质谱法

合集下载

化学实验中的质谱法

化学实验中的质谱法

化学实验中的质谱法质谱法(Mass Spectrometry, MS)是一种基于质量分析原理的重要实验技术,在化学领域中得到广泛应用。

质谱法通过测量物质的离子在磁场中偏转的弧线,来确定分子的质量、结构以及化学性质。

本文将介绍质谱法的原理、仪器设备以及实验步骤等内容,以帮助读者更好地了解并运用质谱法在化学实验中。

一、质谱法的原理质谱法的核心原理是根据化合物中分子离子的质荷比,在磁场中偏转的情况来测量离子的质量。

当样品被电子轰击时,化合物中的分子会发生解离生成离子,并通过加速装置使得离子速度加快。

离子进入磁场后,受到洛伦兹力的作用,发生偏转。

偏转的程度与离子质量成正比,由此可以推断出离子的质量。

二、质谱法的仪器设备质谱法所需的主要仪器设备包括质谱仪、进样系统、离子生成器、磁场等。

其中质谱仪是整个质谱法的核心部分,其主要由质量分析器和检测器构成。

质量分析器负责对离子进行分离和质量测量,常见的有磁扇形质量分析器和四极杆质量分析器等。

检测器负责测量和记录离子的信号强度,常见的有电子倍增器检测器和离子计数器等。

进样系统用于将样品引入质谱仪,离子生成器则是将样品中的化合物转化为气态离子。

三、质谱法的实验步骤1. 样品制备:将待测物质转化为气态或溶解于可以产生气态离子的溶剂中。

适当的样品制备方法有助于获得准确的质谱数据。

2. 进样:将样品引入质谱仪中,通常使用气相色谱仪等进样系统。

进样系统将样品分子转化为气态,然后引入质谱仪中进行质谱分析。

3. 离子生成:样品进入质谱仪后,通过离子生成器将样品分子转化为离子。

常用的离子化方法有电子轰击离子化和化学离子化等。

4. 质谱分析:经过离子生成后的样品进入质量分析器进行分离和质量测量。

分离是通过磁场的作用将不同质量的离子分离出来,而质量测量是通过测量离子偏转的程度来推断离子质量。

5. 数据分析:通过质谱仪中检测器所测得的信号强度,可以获得离子的丰度和质量信息。

质谱仪通常会输出质谱图,通过分析质谱图可以确定样品的化合物质量、结构等信息。

化学分析中的质谱法

化学分析中的质谱法

化学分析中的质谱法质谱法是一种在化学分析中常用的手段。

该方法通过对样品分子进行离子化和分离,然后测定质荷比(即质量与电荷的比值),从而获得样品的质谱图。

质谱法在化学分析中具有广泛的应用,如有机化合物结构的鉴定、定量分析、药物代谢研究、环境监测等。

一、质谱法的原理质谱法的原理基于离子在磁场中运动所受到的力受质量和电荷的影响,不同质荷比的离子在磁场中呈现出不同轨道。

质谱仪利用这一特性,将样品分子先转化为离子,再通过加速器和质谱分析仪进行离子排序和分离,最终形成质谱图。

二、质谱仪的组成质谱仪通常由四个主要组件组成,包括样品处理系统、加速器、质谱分析系统和数据处理系统。

1. 样品处理系统样品处理系统用于将待分析的样品分子转化为离子。

常用的方法包括电离法(如电子轰击电离、化学电离、光电离等)和中性气体反应离子源(NGRI)。

2. 加速器加速器用于给质谱仪中产生的离子加速,使其在磁场中能够形成稳定的轨道。

常用的加速器包括电场加速器、气体动力学加速器等。

3. 质谱分析系统质谱分析系统是质谱仪中最重要的部分,用于对离子进行分离和测量。

其中,质谱分析器根据质荷比的不同而采用不同的分析方法,如质谱仪、四级杆质谱仪、飞行时间质谱仪等。

4. 数据处理系统数据处理系统用于处理并解析质谱图数据。

常用的方法包括质谱图的峰定量、峰识别和质谱图的解释。

三、质谱法的应用1. 有机化合物结构的鉴定质谱法可通过对有机化合物的质谱图进行解析,确定化合物的分子式、分子量、官能团以及结构。

这对于有机化学的研究和有机化合物的合成具有重要意义。

2. 定量分析质谱法作为一种高灵敏度的分析方法,在定量分析中有重要应用。

利用标准曲线和内标法,可以准确地确定样品中目标物质的含量。

3. 药物代谢研究质谱法可以用于药物代谢研究中,通过分析药物在体内代谢产物的质谱图,了解药物代谢途径、代谢产物结构以及代谢动力学参数。

4. 环境监测质谱法在环境监测中也有广泛应用。

质谱法

质谱法

气相,可用于分子量高达105的非挥发性或热不稳定性
样品的离子化。包括场解吸源、快原子轰击源、激光解
吸源、电喷雾电离源和大气压化学电离源等。
离子源(2)
硬源:能量高,伴有化学键的断裂,谱图复杂,可得分
子结构的信息。(可用于定性和结构解析)
目前最常用的硬源是电子轰击源
软源:能量低,产生的碎片少,谱图简单,可得到分子 量信息,但缺乏分子结构信息。(可通过质谱串联的方 式解决)
迹与质荷比的大小有关。
质谱法的特点
1.应用范围广。样品可以是无机物、有机物和生物大分子;可以
是气体、液体或固体。可应用在化合物结构分析、原子量与相对
分子量测定、同位素分析、生产过程监测、环境监测、热力学与 反应动力学、空间探测等多个方面。 2.灵敏度高,样品用量少。有机质谱仪的绝对灵敏度可达50 pg, 无机质谱仪绝对灵敏度可达0.01 pg,用微克级样品即可得到满意 的分析结果。 3.分析速度快并可实现多组分同时测定。 4.与其它仪器相比,仪器结构复杂,价格昂贵,使用及维修比较
包括金属杯、电子倍增管分别与测量放大器组成
的检测器。 3.根据接收器的多寡分为单接收系统,双接收系 统,多接收系统。
谢谢观赏
本组成员:熊燕 李红菊 田娅 李明竹 安蔚 卢叶曼
(-)
能量分散
2 mv zeE 2 1 mv 2 rc rc 2
离子源狭缝
接收器狭缝
设法使静电场的能量色散作用和磁场的能量色散作用大小相等方 向相反,就可消除能量分散对分辨率的影响,可获得高分辨率 (105),利用峰匹配技术,可以达到107或者更高。
检测器
1.用来接收、测量和记录已经分离离子的系统 2.根据检测分为照相法和电测法两类,电测法又

质谱法

质谱法
z 2V
当H、V一定时,不同m/z的离子其运动半径不同,不
同质荷比的离子,经过分析器后可实现质量分离,即磁场 对不同质量的粒子具有“质量色散”作用。
当R、V固定不变,连续改变H可以使不同m/z的离子顺 序进入检测器,实现质量扫描,得到样品的质谱图,这种 测量图谱的方式称为磁场扫描。如H由小到大连续变化, m/z小的离子首先被检测,m/z大的离子后被检测。
色谱法进样是将多组分样品先经色谱法分离成单 一组分,分离后的组分依次通过色谱仪与质谱仪之间的 “接口”进入到质谱仪中。适用于多组分分析。
二、离子源与离子的产生
电子轰击离子源(EI)
气化后的样品分子进入离子源中,受到炽热灯丝发射的电子束的轰 击,生成包括正离子在内的各种碎片。
其中正离子在推斥电极的作用下,离开离子源进入加速区被加速和 聚集成离子束。
质谱仪与基本原理
概述
质谱法是将气态样品分子在离子室内,碎裂与电离成各
种不同质荷比m/z的离子,并在电场与磁场的综合作用下,将
它们逐一地分离和检测,得到质谱图。根据质谱图确定未知
物的相对分子质量,决定分子式与推断未知物的可能结构的
分析方法,称为质谱法。
不同质荷比m/z的离子
进样与汽化
碎裂与电离
加速
样品
A B C D
Identificati on
谢 谢!
优点:结构简单、体积小。 缺点:分辨率低,只能测定各
离子的整数质量。
分辨率低的原因是:虽然具有方向聚焦和质量色散作用,也 具有能量色散作用,但却不能消除同一质荷比的离子具有不 同动能对分辨率的影响。
双聚焦磁场分析器
方向聚焦:相同质荷比, 入射方向不同 的离子会聚。
能量聚焦:相同质荷比, 速度(能量) 不同的离子会 聚。

质谱法(推算结构)-非常有用

质谱法(推算结构)-非常有用
0
56(C4H8+)
41(C3H5+)
84(M ) Cyclohexane
M=84
10 20 30 40 50 60 70 80 90 100 110
% OF BASE PEAK
MethylCyclohexane
100
90
M=98
80
70
60
55
50
40
41
30
69
20
29
10
0
0 10 20 30 40 50 60 70
(四) 检测器
B
mv2
r
U
灯丝
S1
正极 样品
Bzev
真空泵
S 2 底片
R mv eH
(四) 检测器
电子倍增器示意图
(五) 真空系统
作用: 1) 避免大量氧烧坏离子源的灯丝;2)
消减离子的不必要碰撞,避免离子损失;3) 避免离子-分子反应改变裂解模式,使质谱 复杂化;4) 减小本底。
} 真空度要求:离子源 质量分析器
方向聚焦:
相同质荷比,入 射方向不同的离子会 聚。
能量聚焦:
相同质荷比,速 度(能量)不同的离子 会聚。
+ -
S1 离子源
磁场
S2 收集器
质量相同,能量不同的离子通过电场和磁场时,均产生 能量色散;两种作用大小相等,方向相反时互补实现双聚焦。
飞行时间分析器TOE(2)
质量范围宽,扫描速度快,无需电场和需磁场。但是 离子进入漂移管前产生时间的先后,产生空间的前后 和初始动能的大小不同,达到检测器的时间就不相同, 因而降低了分辨率。目前,通过采取激光脉冲电离方 式,离子延迟引出技术和离子反射技术,可使分辨率 可达20000以上,最高可检质量超过300000 Da,并且 具有很高的灵敏度。广泛应用于气相色谱-质谱联用 仪,液相色谱-质谱联用仪和基质辅助激光解吸飞行 时间质谱仪中。

质谱法

质谱法

第四章质谱法(MS)1、质谱:利用离子化技术,将物质分子转化为离子,按其质荷比(m/z)的差异分离测定,从而进行物质成分和结构分析的方法。

2、质谱可以为我们提供以下信息:1. 样品元素组成及分子量;2. 鉴定(别)化合物;3. 推测未知物的结构(骨架、官能团等);4. 测定分子中同位素含量较多元素的原子数(如Cl、Br等)。

一、质谱中的主要离子:(一)分子离子:是样品分子失去一个价电子形成的正离子。

用M 表示。

分子离子在质解图上相应的峰叫做分子离子峰。

(二)碎片离子:是化学键断裂而产生。

碎片离子的类型和丰度与化合物中的化学键的类型、断裂情况有关。

1、化学键裂解的方式:均裂、异裂和半均裂三种。

(先失去一个电子形成离子化键)鱼钩:,表示单电子转移;箭头:,表示两个电子转移。

含奇数个电子的离子:OE ,含偶数个电子的离子: EE ,+电荷位置不清楚的用“┐”表示。

2、化学键易断裂的几种情况:1)α裂解:带有正电荷的官能团与相连的α碳原子之间的断裂。

2) β裂解: 带有正电荷的官能团的α位和β位的两个碳原子之间的断裂。

3) i 裂解: 官能团上的电荷转移的裂解。

或:由电荷中心引发的裂解。

又称诱导裂解。

(三)同位素离子:由于天然同位素的存在,因此在质谱图上出现M+1、M+2等峰,含有同位素的离子称为同位素离子,由这些同位素所形成的峰称之为同位素峰。

峰强比可用二项式 (a+b)n 求出:a 与b 为轻质同位素及重质同位素的丰度比; n 为原子数目。

(四)、亚稳离子: 质量数为m 1的离子离开离子源到达质量分析器之前,其中部分发生裂解失去中性碎片(Δm )而变成低质量的m 2 ,由于部分动能被中性碎片带走,所以这种离子的能量比在离子源中产生的m 2的能量要小,这种离子称为亚稳离子,用m*表示 。

由于亚稳离子的能量 比 在离子源中直接产生的m 2的能量要小,因此亚稳离子 比 在离子源中产生的m 2偏转更大,从而形成亚稳离子峰。

化学实验中的常见质谱分析方法

化学实验中的常见质谱分析方法

化学实验中的常见质谱分析方法在化学实验中,质谱分析方法被广泛应用于物质的鉴定、结构分析以及反应机理的研究等方面。

通过质谱仪器的测量,我们可以获得物质分子的质量信息和碎片离子的相对丰度,从而推断出物质的分子结构、化学组成和性质等重要信息。

本文将介绍几种常见的质谱分析方法及其原理,并讨论其在化学实验中的应用。

一、质谱分析方法1. 电子轰击离子化质谱法(EI-MS)电子轰击离子化质谱法是最常用的质谱分析方法之一。

其原理是在真空条件下,将待分析样品通过电子轰击使其产生离子化,然后通过质谱仪器进行质量分析。

通过测量生成的离子的质量-荷比(m/z)比值,可以确定分子离子的质量,并推断出物质的结构。

该方法具有高灵敏度和分辨率高的优点,适用于大多数有机化合物的分析。

2. 化学电离质谱法(CI-MS)化学电离质谱法是一种常用的质谱分析方法,其主要特点是在质谱仪器中加入高速气流,通过化学反应的方式将待分析样品转化为离子。

相比于电子轰击离子化质谱法,化学电离质谱法可以将样品中的非挥发性化合物转化为易挥发的离子,从而提高分析的灵敏度。

该方法广泛应用于药物代谢、天然产物分析和农药残留等领域。

3. 电喷雾质谱法(ESI-MS)电喷雾质谱法是一种常见的离子化技术,其原理是通过电场作用将液相样品转化为气相离子。

在电喷雾过程中,待分析样品溶解于溶剂中,并通过高电压加速离子化。

该方法适用于极性和中性化合物的分析,特别是在生物医药领域中,常用于蛋白质和核酸的质谱分析。

二、质谱分析在化学实验中的应用1. 化合物的鉴定与结构分析质谱分析在化合物的鉴定与结构分析中具有不可替代的作用。

通过测量待分析样品的质谱图谱,包括分子离子峰和碎片峰等信息,我们可以推断出有机化合物的分子式、结构以及它们之间的关系。

这对于新合成化合物的鉴定、天然产物的结构分析以及有机反应的机理研究等方面具有重要意义。

2. 反应过程的在线监测质谱分析方法还可以应用于反应过程的在线监测。

质谱法

质谱法
气体进样 非气体进样
质谱仪

样品导入/离子源系统
电子轰击电离源(EI)
质谱仪

样品导入/离子源系统
化学电离源(CI) + +
气体分子 试样分子 电子
+
准分子离子 (M+1)+;(M+17) +;(M+29) +;
CH CH 4 e CH 4 2 e 4 CH 5 CH 3 CH CH 4 CH 3 H 4 C 2 H 5 H 2
CH 5 MH CH 4 MH2 ( M 1离子 ) C 2 H 5 MH C 2 H 6 M ( M 1离子 )
质谱仪
• 样品导入/离子源系统
快原子轰击离子源(FAB) 离子轰击离子源
二次离子质谱(SIMS) 中性离子质谱(SNMS)
质谱仪

单聚焦磁场分析器
方向聚焦:相同质荷比,入射方向不同的离子会聚; 分辨率不高
质谱仪
双聚焦磁场分析器
方向聚焦:相同质荷 比,入射方向不同的 离子会聚; 能量聚焦:相同质荷 比,速度(能量)不 同的离子会聚; 质量相同,能量不同 的离子通过电场和磁 场时,均产生能量色 散;两种作用大小相 等,方向相反时互补 实现双聚焦。 + S1 离子源 S2 收集器 磁场
真空系统

质谱的真空系统由两级真空机组成,包括前级 真空泵、高真空泵、真空管道、真空阀门、真 空规等部件。
真空系统
真空系统

真空测量

热导规或热偶规 离子规 包括真空阀门、管道、吸附阱等

其他真空部件

质谱法(讲义)

质谱法(讲义)
缝进一步准直后进人质量分析器。
EI的优点:
(1)重现性好,在一定能量(70eV)的电子流轰击 下,离子流稳定,始终得到一样的图谱,故质谱仪谱 库中的标准质谱图均是采用EI方式制作的。 (2)灵敏度高,所得碎片离子多,质谱图复杂,获 得有关分子结构的信息量大。 (3)有丰富的碎片离子信息和成熟的离子开裂理 论,有利于物质的结构分析和鉴别。
第一节 基本原理和质谱仪
一、质谱法的基本原理
质谱分析法:
将物质分子转化为离子,按质荷比差异进行 分离和测定,实现成分和结构分析的方法。
样品导 入系统
产生离子流
离子源
m/z
质量扫描
质量 分析器
检测器
H0
放大器 记录器
质谱仪的工作原理
质谱仪是利用电磁学原理,使带电的样品离 子按质荷比进行分离的装置。离子电离后经加速 进入磁场中,其动能与加速电压及电荷Z有关, 即
磁分析器
最常用的分析器类型之一就是扇形磁分析 器。离子束经加速后飞入磁极间的弯曲区,由于 磁场作用,飞行轨道发生弯曲,见图
m = H 2R 2
z
2V
R = mv zH
仅用一个扇形磁场进行质量分析的质谱仪称
为单聚焦质谱仪,设计良好的单聚焦质谱仪分辨 率可达5000。
若 要 求 分 辨 率 大 于 5000 则 需 要 双 聚 焦 质 谱 仪。单聚焦质谱仪中影响分辨率提高的两个主要 因素是离子束离开离子枪时的角分散和动能分 散,因为各种离子是在电离室不同区域形成的。 为了校正这些分散,通常在磁场前加一个静电分 析器(Elctrostatic Analyzer,ESA),这种设 备由两个扇形圆筒组成,向外电极加上正电压, 内电极为负压。
57
100

质谱法

质谱法

质谱法质谱法是使待测化合物产生气态离子,再按质荷比(m/z)将离子分离、检测的分析方法,检测限可达10-15~10-12mol数量级。

质谱法课提供分子质量和结构的信息,定量测定可采用内标法或外标法。

质谱仪的主要组成如图所示。

在由泵维持的10-3~10-6Pa真空状态下,离子源产生的各种正离子(或负离子),经加速,进入质量分析器分离,再由检测器检测。

计算机系统用于控制仪器,记录、处理并储存数据,党配有标准谱库软件时,计算机系统可以将测得的质谱与标准谱库中图谱比较,获得可能化合物的组成和结构信息。

一、进样系统样品导入应不影响质谱仪的真空度。

进样方式的选择取决于样品的性质、纯度及所采用的离子化方式。

1、直接进样室温常压下,气态或液态化合物的中性分子通过可控漏孔系统,进入离子源。

吸附在固体上或溶解在液态中的挥发性待测化合物可采用顶空分析法提取和富集,程序升温解吸附,再经毛细管导入质谱仪。

挥发性固体样品可置于进样杆顶端小坩埚内,在接近离子源的高真空状态下加热、气化。

采用解吸离子化技术,可以使热不稳定的、难挥发的样品在气化的同时离子化。

多种分离技术已实现了与质谱的联用。

经分析后的各种待测成分,可以通过适当的接口导入质谱仪分析。

2气相色谱-质谱联用(GC-MS)在使用毛细管气相色谱柱及高容量质谱真空泵的情况下,色谱流出物可直接引入质谱仪。

3液相色谱-质谱联用(LC-MS)使待测化合物从色谱流出物中分离、形成适合于质谱分析的气态分子或离子需要特殊的接口。

离子束(PBI)、移动带(MBI)、大气压离子化(API)是可用的液相色谱-质谱联用接口。

为减少污染,避免化学噪声和电离抑制,流动性中所含的缓冲盐或添加剂通常应用具有挥发性,且用量也有一定的限制。

(1)离子束接口液相色谱的流出物在去溶剂室雾化、脱溶剂后,仅待测化合物的中性分子被引入质谱离子源。

离子束接口适用于分子量小于1000的弱极性化合物的分析,测得的质谱可用由电子轰击离子化或化学离子化产生。

质谱法的概念

质谱法的概念

质谱法(Mass spectrometry)是一种分析化学物质的技术,用来测定化学物质的分子量和结构。

它通过将化学物质分解为其组成的原子或分子离子,然后测定这些离子的质量,来确定化学物质的分子量和结构。

质谱法是一种高灵敏度的分析方法,能够测定很小的化学物质的质量,常用于分析有机化合物、金属元素和生物分子等。

质谱法通常分为两大类:电离质谱法和离子化质谱法。

电离质谱法是通过将化学物质的分子离子化,然后测定这些离子的质量来确定化学物质的分子量和结构的。

离子化质谱法则是通过将化学物质的原子或分子离子化,然后测定这些离子的质量来确定化学物质的分子量和结构的。

在质谱法中,通常使用质谱仪来进行分析。

质谱仪包括质谱源、质量分析器和检测器等部分。

质谱源用来将化学物质分解成离子,质量分析器用来测定离子的质量,检测器则用来测量离子的数量。

质谱法的分析过程通常包括几个步骤:样品的准备、质谱源的激活、离子的测量和数据处理。

在样品准备阶段,需要将样品进行一定的处理,使其适合进行质谱分析。

在质谱源的激活阶段,需要对样品进行离子化或电离,使其成为离子的形态。

然后,在离子的测量阶段,通过质量分析器和检测器测量离子的质量和数量。

最后,在数据处理阶段,通过计算和分析测量得到的数据,确定样品的分子量和结构。

质谱法的分析结果通常以质谱图的形式呈现,质谱图中纵坐标表示离子的数量,横坐标表示离子的质量。

通过观察质谱图,可以确定样品中不同离子的种类和数量,从而得到样品的分子量和结构信息。

质谱法在分析各种化学物质方面有着广泛的应用。

例如,在药物研发中,质谱法可以用来测定药物分子的结构和分子量,帮助研究人员了解药物的作用机制。

在环境科学中,质谱法可以用来测定环境样品中的有毒物质,帮助研究人员评估环境的污染程度。

此外,质谱法还可以用于分析食品、饮料、农产品等,帮助确保食品安全和质量。

质谱法是一种非常重要的分析技术,在化学、生物学、药学、环境科学等领域都有着广泛的应用。

ms质谱法

ms质谱法

质谱法(MS):原理、应用与实践一、简介质谱法(Mass Spectrometry,简称MS)是一种用于测定物质分子质量和结构分析的实验方法。

它通过将物质转化为离子,并根据其质量/电荷比(m/z)进行分离和检测,实现对物质组成的定量和定性分析。

在这份文档中,我们将详细介绍质谱法的基本原理、仪器组成、不同类型的质谱法以及其在各个领域的应用。

二、质谱法的基本原理质谱法的工作原理可以概括为以下几个步骤:1. 电离:首先,待分析的物质被转化为离子。

这个过程可以通过各种方式实现,包括电子撞击、化学电离、光致电离等。

2. 分离:然后,离子根据其m/z进行分离。

这通常是通过磁场或电场实现的。

3. 检测:最后,分离后的离子被检测和量化。

这通常通过检测离子产生的电子或光子来实现。

三、质谱法的仪器组成质谱仪主要由以下几部分组成:1. 电离源:用于将待分析的物质转化为离子。

2. 质量分析器:用于根据离子的m/z进行分离。

3. 检测器:用于检测和量化离子。

4. 数据处理系统:用于处理检测器产生的信号,生成质谱图。

四、不同类型的质谱法根据不同的电离方法和质量分析器,质谱法可以分为多种类型,包括:1. 电子撞击质谱法(EI-MS):在这种方法中,待分析的物质被电子撞击后转化为离子。

2. 磁扇质谱法(MASS):在这种方法中,离子在磁场中运动,根据其m/z进行分离。

3. 飞行时间质谱法(TOF-MS):在这种方法中,离子在电场中飞行,根据其m/z 和飞行时间进行分离。

4. 电喷雾质谱法(ESI-MS):在这种方法中,待分析的物质在电喷雾作用下转化为离子。

五、质谱法的应用质谱法在许多领域都有广泛的应用,包括:1. 生物医学:在生物医学研究中,质谱法被用于蛋白质组学、代谢组学等领域的研究。

2. 环境科学:在环境科学中,质谱法被用于监测环境中的污染物。

3. 化学分析:在化学分析中,质谱法被用于确定化合物的结构和纯度。

4. 食品安全:在食品安全领域,质谱法被用于检测食品中的有害物质。

质谱法

质谱法

质 谱 仪
EI源示意图
10
第一节
质 谱 仪
当电子轰击源具有足够的能量时(一般为7OeV),有机分子 不仅可能失去一个电子形成分子离子,而且有可能进一步 发生键的断裂,形成大量的各种低质量数的碎片正离子和 中性自由基,这些碎片离子可用于有机化合物的结构鉴定。
11
第一节
小结: 工作原理
质 谱 仪
质谱仪是利用电磁学原理,使带电的样品离子按质荷比 进行分离的装置。离子经加速进入磁场中,其动能与加速电 压及电荷 z 有关,即 z e U = 1/2 m 2 其中z为电荷数,e为电子电荷量(e=1.60×10-19C),U为加 速电压,m为离子的质量,为离子被加速后的运动速度。 具有速度 的带电粒子进入质谱分析器的电磁场中,根 据所选择的分离方式,最终实现各种离子按m/z进行分离。
P221-222
33
第二节
质谱图及其应用
可以发生这类重排的化合物有:酮、醛、酸、酯和其它含 羰基的化合物,含P = O,>S = O的化合物以及烯烃类和 苯类化合物等。发生这类重排所需的结构特征是分子中有 一个双键以及在位置上有氢原子。
34
奇电子离子
分子离子
分子离子经由重排失去中性小分子生成的碎片离子
21
第二节
(二)碎片离子峰
质谱图及其应用
分子离子产生后可能具有较高的能量,将会通过进一步 碎裂或重排而释放能量,碎裂后产生的离子形成的峰称为碎 片离子峰。 有机化合物受高能作用时产生各种形式的分裂,一般强 度最大的质谱峰相应于最稳定的碎片离子。通过各种碎片离 子相对峰高的分析,有可能获得整个分子结构的信息。因为 M+. 可能进一步断裂或重排,因此要准确地进行定性分析最 好与标准谱图进行比较。

质谱法

质谱法
第八章 质谱法
(Mass Spectrometry, MS)
质谱分析法是将不同质量的离子按质荷比 (m/z)的不同进行分离和检测,应用其质谱来进 行成分和结构分析的一种方法。 质谱分析法是物理分析法,早期主要用于相对 原子质量的测定和化合物的鉴定和结构分析。随 着GC和HPLC等仪器和质谱仪联机成功以及计算 机的飞速发展,使得质谱法成为分析、鉴定复杂 混合物的最有效工具之一。 质谱分析流程如下:
65 51 55 50 60 70 74 77 80 83 86 89 90 100
m/z
28
2.质谱表
m/z 26 相对丰度 相对丰度 相对丰度 m/z m/z m/z (100%) (100%) (100%) 0.50 46 0.90 63 7.40 86 相对丰度 (100%) 4.50
27
在排斥极上施加正电压,带正电荷的阳离子被 排挤出离子化室,而形成离子束,离子束经过 加速极加速,而进入质量分析器。 EI源:可变的离子化能量 (10~240eV)
电子能量 分子离子增加 电子能量 碎片离子增加
10
特点: ①碎片离子峰多,提供有关分子结构的信息量大 ②分子离子峰较弱,当样品分子量太大或稳定性 差时,常常得不到分子离子 ③重现性好,常制作成标准图谱,应用最广 ④不适合难挥发、热不稳定化合物的分析 2.化学电离源(CI) 样品在承受电子轰击之前,被一种“反应气” (常用甲烷 )所稀释,首先是反应气分子受到 高能电子的轰击,产生离子,再与试样分离碰 撞,产生准分子离子。
28 37 38 39 40 2.40 10.70 1.10 1.10
49
50 51 52 53 55 57
0.60
4.10 6.40 1.50 0.70 0.10 4.20

第10章-质谱分析法

第10章-质谱分析法
分析本领由下面这些因素决定:
1、离子通道半径 2、加速器和收集器的狭缝宽度 3、离子源
1000以下为低分辨率
三、质谱仪的基本结构
质谱仪须有进样系统、电离系统 ( 离子源或电离室)、质量分析器和检测 系统。为了获得离子的良好分析,必 须避免离子损失,因此凡有样品分子 及离子存在和通过的地方,必须处于 真空状态。
有机化合物受高能作用时会产生各种形式的 分裂,一般强度最大的质谱峰相应于最稳定的碎 片离子,通过各种碎片离子相对峰高的分析,有 可能获得整个分子结构的信息。碎片离子并不是 只由M+一次碎裂产生,还可能会断裂或重排产生, 因此要准确地进行定性分析最好与标准图谱进行 比较。
有机化合物中,C-C键不如C-H键稳定, 因此烷烃的断裂一般发生在C-C键之间,且较 易发生在支链上。各类有机化合物分子离子的稳 定性次序为:芳香烃>共轭多烯烃>环状化合物> 羰基化合物>醚>酯>胺>醇>支链烷烃。
质谱过程
撞击
高速电子
气态分子
顺序谱图
按质荷比m/z
得到
阳离子
导 入
质量分析器
峰位置
峰强度
定性结构
定量分析
进样系统
1.直接进样 2.间接进样
离子源
质量分析器
1.电子轰击 2.化学电离 3.电喷雾电离 4.激光解吸
1.单聚焦 2.双聚焦 3.飞行时间 4.离子阱 5.四极杆
检测器
质量分析器

质谱仪的质量分析
I17/I16=0.011。而在丁烷中,出现一个13C的几率是 甲烷的4倍,则分子离子峰m/z=59、58的强度之比
I59/I58 =0.044。同样,在丁烷中出现M+2(m/z=60) 同位素峰的几率为0.00024,即I60/I58=0.00O24, 非常小,故在丁烷质谱中一般看不到(M+2)+峰。

第十六章质谱法

第十六章质谱法

(l)电子轰击源 ( EI ) 在离子源内,用电加热铼或钨的灯丝到2000°C,产生高 速、高能电子束,当高速电子束流向阳极时,与试样分子发生 碰撞,导致试样分子发生电离,即 M+e → M++2e 式中M为待测分子,M+为分子离子或母体离子。 电子束产生各种能态的M+。若产生的分子离子带有较大的内能 (转动能、振动能和电子跃迁能),分子离子或母体离子继续 受电子轰击而发生化学键的断裂,形成大量的各种低质量数的 碎片正离子和中性自由基,这些碎片离子可用于有机化合物的 结构鉴定。如 M+1 → M+3 M+ …… M+2 → M+4 式中M+1,M+2…为较低质量的离子
(2)化学电离源( CI )
在质谱中可以获得样品的重要信息之一是其相对分子 质量。但经电子轰击产生的M+峰,往往不存在或其强度很 低。必须采用比较温和的电离方法,其中之一就是化学电 离法。化学电离法是通过离子一分子反应来进行,而不是 用强电子束进行电离。离子(为区别于其他离子,称为试 剂离子)与试样分子按下列方式进行反应,转移一个质子 给试样或由试样移去一个 H+或电子,试样则变成带 +l电荷 的离子。 化学电离源一般在 1.3×102~1.3×103Pa压强下工作(现已 发展出大气压下化学电离技术),其中充满 CH4,首先用 高能电子进行电离产生CH5+和C2H5+,即
1.真空系统 质谱仪的离子产生及经过系统必须处于高真空状态(离 子源真空度应达10-3~10-5Pa,质量分析器中应达10-6Pa)。 若真空度过低,则会造成离子源灯丝损坏、本底增高、反应 过多,从而使图谱复杂化、干扰离子源的正常调节、引起加 速极放电等问题。一般质谱仪都采用机械泵预抽真空后,再 用高效率扩散泵连续地运行以保持真空。现代质谱仪采用分 子泵可获得更高的真空度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7
进样系统/离子源基质辅助激光解吸电离
(MALDI)
• 基本原理: 将样品分散在基质分子中并形成共结晶
后直接进样, 当用激光(337 nm的氮激光或355 nm的
固体激光器)照射晶体时, 基质吸收了激光的大部分 能量,使基质分子和样品获得能量投射到气相并得 到电离,成为带电荷的离子。因此基质在样品离子 形成过程中起到了质子化检测器飞行时间
质量分析器
(Time Of Flight, TOF)
• 基本原理:离子源产生的离子在加速电场获得动能,当
进入高真空无电场飞行管道并在此管道内飞行时;质量 较轻的离子飞行速度快,早到达检测器;质量较重的离 子飞行速度慢,晚到达检测器。因此依据离子的飞行时 间与其质荷比平方根 (m/z) 成正比的关系,通过测定飞 行时间,计算出相应离子的原子量或分子量。
3
质谱分析特点:
• 应用范围广;
• 灵敏度高,样品用量少;
• 分析速度快; • 与其它仪器相比,仪器结构复杂,价格昂贵,使用及 维修比较困难; • 对样品有破坏性,无法回收。
4
质谱法的产生机理及基本过程
1. 产生机理

质谱法是将样品置于高真空中,并受到高速电子流或强电场等作用,
失去外层电子而生成分子离子,或化学键断裂生成各种碎片离子,然 后将分子离子和碎片离子引入到一个强的正电场中,使之加速。

但是不同质荷比(m/z)的离子具有不同的速度,利用离子不同 质荷比及其速度差异,质量分析器可以将其分离,然后由检测 器测量其强度,记录后得到一张以质荷比为横坐标,以相对强 度为纵坐标的质谱图。
5

通常,对测定低分子量的化合物有用的经典质谱方法,对高分子聚
合物却不适合。因为将处于凝聚态的大分子以分离的、离子化的
分子转换到气相是相当困难的。新的离子化技术的发展使得该法
不仅能表征低聚物,区别环线结构,也成为测定合成高分子、生 物大分子分子量与分子量分布的有力工具。
6
第二节、激光质谱
• 基质辅助激光解吸/离子化飞行时间质谱(MALDI-TOF M
S)是近年来发展起来的一种软电离新型有机质谱近年来
已成为检测和鉴定多肽、蛋白质、多糖、核苷酸、糖蛋白 、高聚物以及多种合成聚合物的强有力工具。
质谱分析法
(Mass Spectrometry, MS)
目录


第一节、质谱法的基本原理
第二节、激光质谱

第三节、电喷雾质谱
2
第一节、质谱法的基本原理
一、概述
• 质谱分析法是在高真空系统中测定样品的分子离子及碎片离 子质量,以确定样品相对分子质量及分子结构的方法。 • 化合物分子受到电子流冲击后,形成的带正电荷分子离子及 碎片离子,按照其质量m和电荷z的比值m/z(质荷比)大小依 次排列而被记录下来的图谱,称为质谱。
11
第三节、电喷雾质谱
电喷雾电离是一种多电荷电离技术,电喷雾离子化质谱不
仅具有高的灵敏度,多电荷离子的形成降低了m/z值,可
以测定几万到几十万道尔顿(Da)生物大分子的分子量 (1Da=1Dalton=1g/mol,生物化学中使用的分子量单位)
12
电喷雾电离(ESI)原理可按电荷残留模型予以描述,带
10
优点: 1、ALDI-TOF MS具有灵敏度高、准确度高、分辨率高、图 谱简明、质量范围广及速度快等特点,在操作上制样简便、 可微量化、大规模、并行化和高度自动化处理待检生物样 品,而且在测定生物大分子和合成高聚物应用方面有特殊 的优越性。 2、应用MALDI -TOF MS对基因组单核苷酸多态性(SNPs)进 行分析检测,可区分和鉴别相对分子质量达 7,000 左右 (含20多个碱基)、仅存在1个碱基差别的不同 DNA 。特别 值得指出的是,MALDI-TOF MS已成为生命科学领域蛋白质 组研究中必不可缺的重要关键技术之一。
品分子带上正电荷或负电荷,成为带电荷的离子。
8
• 离子源特点: • 1、使用脉冲式激光; • 2、产生单电荷离子和部分双单电荷离子,质谱图中 的谱峰与样品各组分的质量数有一一对应关系; • 3、离子化效率高,灵敏度高
• 常用基质: • 芥子酸(3,5-二甲氧基-4-羟基肉桂酸)(SA)、龙胆酸 (2,5-二羟基苯甲酸)(DHB)、α -氰基-4-羟基肉桂酸(CHC A)、吡啶甲酸(PA)、3-羟基吡啶甲酸(3HPA)。
电液滴蒸发,液滴变小,液滴表面相斥的静电荷密度
增大。当液滴蒸发到某一程度,液滴表面的库仑斥力 使液滴爆炸。产生的小带电液滴继续此过程。随着液 滴的水分子逐渐蒸发,就可获得自由徘徊的质子化和 去质子化的蛋白分子。
13
The End !
14
相关文档
最新文档