激光的原理及简介

合集下载

激光原理及应用 ppt课件

激光原理及应用  ppt课件
(Top flat)
高斯
多元高斯
• 减少脉冲时间,高的峰值能量,更多的能量密度
Less pulse time, high peak power more energy density
能量密度=功率/频率/光斑面积
pulse
1.1uW/um=220W/20KHz/900um2
Hz
ppt课件
13
4.重叠率计算——Overlap
激光器 扫描镜
• 场镜:聚焦系统为F-θ 平场透镜,选用焦距 f=254mm。普通聚焦透镜像高y与入射角度θ 的关 系符合y=f tgθ ,当入射光偏转时其在焦平面上 的扫描速度不断变化;对普通透镜作改进后使像
高y=f θ ,以等角速度偏转的入射光实现线性扫 描,这种线性成像物镜称为F-θ 镜。
振镜
扫描振镜其专业名词叫做高速扫描振镜Galvo scanning system。所谓振镜,又可以称之 为电流表计,它的设计思路完全沿袭电流表的设计方法,镜片取代了表针,而探头的信号由计 算机控制的-5V—5V 或-10V-+10V 的直流信号取代,以完成预定的动作。同转镜式扫描系统 相同,这种典型的控制系统采用了一对折返镜,不同的是,驱动这套镜片的步进电机被伺服电
场镜
ppt课件
16
振镜是一种优良的矢量扫描器件。它是一种特殊的摆动电机 ,基本原理是通电线圈在磁场中产 生力矩 ,但与旋转电机不同 ,其转子上通过机械纽簧或电子的方法加有复位力矩 ,大小与转子偏 离平衡位置的角度成正比 ,当线圈通以一定的电流而转子发生偏转到一定的角度时 ,电磁力矩与 回复力矩大小相等 ,故不能象普通电机一样旋转 ,只能偏转 ,偏转角与电流成正比 ,与电流计一 样 ,故振镜又叫电流计扫描振镜(galvanomet ric scanner) 。

激光的产生原理及其特性(精)

激光的产生原理及其特性(精)

受激辐射:处在激发态能级上的原子,若有一个外来光子趋 近它,这原子就可能受了外来光子的“刺激”(或者称 “感应”),从高能级En向基态Em跃迁而辐射出光子,这 个过程称做受激辐射,受激辐射产生的光子和外来光子有 完全相同的特征,就是它们的频率、位相、振动方向和传 播方向都相同,是特征完全相同的相干光.
激光的亮度高和方向性极好的特点,研究啦激光测距仪, 激光雷达和激光准直仪。 下面这个图就是用激光雷达来测量风速的装置
激光加工.在现代工业中,一些强 度大且熔点商的材料的使用相当普 遍。如果进行打孔或切割,用机械 方 法是很困难的。例如.加工手表中 的钻石轴承.是在比芝麻还要小的 钻石上打孔.要求误差不能超过头 发的l/20,目前使用激光来打孔, 比机械打孔的效率提高100倍。 在加工工业中,高功率的c 激光器可 用于打孔.切割与焊接等.通过微 机控制可以作复杂形状的切割. 而低功率的COz激光器可用于切割 塑料、陶瓷和纺织品等.切后边缘 比较平整,不需进一步处理。
激光通信.又叫做光纤通信.它是刺用比头发还细的玻璃纤 维来传播光信号的.光纤通信的优点是t频带 宽,通信容量大,传输速度快.一根光鲆可同时传送l0”路电 话和l0’套彩电节目.而一根普通导线只能同时通 2—3路电话.目前.应用光奸敖据传输速度为3.4Gblt/s, 而实验室试验光纤的速度已达16Gblt/s.整套大英百 科全书的内窖可在不到一秒的时J可内传送完毕.
澈光武器.叉名死光武器.它的子 弹是光子.速度是3xloIm/s.一旦 瞄准目标,几乎不用多少时间就可 把目标摧毁.激光武器的破坏作用 有两十方面.一是高能激光束的机 械破坏作用.使飞机或卫星的重要 部件穿 孔而损坏,二是激光的光学破坏作 用.凳胃陆军正在发展PL 一s激光 武器,可装到M —l6步枪上.它能 使敲 ^双目失明而丧失战斗力,还能探测 和破坏敲^的光学传感器.据 算, 飞机驾驶员被激光致盲lO-3Os,就 可 导承飞机坠毁.

激光的原理特性和应用

激光的原理特性和应用

第二章激光与半导体光源激光的原理、特性和应用发光二极管与半导体激光器§2-1 激光的工作原理一、光的发射与光的吸收当原子从高能级向低能级跃迁时,将两能级之差部分以光子形式发射出去,称光的发射;当原子从低能级向高能级跃迁时,将吸收两能级之差部分的光子能量,称光的吸收。

光的发射和吸收过程满足相同的规律:两能级之差决定发射和吸收光子的频率光发射的三种跃迁过程1自发辐射:处在高能级的原子以一定的几率自发的向低能级跃迁,同时发出一个光子的过程,a)图;2 受激辐射过程:在满足两能级之差的外来光子的激励下,处在高能级的原子以一定的几率自发向低能级跃迁,同时发出另一个与外来光子频率相同的光子,b)图;两种辐射过程特点的比较:自发辐射过程是随机的,发出一串串光波的相位、传播方向、偏振态都彼此无关,辐射的光波为非相干光;受激辐射的光波,其频率、相位、偏振状态、传播方向均与外来的光波相同,辐射的光波是相干光。

3 受激吸收过程:在满足两能级之差的外来光子的激励下,处在低能级的原子向高能级跃迁,c)图受激辐射与受激吸收过程同时存在:实际物质原子数很多,处在各个能级上的原子都有,在满足两能级能量之差的外来光子激励时,两能级间的受激辐射和受激吸收过程同时存在。

当吸收过程占优势时,光强减弱;当受激辐射占优势时,光强增强。

二、粒子数反转与光放大当一束频率为的光通过具有能级E1和E2(假定E2>E1)的介质时,将同时发生受激辐射和受激吸收过程,在dt时间内,单位体积内受激吸收的光子数为dN12,受激辐射的光子数为dN21 ,设两能级上的原子数为N1、N2(正常情况下N2> N1),有dN21/ dN12 =B N2/ N1,比例系数B与能级有关。

1、N2/ N1<1时,高能级E2上原子数少于低能级E1上原子数(称正常分布),有dN21 < dN12,表明光经介质传播的过程中受激辐射的光子数少于受激吸收的光子数,宏观效果表现为光被吸收。

简述激光加工的原理及特点

简述激光加工的原理及特点

简述激光加工的原理及特点
激光加工是一种利用激光束来加工材料的技术。

其原理是通过将激光束聚焦到非常小的点上,使材料受到高能量的热作用,从而使材料发生溶化、蒸发、燃烧或气化等形式的剥离或切割。

激光加工的特点如下:
1. 高精度:激光束的直径可以控制到非常小的范围,因此能够实现精细的雕刻、打孔和切割等加工。

2. 非接触性:激光加工是一种非接触性加工方式,通过光束与材料作用,避免了与被加工物接触产生的磨损和污染。

3. 高能量密度:激光束具有高能量密度,能够在很短的时间内提供足够的热量,快速加工材料。

这种高能量密度实现了高速切割和高效率的加工。

4. 材料适应性广:激光加工适用于各种材料,包括金属、非金属、有机物等,且对材料的硬度和形状要求并不严格。

5. 灵活性高:激光加工可以根据需要更改加工路径和形状,能够完成复杂的加工任务,并能够用于多种工艺,如切割、焊接、打孔等。

6. 热影响区小:由于激光加工的热能作用是通过激光束的瞬时加热实现的,因此热影响区小,不会对周围材料产生较大的热影响和变形。

激光加工的原理和特点使其在工业制造和精密加工领域得到了广泛应用,如汽车制造、电子制造、航空航天等领域。

激光原理及在生活中的应用

激光原理及在生活中的应用

激光原理及在生活中的应用激光的英文名是laster,是”Light amplification by stimulated emission of radiation”的缩写,意为“受激辐射式光频放大”。

激光的三个基本组成为:泵浦源.谐振腔.增益媒质,世界上第一台激光器是美国科学家梅曼于1960年研制成功的。

激光是通过原子受激辐射发光和共振放大形成的。

原子具有一些不连续分布的能电子,这些能电子在最靠原子核的轨道上转动时稳定的,这时原子所处的能级为基态。

当有外界能量传入,则电子运行轨道半径扩大,原子内能增加,被激发到能量更高能级,这时称之为激发态或高能态。

被激发到高能态的原子是不稳定的,总是力图回到低能级去,原子从高能级到低能级的过程成为跃迁。

原子在跃迁时其能量差以光的形式辐射出来,这就是原子发光,又称荧光。

如果在原子跃迁时受到外来光子的诱发,原子就会发射一个与入射光子的频率.相位.传播方向.偏振方向完全相同的光子,这就是受激辐射的光。

原子被激发到高能级后会很快跃迁回低能级,它停在高能级的时间称为原子在该能级的平均寿命。

原子在外来能量的激发下,使处在高能级的原子数大于低能级的原子数,这种状态称为粒子数反转。

这是,在外来光子的刺激下产生受激辐射发光,这些光子光学谐振腔的作用产生放大,受激辐射越来越强,光束密度不断增大,形成了激光。

激光与其他光相比,具有以下的特点:高亮度,高方向性,高单色性和高干涉性。

这些特点使激光得到了广泛的应用,激光在材料加工中的应用就是其应用的一个重要领域。

由于这四大特性,因此,就给激光加工带来了如下传统加工所不具备的优势,由于是无接触加工,并且激光束的能量及移动速度均可调,因此可以实现多种加工。

还可用来加工多种金属.非金属,特别是可以加工高硬度.高脆性及高熔点的材料。

激光加工过程中无刀具磨损,无切削力作用于工件,加工的工件热影响区小,工件热变形小,后续加工量小。

激光可通过透明介质对密闭容器内的工件进行各种加工。

第一章 激光的基本原理及其特性

第一章 激光的基本原理及其特性

1913年波尔提出了原子中电子运动状态量子化假设。
1917年爱因斯坦从光量子概念出发,重新推导了黑体
辐射的普朗克公式,在推导中提出了两个极为重要地概
念:受激辐射和自发辐射。
(第一章)
物理与电子工程学院
《激光原理与技术》
原子的能级
• 基态

激发态
电子只能处于分立的能级,电磁辐射与物质的相互作用将 导致物质中电子能级的变化,当吸收或辐射能量时,可在 特 定的能级间跃迁;该能量为这两个能级的能量差,并且 该能量差唯一地决定了电磁辐射的频率: ∆Ed t 0
受激跃迁几 率
(第一章)
物理与电子工程学院
《激光原理与技术》
受激吸收的特点
原子的受激吸收几率与外界辐射场的频率有关 原子的受激吸收几率与受激爱因斯坦系数有关 原子的受激吸收几率与外来光辐射能量密度有关
(第一章)
物理与电子工程学院
《激光原理与技术》
光的受激辐射
入射光
h E 2 E 1
(t ) N u 0 e 1 Au 1 1
N u 0e

t
u
u u

Au i
物理与电子工程学院
《激光原理与技术》
自发辐射的特点
原子的自发辐射与原子的本身性质有关,与外界 辐射场无关 自发辐射的随机性,自发辐射光的相位、偏振态 和传播方向杂乱无章
光源发出的光的单色性、定向性很差。没有确定 的偏振状态。
原子数按能级分布
热平衡时,单位体积内处于各个能级上的原子数分布
玻尔兹曼分布律:
N2 N1
e
( E 2 E1 ) kT
高 能 级 低 能 级
物理与电子工程学院

激光器及其原理简介

激光器及其原理简介

♦ Ne原子可以产生多条激光谱线, 图中标明了最强的三条:
0.6328μm 1.15 μm 3.39 μm
它们都是从亚稳态到非亚稳态、 非基态 之间发生的,因此较易实现粒子数反转。
§4 增益系数
激光器内受激辐射光 来回传播时,并存着
增益 损耗
增益——光的放大;
损耗——光的吸收、散射、衍射、透射 (包括一端的部分反射镜处必要 的激光输出)等。
§6 激光的特性及其应用
★方向性极好的强光束 --------准直、测距、切削、武器等。
★相干性极好的光束 --------精密测厚、测角,全息摄影等。
例1.激光光纤通讯
由于光波的频率 比电波的频率高 好几个数量级,
一根极细的光纤 能承载的信息量, 相当于图片中这 麽粗的电缆所能 承载的信息量。
若 E2 > E 1,则两能级上的原子数目之比
N2
− E2 − E1
= e kT
<1
N1
数量级估计:
T ~103 K;
kT~1.38×10-20 J ~ 0.086 eV;
E 2-E 1~1eV;
N2
− E2 − E1
= e kT
−1
= e 0.086
≈ 10−5
<< 1
N1
但要产生激光必须使原子激发;且 N2 > N1, 称粒子数反转(population粒子数反转 一. 为何要粒子数反转 (population inversion)
从E2 E1 自发辐射的光,可能引起 受激辐射过程,也可能引起吸收过程。
⎜⎛ ⎝
dN 21 dt
⎟⎞ ⎠受激
=
B21ρ (ν
,T
)N 2

激光的原理及技术基础

激光的原理及技术基础

激光技术的发展趋势
高效化
提高激光器的输出功率 和能量转换效率,以满
足各种应用需求。
微型化
减小激光器的体积和重 量,使其更加便携和易
于集成。
智能化
结合人工智能和机器学 习技术,实现激光器的
智能控制和优化。
多波段化
开发多波段激光器,以 满足不同应用领域的特
殊需求。
未来激光技术的应用前景
01
02
03
04
在激光中,受激辐射通过共振腔的作 用得到放大,使得某一特定波长的光 得到增强,最终形成激光。
激光器的基本组成
激光器由工作物质、共振腔和泵浦源三部分组成。工作物质 是产生激光的物质,共振腔是维持和放大激光的装置,泵浦 源则提供能量使工作物质发生受激辐射。
通过调整共振腔的反射镜间距和角度,可以控制激光的波长 、模式和输出功率等参数。同时,通过改变泵浦源的功率, 可以调节激光的输出功率和模式。
激光武器
激光雷达侦查
利用高能激光束对目标进行打击,具有快速、 灵活、低成本等优点,可应用于反导、反卫 星等领域。
利用激光雷达对敌方目标进行高精度侦查和 定位,获取情报信息,为军事行动提供决策 支持。
04 激光的特性与优势
激光的特性
单色性
方向性
激光的波长范围非常窄,因此具有极高的 单色性。这使得激光在光谱分析、干涉测 量等领域具有广泛的应用。
02 激光技术基础
激光调制技术
直接调制
通过改变注入电流的大小来改变 激光的输出功率,适用于低频信 号的调制。
外部调制
使用一个外部装置来改变激光的 参数,如偏振态或相位,适用于 高速信号的调制。
激光放大技术
半导体激光放大器

激光原理及应用论文

激光原理及应用论文

激光的原理及应用班级:测控09级2班姓名:赵虹兵学号:090030207摘要:激当前激光技术发展的越来越迅速和成熟,在我们生活中的各个行业应用的非常广泛。

由于激光技术的先进性,精确性,所以在当前,在很多行业都得以应用和实现。

本文通过对激光技术的学习,大概阐述了激光产生原理,以及激光在各个方面的应用。

关键词:激光原理跃迁谐振腔应用一.激光简介激光是在 1960 年正式问世的。

但是,激光的历史却已有 100 多年。

确切地说,远在 1893 年,在波尔多一所中学任教的物理教师布卢什就已经指出,两面靠近和平行镜子之间反射的黄钠光线随着两面镜子之间距离的变化而变化。

他虽然不能解释这一点,但为未来发明激光发现了一个极为重要的现象。

1917 年爱因斯坦提出“受激辐射”的概念,奠定了激光的理论基础。

激光,又称镭射,英文叫“LASER”,是“Light Amplification by Stimu Iatad Emission of Radiation”的缩写,意思是“受激发射的辐射光放大”。

激光的英文全名已完全表达了制造激光的主要过程。

1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。

二、激光产生原理2.1、激光产生的物质基础光与物质的共振相互作用,特别是这种相互作用中的受激辐射过程是激光器的物理基础。

爱因斯坦认为光和物质原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。

为了简化问题,我们只考虑原子的两个能级1E 和2E ,处于两个能级的原子数密度分别为1n 和2n ,如图2-1所示。

构成黑体物质原子中的辐射场能量密度为ρ,并有21E E h ν-=。

(Ⅰ)、自发辐射处于高能级2E 的一个原子自发地向低能级1E 跃迁,并发射一个能量为h ν的光子,这种过程称为自发跃迁过程,如图2-2所示。

(Ⅱ)、受激辐射处于高能级2E 的原子在满足21()E E h ν=-的辐射场作用下,跃迁至低能级1E 并辐射出一个能量为h ν且与入射光子全同光子,如图2-3所示。

论述激光加工的原理及应用

论述激光加工的原理及应用

论述激光加工的原理及应用1. 引言激光加工是一种现代制造工艺,利用高能激光束将材料表面加热至熔点或汽化点,通过控制激光束在材料表面上移动或固定位置进行切割、焊接、雕刻等加工操作。

本文将探讨激光加工的原理和应用,以便更好地理解这一重要的制造技术。

2. 激光加工的原理激光加工的原理基于激光的特性,主要包括激光产生、激光传输和激光与材料相互作用三个方面。

2.1 激光产生激光产生是激光加工的关键步骤,主要通过激发材料内部的激发态粒子使其受激辐射而产生激光。

常用的激光器包括气体激光器、固体激光器和半导体激光器等。

2.2 激光传输激光传输是指将激光从激光器输出端传输到加工点的过程。

传输路径的选择和光束的稳定性对激光加工的质量和效率起着重要作用。

常用的激光传输方法包括光纤传输和镜面反射传输等。

2.3 激光与材料相互作用激光与材料相互作用是激光加工的核心过程,主要包括吸收、透射、散射和反射等现象。

激光通过与材料相互作用产生的热效应,将能量传递到材料中,引起材料的加工和变化。

3. 激光加工的应用在工业生产中,激光加工被广泛应用于多个领域。

3.1 切割激光切割是激光加工的常见应用之一,它可以对各种材料进行高精度、高效率的切割。

常见的切割材料包括金属、塑料、纸张等,激光切割广泛应用于汽车制造、电子设备制造等行业。

3.2 焊接激光焊接是通过将激光束聚焦到焊缝上,通过材料的熔化和凝固,实现两个或多个材料的连接。

激光焊接具有高焊接速度、高焊接质量和变形小的优点,被广泛应用于汽车、航空航天等行业。

3.3 雕刻激光雕刻是利用激光束对材料进行加工,形成精细的图案、文字或装饰。

激光雕刻广泛应用于工艺品、标牌、广告等领域,以其高精度、高效率和多样化的加工方式而受到青睐。

3.4 光刻光刻是一种将图形或图案转移到光敏材料上的方法,常用于半导体制造中。

激光光刻具有高分辨率、高重复性和高精度的特点,可以实现密集的芯片制造。

3.5 刻蚀激光刻蚀是利用激光束对材料表面进行物质去除的过程,常用于微电子制造过程中的精细加工。

激光原理及应用

激光原理及应用
当然,用于治疗的激光,通常是几个瓦特 中等强度的激光,其对组织的作用,还取决 于激光脉冲的发射方式。
5、医疗领域应用
(1)激光美容:激光是通过产生高能量,聚焦精确,具有 一定穿透力的单色光,作用于人体组织而在局部产生高热量 从而达到去除或破坏目标组织的目的。
各种不同波长的脉冲激光可治 疗各种血管性皮肤病及色素沉着, 如雀斑、老年斑等,以及去纹身、 洗眼线、洗眉等;而近年来一些 新型的激光仪在进行除皱、磨皮 换肤、治疗打鼾,美白牙齿等方 面取得了良好的疗效,为激光外 科开辟越来越广阔的领域。
激光控制核聚地质变勘探
4、信息领域应用
激光通信
光纤通信
5、医疗领域应用
激光在医学上的应用主要分三类:激光生命科 学研究、激光诊断、激光治疗
我激们光国生家命的科学科研学究工主作要者包在括激 光两育方种面方内面容做,了其一大是量激而光有育成种效;的 工其作二,就近是十以年激来光, 作我为国分用析激和光检育测种 方的法工已具培来养研出究棉生花物分、子油和菜细、胞水的稻、 小结麦构、、大性豆质、、玉功能米以、及果生树物、物家理蚕 等和优生良物品化种学和的品反系应近机4制0余。种。
2012年12月13日
3、方向性强——激光束的发散角很小,几乎是一平 行的光线。 4、亮度高——激光的亮度可比普通光源高出1012- 1019倍,是目前最亮的光源,强激光甚至可产生上 亿度的高温。
10
由于激光具有方向性好、亮度高、 单色性好、相干性好等特点!!! 因此,激光在许多领域中都得到广泛 应用......
激光的应用,按照激光探头是否与激光作用的物
质接触,分为接触式和非接触式两种工作模式;其应 用领域,主要有工业、医疗、商业、科研、信息和军 事六个领域。

激光原理与技术完整ppt课件

激光原理与技术完整ppt课件

1.1.1所示)。每一模式在三个坐标铀方向与相邻模的间隔为
Δkx=л/Δx,Δky=л/Δy,Δkz=л/Δy 因此,每个模式在波矢空间占有一个体积元
(1.1.6)
ΔkxΔkyΔkz =л3 /(ΔxΔyΔz)=л3 /V
(1.1. 7)
精选课件PPT
10
在k空间内,波矢绝对值处于|k|~|k|+d|k|区间的体积为(1/8)4л|k|2 d|k|,
可见,一个光波模在相空间也占有一个相格.因此,一个光波模等效于一个光子态。
一个光波模或一个光子态在坐标空间都占有由式(1.1.11)表示的空间体积。
精选课件PPT
12
三、光子的相干性
为了把光子态和光子的相干性两个概念联系起来,下面对光源的相干性进行讨论。
在一般情况下,光的相干性理解为:在不同的空间点上、在不同的时刻的光波场的某
4.4 典型激光器的速率方程
3.5 空心介质波导光谐振腔的反馈耦合损耗 4.5 均匀加宽工作物质的增益系数
4.6 非均匀加宽工作物质的增益系数
4.7 综合均匀加宽工作物质的增益系数
精选课件PPT
3
第五章 激光振荡特性
5.1 激光器的振荡阈值 5.2 激光器的振荡模式 5.3 输出功率和能量 5.4 弛豫振荡 5.5 单模激光器的线宽极限 5.6 激光器的频率牵引
ε=hv
(1.1.1)
式中 h=6.626×10-34J.s,称为普朗克常数。
(2)光子具有运动质量m,并可表示为
(1.1.2)
光子的静止质量为零。
精选课件PPT
7
(3)光子的动量P与单色平面光波的波矢k对应
(1
式中
n。为光子运动方向(平面光波传播方向)上的单位矢量。 4.光于具有两种可能的独立偏振状态,对应于光波场的两个独立偏振方向。 5.光于具有自旋,并且自旋量子数为整数。因此大量光于的集合, 服从玻色—爱因斯坦统计规律。处于同一状态的光子数目是没有限制的, 这是光子与其它服从费米统计分布的 粒子(电子、质子、中子等)的重要区别。 上述基本关系式(1.1.1)相(1.1.3)后来为康普顿(Arthur Compton)散射实验所证实 (1923年),并在现代量子电动力学中得到理论解释。量子电动力学从理论上把光的电磁 (波动)理论和光子(微粒)理论在电磁场的量子化描述的基础上统一起来,从而在理论上 阐明了光的波粒二象性。在这种描述中,

激光与物质相互作用的应用及原理

激光与物质相互作用的应用及原理

激光与物质相互作用的应用及原理激光与物质相互作用是一种重要的物理现象,广泛应用于各个领域。

在这里,我将介绍一些激光与物质相互作用的应用及原理。

首先,激光在医学领域的应用。

激光通过与生物组织的相互作用,可以实现很多医学疗法。

例如,激光手术利用激光的高能量密度和聚焦性质,对组织进行切割、焊接、凝固等操作。

激光手术在临床上广泛用于眼科、皮肤科、泌尿科等领域。

另外,激光还能实现血管瘤和白斑病的治疗。

激光通过选择性破坏异常血管或激活色素,达到治疗效果。

此外,激光还能用于激光热疗、激光激发荧光、激光诱导击贼等治疗方法。

其次,激光在材料加工中的应用。

激光加工是一种高效、精确、柔性的加工方式。

激光加工通常用于切割、焊接、打孔、打标等工艺。

此外,激光还广泛应用于微细加工,如电子元件的制造、半导体加工等。

激光与材料相互作用的原理是通过激光束的照射,使材料局部受热,从而改变其化学、物理性质。

激光加工的主要原理包括光-热转换、光致氧化、光致热解等。

再者,激光在通信领域的应用。

激光通信是一种将信息以光的形式进行传输的通信方式,其速度、容量远远超过传统的电信通信。

激光通信的原理是光的强度调制和频率调制。

激光作为光源,通过光电调制器调制光的强度或频率,将信息传输到目标点。

激光通信在短距离内可以实现高速传输的优势,广泛应用于广电、互联网、航天等领域。

此外,激光还在测量和检测领域有着广泛的应用。

激光测距仪、激光干涉仪、激光扫描仪等设备利用激光的干涉、散射、衍射等原理,实现对物体形态、距离、速度等参数的测量和检测。

由于激光具有高方向性、高亮度和高一致性等特点,因此在测量和检测领域具有独特的优势。

总结起来,激光与物质相互作用具有广泛的应用领域,包括医学、材料加工、通信、测量和检测等。

激光与物质相互作用的原理主要包括光-热转换、光致氧化、光致热解、干涉、散射、衍射等。

随着科技的不断进步和应用的不断拓展,激光与物质相互作用将继续在各个领域发挥重要作用。

四能级系统激光产生的原理

四能级系统激光产生的原理

四能级系统激光产生的原理1.引言1.1 概述概述四能级系统激光是一种基于四个能级的激光系统,其原理基于原子或分子能级的跃迁。

在这种激光系统中,激发光源将原子或分子从基态激发到第一激发态,然后通过跃迁到第二激发态,并进一步跃迁到亚稳态。

最后,在亚稳态和基态之间的跃迁释放出具有特定波长和相干性的激光光子。

四能级系统激光在许多领域中都有广泛的应用,包括激光切割、激光雷达、医学治疗和科学研究等。

它具有高度的激光效率和较长的寿命,可以提供强大且稳定的激光输出。

本文将介绍四能级系统激光的基本原理,包括能级结构和激发跃迁过程。

此外,还将探讨四能级系统激光的应用前景以及它所面临的优势和挑战。

通过深入理解四能级系统激光的原理和特性,我们可以更好地利用它的优势,并克服潜在的挑战,推动激光技术的进一步发展。

(字数: 175)1.2文章结构文章结构部分的内容应该包括以下信息:在文章结构部分,我们将介绍四能级系统激光产生的原理。

本章将分为三个部分来阐述:引言、正文和结论。

引言部分将对四能级系统激光进行概述,介绍其基本概念和重要性。

我们将讨论四能级系统激光在各个领域中的应用,并对本文的目的进行说明。

正文部分将详细介绍四能级系统激光的基本原理。

我们将解释四能级激光器的工作原理和发射过程,并着重介绍其能级结构。

通过对能级结构的分析,我们将深入探讨四能级系统激光的产生机制和特点。

结论部分将对四能级系统激光的应用前景进行讨论。

我们将探讨该技术在通信、医学、材料科学等领域的潜在应用,并分析四能级系统激光的优势和挑战。

最后,我们将总结本文的主要内容,并展望未来对于四能级系统激光研究的重要方向。

通过以上结构,本文将全面介绍四能级系统激光产生的原理,希望读者能够通过本文的阅读,对该领域有更深入的了解。

1.3 目的本文的目的是探讨四能级系统激光产生的原理。

随着科技的飞速发展,激光技术已经成为许多领域不可或缺的重要工具,如光通信、医疗、材料加工等。

激光概述

激光概述

多路合成角度全息用于艺术品展示
全息激光防伪标签,已经是一个很大的产业
(2)激光全息存储
❖ 利用激光干涉原理将图文等信息记录在感光介 质上的大容量信息存储技术 通过将缩微胶片 上的影像转变为光信息,然后制出存储密度更 大的全息图 全息图是由干涉条纹组成的影像, 该条纹记录了入射光线的全部信息—振幅和相 位 阅读还原时,需在激光照射下利用条纹影 像的衍射原理使其再现
与其他种类电视(等离子体、液晶电视等)相比,激光电视在技术上具有明显优势。 据专家介绍,彩色电视机自1954年问世至本世纪初以来,一直以阴极射线管为基础, 通过提高荧光粉的发光效率、增大显示屏的尺寸、平面化荧光屏的显示表面、改进接 收和播放信号处理系统等提高彩色电视机的技术含量和增强市场竞争力。
随着科技的进步和发展,以阴极射线管作为显示器,逐步暴露出越来越多的缺点和不 足,如会产生对使用者身体健康非常有害的电磁辐射、荧光粉不能完美显示影像的颜 色、显示屏的尺寸难以做大、彩色电视机整机体积大,重量大等。
书中记载:放平了看,这是一块残缺的玻璃片,但斜向阳光看去, 就
有一个“仙人”坐在里面,仪容端庄,面色微红,双目炯炯,胸前飘着长长 的白须,头戴红色道冠,,穿紫色衣服, 右手执一柄羽毛扇,身旁还侍立 着一个童子。
姚元之在清代嘉庆、道光两朝,做官近40年,经历丰富,博学能文,著 述严谨。 囿于当时认识水平,姚元之把这一奇异现象解释为在雷雨时刻, 一位避劫的仙灵精气聚合不散,附着在玻璃上而成。
影,有坐着做祈祷的半裸体印第安人,有手捋胡子的白发老人,有带着一群 孩子的年轻妇人,还有手拿帽子、带着披风的印第安老农等。
在仅有八毫米的圣女像的双眼中,竟容纳这么多人,这在科学上是很难 解释的。 这些图像是怎样形成的? 还有待科学家们进一步考用分光镜一分为二,其中一束照到 被拍摄的景物上,称为物光束;另一束直 接照到感光胶片即全息干板上,称为参考 光束。当光束被物体反射后,其反射光束 也照射在胶片上,就完成了全息照相的摄 制过程

激光原理性质及应用

激光原理性质及应用

3.2 激光通讯
系统重量轻:发射机功耗低,供电系统重量轻;光束集中,散射角小 ,导致发射和接收望远镜的口径都很小,摆脱了微波系统巨大的碟形 天线,重量和体积减轻很多非常有利于卫星通信。
微 波 天 线
激 光 天 线
但是激光在大气中传输时受雨、雾、雪、霜等影响,衰耗要增大,故一般 用于边防、海岛、跨越江河等近距离通信,以及大气层外的卫星间通信和 深空通信
hν = E 2 − E1 hν = E 2 − E1
1.激光原理
1.1物质与光相互作用 受激吸收、自发辐射、受激辐射。 受激吸收:处于较低能级的粒子受到外界 的激发,吸收能量,跃迁到与此能量相对 应的较高能级。 自发辐射:处于高能级的电子以一定的概 率自发地(没有吸收外部能量)从高能级 向低能级跃迁,并放出能量与两能级能量 差相等的光子。
疝 灯
2 激光的特点
干涉性好 激光可以步调一致地向同一方向传播,可以用 透镜把它们会聚到一点上,把能量高度集中起, 一台巨脉冲红宝石激光器的亮度比太阳表面的亮 度高若干倍。 但是它的能量密度很大因为它的作用范围很小, 一般只有一个点,所以短时间里聚集起大量的能 量。
3 激光的应用
3.1医学中的应用 医学中的应用 医学是应用激光技术最早、最广泛和最活 跃的一门边缘学科。在1960年世界上第一 台红宝石激光器研制成功后的第二年激光 光视网膜凝固机就在眼病治疗获得应用。 目前激光治疗在临床可分为:眼科激光治 疗、外科激光手术、用于美容目的的皮肤 病激光治疗、口腔激光和激光理疗等等。
3.4 激光冷却
1985年,美籍华裔物理学家朱棣文和他的同事首次实现了激 光冷却原子的实验,并得到了极低温度——24µK(绝对0度 是0K)的钠原子气体。
3.4 激光武器

激光及超声波产生的原理是

激光及超声波产生的原理是

激光及超声波产生的原理是
激光和超声波都是常见的用于科技领域的技术。

它们的产生原理不同,也因此在应用场景和效果上有所不同。

激光的原理是利用物质的受激辐射效应,将粒子在能量的作用下发生跃迁,产生一定波长、相位和偏振方向的电磁波。

这些电磁波经过反射和聚焦后能够形成高强度、高能量的光束。

激光由于具有高度的相干性和单色性,在医学、工业、通信、军事等领域得到广泛运用。

相关领域的应用包括眼科、切割、材料加工、光纤通信、遥感等。

超声波的产生原理是利用了物质在振动或变形时发出的机械波,这些波有很广泛的应用领域,比如医学、工程、安全检测。

超声波在深度感知和不破坏性探测方面拥有得天独厚的优势。

超声波在医学上的应用是最突出的,可以在无创的情况下进行诊断和治疗。

产生超声波的方法有多种,其中两种最常见的是压电法和电磁感应法。

压电法将一些材料(如石英、锆酸钛等)压缩或拉伸时能够产生电场的效应,而这个特性也可以被用来让材料震动起来,并产生超声波。

电磁感应法则是通过电磁场和涡流的相互作用产生超声波,这种方法常用于检测金属物体和其它导体的内部缺陷。

总之,激光和超声波产生的原理是不同的,各自具备自己的应用领域和技术特点。

在面临不同的问题时,我们可以根据需求选择适当的技术方法,以最优的方式解
决问题。

激光源工作原理

激光源工作原理

激光源工作原理
激光源工作原理是指激光器如何产生和放大一束高度聚焦、单色、相干、高功率的激光光束。

主要包括以下几个步骤:
1. 激发:激光源通常需要通过外部能量源来激发激光介质。

常见的激发方式有光电激发、电子束激发、化学反应激发等。

激发能量的提供可使激光介质的外层电子跃迁至高能级。

2. 反射和选择性放大:激光介质内的原子或分子受激电子跃迁至高能级后,将通过自发辐射的方式发出光子。

这些发出的光子在介质内来回多次反射,与介质内其它的原子或分子相互作用并受到它们的激励。

这样,光子会通过选择性放大的过程逐渐增多并沿着光学轴传播。

3.光反馈和放大:光子受到选择性放大后,在激光介质内形成了高度聚焦、单色和相干的光子的集合体。

一部分光子逃逸会经过光学反馈系统,通过增强反射,使得部分光子在介质内来回传播,得到继续放大。

4. 效应输出:当激光光子数达到足够高时,光输出即可通过激光器的输出耦合口释放出来。

输出激光通常经过光学器件的调整,使其具有所需的波长、强度和方向。

总体而言,激光源工作原理是通过激发激光介质使其产生受激辐射,并通过选择性放大和光反馈的过程来实现激光的产生和放大,最终得到一束高度聚焦、单色、相干、高功率的激光光束。

激光的原理及激光器分类

激光的原理及激光器分类

一、基础原理量子理论认为,所有物质都是由各种微观”粒子”组成,如分子,原子,质子,中子,电子等。

在微观世界里,各种粒子都有其固有的能级结构。

当一个粒子从高能级掉到低能级时,根据能量守恒定律,它要把两个能级相差部分的能量释放出来,通常这个能量以光和热两种形式释放出来。

二、自发辐射、受激辐射1、自发辐射普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。

激发的过程是一个“受激吸收”过程。

但是处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。

辐射光子能量=E2-E1。

过程各自独立、互补关联,所有辐射的光在发射方向上是无规律的射向四面八方,并且频率不同、偏振状态和相位不同。

2、受激辐射在原子中也存在这样一些特定高能级,一旦电子被激发到这个高能级之上,却由于不满足跃迁的条件,发生跃迁的几率很低,电子能够在高能级上的时间很长,就所谓的亚稳定状态。

但在能在外界光场的照射下发生往下跃迁,并且向下跃迁时释放出一个与射入光场相同的光子,在同一个方向、有同一个波长。

这就是受激辐射,激光正是利用这一原理激发出来。

二、粒子数反转通过受激辐射出来的光子,不仅可以引起其他粒子受激辐射,也可以引起受激吸收。

只有在处于高能级的原子数量大于处于低能级原子数时,所产生的受激辐射才能大于受激吸收。

但是在自然条件下,原子都是都处于稳定的基态,只能通过技术手段将大量的原子都调整到高能级的状态,才能有多余的辐射向外产生。

这个技术叫粒子数反转。

三、光放大过程通过粒子数反转后,其中一个粒子首先在外界光场的照射刺激下,对外发出了一个光子,这个光子又刺激其他粒子再次对外发射光子,并且方向相同,波长相同。

但是这样放大的光还不够强。

科学家设计了一个光学偕振腔(两片反射玻璃,一片100%反射、一片接近100%反射),通过反复反射,将光强度进一步扩大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光的原理及简介
激光的最初中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词的头一个字母组成的缩写词。

意思是“受激辐射的光放大”。

一.激光的原理应该追溯到1917年爱因斯坦的一篇论文,题为“论辐射量子理论”(on the quantum theory of radistion)。

爱因斯坦提出原子和光辐射的作用机制有三种:(1)原子自发发射;(2)原子的光辐射吸收;(3)原子受激发射。

由于当时量子力学还未被发现,爱因斯坦对光辐射和原子作用这个问题的研究方法采用了经典统计物理的办法,研究一个两能级的原子气体和光辐射处于平衡时的条件。

爱因斯坦把这个统计力学平衡的系统中的原子光子过程,描述为三种过程,使系统处于平衡态:①受激吸收②受激发射③自发发射。

二.1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。

激光主要有四大特性:激光高亮度、高方向性、高单色性和高相干性。

①激光的高亮度:固体激光器的亮度更可高达1011W/cm2Sr。

不仅如此,具有高亮度的激光束经透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其可能可加工几乎所有的材料。

②激光的高方向性:激光的高方向性使其能在有效地传递较长的距离的同时,还能保证聚焦得到极高的功率密度,这两点都是激光加工的重要条件
③激光的高单色性:由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。

④激光的高相干性:相干性主要描述光波各个部分的相位关系。

三.正是激光具有如上所述的奇异特性因此在工业加工中得到了广泛地应用。

目前激光已广泛应用到激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等。

经过30多年的发展,激光现在几乎是无处不在,它已经被用在生活、科研的方方面面:激光针灸、激光裁剪、激光切割、激光焊接、激光淬火、激光唱片、激光测距仪、激光陀螺仪、激光铅直仪、激光手术刀、激光炸弹、激光雷达、激光枪、激光炮……,在不久的将来,激光肯定会有更广泛的应用。

激光武器是一种利用定向发射的激光束直接毁伤目标或使之失效的定向能武器。

根据作战用途的不同,激光武器可分为战术激光武器和战略激光武器两大类。

武器系统主要由激光器和跟踪、瞄准、发射装置等部分组成,目前通常采用的激光器有化学激光器、固体激光器、CO2激光器等。

激光武器具有攻击速度快、转向灵活、可实现精确打击、不受电磁干扰等优点,但也存在易受天气和环境影响等弱点。

激光武器已有30多年的发展历史,其关键技术也已取得突破,美国、俄罗斯、法国、以色列等国都成功进行了各种激光打靶试验。

目前低能激光武器已经投入使用,主要用于干扰和致盲较近距离的光电传感器,以及攻击人眼和一些增强型观测设备;高能激光武器主要采用化学激光器,按照现有的水平,今后5—10年内可望在地面和空中平台上部署使用,用于战术防空、战区反导和反卫星作战等。

相关文档
最新文档