence to global optimization depend on initial registration position.It fails when a great difference exists to initial position of the waited registered point clouds.Coarse registration aims to provide a good initial registration position for ICP.A new coarse registration algorithm—iterative least space distribution entropy is proposed based on the space distribution of point clouds,and the concept of entropy is used for describing this distribution law according to information theory.Experiments show that the proposed algorithm can offer a good initial registration position for ICP and it owns a high efficiency and can realize registration without using ICP under precision permission. Key words remote sensing;3D point cloud;interative closest point;registration;entropy OCIS codes 280.3640;100.6890;100.5010
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A Fast Algorithm for ICP-Based3D ShapeBiometricsPing Yan,Kevin W.BowyerDepartment of Computer Science and Engineering,University of Notre Dame,Notre Dame,IN465561IntroductionSince its introduction by Chen and Medioni[1]and Besl and McKay[2],the Iter-ative Closest Point(ICP)algorithm has been widely used for3D shape matching [1,3–5].It has been used in a wide range of application areas,including the integra-tion of range images[6,7]and alignment of CT and MR images[8].Here,we are specifically interested in3D shape matching for biometics[9–13].The ICP algo-rithm is known to be computationally expensive.With two clouds of points,source S(probe)and target T(gallery),the complexity of a typical single ICP iteration is O(N S log(N T))using a K-D tree data structure[9]in the expected case,where N S is the number of points in the source and N T is the number of points in the target.The ICP algorithm iterativelyfinds the minimum distance between two sur-faces.With N I iterations,the overall complexity is O(N I×N S×log(N T))[2].Therefore,matching high-resolution images of both source and target leads to a heavy computational load.A fast ICP implementation is crucial for practical use in biometrics.Using shapes sensed by a3D scanner is a major recent trend in biometrics[9–14].A scan yields a3D surface that can be used as a representation of the subject.In this paper,we illustrate our approach using both3D ear and3D face shapes.There are two types of images in a biometric application,gallery and probe.The gallery images are those that have been enrolled and whose identities are known to the system,while the probe images are those that need to be matched against the images in the gallery.In a recognition scenario,one probe is matched against all the images in the gallery,and the algorithm returns the match with the minimum error distance. In a verification scenario,one probe is matched against just one gallery entry,the one enrolled for the claimed identity.In recognition or verification experiments, enrollment occurs once and is followed by many instances of recognition.One special characteristic of a biometrics application is that all gallery images are enrolled into the database before the matching takes place.Probe images are intro-duced into the system for matching.Taking advantage of the fact that the gallery images are enrolled prior to matching,we propose a novel method to accelerate the ICP matching.Our new method is called the“Pre-computed V oxel Nearest Neigh-bor”.The idea is to voxelize a volume which can hold the3D gallery surface,and for each voxel to pre-compute its distance to the3D gallery surface and save this for future use.In section2we review several fast ICP approaches.Then in section3we give de-tails of our approach.Section4addresses the applicability of our approach by using the ear and face biometrics,and experimental results are presented and analyzed. Finally,section5discusses further refinements and possible future directions.2Literature ReviewIn biometrics applications,3D shape is used by many researchers in face biometrics [11–13,15–18],has also been used in ear biometrics[9,10],and has also been used in hand biometrics[14].There have been a number of efforts to speed up ICP matching.One line of work is focused on fast algorithms for computing the nearest neighbor.The use of the k-d tree data structure appears to be the standard method in this area[19,2].Cleary and co-workers analyzed the“Elias”algorithm for searching nearest neighbor in the n-dimensional Euclidean space[20].They claimed that by using the“Elias”algorithm,the number of search points is independent of the total number of points on the surface.2In[21],Greenspan et al.proposed a novel nearest neighbor algorithm for small point sets.They report that“Elias”is much faster than a plain k-d tree,and that the“spherical constraint”method improves the speed still further.Zinβer et al. analyzed the performance of the nearest neighbor algorithm for ICP registration [22].Their work is not limited to range images or triangle meshes,but also can be used with3-D point sets generated by structure-from-motion techniques. Benjemaa[23]proposed a multi-z-buffer technique to accelerate the ICP algorithm. All points are projected in a z-buffer to perform the local search,and they claimed that this space partition speeds up the search for point-to-projection correspon-dences.But in order for the multi-z-buffer technique to work properly,the two surfaces need to be sampled with a high and uniform density.Another line of work in this area looks at different sub-sample strategies to reduce computation time.One strategy is using multi-resolution approaches;that is,start with a coarse point set and use progressivelyfiner point sets as the algorithm pro-ceeds.The idea of the average distance between points in the current resolution in comparison to the average distance between matched points is the standard way to automate the switching between resolutions[24].In[3],Gelfand et al.describe the importance of the quality of the point pairs.In the presence of noise or miscalibration in the input data,it is easy to create poor corre-spondences between pairs of points.Therefore,the least-squares technique might lead to wrong pose,or make it difficult for the algorithm to converge.They propose a technique to decide whether a pair of meshes has good quality by measuring the covariance matrix between two meshes which have been sparsely and uniformly sampled.This technique tries to avoid the unstable movement between two sur-faces by sampling the features from the input data which are the best constraint for this kind of movement.In[25],Rusinkiewicz and Levoy discussed the variants of ICP which affect all phases of the algorithm.They list most of these variants,and evaluate their effects on the speed with which the correct alignment is reached.Also in the paper,they proposed a combination of ICP variants optimized for high speed. Researchers have also looked at mixing the two lines of work,having some multi-resolution mixed with some constrained search for nearest neighbor.Jose and H¨u gli proposed a solution that combines a coarse tofine multi-resolution approach with the neighbor search[26].The multi-resolution approach permits to successively improve the registration usingfiner levels of representation and the neighbor search algorithm speeds up the closest point search by using a heuristic approach.They claim this technique reduces the time complexity of searching from O(N log(n)) to O(N),while preserving the matching quality[27].Research related to ICP is also prominent in the graphics community.Leopoldseder et ed d2-tree to store a local quadratic approximant of the squared distance3function to a surface [28].Mitra et al.consider a general framework for matching two shapes represented by point clouds,in which the point-to-point and point-to-plane versions of ICP can be considered special cases [29].Cheng et al.consider a method to fit a subdivision surface to an unorganized point cloud dataset [30].However,none of these efforts are undertaken in a biometrics context.Also,while Leopoldseder and Mitra use a subdivision of 3D space,they still use a tree search to find the closest point correspondence between two point sets,rather than reducing it to an indexing operation as in this paper.3Fast ICP Matching for 3D ShapesThe most time consuming part of the ICP algorithm is that for each point on the probe surface,the algorithm needs to find the closest point on the gallery surface.By using these pairs of corresponding points,the ICP algorithm iteratively refines the transforms between two surfaces,finding the translation and rotation to mini-mize the mis-match.This search for a closest point on the gallery surface is initially done using a kd-tree,as described in [9],and each search takes O (logN G ),where N G is the number of the points on the gallery surface.Our goal is to reduce this search time to a constant value.The main idea is that if we can pre-compute the distance from any point in the 3D space to the gallery surface,and use it when needed,then the search time for a closest point is a constant.(a)Step 1(b)Step 2(c)Step 3Fig.1.V oxelization of 3D Ear Data.In order to show it clearly,we present it from coarse to fine.In step 1the volume is subdivided into 8small voxels,and in step 2each small voxel is subdivided into 8even smaller voxels.And continue this subdivision until the size of each voxel is smaller than a threshold.(To implement this idea,we subdivide the volume once using a fixed voxel size).Our “Pre-computed V oxel Nearest Neighbor”approach is illustrated on the applica-tion of matching 3D surfaces for biometric recognition.At the time of enrollment,the gallery 3D shape sits in a 3D volume that we think of as a set of voxels,shown in Figure 1.In our experiment,the volume size depends on the size of the bio-metric source,face or ear.A detailed explanation is given in next section.Figure 14illustrates how the voxelization is done.(a)(b)Fig.2.Close Look of V oxels and Example Distance Between V oxel and Gallery Surface. (P1is the center of the voxel1and the closest point on the gallery surface to P1is P1’.P2 is the center of the voxel2and the closest point on the gallery surface to P2is P2’) Placing the enrolled3D surface into a voxelized volume,each point on the gallery surface falls into a voxel.A given voxel can be empty or hold one or more points from the gallery surface.If a probe surface is placed into this volume,every point on the probe surface should also fall into some voxel if the volume size is big enough. Suppose that there is a point P1on the probe surface that lies in the voxel V1in the volume.P2which lies in voxel V2is the point on the gallery surface which is closest to P1.The distance between two points P1and P2can be approximated by the distance between the center of the two voxels V1and V2with the precision of the voxel size,shown in Figure2.In the ICP algorithm,given an enrolled surface in the volume,different probe sur-faces attempt tofind the minimum distance error to the enrolled surface.Here,the gallery surface isfixed,but the position of points on the probe surface varies within the volume from iteration to iteration.If all the points from the probe are within the volume which holds the gallery surface,each point should be in some voxel.For a given point P on the probe surface,suppose we know that its closest point on the gallery surface is P and voxel V p is the voxel this given point is in.The distance between P and P is approximately equal to the distance between P and the center of the voxel V p,with the precision of the voxel size.Each voxel in the data structure can index a distance value pre-computed at enrollment of the surface.Therefore, given the position of one point,the index of the voxel can be calculated easily. 3.1Volume sizeThe initial experiments used a volume around the3D shape corresponding to the max size of the object.For an ear,the volume size is set to8cm wide,10cm tall5and8cm deep.For a face,the volume size is set as10cm wide,14cm tall and 7cm deep.The volume is subdivided into voxels.The voxel size is related to the precision of the3D scanner.There is no point in making the voxelization afiner scale than the effective average depth resolution of the scanner.In our case,the average depth resolution of the Minolta Vivid910is no better than0.5mm.If the size for each voxel is0.05cm×0.05cm×0.05cm,we have160×200×160=5.12M voxels per volume for an ear.Thefixed volume size is usually larger than3D objects in the volume,and the reason that it has extra space is that we need to consider the orientation of the3D objects.Even though the width of the ear is usually small, the overall crossing will be large if the ear is rotated along the Z axis instead of straight up.Unfortunately much space is wasted forfixed volume.Thus,we reduce the volume size by applying principal component analysis(PCA)on the3D point cloud for the ear to give it a standardized pose.Principal Components Analysis is used for computing the dominant variances rep-resenting a given data set.As we apply PCA on the3D data,it yields three eigenvec-tors,thefirst eigenvector is the direction of greatest variation in the data,the second eigenvector is the direction of second greatest variation,and the third eigenvector is the third greatest variation.And all eigenvectors are orthogonal to each other. According to our3D shape data,the greatest variation is related to the height of the3D shape,the second one to the width,and third one to the depth of the data. After obtaining these three eigenvectors,a new coordinate system[V T x V T y V T z]is generated,each V i is a vector.If we project the old3D points into the new system, the ranges along these three new axes represent the size of a box enclosing the3D shape.[X Y Z ]=[XY Z]∗[V T x V T y V T z](1) W idth=max(X )−min(X )(2) Height=max(Y )−min(Y )(3)Depth=max(Z )−min(Z )(4) Figure3illustrates the steps of this procedure.When compared to the width,height, and depth in Figure3(a)and Figure3(c),the overall size of the bounding box of the new3D shape is smaller.For the ear experiment,the overallfile size can be reduced by a factor of10.With a smallerfile size to save the information,it requires less memory to build and read the data.Therefore this reduces the building time,and sometimes it also reduces the matching time when swapping is needed in the old approach.In our experiments,a uniform voxel size is ing a non-uniform voxel size could result in a smaller data structure.However,if a non-uniform voxel size is used,then the accuracy of the pre-computed correspondence and distance that is stored for each voxel will effectively vary with the voxel size.Consider that if one large voxel replaces a neighborhood of nine smaller voxels,then every probe6point that falls in that larger voxel will index to the same pre-computed correspond-ing point and distance.The accuracy of the distance and correspondence will be coarser.(a)Original3D Shape(b)New Coordinate System(c)New3D ShapeFig.3.Steps to Calculate the V olume Size.In part(b),a new coordinate system is generated from eigenvectors of the covariance matrix,where Y’is according to the direction of the largest variance in the dataset,X’to the second,and Z’to the third.part(c)shows the new 3D shape after projecting every old point onto new coordinate system.3.2ImplementationTo implement our strategy of pre-computed voxel nearest neighbor,we compute ahead of time for each voxel in the3D space,it’s closest point on the gallery3D shape.Thefirst step is to place the3D surface into a volume whose center is the center of the3D surface.The position of the gallery surface center x,y and z are defined as following:x center=x max+x min2,z center=z max+z minFigure4shows a volume holding both gallery and probe.For each voxel element in the volume,we use a k-d tree tofind the closest point on the gallery surface to that voxel’s center.Once the point is found,the index of the point is stored as the value of the voxel element.A data structure V oxelElement[W idth][Height][Depth]is used to represent the subdivision of3D space into voxels,and the value of width, height and depth comes from4.The value of V oxelElement[x][y][z]is the index of the gallery point,which is closest to the point(x,y,z).We store the index of the point instead of the point position to save space.Pre-computed results are saved to afile which can be read into memory when needed.Then,computing the closest neighbor for a current position of the probe surface is simply indexing into the voxel data structure.Thus,constant computational time instead of O(logN G)is achieved.This is blazingly fast in comparison to any of the other nearest neighborfinding methods,but of course it is offset by the size of the storage required.Furthermore,since the access time is constant,we can use the finest resolution for the gallery image,which avoids the computation expense of using the point-to-surface approach[1].Figure4(a)shows an example with probe surface matching to gallery surface.(a)View1(b)View2Fig.4.Gallery and Probe Images Show in the Same V olume.Each voxel in the volume corresponds to a point index on the gallery surface.4ExperimentsIn order to evaluate the efficiency of this method,we compare the recognition rate, space and running time between the original algorithm and our proposed approach. We present results using ear range data from369subjects and face range data from 219subjects,and each subject has two images taken on two different date.For each subject,the earlier3D images are used for the gallery,and the later3D images are used as probes.The detailed description of the ear and face extraction from raw image can be found in[31,32].For the ear experiment,the gallery images use8the full resolution,and the probes are subsampled by every4rows and every4 columns.The average number of points is5500for a gallery ear shape,and400for a probe ear shape.And for the face experiments,both gallery and probe images are subsampled by every4rows and every4columns.The average number of points on a gallery and a probe surface are4000and3000,respectively,for face shapes.In addition,different voxel sizes are tested,and comparison results are presented.The system runs on dual-processor Pentium Xeon2.8GHz machines with2GB RAM, and the implemetation is written in C++.4.1Voxel SizeThree voxel sizes are examined using the same dataset for both ear and face bio-metrics.For the ear experiments,they are1mm3,0.5mm3and0.25mm3.For the face experiments,they are2mm3,1mm3and0.5mm3.The reason for using differ-ent voxel size for ear and face is because the gallery face images are subsampled by every4columns and rows.Before the matching procedure takes place,we build the volume for every gallery ear/face.For each voxel in the volume,a kd-tree structure is used tofind the closest point on the gallery and we save the results on the disk. In order to utilize our method,we read one voxelized gallery data structure into memory and match it against all the probes.Therefore,our recognition experiment has two processes,offline building and online matching.Tables1and2illustrate the time requirement for each process.V oxel Reading Time File Size(Per Ear)(1Against369)10-50s15-25s97.0%130-200s20-30s97.3%2100-500s20-30s97.3%3 Table1Ear Biometrics:Different Parameters Affected by V oxel Size.At0.1level of significance, there is no statistically significant difference between(1),(2)and(3).Times are given as a range;for example15-25seconds.This is an approximate range for min to max time required across369possible probes,any one of which can be matched against369gallery images.For the ear experiments,all the images are acquired using a Minolta Vivid910 with the“Tele”lens,and the subject sat approximately1.5meters away from the sensor.Within that distance range,the sensor has a depth accuracy of approxi-mately0.55mm.According to our results,going to afiner voxel size from0.5mm to0.25mm does not yield much in term of increased accuracy,yet,it requires sig-nificantly more storage space and longer time to process.Even though the access time is a constant value,when the number of voxels is too big,it will exceed the9V oxel Reading Time File Size(Per Face)(1Against219)25-35s80-90s93.6%1150-160s80-90s94.1%21500-1600s80-95s93.2%3 Table2Face Biometrics:Different Parameters Affected by V oxel Size.At0.1level of significance, there is no statistically significant difference between(1),(2)and(3)size of available memory,and force the algorithm to use swap space,which will slow down the computation.If we increase the voxel size from0.5mm to1mm,the reading time drops,the matching time is at the same level,and the performance drops by around0.3%,which is not statistically significantly different from the smaller voxel size.For the face experiments,the image acquisition is the same.But since the gallery images are subsampled by4x4,there is no statistically significant difference in performance for voxel size variations.Figure5compares the original ICP algorithm and our pre-computed ICP on the ear dataset.We compared voxel building time,matching time and recognition perfor-mance and mean-square distance of thefinal aligned point sets for voxel sizes from 0.25mm to5mm.Figure5(b)demonstrates that pre-computed ICP is much faster than the original ICP.When the voxel size increases,the matching time decreases. But once the voxel size increases up to1.5mm,there is little reduction in match-ing time.Figure5(a)shows that the voxel building time drops dramatically when the voxel size is increased from0.25mm to1mm,while the performances stays at essentially the same level.After the voxel size increased beyond1.5mm,the build-ing time can be almost ignored.The performances of the pre-computed ICP keeps better than95%recognition rate even when the voxel size is increased up to4mm. In order to demonstrate the quality of thefinal mean square distance as a function of the voxel size,Figure5(d)shows an example from a correct match pair.As the voxel size increases,the mean square distance increases approximate linearly. Table3illustrates how execution time increases when gallery size gets larger for both original ICP and pre-computed ICP.When the gallery size is small,there is no advantage to the voxel approach.However,for very large galleries the voxel ap-proach yields an enormous improvement in speed.Here,we suppose all the gallery images can be kept in the memory.In a real biometrics application,some or all of the gallery might be kept in memory all the time.10Voxel Size B u i l d i n g T i m e (S e c s )Buliding Time vs. Voxel Size(a)(b)(c)(d)Fig.5.Ear Experiments:How Does V oxel size affect Building Time,Matching Time,Rank-one Recognition Rate and Geometric Performance.Gallery size Pre-computed ICP(voxel =0.5mm)5s507s 35s20015s 106s36930sTable 3Ear Biometric:Run Time vs.Gallery size for Both Original ICP and Pre-computed ICP 5ImprovementAs we stated in the previous section,the most time consuming part of the ICP algorithm is closest point searching.There are two common ways to find the closest point,point-to-point and point-to-surface.A detailed comparison between them for a biometric application can be found in [9].The point-to-point approach is fast,and accurate when all the points on the probe surface can find a good closest point on the gallery surface.But if the gallery is subsampled or coarse in the original,the point-to-point approach loses accuracy.On the other hand,the greatest advantage of the11point-to-surface approach is that it is accurate through all the different subsample combinations.But this behavior comes at a substantial computational expense.Our voxel algorithm can shift the computation burden to offline,therefore if the gallery images are not in afine resolution,the point-to-surface method for pre-computed distance should be able to yield better performance without increasing the running time for the recognition.This is proved by the experimental results.By using point-to-surface method for pre-computing,the ear recognition rate is improved from 97.3%to98.7%,and the face recognition rate is improved from94.1%to96.4%. The improvement is more obvious in the face recognition experiment,which also demonstrates that the point-to-surface method is more accurate than point-to-point method when the gallery images are coarse.6Summary And DiscussionThe main contribution of this paper is the“Pre-computed V oxel Closest Neighbor”strategy to improve the speed of the ICP algorithm for use in biometrics.This tech-nique is aimed at a particular application in human identification.The idea is based on the possibility of computing the data structure before the matching procedure taking place.Different voxel sizes are examined,and the performance and running time are com-pared with the results from the original ICP algorithm.Our experimental results verify the performance of our approach on our369subjects dataset for ear biomet-rics,and219subjects dataset for face biometrics.The online matching time drops significantly when we use the pre-computed results from the enrolled3D shape of-fline computation.Our results demonstrate that for very large galleries the voxel approach yields a dramatic improvement in speed.In real biometric security appli-cations,the number of persons in the gallery could easily be in the thousands or larger.The2D and3D image data sets used in this work are available to other research groups.See the web page / cvrl for the release agreement and details. AcknowledgementsBiometrics research at the University of Notre Dame is supported by the National Science Foundation under grant CNS-013089,by the Central Intelligence Agency, and by the US Department of Justice under grants2005-DD-BX-1224and2005-DD-CX-K078.The authors would like to thank Patrick Flynn and Jonathon Phillips for useful discussions about this area.12References[1]Y.Chen,G.Medioni,Object modeling by registration of multiple range images,Imageand Vision Computing10(1992)145–155.[2]P.Besl,N.McKay,A method for registration of3-D shapes,IEEE Transaction onPattern Analysis and Machine Intelligence14(1992)239–256.[3]N.Gelfand,S.Rusinkiewicz,L.Ikemoto,M.Levoy,Geometrically stable samplingfor the ICP algorithm,in:Fourth International Conference on3-D Digital Imaging and Modeling,October06-10,2003,pp.260–267.[4] D.Zhang,M.Hebert,Harmonic maps and their applications in surface matching,in:Computer Vision Pattern Recognition,V ol.2,1999.[5] A.E.Johnson,M.Hebert,Using spin images for efficient object recognition incluttered3D scene,IEEE Transaction on Pattern Analysis and Machine Intelligence 21(1999)433–449.[6]G.Turk,M.Levoy,Zippered polygon meshes from range images,in:Proceeding ofACM Siggraph94,1994,pp.311–318.[7] A.Hilton,A.J.Stoddart,J.Illingworth,T.Windeatt,Marching triangles:Rangeimage fusion from complex object modeling,in:International Conference on Image Processing,V ol.2,1996,pp.381–384.[8]J.Feldmar,N.Ayache,F.Betting,3D-2D projective registration of free-form curvesand surfaces,Computer Vision and Image Understanding65(1997)403–424.[9]P.Yan,K.W.Bowyer,ICP-based approaches for3D ear recognition,in:BiometricTechnology for Human Identification II,Proceedings of SPIE,V ol.5779,2005,pp.282–291.[10]H.Chen,B.Bhanu,Contour matching for3D ear recognition,in:Seventh IEEEWorkshop on Application of Computer Vision,2005,pp.123–128.[11]G.Medioni,R.Waupotitsch,Face recognition and modeling in3D,in:IEEEInternational Workshop on Analysis and Modeling of Faces and Gestures(AMFG 2003),2003,pp.232–233.[12]K.Chang,K.W.Bowyer,P.J.Flynn,Multiple nose region matching for3D facerecognition under varying facial expression,IEEE Transaction on Pattern Analysis and Machine Intelligence28(October2005)1695–1700.[13]X.Lu,D.Colbry,A.K.Jain,Three-dimensional model based face recognition,in:7thIEEE Workshop on Applications of Computer Vision,2005,pp.156–163.[14]D.L.Woodard,P.J.Flynn,Finger surface as a biometric identifier,Computer Visionand Image Understanding100(2005)357–384.[15]X.Lu,A.K.Jain,Deformation analysis for3D face matching,7th IEEE Workshop onApplications of Computer Vision(WACV’05)(2005)99–104.13[16]T.Papatheodorou,D.Rueckert,Evaluation of3D face recognition using registrationand pca,LNCS3546:International Conference on Audio-and Video-based Biometric Person Authentication(A VBPA2005)(July2005)997–1018.[17]G.Passalis,I.Kakadiaris,T.Theoharis,G.Toderici,N.Murtuza,Evaluation of3Dface recognition in the presence of facial expressions:an annotated deformable model approach,IEEE Workshop on Face Recognition Grand Challenge Experiments. [18]B.Gokberk,A.A.Salah,L.Akarun,Rank-based decision fusion for3D shape-basedface recognition,LNCS3546:International Conference on Audio-and Video-based Biometric Person Authentication(A VBPA2005)(July2005)1019–1028.[19]D.Simon,M.Hebert,T.Kanade,Techniques for fast and accurate intra-surgicalregistration,in:First International Symposium on Medical Robotics and Computer Assisted Surgery,1994,pp.90–97.[20]J.G.Cleary,Analysis of an algorithm forfinding nearest neighbors in Euclidean space,ACM Transactions on Mathematical Software(TOMS)5(1979)183–192.[21]M.Greenspan,G.Godin,A nearest neighbor method for efficient ICP,in:Proceedingsof the3rd International Conference on3-D Digital Imaging and Modeling,2001,pp.161–170.[22]T.Zinβer,J.Schmidt,H.Niemann,Performance analysis of nearest neighboralgorithms for ICP registration of3-D point sets,in:8th International Fall Workshop of Vision,Modeling,and Visalization,November19-21,2003.[23]R.Benjemaa,F.Schmitt,Fast global registration of3D sampled surfaces using a multi-z-buffer technique,in:International Conference on Recent Advances in3-D Digital Imaging and Modeling(3DIM’97),1997,pp.113–119.[24]K.-L.Low, stra,Reliable and rapidly-converging ICP algorithm usingmultiresolution smoothing,in:Fourth International Conference on3-D Digital Imaging and Modeling,October06-10,2003,pp.171–178.[25]S.Rusinkiewicz,M.Levoy,Efficient variants of the ICP algorithm,in:ThirdInternational Conference on3D Digital Imaging and Modeling(3DIM),June2001, pp.145–152.[26]T.Jost,H.H¨u gli,Fast ICP algorithms for shape registration,Lecture Notes inComputer Science2449(2002)91–99.[27]T.Jost,H.H¨u gli,Multi-resolution ICP with heuristic closest point search for fast androbust3D registration of range images,in:Fourth International Conference on3-D Digital Imaging and Modeling,October06-10,2003,pp.427–433.[28]S.Leopoldseder,H.Pottmann,The d2-tree:A hierarchical representation of the squareddistance function,in:Technical Report No.101.Institute of Geometry,Vienna University of Technology,2003.[29]N.J.Mitra,N.Gelfand,H.Pottmann,L.Guibas,Registration of point cloud datafrom a geometric optimization perspective,in:SGP’04:Proceedings of the2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing,2004,pp.22–31.14。

相关文档
最新文档