电大经济数学基础12 形考作业四 第二题 02第二部分解题
国家电大经济数学基础12形考任务4
国家电大经济数学基础12形考任务4一、计算题1.解:根据求导法则,得到f'(x) = (-x^2)' * e^(-x) - 2sin(2x) = -2xe^(-x) - 2sin(2x)2.解:对方程两边求导,得到3.解:将分母有理化,得到4.解:将分子分母同时除以x^2,得到5.解:将分子分母同时除以cos^2(x),得到6.解:根据求导法则,得到7.解:将分子分母同时除以x^2,得到8.解:将矩阵进行初等行变换,得到9.解:根据矩阵求逆的公式,得到10.解:将方程组的增广矩阵化为阶梯形,得到二、应用题1.解:根据成本函数,得到总成本C(q) = 100 + 0.25q^2 + 6q,平均成本AC(q) = (100/q) + 0.25q + 6,边际成本MC(q) = 0.5q + 6.令MC(q) = AC(q),解得q = 20.因为AC(q)在q=20处取得最小值,所以当产量为20时,平均成本最小。
2.解:根据利润函数,得到L(q) = 400q – 0.1q^2 – .令L'(q) = 0,解得q = 250.因为L(q)在q=250处取得最大值,所以当产量为250时,利润最大。
3.解:当产量从400台增至600台时,总成本增加了ΔC = C(600) – C(400) = 100(600/400) + 0.25(600^2 –400^2)/2 + 6(600 – 400) – (100(400/400) + 0.25(400^2 – 400^2)/2 + 6(400 – 400))150 + 150 = 300(万元)因为AC(q) = C(q)/q,所以AC'(q) = (C'(q)q – C(q))/q^2.令AC'(q) = 0,解得q = 6.因为AC(q)在q=6处取得最小值,所以当产量为6百台时,平均成本最小。
4.解:根据利润函数,得到L(x) = 100x – x^2 – 8x^2 = 100 – 10x。
《经济数学基础12》形考任务4应用题答案
1.设生产某种产品个单位时的成本函数为
(万元),
求:①时的总成本、平均成本和边际成本;②产量为多少时,平均成本最小.
2.某厂生产某种产品件时的总成本函数为(元),单位销售价格为(元/件),问产量为多少时可使利润达到最大?最大利润是多少?
3.投产某产品的固定成本为36(万元),边际成本为(万元/百台).试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低.
4.生产某产品的边际成本为(万元/百台),边际收入为(万元/百台),其中为产量,求:①产量为多少时利润最大;②在最大利润产量的基础上再生产2百台,利润将会发生什么变化.。
国家开放大学2020年春季学期电大《经济数学基础12》形成性考核及答案
《经济数学基础12》网上形考任务3至4及学习活动试题及答案形考任务3 试题及答案题目1:设矩阵,则的元素().答案:3题目1:设矩阵,则的元素a32=().答案:1题目1:设矩阵,则的元素a24=().答案:2题目2:设,,则().答案:题目2:设,,则().答案:题目2:设,,则BA =().答案:题目3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目4:设,为单位矩阵,则().答案:题目4:设,为单位矩阵,则(A - I )T =().答案:题目4:,为单位矩阵,则A T–I =().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目6:下列关于矩阵的结论正确的是().答案:对角矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题目7:设,,则().答案:0题目7:设,,则().答案:0题目7:设,,则().答案:-2, 4题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目10:设矩阵,则().答案:。
电大经济数学基础12形考2答案
,则下列步骤中正确的是(
). 答案:
题目 7 :用第一换元法求不定积分
,则下列步骤中正确的是(
). 答案:
题目 8 :下列不定积分中,常用分部积分法计算的是(
). 答案:
题目 8 :下列不定积分中,常用分部积分法计算的是(
). 答案:
题目 8 :下列不定积分中,常用分部积分法计算的是(
). 答案:
题目 9 :用分部积分法求不定积分
). 答案:
题目 19 :根据一阶线性微分方程的通解公式求解 案: 题目 19 :根据一阶线性微分方程的通解公式求解
,则下列选项正确的是 ( ). 答
,则下列选项正确的是
答案:
题目 19 :根据一阶线性微分方程的通解公式求解 是( ).
,பைடு நூலகம்下列选项正确的
答案: 题目 20 :微分方程
满足
的特解为( ). 答案:
). 答案: ). 答案: ). 答案:
题 目 14 :计算定积分
,则下列步骤中正确的是(
). 答案:
题目 14 :
( ). 答案:
题目 14 :
( ). 答案:
题目 15 :用第一换元法求定积分
,则下列步骤中正确的是 ( ). 答案:
题目 15 :用第一换元法求定积分
,则下列步骤中正确的是(
). 答案:
题目 15 :用第一换元法求定积分
,则下列步骤中正确的是(
). 答案:
题目 16 :用分部积分法求定积分
,则下列步骤正确的是(
). 答案:
题目 16 :用分部积分法求定积分
,则下列步骤正确的是(
). 答案:
题目 16 :用分部积分法求定积分
《经济数学基础12》课程形成性考核册及参考答案
湖南广播电视大学《经济数学基础12》形成性考核册及参考答案作业(一)(一)填空题1.lim x sinx ___________________.答案:0x 0x2. f(x)x21, x 0,在x 0 处连续,则k ________.答案:1设k, x 03.曲线y x在(1,1)的切线方程是.答案:y 1x 12 24. f(x1)x2 2x 5 ,则f (x) ____________.答案:2x设函数5.设f(x) xsinx,则fπ__________ .答案:π( )2 2(二)单项选择题1.函数yx 1的连续区间是()答案:D x2x2A.( ,1) (1, ) B.( , 2) ( 2, )C.( , 2) ( 2,1) (1, ) D.(, 2) ( 2, )或( ,1)(1,)2 . 下列极限计算正确的是()答案:BA.lim x1 B.limx1 x xx 0 x0C.lim xsin1 1D.lim sinx 1x 0x xx3. 设y lg2x,则dy ().答案:BA.1dx B. 1 dx C.ln10dx D.1dx 2x xln10x x4 . 若函数f(x)在点x0处可导,则( )是错误的.答案:BA.函数f(x)在点x0处有定义B.limf(x) A,但A f(x0)x x0C.函数f(x)在点x0处连续D.函数f(x)在点x0处可微5.当x 0时,下列变量是无穷小量的是().答案:CA.2x B.sinx C.ln(1 x) D.cosxx(三)解答题1.计算极限(1)lim x23x2 1(2)lim x25x 6 1 x1 x2 1 2x2x26x821湖南广播电视大学1 x1 1(4)lim x23x 5 1(3)limx 23x 22x 4 3x 0 xsin3x 3(6)lim x2 44(5)lim5 2)x 0sin5x x2sin(xxsin1b,x 02.设函数f(x)xx 0,a,sinxx 0 x问:(1)当a,b为何值时, f(x)在x 0处有极限存在?(2)当a,b为何值时,f(x)在x 0处连续.答案:(1)当b 1,a任意时,f (x)在x 0处有极限存在;(2)当ab 1时,f(x)在x 0处连续。
经济数学基础12形考4答案
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+⎥⎥⎥⎦⎤-----⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤-⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=++=-=-=+-=-=-=++-=+-=-=++=++===---=--=-=+--+--=--=--=+=-----⎰⎰⎰⎰⎰⎰⎰1123355610)(1123355610 100010001112001010 100310501110001010 520310501100001010 021310501100010001 021501310),(021*********41 4121)'(ln 21 ln 21)21(ln 6)1(52sin 42cos 22cos 22cos 2)2cos (24)2(31)2(221)21(23223,32')2(03''2222sin 22'2sin 222sin 2·)'()'2(cos )('11212221122121211121232222222222A I I A I A I e x e dx x x x x x xd e e e x d e c xx x dx x x x xxd c x x d x x d x dxx y xy dy x y y x y xy y yy x x xxe y xxe xe x x e y e e e e x x x x x x 、解:。
、解:。
、解:原式。
、解:原式。
、解:原式求导:、解:方程两边关于综上所述,、解:⎥⎦⎤⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=⎥⎥⎥⎦⎤------⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤---⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤---⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤--⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=--384765131520457568234 720031457568234 457568234100010001457111001 100110321102111001650110321102013001 650540321100010001 012423321811BA X A AI )、解:()(2000011101201111011101201351223111201921432431是自由未知量,其中所以,方程的一般解为、解:x x x x x x x x A ⎩⎨⎧-=+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=为自由未知量)(其中且方程组的一般解为时,方程组有解。
国开(中央电大)专科《经济数学基础12》网上形考任务及学习活动试题及答案
国开(中央电大)专科《经济数学基础12》网上形考任务及学习活动试题及答案形考任务1 试题及答案题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调减少的是().答案:题目3:设,则().答案:题目3:设,则().答案:题目3:设,则=().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是(). 答案:题目4:当时,下列变量为无穷小量的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目6:().答案:0题目6:().答案:-1题目6:().答案:1题目7:().答案:题目7:().答案:().题目7:().答案:-1题目8:().答案:题目8:().答案:题目8:().答案:().题目9:().答案:4题目9:().答案:-4题目9:().答案:2题目10:设在处连续,则(). 答案:1题目10:设在处连续,则(). 答案:1题目10:设在处连续,则().答案:2题目11:当(),()时,函数在处连续. 答案:题目11:当(),()时,函数在处连续. 答案:题目11:当(),()时,函数在处连续.答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目13:若函数在点处可导,则()是错误的.答案:,但题目13:若函数在点处可微,则()是错误的.答案:,但题目13:若函数在点处连续,则()是正确的.答案:函数在点处有定义题目14:若,则().答案:题目14:若,则().答案:1题目14:若,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目16:设函数,则(). 答案:题目16:设函数,则().答案:题目16:设函数,则(). 答案:题目17:设,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目22:设,方程两边对求导,可得(). 答案:题目22:设,方程两边对求导,可得(). 答案:题目22:设,方程两边对求导,可得().答案:题目23:设,则().答案:题目23:设,则().答案:题目23:设,则().答案:-2题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目25:设某商品的需求函数为,则需求弹性(). 答案:题目25:设某商品的需求函数为,则需求弹性(). 答案:题目25:设某商品的需求函数为,则需求弹性(). 答案:形考任务2 试题及答案题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目2:若,则().答案:题目2:若,则().答案:题目2:若,则().答案:题目3:().答案:题目3:().答案:题目3:().答案:题目4:().答案:题目4:().答案:题目4:().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目6:若,则(). 答案:题目6:若,则().答案:题目6:若,则(). 答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目10:().答案:0题目10:().答案:0题目10:().答案:题目11:设,则().答案:题目11:设,则().答案:题目11:设,则().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目14:计算定积分,则下列步骤中正确的是().答案:题目14:().答案:题目14:().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:形考任务3 试题及答案题目1:设矩阵,则的元素().答案:3题目1:设矩阵,则的元素a32=().答案:1题目1:设矩阵,则的元素a24=().答案:2题目2:设,,则().答案:题目2:设,,则().答案:题目2:设,,则BA =().答案:题目3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目4:设,为单位矩阵,则().答案:题目4:设,为单位矩阵,则(A - I )T =().答案:题目4:,为单位矩阵,则A T–I =().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目6:下列关于矩阵的结论正确的是().答案:对角矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题目7:设,,则().答案:0题目7:设,,则().答案:0题目7:设,,则().答案:-2, 4题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目12:矩阵的秩是().答案:2题目12:矩阵的秩是().答案:3题目12:矩阵的秩是().答案:3题目13:设矩阵,则当()时,最小.答案:2题目13:设矩阵,则当()时,最小.答案:-2题目13:设矩阵,则当()时,最小.答案:-12题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.选择一项:A.B.C.D.答案:题目15:设线性方程组有非0解,则().答案:-1题目15:设线性方程组有非0解,则().答案:1题目15:设线性方程组有非0解,则().答案:-1题目16:设线性方程组,且,则当且仅当()时,方程组有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组没有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组有无穷多解.答案:题目17:线性方程组有无穷多解的充分必要条件是().答案:题目17线性方程组有唯一解的充分必要条件是().答案:题目17:线性方程组无解,则().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是()答案:题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组无解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有无穷多解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有唯一解.答案:题目20:若线性方程组只有零解,则线性方程组(). 答案:解不能确定题目20:若线性方程组有唯一解,则线性方程组().答案:只有零解题目20:若线性方程组有无穷多解,则线性方程组().答案:有无穷多解形考任务4 答案一、计算题(每题6分,共60分)1.解:综上所述,2.解:方程两边关于求导:,3.解:原式=。
经济数学基础12形考答案4
形考任务四一、计算题(每题6分,共60分)(如果以附件形式提交,请在在线输入框中,输入“见附件”)题目11.设,求.2.已知,求.3.计算不定积分.4.计算不定积分.5.计算定积分.6.计算定积分.7.设,求.8.设矩阵,,求解矩阵方程.9.求齐次线性方程组的一般解.10.求为何值时,线性方程组题目8:题目9:题目10:题目21.设生产某种产品个单位时的成本函数为(万元), 求:①时的总成本、平均成本和边际成本;②产量为多少时,平均成本最小.2.某厂生产某种产品件时的总成本函数为(元),单位销售价格为(元/件),问产量为多少时可使利润达到最大最大利润是多少3.投产某产品的固定成本为36(万元),边际成本为(万元/百台).试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低.4.生产某产品的边际成本为(万元/百台),边际收入为(万元/百台),其中为产量,求:①产量为多少时利润最大;②在最大利润产量的基础上再生产2百台,利润将会发生什么变化.()()()()()()万元边际成本:万元平均成本:万元总成本:时 ①:解116105.010'5.1861025.0101851061025.010*******.0'625.01100102100=+⨯==+⨯+==⨯+⨯+==+=++=c c c q q q c q q c q()()()时平均成本最小由实际问题可知,当(舍去) 得 令②解2020200'25.0':1211002=-===+-=q q q q c q c q()()()()()()()()()元件时利润达到最大值所以当产量为最大值点,实际问题可知,这也是因为只有一个驻点,由元 件,解得: 令 :解123025012302025002.0250102502500'04.010'2002.01001.042001.01401.014222222=-⨯-⨯===-=--=++--=-=-==L q q L qq L q q q q q q q C q R q L q q pq q R()()()()()()()()()()台时平均成本最低 故知当产量为有最小值,,由实际问题可知 因为只有一个驻点(舍去),解得: 令 万元固定成本为 万元:Δ解600660'1'403640402'1004040232136362642642x c x x x c x c x x c cx x dx x dx x c x c x x dx x c x x-===-=++=∴++=+===+=+=⎰⎰⎰4.解 L '(x ) =R '(x ) -C '(x ) = (100 – 2x ) – 8x =100 – 10x令L '(x )=0, 得 x = 10(百台)又x = 10是L (x )的唯一驻点,该问题确实存在最大值,故x = 10是L (x )的最大值点,即当产量为10(百台)时,利润最大.又 x x x x L L d )10100(d )(12101210⎰⎰-='=20)5100(12102-=-=x x即从利润最大时的产量再生产2百台,利润将减少20万元.续: 经济数学基础12形考答案-活动。
国开《经济数学基础12》形考作业四参考资料
一、计算题(每题6分,共60分) 1.解:y ′=(e −x 2)′+(cos 2x)′=(−x 2)′·e −x 2−2sin 2x =−2xe −x 2−2sin 2x综上所述,y ′=−2xe −x 2−2sin 2x2.解:方程两边关于x 求导:2x +2yy ′−y −xy ′+3=0 (2y −x)y ′=y −2x −3 , dy =y−3−2x 2y−xdx3.解:原式=∫√2+x 2d(12x 2)=12∫√2+x 2d(2+x 2)=13(2+x 2)32+c 。
4.解 原式=2∫xd(−cos x2)=−2x cos x2+2∫cos x2dx =−2x cos x2+4sin x2+c5.解 原式=∫e 1x d (−1x )21 =−e 1x |12=−e 12+e 。
6.解 ∫ln x d(12x 2)=e 112x 2ln x|1e −∫12e 1x 2(ln x)′dx =12e 2−14x 2|1e =14e 2+147.解:I +A =[0131051−20] (I +A,I )=[0131001050101−20001]→[1050100131001−20001] →[1050100131000−2−50−11]→[105010013100001211]→[100−106−5010−53−30012−11] (I +A)−1=[−106−5−53−32−11]8.解:(A I)=[12−332−42−10 100010001] →[12−30−450−56 100−310−201] →[12−301−10−56 100−11−1−201] →[12−301−1001 100−11−1−754]→[100010001 −43−2−86−5−75−4] A −1=[−43−2−86−5−75−4] X =BA−1=[1−3027][−43−2−86−5−75−4]=[20−1513−6547−38]9.解: A =[102−1−11−322−15−3]→[102−101−110−11−1]→[102−101−110000] 所以,方程的一般解为 {x 1=−2x 3+x 4x 2=x 3−x 4(其中x 1,x 2是自由未知量)10解:将方程组的增广矩阵化为阶梯形 [1−142−1−13−23 21λ]→[1−1401−901−9 2−3λ−6]→[10−501−9000 −1−3λ−3]由此可知当λ≠3时,方程组无解。
《经济数学基础12》形考任务4应用题答案上课讲义
《经济数学基础12》形考任务4应用题答
案
1.设生产某种产品个单位时的成本函数为(万元),
求:①时的总成本、平均成本和边际成本;②产量为多少时,平均成本最小.
2.某厂生产某种产品件时的总成本函数为(元),单位销售价格为(元/件),问产量为多少时可使利润达到
最大?最大利润是多少?
1
收集于网络,如有侵权请联系管理员删除
3.投产某产品的固定成本为36(万元),边际成本为(万元/百台).试求产量由 4 百台增至 6 百台时总成本的增量,及产量为多少时,可使平均成本达到最低.
4.生产某产品的边际成本为(万元/百台),边际收入为(万元/百台),其中为产量,求:①产量为多少时利润最大;②在最大利润产量的基础上再生产 2 百台,利润将会发生什么变化.
2
收集于网络,如有侵权请联系管理员删除
精品文档
3
收集于网络,如有侵权请联系管理员删除。
电大经济数学基础12形考作业4标准辅导答案
电大经济数学基础12形考作业4标准辅导答案电大经济数学基础12形考作业4标准辅导资料经济数学基础形考作业4参考答案一、计算题(每题6分,共60分)1.设 $y=e^{-x}+cos2x$,求 $y'$。
解:$y'=-2xe^{-x}-sin2x$2.已知 $x+y-xy+3x=1$,求 $dy$。
解:方程两边对 $x$ 求导,得 $2x+2y\cdot y'-(y+xy')+3=0$,$y'=\frac{y-3-2xy}{2y-x}$,$dy=\frac{y-3-2xy}{2y-x}dx$。
3.计算不定积分 $\int x^2+xdx$。
解:原式$=\int (2+x)d(2+x)=(2+x)^2+c$。
4.计算不定积分 $\int x\sin^2x dx$。
解:原式$=-2x\cos x+2\int \cos x dx=-2x\cos x+2\sin x+c$。
5.计算定积分 $\int_1^e \frac{dx}{2x\ln x}$。
解:原式$=\int_{\ln 1}^{\ln e}\frac{du}{2u}=\frac{1}{2}\ln|\ln x| |_1^e=\frac{1}{2}\ln 1=0$。
6.计算定积分 $\int_e^1 x\ln x dx$。
解:原式$=\int_1^e 2u\ln u du=[u^2\ln u-u^2]_1^e=(e^2-1)\ln e-e^2+1=(e+1)$。
7.设 $A=\begin{pmatrix} 3 & 1 & -1 \\ 1 & -1 & 5 \\ 1 & -2& -1 \end{pmatrix}$,求 $(I+A)$。
解:$(I+A)=\begin{pmatrix} 4 & 1 & -1 \\ 1 & 0 & 5 \\ 1 & -2 & 0 \end{pmatrix}$。
国家电大经济数学基础12形考任务4
一、计算题(每题6分,共60分)
1.解:
综上所述,
2.解:方程两边关于求导:
,
3.解:原式=。
4.解原式=
5.解原式==。
6.解
7.解:
8.解:→→
→→
9.解:
所以,方程的一般解为
(其中是自由未知量)
10解:将方程组的增广矩阵化为阶梯形
→→
由此可知当时,方程组无解。
当时,方程组有解。
且方程组的一般解为(其中为自由未知量)
二、应用题
1.解(1)因为总成本、平均成本和边际成本分别为:
,
所以,
,
(2)令,得(舍去)
因为是其在定义域内唯一驻点,且该问题确实存在最小值,所以当20
时,平均成本最小.
2.解由已知
利润函数
则,令,解出唯一驻点.
因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,
且最大利润为
(元)3.解当产量由4百台增至6百台时,总成本的增量为
==100(万元)
又==
令,解得.
x=6是惟一的驻点,而该问题确实存在使平均成本达到最小的值.所以产量为
6百台时可使平均成本达到最小.
4.解(x)=(x)-(x)=(100–2x)–8x=100–10x
令(x)=0,得x=10(百台)
又x=10是L(x)的唯一驻点,该问题确实存在最大值,故x=10是L(x)的最大
值点,即当产量为10(百台)时,利润最大.
又
即从利润最大时的产量再生产2百台,利润将减少20万元.。
国开电大经济数学基础12形考任务2 (2)
国开电大经济数学基础 12 形考任务 2国开电大经济数学基础 12 形考任务 22018.12注:国开电大经济数学基础 12 形考任务 2 共 20 道题,每到题目从题库中三选一抽取,详细答案以下:题目 1:以下函数中,()是的一个原函数.答案:题目 1:以下函数中,()是的一个原函数.答案:题目 1:以下函数中,()是的一个原函数.答案:题目 2:若,则(). 答案:题目 2:若,则().答案:题目 2:若,则().答案:题目题目题目题目题目题目题目3:().答案:3:().答案:3:().答案:4:().答案:4:().答案:4:().答案:5 :以下等式建立的是().答案:题目题目题目5:以下等式建立的是(5:以下等式建立的是(6:若,则).答案:).答案:().答案:题目6:若,则().答案:题目 6:若,则(). 答案:题目 7:用第一换元法求不定积分,则以下步骤中正确的选项是().答案:题目 7:用第一换元法求不定积分,则下列步骤中正确的选项是().答案:题目 7:用第一换元法求不定积分,则以下步骤中正确的选项是().答案:题目 8:以下不定积分中,常用分部积分法计算的是().答案:题目 8:以下不定积分中,常用分部积分法计算的是().答案:题目 8:以下不定积分中,常用分部积分法计算的是().答案:题目 9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目 9:用分部积分法求不定积分,则以下步骤中正确的选项是().答案:题目 9:用分部积分法求不定积分,则以下步骤中正确的选项是().答案:题目 10:(). 答案: 0题目 10:().答案: 0题目 10:(). 答案:题目 11:设,则() . 答案:题目 11 :设,则().答案:题目 11 :设,则().答案:题目 12 :以下定积分计算正确的选项是().答案:题目 12 :以下定积分计算正确的选项是().答案:题目 12 :以下定积分计算正确的选项是().答案:题目 13 :以下定积分计算正确的选项是().答案:题目 13 :以下定积分计算正确的选项是().答案:题目 13 :以下定积分计算正确的选项是().答案:题目 14 :计算定积分,则以下步骤中正确的是().答案:题目 14 :().答案:题目 14 :().答案:题目 15:用第一换元法求定积分下列步骤中正确的是().,则答案:题目 15 :用第一换元法求定积分,则以下步骤中正确的选项是().答案:题目 15 :用第一换元法求定积分,则以下步骤中正确的选项是().答案:题目 16:用分部积分法求定积分,则下列步骤正确的是().答案:题目 16 :用分部积分法求定积分,则以下步骤正确的选项是().答案:题目 16:用分部积分法求定积分,则以下步骤正确的选项是().答案:题目 17 :以下无量积分中收敛的是().答案:题目 17:以下无量积分中收敛的是().答案:题目 17:以下无量积分中收敛的是().答案:题目18:求解可分别变量的微分方程,分离变量后可得().答案:题目 18:求解可分别变量的微分方程,分离变量后可得().答案:题目 18:求解可分别变量的微分方程,分别变量后可得().答案:题目19:依据一阶线性微分方程的通解公式求解,则以下选项正确的选项是().答案:题目 19:依据一阶线性微分方程的通解公式求解,则以下选项正确的选项是答案:题目 19:依据一阶线性微分方程的通解公式求解,则以下选项正确的选项是().答案:题目20 :微分方程知足的特解为().答案:题目20 :微分方程知足的特解为().答案:题目20 :微分方程知足的特解为().答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又
即从利润最大时的产量再生产2百台,利润将减少20万元.
1.解(1)因为总成本、平均成本和边际成本分别为:
,
所以,
,
(2)令 ,得 ( 舍去)
因为 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当 20时,平均成本最小.
2.解 由已知
利润函数
则 ,令 ,解出唯一驻点 .
因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,
且最大利润为
(元)
3.解 当产量由4百台增至6百台时,总成本的增量为
= = 100(万元)
又 = =
令 , 解得 .
x= 6是惟一的驻点,而该问题确实存在使平均成本达到最小的值. 所以产量为6百台时可使平均成本达到最小.
4.解 (x) = (x) - (x) = (100 – 2x) – 8x=100 – 10x
令 (xቤተ መጻሕፍቲ ባይዱ=0,得x= 10(百台)