最新中考统计与概率专题复习
中考统计与概率知识点大全
统计与概率知识点归纳
考点一、全面调查与抽样调查
考点二、统计学中的几个基本概念
总体、个体、样本、样本容量、样本平均数、总体平均数 考点三、平均数(x 读作“X 拔”)、加权平均数、 众数、中位数
1、众数:
2、中位数:
考点四、方差 、标准差
1、方差的概念、通常用“2s ”表示,])()()[(1222212x x x x x x n
s n -++-+-= 2、标准差的概念、用“s ”表
])()()[(1222212x x x x x x n
s s n -++-+-== 考点五、几种常见的统计图
1、 条形统计图、折线统计图、扇形统计图
2、 频数分布直方图
① 极差: ②频数: ③频率:
考点六、确定事件和随机事件
1、确定事件:
2、随机事件:
考点七、概率的意义与表示方法
1、概率的意义:
2、事件的概率的表示方法:
考点八、列表法求概率
1、列表法
2、列表法的应用场合 (当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
)
考点九、树状图法求概率
1、树状图法
2、运用树状图法求概率的条件 (当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
)
考点十、用频率估计概率、 考点十一、概率的应用:主要用来评判某项活动是否“合算”,游戏是否“公平”等。
2024年中考数学总复习第一部分考点精练第八单元统计与概率第2课时概率
____4____.
第6题图
第2课时 概 率
7. (2023本溪)如图,等边三角形ABC是由9个大小相等的等边三 角形构成,随机地往△ABC内投一粒米,落在阴影区域的概率
5
为____9____.
第7题图
第2课时 概 率
8. [新考法——传统文化](2023山西改编)中国古代的“四书”是 指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心 著作,是中国传统文化的重要组成部分.若从这四部著作中随 机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则
的数量统计如图所示,他让弟弟从袋子里随机摸出一颗糖果,
则弟弟恰好摸到苹果味糖果的概率是( D )
A. 1B. 1来自23C. 1
D. 4
5
15
第4题图
第2课时 概 率
5. (人教九上P136例1改编)小强、小明、小华三人做抛硬币游戏,
规定:同时抛两枚质地均匀的硬币,若两枚硬币全部正面朝上,
则小强获胜;若两枚硬币一枚正面一枚反面朝上,则小明获胜;
第2课时 概 率
3. (2023丽水)某校准备组织红色研学活动,需要从梅岐、王村口、
住龙、小顺四个红色教育基地中任选一个前往研学,选中梅岐
红色教育基地的概率是( B )
A. 1
B. 1
2
4
C. 1
D. 3
3
4
第2课时 概 率
4. 小华将给弟弟买的糖果放到一个不透明的袋子中,这些糖果 除了口味和外包装的颜色外其余都相同,袋子里各种口味糖果
第2课时 概 率
然后从中随机摸出1个球,记下颜色后不放回,再从中随机摸出
1个球,若摸得的两球的颜色相同,则该顾客可获得精美礼品一
中考数学统计与概率专题复习(基础知识归纳+常考题型剖析)
中考数学统计与概率专题复习(基础知识归纳+常考题型剖析)
第2ห้องสมุดไป่ตู้讲 统计
【基础知识归纳】
归纳1:普查、抽查
为了一定目的对考察对象进行 全面的调查叫做 普查,
从考察对象中抽取一部分对象作调查分析叫做 抽查.
归纳 2:总体、个体、样本及样本容量
①总体:把所要考察的对象的 全体 叫总体.
②个体: 每一个 考察对象叫做个体.
③样本:从总体中所抽取的 一部分个体 叫做总体的一个样本.
④样本容量:样本中个体的 数目叫做样本容量.
中考统计与概率专题复习题及答案
热点8 统计与概率(时间:100分钟总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.一组数据5,5,6,x,7,7,8,已知这组数据的平均数是6,则这组数据的中位数是()A.7 B.6 C.5.5 D.52.检测1 000名学生的身高,从中抽出50名学生测量,在这个问题中,50名学生的身高是()A.个体B.总体C.样本容量D.总体的样本3.下列事件为必然事件的是()A.买一张电影票,座位号是偶数;B.抛掷一枚普通的正方体骰子1点朝上C.百米短跑比赛,一定产生第一名;D.明天会下雨4.一次抽奖活动中,印发的奖券有10 000张,其中特等奖2张,一等奖20张,•二等奖98张,三等奖200张,鼓励奖680张,那么第一位抽奖者(仅买一张奖券)•中奖的概率为()A.110B.150C.1500D.150005.某校把学生的笔试、实践能力、成长记录三项成绩分别按50%、20%、30%•的比例计入学期总评成绩,90分以上为优秀,甲、乙、丙三人的各项成绩(单位:分)如下表,学A.甲B.乙、丙C.甲、乙D.甲、丙6.甲、乙两个样本的方差分别是s甲2=6.06,s乙2=14.31,由此可反映出()A.样本甲的波动比样本乙的波动大;B.样本甲的波动比样本乙的波动小;C.样本甲的波动与样本乙的波动大小一样;D.样本甲和样本乙的波动大小关系不确定7.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差为13,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是()A.2,13B.2,1 C.4,23D.4,38则这个班此次测验的众数为()A.90分B.15 C.100分D.50分9.一组数据1,-1,0,-1,1的方差和标准差分别是()A .0,0B .0.8,0.64C .1,1D .0.8,0.810.由小到大排列一组数据y 1,y 2,y 3,y 4,y 5,其中每个数都小于-2,则对于样本1,y 1,•-y 2,y 3,-y 4,y 5的中位数是( ) A .212y + B .232y y - C .512y + D .342y y - 二、填空题(本大题共8题,每题3分,共24分)11.•若你想设计一个月内你家里丢弃塑料袋数目的情况•,•你一定不能选择_______统计图(填扇形、折线和条形).12.如图,是世界人口扇形统计图,关系中国部分的圆心角的度数为______.13.在100件产品中有5件次品,则从中任取一件次品的概率为________. 14.要了解全市中考生的数学成绩在某一范围内的学生所占比例的大小,需知道相应样本的________(填“平均数”“方差”或“频率分布”).15.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是_____.16.在一个有10万人的小镇上,随机调查了2 000人,其中有250•人看中央电视台的早间新闻,在该镇随便问一人,他看早间新闻的概率大约是________. 17.已知一组数据的方差是s 2=125[(x 1-2.5)2+(x 2-2.5)2+(x 3-2.5)2+…+(x 25-2.5)2],则这组数据的平均数是_________.18.一组数据的方差为s 2,将这组数据的每个数据都乘2,•所得到的一组新数据的方差是________.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.已知一组数据6,2,4,2,3,5,2,4.(1)这组数据的样本容量是多少?(2)写出这组数据的众数和平均数. 20.请你设计一个转盘游戏,使获一等奖的机会为112,获二等奖的机会为16,获得三等奖的机会为14,并说明你的转盘游戏的中奖概率.21.根据下表制作扇形统计图,表示各种果树占果园总树木的百分比. (1)计算各种果树面积与总面积的百分比;(2)计算各种果树对应的圆心角的度数;(322(1)餐厅所有员工的平均工资是多少?工资的中位数是多少?(2)用平均数还是用中位数描述所有员工的工资的一般水平比较恰当?(3)去掉经理工资以后,其他员工的平均工资是多少?•是否也能反映员工工资的一般水平?23(1)若这20名学生的平均分是84分,求x和y的值.(2)这20名学生的本次测验成绩的众数和中位数分别是多少?24.有三面小旗,分别为红、黄、蓝三种颜色.(1)把三面小旗按不同顺序排列,共有多少种不同排法?把它们排列出来.(2)如果把小旗从左至右排列,红色小旗排在最左端的概率是多少?25.中小学生的视力状况受到社会的关注,某市有关部门对全市4•万名初中生的视力状况进行了一次抽样调查,统计所得到的有关数据绘制成频率分布直方图,如图10-2,从左至右五个小组的频率之比依次是2:4:9:7:3,第五小组的频率是30. (1)本次调查共抽测了多少名学生?(2)本次调查抽测的数据的中位数应在哪个小组?说明理由.(3)如果视力在4.9~5.1(包括4.9、5.1)均属正常,那么全市初中生视力正常约有多少人?频率组距视力5.455.154.854.554.253.95答案一、选择题1.B 2.D 3.C 4.A 5.C 6.B 7.D 8.A 9.D 10.C 二、填空题11.扇形 12.72° 13.120 14.频率分布 15.34 16.1817.2.5 18.4s 2 三、解答题19.解:(1)8. (2)众数为2,平均数为3.5. 20.解:设计略,中奖概率为111112642++=. 21.解:(1)梨树25%,苹果树50%,葡萄树12.5%,桃树12.5%. (2)梨树90°,苹果树180°,葡萄树45°,桃树45°.(3)图略. 22.解:(1)平均工资为810元,中位数为450. (2)中位数.(3)445,能反映员工工资的一般水平. 23.解:(1)由题意知 12,80901070,x y x y +=⎧⎨+=⎩ 解得1,11.x y =⎧⎨=⎩(2)众数为90分,中位数为90分.24.解:(1)共有6种不同排法,分别为红黄蓝、红蓝黄、黄红蓝、黄蓝红、•蓝红黄、蓝黄红.(2)13. 25.解:(1)设5个小组的频率依次为2x ,4x ,9x ,7x ,3x ,则2x+4x+9x+7x+3x=1,解得x=125.30÷325=250(人).(2)第三小组,理由略.(3)4×725=1.12万人.。
中考数学总复习:统计与概率
中考数学总复习:统计与概率统计与概率是中学数学中的一大重要内容,也是中考数学中出现频率较高的考点之一。
本文将从统计和概率两个方面进行和复习,以帮助同学们系统地回顾和巩固相关知识点。
统计一、数据的整理和统计学中的第一步是对所给的数据进行整理和,常见的方法有以下几种:1.频数表:将数据按照取值的不同进行分类,并统计每个类别中数据出现的频数。
示例: | 数据 | 频数 | | —- | —- | | 2 | 4 | | 3 | 6 | | 4 | 8 | | 5 | 5 |2.频率表:在频数表的基础上,计算每个类别的频率,即频数与样本容量的比值。
3.线性图:可用于展示数据的分布特征,横坐标表示数据的取值,纵坐标表示频数或频率。
二、代表性指标代表性指标是对数据集中趋势或平均水平进行衡量的数值,常见的代表性指标有以下几种:1.平均数:在一组数据中,所有数值的和除以数据的个数。
示例:给定一组数据:4, 5, 6, 7, 8,求平均数。
平均数 = (4 + 5 + 6 + 7 + 8) / 5 = 30 / 5 = 62.中位数:将一组数据从小到大排列,位于中间位置的数值。
示例:给定一组数据:3, 5, 1, 9, 2,求中位数。
排序后的数据:1, 2, 3, 5, 9 中位数为33.众数:一组数据中出现频率最高的数值。
三、概率概率是研究随机事件发生可能性的数学分支。
以下是概率计算中常用的一些基本概念和方法:1.样本空间:随机试验的所有可能结果组成的集合。
2.事件:样本空间中的一个子集。
3.概率:事件发生的可能性大小,范围在0到1之间。
4.加法法则:对于两个互斥事件 A 和 B,它们同时发生的概率等于各自概率的和。
示例:P(A ∪ B) = P(A) + P(B)5.乘法法则:对于独立事件 A 和 B,它们同时发生的概率等于各自概率的乘积。
示例:P(A ∩ B) = P(A) × P(B)以上仅为统计与概率的部分内容,同学们在备考中需结合教材和试题进行全面复习。
统计与概率中考复习
统计与概率
统计
调查方式: 普查、抽样调查
数据的收集 总体、个体、样 相关概念: 本、样本容量、 频数、频率 条形统计图
统计
数据的整理描述
折线统计图 扇形统计图 频数分布直方图 频数分布表
数据的分析
集中趋势:平均数、中位数、众数 离散程度: 方差
Байду номын сангаас计
一、调查与抽样调查
1、对全体对象进行的调查叫做 全面调查(普查) 。 __________________ 2、从被考察的对象中抽出一部分对象进行 抽样调查 。 考察的方式叫__________ 总体 3、所要考察的全体对象叫做________ 。 其中的每一个考察对象叫做________ 个体 。 从总体中所抽取的一部分个体叫做总体的 样本 一个________ 。 样本容量 。 样本中个体的数目叫做__________
统计
五、数据的集中趋势与离散程度
4、众数:在一组数据中,出现次数最多 的数叫做这组数据的众数。 众数可能不止一个。 10名工人,某天生产同一零件,生产达 到件数是:15,17,14,10,15,19, 17,16,14,12,则这一组数据的众数 14,15,17 。 是__________
统计
五、数据的集中趋势与离散程度
m P(A)= n
概率
四、列举结果的方法
1、当试验涉及多个因素或多个步骤时, 可借助树状图或列表法帮助我们列举出 所有可能结果。 2、当试验涉及两个因素时,用树状图和 列表法均可,若结果较多,宜采用列表 法。 3、当试验要经过三边或更多步完成时, 宜采用树状图法。
x 表示, 就是这组数据的平均数,用_____
即:
1 x= n
中考数学高频考点《统计与概率》专题训练-带答案
中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。
中考概率和统计知识点总结
中考概率和统计知识点总结一、概率的基本概念1.实验、随机现象和样本空间2.事件和事件的关系(包括互斥事件、对立事件等)3.概率的定义及其性质4.等可能概型二、概率的运算与应用1.概率的加法法则2.概率的乘法法则3.条件概率4.全概率公式和贝叶斯公式5.区间估计三、统计的基本概念1.数据的收集和整理2.数据的组织和展示(包括频数分布表、频数分布直方图等)3.平均数、中位数、众数等常用统计量的计算与应用4.极差、四分位数、标准差等常用离散程度的计算与应用四、统计的运算与应用1.抽样调查和总体推断2.关联图与线性回归线的绘制与分析3.相关系数与相关性分析4.统计问题的解决思路和方法五、典型例题解析通过分析和解答一些典型的例题,总结和归纳其中的解题思路和方法,帮助学生掌握应用概率和统计知识解决实际问题的能力。
其中,概率的基本概念是理解概率的基础。
实验、随机现象和样本空间是研究概率问题的起点,通过定义事件和事件的关系可以帮助学生理解事件的概率计算。
概率的定义及性质是概率题目的出发点,通过等可能概型的学习可以对概率有更深入的理解。
概率的运算与应用是概率题目的核心内容。
概率的加法法则和乘法法则是计算复杂概率事件的基本工具,条件概率是解决复杂概率问题的重要手段。
全概率公式和贝叶斯公式是处理复杂问题的常用公式。
区间估计是概率应用的重要方法,通过样本估计可以对总体进行推断。
统计的运算与应用主要包括抽样调查和总体推断、关联图与线性回归线的绘制与分析、相关系数与相关性分析等内容。
抽样调查和总体推断是通过样本对总体进行估计的方法,关联图和线性回归线可以帮助学生分析变量之间的关系,相关系数的计算和分析可以帮助学生评价相关性的强度和方向。
最后,通过解析典型例题可以帮助学生掌握概率和统计知识的解题思路和方法。
通过分析例题,可以发现一些常见的解题方法和技巧,帮助学生在考试中更好地应对各类概率和统计题目。
综上所述,中考概率和统计知识点主要包括概率的基本概念、概率的运算与应用、统计的基本概念、统计的运算与应用以及典型例题解析等内容。
中考统计与概率知识点大全
中考统计与概率知识点大全一、统计1.调查与数据收集-掌握调查的目的,懂得合理选取样本。
-掌握使用各种调查方法,如问卷调查、抽样调查等。
-熟练掌握数值资料和非数值资料的调查和收集方法。
2.数据整理与归纳-掌握清理数据的方法,如查漏补缺、整理排序等。
-能够使用表格、图表等工具整理数据。
-能够对数据进行分类、分组,运用逐次求和法进行观察和总结。
3.数据的表示与分析-掌握如何使用折线图、柱状图、饼图等不同形式的图表展示数据。
-能够根据图表进行数据分析,提取有效信息。
-能够通过数据分析,进行简单的预测和推测。
4.数据的描述统计-掌握数据的中心位置度量,如算术平均数、中位数等。
-掌握数据的离散程度度量,如极差、方差等。
-掌握数据的分布情况度量,如频率分布、频率分布直方图等。
5.数据的应用-能够运用所学知识解决实际问题,如调查数据的分析、市场需求的预测等。
-能够使用计算机软件辅助数据处理和分析。
二、概率1.随机事件与概率-掌握随机事件的概念,了解样本空间和事件的关系。
-掌握概率的定义和计算方法。
-能够根据随机现象的规律性求解概率。
2.集合与概率-掌握集合的基本概念和基本运算。
-掌握集合与概率的关系,能够根据集合的运算求解概率。
3.概率计算的方法-掌握事件的互斥与独立性质,能够根据互斥与独立求解概率。
-掌握事件的和、积和差、和事件的概率计算方法。
4.条件概率与事件的独立性-掌握条件概率的定义和计算方法。
-掌握事件的独立性概念和判定方法。
5.事件间的关系与扩展-掌握事件的包含与相等关系,能够根据事件的关系求解概率。
-了解事件的理论计算方法,如贝叶斯定理、全概率公式等。
-能够应用概率知识解决实际问题,如抽奖问题、生日问题等。
总结:。
2025年武汉市中考数学一轮复习:统计与概率(附答案解析)
2025年武汉市中考数学一轮复习:统计与概率
一.选择题(共10小题)
1.“367个同学参加一个集会,他们中至少有两个同学的生日是同月同日”这个事件是()A.确定性事件B.必然事件
C.随机事件D.不可能事件
2.掷一枚质地均匀的硬币2024次,下列说法正确的是()
A.不可能1000次正面朝上
B.不可能2024次正面朝上
C.必有1000次正面朝上
D.可能2024次正面朝上
3.要调查下列两个问题:(1)了解班级同学中哪个月份出生的人数最多;(2)了解全市七年级学生早餐是否有喝牛奶的习惯.这两个问题分别采用什么调查方式更合适()A.全面调查,全面调查B.抽样调查,抽样调查
C.抽样调查,全面调查D.全面调查,抽样调查
4.华为手机锁屏密码是6位数,若密码的前5位数字已经知道,则一次解锁该手机密码的概率是()
A.12B.110C.1100D.11000
5.下列调查中,最适合采用全面调查(普查)的是()
A.调查全国中小学生对第二次太空授课的满意度
B.调查全国人民,掌握新冠防疫知识情况
C.了解某类型医用口罩的质量
D.检查神舟飞船十三号的各零部件
6.下列事件为必然事件的是()
A.张老师驾车到达长江大桥红绿灯路口时遇到绿灯
B.九年级数学特长小组的13名同学中有两个同学在同一月过生日
C.大概率事件
D.抛掷一枚硬币出现正面朝上
7.第十九届亚运会在中国杭州举行,某学校想了解本校学生关注亚运会情况,随机抽取了10个班进行调查,班上学生关注过亚运会人数是16,18,35,20,20,30,10,24,32,
第1页(共22页)。
中考复习初中数学概率与统计复习重点整理
中考复习初中数学概率与统计复习重点整理概率与统计是初中数学的一个重要分支,也是中考数学考试中的一大重点内容。
复习概率与统计不仅要熟悉基本概念和公式,还要能够灵活运用,解决实际问题。
下面是中考复习初中数学概率与统计的重点内容整理。
一、概率1. 基本概率公式基本概率公式为:P(A) = 事件A的可能性/总的可能性其中,事件A的可能性是指事件A发生的次数或数目,总的可能性是指所有可能事件发生的次数或数目。
2. 事件间的关系- 互斥事件:两个事件不能同时发生。
- 互逆事件:事件A发生的概率与事件A不发生的概率之和为1。
- 独立事件:事件A的发生与事件B的发生没有关系。
3. 概率的应用- 抽样:从一大群体中取出一小部分进行调查,通过样本推断总体特征。
- 排列与组合:计算不同元素的排列和组合个数。
- 条件概率:在已知其他事件发生的条件下,某个事件发生的概率。
二、统计1. 统计调查统计调查是通过对一定数量的个体进行观察和测量,并对结果进行整理与分析,得出总体特征的方法。
2. 数据的收集与整理- 原始数据:未经处理的数据。
- 频数与频率:频数是指每个数值出现的次数,频率是指频数与总数的比值。
- 统计表与统计图:用于展示统计数据的表格和图形。
3. 数据的分析与应用- 平均数:一组数的算术平均值,用于表现数据的集中趋势。
- 中位数:将一组数据从小到大排列,位于中间的数据。
- 众数:出现频率最高的数值。
- 极差:一组数的最大值与最小值的差别。
4. 直方图与折线图- 直方图:用于表示连续数据的统计图,横轴表示分组区间,纵轴表示频率或频数。
- 折线图:用于表示离散数据的统计图,横轴表示数据类别,纵轴表示频率或频数。
总结:中考复习初中数学概率与统计重点内容主要包括概率的基本概念与公式、事件间的关系、概率的应用,以及统计的统计调查、数据的收集与整理、数据的分析与应用,以及直方图与折线图的应用。
熟练掌握这些内容,能够解决与概率与统计相关的实际问题,对应试有很大帮助。
(完整)统计和概率中考复习
统计和概率中考复习统计与概率是初中数学的四个学习领域之一,这部分知识在人们的生活实践中有着广泛的应用,在近年来中考所占比例约为10%.初中阶段对该部分知识的学习分散在格策数学书中。
一、考试说明及要求二、考点及题型分析考点1、“两查”即普查和抽样调查考点2、"双频"即频数和频率考点3、"三数"即平均数、众数、中位数考点4、“三差"即极差、方差、标准差考点5、“五图”即条形统计图、扇形统计图、折线统计图频数分布直方图,和频数分布折线图考点6、三事件即不可能事件、必然事件、和随机事件考点7、两率即频率和概率考点8、一计算即概率的计算三、题型分析1、对普查、抽样调查、样本的选择等统计的基本问题进行考查(1)下列调查工作需采用普查方式的是【】A。
环保部门对淮河某段水域的水污染情况的调查B.电视台对正在播出的某电视节目收视率的调查C.质检部门对各厂家生产的电池使用寿命的调查D。
企业在给职工做工作服前进行尺寸大小的调查(2)要了解一个城市的气温变化情况,下列观测方法最可靠的一种方法是【】A.一年中随机选中20天进行观测B.一年中随机选中一个月进行连续观测C.一年四季各随机选中一个月进行连续观测D.一年四季各随机选中一个星期进行连续观测2。
对反映集中程度和反映离散程度的统计量进行考查,强调对它们的理解而不只是简单记忆我省某市2013年4月1日至7日每天的降水概率如下表:则这七天降水概率的众数和中位数分别为A.30%,30%B.10%,30%C。
30%,10% D.10%,40%如图是某市5月1日至5月7日每天最高、最低气温的折线统计图,在这7天中,日温差最大的一天是A。
5月1日 B。
5月2日 C. 5月3日 D. 5月5日将我省某日11个市、区的最高气温统计如下:该天这11个市、区最高气温的平均数和众数分别是【07贵州贵阳】如图是我市甲乙两地5月下旬 日平均气温统计图,则甲乙两地这10天日平均气温的方差的大小为S 甲2 S 乙2.1 2 3 4 5 6 7 8 9 10已知甲、乙两组数据的平均数都是5,甲组数据的方差为 ,乙组数据的方差为 ,则 【 】A.甲组数据比乙组数据的波动大 B.乙组数据比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大D.甲乙两组数据的波动大小不能比较3。
中考重点统计与概率
中考重点统计与概率统计与概率是中学数学中重要的考点之一,也是中考必考的内容之一。
学好统计与概率,不仅能够帮助我们理解和分析数据,还可以培养我们的逻辑思维和问题解决能力。
下面就让我们一起来了解中考重点统计与概率的相关知识吧。
一、统计统计是研究数据收集、整理、分析和解释的一门学科。
在统计中,我们要学会如何收集数据、如何描述数据以及如何对数据进行分析和解释。
1. 数据的收集和整理数据的收集是统计的基础,我们可以通过观察、调查、实验等方式来收集数据。
在收集到数据之后,我们需要对数据进行整理和汇总,以便于后续的分析。
2. 数据的描述数据的描述可以通过表格、图表等形式来展示。
常见的数据描述方式有频数分布表、直方图、折线图等。
通过对数据的描述,我们可以更直观地了解数据的特点和分布情况。
3. 数据的分析和解释数据的分析是统计中的重要环节,通过分析数据,我们可以得出结论,揭示数据背后的规律。
在数据分析过程中,我们可以运用一些统计方法,如均值、中位数、众数等,来对数据进行分析和解释。
二、概率概率是研究随机事件发生的可能性的一门学科。
在生活中,我们经常会遇到一些不确定性的事件,概率可以帮助我们判断和预测这些事件发生的可能性。
1. 随机事件与样本空间随机事件是指在一次试验中可能出现的结果,样本空间是指所有可能结果的集合。
通过对随机事件和样本空间的研究,我们可以计算出事件发生的概率。
2. 概率的计算和性质概率的计算可以通过频率和几何概率两种方法来进行。
频率概率是通过重复试验来计算,几何概率是通过几何模型来计算。
概率具有加法法则、乘法法则等性质,这些性质可以帮助我们计算复杂事件的概率。
3. 事件的互斥与独立事件的互斥是指两个事件不能同时发生,事件的独立是指一个事件的发生不受另一个事件的影响。
通过对事件的互斥与独立的研究,我们可以进一步计算出复合事件的概率。
统计与概率是中考数学中较为重要的考点,除了掌握相关的概念和方法外,同学们还需要通过大量的练习来提高自己的应用能力。
2024年初中数学统计与概率专项训练
2024年初中数学统计与概率专项训练在初中数学的学习中,统计与概率是一个重要的组成部分。
它不仅能够帮助我们更好地理解和处理数据,还能培养我们的逻辑思维和分析问题的能力。
对于即将迎来 2024 年中考的同学们来说,进行专项训练是提高这部分知识掌握程度的关键。
首先,我们来了解一下统计的基本概念。
统计主要包括数据的收集、整理、描述和分析。
数据的收集可以通过调查、实验等方式进行。
比如,我们想了解班级同学的身高情况,就可以通过测量每个同学的身高来收集数据。
数据的整理则是将收集到的数据进行分类、排序等操作,使其更有条理。
比如,将同学们的身高按照从矮到高的顺序排列。
描述数据常用的方法有统计图和统计表。
统计图包括条形统计图、折线统计图和扇形统计图。
条形统计图能清楚地反映出各种数据的数量多少;折线统计图可以直观地展示数据的变化趋势;扇形统计图则能很好地呈现各部分在总体中所占的比例。
例如,要展示一个班级同学不同学科成绩的分布情况,使用条形统计图就能清晰地看出每个学科的成绩高低。
如果要观察某个同学一段时间内成绩的起伏变化,折线统计图就是最佳选择。
而想了解班级同学在各种兴趣爱好上的占比,扇形统计图会更合适。
在统计分析中,我们常常要计算一些统计量,比如平均数、中位数和众数。
平均数是所有数据的总和除以数据的个数,它能反映数据的平均水平。
中位数是将一组数据按照从小到大或从大到小的顺序排列后,位于中间位置的数,如果数据个数是奇数,中位数就是中间的那个数;如果数据个数是偶数,中位数则是中间两个数的平均值。
众数是一组数据中出现次数最多的数。
比如说,有一组数据:12、15、18、15、20、15、19,那么这组数据的平均数是(12 + 15 + 18 + 15 + 20 + 15 + 19)÷ 7 = 16。
中位数是 15,因为将这组数据从小到大排列为 12、15、15、15、18、19、20,中间的数是 15。
众数也是 15,因为 15 出现的次数最多。
2024年中考数学考点必备知识必备14统计与概率(原卷版)
知识必备14统计与概率易错点1.对统计相关概念的理解不当导致出错.【例1】今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有().A.4个B.3个C.2个D.1个易错点2.涉及有关统计量的计算问题,因计算方法不当导致出错.【例2】中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是()A.6,7B.7,7C.7,6D.6,6易错点3.求加权平均数失误.【例3】某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:时间(小时)4567人数1020155则这50名学生一周的平均课外阅读时间是小时.易错点4.统计图的综合使用时方法不当导致出错.【例4】一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.易错点5.在随机试验中,“一次取两个球”与“分两次各取一个球”,其结果一样吗?【例5】袋中装有3个红球和1个白球,它们除颜色外都相同.随机从中摸出两球,两球都是红球的概率为.易错点6.如何正确理解“频率”与“概率”之间关系呢?【例6】某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是().A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是4易错点7.公平性的判断【例7】小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.一.全面调查与抽样调查(共1小题)1.(2023•大庆)为了调查某品牌护眼灯的使用寿命,比较适合的调查方式是(填“普查”或“抽样调查”).二.总体、个体、样本、样本容量(共1小题)2.(2023•聊城)4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A.1500名师生的国家安全知识掌握情况B.150C.从中抽取的150名师生的国家安全知识掌握情况D.从中抽取的150名师生三.用样本估计总体(共3小题)3.(2023•乐山)乐山是一座著名的旅游城市,有着丰富的文旅资源.某校准备组织初一年级500名学生进行研学旅行活动,政教处周老师随机抽取了其中50名同学进行研学目的地意向调查,并将调查结果制成如图统计图,如图所示.估计初一年级愿意去“沫若故居”的学生人数为()A.100B.150C.200D.4004.(2023•荆州)某校为了解学生对A,B,C,D四类运动的参与情况,随机调查了本校80名学生,让他们从中选择参与最多的一类,得到对应的人数分别是30,20,18,12.若该校有800名学生,则估计有人参与A类运动最多.5.(2023•云南)调查主题某公司员工的旅游需求调查人员某中学数学兴趣小组调查方法抽样调查背景介绍某公司计划组织员工前往5个国家全域旅游示范区(以下简称示范区)中的1个自费旅游.这5个示范区为:A.保山市腾冲市;B.昆明市石林彝族自治县;C.红河哈尼族彝族自治州弥勒市;D.大理白族自治州大理市;E.丽江市古城区.某中学数学兴趣小组针对该公司员工的意向目的地开展抽样调查,并为该公司出具了调查报告(注:每位被抽样调查的员工选择且只选择1个意向前往的示范区).报告内容请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.四.频数与频率(共1小题)6.(2023•盐城)在英文句子“Happy Teachers Day !”中,字母“a ”出现的频数为.五.频数(率)分布表(共1小题)7.(2023•北京)某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:使用寿命1000x 10001600x 16002200x 22002800x 2800x 灯泡只数51012176根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为只.六.频数(率)分布直方图(共4小题)8.(2023•宁夏)劳动委员统计了某周全班同学的家庭劳动次数x (单位:次),按劳动次数分为4组:03x ,36x ,69x ,912x ,绘制成如图所示的频数分布直方图.从中任选一名同学,则该同学这周家庭劳动次数不足6次的概率是()A .0.6B .0.5C .0.4D .0.329.(2023•温州)某校学生“亚运知识”竞赛成绩的频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩在80分及以上的学生有人.10.(2023•襄阳)三月是文明礼貌月,我市某校以“知文明礼仪,做文明少年”为主题开展了一系列活动,并在活动后期对七、八年级学生进行了文明礼仪知识测试,测试结果显示所有学生成绩都不低于75分(满分100分).【收集数据】随机从七、八年级各抽取50名学生的测试成绩,进行整理和分析(成绩得分都是整数).【整理数据】将抽取的两个年级的成绩进行整理(用x 表示成绩,分成五组:.7580A x ,.8085B x ,.8590C x ,.9095D x ,.95100)E x .①八年级学生成绩在D 组的具体数据是:91,92,94,94,94,94,94.②将八年级的样本数据整理并绘制成不完整的频数分布直方图(如图):【分析数据】两个年级样本数据的平均数、中位数、众数、方差如下表:年级平均数中位数众数方差七年级929210057.4八年级92.6m10049.2根据以上信息,解答下列问题:(1)本次抽取八年级学生的样本容量是;(2)频数分布直方图中,C 组的频数是;(3)本次抽取八年级学生成绩的中位数m ;(4)分析两个年级样本数据的对比表,你认为年级的学生测试成绩较整齐(填“七”或“八”);(5)若八年级有400名学生参加了此次测试,估计此次参加测试的学生中,该年级成绩不低于95分的学生有人.11.(2023•呼和浩特)3月21日是国际森林日.某中学为了推动学生探索森林文化,进行自然教育,开展了“森林——地球之肺”相关知识的测试活动.测试结束后随机抽取了部分学生成绩进行统计,按成绩分成A,B,C,D,E五个等级,并绘制了如图不完整的统计图.请结合统计图,解答下列问题:等级成绩/x分xE5060xD6070xC7080xB8090xA90100(1)本次调查一共随机抽取了名学生的成绩,频数分布直方图中m ;补全学生成绩频数分布直方图;(2)所抽取学生成绩的中位数落在等级;(3)若成绩在60分及60分以上为合格,全校共有920名学生,估计成绩合格的学生有多少名?七.统计表(共1小题)12.(2023•攀枝花)每次监测考试完后,老师要对每道试题难度作分析.已知:题目难度系数 该题参考人数得分的平均分 该题的满分.上期全市八年级期末质量监测,有11623名学生参考.数学选择题共设置了12道单选题,每题5分.最后一道单选题的难度系数约为0.34,学生答题情况统计如表:选项留空多选A B C D人数11224209393420571390占参考人数比(%)0.090.1936.2133.8517.711.96根据数据分析,可以判断本次监测数学最后一道单选题的正确答案应为()A.A B.B C.C D.D八.扇形统计图(共3小题)13.(2023•大连)2023年5月18日,《大连日报》公布《下一站,去博物馆!》问卷调查结果.本次调查共收回3666份有效问卷,其中将“您去博物馆最喜欢看什么?”这一问题的调查数据制成扇形统计图,如图所示.下列说法错误的是()A.最喜欢看“文物展品”的人数最多B.最喜欢看“文创产品”的人数占被调查人数的14.3%C.最喜欢看“布展设计”的人数超过500人D.统计图中“特效体验及其他”对应的圆心角是23.7614.(2023•苏州)小惠同学根据某市统计局发布的2023年第一季度高新技术产业产值数据,绘制了如图所示的扇形统计图,则“新材料”所对应扇形的圆心角度数是 .15.(2023•宿迁)为了解某校九年级学生周末活动情况,随机抽取了部分学生进行调查,并绘制了如图所示的两幅不完整的统计表和统计图.学生参加周末活动人数统计表活动名称人数A.课外阅读40B.社会实践48C.家务劳动mD.户外运动nE.其它活动26请结合图表中提供的信息,解答下列问题:(1)m ,n ;(2)扇形统计图中A对应的圆心角是度;(3)若该校九年级有800名学生,请估算该校九年级周末参加家务劳动的人数.九.条形统计图(共4小题)16.(2023•南充)某女鞋专卖店在一周内销售了某种女鞋60双,对这批鞋子尺码及销量进行统计,得到条形统计图(如图).根据图中信息,建议下次进货量最多的女鞋尺码是()A.22cm B.22.5cm C.23cm D.23.5cm17.(2023•广州)2023年5月30日是第7个全国科技工作者日,某中学举行了科普知识手抄报评比活动,共有100件作品获得一、二、三等奖和优胜奖,根据获奖结果绘制如图所示的条形图,则a 的值为.若将获奖作品按四个等级所占比例绘制成扇形统计图,则“一等奖”对应扇形的圆心角度数为.18.(2023•德州)某校劳动实践小组为了解全校1800名学生参与家务劳动的情况,随机抽取部分学生进行问卷调查,形成了如下调查报告:学校学生参与家务劳动情况调查报告调查主题 学校学生参与家务劳动情况调查方式抽样调查调查对象 学校学生数据的收集、整理与描述第一项你日常家务劳动的参与程度是(单选)A .天天参与;B .经常参与;C .偶尔参与;D .几乎不参与.第二项你日常参与的家务劳动项目是(可多选)E .扫地抹桌;F .厨房帮厨;G .整理房间;H .洗晒衣服.第三项调查结论请根据以上调查报告,解答下列问题:(1)参与本次抽样调查的学生有人;(2)若将上述报告第一项的条形统计图转化为相对应的扇形统计图,求扇形统计图中选项“天天参与”对应扇形的圆心角度数;(3)估计该校1800名学生中,参与家务劳动项目为“整理房间”的人数;(4)如果你是该校学生,为鼓励同学们更加积极地参与家务劳动,请你面向全体同学写出一条倡议.19.(2023•威海)某校德育处开展专项安全教育活动前,在全校范围内随机抽取了40名学生进行安全知识测试,测试结果如表1所示(每题1分,共10道题).专项安全教育活动后,再次在全校范围内随机抽取40名学生进行测试,根据测试数据制作了如图1、图2所示的统计图(尚不完整).表1分数/分人数/人2456687881292设定8分及以上为合格,分析两次测试结果得到表2.表2平均数/分众数/分中位数/分合格率第一次 6.4a735%第二次b89c请根据图表中的信息,解答下列问题:(1)将图2中的统计图补充完整,并直接写出a,b,c的值;(2)若全校学生以1200人计算,估计专项安全教育活动后达到合格水平的学生人数;(3)从多角度分析本次专项安全教育活动的效果.一十.折线统计图(共4小题)20.(2023•长沙)长沙市某一周内每日最高气温情况如图所示,下列说法中,错误的是()A.这周最高气温是32CB.这组数据的中位数是30C.这组数据的众数是24D.周四与周五的最高气温相差8C21.(2023•盐城)盐城市大丰国家级麋鹿自然保护区在过去的37年间,将濒临灭绝的39头世界珍稀野生动物麋鹿发展到如今的7033头.某校生物兴趣小组去实地调查,绘制出如下统计图.(注:麋鹿总头数 人工驯养头数 野生头数)解答下列问题:(1)①在扇形统计图中,哺乳类所在扇形的圆心角度数为 ;②在折线统计图中,近6年野生麋鹿头数的中位数为头.(2)填表:(3)结合以上的统计和计算,谈谈你对该保护区的建议或想法.22.(2023•吉林)为了解20182022 年吉林省粮食总产量及其增长速度的情况,王翔同学查阅相关资料,整理数据并绘制了如下统计图:注:增长速度100%本年粮食总产量一去年粮食总产量去年粮食总产量.根据此统计图,回答下列问题:(1)2021年全省粮食总产量比2019年全省粮食总产量多万吨.(2)20182022年全省粮食总产量的中位数是.(3)王翔同学根据增长速度计算方法得出2017年吉林省粮食总产量约为4154.0万吨.结合所得数据及图中信息对下列说法进行判断,正确的画“ ”,错误的画“ ”.①20182022年全省粮食总产量增长速度最快的年份为2019年,因此这5年中,2019年全省粮食总产量最高.②如果将20182022年全省粮食总产量的中位数记为a万吨,20172022年全省粮食总产量的中位数记为b万吨,那么a b.23.(2023•河南)蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a.配送速度得分(满分10分):甲:66777899910乙:67788889910b.服务质量得分统计图(满分10分):?c.配送速度和服务质量得分统计表:项目??统计量快递公司配送速度得分服务质量得分平均数中位数平均数方差甲7.8m72s甲乙8872s乙根据以上信息,回答下列问题:(1)表格中的m ;2S甲2S乙(填“ ”“ ”或“ ”);(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由;(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?一十一.统计图的选择(共1小题)24.(2023•扬州)空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图一十二.算术平均数(共1小题)25.(2023•长沙)睡眠管理作为“五项管理”中重要的内容之一,也是学校教育重点关注的内容.某老师了解到班上某位学生的5天睡眠时间(单位:小时)如下:10,9,10,8,8,则该学生这5天的平均睡眠时间是小时.一十三.加权平均数(共3小题)26.(2023•湘潭)某校组织青年教师教学竞赛活动,包含教学设计和现场教学展示两个方面.其中教学设计占20%,现场展示占80%.某参赛教师的教学设计90分,现场展示95分,则她的最后得分为()A.95分B.94分C.92.5分D.91分27.(2023•邵阳)下表是小红参加一次“阳光体育”活动比赛的得分情况:项目跑步花样跳绳跳绳得分908070评总分时,按跑步占50%,花样跳绳占30%,跳绳占20%考评,则小红的最终得分为.28.(2023•福建)某公司欲招聘一名职员.对甲、乙、丙三名应聘者进行了综合知识、工作经验、语言表达等三方面的测试,他们的各项成绩如下表所示:综合知识工作经验语言表达项目应聘者甲758080乙858070丙707870如果将每位应聘者的综合知识、工作经验、语言表达的成绩按5:2:3的比例计算其总成绩,并录用总成绩最高的应聘者,则被录用的是.一十四.中位数(共1小题)29.(2023•辽宁)在一次中学生田径运动会上,参加男子跳高的10名运动员的成绩如下表所示:成绩/m 1.40 1.50 1.60 1.70 1.80人数/名13231则这10名运动员成绩的中位数是()A .1.50mB .1.55mC .1.60mD .1.65m一十五.众数(共1小题)30.(2023•黑龙江)已知一组数据1,0,3 ,5,x ,2,3 的平均数是1,则这组数据的众数是()A .3B .5C .3 和5D .1和3一十六.极差(共1小题)31.(2023•青岛)小颖参加“歌唱祖国”歌咏比赛,六位评委对小颖的打分(单位:分)如下:7,8,7,9,8,10.这六个分数的极差是分.一十七.方差(共3小题)32.(2023•广西)甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:22.1S 甲,23.5S 乙,29S 丙,20.7S 丁,则成绩最稳定的是()A .甲B .乙C .丙D .丁33.(2023•眉山)已知一组数据为2,3,4,5,6,则该组数据的方差为()A .2B .4C .6D .1034.(2023•永州)甲、乙两队学生参加学校拉拉队选拔,两队队员的平均身高均为1.72m ,甲队队员的身高的方差为1.2,乙队队员身高的方差为5.6.若要求拉拉队身高比较整齐,应选择队较好.一十八.标准差(共1小题)35.(2023•大庆)下列说法正确的是()A .一个函数是一次函数就一定是正比例函数B .有一组对角相等的四边形一定是平行四边形C .两条直角边对应相等的两个直角三角形一定全等D .一组数据的方差一定大于标准差一十九.统计量的选择(共1小题)36.(2023•荆州)为评估一种水稻的种植效果,选了10块地作试验田.这10块地的亩产量(单位:)kg 分别为1x ,2x , ,10x ,下面给出的统计量中可以用来评估这种水稻亩产量稳定程度的是()A .这组数据的平均数B .这组数据的方差C .这组数据的众数D .这组数据的中位数二十.随机事件(共3小题)37.(2023•武汉)掷两枚质地均匀的骰子,下列事件是随机事件的是() A.点数的和为1B.点数的和为6C.点数的和大于12D.点数的和小于13 38.(2023•徐州)下列事件中的必然事件是()A.地球绕着太阳转B.射击运动员射击一次,命中靶心C.天空出现三个太阳D.经过有交通信号灯的路口,遇到红灯39.(2023•西宁)下列说法正确的是()A.检测“神舟十六号”载人飞船零件的质量,应采用抽样调查B.任意画一个三角形,其外角和是180 是必然事件C.数据4,9,5,7的中位数是6D.甲、乙两组数据的方差分别是20.4s甲,22s乙,则乙组数据比甲组数据稳定二十一.可能性的大小(共1小题)40.(2023•贵州)在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高1个小球,并对小球标记的内容进行介绍,下列叙述正确的是()A.摸出“北斗”小球的可能性最大B.摸出“天眼”小球的可能性最大C.摸出“高铁”小球的可能性最大D.摸出三种小球的可能性相同二十二.概率的意义(共2小题)41.(2023•襄阳)襄阳气象台发布的天气预报显示,明天襄阳某地下雨的可能性是75%,则“明天襄阳某地下雨”这一事件是()A.必然事件B.不可能事件C.随机事件D.确定性事件42.(2023•北京)先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是()A.14B.13C.12D.34二十三.概率公式(共5小题)43.(2023•广东)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为()A.18B.16C.14D.1244.(2023•朝阳)五一期间,商场推出购物有奖活动:如图,一个可以自由转动的转盘被平均分成六份,其中红色1份,黄色2份,绿色3份,转动一次转盘,指针指向红色为一等奖,指向黄色为二等奖,指向绿色为三等奖(指针指向两个扇形的交线时无效,需重新转动转盘).转动转盘一次,获得一等奖的概率为()A.1B.16C.13D.1245.(2023•南充)不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有个.46.(2023•海南)某中学为了了解学生最喜欢的课外活动,以便更好开展课后服务,随机抽取若干名学生进行了问卷调查.调查问卷如下:调查问卷在下列课外活动中,你最喜欢的是()(单选)A.文学B.科技C.艺术D.体育填完后,请将问卷交给教务处.根据统计得到的数据,绘制成下面两幅不完整的统计图.请根据统计图中提供的信息,解答下面的问题:(1)本次调查采用的调查方式为(填写“普查”或“抽样调查”);(2)在这次调查中,抽取的学生一共有人;扇形统计图中n的值为;(3)已知选择“科技”类课外活动的50名学生中有30名男生和20名女生.若从这50名学生中随机抽取1名学生座谈,且每名学生被抽到的可能性相同,则恰好抽到女生的概率是;(4)若该校共有1000名学生参加课外活动,则估计选择“文学”类课外活动的学生有人.47.(2023•黄石)健康医疗大数据蕴藏了丰富的居民健康状况、卫生服务利用等海量信息,是人民健康保障的数据金矿和证据源泉.目前,体质健康测试已成为中学生的必测项目之一.某校某班学生针对该班体质健康测试数据开展调查活动,先收集本班学生八年级的《体质健康标准登记表》,再算出每位学生的最后得分,最后得分记为x ,得到下表:成绩频数频率不及格(059)x 6及格(6074)x 20%良好(7589)x 1840%优秀(90100)x 12(1)请求出该班总人数;(2)该班有三名学生的最后得分分别是68,88,91,将他们的成绩随机填入表格,求恰好得到的表格是的概率;(3)设该班学生的最后得分落在不及格,及格,良好,优秀范围内的平均分分别为a ,b ,c ,d ,若23641275a b c d ,请求出该班全体学生最后得分的平均分,并估计该校八年级学生体质健康状况.二十四.几何概率(共3小题)48.(2023•烟台)如图,在正方形中,阴影部分是以正方形的顶点及其对称中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.将一个小球在该正方形内自由滚动,小球随机地停在正方形内的某一点上.若小球停在阴影部分的概率为1P ,停在空白部分的概率为2P ,则1P 与2P 的大小关系为()A .12P PB .12P PC .12P P D .无法判断49.(2023•攀枝花)如图,在正方形ABCD 中,分别以四个顶点为圆心,以边长的一半为半径画圆弧,若随机向正方形ABCD 内投一粒米(米粒大小忽略不计),则米粒落在图中阴影部分的概率为.50.(2023•辽宁)如图,等边三角形ABC是由9个大小相等的等边三角形构成,随机地往ABC内投一粒米,落在阴影区域的概率为.二十五.列表法与树状图法(共6小题)51.(2023•河南)为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为()A.12B.13C.16D.1952.(2023•山西)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是.53.(2023•内江)某校为落实国家“双减”政策,丰富课后服务内容,为学生开设五类社团活动(要求每人必须参加且只参加一类活动):A.音乐社团;B.体育社团;C.美术社团;D.文学社团;E.电脑编程社团.该校为了解学生对这五类社团活动的喜爱情况,随机抽取部分学生进行了调查统计,并根据调查结果,绘制了如图所示的两幅不完整的统计图.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽样调查:对调查对象的部分进行调查;/总、体:所要考察对象的全体; 个体:总体中每一个考察的对象;样本:从总体中所抽取的一部分个体; 样本容量:样本中个体的数目(不带单位);1平均数:对于n 个数X 1,X 2,|l (,X n ,我们把一(X 1 • X 2 X n )叫做这n 个数的平均数;n中位数:几个数据按大小顺序排列时,处于最中间的一个数据(或是最中间两个数据的平均数)叫做中位数;众数:一组数据中出现次数最多的那个数据;方差:s 2 =丄||(捲-X )2 • (x 2-X )2 •川•(x n -X )2 ,其中n 为样本容量,X 为样本平均数; 标准差:S,即方差的算术平方根;极差:一组数据中最大数据与最小数据的差称为这组数据的极差;会填写频数分布表,会补全频数分布直方图、频数折线图;二、概率的基础知识必然事件:一定条件下必然会发生的事件;2、不确定事件(随机事件):在一定条件下可能发生,也可能不发生的事件;3、概率:某件事情 A 发生的可能性称为这件事情的概率,记为P (A );P (必然事件)=1 , P (不可能事件)=0 , 0v P (不确定事件)v 1;、统计的基础知识1、统计调查的两种基本形式:统计与概率普查:对调查对象的全体进行调查; 2、各基 础 统 计3、频 数 的 分 布 与 应 用频数:将数据分组后落在各小组内的数据个数叫做该小组的频数; 频率:每一小组的频数与样本容量的比值叫做这一小组的频率;★频数和频率的基本关系式:频率频数样本容量各小组频数的总和等于样本容量,各小组频率的总和等于1;扇形统计图:圆表示总体,扇形表示部分,统计图反映部分占总体的百分比,每个扇形的圆心角度数=360° X 该部分占总体的百分比;1、确定事件不可能事件:一定条件下必然不会发生的事件;★概率计算方法:事件A发生的可能结果总数()所有事件可能发生的结果总数运用列举法(常用树状图)计算简单事件发生的概率3、有人预测2017年巴西世界杯足球赛巴西国家队夺冠的概率为70%,对他说法理解正确的是【】A、巴西国家队一定会夺冠 B 、巴西国家队一定不会夺冠C、巴西国家队夺冠的可能性比较大D、巴西国家队夺冠的可能性比较小4、从1〜9这九个自然中任取一个,是2的倍数的概率是【】注:对于两种情况时,需注意第二种情况可能发生的结果总数例:①袋子中有形状、大小相同的红球1是白球的概率;P =-103个,白球2个,取出一个球后再取出一个球,求两个球都②袋子中有形状、大小相同的红球3个,白球2个,取出一个球后放回,再取出一个球,求两个球都是白球的概率;达标练习:一、选择题P =—251、下列事件中是必然事件的是【】A、早晨的太阳一定从东方升起BC、从一定高度落下的图钉,落地后钉尖朝上、打开数学课本时刚好翻到第60页D、今年14岁的小云一定是初中生2、“ a是实数,a>0”这一事件是【】A、必然事件B、不确定事件 C 、不可能事件 D 、随机事件精品文档4精品文档5、小明打算暑假里的某天到上海世博会一日游,上午可以先从台湾馆、香港馆、韩国馆中随机选择一个 馆,下午再从加拿大馆,法国馆。
俄罗斯馆中随机选择一个馆游玩,则小明恰好上午选中台湾馆,下午 选中法国馆这两个场馆的概率是【】A 1C1 -A 、 一B、C936、如图,两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针B 、对冷饮市场上冰淇淋质量情况的调查 D 、对我国首架大型民用直升机各零部件的检查&为了描述我县城区某一天气温变化情况,应选择【】A 、扇形统计图 B、条形统计图C、折现统计图D 、直方图9、为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表 :众数和中位数分别是【】A 、25.5厘米,26厘米B 、26厘米,25.5厘米C 、25.5厘米,25.5厘米D 、26厘米,26厘米 10、某班主任老师为了对学生乱花钱现象进行教育指导,对班里每位同学一周内大约花钱数额进行了统 计,如下表:根据这个统计表可知,该班学生一周花钱数额的众数、平均数是【】A 、15,14B 、18,14C 、25,12D 、1511、 某校体育节有13名同学参加女子百米赛跑,他们的预赛各不相同,取前6名参加决赛。
小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的【 】A 、方差B 、极差C 、中位数D、平均数12、 本学期的五次数学测试中,甲、乙两同学的平均成绩一样,方差分别为 1.2,0.5则下列说法正确的 是【 】A 、乙同学的成绩更稳定B、甲同学的成绩更稳定 C 、甲、乙两位同学的成绩一样稳定 D、不能确定13、 外贸公司要出口一批规格为150g 的苹果,现有两个厂商提供货源,它们的价格相同,苹果的品质也相接近。
质检员分别从甲、乙两厂的产品中随机抽取了 50个苹果称重,并将所得数据处理后,制成如下表格,根据表中信息判断,下列说法错误的是【】所指区域内的数字之和为4的概率是【】1111AB、 —C、D、一234 57、下列调查中, 适宜米用全面调查(普查) 方式的是【 】A 、对全国中学生心理健康现状的调查 C 、对我市市民实施低碳生活情况的调查尺码(厘米) 25 25.5 26 26.5 27 购买量(双)1232218学生花钱数(元)5 10152025 学生人数712 18 103A、本次的调查方式是抽样调查、甲、乙两厂被抽取的苹果的平均质量相同C、被抽取的这100个苹果是本次调查的样本D、甲厂苹果的质量比乙厂苹果的质量波动大14、有长度分别为3cm, 5cm, 7cm, 9cm的四条线段,从中任意取三条线段能够组成三角形的概率是【】A、34 B 、23C 、丄2D 、丄415、某同学午觉醒来发现钟表停了,他打开收音机想听电台整点报时,则他等待的时间不超过15分钟的概率是【】1111A、一 B 、一 C 、一、—434516、已知一组数据:4,-1,5,9,7,6,7,则这组数据的极差是【】A、10 B 、9 C 、8 D、717、某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5,这组数据的中位数为【】A、4 B 、4.5 C 、3 D、218、一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外其他都相同。
从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是【】A、m=3 ,n=5 B 、m=n=4 C 、m+n=4 D 、m+n=819、学生甲和学生乙玩一种游戏,两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“ 1” “2” “ 3” “4”表示。
固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次,在该游戏中乙获胜的概率为【】1 1 3A、 B 、 C 、D4 2 4上一面的点数记为x,掷第二次,将朝上一面的点数记为y,则点(x,y)落在直线y=-x+5上的概率为【】1111A、B、一C、—D、 -18129421、从标号分别为1, 2, 3, 4, 5的5张卡片中,随机抽取1张. 下列事件中,必然事件是【A .标号小于6B.标号大于6c.标- 号是奇数1 D .标号是322、对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图•根据图中信息,这些学生的平均分数是【20、一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数,将骰子抛掷两次,掷第一次,将朝23、2015年5月某日我国部分城市的最高气温统计如下表所示:城市武汉成都北京上海海南南京拉萨深圳气温(C)2727242528282326请问这组数据的平均数是【】A.24B.25C.26D.2724、对于一组统计数据:2, 3, 6, 9, 3, 7, 下列说法错误的是【】A . 众数是3B .中位数是6C.平均数是 5 D . 极差是725、下列事件中是确定事件的是【】A.篮球运动员身高都在2米以上B. 弟弟的体重一定比哥哥的轻D .吸烟有害身体健康C.今年教师节一定是晴天26、爱华中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年)220, 200, 210.这组数据的中位数是【则他们年龄的众数和中位数分别为【图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是【A. 2.25成绩频数扇形统计图B. 2.5C. 2.95D. 3:200, 240,A. 200B. 210C. 220D. 24027、7 (2 )班某兴趣小组有7名成员, 他们的年龄(单位: 岁)分别为: 12, 13, 13, 14, 12, 13, 15,A. 13, 14 B . 14, 13 C. 13, 13.5 D . 13, 1328、希望中学开展以我最喜欢的职业”为主题的调查活动, 通过对学生的随机抽样调查得到一组数据,A .被调查的学生有200人B.被调查的学生中喜欢教师职业的有40人成缰频数条形统计图1分裁C •被调查的学生中喜欢其他职业的占40%D •扇形图中,公务员部分所对应的圆心角为72 °29、某班团支部统计了该班甲、乙、丙、丁四名同学在5月份书香校园”活动中的课外阅读时间,他们平均每天课外阅读时间X与方差s2如下表所示,你认为表现最好的是【】.甲乙丙丁X 1.2 1.5 1.5 1.22 s0.20.30.10.1A •甲B .乙C. 丙 D .丁30、对于•组统计数据:2, 3, 6, 9, 3, 7, 下列说法错误的是【】A .众数是 3B .中位数是6C .平均数是5D .极差是731、某校为了丰富校园文化,举行初中生书法大赛,决赛设置了6个获奖名额,共有II名选手进入决赛,选手决赛得分均不相同•若知道某位选手的决赛得分,要判断他能否获奖,只需知道这11名选手决赛得分的【】A .中位数B.平均数C.众数D.方差32、下列说法正确的是【】A •要了解全市居民对环境的保护意识,采用全面调查的方式B •若甲组数据的方差S 2甲=0.1,乙组数据的方差S 2乙=0.2,则甲组数据比乙组稳定C .随机抛一枚硬币,落地后正面一定朝上D •若某彩票中奖概率为1%',则购买100张彩票就一定会中奖一次33、下列事件中,属于随机事件的是【】A .通常水加热到100OC时沸腾B .测量孝感某天的最低气温,结果为—150OCC 一个袋中装有5个黑球,从中摸出一个是黑球D .篮球队员在罚球线上投篮一次,未投中34、为了了解我市某学校书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于【】A. 50%B. 55%35、四张完全相同的卡片上分别画有平行四边形、菱形、等腰梯形、圆,现从中任意抽取一张,卡片上所画的图形恰好是中心对称图形的概率为【】3 1 1 A.B.1C.D.—424二、填空题1. ________________________________________________________________________________________ 某校九(1)班8名学生的体重(单位:kg )分别是39,40,43,43,43,45,45,46.这组数据的众数是 __________________________2. 某校从参加计算机测试的学生中抽取了60名学生的成绩(40〜100分)进行分析,并将其分成了六段后绘制成如图所示的频数分布直方图(其中70〜80段因故看不清),若60分以上(含60分)为及格,试根据图中信息来估计这次测试的及格率约为 ____________________ .3. 、Lost time is never found again (岁月既往,一去不回).在这句谚语的所有英文字母中,字母“i 出现的频率是 _________ .4.某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自已喜欢的项目,并制成如图所示的扇形统计图.如果该校有 学生约有 __________ 人.5. 某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图, 则这组数据的众数是 _____________ .一 2 6. 已知一组数据X 1, X 2,…,X n 的方差是s ,则新的一组数据ax 1+ 1, ax 2+ 1,…,ax n + 1(a 为非零常数)的方差是 __________________ (用含a 和s 2的代数式表示). (友情提示:s 2[(X [ —X )2 ( X 2 -X )2 ■ ( x n -力2])n7.在植树节当天,某校一个班同学分成 10个小组参加植树造林活动, 10个小组植树的株数见下表:植树株数(株)5 6 7 小组个数343则这10个小组植树株数的方差是 ________________ 三、解答题1.一个口袋中有4个相同的小球,分别与写有字母 A 、B 、C 、D ,随机地抽出一个小球后放回,再随机地 抽出一个小球.国球类7辔田径6][■■1111 ■(1)使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果; (2)求两次抽出的球上字母相同的概率.1 12.已知甲同学手中藏有三张分别标有数字,一,1的卡片,乙同学手中藏有三张分别标有数字1, 3, 224的卡片,卡片外形相同•现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a , b.(1) 请你用树形图或列表法列出所有可能的结果 (2)现制定这样一个游戏规则:若所选出的 a ,b 能使得ax 2 ■ bx - ^0有两个不相等的实数根,则甲 获胜;否则乙获胜•请问这样的游戏规则公平吗?请你用概率知识解释。