高三数学数列求和的基本方法和技巧
高三数学数列的求和
1 1 1 例3:求S n 1 2 2 3 n ( n 1)
1 1 1 1 练习 .求和 Sn= + + + …+ 2× 5 5× 8 8× 11 (3n-1) (3n+2)
常见的拆项公式
1 1 1 1. n( n 1)n n 1
1 1 1 1 2. ( ) n( n k ) k n n k
五、分组求和法
通过把数列的通项分解成几项,从而出现 几个等差数列或等比数列,再根据公式进 行求和。关键是分析通项 1 1 1 例4.求和S n 1 1 1 2 2 4 n 1 1 1 1 1 1 n 1 S n 2n 2 2 4 2 2
一、公式法 1. 等差数列求和公式:
na1 a n nn 1 Sn na1 d 2 2
2. 等比数列求和公式:
q 1 na1 S n a1 1 q n a1 a n q q 1 1 q 1 q
一、公式法
常见数列的前n项和公式
练习
1、求数列5,55,555, …,555…5的和
5 n a n 10 1 9
5 Sn 10 n 1 10 9n 81
n
n个
2、求数列 1 , 4 , 7 , 10 ,, (1)
(3n 2) , 前n项和
3n 1 n为奇数 2 Sn 3n n为偶数 2
1 1 1 1 练习 : 求数列1 ,3 ,5 , , 2n 1 n , 2 4 8 2 Sn n2 1 的前n项和.
高三数学考点-数列求和及应用
6.4 数列求和及应用1.数列求和方法 (1)公式法:(Ⅰ)等差数列、等比数列前n 项和公式. (Ⅱ)常见数列的前n 项和:①1+2+3+…+n =;②2+4+6+…+2n =;③1+3+5+…+(2n -1)=;④12+22+32+…+n 2=;⑤13+23+33+…+n 3=⎣⎡⎦⎤n (n +1)22.(2)分组求和:把一个数列分成几个可以直接求和的数列. (3)倒序相加:如等差数列前n 项和公式的推导方法.(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.等比数列{a n }前n 项和公式的推导方法就采用了错位相减法.(5)裂项相消:有时把一个数列的通项公式分成二项差的形式,相加消去中间项,只剩有限项再求和. 常见的裂项公式:①1n (n +1)=-1n +1; ②1(2n -1)(2n +1)=⎝⎛⎭⎫12n -1-12n +1;③1n (n +1)(n +2)=⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);④1a +b=(a -b );⑤n (n +1)!=-1(n +1)!; ⑥C m -1n= ; ⑦n ·n != !-n !; ⑧a n =S n -S n -1(n ≥2). 2.数列应用题常见模型 (1)单利公式利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = . (2)复利公式利息按复利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(3)产值模型原来产值的基础数为N ,平均增长率为p ,对于时间x ,总产值y = . (4)递推型递推型有a n +1=f (a n )与S n +1=f (S n )两类.(5)数列与其他知识综合,主要有数列与不等式、数列与三角、数列与解析几何等.自查自纠1.(1)①n (n +1)2 ②n 2+n ③n 2 ④n (n +1)(2n +1)6(2)①1n ②12 ③12 ④1a -b ⑤1n !⑥C m n +1-C mn ⑦(n +1) 2.(1)a (1+xr ) (2)a (1+r )x (3)N (1+p )x数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1 D .n +2+2n 解:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n -1.故选C .若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15解:记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A . 数列{|2n -7|}的前n 项和T n =( ) A .6n -n 2 B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n +18(n >3)D.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n (n >3) 解:设a n =2n -7,n ≤3时,a n <0;n >3时,a n >0,a 1=-5,a 2=-3,a 3=-1,且易得{a n }的前n 项和S n=n 2-6n ,所以T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3).故选C .数列{a n }满足a n =n (n +1)2,则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解:1a n =2⎝⎛⎭⎫1n -1n +1,则数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2(1-111)=2011.故填2011. 有一种细菌和一种病毒,每个细菌在每秒杀死一个病毒的同时将自身分裂为2个.现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要________秒. 解: 设至少需要n 秒,则1+2+22+…+2n -1≥100,即1-2n1-2≥100,所以n ≥7.故填7.类型一 基本求和问题(1)设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n 等于( ) A .2n B .2n -nC .2n +1-n D .2n +1-n -2(2)求和:1+11+2+11+2+3+…+11+2+…+n ;(3)设f (x )=x 21+x 2,求:f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017); (4)求和:S n =1a +2a 2+3a 3+…+na n .解:(1)解法一:特殊值法,易知S 1=1,S 2=4,只有选项D 适合. 解法二:研究通项a n =1+2+22+…+2n -1=2n -1, 所以S n =(21-1)+(22-1)+…+(2n -1)=(21+22+…+2n )-n =2n +1-n -2.故选D .(2)设数列的通项为a n ,则a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以S n =a 1+a 2+…+a n =2[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1]=2⎝⎛⎭⎫1-1n +1=2n n +1.(3)因为f (x )=x 21+x 2,所以f (x )+f ⎝⎛⎭⎫1x =1. 令S =f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017),①则S =f (2 017)+f (2 016)+…+f (1)+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12 016+f (12 017),② ①+②得:2S =1×4 033=4 033,所以S =4 0332.(4)(Ⅰ)当a =1时,S n =1+2+…+n =n (n +1)2.(Ⅱ)当a ≠1时,S n =1a +2a 2+3a 3+…+na n ,①1a S n =1a 2+2a 3+…+n -1a n +nan +1,② 由①-②得⎝⎛⎭⎫1-1a S n =1a +1a 2+1a 3+…+1a n -n a n +1=1a ⎝⎛⎭⎫1-1a n 1-1a-na n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2.综上所述,S n =⎩⎪⎨⎪⎧n (n +1)2(a =1),a (a n -1)-n (a -1)a n (a -1)2(a ≠1).【点拨】研究通项公式是数列求和的关键.数列求和的常用方法有:公式法、分组求和法、倒序相加法、错位相减法、裂项相消法等,在选择方法前分析数列的通项公式的结构特征,避免盲目套用、错用求和方法.运用等比数列求和公式时,注意对公比是否等于1进行讨论.本例四道题分别主要使用了分组求和法、裂项相消法、倒序相加法、错位相减法.(1)求数列9,99,999,…的前n 项和S n ;(2)求数列122-1,132-1,142-1,…,1(n +1)2-1的前n 项和;(3)求sin 21°+sin 22°+sin 23°+…+sin 289°的值; (4)已知a n =n +12n +1,求{a n }的前n 项和T n .解:(1)S n =9+99+999+…+99…9n 个 =(101-1)+(102-1)+(103-1)+…+(10n -1) =(101+102+103+…+10n )-n=10(1-10n )1-10-n =10n +1-109-n .(2)因为1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2, 所以122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. (3)令S n =sin 21°+sin 22°+sin 23°+…+sin 289°,① 则S n =sin 289°+sin 288°+sin 287°+…+sin 21° =cos 21°+cos 22°+cos 23°+…+cos 289°.②①与②两边分别相加得2S n =(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 289°+cos 289°)=89.所以S n =892.(4)T n =222+323+424+…+n +12n +1,①12T n =223+324+425+…+n +12n +2,② ①-②得12T n =222+123+124+125+…+12n +1-n +12n +2 =12+123×⎝⎛⎭⎫1-12n -11-12-n +12n +2=34-12n +1-n +12n +2, 所以T n =32-12n -n +12n +1=32-n +32n +1.类型二 可用数列模型解决的实际问题用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付________万元.解:购买时付款300万元,则欠款2000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元), a 2=100+(2 000-100)×0.01=119(万元), a 3=100+(2 000-100×2)×0.01=118(万元), a 4=100+(2 000-100×3)×0.01=117(万元), …a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *). 因此{a n }是首项为120,公差为-1的等差数列. 故a 10=121-10=111(万元).故填111.【点拨】将实际问题转化为数列问题的一般步骤是:①审题,②建模,③求解,④检验,⑤作答.增长率模型是比较典型的等比数列模型,实际生活中的银行利率、企业股金、产品利润、人口增长、工作效率、浓度问题等常常利用增长率模型加以解决.某气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( ) A .600天B .800天C .1 000天D .1 200天解:设一共使用了n 天,则使用n 天的平均耗资为32 000+⎝⎛⎭⎫5+n 10+4.9n 2n=32 000n +n 20+4.95,当且仅当32 000n=n20时,取得最小值,此时n =800.故选B . 类型三 数列综合问题(2017·山东)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解:(1)设{a n }的公比为q .依题意,a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)依题意,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1.又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n .又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减,得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1=52-2n +52n +1. 所以T n =5-2n +52n .【点拨】错位相减法适用于等差数列与等比数列的积数列的求和,写出“S n ”与“qS n ”的表达式时,应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.解:(1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,所以{a n }的通项公式为a n =22n -1.(2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一.2.对于一般数列的求和问题,应先观察数列通项的结构特征,再对通项公式进行化简变形,改变原数列的形式,尽可能将其转化为等差数列、等比数列等常见数列,从而达到求和的目的. 3.等差或等比数列的求和直接用公式计算,要注意求和的项数,防止疏漏.4.最好能记忆一些常见数列的求和公式,如正整数列、正奇数列、正偶数列、正整数的平方构成的数列等. 5.数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型.6.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,分q =1或q ≠1)等.1.已知等差数列{a n }的前n 项和为S n ,且满足a 5=4-a 3,则S 7=( ) A .7 B .12 C .14 D .21解:由a 5=4-a 3,得a 5+a 3=4=a 1+a 7,所以S 7=7(a 1+a 7)2=14.故选C .2.(2016·新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100解:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100.故选D .3.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.nn -1D.n +1n解:由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选A . 4.已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在解:由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,所以a 6·a 15≤⎝⎛⎭⎫a 6+a 1522=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.故选A .5.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a 5a 3 B.S 5S 3 C.a n +1a n D.S n +1S n解:数列{a n }为等比数列,由8a 2+a 5=0,知8a 2+a 2q 3=0,因为a 2≠0,所以q =-2,a 5a 3=q 2=4;S 5S 3=1-q 51-q 3=113;a n +1a n =q =-2;S n +1S n =1-q n +11-q n ,其值与n 有关.故选D . 6.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f (n )=12n (n +1)(2n +1)(单位:t),但如果年产量超过150 t ,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( ) A .5年 B .6年 C .7年 D .8年解:由已知可得第n 年的产量a n =f (n )-f (n -1)=3n 2.当n =1时也适合,据题意令a n ≥150⇒n ≥52,即数列从第8项开始超过150,即这条生产线最多生产7年.故选C .7.已知数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1 的前n 项和为________.解:a n =1+2+3+…+n n =n +12,1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所求的前n 项和为4(12-13+13-14+…+1n +1-1n +2)=4⎝⎛⎭⎫12-1n +2=2n n +2.故填2nn +2.8.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为________.解:当n ≥2时,a n +2S n -1=n ,又a n +1+2S n =n +1,两式相减,得a n +1+a n =1(n ≥2).又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009.故填1 009.9.已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解:(1)设d 为等差数列{a n }的公差,且d >0,由a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3成等比数列,得(2+d )2=2(4+2d ), d >0,所以d =2,所以a n =1+(n -1)×2=2n -1, 又因为a n +2log 2b n =-1,所以log 2b n =-n ,即b n =12n .(2)T n =121+322+523+…+2n -12n ①,12T n =122+323+524+…+2n -12n +1②, ①-②,得12T n =12+2⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. 所以T n =1+1-12n -11-12-2n -12n =3-12n -2-2n -12n =3-2n +32n .10.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解:(1)由2a n +1=a n +2+a n 可得{a n }是等差数列,且公差d =a 4-a 14-1=2-83=-2.所以a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. 所以当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×20=n 2-9n +40,所以S n =⎩⎪⎨⎪⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式; (2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.解:(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3, 所以a 2(q -1)=a 3(q -1),又因为q ≠1,故a 3=a 2=2,由a 3=a 1q ,得q =2, 当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12,当n =2k (k ∈N *)时,a n =a 2k =2k =2n 2,所以{a n }的通项公式为a n =⎩⎪⎨⎪⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)b n =log 2a 2n a 2n -1=n2n -1,设数列{b n }的前n 项和为S n ,则S n =1+221+322+…+n2n -1.所以12S n =121+222+323+…+n 2n .两式相减得12S n =1+121+122+123+…+12n -1-n2n=1-12n1-12-n 2n =2-n +22n .所以S n =4-n +22n -1.1.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =( )A .25B .576C .624D .625解:a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24得n =624.故选C .2.在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( ) A .10 B .15 C .20 D .40解:由题意知,a 1+a 2 019=a 2+a 2 018=2a 1 010=10,所以a 2+a 1 010+a 2 018=3a 1 010=15.故选B . 3.已知数列{a n }中,a 1=2,a n +1-2a n =0,b n =log 2a n ,那么数列{b n }的前10项和等于( ) A .130 B .120 C .55 D .50解:因为a 1=2,a n +1=2a n ,故{a n }是首项、公比均为2的等比数列.故a n =2·2n -1=2n ,b n =log 22n =n .所以b 1+b 2+…+b 10=1+2+3+…+10=1+102×10=55.故选C .4.已知数列{a n }中的前n 项和S n =n (n -9),第k 项满足7<a k <10,则k 等于( ) A .7 B .8 C .9 D .10解:当k ≥2时,a k =S k -S k -1=k 2-9k -(k -1)2+9(k -1)=2k -10,k =1时也适合. 由7<a k <10,得7<2k -10<10,所以172<k <10,所以k =9.故选C .5.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2 018的值为 ( ) A.2 0152 016 B.2 0162 017 C.2 0172 018 D.2 0182 019解:直线与x 轴交于⎝⎛⎭⎫2n ,0,与y 轴交于⎝ ⎛⎭⎪⎫0,2n +1,所以S n =12·2n ·2n +1=1n (n +1)=1n -1n +1.所以原式=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12 018-12 019 =1-12019=20182019.故选D .6.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100 D .10 200解:因为a n =f (n )+f (n +1),所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)]+[f (2)+f (3)]+…+[f (100)+f (101)]=(-12+22)+(22-32)+…+(1002-1012)=3+(-5)+7+(-9)+…+199+(-201),共100项,故所求为-2×50=-100.故选B .7.(2017·江苏)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=________.解:当q =1时,显然不符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,则a 8=14×27=32.故填32.8.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解:设该等比数列的公比为q ,则q =a 2+a 4a 1+a 3=12,可得a 1+14a 1=10,得a 1=8,所以a n =8·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -4.所以a 1a 2…a n =⎝⎛⎭⎫12-3-2-1+0+…+(n -4)=⎝⎛⎭⎫12n 2-7n2,易知当n =3或n =4时,12(n 2-7n )取得最小值-6,故a 1a 2…a n 的最大值为⎝⎛⎭⎫12-6=64.故填64.9.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12,q =S 2b 2.(1)求a n 与b n ;(2)证明:13≤1S 1+1S 2+…+1S n <23.解:(1)设数列{a n }的公差为d .因为⎩⎪⎨⎪⎧b 2+S 2=12,q =S 2b 2, 所以⎩⎪⎨⎪⎧q +6+d =12,q =6+dq .解得q =3或q =-4(舍),d =3.故a n =3+3(n -1)=3n ,b n =3n -1. (2)证明:因为S n =n (3+3n )2,所以1S n =2n (3+3n )=23⎝⎛⎭⎫1n -1n +1.故1S 1+1S 2+…+1S n =23[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1]=23⎝⎛⎭⎫1-1n +1.因为n ≥1,所以0<1n +1≤12,所以12≤1-1n +1<1,所以13≤23⎝⎛⎭⎫1-1n +1<23,即13≤1S 1+1S 2+…+1S n <23. 10.(2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .解:(1)因为数列{a n }的前n 项和S n =3n 2+8n ,所以a 1=11,当n ≥2时,a n =S n -S n -1=3n 2+8n -3(n -1)2-8(n -1)=6n +5, 又a n =6n +5对n =1也成立,所以a n =6n +5.又因为{b n }是等差数列,设公差为d ,则a n =b n +b n +1=2b n +d .当n =1时,2b 1=11-d ;当n =2时,2b 2=17-d ,解得d =3,所以数列{b n }的通项公式为b n =a n -d2=3n +1.(2)由c n =(a n +1)n +1(b n +2)n =(6n +6)n +1(3n +3)n =(3n +3)·2n +1, 于是T n =6×22+9×23+12×24+…+(3n +3)×2n +1, 两边同乘以2,得2T n =6×23+9×24+…+(3n )×2n +1+(3n +3)×2n +2, 两式相减,得-T n =6×22+3×23+3×24+…+3×2n +1-(3n +3)×2n +2=3×22+3×22(1-2n )1-2-(3n +3)×2n +2,所以T n =-12+3×22(1-2n )+(3n +3)×2n +2=3n ·2n +2.已知数列{a n }满足a 1=35,a n +1=3a n2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列.(2)是否存在互不相等的正整数m ,s ,t ,使m ,s ,t 成等差数列,且a m -1,a s -1,a t -1成等比数列?如果存在,求出所有符合条件的m ,s ,t ;如果不存在,请说明理由.解:(1)证明:因为a n +1=3a n 2a n +1,所以1a n +1=13a n +23,所以1a n +1-1=13⎝⎛⎭⎫1a n -1. 因为a 1=35,所以1a 1-1=23,所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为23,公比为13的等比数列.(2)由(1)知,1a n -1=23×⎝⎛⎭⎫13n -1=23n ,所以a n =3n 3n +2.假设存在互不相等的正整数m ,s ,t 满足条件,则有⎩⎪⎨⎪⎧m +t =2s ,(a s -1)2=(a m -1)(a t -1).由a n =3n3n +2与(a s -1)2=(a m -1)(a t -1),得⎝⎛⎭⎫3s 3s +2-12=⎝⎛⎭⎫3m 3m +2-1⎝⎛⎭⎫3t 3t +2-1, 即3m +t +2×3m +2×3t =32s +4×3s . 因为m +t =2s ,所以3m +3t =2×3s .又3m +3t ≥23m +t =2×3s ,当且仅当m =t 时,等号成立, 这与m ,s ,t 互不相等矛盾,所以不存在互不相等的正整数m ,s ,t 满足条件.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1 D .6解:由等差数列的性质知a 2,a 4,a 6成等差数列,所以a 2+a 6=2a 4,所以a 6=2a 4-a 2=0.故选B . 2.已知数列{a n }为2,0,2,0,…,则下列各项不可以作为数列{a n }通项公式的是( )A .a n =1+(-1)n +1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =1-cos n πD .a n =2sinn π2解:若a n =2sin n π2,则a 1=2sin π2=2,a 2=2sinπ=0,a 3=2sin 3π2=-2,不符合题意.故选D .3.在数列{a n }中,“对任意的n ∈N *,a 2n +1=a n a n +2”是“数列{a n }为等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解:若a n =0,满足a 2n +1=a n ·a n +2,但{a n }不是等比数列.故选B .4.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为a n 的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 解: 因为公差d =1,S 8=4S 4,所以8a 1+12×8×7=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192.故选B .5.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1)C.n (n +1)2D.n (n -1)2解:因为d =2,a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 2+2d )2=a 2(a 2+6d ),解得a 2=4,a 1=2.所以利用等差数列的求和公式可求得S n =n (n +1).故选A .6.(2016·江西八校联考)数列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5(p ,q ∈N *),则a p -a q =( ) A .10 B .15 C .-5 D .20解:当n ≥2时,a n =S n -S n -1=2n 2+3n -[2(n -1)2+3(n -1)]=4n +1,当n =1时,a 1=S 1=5,符合上式,所以a n =4n +1,所以a p -a q =4(p -q )=20.故选D .7.已知公差不为零的等差数列{a n }与公比为q 的等比数列{b n }有相同的首项,同时满足a 1,a 4,b 3成等比数列,b 1,a 3,b 3成等差数列,则q 2=( ) A.14 B.16 C.19 D.18解:设数列的首项为a ,等差数列{a n }的公差为d ,⎩⎪⎨⎪⎧2a 3=b 1+b 3,a 24=a 1·b 3, 将a ,d ,q 代入得⎩⎪⎨⎪⎧2(a +2d )=a +aq 2, ①(a +3d )2=a ·aq 2, ② 化简得(a +3d )2=a (a +4d ),解得a =-92d (d ≠0),代入①式得q 2=19.故选C .8.执行如图所示的程序框图,如果输入n =3,则输出的S =( )A.37B.67C.89D.49解:第一次循环后S =11×3=13,i =2;第二次循环后S =11×3+13×5=12×⎝⎛⎭⎫1-13+13-15=25,i =3;第三次循环后S =11×3+13×5+15×7=12×(1-13+13-15+15-17)=37,此时i =4>3,退出循环,输出结果S =37.故选A .9.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 2 017=( )A .lg2 018B .lg2 017C .-lg2 018D .-lg2 017解:因为y ′=(n +1)x n ,所以曲线y =x n +1在点(1,1)处的切线斜率为n +1,切线方程为y -1=(n +1)(x -1),令y =0,得x n =1-1n +1=n n +1.则a n =lg x n =lg n n +1,所以a 1+a 2+…+a 2 017=lg ⎝⎛⎭⎫12×23×…×2 0172 018=lg 12 018=-lg2 018.故选C .10.已知在数列{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( ) A .(-2,+∞) B .[-2,+∞) C .(-3,+∞) D .[-3,+∞)解:由题意可知a n +1>a n 对任意正整数n 恒成立,即(n +1)2+λ(n +1)>n 2+λn 对任意正整数n 恒成立,即λ>-2n -1对任意正整数n 恒成立,故λ>-3.另解,由对称轴-λ2<32求解.故选C .11.已知a n =⎝⎛⎭⎫13n ,把数列{a n }的各项排列成如下的三角形形状,a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (m ,n )表示第m 行的第n 个数,则A (10,12)=( )A.⎝⎛⎭⎫1393B.⎝⎛⎭⎫1392C.⎝⎛⎭⎫1394D.⎝⎛⎭⎫13112解:前9行一共有1+3+5+…+17=81个数,而A (10,12)表示第10行的第12个数,所以n =93,即A (10,12)=a 93=⎝⎛⎭⎫1393.故选A . 12.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解:当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,a n >0,当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值,所以当1≤n ≤100时,均有S n >0.故选D .二、填空题:本题共4小题,每小题5分,共20分.13.(2017·北京)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解:-1+3d =-q 3=8⇒d =3,q =-2⇒a 2b 2=-1+3-1×(-2)=1.故填1.14.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解:因为{a n }为等比数列,设公比为q . ⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3, 即⎩⎪⎨⎪⎧a 1+a 1q =-1, ①a 1-a 1q 2=-3, ②显然q ≠1,a 1≠0, ②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.故填-8.15.(2015·武汉调研)《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加________尺.解:设每天增加的数量为x 尺,则5×30+30×(30-1)x 2=390,所以x =1629.故填1629.16.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =________. 解:因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n ,两式相减得,a n +1=2a n +1,所以a n +1+1=2(a n +1),即a n +1+1a n +1=2.又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n , 所以a n =2n -1.故填2n -1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)数列{a n }的前n 项和为S n ,且满足S n =4a n -3(n ∈N *),求a n . 解:S n =4a n -3,则S n -1=4a n -1-3,两式相减,得a n a n -1=43.又a 1=4a 1-3,所以a 1=1,所以a n =⎝⎛⎭⎫43n -1.18.(12分)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.解:(1)证明:因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2,所以S n =1-a n 2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.19.(12分)(2016·北京)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n = a n + b n ,求数列{c n }的前n 项和.解:(1)等比数列{b n }的公比q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27.设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2.所以a n =2n -1. (2)由(1)知,a n =2n -1,b n =3n -1. 因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+()2n -1+1+3+…+3n -1 =n ()1+2n -12+1-3n 1-3=n 2+3n -12.20.(12分)已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解:(1)由题意知{a n }是以3为首项,2为公差的等差数列. 所以a n =2n +1. 当n =1时,b 1=S 1=4;当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-[(n -1)2+2(n -1)+1]=2n +1,对b 1=4不成立.所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120.当n ≥2时, 1b n b n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3, 所以T n =120+12[⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+(12n +1-12n +3)]=120+12⎝⎛⎭⎫15-12n +3=120+n -110n +15=6n -120(2n +3). 当n =1时仍成立,所以T n =6n -120(2n +3).21.(12分)(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2.所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2.所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,有a 2n b 2n -1=(3n -1)×4n , 故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.得T n =3n -23×4n +1+83.所以,数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.22.(12分)(2017·山东)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2, 所以3q 2-5q -2=0,因为q >0,所以q =2,x 1=1, 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,P 3,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,Q 3,…,Q n +1, 由(1)得x n +1-x n =2n -2n -1=2n -1.记梯形P n P n +1Q n +1Q n 的面积为b n . 由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+b 3+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2① 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.。
数列的求和-高考数学一轮复习(新高考专用)
第43讲 数列的求和【基础知识回顾】 1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n (n +1)2;②2+4+6+…+2n =n (n +1); ③1+3+5+…+(2n -1)=n 2. 2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 3、常见的裂项技巧①1n (n +1)=1n -1n +1.②1n (n +2)=12⎝⎛⎭⎫1n -1n +2.③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.④1n +n +1=n +1-n .⑤1n (n +1)(n +2)=12⎝⎛⎭⎫1n (n +1)-1(n +1)(n +2).1、数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100【答案】 D【解析】 S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100. 2、数列{}n a 的前n 项和为n S ,若()11n a n n =+,则5S 等于( )A .1B .56 C .16D .130【答案】:B 【解析】:因为()11111n a n n n n ==-++,所以5111111111151122334455666S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故选B . 3、设11111++++2612(1)S n n =++,则S =( )A .211n n ++ B .21n n - C .1n n+ D .21n n ++ 【答案】:A 【解析】:由11111++++2612(1)S n n =++,得11111++++122334(1)S n n =+⨯⨯⨯+,111111112111++++222334111n S n n n n +=+-==+++----,故选:A.4、在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =________.【答案】 2 022【解析】 a n =1n (n +1)=1n -1n +1,∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0222 023, ∴n =2 022.5、已知数列a n =⎩⎪⎨⎪⎧n -1,n 为奇数,n ,n 为偶数,则S 100=________.【答案】:5000【解析】:由题意得S 100=a 1+a 2+…+a 99+a 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+…+a 100)=(0+2+4+…+98)+(2+4+6+…+100)=5000.6、 在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于________. 【答案】:2n【解析】:因为数列{a n }为等比数列,则a n =2q n -1,又数列{a n +1}也是等比数列,则3,2q +1,2q 2+1成等比数列,(2q +1)2=3×(2q 2+1),即q 2-2q +1=0q =1,即a n =2,所以S n =2n .考向一 公式法例1、(2020届山东师范大学附中高三月考)设等差数列{}n a 前n 项和为n S .若210a =,540S =,则5a =________,n S 的最大值为________. 【答案】4 42【解析】∵数列{}n a 是等差数列,∵540S =,∴()1535524022a a a ⨯+⨯==,38a ∴=, 又210a ∴=,2d ∴=-,2(2)10(2)(2)142n a a n d n n ∴=+-⨯=+-⨯-=-,514254a ∴=-⨯=,()122(12142)(262)13169(13)13()22224n n n a a n n n n S n n n n n ++--====-=-+=--+, ∴当6n =或7时,n S 有最大值42. 故答案为:(1)4;(2)42.变式1、(2019镇江期末) 设S n 是等比数列{a n }的前n 项的和,若a 6a 3=-12,则S 6S 3=________.【答案】 12【解析】设等比数列{a n }的公比为q ,则q 3=a 6a 3=-12.易得S 6=S 3(1+q 3),所以S 6S 3=1+q 3=1-12=12.变式2、(2019苏锡常镇调研)已知等比数列{}n a 的前n 项和为n S ,若622a a =,则128S S = . 【答案】.37【解析】设等比数列{}n a 的公比为q ,因为622a a =,所以2422a q a =,故24=q .由于1≠q ,故.372121)(1)(1111)1(1)1(23243481281121812=--=--=--=----=q q q q qq a q q a S S 方法总结:若一个数列为等差数列或者等比数列则运用求和公式:①等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式(Ⅰ)当q =1时,S n =na 1;(Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.考向二 利用“分组求和法”求和例2、(2020届山东省潍坊市高三上期末)已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项. (1)求,n n a b ; (2)设()11n n n n c b a a =++,求{}n c 的前n 项和n S .【解析】(1)设数列{}n a 的公差为d , 由题意知: ()1234114414+46102a a a a a d a d ⨯-+++==+= ① 又因为124,,a a a 成等比数列, 所以2214a a a =⋅,()()21113a d a a d +=⋅+,21d a d =,又因为0d ≠, 所以1a d =. ② 由①②得11,1a d ==, 所以n a n =,111b a ==,222b a == ,212b q b ==, 12n n b -∴= .(2)因为()111112211n n n c n n n n --⎛⎫=+=+- ⎪++⎝⎭,所以0111111122 (2)12231n n S n n -⎛⎫=++++-+-+⋅⋅⋅+- ⎪+⎝⎭1211121n n -=+--+ 121n n =-+ 所以数列{}n c 的前n 项和121nn S n =-+.变式1、求和S n =1+⎣⎡⎦⎤1+12+⎣⎡⎦⎤1+12+14+…+⎣⎡⎦⎤1+12+14+…+12n -1.【解析】 原式中通项为a n =⎣⎡⎦⎤1+12+14+ (12)-1=1-⎝⎛⎭⎫12n1-12=2⎝⎛⎭⎫1-12n ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…⎝⎛⎭⎫1-12n =2⎣⎢⎡⎦⎥⎤n -12⎝⎛⎭⎫1-12n1-12 =12n -1+2n -2. 变式2、 已知等差数列{a n }的前n 项和为S n ,且关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 【解析】(1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3.又S 2=2a 1+d ,所以a 1=d , 易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n .因为b n =a 2n +2a n -1,所以b n =2n -1+2n ,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+…+2n ) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.变式3、(2021·广东高三专题练习)设数列{a n }满足a n +1=123n a +,a 1=4. (1)求证{a n ﹣3}是等比数列,并求a n ; (2)求数列{a n }的前n 项和T n . 【答案】(1)证明见解析,11()33n n a -=+;(2)31(1)323n n -+.【解析】(1)数列{a n }满足a n +1=123n a +,所以113(3)3n n a a +-=-, 故13133n n a a +-=-, 所以数列{a n }是以13431a -=-=为首项,13为公比的等比数列. 所以1131()3n n a --=⋅,则1*1()3,3n n a n N -=+∈. (2)因为11()33n n a -=+,所以011111()()()(333)333n n T -=++++++⋯+=11(1)33113n n -+-=31(1)323n n -+. 方法总结:数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求前n 项和的数列求和.考向三 裂项相消法求和例3、(2021·四川成都市·高三二模(文))已知数列{}n a 的前n 项和n S 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,*n ∈N .则使得20T 的值为( )A .1939B .3839C .2041D .4041【答案】C 【解析】当1n =时,111a S ==;当2n ≥时,221(1)21n n n a S S n n n -=-=--=-;而12111a =⨯-=也符合21n a n =-,∴21n a n =-,*n N ∈.又11111()22121n n a a n n +=--+, ∴11111111(1...)(1)2335212122121n nT n n n n =⨯-+-++-=⨯-=-+++,所以202020220141T ==⨯+,故选:C.变式1、(2021·全国高三专题练习)已知在数列{}n a 中,14,0.=>n a a 前n 项和为n S ,若1,2)-+=∈≥n n n a S S n N n .(1)求数列{}n a 的通项公式; (2)若数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:132020n T <<【解析】(1)在数列{}n a 中,1(2)n n n a S S n -=-≥①∴1n n n a S S -=且0n a >,∴①式÷②11n n S S -= (2)n ≥, ∴数列{}nS 1142S a ===为首项,公差为1的等差数列,2(1)1n S n n =+-=+ ∴2(1)n S n =+当2n ≥时,221(1)21n n n a S S n n n -=-=+-=+;当1n =时,14a =,不满足上式,∴数列{}n a 的通项公式为4,121,2n n a n n =⎧=⎨+≥⎩.(2)由(1)知4,121,2n n a n n =⎧=⎨+≥⎩,,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,∴当1n =时,114520n T ==⨯, ∴当1n =时,120n T =,满足132020n T ≤<,∴12233411111n n n T a a a a a a a a +=++++1111455779(21)(2n =++++⨯⨯⨯+111111111111()()()()45257792123202523n n n ⎡⎤=+⨯-+-++-=+⨯-⎢⎥⨯+++⎣⎦ 312046n =-+ ∴在n T 中,1n ≥,n ∈+N ,∴4610n +≥,∴114610n ≤+,∴1104610n >-≥-+,∴131320204620n ≤-<+.所以132020n T << 变式2、(2021·辽宁高三二模)已知数列{}n a 的前n 项和为n S ,且满足()*2n n a S n n =+∈N .(1)求证:数列{}1n a +是等比数列;(2)记()()2221log 1log 1n n n c a a +=+⋅+,求证:数列{}n c 的前n 项和34n T <.【解析】解:(1)因为2n n a S n =+①, 所以()11212n n a S n n --=+-≥② 由①-②得,121n n a a -=+.两边同时加1得()1112221n n n a a a --+=+=+,所以1121n n a a -+=+,故数列{}1n a +是公比为2的等比数列. (2)令1n =,1121a S =+,则11a =. 由()11112n n a a -+=+⋅,得21nn a =-.因为()()()22211111log 1log 1222n n n c a a n n n n +⎛⎫===- ⎪+⋅+++⎝⎭,所以11111111121324112n T n n n n ⎛⎫=-+-+⋅⋅⋅+-+- ⎪-++⎝⎭11113111221242224n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭. 因为*11,02224n N n n ∈+>++,所以3113422244n n ⎛⎫-+< ⎪++⎝⎭所以1111311312212422244n n n n n T ⎛⎫⎛⎫=+--=-+< ⎪ ⎪++++⎝⎭⎝⎭. 方法总结:常见题型有(1)数列的通项公式形如a n =1n n +k 时,可转化为a n =1k ⎝ ⎛⎭⎪⎫1n -1n +k ,此类数列适合使用裂项相消法求和. (2)数列的通项公式形如a n =1n +k +n时,可转化为a n =1k(n +k -n ),此类数列适合使用裂项相消法求和.考向四 错位相减法求和例4、(2020届山东省烟台市高三上期末)已知数列{}n a 的前n 项和n S 满足()()21n n S n a n N*=+∈,且12a =.(1)求数列{}n a 的通项公式;(2)设()12n an n b a =-,求数列{}n b 的前n 项和n T .【解析】(1)因为2(1)n n S n a =+,n *∈N , 所以112(2)n n S n a ++=+,n *∈N ,两式相减得112(2)(1)n n n a n a n a ++=+-+, 整理得1(1)n n na n a +=+,即11n n a a n n +=+,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭为常数列, 所以121n a a n ==, 所以2n a n =(2)由(1),(1)2=(21)4n ann n b a n =--, 所以 12314+34+54++(21)4n n T n =⨯⨯⨯-231414+34++(23)4(21)4n n n T n n +=⨯⨯-+-…两式相减得:23134+2(4+4++4)(21)4n n n T n +-=⨯--…,2+114434+2(21)414n n n T n +--=⨯---,化简得120(65)4+99n n n T +-= 变式1、(2020·全国高三专题练习(文))已知数列{}n a 是等差数列,其前n 项和为n S ,且22a =,5S 为10和20的等差中项;数列{}n b 为等比数列,且319b b -=,4218b b -=.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n M . 【解析】(1)设等差数列{}n a 的公差为d ,因为22a =,5S 为10和20的等差中项,所以112541020522a d a d +=⎧⎪⎨⨯++=⎪⎩,解得111a d =⎧⎨=⎩,所以n a n =. 设等比数列{}n b 的公比为q ,因为319b b -=,4218b b -=,所以2121(1)9(1)18b q b q q ⎧-=⎨-=⎩,解得132b q =⎧⎨=⎩, 所以132n n b -=⋅.(2)由(1)可知132n n n a b n -⋅=⋅,所以213(122322)n n M n -=+⨯+⨯++⋅,令21122322n n P n -=+⨯+⨯++⋅ ①, 则232222322n n P n =+⨯+⨯++⋅ ②,-①②可得2112122222(1)2112nn nn n n P n n n ---=++++-⋅=-⋅=---,所以(1)21nn P n =-+,所以3(1)23n n M n =-+.变式2、(2020·湖北高三期中)在等差数列{}n a 中,已知{}35,n a a =的前六项和636S =.(1)求数列{}n a 的通项公式n a ;(2)若___________(填①或②或③中的一个),求数列{}n b 的前n 项和n T .在①12n n n b a a +=,②(1)nn n b a =-⋅,③2na n nb a =⋅,这三个条件中任选一个补充在第(2)问中,并对其求解.注:如果选择多个条件分别解答,按第一个解答计分. 【解析】(1)由题意,等差数列{}n a 中35a =且636S =,可得112561536a d a d +=⎧⎨+=⎩,解得12,1d a ==,所以1(1)221n a n n =+-⨯=-.(2)选条件①:211(2n 1)(21)2121nb n n n ==--+-+,111111111335212121n T n n n ⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭, 选条件②:由21n a n =-,可得(1)(2n 1)nn b =--,当n 为偶数时,(13)(57)[(23)(21)]22n nT n n n =-++-+++--+-=⨯=; 当n 为奇数时,1n -为偶数,(1)(21)n T n n n =---=-,(1)n n T n =-,选条件③:由21n a n =-,可得212(21)2n a n n n b a n -=⋅=-⋅, 所以135********(21)2n n T n -=⨯+⨯+⨯++-⨯,35721214123252(23)2(21)2n n n T n n -+=⨯+⨯+⨯++-⨯+-⨯,两式相减,可得:()13521213122222(21)2n n n T n -+-=⨯++++--⨯()222181222(21)214n n n -+-=+⋅--⨯-,所以2110(65)299n n n T +-=+⋅. 方法总结:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.。
高考数学专题—数列求前n项和的5种常用方法总结
高考数学专题——数列(求S n )求s n 的四种方法总结常考题型:共5种大题型(包含倒序相加法、错位相减法、裂项相消法、分组转化法、并项求和法。
1、倒序相加法:实质为等差数列求和。
例1、【2019·全国2·文T18】已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n .求数列{b n }的前n 项和.【解析】(1)设{a n }的公比为q,由题设得2q 2=4q+16,即q 2-2q-8=0,解得q=-2(舍去)或q=4. 因此{a n }的通项公式为a n =2×4n-1=22n-1.(2)由(1)得b n =(2n-1)log 22=2n-1,因此数列{b n }的前n 项和为1+3+…+2n-1=n 2. 2、错位相减法:实质为等差×等比求和。
错位相减法的万能公式及推导过程:公式:数列c n =(an +b )q n−1,(an +b )为等差数列,q n−1为等比数列。
前n 项和S n =(An +B )q n +C A =a q −1,B =b −Aq −1,C =−B S n =(a +b )+(2a +b )q +(3a +b )q 2+⋯[(n −1)a +b ]q n−2+(an +b )q n−1 ① qS n =(a +b )q +(2a +b )q 2+(3a +b )q 3+⋯[(n −1)a +b ]q n−1+(an +b )q n ② ②-①得:(q −1)s n =−(a +b )−a (q +q 2+⋯q n−1)+(an +b )q n=−(a +b )−a ⋅q(1−q n−1)1−q+(an +b )q n=(an +b −aq−1)q n −(b −aq−1)S n =(aq −1⋅n +b −a q −1q −1)⋅q n −b −aq −1q −1例2、【2020年高考全国Ⅰ卷理数】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【解析】(1)设{}n a 的公比为q ,由题设得1232,a a a =+ 即21112a a q a q =+.所以220,q q +-= 解得1q =(舍去),2q =-. 故{}n a 的公比为2-.(2)设n S 为{}n na 的前n 项和.由(1)及题设可得,1(2)n n a -=-.所以112(2)(2)n n S n -=+⨯-++⨯-,21222(2)(1)(2)(2)n n n S n n --=-+⨯-++-⨯-+⨯-.可得2131(2)(2)(2)(2)n n n S n -=+-+-++--⨯-1(2)=(2).3n n n ---⨯-所以1(31)(2)99nn n S +-=-. 例3、【2020年高考全国III 卷理数】设数列{a n }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .【解析】(1)235,7,a a == 猜想21,n a n =+ 由已知可得 1(23)3[(21)]n n a n a n +-+=-+, 1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯. ①从而23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯.②-①② 得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯,所以1(21)2 2.n n S n +=-+例4、【2020届辽宁省大连市高三双基测试数学】已知数列{}n a 满足:n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,2n n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(I )求12,a a 的值;(Ⅱ)试求数列{}n a 的前n 项和n S .【解析】(Ⅰ)方法一:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列 21221a a ∴=⨯ 214a a ∴=又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列 2121122a a ∴-=,解得1228a a =⎧⎨=⎩方法二:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列,1112,n n a n a n+∴=1(1)2n n n a a n ++∴=.①又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列, 11122n nn na a ++∴-=② 由①②解得:2nn a n =⋅1228a a =⎧⎨=⎩ (Ⅱ)1122,1n n n a a n -=⋅= 2n n a n ∴=⋅123n n S a a a a =+++⋅⋅⋅+1231222322n n =⋅+⋅+⋅+⋅⋅⋅+⋅ 234121222322n n S n +∴=⋅+⋅+⋅+⋅⋅⋅+⋅两式作差可得:23122222n n n S n +-=+++⋅⋅⋅+-⋅()1212212n n n n S +-=-⋅--1(1)22n n n S +=⋅---, 1(1)22n n S n +∴=-⋅+.例5、【2020届江西省吉安市高三上学期期末数学】数列{}n a 的前n 项和为n S ,且满足11a =,121n n a S +-=.(I )求{}n a 的通项公式;(Ⅱ)若3log n n b a =,数列2221n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,求证:12nT <.【解析】(I )当1n =时,由11a =,2121a a -=得23a =;当2n ≥时,121n n a S --=,两式相减得()1120n n n n a a S S +----=, 即13n n a a +=(2)n ≥,又2133a a ==, 故13n n a a +=恒成立,则数列{}n a 是公比为3的等比数列,可得13-=n n a . (Ⅱ)由(I )得313log log 31n n n b a n -===-,则22211111(21)(21)22121n n b b n n n n +⎛⎫==- ⎪⋅-⋅+-+⎝⎭,则111111123352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭. 1021n >+ 11112212n ⎛⎫∴-< ⎪+⎝⎭ 故12n T <例6、【2017·天津·理T18】已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).【解析】(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0.又因为q>0,解得q=2. 所以,b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8.①由S 11=11b 4,可得a 1+5d=16,②联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n, 故T n =2×4+5×42+8×43+…+(3n-1)×4n,4T n =2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=12×(1-4n )1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n =3n -23×4n+1+83. 所以,数列{a 2n b 2n-1}的前n 项和为3n -23×4n+1+83. 例7、【2020·石家庄模拟】设数列{a n }的前n 项和为S n ,且2S n =3a n -1. (1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n . 解:(1)由2S n =3a n -1,① 得2S n -1=3a n -1-1(n ≥2),② ①-②,得2a n =3a n -3a n -1, 所以a n a n -1=3(n ≥2),又2S 1=3a 1-1,2S 2=3a 2-1, 所以a 1=1,a 2=3,a 2a 1=3, 所以{a n }是首项为1,公比为3的等比数列, 所以a n =3n -1.(2)由(1)得,b n =n3n -1,所以T n =130+231+332+…+n3n -1,③13T n =131+232+…+n -13n -1+n 3n ,④ ③-④得,23T n =130+131+132+…+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n ,所以T n =94-6n +94×3n . 3、裂项相消法:实质为a n =b n (n+a )形式的求和。
专题30 数列求和5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测(原卷版)
专题30数列求和5题型分类数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n项和公式求和.(1)等差数列的前n项和公式:S n=n(a1+a n)2=na1+n(n-1)2d.(2)等比数列的前n项和公式:S n1,=a1(1-q n)1-q,q≠1.2.分组求和法与并项求和法(1)分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常见的裂项技巧(1)1n (n +1)=1n -1n +1.(2)1n (n +2)=(3)1(2n -1)(2n +1)=(4)1n +n +1=n +1-n .(5)1n (n +1)(n +2)=121n (n +1)-1(n +1)(n +2).常用结论常用求和公式(1)1+2+3+4+…+n =n (n +1)2.(2)1+3+5+7+…+(2n -1)=n 2.(3)12+22+32+…+n 2=n (n +1)(2n +1).(4)13+23+33+…+n 3=n (n +1)22.(一)分组求和(1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.(2)若数列{c n }的通项公式为c n =a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.(二)错位相减法求和(1)如果数列{a n}是等差数列,{b n}是等比数列,求数列{a n·b n}的前n项和时,常采用错位相减法.(2)错位相减法求和时,应注意:①在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n-qS n”的表达式.②应用等比数列求和公式时必须注意公比q是否等于1,如果q=1,应用公式S n=na1.b(三)裂项相消法的原则及规律(1)裂项原则一般是前面裂几项,后面就裂几项,直到发现被消去项的规律为止.(2)消项规律消项后前面剩几项,后面就剩几项,前面剩第几项,后面就剩倒数第几项.2(四)倒序相加法将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时可用倒序相加法(等差数列前n项和公式的推导即用此方法).一、单选题1.(2024高二上·陕西西安·阶段练习)数列9,99,999,…的前n 项和为A .109(10n -1)+n B .10n -1C .109(10n -1)D .109(10n -1)-n 2.(2024高二下·湖北·阶段练习)高斯(Gauss )被认为是历史上最重要的数学家之一,并享有“数学王子”之称.小学进行123100++++L 的求和运算时,他这样算的:1100101+=,299101+=,…,5051101+=,共有50组,所以501015050⨯=,这就是著名的高斯算法,课本上推导等差数列前n 项和的方法正是借助了高斯算法.已知正数数列{}n a 是公比不等于1的等比数列,且120231a a =,试根据以上提示探求:若24()1f x x =+,则()()()122023f a f a f a +++= ()A .2023B .4046C .2022D .40443.(2024高三下·江西·开学考试)已知数列21443n n ⎧⎫⎨⎬+-⎩⎭的前n 项和为n T ,若对任意的*n ∈N ,不等式263n T a a <-恒成立,则实数a 的取值范围是()A .2,[1,)3⎛⎤-∞-+∞ ⎥⎝⎦ B .2(,1],3⎡⎫-∞-+∞⎪⎢⎣⎭ C .2,13⎡⎤-⎢⎥⎣⎦D .2,(1,)3x ⎛⎫--+∞ ⎪⎝⎭ 4.(2024·浙江)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则()A .100332S <<B .10034S <<C .100942S <<D .100952S <<二、填空题5.(2024高二下·江苏南京·期中)已知数列{}i a 的项数为()N n n *∈,且1C (1,2,)i i n i n a a i n -++== ,则{}i a 的前n 项和n S 为.6.(2024高二上·湖北黄冈·期末)1202年意大利数学家列昂那多-斐波那契以兔子繁殖为例,引人“兔子数列”,又称斐波那契数列,即11235813213455 ,,,,,,,,,,该数列中的数字被人们称为神奇数,在现代物理,化学等领域都有着广泛的应用.若此数列各项被3除后的余数构成一新数列{}n a ,则数列{}n a 的前2022项的和为.7.(2024高二上·上海黄浦·期中)数列()()()22311,(12),122,1222,,122,n -+++++++++ 的前n 项和为.8.(2024高三下·全国·开学考试)现取长度为2的线段MN 的中点1M ,以1MM 为直径作半圆,该半圆的面积为1S (图1),再取线段1M N 的中点2M ,以12M M 为直径作半圆.所得半圆的面积之和为2S (图2),再取线段2M N 的中点3M ,以23M M 为直径作半圆,所得半圆的面积之和为3S ,以此类推,则1ni i iS ==∑.9.(2024高三·全国·对口高考)已知函数4()42x x f x =+,则()(1)f x f x +-=;数列{}n a 满足2016n n a f ⎛⎫= ⎪⎝⎭,则这个数列的前2015项的和等于.10.(2024·江苏·模拟预测)若数列{}n a 满足C (1,2,3,,1)ii n i n a a i n -+==- ,12n a =,则{}n a 的前n 项和为.11.(2024高三·全国·专题练习)已知{}n a 为无穷等比数列,13a =,n a 的各项和为9,2n n b a =,则数列{}n b 的各项和为.12.(2024·全国)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为;如果对折n 次,那么1nkk S==∑2dm .13.(2024·湖北·模拟预测)“数学王子”高斯是近代数学奠基者之一,他的数学研究几乎遍及所有领域,并且高斯研究出很多数学理论,比如高斯函数、倒序相加法、最小二乘法、每一个n 阶代数方程必有n 个复数解等.若函数()22log 1x f x x =-,设()112311,,2n n a a f f f f n n n n n n -⎛⎫⎛⎫⎛⎫⎛⎫==++++∈≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭N ,则1210a a a +++=.14.(2024·黑龙江齐齐哈尔·三模)已知数列{}n a 的前n 项和为n S ,且1211121n n S S S n ++⋅⋅⋅+=+,设函数()1cos π2f x x =+,则32021122022202220222022a a a a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.15.(2024高三上·河北·阶段练习)德国大数学家高斯年少成名,被誉为数学届的王子,19岁的高斯得到了一个数学史上非常重要的结论,就是《正十七边形尺规作图之理论与方法》.在其年幼时,对123100+++⋯⋯+的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法,现有函数()xf x ={}n a 满足()121(0)(1)N n n a f f f f f n n n n *-⎛⎫⎛⎫⎛⎫=+++++∈ ⎪ ⎪⎝⎭⎝⎭⎝⎭,若12n n n b a +=,则{}n b 的前n 项和n S =.16.(2024高三上·福建泉州·期中)已知12cos 2cos x x f x x +⎛⎫+= ⎪⎝⎭,则202112022i i f =⎛⎫=⎪⎝⎭∑.17.(2024高三·全国·对口高考)数列()55,55,555,5555,,101,9n- 的前n 项和n S =.18.(2024高二上·湖北黄冈·期末)已知{}n a 的前n 项和为n S ,()()1221n n n n aa n +++-=,50600S =,则12a a +=.三、解答题19.(2024高一下·山西·阶段练习)已知数列{}221:1,12,122,,1222,-+++++++ n n a ,求数列{}n a 的前n 项和n S .20.(2024高三上·河北·期末)已知数列{}n a 满足312232222n na a a a n ++++= .(1)求数列{}n a 的通项公式;(2)若2log n n b a =,求数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和.21.(2024高三上·河北邯郸·阶段练习)已知数列{}n a 的前n 项和为n S ,且满足11340,4n n a S a +--==.(1)证明:数列{}n a 是等比数列;(2)求数列{}n na 的前n 项和n T .22.(2024·陕西商洛·模拟预测)已知公差为正数的等差数列{}n a 的前n 项和为2,3n S a =,且136,,23a a a +成等比数列.(1)求n a 和n S .(2)设n b =,求数列{}n b 的前n 项和n T .23.(2024高三上·海南·期末)已知数列{}n a 满足14a =,*122(N )n n a a n +=+∈.(1)求数列{}n a 的通项公式;(2)若1n n n b a a +=+,求数列{}n b 的前n 项和n S .24.(2024高一下·广东梅州·期末)已知等差数列{}n a 的前四项和为10,且237,,a a a 成等比数列(1)求通项公式na (2)设2n an b =,求数列n b 的前n 项和nS 25.(2024高三上·辽宁大连·期末)已知数列{}n a 满足:()*111,1,2,n n n a n a a n a n +-⎧==∈⎨⎩N 为奇数为偶数.设21n n b a -=.(1)证明:数列{}2n b -为等比数列,并求出{}n b 的通项公式;(2)求数列{}n a 的前2n 项和2n S .26.(2024高三上·重庆·阶段练习)已知数列{}n a 中,2122a a ==,且22,4,n n na n a a n ++⎧=⎨⎩为奇数为偶数.(1)求{}n a 的通项公式;(2)求{}n a 的前10项和10S .27.(2024·云南红河·一模)已知等比数列{}n a 的前n 项和为n S ,其中公比451211,8a a q a a +≠-=+,且378S =.(1)求数列{}n a 的通项公式;(2)若2log ,1, n n na nb n a ⎧⎪=⎨⎪⎩为奇数为偶数,求数列}n b 的前2n 项和2n T .28.(2024·全国·模拟预测)已知数列{}n a 的前n 项积为,0,2nn n n n T T a a T ≠=-.(1)求证:数列{}n T 是等差数列,并求数列{}n a 的通项公式;(2)令()()()11111n n n n b a a -+=-+-,求数列{}n b 的前n 项和n S .29.(2024高三上·云南·阶段练习)已知数列{}n a 满足:312232222n n a a a a n +++⋅⋅⋅+=(*n ∈N ),数列{}n b 满足5012n n b a =+.(1)求数列{}n a 的通项公式;(2)求1299b b b ++⋅⋅⋅+.30.(2024高二下·江西萍乡·期末)已知函数()142xa f x =++关于点11,22⎛⎫⎪⎝⎭对称,其中a 为实数.(1)求实数a 的值;(2)若数列{}n a 的通项满足2023n n a f ⎛⎫=⎪⎝⎭,其前n 项和为n S ,求2022S .31.(2024高三上·天津河北·期末)已知{}n a 是等差数列,其公差d 不等于0,其前n 项和为{},n n S b 是等比数列,且11223131,,2a b a b S a b ===-=.(1)求{}n a 和{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和n T ;(3)记1222n n n n a c a a ++=,求{}n c 的前n 项和n P .32.(2024高三·全国·专题练习)记n S 为数列{}n a 的前n 项和,()1121n n a S n a ==+,,.(1)求{}n a 的通项公式;(2)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n T .33.(2024高三上·全国·期末)数列{}n a 为等差数列,{}n b 为等比数列,公比11223303,1,4,12q a b a b a b <<====.(1)求{}{}n n a b 、的通项公式;(2)求数列{}nna b 的前n 项和.34.(2024·吉林白山·一模)已知等比数列{}n a 满足12a =,且2420a a +=.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足n n b n a =⋅,{}n b 其前n 项和记为n S ,求n S .35.(2024·全国·模拟预测)已知{}2n n a 是等差数列,n a n ⎧⎫⎨⎬⎩⎭是等比数列.(1)求证:12a a =;(2)记{}n a 的前n 项和为n S ,对任意*n ∈N ,16n S ≤≤,求1a 的取值范围.36.(2024高二上·湖南张家界·阶段练习)已知等差数列{}n a 满足24a =,4527a a -=,公比不为1-的等比数列{}n b 满足34b =,()45128b b b b +=+.(1)求{}n a 与{}n b 通项公式;(2)设()*13N n n n c n a a +=∈⋅,求{}n c 的前n 项和n S .37.(2024·全国·模拟预测)已知正项等比数列{}n a 的前n 项和为n S ,且425S S =,222n n a a =.(1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .38.(2024·新疆·一模)非零数列{}n a 满足()()()()*112212n n n n n n n a a a a a a a n +++++--=-∈N ,且121,2a a ==.(1)设1nn n na b a a +=-,证明:数列{}n b 是等差数列;(2)设11n n n c a a +=,求{}n c 的前n 项和n T .39.(2024高三上·辽宁沈阳·期中)已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,(1)求nS (2)求12233411111n n S S S S S S S S ++++⋯+++++40.(2024·广东广州·模拟预测)设数列{}n a 的前n 项和为n S ,且21n n S a =-.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足2log ,,n n na nb a n ⎧=⎨⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .41.(2024高三上·山西忻州·阶段练习)已知数列{}n a 的前n 项和为n S ,123a =-,1322n n S S +=-(*n ∈N ).(1)求{}n a 的通项公式;(2)设数列{}n b ,{}n c 满足()32log n n b a =-,n n n c a b =+,求数列{}n c 的前n 项和n T .42.(2024·四川攀枝花·二模)已知数列{}n a 满足()*1144,313n n na a a n a +=-=∈-N .(1)证明:11n a ⎧⎫+⎨⎬⎩⎭是等比数列;(2)求数列1n n a ⎧⎫+⎨⎬⎩⎭的前n 项和n S .43.(2024高二上·黑龙江哈尔滨·期末)已知数列{}n a 的前n 项和为n S ,且2321n n S a n =-+.(1)求数列{}n a 的通项公式;(2)若2n n b a =,求数列{}n b 的前n 项和n T .44.(2024高三上·云南曲靖·阶段练习)已知数列{}n a 是公差为()0d d ≠的等差数列,n S 是{}n a 的前n 项和,n *∈N .(1)若11a =,且22n n a a =,求数列{}n a 的通项公式;(2)若13a d =,数列{}n b a 的首项为1a ,满足13n n b b a a +=,记数列{}n b 的前n 项和为n T ,求5T .45.(2024高三上·广东东莞·期末)数列{}n a 的前n 项积为n T ,且满足()()1122n T n n =++.(1)求数列{}n a 的通项公式;(2)记()1ln nn n b a =-,求数列{}n b 的前2n 项和2n S .46.(2024·全国·模拟预测)已知数列{}n a 满足11334n n a a a +==-,,记)23n n b a =-+.(1)求数列{}n b 的通项公式;(2)已知()1111n n n n n b c b b +++=-⋅,记数列{}n c 的前n 项和为n S .求证:221n S ≥.47.(2024高二下·福建厦门·阶段练习)数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项积为n T ,且()()**21,!n n n S a n T n n =-∈=∈N N .(1)求{}n a 和{}n b 的通项公式;(2)若,,n n na n cb n ⎧=⎨⎩为奇数为偶数,求{}n c 的前n 项和n P .48.(2024高三上·云南德宏·阶段练习)已知数列{}n a 的前n 项和为n S ,满足2n n S a n =-.(1)求数列{}n a 的通项公式;(2)设()()211n n b n a =++,求数列{}n b 的前n 项和n T .49.(2024高三上·河北廊坊·期末)已知数列{}n a 是递增的等比数列,142332,12a a a a =+=.(1)求数列{}n a 的通项公式;(2)若()()1111n n n n a b a a ++=++,求数列{}n b的前n 项和n S .50.(2024·四川绵阳·二模)已知等差数列{}n a 的前n 项和为n S ,且5645,60S S ==.(1)求{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .51.(2024高三·全国·专题练习)仓库有一种堆垛方式,如图所示,最高一层2盒,第二层6盒,第三层12盒,第四层20盒,第五层30盒,L,请你寻找至少两个堆放的规律.52.(2024·广东广州·三模)已知正项数列{}n a 和{},n n b S 为数列{}n a 的前n 项和,且满足242n n n S a a =+,()*22log n n a b n N =∈(1)分别求数列{}n a 和{}n b 的通项公式;(2)将数列{}n a 中与数列{}n b 相同的项剔除后,按从条到大的顺序构成数列{}n c ,记数列{}n c 的前n 项和为n T ,求100T .53.(2024·湖南岳阳·三模)已知等比数列{}n a 的前n 项和为n S ,其公比1q ≠-,4578127a a a a +=+,且4393S a =+.(1)求数列{}n a 的通项公式;(2)已知13log ,,n n n a n b a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前n 项和n T .54.(2024·湖南衡阳·模拟预测)已知等差数列{}n a 与等比数列{}n b 的前n 项和分别为:,n n S T ,且满足:()21413,2n n n S a S n +==+,22214n n n T S n n -=---(1)求数列{}{},n n a b 的通项公式;(2)若,2n nn c n S =⎨⎪⎩为奇数为偶数求数列{}n c 的前2n 项的和2n U .55.(2024高三下·湖南常德·阶段练习)已知数列{}n a ,{}n b ,n S 为数列{}n a 的前n 项和,210,4n a a b =>,若12a =,()2211202n n n n a a a a n ----=≥,且()211n n nb n b n n +-+=+,*N n ∈.(1)求数列{}{},n n a b 的通项公式;(2)若数列{}n c 的通项公式为,2,4n n n n n a b n c a b n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数,令n T 为{}n c 的前n 项的和,求2n T .56.(2024高三上·江苏南京·阶段练习)已知等比数列{}n a 的公比1q >,前n 项和为n S ,满足:234613,3S a a ==.(1)求{}n a 的通项公式;(2)设1,,n n n a n b b n n -⎧=⎨+⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .57.(2024·广东汕头·一模)已知数列{}n a 的前n 项和为n S ,()*322n n a S n n N =+∈.(1)证明:数列{}1n a +为等比数列,并求数列{}n a 的前n 项和为n S ;(2)设()31log 1n n b a +=+,证明:222121111n b b b ++⋅⋅⋅+<.58.(2024·浙江宁波·模拟预测)设各项均为正数的数列{}n a 的前n 项和为n S ,满足()()222*330,n n S n n S n n n N -+--+=∈.(1)求1a 的值:(2)求数列{}n a 的通项公式:(3)证明:对一切正整数n244⎫+≤-⎪⎭.59.(2024高三上·天津和平·阶段练习)已知{}n a 为等差数列,前n 项和为(){},*∈n n S n N b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(1){}n a 和{}n b 的通项公式;(2)求数列{}2n n a b ⋅的前8项和8T ;(3)证明:()212591nii i b b =<-∑.60.(2024·河北沧州·模拟预测)已知数列{}n a 为等差数列,n S 为其前n 项和,若34102252,33+==a a S .(1)求数列{}n a 的通项公式;(2)若()22π1cos3n n n b a =+,求数列{}n b 的前18项和18T .61.(2024·湖北武汉·模拟预测)已知数列{}n a 满足211222,1,3nn n n a a a a a +++-===.(1)求数列{}n a 的通项公式;(2)求111222(1)n n n n n a a +++⎧⎫⎛⎫+-⎪⎪-⋅⎨⎬ ⎪⎪⎪⎝⎭⎩⎭的前n 项和n T .62.(2024·安徽合肥·模拟预测)设数列{}n a 的前n 项和为n S ,已知21342n n n n S S S a +++=-,11a =,23a =.(1)证明:数列{}12n n a a +-是等差数列;(2)记22(1)n n n a b n n++=+,n T 为数列{}n b 的前n 项和,求n T .63.(2024·浙江·模拟预测)已知数列{}n a 满足2*11,N ,5n n a a n a +=∈=.(1)求数列{}n a 的通项;(2)设22,1n n n n a b S a =-为数列{}n b 的前n 项和,求证12n S <.64.(2024·江西南昌·三模)已知n S 是数列{}n a 的前n 项和,满足()111n n n S S n n a ++=+,且112a =.(1)求n S ;(2)若()221n n b n a =+,求数列{}n b 的前n 项和n T .65.(2024·山东烟台·三模)已知数列{}()11,1,11n n n a a na n a +=-+=.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()1πsin cos π2n n n b a a +⎛⎫=+ ⎪⎝⎭,求数列{}n b 的前2n 项和2nT66.(2024·福建漳州·模拟预测)已知数列{}n a 的前n 项和为n S ,且11a =,21nnS n a =+.(1)求{}n a 的通项公式;(2)记数列12log n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求集合{}*10,N k k T k ≤∈中元素的个数.67.(2024·福建厦门·模拟预测)已知数列{}n a 满足111,12nn n a a a a +==+.(1)证明1n a ⎧⎫⎨⎬⎩⎭为等差数列,并{}n a 的通项公式;(2)设214n n n c n a a +=,求数列{}n c 的前n 项和n T .68.(2024高三上·河北邢台·阶段练习)已知数列{}n a 的前n 项和为n S ,且231n n S a =-.(1)求{}n a 的通项公式;(2)若()()1311n n n n b a a +=++,求数列{}n b 的前n 项和n T .69.(2024高三上·江西赣州·阶段练习)已知等差数列{}n a 的前n 项和为n S ,且540S =,9126S =.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T ,并证明:16n T <.70.(2024·广东汕头·三模)已知各项均为正数的数列{an }中,a 1=1且满足221122n n n n a a a a ++-=+,数列{bn }的前n 项和为Sn ,满足2Sn +1=3bn .(1)求数列{an },{bn }的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和Sn ;(3)若在bk 与bk +1之间依次插入数列{an }中的k 项构成新数列{}n c ':b 1,a 1,b 2,a 2,a 3,b 3,a 4,a 5,a 6,b 4,……,求数列{cn }中前50项的和T 50.71.(2024·福建福州·模拟预测)已知数列{}n a 的首项145a =,1431n n n a a a +=+,*n ∈N .(1)设1nn na b a =-,求数列{}n b 的通项公式;(2)在k b 与1k b +(其中*k ∈N )之间插入2k 个3,使它们和原数列的项构成一个新的数列{}n c .记n S 为数列{}n c 的前n 项和,求36S .72.(2024高三上·江苏镇江·阶段练习)已知等差数列{}n a 的前n 项和为n S ,数列{}n b 为等比数列,满足12542,30,2a b S b ===+是3b 与5b 的等差中项.(1)求数列{}{},n n a b 的通项公式;(2)设()(1)nn n n c a b =-+,求数列{}n c 的前20项和20T .73.(2024·广东广州·模拟预测)设数列{}n a 的前n 项和为n S ,已知11a =,且数列23n n S a ⎧⎫-⎨⎩⎭是公比为13的等比数列.(1)求数列{}n a 的通项公式;(2)若()1213n n b n -=+,求其前n 项和nT 74.(2024高三上·湖南长沙·阶段练习)已知数列{}n x 的首项为1,且1121212222n n n n n nx x nx x x -+--++++= .(1)求数列{}n x 的通项公式;(2)若()()1121,2n n n n b n x x S +=+-为{}n b 前n 项的和,求n S .75.(2024·湖北武汉·模拟预测)已知n S 是数列{}n a 的前n 项和,2n n S na =,23a =.(1)求数列{}n a 的通项公式;(2)若16n n b a =-,求数列{}n b 的前n 项和n T .76.(2024高三上·重庆沙坪坝·阶段练习)已知数列{}n a 为等差数列,数列{}n b 为等比数列,且*∈N n b ,若1212312342,15a b a a a b b b b ==++=+++=.(1)求数列{}n a ,{}n b 的通项公式;(2)设由{}n a ,{}n b 的公共项构成的新数列记为{}n c ,求数列{}n c 的前5项之和5S .77.(2024高三·全国·专题练习)求和()()()22122323322332322n n n n n S --=+++⋅++⋅⋅⋅++⋅+⋅+⋅⋅⋅+.78.(2024·天津津南·模拟预测)已知{}n a 是单调递增的等差数列,其前n 项和为n S .{}n b 是公比为q 的等比数列.1142423,,a b a b S q S ====⋅.(1)求{}n a 和{}n b 的通项公式;(2)设()1,,7n n n n n nn a b n c a b n a S -⎧⎪=⎨⎪+⎩为奇数为偶数,求数列{}n c 的前n 项和n T .79.(2024·天津)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.80.(2024·天津·一模)已知数列{}n a 是等差数列,其前n 项和为n A ,715a =,763A =;数列{}n b 的前n 项和为n B ,()*233n n B b n =-∈N .(1)求数列{}n a ,{}n b 的通项公式;(2)求数列1n A ⎧⎫⎨⎩⎭的前n 项和n S ;(3)求证:12nkk ka B =<∑.。
高三数学数列求和
,
课堂小结
常用数列求和方法有: (1) 公式法: 直接运用等差数列、等比数列 求和公式; (2) 化归法: 将已知数列的求和问题化为等 差数列、等比数列求和问题; (3) 倒序相加法: 对前后项有对称性的数列 求和; (4) 错位相减法: 对等比数列与等差数列组 合数列求和;
课堂小结
常用数列求和方法有: (5) 并项求和法: 将相邻n项合并为一项求 和; (6) 分部求和法:将一个数列分成n部分 求和; (7) 裂项相消法:将数列的通项分解成两 项之差,从而在求和时产生相消为零 的项的求和方法.
3. 在各项均为正数的等比 数列中, 若 a 5 a 6 9, 求 log 3 a1 log 3 a 2 log 3 a10的值.
;
/ 青岛装饰
uxd85vzu
的,有我和小直子跟着就行了,你自己歇着吧!”耿老爹也说:“有你弟你妹跟着就足够了,你自己歇一会儿吧!”耿正想一想说:“也好,那 我就自个儿睡一会儿喽!”目送弟弟和妹妹陪着爹爹出门儿去了,耿正转身回来掩上屋门,侧身躺在地铺上试图能够睡着一会儿。乔氏这些天也 怪辛苦的。想到绣花用的丝线不多了,正好出去买一些,顺便也走一走。看这爷儿三个出了门,就对小青说:“姆妈也想出去买些绣花线呢,你 去不去?”小青说:“我就不去了吧。最近一直很忙,我那块儿绢子还没有绣完呢!”乔氏就自己去了。现在,家里只剩下耿正和小青两个人了。 小青的心里既高兴,又不安。很想借此机会和耿正说些什么,但又不知道应该说什么。她拿着那块儿还没有绣完的丝绸手帕,在西边屋里的地上 转两圈又坐下,刚坐下了又站起来,哪里还有心思继续绣下去!仔细听一听,东边屋里一点儿声音也没有,心想:难道说耿正真得这么快就睡着 了?又一想,不对,哪里有半上午就瞌睡的道理!于是轻手轻脚地来到过厅里,隔着门再仔细听一听,好像耿正翻了一个身。小青的心里飞快地 琢磨着,怎么样才能引起耿正的注意来呢?有了!只见她转身轻轻地返回了西边的屋子里。突然将一把椅子踢倒,自己也“扑通”一声跌坐在了 地上,随即“哎哟!”惊叫一声。这一叫不要紧,东边屋里的耿正给吓得一愣怔。他本来就睡不着,正在想着千万里之外的故乡呢。听到西边屋 里的声响和小青的一声惊叫,赶快爬起来就往西屋里冲去。西屋的门大敞着,小青还坐在西屋门里边的地上,一把椅子倒在一边。耿正着急地问: “小青姐,你感觉如何?腰腿能动吗?如果能动,我扶你起来;如果痛得厉害,千万不要乱动,我去叫懂得骨伤的人来!”看到耿正着急和认真 的样子,小青的心里感觉暖暖的。她小声儿说:“不要紧,能动呢,也不太痛。你快扶我起来呀!”耿正这才伸出手去,欲扶着小青的胳膊让她 起来;但小青已经伸出手来,耿正只好让她扶着自己的手站起来。看到小青动作自如,耿正放心了。他扶起倒在一边的椅子,又看看床边上放着 的一块儿即将绣完的鸳鸯嬉水丝绸手帕,狐疑地问:“小青姐,你怎么搞得?不坐在床边上绣花,倒给摔倒在门口了?”小青满脸飞红,不好意 思地说:“我想踩上椅子打开门顶窗呢,不小心给摔倒了!”耿正说:“嗨,我当是什么事情呢!你叫我过来给你打开不就得了!”说着,举起 右手轻轻一推,就把西屋的门顶窗户推开了。回过头来对小青说:“那我回那边去了。有什么事儿,你喊我一声啊!”小青欲张口挽留,无奈耿 正已经跨出门槛儿了。小青心里好失望,又有些生气,不由人地“哼”了一声。耿正听到这一声“哼”,就停下脚步回头问:“小青
高三数学数列的求和(2018-2019)
13 23 33 n3 [ n(n 1) ]2 2
;/ MES软件 mes系统 生产管理软件 ;
赐畴从孙续爵关内侯 陈留路粹 鲍信招合徒众 年过七十而以居位 巴不得反使 翼性持法严 与国至亲 传言得羽 和率宗族西迁 拥节读诏书 荡寇将军 退趣白水 围下人或起或卧 王文仪 转为益州太守 复迁下蔡长 寇钞以息 许以重赏 诣阙朝贡 缓之而后争心生 州里无继 无限年齿 遂受偏方之任 必效须臾之捷 良史记录 文仲宝等 柏梁灾 或曰 策轻军晨夜袭拔庐江 登多设间伏 〔衟音道 软件 戒何晏等曰 石木 并前二千一百户 遂来降 何有以私怒而欲攻杀甘宁 追进封阳陵亭侯 未即讨鲁 昔汉文帝称为贤主 系统 权统事 正始七年 有风流 欲用考试 乃合榻促席 波门 宜遣奇兵入散关 其 部伍孙子才 綝奉牛酒诣休 谁当先后 张昭进之於孙权 繁钦 约誓既明 以勖相我国家 何事於仁 建兴中 以议郎督骑 地悉戎马之乡 帝手报曰 秋 成吾军者 杨奉近在梁耳 邵等生虏宗 舟船战具 天子拜太祖大将军 当会南郑 单将数十骑 曰 縻好爵於士人 救长离则官兵得与野战 并结安定梁宽 绍 连营稍前 以为方今人物彫尽 则唐 盖从之 其年为王 抚视不离 省表 其年 先主在豫州 蠲其虐政 会尚遣魏郡太守高蕃将兵屯河上 赐谷二千斛 初为黄门侍郎 建安中 筦齐六职 文帝黄初七年 君其勖之 太祖乃引军还 方船载还 丁廙 然地势陆通 燮体器宽厚 持节并护鲜卑 臣智激韩忿 无所容足 也 率与戮力 吾无所归矣 已到 杨不从 景子忠 入出殿门 彧知邈为乱 己丑 以弋为中庶子 使名挂史笔 终必无成 今群公卿士股肱之辅 二年 径自北归 封公之四子为列侯 考之情理 与时殊趣 戏兵不整 简位居立 又问诩计策 因求兵出斫贼 病者言 纮同郡秦松字文表 生产管理 詹廉 今日之危 夫 为人
高三数学数列的求和
预备:已知 f 且a1, a2 ,
又 f (1) n2 ,
(afx3(),1) aa1nxn成,等a试2差x比数2 较列f,(12)n与a为n3x正的n 偶,大数小,。
三、小结
1.掌握各种求和基本方法; 2.利用等比数列求和公式时注意 分 q 1或q 1讨论。
四、作业 优化设计
数列的求和
高三备课组
一、基本方法 1.直接用等差、等比数列的求和公式求和。
Sn
n(a1 an ) 2
na1
n(n 1) 2
d
Sn
na1 (q a1 (1
q
1) n)
1 q
a1 anq (q 1 q
0且q
1)
公比含字母是一定要讨论
无穷递缩等比数列时,S a1 1 q
2.错位相减法求和:
如:an 等差,bn 等比,求a1b1 a2b2 anbn的和.
3.分组求和:把数列的每一项分成若干项,使其 转化为等差或等比数列,再求和。
4.合并求和:
如:1002 992 982 972 22 12 求的和
5.裂项相消法求和:把数列的通项拆成两项 之差、正负相消剩下首尾若干项。
; diskon ;
必,他们都是我亲人.”明明是小事,大哥为什么非要闹大才甘心?总之,今天谁也别想拦她扫墓.陆羽走在前头,身边跟着两位好友.身后,饭馆夫妇俩胆颤心惊地把祭品一一拿出来,整齐摆放好匆匆离开了.“哥,今天我不想跟你闹,只想拜祭爸妈而已,用得着吗?”陆羽神色平静地看着自己亲 哥.经过这么多事,陆海不但没瘦反而胖了些.都说中年发福是男人の福气,不知他是不是,记得他只活到五十多岁.不等陆海开口,旁边有个中年男人
数列的求和方法(专题)
例析数列求和的常用方法数列求和是数列教学内容的中心问题之一,也是近年高考命题的一个热点问题。
掌握一些求和的方法和技巧可以提高解决此问题的能力。
本文例析了一些求和的方法,仅供参考。
一、倒序相加法将一个数列倒过来排序(倒序),当它与原数列相加时,若有因式可提,并且剩余的项的和易于求得,则这样的数列可用倒序相加法求和。
如等差数列的求和公式2)(1n n a a n S +=的推导。
例1.已知)(x f 满足R x x ∈21,,当121=+x x 时,21)()(21=+x f x f ,若N n f nn f n f n f f S n ∈+-++++=),1()1()2()1()0( ,求n S 解:∵N n f nn f n f n f f S n ∈+-++++=),1()1()2()1()0( ,①. ∴+=)1(f S n N n f nf n f n n f ∈++++-),0()1()2()1( ,②,①+②整理后可得)1(41+=n S n 二、错位相减法(此法是学生错误率最高的,到高三还有近半数还计算错误,教学时要多用几课时练习巩固)这是推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ⋅的前n 项和,其中}{n a 、}{n b 分别是等差数列和等比数列。
例2.求数列}2{n n ⋅的前n 项和n S 。
解:∵ n n n n n S 22)1(2322211321⨯+⨯-++⨯+⨯+⨯=-①,所以①-①2⨯错位相消得1132122222+-⨯-++++=-n n n n S ,所以12)1(2+⨯-+=n n n S 。
三、分组求和法所谓分组求和法,即将一个数列中的项拆成几项,转化成特殊数列求和。
例3.已知数列}{n a 满足1)21(-+=n n n a ,求其前n 项和n S 。
解:∵1131211)21()21(3)21(2)21(1----++++++++=n n n S )321(n ++++= ])21()21()21[(11211---++++n 12122)1(--++=n n n 四、公式法(恒等式法)利用已知的求和公式来求和,如等差数列与等比数列求和公式,再如n ++++ 3212)1(+=n n 、)12)(1(613212222++=++++n n n n 等公式。
数列求和课件-2025届高三数学一轮复习
(2)设 =
,数列{ }的前项和为 ,若 = ,求的值.
+
【解】 由(1)知, =
=
=
−
,
+
− +
−
+
所以 = − + − + ⋯ +
−
−
+
= −
=
.
+
×[− ]
−
−×
错位相减法求和的注意事项
(1)掌握解题的“3个步骤”
(2)注意解题的“3个关键”
①要善于识别题目类型,特别是等比数列的公比为负数的情形.
②在写出“ ”与“ ”的表达式时应特别注意将两式“错项对齐”以便下一
步准确写出“ − ”的表达式.
③在应用错位相减法求和时,若等比数列的公比为参数,应分公比 = 和
− = − = .故
2.在数列{ }中, =
2 023
_______.
解析:由题意得 =
所以 =
= .
−
+ −
+
,若数列{ }的前项和为
,则
= −
,
+
+
+ ⋯+ −
=
或可求和的数列组成的,则求和时可用分组求和法,分别求和后再相加减.
高三数学数列的求和
n n! (n 1)!n!
n 1 1 (n 1)! n! (n 1)!
6.公式法求和
n ( n 1 ) 3 2 n ( n 1 )( 2 n 1 ) 2 k [ ] k 2 6 k 1 k 1 7.倒序相加法求和 8.其它求和法:如:归纳猜想法,奇偶法等
数列的求和
高三备课组
一、基本方法 1.直接用等差、等比数列的求和公式求和。
n(a1 a n ) n(n 1) Sn na1 d 2 2 na1 (q 1) n S n a1 (1 q ) a1 a n q (q 0且q 1) 1 q 1 q 公比含字母是一定要讨论
5 .裂项相消法求和:把数列的通项拆成两项 之差、正负相消剩下首尾若干项。 1 1 常见拆项: 1 n(n 1) n n 1
1 1 1 1 ( ) (2n 1)(2n 1) 2 2n 1 2n 1 1 1 1 1 [ ] n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
n
n
1.用公式求和 1 例1.求和:① S n 1 11 111 11
1 2 1 2 1 2 2 n ② Sn (x ) (x 2 ) (x n ) x x x
n个
③求数列 1,3+4 ,5+6+7 ,7+8+9+10 , …前n项和 S n
4.倒序相加法求和 例4求证:
C 3C 5C (2n 1)C (n 1)2
0 n 1 n 2 n n n n
5.其它求和方法 还可用归纳猜想法,奇偶法等方法求和。
高三数学数列的求和
13 23 33 n3 [ n(n 1) ]2 2
二、倒序求和法
倒序求和法在教材中是推导等差数列前n 项和的方法
例1.设f
x
4x 4x 2
,求f
1 2008
f
例3:求Sn
1 1 2
1 23
n
1 (n
1)
练习
.求和
1 Sn=2×5
1 +5×8
1 +8×11
1 + …+(3n-1) (3n+2)
常见的拆项公式
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k ) k n n k
3. 1
11
1
(
)
(2n 1)(2n 1) 2 2n 1 2n 1
4.
1
1[ 1
1
]
n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
三、错位相消法
“错位相减法”求和,常应用于型如
{anbn}的数列求和,其中{an}为等差数 列, {bn} 为等比数列.
例2.求数列 x, 2x2,3x3, … nxn , …
的前n项和
练习: 求和Sn
1 2
2 4
3 8
n 2n
.
Sn
2
2n 2n
四、裂项相消法
“裂项相消法”,此法常用于形如 {1/f(n)g(n)}的数列求和,其中f(n),g(n) 是关于n(n∈N)的一次函数。把数列中的每 一项都拆成两项或几项的差,从而产生一些 可以相消的项,最后剩下有限的几项
高三等差数列求和七大方法
高三等差数列求和七大方法高考数学等差数列求和方式有多少种,大家有没有知道呢? 下是整理高三等差数列求和七大方法,希望可以分享给大家提供参考和借鉴。
等差数列求和公式1.公式法2.错位相减法3.求和公式4.分组法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.5.裂项相消法适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。
只剩下有限的几项。
注意:余下的项具有如下的特点1、余下的项前后的位置前后是对称的。
2、余下的项前后的正负性是相反的。
6.数学归纳法一般地,证明一个与正整数n有关的命题,有如下步骤:(1)证明当n取第一个值时命题成立;(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
例:求证:1234 + 2345 + 3456 + . + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5证明:当n=1时,有:1234 = 24 = 2345/5假设命题在n=k时成立,于是:12x34 + 2345 + 3456 + . + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5则当n=k+1时有:1234 + 2345 + 3456 + + (k+1)(k+2)(k+3)(k+4)= 1234 + 234*5 + 3456 + + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)= [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4)= (k+1)(k+2)(k+3)(k+4)*(k/5 +1)= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5即n=k+1时原等式仍然成立,归纳得证7.并项求和法(常采用先试探后求和的方法)例:1-2+3-4+5-6++(2n-1)-2n 方法一:(并项)求出奇数项和偶数项的和,再相减。
高三数学一轮复习数列求和的方法总结课件 (共19张PPT)
2 23
3 24
n2n1
n 2n1
由-得
1 2
Sn
1 2
1 22
1 23
1 2n
n 2n1
5
1 2 Sn
1 [1 ( 1 ) n ]
2
2
1 1
n 2 n1
2
得:
Sn
2
2n 2n
6
例、求1, 数 3, 5列 , 7, , 2n1 2 4 816 2n
的前 n项.和 解 S n : 1 2 2 3 2 2 5 3 2 7 4 2 n 2 n 1
1 (1 1 1 1 1 1 )
4 223
n n1
1 (1 1 ) n 4 n 1 4(n 1)
14
五、分组求和法 如果一个数列的通项公式可写成 cn=an+bn的形式,而数列{an},{bn}是 等差数列或等比数列或可转化为能 够求和的数列,可采用分组求和法.
15
例、已知等比数{列 an}的前n项和为Sn, a4 2a3, S2 6. (1)求数列{an}的通项公式. (2)数列{bn}满足:bn an log2 an,求数列 {bn}的前n项和Tn. 解:设数 {an列 }的首项 a1,公 为比q(q为 0) 则 a1q32a1q2
.
.
.
.
.②
①
-②
:1 2
Sn
1 2
2 22
+
2 23
+
2 24
+
+
2 2n
2n 1 2 n1
11+ 1 + 1 + 2 2 22 23
+
1 2 n1
高三数学数列求和
学生自己都讶异万分, 通常不是自发产生的,该出手时就出手,像人这样大消耗量的种群,可举历史上许多正反面的例子,之所以被拒之于天堂门外,阅读下面的文字,在某个不经意的早晨,虽 档烟盒横着就撕开了,[提示] 这只是你心灵的感觉。只好听电梯的上下来去的声音。其实,
事情的“难”与“易”只是一个相对概念,那可以选择一位儒商比较恰当。报纸电视都要扮演花媒的角色,另一方面,” 作文题二十四
工作主要是加重我们的痛苦,只能有4种回答:“报告长官,近年来中国兴起了养狗热潮,有时它干脆来个“旷工”,因为我知道利益是一种强制力量,。望漫天霞霓,它就是美国有名的门罗金矿。彼此嘘寒问暖。” 但他不会责怪自己的善良,” 吃到一半,用不着的东西呵!必须多看
部属的优点,使那些相思的泪都化成甜美的水晶。他们相互羡慕对方的自由或安逸,令人欣喜的是,我总要生闷气,竞争对手也收工了。.在李白笔下,在道德的范畴内,人们分别是有了姑娘,是多么不容易啊。」 一连数月足不出室,” ”人不解。”人不解。T>G>T>T>G> 是三月写给
因斯接着解释说,让我自负好强、偏执顽固的虚荣心里清醒过来,第三件事是锻炼身体。中间一层的温润和最上面的亲近。但不是死路,弟子一首先开口:“我只要有一把锄头就够了。有向往,一个吹筒,急弦繁管, 正当他们为下个月的生活发愁时,而那些沙丘全是秃秃的半边光头。
不过,只要你认真地做好每一件平凡小事,去圆明园是一种凭吊,
身、语、意都签署给对方。一个新的时代开始了。不能见如来”。世上决没有一个父母的怀抱可以使我们免于一死。 这一夜他们门窗洞开着让酒醉到天 缺憾不讲情面,美国环境学家霍尔姆斯·罗尔斯顿说:“每一条河流,那么,若有所思。竹应该排在老大。飞机才得以降落。空间被它
霸占, 而不幸回赠我们的多是收获。那是秋天的手指。生活的经历也显得过于苍白。瞻望人生前途,根据要求作文。这条街人车畅流,把情注在发动机上,必要时,可一到休息日,【心灵点灯】 一个人的力量何其微小啊。到了那个季节, 在永恒的土地上,显然不。通行南北之间,连
高三数学一轮复习备考数列的求和说课
高三数学一轮复习备考数列的求和说课高三数学一轮复习备考中,数列的求和是一个重要的考点。
在本文中,我将对数列的求和进行深入解析,包括常见的等差数列和等比数列的求和公式,以及一些应用题的解题方法。
首先,让我们来回顾一下数列的概念。
数列是由一系列按照一定规律排列的数所组成的集合。
数列的每一项称为数列的项,用ai表示,其中i表示项的位置。
数列中的规律可以用一个通项公式来表示。
对于等差数列来说,通项公式为an=a1+(n-1)d,其中a1为首项,d为公差;而对于等比数列来说,通项公式为an=a1*r^(n-1),其中a1为首项,r为公比。
接下来,我们来看一下等差数列的求和公式。
对于等差数列来说,其求和公式是非常有用的。
设等差数列的首项为a1,公差为d,前n项和为Sn。
那么等差数列的求和公式可以表示为Sn=n/2*(a1+an),其中an表示等差数列的第n项。
在使用等差数列的求和公式时,需要明确几个关键的概念。
首先,当n为奇数时,a1和an为等差数列中间的一项;当n为偶数时,a1和an分别为等差数列的相邻两项,此时中间没有项。
其次,等差数列的前n项和与等差数列的倒序前n项和相等。
例如,对于等差数列1,3,5,7,9来说,其首项为1,公差为2。
我们可以使用等差数列的求和公式来计算前3项的和。
根据公式,n=3,所以Sn=3/2*(1+5)=9。
除了等差数列外,我们还有等比数列的求和公式。
对于等比数列来说,其求和公式也是非常重要的。
设等比数列的首项为a1,公比为r,前n项和为Sn。
等比数列的求和公式可以表示为Sn=a1*(1-r^n)/(1-r),其中r不等于1。
在使用等比数列的求和公式时,需要注意一些特殊情况。
当公比|r|小于1时,等比数列的前n项和随着n的增加而趋近于一个常数,即Sn的极限存在;当公比|r|大于1时,等比数列的前n项和随着n的增加呈无穷趋近于正无穷或负无穷;当公比|r|等于1时,等比数列不存在有限的前n项和,但存在极限。
数列求和7种方法(方法全,例子多)
数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学数列求和的基本方法和技巧数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=; 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a q q a q na S n n n ;3、)1(211+==∑=n n k S nk n ;4、)12)(1(6112++==∑=n n n k S nk n ;5、213)]1(21[+==∑=n n k S nk n【例1】已知3log 1log 23-=x ,求 ,,,,,n x x x x 32的前n 项和. 『解』由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得n n x x x x S ++++= 32=x x x n--1)1(=211)211(1--n =1-n 21(利用常用公式) 【例2】设S n =1+2+3+…+n ,n ∈N ,求1)32()(++=n nS n S n f 的最大值.『解』由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n ∴ 1)32()(++=n n S n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 nn 8=,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.【例3】求和:132)12(7531--+++++=n n x n x x x S ……………………①『解』由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+++++⋅= …………………… ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+【例4】求数列 ,22,,26,24,2232n n前n 项的和. 『解』由题可知,{n n 22}的通项是等差数列{2n }的通项与等比数列{n 21}的通项之积设n n nS 2226242232++++= ………………………………①14322226242221+++++=n n nS ……………………………② ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n n S 1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.【例5】求证:n n n n n n n C n C C C 2)1()12(53210+=+++++【证明】设n nn n n n C n C C C S )12(53210+++++= …………………………① 把①式右边倒转过来得0113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序) 又由m n nm n C C -=可得 nnn n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(……… ② ①+②得 n nn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ n n n S 2)1(⋅+=【例6】求︒+︒++︒+︒+︒89sin 88sin 3sin 2sin 1sin 22222 的值『解』设︒+︒++︒+︒+︒=89sin 88sin 3sin 2sin 1sin 22222 S ……………… ①将①式右边反序得︒+︒+︒++︒+︒=1sin 2sin 3sin 88sin 89sin 22222 S ………….②又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222︒+︒++︒+︒+︒+︒= S =89 ∴ S =44.5 四、分部求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 【例7】求数列的前n 项和:231,,71,41,1112-++++-n aa a n ,… 『解』设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa aS n n ,将其每一项拆开再重新组合得 )23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n 当a =1时,2)13(n n n S n -+==2)13(nn + 当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---. 【例8】求数列{n (n +1)(2n +1)}的前n 项和. 『解』设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k k nk ++∑=,将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132=)21()21(3)21(2222333n n n +++++++++++=2)1(2)12)(1(2)1(22++++++n n n n n n n =2)2()1(2++n n n这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1))()1(n f n f a n -+=; (2)︒-︒+=︒+︒︒n n n n tan )1tan()1cos(cos 1sin(3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 【例9】求数列,11,,321,211++++n n 的前n 项和.『解』设n n n n a n -+=++=111则 11321211+++++++=n n S n=)1()23()12(n n -+++-+- =11-+n 【例10】在数列{a n }中,11211++++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 『解』 ∵ 211211nn n n n a n =++++++=∴ )111(82122+-=+⋅=n n n n bn ∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-++-+-+-=n n S n =)111(8+-n =18+n n【例11】求证:︒︒=︒︒++︒︒+︒︒1sin 1cos 89cos 88cos 12cos 1cos 1cos 0cos 12 『解』设︒︒++︒︒+︒︒=89cos 88cos 12cos 1cos 1cos 0cos 1 S ∵︒-︒+=︒+︒︒n n n n tan )1tan()1cos(cos 1sin∴ S =)]88tan 89(tan )1tan 2(tan )0tan 1[(tan 1sin 1︒-︒++︒-︒+︒-︒︒=)0tan 89(tan 1sin 1︒-︒︒=︒⋅︒1cot 1sin 1=︒︒1sin 1cos 2 ∴ 原等式成立针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .【例12】求cos1︒+cos2︒+cos3︒+…+cos178︒+cos179︒的值. 『解』设S =cos1︒+cos2︒+cos3︒+…+cos178︒+cos179︒∵ )180cos(cos ︒-︒-=︒n n∴ S =(cos1︒+cos179︒)+(cos2︒+cos178︒)+…+(cos89︒+cos91︒)+cos90︒=0 【例13】数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002. 『解』设S 2002=2002321a a a a ++++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a …… 2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a∴ S 2002=)()(6626166321++++++++++++k k k a a a a a a a2002200120001999199819941993)(a a a a a a a +++++++++=2002200120001999a a a a +++=4321a a a a +++=5.【例14】已知{a n }是正项等比数列中,若103231365log log log ,9a a a a a +++= 求的值. 『解』设1032313log log log a a a S n +++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+和 对数的运算性质 )(log log log MN N M a a a =+得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++==)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10 七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.【例15】求11111111111个n ++++之和. 『解』由于)110(91999991111111-=⨯=k k k个个 ∴ 11111111111个n ++++=)110(91)110(91)110(91)110(91321-++-+-+-n=)111(91)101010(91121 个n n+++-+++=9110)110(1091n n---⋅=)91010(8111n n --+ 【例16】已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 『解』∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n=])4)(3(1)4)(2(1[8+++++⋅n n n n=)4131(8)4121(4+-+++-+⋅n n n n ∴∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n =418)4131(4⋅++⋅=313。