有理数的加减法提高测试题

合集下载

专题 有理数的加减运算计算题(50题)(4大题型提分练)(解析版)

专题 有理数的加减运算计算题(50题)(4大题型提分练)(解析版)

七年级上册数学《第2章有理数及其运算》专题有理数加减运算计算题◎有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.①转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.◎有理数的加减混合运算常用的方法技★1、互为相反数的两数相结合★2、符号相同的数相结合★3、同分母的分数相结合★4、相加减得整数的相结合-- -凑整法★5、按加数的类型灵活结合★6、先把分数分离整数后再分组相结合-- -拆项法题型一 有理数的加法计算1.(2023秋•河东区校级月考)计算:(1)27+(﹣13);(2)(﹣19)+(﹣91);(3)(﹣2.4)+2.4;(4)53+(−23). 【分析】根据有理数的加法法则进行解题即可.【解答】解:(1)27+(﹣13)=14;(2)(﹣19)+(﹣91)=﹣110;(3)(﹣2.4)+2.4=0;(4)53+(−23)=1. 【点评】本题考查有理数的加法,掌握加法法则是解题的关键.2.计算:(1)(﹣3)+(﹣9);(2)6+(﹣9);(3)15+(﹣22);(4)0+(−25);(5)12+(﹣4);(6)﹣4.5+(﹣3.5).【分析】根据有理数加法的计算法则逐个进行计算即可.【解答】解:(1)(﹣3)+(﹣9)=﹣(3+9)=﹣12;(2)6+(﹣9)=﹣(9﹣6)=﹣3;(3)15+(﹣22)=﹣(22﹣15)=﹣7;(4)0+(−25)=−25;(5)12+(﹣4)=12﹣4=8;(6)﹣4.5+(﹣3.5)=﹣(4.5+3.5)=﹣8.【点评】本题考查有理数加法,掌握有理数加法的计算法则是正确计算的前提.3.(2023秋•南郑区校级月考)计算:(1)(+7)+(﹣6)+(﹣7);(2)(−32)+(−512)+52+(−712). 【分析】根据有理数的加减计算法则求解即可.【解答】解:(1)原式=7﹣6﹣7=﹣6;(2)原式=(−32)−512+52−712=(−32+52)−(512+712)=1﹣1=0.【点评】本题主要考查了有理数的加减混合计算,熟知相关计算法则是解题的关键.4.计算:(1)15+(﹣19)+18+(﹣12)+(﹣14);(2)2.75+(﹣234)+(+118)+(﹣1457)+(﹣5.125). 【分析】(1)去括号利用,再利用加法的交换律与结合律进行计算即可.(2)去括号利用,再利用加法的交换律与结合律进行计算即可.【解答】解:(1)原式=15﹣19+18﹣12﹣14=(15+18)+(﹣19﹣12﹣14)=33+(﹣45)=﹣12;(2)原式=234−234+118−1457−518 =(234−234)+(118−518)﹣1457 =﹣1857. 【点评】本题主要考查了有理数的加法,掌握运算法则,利用加法的交换律与结合律进行计算是解题关键.5.用合理的方法计算下列各题:(1)103+(−114)+56+(−712);(2)(−12)+(−25)+(+32)+185+395. 【分析】(1)把原式写成去掉括号的形式,分别计算正数和负数的和,即可得到答案;(2)应用加法的交换,结合律,即可计算.【解答】解:(1)103+(−114)+56+(−712) =103+56−114−712=256−206 =56;(2)(−12)+(−25)+(+32)+185+395 =(−12+32)+(−25+185+395)=1+11=12.【点评】本题考查有理数的加法,关键是掌握有理数的加法法则.6.(2023秋•桐柏县校级月考)提升计算:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7;(2)23+(﹣17)+6+(﹣22);(3)(+14)+(+18)+6+(−38)+(−38)+(−6).【分析】(1)根据有理数的加法法则计算即可;(2)根据有理数的加法法则计算即可;(3)根据有理数的加法法则计算即可.【解答】解:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7=[(﹣2.4)+(﹣4.6)]+[(﹣3.7)+5.7]=﹣7+2=﹣5;(2)23+(﹣17)+6+(﹣22)=(23+6)+[(﹣17)+(﹣22)]=29+(﹣39)=﹣10;(3)(+14)+(+18)+6+(−38)+(−38)+(−6)=[(+14)+(+18)+(−38)]+(−38)+[6+(−6)]=0+(−38)+0=−38.【点评】本题考查了有理数的加法,熟练掌握有理数的加法法则是解题的关键. 题型二 有理数的减法计算7.计算:(1)(﹣73)﹣41;(2)37﹣(﹣14);(3)(−13)−190; (4)37−12. 【分析】根据有理数减法法则进行计算即可.【解答】解:(1)原式=﹣73﹣41=﹣114;(2)原式=37+14=51;(3)原式=−3090−190=−3190; (4)原式=614−714=−114.【点评】本题考查有理数的减法,掌握有理数减法法则是解题的关键.8.计算:(1)(﹣14)﹣(+15);(2)(﹣14)﹣(﹣16);(3)(+12)﹣(﹣9);(4)12﹣(+17);(5)0﹣(+52);(6)108﹣(﹣11).【分析】根据有理数的减法法则进行计算即可.【解答】解:(1)原式=﹣14﹣15=﹣29;(2)原式=﹣14+16=2;(3)原式=12+9=21;(4)原式=12﹣17=﹣5;(5)原式=0﹣52=﹣52;(6)原式=108+11=119.【点评】本题考查有理数的减法,掌握有理数的减法法则是解题的关键.9.计算:(1)(﹣34)﹣(+56)﹣(﹣28);(2)(+25)﹣(−293)﹣(+472).【分析】根据有理数的减法法则,把减法化成加法,写成省略加号和的形式,再利用加法运算律进行简便计算即可.【解答】解:(1)原式=(﹣34)+(﹣56)+(+28)=﹣34﹣56+28=﹣90+28=﹣62;(2)原式=(+25)+(+293)+(−472)=25+293−472=25+586−1416=2086−1416=676.【点评】本题主要考查了有理数的减法,解题关键是熟练掌握有理数的加减法则.10.计算下列各题.(1)(5﹣8)﹣2;(2)(3﹣7)﹣(2﹣9);(3)(﹣3)﹣12﹣(﹣4);(4)0﹣(﹣7)﹣4.【分析】根据有理数的减法法则计算即可,有理数减法法则:减去一个数,等于加上这个数的相反数.【解答】解:(1)(5﹣8)﹣2=﹣3+(﹣2)=﹣5;(2)(3﹣7)﹣(2﹣9)=(﹣4)﹣(﹣7)=﹣4+7=3;(3)(﹣3)﹣12﹣(﹣4)=﹣15+4=﹣11;(4)0﹣(﹣7)﹣4=0+7﹣4=3.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.11.计算:(1)﹣30﹣(﹣85);(2)﹣3﹣6﹣(﹣15)﹣(﹣10);(3)23−(−23)−34. 【分析】(1)根据有理数的减法法则计算即可;(2)根据有理数的减法法则计算即可;(3)根据有理数的减法法则计算即可.【解答】解:(1)﹣30﹣(﹣85)=﹣30+85=55;(2)﹣3﹣6﹣(﹣15)﹣(﹣10)=﹣3﹣6+15+10=16;(3)23−(−23)−34 =23+23−34=712.【点评】本题考查了有理数的减法,熟练掌握有理数的减法法则是解题的关键.12.(2023秋•新城区校级月考)计算:0.47﹣4﹣(﹣1.53).【分析】原式根据有理数加减法法则进行计算即可得到答案.【解答】解:0.47﹣4﹣(﹣1.53)=0.47﹣4+1.53=(0.47+1.57)﹣4=2﹣4=﹣2.【点评】本题主要考查了有理数的加减,熟练掌握有理数加减法法则是解答本题的关键.13.(2023秋•皇姑区校级期中)计算:16﹣(﹣12)﹣24﹣(﹣18).【分析】将减法统一成加法,然后再计算.【解答】解:原式=16+12+(﹣24)+18=28+(﹣24)+18=4+18=22.【点评】本题考查有理数加减混合运算,掌握有理数加减法运算法则是解题关键.14.(2023秋•射洪市校级月考)计算:(﹣7)﹣(﹣10)﹣(﹣8)﹣(﹣2).【分析】减去一个数,等于加上这个数的相反数,由此计算即可.【解答】解:(﹣7)﹣(﹣10)﹣(﹣8)﹣(﹣2)=﹣7+10+8+2=13.【点评】本题考查了有理数的减法,熟记其运算法则是解题的关键.15.(2024春•闵行区期中)计算:0.125−(−234)−(318−0.25).【分析】按照有理数的减法法则,把减法化成加法,写成省略加号和的形式,然后进行简便计算即可.【解答】解:原式=18+234−318+14=234+14+18−318=3﹣3=0. 【点评】本题主要考查了有理数的减法运算,解题关键是熟练掌握有理数的加减法则.16.计算:4.73−[223−(145−2.63)]−13.【分析】根据有理数的减法法则进行求解即可,先算小括号,再算中括号,能用简便方法的用简便方法.【解答】解:原式=4.73﹣[223−(﹣0.83)]−13 =4.73﹣(83+0.83)−13 =4.73−83−0.83−13=0.9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解题的基础. 题型三 运用加法运算律进行简便计算17.计算:16+(﹣25)+24+(﹣35).【分析】把括号去掉,用加法的交换律和结合律计算.【解答】解:16+(﹣25)+24+(﹣35),=16﹣25+24﹣35=(16+24)+(﹣25﹣35)=40+(﹣60)=﹣20.【点评】本题考查了有理数加法,掌握有理数加法法则,加法的交换律和结合律的熟练应用是解题关键.18.计算:(﹣34)+(+8)+(+5)+(﹣23)【分析】此题可以运用加法的交换律交换加数的位置,原式可变为[(﹣34)+(﹣23)]+(8+5),然后利用加法的结合律将两个加数相加.【解答】解:(﹣34)+(+8)+(+5)+(﹣23),=[(﹣34)+(﹣23)]+(8+5),=﹣57+13,=﹣44.【点评】本题考查了有理数的加法.解题关键是综合应用加法交换律和结合律,简化计算.19.计算:213+635+(−213)+(−525).【分析】原式1、3项结合,2、4项结合,计算即可得到结果.【解答】解:原式=(213−213)+(635−525)=115. 【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.20.计算:(﹣1.8)+(+0.7)+(﹣0.9)+1.3+(﹣0.2).【分析】利用有理数的加法法则及加法的运算律进行计算即可.【解答】解:原式=[﹣1.8+(﹣0.2)]+(0.7+1.3)+(﹣0.9)=﹣2+2+(﹣0.9)=﹣0.9.【点评】本题考查有理数的加法运算,熟练掌握相关运算法则是解题的关键.21.(2023秋•合江县校级期末)计算:(−312)+(+67)+(−0.5)+(+117).【分析】先把加法写成省略加号、括号和的形式,再利用加法的交换律、结合律求解.【解答】解:原式=﹣312+67−12+117 =(﹣312−12)+(67+117) =﹣4+2=﹣2.【点评】本题考查了有理数的加法,掌握加法的运算法则、运算律是解决本题的关键.22.计算:−0.5+(−314)+(−2.75)+(+712).【分析】先用加法的交换律和结合律,再根据有理数加法法则进行计算.【解答】解:原式=[﹣0.5+(+712)]+[(﹣3.25)+(﹣2.75)] =7+(﹣6)=1.【点评】本题考查了有理数加法,掌握加法法则,用加法的交换律和结合律是解题关键.23.(2023秋•合江县校级期末)计算:(−312)+(+67)+(−0.5)+(+117).【分析】先把加法写成省略加号、括号和的形式,再利用加法的交换律、结合律求解.【解答】解:原式=﹣312+67−12+117 =(﹣312−12)+(67+117) =﹣4+2=﹣2.【点评】本题考查了有理数的加法,掌握加法的运算法则、运算律是解决本题的关键.24.(2023秋•汉中期末)计算:12+(−23)+47+(−12)+(−13). 【分析】利用加法结合律变形后,相加即可得到结果.【解答】解:原式=[12+(−12)]+[(−23)+(−13)]+47 =0﹣1+47=−37.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.25.(2023春•普陀区期中)计算:(−357)+(+15.5)+(−1627)+(−512).【分析】先按照同分母结合,再算加法.【解答】解:原式=(﹣357−1627)+(15.5﹣5.5)=﹣20+10=﹣10. 【点评】本题考查了有理数的加法,掌握加法运算律是解题的关键.26.(2024春•普陀区期中)计算:−3.19+21921+(−6.81)−(−2221).【分析】将小数与小数结合,分数与分数结合后再运算即可.【解答】解:−3.19+21921+(−6.81)−(−2221) =(﹣3.19﹣6.81)+(21921+2221)=﹣10+5=﹣5. 【点评】本题考查了有理数加减混合运算,分组计算是关键.27.(2023春•浦东新区校级期中)(−2513)+(+15.5)+(−7813)+(−512). 【分析】先将小数化分数,利用加法交换律将分母相同的放一起进行计算.【解答】解:原式=(−2513)+(+1512)+(−7813)+(−512)=[1512+(−512)]+[(−2513)+(−7813)] =10﹣10=0.【点评】本题考查有理数的加法运算,利用加法交换律将分母相同的数放一起进行计算是解题的关键.28.(2023秋•惠城区月考)用适当的方法计算:(1)0.36+(﹣7.4)+0.5+(﹣0.6)+0.14;(2)(﹣51)+(+12)+(﹣7)+(﹣11)+(+36).【分析】(1)利用加法的交换律和结合律,将正数结合在一起,负数结合在一起计算即可;(2)利用加法的交换律和结合律,将正数结合在一起,负数结合在一起计算即可;【解答】解:(1)0.36+(﹣7.4)+0.5+(﹣0.6)+0.14=(0.36+0.14+0.5)+[(﹣7.4)+(﹣0.6)]=1+(﹣8)=﹣7;(2)(﹣51)+(+12)+(﹣7)+(﹣11)+(+36)=[(﹣51)+(﹣7)+(﹣11)]+[(+12)+(+36)]=(﹣69)+48=﹣21.【点评】本题考查有理数的加法,利用运算定律可使计算简便.29.计算:(1)137+(﹣213)+247+(﹣123); (2)(﹣1.25)+2.25+7.75+(﹣8.75).【分析】根据有理数加法法则与运算律进行计算便可.【解答】解:(1)137+(﹣213)+247+(﹣123) =(137+247)+[(﹣213)+(﹣123)]=4+(﹣4)=0;(2)(﹣1.25)+2.25+7.75+(﹣8.75)=[(﹣1.25)+(﹣8.75)]+(2.25+7.75)=(﹣10)+10=0.【点评】本题考查有理数加法,加法运算律,关键是熟记有理数加法运算法则与运算律.30.(2023秋•齐河县校级月考)计算题.(1)5.6+4.4+(﹣8.1);(2)(﹣7)+(﹣4)+(+9)+(﹣5);(3)14+(−23)+56+(−14)+(−13); (4)(﹣9512)+1534+(﹣314)+(﹣22.5)+(﹣15712).【分析】(1)运用加法结合律简便计算即可求解;(2)运用加法交换律和结合律简便计算即可求解;(3)运用加法交换律和结合律简便计算即可求解;(4)运用加法交换律和结合律简便计算即可求解.【解答】解:(1)原式=10﹣8.1=1.9;(2)原式=(﹣7)+[(﹣4)+(﹣5)+(+9)]=﹣7+0=﹣7;(3)原式=[14+(−14)]+[(−23)+(−13)]+56=0+(﹣1)+56=−16;(4)原式=[(﹣9512)+(﹣15712)]+[1534+(﹣314)]+(﹣22.5) =﹣25+1212+(﹣2212) =﹣25+(﹣10)=﹣35.【点评】本题主要考查了有理数的加法,灵活运用加法交换律和结合律进行简便计算是解题的关键. 题型四 有理数的加减混合运算31.(2024春•浦东新区校级期中)计算:(−2513)−(−15.5)+(−7813)+(−512).【分析】根据加法交换律、加法结合律,求出算式的值即可.【解答】解:(−2513)−(−15.5)+(−7813)+(−512)=﹣2513+15.5﹣7813−512 =(﹣2513−7813)+(15.5﹣512)=﹣10+10=0.【点评】此题主要考查了有理数的加减混合运算,解答此题的关键是要明确:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.32.(2024春•崇明区期中)计算:414−1.5+(512)−(﹣2.75). 【分析】根据有理数加减混合运算法则运算即可.【解答】解:原式=4.25﹣1.5+5.5+2.75=(4.25+2.75)+(5.5﹣1.5)=7+4=11.【点评】本题考查了有理数加减混合运算,分数转化为小数后分组运算是关键.33.(2024春•黄浦区期中)计算:(−7.7)+(−656)+(−3.3)−(−116).【分析】根据有理数的加减混合运算法则进行计算.【解答】解:原式=﹣7.7−416−3.3+76=﹣11−346=−503.【点评】本题考查了有理数的加减混合运算,掌握有理数的加减混合运算法则是关键.34.(2022•南京模拟)计算:(﹣478)﹣(﹣512)+(﹣414)﹣318. 【分析】原式利用减法法则变形,结合后相加即可得到结果.【解答】解:(﹣478)﹣(﹣512)+(﹣414)﹣318 =−478−318+512−414=−8+114=−634.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.灵活运用加法结合律进行凑整运算可以简化计算.35.(2023秋•万柏林区校级月考)计算:−|−113|−(−225)−|−313|+(−125).【分析】利用绝对值的意义,加法交换律和有理数加减法运算法则计算即可.【解答】解:−|−113|−(−225)−|−313|+(−125)=−113+225−313−125=−113−313+225−125=−423+1=−323.【点评】本题考查有理数的加减运算,解答时涉及绝对值的意义,加法交换律,掌握有理数加减法运算法则是解题的关键,36.(2023秋•万柏林区校级月考)计算:(1)6﹣(﹣2)+(﹣3)﹣1;(2)−1.2+(−34)−(−1.75)−14.【分析】(1)(2)两个小题均按照有理数的减法法则,把减法化成加法,写成省略加号和括号的形式,进行简便计算即可.【解答】解:(1)原式=6+2﹣3﹣1=8﹣4=4;(2)原式=−1.2−34+1.75−14=−1.2+1.75−34−14=0.55﹣1=﹣0.45.【点评】本题主要考查了有理数的加减运算,解题关键是熟练掌握有理数的加减法则.37.(2023秋•泰兴市期末)计算:(1)(−49)+(−59)﹣(﹣9);(2)(56−12−712)+(−124). 【分析】(1)根据有理数的加减运算法则计算即可;(2)先算括号里面的,然后根据有理数的加法法则计算即可.【解答】解:(1)(−49)+(−59)﹣(﹣9)=−49+(−59)+9=﹣1+9=8;(2)(56−12−712)+(−124) =(1012−612−712)+(−124) =−14+(−124)=−724.【点评】本题考查了有理数的加减运算,熟练掌握有理数的加减运算法则是解题的关键.38.(2023秋•管城区校级月考)计算:(1)20+(﹣13)﹣|﹣9|+15;(2)﹣61﹣|﹣71|﹣9﹣(﹣3).【分析】(1)先根据绝对值的性质进行化简,再写成省略加号和的形式进行简便计算即可;(2)先根据绝对值的性质进行化简,然后进行简便计算即可.【解答】解:(1)原式=20+(﹣13)﹣9+15=20﹣13﹣9+15=20+15﹣13﹣9=35﹣22=13;(2)原式=﹣61﹣71﹣9+3=﹣141+3=﹣138.【点评】本题主要考查了有理数的加减混合运算,解题关键是熟练掌握有理数的加减法则.39.(2023秋•珠海校级月考)计算:(1)4.1﹣(﹣8.9)﹣7.4+(﹣6.6);(2)(−710)+(+23)+(−0.1)+(−2.2)+(+710)+(+3.5).【分析】根据有理数加减运算法则计算即可.【解答】解:(1)4.1﹣(﹣8.9)﹣7.4+(﹣6.6)=4.1+8.9﹣7.4﹣6.6=13﹣14=﹣1;(2)(−710)+(+23)+(﹣0.1)+(﹣2.2)+(+710)+(+3.5)=−710+23﹣0.1﹣2.2+710+3.5=24.2.【点评】本题主要考查了有理数加减运算,掌握有理数加减运算法则是解决问题的关键.40.(2023秋•碑林区校级月考)计算:(1)(﹣2)+3+1+(﹣13)+2;(2)−(−2.5)−(+2.4)+(−312)−1.6.【分析】(1)从左向右依次计算即可;(2)根据加法交换律、加法结合律计算即可.【解答】解:(1)(﹣2)+3+1+(﹣13)+2=1+1﹣13+2=﹣9.(2)−(−2.5)−(+2.4)+(−312)−1.6=2.5﹣2.4﹣3.5﹣1.6=(2.5﹣3.5)+(﹣2.4﹣1.6)=﹣1+(﹣4)=﹣5.【点评】此题主要考查了有理数的加减混合运算,解答此题的关键是要明确:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.41.(2023秋•乌鲁木齐期末)计算:(1)﹣313+(−12)−(−13)+112; (2)(﹣5.3)+|﹣2.5|+(﹣3.2)﹣(+4.8).【分析】先分别变有理数加减混合运算为有理数加法,再运用加法交换结合律进行求解.【解答】解:(1)−313+(−12)−(−13)+112=(﹣313+13)+(−12+112) =﹣3+1=﹣2;(2)(﹣5.3)+|﹣2.5|+(﹣3.2)﹣(+4.8)=﹣5.3+2.5﹣3.2﹣4.8=2.5﹣(5.3+3.2+4.8)=2.5﹣13.3=﹣10.8.【点评】此题考查了有理数的混合运算能力,关键是能准确确定运算顺序和方法,并进行正确地计算.42.(2023秋•顺德区校级月考)计算:(1)(+13)﹣(+12)﹣(−34)+(−23).(2)(+478)﹣(﹣514)+(﹣414)﹣(+318). 【分析】利用有理数的加减法则计算各题即可.【解答】解:(1)原式=13−12+34−23=4−6+9−812=−112; (2)原式=478+514−414−318=(478−318)+(514−414) =134+1 =234.【点评】本题考查有理数的加减运算,熟练掌握相关运算法则是解题的关键.43.(2023秋•谯城区校级月考)计算题:(1)6﹣(+3)﹣(﹣7)+(﹣2);(2)103+(−114)﹣(−56)+(−712). 【分析】各个小题均把减法写成加法,然后省略加号和括号,进行简便计算即可.【解答】解:(1)原式=6+(﹣3)+7﹣2=6﹣3+7﹣2=6+7﹣3﹣2=13﹣5=8;(2)原式=103−114+56−712 =4012−3312+1012−712 =4012+1012−3312−712 =5012−4012=1012=56.【点评】本题主要考查了有理数的加减混合运算,解题关键是熟练掌握有理数的加减运算法则.44.(2023秋•禅城区校级月考)计算:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(2)0−12−(−3.25)+234−|−712|.【分析】(1)根据有理数加减混合运算法则运算即可;(2)去绝对值后,根据有理数加减混合运算法则运算即可.【解答】解:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4)=4.3+4﹣2.3﹣4=2;(2)0−12−(−3.25)+234−|−712|=0−12+3.25+234−712 =﹣8+3.25+2.75=﹣8+6=﹣2.【点评】本题考查了有理数加减混合运算,熟练掌握运算法则是解答本题的关键.45.(2023秋•天桥区校级月考)简便运算:(1)31+(﹣28)+28+69;(2)﹣414+8.4﹣(﹣4.75)+335. 【分析】(1)根据有理数的加法交换律和结合律计算即可;(2)据有理数的加法交换律和结合律计算即可.【解答】解:(1)31+(﹣28)+28+69=(31+69)+[(﹣28)+28]=100+0=100;(2)﹣414+8.4﹣(﹣4.75)+335 =(﹣4.25+4.75)+(8.4+3.6)=0.5+12=12.5.【点评】本题考查了有理数的加减混合运算,掌握相关运算法则是解答本题的关键.46.(2023秋•宁阳县期中)计算:(1)13+(﹣24)﹣25﹣(﹣20);(2)(−13)+(−52)+(−23)+(+12);(3)−20.75−3.25+14+1934;(4)−|−23−(+32)|−|−15+(−25)|.【分析】(1)利用有理数的加减法则计算即可;(2)利用有理数的加减法则计算即可;(3)利用有理数的加减法则计算即可;(4)先算绝对值,再算加减即可.【解答】解:(1)原式=﹣11﹣25+20=﹣36+20=﹣16;(2)原式=(−13−23)+(12−52) =﹣1﹣2=﹣3;(3)原式=(﹣20.75+1934)+(14−3.25) =﹣1﹣3=﹣4;(4)原式=﹣|−4+96|﹣|−35| =−136−35=−65+1830 =−8330. 【点评】本题考查有理数的运算,熟练掌握相关运算法则是解题的关键.47.(2023秋•台儿庄区月考)计算题:(1)﹣32﹣(﹣17)﹣23+(﹣15);(2)(−323)−(−2.4)+(−13)−(+425);(3)(−13)﹣(﹣316)﹣(+223)+(﹣616); (4)(﹣45)﹣(+9)﹣(﹣45)+(+9).【分析】(1)先把算式写成省略加号、括号和的形式,再把负数与正数分别相加;(2)(3)先把算式写成省略加号、括号和的形式,再把分母相同的相加;(3)先把算式写成省略加号、括号和的形式,再把互为相反数的两数相加.【解答】解:(1)﹣32﹣(﹣17)﹣23+(﹣15)=﹣32+17﹣23﹣15=﹣70+17=﹣53;(2)(−323)−(−2.4)+(−13)−(+425)=﹣323+2.4−13−4.4 =﹣323−13+2.4﹣4.4=﹣4﹣2=﹣6; (3)(−13)﹣(﹣316)﹣(+223)+(﹣616) =−13+316−223−616 =−13−223+316−616=﹣3﹣3=﹣6;(4)(﹣45)﹣(+9)﹣(﹣45)+(+9)=﹣45﹣9+45+9=(45﹣45)+(9﹣9)=0.【点评】本题考查了有理数的加减法,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.48.(2023秋•临河区月考)(1)(﹣4.3)﹣(+5.8)+(﹣3.2)﹣3.5+(﹣2.7);(2)−|−15|−(+45)−|−37|−|−47|;(3)513+(−423)+(−613);(4)−12+(−13)−(−14)+(−15)−(−16).【分析】(1)利用有理数的加减法则计算即可;(2)利用绝对值的性质及有理数的加减法则计算即可;(3)利用有理数的加减法则计算即可;(4)利用有理数的加减法则计算即可.【解答】解:(1)原式=﹣4.3﹣5.8﹣3.2﹣3.5﹣2.7=﹣(4.3+5.8+3.2+3.5+2.7)=﹣19.5;(2)原式=−15−45−37−47=﹣1﹣1=﹣2;(3)原式=513−613−423 =﹣1﹣423 =﹣523; (4)原式=−12−13+14−15+16=−56+14−15+16=−56+16+14−15=−23+14−15=−40+15−1260=−3760.【点评】本题考查有理数的加减运算,熟练掌握相关运算法则是解题的关键.49.(2023秋•越秀区校级期中)阅读下面的解题方法.计算:﹣556+(﹣923)+1734+(﹣312). 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(−54)=−54.上述解题方法叫做拆项法,按此方法计算:(﹣202156)+404323+(﹣202223)+156. 【分析】根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法,可得答案.【解答】解:原式=[(﹣2021)+(−56)+4043+23+(﹣2022)+(−23)]+(1+56)=[(﹣2011)+4043+(﹣2022)+1]+[(−56)+(−23)+23+(56)] =11+0=11.【点评】本题考查了有理数的加法,拆项法是解题关键.仿照上面的方法,请你计算:(−2022724)+(−202158)+(−116)+4044. 【分析】仿照上述拆项法解题即可.【解答】解:(−2022724)+(−202158)+(−116)+4044=[(﹣2022)+(−724)]+[(﹣2021)+(−58)]+[(﹣1)+(−16)]+4044 =[(﹣2022)+(﹣2021)+(﹣1)+4044]+[(−724)+(−58)+(−16)] 50.(2023秋•襄汾县期中)阅读下面的计算过程,体会“拆项法”计算:﹣556+(﹣923)+1734+(﹣312) 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(﹣114)=﹣114 启发应用用上面的方法完成下列计算:(1)(﹣3310)+(﹣112)+235−(﹣212); (2)(﹣200056)+(﹣199923)+400023+(﹣112).【分析】原式根据阅读材料中的方法变形,计算即可得到结果.【解答】解:(1)(﹣3310)+(﹣112)+235−(﹣212) =(﹣3−310)+(﹣1−12)+(2+35)+(2+12)=(﹣3﹣1+2+2)+(−310−12+35+12)=0+310=310;(2)(﹣200056)+(﹣199923)+400023+(﹣112) =(﹣2000−56)+(﹣1999−23)+(4000+23)+(﹣1−12)=(﹣2000﹣1999+4000﹣1)+(−56−23+23−12)=0﹣113 =﹣113. 【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.。

有理数加减法培优提高卷

有理数加减法培优提高卷

七年级数学上---有理数的加法复习提高试卷1、已知有理数a,b,c在数轴上的位置如图所示,则下列结论中错误的是()A、a+b<0B、-a+b+c<0c b 0 aC、|a+b|>|a+c|D、|a+b|<|a+c|2、两个有理数的和为零,则这两个有理数一定()A、都是零B、至少有一个是零C、一正一负D、互为相反数3、若3y=,且x y>,则x y+的值为()x=,2A.1 B.-5 C.-5或-1 D.5或14、在1,-1,-2这三个数中,任意两数之和的最大值是()A.1B.0C.-1D.35、x<0, y>0时,则x, x+y, x+(-y),y中最小的数是()A.x B.x+(-y) C.x+y D.y6、如果a、b是有理数,则下列各式子成立的是()A、如果a<0,b<0,那么a+b>0B、如果a>0,b<0,那么a+b >0C、若a>0,b<0,则a+b<0D、若a<0,b>0,且a>b,由a+b<07、若︱a-2︱+︱b+3︱=0,则a+b的值是()A、5 B、1 C、-1 D、-58、2008年8月第29届奥运会在北京开幕,5个城市标准时间(单位:时)在数轴上表示如图所示,那么北京时间2008年8月8日20时应是( )A 、巴黎时间2008年8月8日13时B 、纽约时间2008年8月8日5时C 、伦敦时间2008年8月8日11时D 、汉城时间2008年8月8日19时 01-589汉城北京巴黎伦敦纽约9、电子跳蚤落在数轴上的某点K 0,第一步从K 0向左跳一个单位到K 1,第二步向右跳两个单位到K 2,第三步向左跳两个单位到K 3,第四步向右跳三个单位到K 4……按以上规律跳了100步时,电子跳蚤在数轴上的点K 100表示的数是20,则电子跳蚤的初始位置K 0点表示的数是 .10、若a >0,则a = ;若a <0,则a = ;若a =0,则a = 。

11、绝对值小于2011的所有整数之和是 .12、填空:211+-+3121+-+4131+-+ ┉ +10191+-= .13、判断题:(对的打“√”,错的打“×”).(1)两个有理数的和为正数时,这两个数都是正数.( )(2)两个数的和的绝对值一定等于这两个数绝对值的和.( )(3)两个有理数的和为负数时,这两个数都是负数.( )(4)如果两个数的和为负,那么这两个加数中至少有一个是负数.( )(5)两数之和必大于任何一个加数.( )(6)如果两个有理数的和比其中任何一个加数都大,那么这两个数都是正数.( )(7)两个不等的有理数相加,和一定不等于0.( )(8)两个有理数的和可能等于其中一个加数.( )14、计算题(尽量利用加法的运算律简化计算):(1)5.6+(-0.9)+4.4+(-8.1)+(-1);(2)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-+-+++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(3)│-4.4│+(+831)+1132+(-0.1);(4)()().116105.1725.211594317⎪⎭⎫⎝⎛-+-+-+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+(5)1+(-2)+3+(-4)+5+……+2009+(-2010)+2011+(-2012)(6)1+(-2)+(-3)+4+5+(-6)+(-7)+8+……+101+(-102)+(-103)+104.15、一口水井,水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.42米,却下滑了0.15米;第二次往上爬了0.5米后又往下滑了0.1米;第三次往上爬了0.7米又下滑了0.15米;第四次往上爬了0.75米又下滑0.1米,第五次往上爬了0.55米,没有下滑;第六次蜗牛又往上爬了0.48米没有下滑,请回答:(1)第二次爬之前,蜗牛离井口还有米;第四次爬之前,蜗牛离井口还有米;(2)最后一次蜗牛有没有爬到井口?若没有,那么离井口还有多少米?16、某工厂某周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的为正数,减少的为负数):星期一二三四五六日增减/-1 +3 -2 +4 +7 -5 -10辆(1)生产量最多的一天比生产量最少的一天多生产了辆.(2)本周总生产量是多少?是增加了还是减少了?增减数为多少?17、一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+7,-2,+10,-8,-6,+11,-12. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米?18、若a=19,b=97,且ba+=a+b,求a+b的值. 19、已知x=2,y=3,求x y+的值.20、若3-y与4x互为相反数,求x y+的值.2-有理数加减运算中的结合技巧一、把符号相同的加数相结合例1:计算:(+5)+(-6)+(+4)+(+9)+(-7)+(-8)二、把和为零的加数结合例2:计算:(-15.43)+(-4.15)+(+15.20)+(+4.15)+(+0.23)+(-5)三、把和为整数的加数相结合四、把整数与整数,分数与分数分别相结合例4:计算:-423-313+612-214(在分拆带分数时,要注意符号)。

有理数的加减运算计算题(50题提分练)(5大题型提分练)(原卷版)—七年级数学上册(浙教版2024)

有理数的加减运算计算题(50题提分练)(5大题型提分练)(原卷版)—七年级数学上册(浙教版2024)

有理数加减运算计算题(5大题型50题)●有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.●有理数的加减混合运算常用的方法技★1、互为相反数的两数相结合★2、符号相同的数相结合★3、同分母的分数相结合★4、相加减得整数的相结合-- -凑整法★5、按加数的类型灵活结合★6、先把分数分离整数后再分组相结合-- -拆项法题型一有理数的加法计算1.计算:(1)(﹣5)+(﹣9);(2)(+11)+(﹣12.1);(3)(﹣3.8)+0;(4)(﹣2.4)+(+2.4).2.(2023秋•河东区校级月考)计算:(1)27+(﹣13);(2)(﹣19)+(﹣91);(3)(﹣2.4)+2.4;(4)53+(―23).3.计算:(1)(﹣3)+(﹣9);(2)6+(﹣9);(3)15+(﹣22);(4)0+(―25);(5)12+(﹣4);(6)﹣4.5+(﹣3.5).4.计算:(1)(﹣2)+(+7);(2)(﹣5)+(﹣8);(3)(﹣13)+(+10);(4)0+(﹣6);(5)(―14)+0.25;(6)(―56)+(―23).5.(2023秋•南郑区校级月考)计算:(1)(+7)+(﹣6)+(﹣7);(2)(―32)+(―512)+52+(―712).6.计算:(1)15+(﹣19)+18+(﹣12)+(﹣14);(2)2.75+(﹣234)+(+118)+(﹣1457)+(﹣5.125).7.用合理的方法计算下列各题:(1)103+(―114)+56+(―712);(2)(―12)+(―25)+(+32)+185+395.8.(2023秋•桐柏县校级月考)提升计算:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7;(2)23+(﹣17)+6+(﹣22);(3)(+14)+(+18)+6+(―38)+(―38)+(―6).9.(2023秋•兴平市校级月考)计算下列各题:(1)180+(﹣50);(2)(﹣2.8)+(﹣1.4);(3)43+(﹣77)+37+(﹣23);(4)56+(―17)+(―16)+(―67).10.计算:(1)0.2+(﹣5.4)+(﹣0.6)+(+6);(2)(+14)+(+18)+(―38)+(―58);(3)﹣5+32+(﹣1);(4)―14+23+(―23).题型二 有理数的减法计算11.计算:(1)6﹣(﹣6);(2)0﹣9;(3)(―512)―(―314);(4)(―112)―(13).12.计算:(1)7.21﹣(﹣9.35);(2)(+538)―(+734);(3)(﹣19)﹣(+9.5);(4)(﹣413)﹣(﹣425).13.计算:(1)﹣1.2﹣(+313)(2)(﹣14)﹣(﹣39917)(3)134―[(―16)﹣(+423)](4)6.02﹣9.58﹣2.14﹣8.714.(2023秋•山西月考)计算:(1)75﹣(﹣17)﹣37﹣(﹣25);(2)6﹣(3﹣5)﹣|+8|.15.计算:(1)0﹣457―(―87)﹣(﹣2);(2)538―(﹣234)﹣(+438).16.计算:(1)﹣30﹣(﹣85);(2)﹣3﹣6﹣(﹣15)﹣(﹣10);(3)23―(―23)―34.17.计算下列各题:(1)(﹣12)﹣(+8)﹣(+10)﹣(﹣8);(2)(+55)﹣(﹣9.4)﹣(+32)﹣(+9.4);(3)223―(+134)﹣(﹣313);(4)34―[47―(+0.25)].18.计算:(1)(―413)﹣(―323);(2)56+(―212)﹣(―116)﹣(+0.5).19.计算:(1)(+18)﹣(+6)﹣(+19)﹣(﹣20)﹣(﹣5);(2)(+456)﹣(+335)﹣(﹣316)﹣(+125).(1)[(﹣4)﹣(+7)]﹣(﹣5);(2)3﹣[(﹣3)﹣12];(3)8﹣(9﹣10);(4)(3﹣5)﹣(6﹣10);(5)(﹣1.8)﹣0.12﹣0.36;(6)(―23)―112―(―14).题型三 运用加法运算律进行简便计算21.(2024春•普陀区期中)计算:―3.19+21921+(―6.81)―(―2221).22.(2023春•浦东新区校级期中)(―2513)+(+15.5)+(―7813)+(―512).23.(2023秋•惠城区月考)用适当的方法计算:(1)0.36+(﹣7.4)+0.5+(﹣0.6)+0.14;(2)(﹣51)+(+12)+(﹣7)+(﹣11)+(+36).24.(2023秋•东莞市校级月考)计算:(1)(﹣11)﹣(﹣7.5)﹣(+9)+2.5;(2)534―(+612)+(―312)―(―414).(1)31+(﹣28)+28+69;(2)(+635)+(﹣523)+(425)+(1+123).26.计算:(1)137+(﹣213)+247+(﹣123);(2)(﹣1.25)+2.25+7.75+(﹣8.75).27.(2023秋•定西月考)计算:(1)11+(﹣18)+12+(﹣19);(2)(―478)+(―512)+(―412)+318.28.用适当的方法计算:(1)0.34+(﹣7.6)+(﹣0.8)+(﹣0.4)+0.46;(2)(﹣18.35)+(+6.15)+(﹣3.65)+(﹣18.15).29.(2023秋•张店区校级月考)计算:(1)12+(―23)+45+(―12)+(―13);(2)43+(﹣77)+27+(﹣43);(3)(+1.25)+(―12)+(―34)+(+134).30.计算:(1)(﹣1)+(﹣2)+(﹣4)+(﹣8)+8;(2)3+(﹣1)+(﹣3)+1+(﹣4);(3)(﹣112)+1.25+(﹣8.5)+1034;(4)(﹣2.25)+(﹣5.1)+14+(﹣418)+(―910).31.(2023秋•齐河县校级月考)计算题.(1)5.6+4.4+(﹣8.1);(2)(﹣7)+(﹣4)+(+9)+(﹣5);(3)14+(―23)+56+(―14)+(―13);(4)(﹣9512)+1534+(﹣314)+(﹣22.5)+(﹣15712).32.(2023秋•兰山区校级月考)计算题.(1)38+(﹣22)+(+62)+(﹣78);(2)(﹣23)+|﹣63|+|﹣37|+(﹣77);(3)(―8)+(―312)+2+(―12)+12;(4)(―23)―(―134)―(―123)―(+1.75);题型四 利用“拆项法”进行计算33.(2023秋•肥城市期中)阅读下面文字:对于(―556)+(―923)+1734(―312) 可以按如下方法进行计算:原式=[(﹣5)+(―56)]+[(﹣9)+(―23)]+(17+34)+[(﹣3)+(―12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(―56)+(―23)+34+(―12)]=0+(―54) =―54.上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(―202337)+(―214)+(―202125)+404225.34.(2023秋•越秀区校级期中)阅读下面的解题方法.计算:﹣556+(﹣923)+1734+(﹣312).解:原式=[(﹣5)+(―56)]+[(﹣9)+(―23)]+(17+34)+[(﹣3)+(―12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(―56)+(―23)+34+(―12)]=0+(―5 4)=―5 4.上述解题方法叫做拆项法,按此方法计算:(﹣202156)+404323+(﹣202223)+156.35.(2023秋•襄汾县期中)阅读下面的计算过程,体会“拆项法”计算:﹣556+(﹣923)+1734+(﹣312)解:原式=[(﹣5)+(―56)]+[(﹣9)+(―23)]+(17+34)+[(﹣3)+(―12)]=[(﹣5)+(﹣9)+17+(﹣3]+[(―56)+(―23)+34+(―12)]=0+(﹣11 4)=﹣11 4启发应用用上面的方法完成下列计算:(1)(﹣3310)+(﹣112)+235―(﹣212);(2)(﹣200056)+(﹣199923)+400023+(﹣112).36.阅读下面文字:对于(―3310)+(―112)+235+212可以如下计算:原式=[―3+(―310)]+[―1+(―12)]+(2+35)+(2+12)=[(﹣3)+(﹣1)+2+2]+ =0+ = .上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:(―202423)+202334+(―202256)+202117.37.(2023秋•单县期中)对于(―556)+(―923)+1734+(―312)可以进行如下计算:原式=[(―5)+(―56)]+[(―9)+(―23)]+(17+34)+[(―3)+(―12)]=[(―5)+(―9)+17+(―3)]+[(―56)+(―23)+34+(―12)] =0+(―114)=―114.上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,你会计算下面的式子吗?(―202256)+(―202312)+404634+(―112).38.(2023秋•凉山州期末)数学张老师在多媒体上列出了如下的材料:计算:―556+(―923)+1734+(―312).解:原式=[(―5)+(―56)]+[(―9)+(―23)]+(17+34)+[(―3+(―12)]=[(―5)+(―9)+(―3)+17]+[(―56)+(―23)+(―12)+34] =0+(﹣114)=﹣114.上述这种方法叫做拆项法.请仿照上面的方式计算:(―202127)+(―202247)+4044+(―17).39.(2023秋•虞城县月考)数学张老师在多媒体上列出了如下的材料:上述这种方法叫做拆项法.请仿照上面的方法计算:(1)(+2857)+(―2517);(2)(―202127)+(―202247)+4044+(―17).题型五 有理数的加减混合运算41.(2023秋•万柏林区校级月考)计算:(1)6﹣(﹣2)+(﹣3)﹣1;(2)―1.2+(―34)―(―1.75)―14.42.(2023秋•泰兴市期末)计算:(1)(―49)+(―59)﹣(﹣9);(2)(56―12―712)+(―124).43.(2023秋•管城区校级月考)计算:(1)20+(﹣13)﹣|﹣9|+15;(2)﹣61﹣|﹣71|﹣9﹣(﹣3).44.(2023秋•开州区期中)计算:(1)20.36+(﹣14.25)﹣(﹣18.25)+13.64﹣1.5;(2)1338+(―314)―6―(―0.25).45.(2023秋•珠海校级月考)计算:(1)4.1﹣(﹣8.9)﹣7.4+(﹣6.6);(2)(―710)+(+23)+(―0.1)+(―2.2)+(+710)+(+3.5).(1)﹣9+5﹣(﹣12)+(﹣3);(2)―|―314|―38+3.25―(―118).47.(2023秋•静海区校级月考)计算:(1)﹣20+18+(﹣15)+12;(2)﹣24+3.2﹣16﹣3.5+0.3;(3)137+(―213)+247+(―123);(4)―2223+(+414)―(―23)―(+1.25).48.(2023秋•临河区月考)(1)(﹣4.3)﹣(+5.8)+(﹣3.2)﹣3.5+(﹣2.7);(2)―|―15|―(+45)―|―37|―|―47|;(3)513+(―423)+(―613);(4)―12+(―13)―(―14)+(―15)―(―16).49.(2023秋•德城区校级月考)计算:(1)0﹣(﹣6)+2﹣(﹣13)﹣(+8);(2)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7;(3)1356―(―34)+56―(―712);(4)(+1734)―(+6.25)―(―812)―(+0.75)―2214.(1)18+(﹣12)+(﹣18);(2)24﹣(﹣15)﹣(﹣20);(3)﹣2.8+7.2+5.5+(﹣4.2);(4)137+(―213)+247+(―123).。

有理数的加减法提高题练习

有理数的加减法提高题练习

有理数的加减法练习题——提高题班级: 学号: 姓名: 成绩:_________1、若m 是有理数,则||m m +的值( )A 、可能是正数B 、一定是正数C 、不可能是负数D 、可能是正数,也可能是负数2、若m m m <-0,则||的值为()A 、正数B 、负数C 、0D 、非正数3、如果0m n -=,m n 则与的关系是( )A 、互为相反数B 、 m =±n ,且n ≥0C 、相等且都不小于0D 、m 是n 的绝对值4、下列等式成立的是( )A 、0=-+a aB 、a a --=0C 、0=--a aD 、a --a =05、若230a b -++=,则a b +的值是( )A 、5B 、1C 、-1D 、-56、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为() A.-3 B.-9 C.-3或-9D.3或97、两个数的差为负数,这两个数 ( )A 、都是负数B 、两个数一正一负C 、减数大于被减数D 、减数小于被减数6、负数a 与它相反数的差的绝对值等于( )A 、 0B 、a 的2倍C 、-a 的2倍D 、不能确定8、下列语句中,正确的是( )A 、两个有理数的差一定小于被减数B 、两个有理数的和一定比这两个有理数的差大C 、绝对值相等的两数之差为零D 、零减去一个有理数等于这个有理数的相反数9、对于下列说法中正确的个数( )①两个有理数的和为正数时,这两个数都是正数②两个有理数的和为负数时,这两个数都是负数③两个有理数的和,可能是其中的一个加数④两个有理数的和可能等于0A 、1B 、2C 、3D 、410、有理数a ,b 在数轴上的对应点的位置如图所示,则( )A 、a +b =0B 、a +b >0C 、a -b <0D 、a -b >011、下列各式中与a b c --的值不相等的是( )A 、a b c --()B 、a b c -+()C 、()()a b c -+-D 、()()-+-b a c12、下列各式与a -b +c 的值相等的是( )A .a -(b +c )B .c +(a +b )C .c -(b -a )D .a +(b +c )13、用式子 表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( )A 、a +b -c =a +b +cB 、a -b +c =a +b +cC 、a +b -c =a +(-b )=(-c )D 、a +b -c =a +b +(-c )14、若0a b c d <<<<,则以下四个结论中,正确的是()A 、a b c d +++一定是正数B 、c d a b +--可能是负数C 、d c a b ---一定是正数D 、c d a b ---一定是正数15、若a 、b 为有理数,a 与b 的差为正数,且a 与b 两数均不为0,那么( )A 、被减数a 为正数,减数b 为负数B 、a 与b 均为正数,切被减数a 大于减数bC 、a 与b 两数均为负数,且减数 b 的绝对值大D 、以上答案都可能16、若a 、b 表示有理数,且a >0,b <0,a +b <0,则下列各式正确的是()A 、-b <-a <b <aB 、-a <b <a <-bC 、b <-a <-b <aD 、b <-a <a <-b17、下列结论不正确的是()A 、若0a <,0b >,则0a b -<B 、若0a >,0b <,则0a b ->C 、若0a <,0b <,则()0a b -->D 、若0a <,0b <,且a b >,则0a b -<18、若0x <,0y >时,x ,x y +,y ,x y -中,最大的是( )A 、xB 、x y +C 、x y -D 、y19、数m 和n ,满足m 为正数,n 为负数,则m ,m -n ,m +n 的大小关系是( )A 、m >m -n >m +nB 、m +n >m >m -nC 、m -n >m +n >mD 、m -n >m >m +n20、如果a <0,那么a 和它的相反数的差的绝对值等于( )A 、aB 、0C 、-aD 、-2a21、若a b >>00,,则下列各式中正确的是()A 、a b ->0B 、a b -<0C 、a b -=0D 、--<a b 022、在数轴上,点x 表示到原点的距离小于3的那些点,那么||||x x -++33等于()A 、6B 、-2xC 、-6D 、2x23、如果 a 、b 是有理数,则下列各式子成立的是( )A 、如果a <0,b <0,那么a +b >0B 、如果a >0,b <0,那么a +b >0C 、如果a >0,b <0,那么a +b <0D 、如果a <0,b >0,且︱a ︱>︱b ︱,那么a +b <024、已知a <c <0,b >0,且|a |>|b |>|c |,则|a |+|b |-|c |+|a +b |+|b +c |+|a +c |等于()A 、-3a +b +cB 、3a +3b +cC 、a -b +2cD 、-a +3b -3c25、填上适当的符号,使下列式子成立:(1)(_____5)+(-15)=-10;(2)(-3)+(_____3)=0;(3)(_____37)+(-331)=-1. 26、若有理数a >0,b <0,则四个数a +b ,a -b ,-a +b ,-a -b 中最大的是, 最小的是.27、已知的值是那么y x y x +==,213,6.28、三个连续整数,中间一个数是a ,则这三个数的和是___________.29、若8a =,3b =,且0a >,0b <,则a b -=________.30、当0b <时,a 、a b -、a b +中最大的是_______,最小的是_______.31、若0a <,那么()a a --等于___________.32、若数轴上,A点对应的数为-5,B 点对应的数是7,则A 、B 两点之间的距离是.33、若x +m =n ,则x =______;若x -m =n ,则x =_______.34、有若干个数,第一个数记为a 1,第二个数记为a 2,第3个数记为a 3,…,第n 个数记为a n ,若a 1=-0.5,从第二个数起,每个数都等于“1”与它前面的那个数的差的倒数。

有理数加减法经典测试题

有理数加减法经典测试题

有理数加减法经典测试题七年级(上)有理数的加减法测验一.选择题(每小题2分,共18分)1.相反数是它本身的数是()a.1b.-1c.0d.不存有2、一个有理数的绝对值等于其本身,这个数是()a、正数b、非负数c、零d、负数3、下列说法不正确的是()a、有理数的绝对值一定就是正数b、数轴上的两个有理数,绝对值大的离原点远c、一个有理数的绝对值一定不是负数d、两个互为相反数的绝对值相等4、未知a为有理数,以下式子一定恰当的就是()a.︱a︱=ab.︱a︱≥ac.︱a︱=-ad.a>05、以下各式中,等号设立的就是()a、--6=6b、-(-6)=-6c、-2=-1d、+3.14=-3.146、在数轴上则表示的数8与-2这两个点之间的距离就是()a、6b、10c、-10d-67、在-5,-,-3.5,-0.01,-2,-212各数中,最大的数是()10a-12b-c-0.01d-58、比-7.1大,而比1小的整数的个数是()a6b7c8d99、-,-,-的大小顺序是()。

468753735a-[1**********]7c-二、填空题(每空1分,共22分)1.|-4|-|-2.5|+|-10|=__________;|-24|÷|-3|×|-2|=_________2.最小的负整数就是_____________;最轻的正整数就是____________3.绝对值大于5的整数存有______个;绝对值大于6的负整数存有_______个4.4,0得相反数是,-(-4)的相反数是。

5.绝对值最小的数是36.的绝对值就是。

3123.14-π=2-3。

7.20、若零件的长度比标准多0.1cm记作0.1cm,那么—0.05cm则表示____________.8.21、大于-4且小于1的整数有。

249.19、x=y,那么x和y的关系10.把以下各数填上在适当的大括号里:+,-6,0.54,7,0,3.14,200%,3万,-,3.4365,-,-2.543。

人教版七年级数学上册《1.3 有理数的加减法》同步能力提升训练(附答案)

人教版七年级数学上册《1.3 有理数的加减法》同步能力提升训练(附答案)

2021-2022学年人教版七年级数学上册《1.3有理数的加减法》同步能力提升训练(附答案)1.﹣20+21=()A.﹣1B.1C.﹣2021D.20212.下列计算正确的是()A.﹣5+(﹣3)=﹣(5﹣3)=﹣2B.2﹣(﹣5)=﹣(5﹣2)=﹣3C.(﹣3)﹣(﹣4)=﹣(3+4)=﹣7D.(﹣3)+(+2)=﹣(3﹣2)=﹣1 3.若|m|=5,|n|=2,且mn异号,则|m﹣n|的值为()A.7B.3或﹣3C.3D.7或34.昆明市某天的最高气温为12℃,最低气温为﹣2℃,这天的最高气温比最低气温高()A.﹣10℃B.10℃C.14℃D.﹣14℃5.下列说法中,正确的是()A.若|a|=|b|,则a=b B.互为相反数的两数之和为零C.0是最小的整数D.数轴上两个有理数,较大的数离原点较远6.温度﹣4℃比﹣9℃高()A.5℃B.﹣5℃C.13℃D.﹣13℃7.郝炜同学在计算35+x时,误将“+”看成“﹣”,结果得10,则35+x的值应为()A.20B.60C.10D.708.若a是最大的负整数,b是最小的正整数,c的相反数等于它本身,则a+b+c的值是()A.﹣2B.﹣1C.1D.09.2020年元月某一天的天气预报中,北京的最低温度是﹣12℃,哈尔滨的最低温度是﹣26℃,这一天北京的最低气温比哈尔滨的最低气温高()A.14℃B.﹣14℃C.38℃D.﹣38℃10.比﹣2大2的数是()A.﹣4B.0C.2D.411.计算:﹣3﹣(﹣2)+5=.12.已知a<b,且|a|=6,|b|=3,则a﹣b的值为.13.如表,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则前2021个格子中所有整数的和为.14.计算:﹣17+(﹣33)﹣10﹣(﹣24)=.15.我市某天上午的气温为﹣2℃,中午上升了6℃,下午受冷空气的影响,到夜间温度下降了9℃,则这天夜间的气温为.16.﹣5与3的和的绝对值是;﹣5的相反数与3的绝对值的差是.17.计算(﹣)+|0﹣5|+|﹣4|+(﹣9)的结果为.18.点A的海拔高度是﹣100米,表示点A比海平面低100米,点B比点A高30米,那么点B的海拔是.19.计算(1)9+(﹣7)+10+(﹣3)+(﹣9);(2)3﹣(﹣)﹣+(﹣).20.1+(﹣6.5)+3+(﹣1.25)﹣(﹣2).21.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)﹣0.5+(﹣3)+(﹣2.75)+(+7).22.计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)(﹣26.54)﹣(﹣6.4)+18.54﹣6.4;(3)(﹣0.5)﹣(﹣3)+2.75﹣(+7);(4)﹣|﹣1|﹣(+2)﹣(﹣2.75).23.一名足球守门员练习折返跑,从球门线出发,向前记为正数,返回记为负数,他的记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10,(1)守门员最后是否回到了球门线的位置?(2)守门员全部练习结束后,共跑了多少米?(3)在练习过程中,守门员离开球门线的最远距离是多少米?24.出租车司机小王某天下午的一段时间内营运全是在东西走向的“抚顺”路上进行的.如果向东记作“+”,向西记作“﹣”,他这段时间内行车情况如下:﹣2,+5,﹣2,﹣3,﹣6,+6(单位:公里;每次行车都有乘客),请解答下列问题:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若小王的出租车每公里耗油0.1升,每升汽油5.7元,不计汽车的损耗的情况下,请你帮小王计算一下这段时间所耗的汽油钱是多少元?25.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?参考答案1.解:原式=+(21﹣20)=1.故选:B.2.解:A.﹣5+(﹣3)=﹣8,此选项错误;B.2﹣(﹣5)=2+5=7,此选项错误;C.(﹣3)﹣(﹣4)=﹣3+4=1,此选项错误;D.(﹣3)+(+2)=﹣(3﹣2)=﹣1,此选项正确;故选:D.3.解:∵|m|=5,|n|=2,∴m=±5,n=±2,又∵m、n异号,∴m=5、n=﹣2或m=﹣5、n=2,当m=5、n=﹣2时,|m﹣n|=|5﹣(﹣2)|=7;当m=﹣5、n=2时,|m﹣n|=|﹣5﹣2|=7;综上|m﹣n|的值为7,故选:A.4.解:12﹣(﹣2)=12+2=14(℃),即这天的最高气温比最低气温高14℃.故选:C.5.解:A、若|a|=|b|,则a=±b,故原说法错误,故本选项不符合题意;B、互为相反数的两数之和为零,说法正确,故本选项符合题意;C、没有最小的整数,故原说法错误,故本选项不符合题意;D、数轴上两个有理数,绝对值较大的数离原点较远,故原说法错误,故本选项不符合题意;故选:B.6.解:∵﹣4﹣(﹣9)=5(℃),∴温度﹣4℃比﹣9℃高5℃.故选:A.7.解:35+(35﹣10)=35+25=60.故选:B.8.解:∵a是最大的负整数,b是最小的正整数,c的相反数等于它本身,∴a=﹣1,b=1,c=0,∴a+b+c=﹣1+1+0=0,故选:D.9.解:﹣12﹣(﹣26)=﹣12+26=14(℃),故选:A.10.解:﹣2+2=0,即比﹣2大2的数是0,故选:B.11.解:﹣3﹣(﹣2)+5=﹣3+2+5=4;故答案为:4.12.解:∵|a|=6,|b|=3,∴a=±6,b=±3,∵a<b,∴a=﹣6,b=±3,∴a﹣b=﹣6﹣3=﹣9或a﹣b=﹣6﹣(﹣3)=﹣3.故答案为:﹣9或﹣3.13.解:根据“任意三个相邻格子中所填整数之和都相等”可得这列数如下:因为2021÷3=673……2,所以前2021个格子中所有数的和为673×2﹣8+6=1344,故答案为:1344.14.解:﹣17+(﹣33)﹣10﹣(﹣24)=﹣17﹣33﹣10+24=﹣60+24=﹣36.故答案为:﹣36.15.解:﹣2+6﹣9=4﹣9=﹣5(℃)答:这天夜间的气温为﹣5℃.故答案为:﹣5℃.16.解:|﹣5+3|=|﹣2|=2,﹣(﹣5)﹣|3|=5﹣3=2,故答案为:2,2.17.解:(﹣)+|0﹣5|+|﹣4|+(﹣9)=(﹣)+5+4+(﹣9)=(﹣﹣9)+(5+4)=﹣10+10=0.故答案为:0.18.解:点B的海拔高度为:﹣100+30=﹣70(米).故答案为:﹣70.19.解:(1)原式=[9+(﹣9)]+[(﹣7)+(﹣3)]+10=0﹣10+10=0;(2)原式=[3+(﹣)]﹣[(﹣)+]=3﹣=2.20.解:==0+6﹣6.5=﹣0.5.21.解:(1)12﹣(﹣18)+(﹣7)﹣15=30﹣7﹣15=8.(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)=[﹣0.5+(+7)]+[(﹣3)+(﹣2.75)]=7+(﹣6)=1.22.解:(1)23﹣17﹣(﹣7)+(﹣16)=23﹣17+7﹣16=(23+7)+(﹣17﹣16)=30﹣33=﹣3;(2)(﹣26.54)﹣(﹣6.4)+18.54﹣6.4=(﹣26.54+18.54)+(6.4﹣6.4)=﹣8+0=﹣8;(3)(﹣0.5)﹣(﹣3)+2.75﹣(+7)=(﹣0.5﹣7)+(3+2.75)=﹣8+6=﹣2;(4)﹣|﹣1|﹣(+2)﹣(﹣2.75)=﹣1﹣2+2.75=+(﹣1﹣2+2.75)=﹣1=﹣.23.解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=(5+10+12)﹣(3+8+6+10)=27﹣27=0,答:守门员最后回到了球门线的位置;(2)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54;答:守门员全部练习结束后,他共跑了54米;(3)第1次守门员离开球门线5米;第2次守门员离开球门线:5﹣3=2(米);第3次守门员离开球门线:2+10=12(米);第4次守门员离开球门线:12﹣8=4(米);第5次守门员离开球门线:|4﹣6|=2(米);第6次守门员离开球门线:|﹣2+12|=8(米);第7次守门员离开球门线:|8﹣10|=2(米);所以在练习过程中,守门员离开球门线的最远距离是12米.24.解:(1)﹣2+5﹣2﹣3﹣6+6=﹣2(公里).故小王在下午出车的出发地的正西方向,距下午出车的出发地2公里远;(2)2+5+2+3+6+6=24(公里),24×0.1×5.7=13.68(元).故这段时间所耗的汽油钱是13.68元.25.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.。

有理数的加减法测试题及答案

有理数的加减法测试题及答案

(有理数的加减法复习)姓名之巴公井开创作一、填空题:(每题 2 分,共 24 分)1、(-3)—(+2)的结果为____.2、-3与-3的和即是____.-3与-3的差即是____.-3与 3的差即是____.3、(-1) - (-6)=(-1)+(____)4、比-3 年夜 2 的数是____.5、(-6)+(-3)—(-4) 写成省略加号的和的形式为________.6、-3-2—5读作:__________.7、运用加法交换律,式子 11-16可以写成_____.8、从海拔 12m 的处所乘电梯到海拔-15m 的处所,一共下降了____m.9、____比-5 小 3.10、(-12)-(+91)-(-12)=____.11、-2 与1 的相反数的差为______.12、数轴上暗示-1 的点与暗示1的点的距离是____.二、选择题:(每题 3 分,共 18 分)1、下列计算结果正确的是()A、4-9=5B、-5+6=-11C、-6-3=-3D、0-2=-22、算式-9-5不能读做()A、-9与 5 的差B、-9 与-5 的和C、-9 与-5 的差D、-9 减去 53、较年夜的数减去较小的数,所得的差一定是()A、零B、正数C、负数D、零或负数4、若 =3,b =-3,则 a +b 的值为( )A 、—6 或6B 、—6或0C 、—6D 、0 5、-6 的相反数与比 5 的相反数年夜 1 的数的差为( )A 、10B 、—2C 、—12D 、0 6、若 a +b >0,且-(-a)<0,则( )A 、a >0,b <0B 、a <0,b >0C 、a <0,b >0D 、a <0,b <0三、计算:(每题 4 分,共 24 分)1、-15+112、-3-(-4+2) 3、34+(-611)3、—34-211 5、—8-(5-10)6、3-[(-3)+10] 四、列式计算:(每题 4 分,共 12 分)1、311 与 -212的和的相反数. 2、-1 减去 与— 的和,所得的差是几多?3、什么数与 -8的和即是 -5?五、计算:(每题 5 分,共 10 分)1、7—(-2)—(+4)+(-4) 2.)()(321--43421-313-++ 3、(-254)-(-4.7)+(-3.2)+8.2—-(+3.2)六、(6分)某天早晨的气温是-2℃,中午上升了5℃,薄暮下降了2℃,三更又下降了3℃,求三更的气温是几多?七、(6分)电力公司的一个检修小组从 A 地动身,在公路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中行驶记录如下(单元 :千米):-6,+7,-8,+9,+6,-7,-10① 求收工时距 A 地多远?② 若每千米耗油 0.3 升,问从动身到收工共耗油几多升?谜底一、1、-1 2、-4 3、+2 4、-5 5、-6+3-46、负3减2加57、-6+118、229、-2 10、-2 11、1 12、3二、1、C 2、B 3、C 4、A 5、D 6、A三、1、解:原式=1 2、解:原式=-1 3、解:原式=-=-4、解:原式=-5.55、解:原式=8+1 =96、解:原式=3-[-12]=15四、1、解:-[4+(-3)]=-12、解:-1-(-+) =-1-()=-1+=-3、(-11)-(-7) =-11+7 =-4五、1、解:原式=-2-2+4=2+1=-12、解:原式=-2+4.7-0.5+2.4-3.2 =4.7-3.7 =1六、解:-3+5-3 =-1 答:三更的气温是-1℃七、①解:-4+7-9+8+6-4-3 =3-1-1 =1 答:收工时距A地1千米.②解:4+7+9+8+6+4+3 =41 41×0.3=12.3(升)时间:二O二一年七月二十九日。

有理数的加法和减法(拓展题)练习含答案解析

有理数的加法和减法(拓展题)练习含答案解析

有理数加法和减法提高题1、一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是50个单位.【分析】设向右为正,向左为负.根据正负数的意义列出式子计算即可.【解答】解:设向右为正,向左为负.1+(﹣2)+3+(﹣4)+.+(﹣100)=[1+(﹣2)]+[3+(﹣4)]+.+[99+(﹣100)]=﹣50.∴落点处离O点的距离是50个单位.故答案为50.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.变式:如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它2、从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C( +3, +4),B→D( +3,﹣2);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出依次行走停点E、F、M、N的位置.【分析】(1)根据第一个数表示左右方向,第二个数表示上下方向结合图形写出即可;(2)根据行走路线列出算式计算即可得解;(3)根据方格和标记方法作出线路图即可得解.【解答】解:(1)由向上向右走为正,向下向左走为负可得A→C(+3,+4),B→D(+3,﹣2);故答案为:+3,+4,+3,﹣2.(2)甲虫走过的路程为:1+4+2+1+2=10,(3)如图,甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),在图中标出依次行走停点E 、F 、M 、N 的位置.【点评】本题考查了坐标确定位置,读懂题目信息,理解行走路线的记录方法是解题的关键.3.淮海中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).(1)上星期五借出多少册书? (2)上星期四比上星期三多借出几册? (3)上周平均每天借出几册?【分析】(1)根据题意得出算式100+(﹣12),求出即可; (2)求出(+6)﹣(﹣17)的值即可;(3)求出+23、0、﹣17、+6、﹣12的平均数,再加上100即可. 【解答】解:(1)100+(﹣12)=88(册), 答:上星期五借出88册书;(2)[100+(+6)]﹣[100+(﹣17)]=23(册), 答:上星期四比上星期三多借出23册;(3)100+[(+23)+0+(﹣17)+(+6)+(﹣12)]÷5=100(册), 答:上周平均每天借出100册.【点评】本题考查了有理数的混合运算和正数、负数等知识点,解此题的关键是根据题意列出算式,题目比较典型.4、张华记录了今年雨季钱塘江一周内水位变化的情况如下表(正号表示比前一天高,负号表示比前一天低):(1)本周星期二水位最高,星期一水位最低.(2)与上周末相比,本周日的水位是上升了还是下降了?(写出计算过程)【分析】(1)设上周日的水位是a,分别求出星期一、二、三、四、五、六、日的水位,比较即可;(2)这周星期日和上周星期日的水位相减即可.【解答】解:(1)设上周日的水位是a,星期一:a+0.25;星期二:a+0.80+0.25=a+1.05;星期三:a+1.05+(﹣0.40)=a+0.65;星期四:a+0.65+(+0.03)=a+0.68;星期五:a+0.68+(+0.28)=a+0.96;星期六:a+0.96+(﹣0.36)=a+0.60;星期日:a+0.60+(﹣0.04)=a+0.56;∴星期二水位最高;星期一水位最低,故答案为:二,一.解:(2)上周日的水位是a,则这周末的水位是a+0.56,∴(a+0.56)﹣a=0.56>0,即本周日的水位是上升了.【点评】本题考查了有理数的混合运算、正数和负数等知识点的应用,解此题的关键是关键题意列出算式,题型较好,难度适中,用的数学思想是转化思想,即把实际问题转化成数学问题.5、一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后西走了10千米,到达小华家,最后又向东走了6千米结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1千米,请你在下面的数轴上表示出小明家、小兵家和小华家的具体位置.(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1千米的用油量为0.25升,请你计算货车从出发到结束行程共耗油多少升?【分析】(1)根据已知,以超市为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后西走了10千米,到达小华家,最后又向东走了6千米结束行程,则小明家、小兵家和小华家在数轴上的位置如上所示.(2)这辆巡逻车一共行走的路程,实际上就是1+3+10+6=20(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【解答】解:(1)(2)由题意得(+1)+(+3)+(﹣10)+(+6)=0,因而回到了超市.(3)由题意得1+3+10+6=20,货车从出发到结束行程共耗油0.25×20=5.答:(1)参见上图;(2)货车最后回到了超市;(3)货车从出发到结束行程共耗油5升.【点评】本题是一道典型的有理数混合运算的应用题,同学们一定要掌握能够将应用问题转化为有理数的混合运算的能力,数轴正是表示这一问题的最好工具.如工程问题、行程问题等都是这类.6、2013年国庆,全国从1日到7日放假七天,高速公路免费通行,各地景区游人如织.其中,闻名于世的福州三坊七巷,在9月30日的游客人数为0.9万人,接下来的七天中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)10月3日的人数为5.2万人.(2)七天假期里,游客人数最多的是10月2日,达到5.78万人.游客人数最少的是10月7日,达到0.65万人.(3)请问黄山风景区在这八天内一共接待了多少游客?(结果精确到万位)(4)如果你也打算在下一个国庆节出游福州三坊七巷,对出行的日期有何建议?【分析】(1)根据题意计算出10月2日的人数再加上﹣0.58即可;(2)分别计算出每天的人数,即可作出判断;(3)根据(2)把8天的人数相加即可;(4)答案不唯一,只要合理即可.【解答】解:(1)1日的人数为:0.9+3.1=4万人,2日的人数为:4+1.78=5.78万人,3日的人数为:5.78﹣0.58=5.2万人.答:10月3日的人数是5.2万人;(2)4日的人数为:5.2﹣0.8=4.4万人,5日的人数为:4.4﹣1=3.4万人,6日的人数为:3.4﹣1.6=1.8万人,7日的人数为:1.8﹣1.15=0.65万人,所以七天假期里,游客人数最多的是10月2日,达到5.78 万人.游客人数最少的是10月7日,达到0.65万人.(3)0.9+4+5.78+5.2+4.4+3.4+1.8+1.65≈23万人所以黄山风景区在这八天内大约一共接待了23万游客.(4)为了安全,尽量把出行时间推后.故答案为:5.2;2,5.78,7,0.65.【点评】此题考查的知识点是正数和负数及有理数的运算,关键是正确理解表中数据的含义,正确计算出每天的人数.7.随着科学技术的进步,太阳能这种洁净环保的能源已日益得到普及应用.已知燃烧1千克煤只能释放3.35×104千焦的热量,1平方米的面积一年内从太阳得到的能量约有4.355×106千焦,那么1个长2米、宽1米的太阳能集热器每年得到的能量相当于燃烧多少千克煤?【分析】利用长2米、宽1米的太阳能集热器每年得到的能量除以燃烧1千克煤释放的热量求解即可.【解答】解:1个长2米、宽1米的太阳能集热器每年得到的能量相当于燃烧的煤的千克数是2×4.355×106÷(3.35×104)=260千克.【点评】本题主要考查了列代数式及幂的运算,解题的关键是正确的列出算式.。

2020初一有理数加法和减法提高练习题及答案

2020初一有理数加法和减法提高练习题及答案

有理数加法和减法提高训练题号一、填空题二、选择题三、简答题四、计算题总分得分一、填空题1、若,,且,则=2、已知=3,=2,且ab<0,则a-b= 。

3、若互为相反数,互为倒数,则。

4、下面是一个简单的数值运算程序,当输入的值为2时,输出的数值是.5、在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如右图所示,则图中阴影部分的面积是。

6、符号“”表示一种运算,它对一些数的运算结果如下:(1),,,,…(2),,,,…利用以上规律计算:.二、选择题7、将6-(+3)-(-7)+(-2)写成省略加号的和的形式为( ) A.-6-3+7-2 B.6-3-7-2C.6-3+7-2 D.6+3-7-28、若b<0,则a-b、a、a+b的大小关系是( )A.a-b<a<a+b B.a<a-b<a+bC.a+b<a-b<a D.a+b<a<a-b9、两个数相加,如果和为负数,则这两个数( )A.必定都为负 B.总是一正一负C.可以都为正D.至少有一个负数10、已知、互为相反数,且,则的值为()A.2 B.2或3 C.4 D.2或411、如果表示有理数,那么的值……………………………………………( )A、可能是负数B、必定是正数C、不可能是负数D、可能是负数也可能是正数12、利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm13、若a>0>b>c,a+b+c=1,M=,N=,P=,则M、N、P之间的大小关系是( )A、M>N>PB、N>P>MC、P>M>ND、M>P>N14、一张纸片,第一次将其撕成2小片,以后每次将其中的一小片撕成更小的2片,则15次后共有纸片( )A.30张B.15张C.16张D.以上答案都不对15、如图,数轴上的两个点A、B所表示的数分别是,在中,是正数的有()A.1个B.2个C.3个D.4个16、某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年购买8罐液化气,则购买液化气最省钱的方法是( ) A .买甲站的 B.买乙站的C .买两站的都可以 D . 先买甲站的1罐,以后再买乙站的三、简答题四、17、2011年月日,中国汽车协会发布最新汽车产销数据显示:上半年汽车销售量万辆.某汽车厂计划一周生产汽车辆,平均每天生产辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期 一二三四五六日增减(1) 根据记录的数据可知该厂星期五生产汽车 辆; (2) 产量最多的一天比产量最少的一天多生产汽车 辆;(3) 根据记录的数据可知该厂本周实际生产汽车 辆,该厂实行每周计件工资制,每生产一辆车可得元,那么该厂工人这一周的实际工资总额是 元.18、对于有理数ab6,定义运算“”,a ~b =a ·b -a -b -2.(1)计算(-2)3的值;(2)填空:4(-2)_______(-2)4(填“>”“=”或“<”);(3)我们知道:有理数的加法运算和乘法运算满足交换律.那么,由(2)计算的结果,你认为这种运算“”是否满足交换律?请说明理由.19、探索性问题数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础。

有理数加减混合计算题100道【含答案】

有理数加减混合计算题100道【含答案】

有理数加减混合计算题100道【含答案】(七年级数学)92267(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--有理数运算练习(一) 【加减混合运算】一、有理数加法.1、【基础题】计算:(1) 2+(-3); (2)(-5)+(-8); (3)6+(-4); (4)5+(-5); (5)0+(-2); (6)(-10)+(-1); (7)180+(-10); (8)(-23)+9;(9)(-25)+(-7); (10)(-13)+5; (11)(-23)+0; (12)45+(-45).2、【基础题】计算:(1)(-8)+(-9); (2)(-17)+21; (3)(-12)+25; (4)45+(-23);(5)(-45)+23; (6)(-29)+(-31); (7)(-39)+(-45); (8)(-28)+37.3、【基础题】计算,能简便的要用简便算法:(1)(-25)+34+156+(-65); (2)(-64)+17+(-23)+68; (3)(-42)+57+(-84)+(-23); (4)63+72+(-96)+(-37); (5)(-301)+125+301+(-75); (6)(-52)+24+(-74)+12; (7)41+(-23)+(-31)+0; (8)(-26)+52+16+(-72).4、【综合Ⅰ】计算:(1))43(31-+; (2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (3)()⎪⎭⎫⎝⎛++-5112.1; (4))432()413(-+-;(5))752()723(-+; (6)(—152)+8.0; (7)(—561)+0; (8)314+(—561).5、【综合Ⅰ】计算:(1))127()65()411()310(-++-+; (2)75.9)219()29()5.0(+-++-;(3))539()518()23()52()21(++++-+-; (4))37(75.0)27()43()34()5.3(-++++-+-+-二、有理数减法.6、【基础题】计算:(1)9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0; (5)3-5; (6)3-(-5);(7)(-3)-5 (8)(-3)-(-5); (9)(-6)-(-6); (10)(-6)-6.、【综合Ⅰ】计算:(1)(-52)-(-53); (2)(-1)-211; (3)(-32)-52; (4)521-(-7.2);(5)0-(-74); (6)(-21)-(-21); (7)525413- ; (8)-64-丨-64丨7、【基础题】填空:(1)(-7)+( )=21; (2)31+( )=-85;(3)( )-(-21)=37; (4)( )-56=-408、【基础题】计算:(1)(-72)-(-37)-(-22)-17; (2)(-16)-(-12)-24-(-18); (3)23-(-76)-36-(-105); (4)(-32)-(-27)-(-72)-87.(5)(-32)-21-(-65)-(-31); (6)(-2112)-[ --(-)-516 ] .三、有理数加减混合运算9、【综合Ⅰ】计算(1)-7+13-6+20; (2)-+-+10; (3)(-53)+51-54;(4)(-5)-(-21)+7-37; (5)31+(-65)-(-21)-32; (6)-41+65+32-21;10、【综合Ⅰ】计算,能简便的要用简便算法:(1)-+(-); (2)(-)-21+(-51); (3)21-(-)-61; (4)(-31)-15+(-32); (5)32+(-51)-1+31; (6)(-12)-(-56)+(-8)-10711、【综合Ⅰ】计算:(1)-(-)+(-); (2)(-8)-(-15)+(-9)-(-12);(3)+(-41)-(-)+21; (4)(-32)+(-61)-(-41)-21;(5)21+(-32)-(-54)+(-21); (6)310+(-411)-(-65)+(-127)12、【综合Ⅰ】计算:(1)7+(-2)-; (2)(-)+3-+(-52); (3)31+(-45)+; (4)7-(-21)+; (5)49-(-)-53; (6)(-56)-7-(-)+(-1);(7)11512+丨-11611丨-(-53)+丨212丨; (8)(- )+ 1098 + +(- 1098)13、【综合Ⅰ】计算:(1)()()()()-+-+++-+-++12345678; (2)-+++(-)(3)-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪13123423; (4)5146162341456+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪;(5)--(-413)+-(+217); (6)3745124139257526+-+有理数运算练习(一) 答案1、【答案】 (1)-1; (2)-13; (3)2; (4)0; (5)-2; (6)-11; (7)170;(8)-14; (9)-32; (10)-8; (11)-23; (12)0.2、【答案】 (1)-17; (2)4; (3)13; (4)22; (5)-22;(6)-60; (7)-84; (8)9.3、【答案】(1)100; (2)-2; (3)-92; (4)2; (5)50; (6)-90; (7)-13; (8)-30.4、【答案】 (1)125-; (2)65-; (3)0; (4)-6; (5)74; (6)32; (7)615-; (8)65-.5、【答案】 (1)65 (2) (3)12 (4)311-6、【答案】 (1)14; (2)-4; (3)-8; (4)-5; (5)-2; (6)8; (7)-8;(8)2; (9)0; (10)-12、【答案】 (1)51; (2)-25; (3)-1516; (4); (5)74; (6)0;(7)-2043(8)-1287、【答案】 (1)28; (2)-116; (3)16; (4)168、【答案】 (1)-30; (2)-10; (3)168; (4)-20; (5)0; (6)-或-1016 9、【答案】 (1)20; (2); (3)-56; (4)61; (5)-32; (6)4310、【答案】 (1)-7; (2)-; (3)127; (4)-16; (5)-51; (6)-23911、【答案】 (1); (2)10; (3)27; (4)-1213; (5)152; (6)65;12、【答案】 (1); (2)-; (3)30; (4)9; (5)69; (6)-6; (7); (8)013、【答案】 (1)8; (2)-3; (3)41; (4)-13; (5)-2; (6)902313。

有理数加减练习题50道

有理数加减练习题50道

有理数加减练习题50道1. 计算:3 + (2)2. 计算:4 53. 计算:7 + 8 34. 计算:9 + (4)5. 计算:15 (6)6. 计算:12 + 10 77. 计算:25 + 18 308. 计算:32 + 29 59. 计算:45 23 + 1710. 计算:56 + 34 2811. 计算:2/3 + 1/412. 计算:3/5 2/713. 计算:4/9 + 5/12 2/314. 计算:7/8 + (3/16)15. 计算:9/11 + 5/7 2/516. 计算:12/13 8/1517. 计算:16/21 + 14/27 10/3318. 计算:20/25 + 18/35 12/4919. 计算:24/28 + 22/36 15/4520. 计算:30/32 + 28/40 21/5621. 计算:3.2 + (1.8)22. 计算:4.5 2.723. 计算:5.6 + 6.8 2.424. 计算:7.9 + (3.1)25. 计算:8.5 (4.3)26. 计算:9.6 + 5.2 3.827. 计算:10.8 + 12.6 8.928. 计算:13.2 + 9.4 4.529. 计算:14.7 8.6 + 6.330. 计算:16.8 + 11.2 7.631. 计算:(3/4) + (5/6)32. 计算:(7/8) (3/10)33. 计算:(9/12) + (5/16) (2/8)34. 计算:(11/14) + (6/20)35. 计算:(13/18) + (7/24) (3/12)36. 计算:(15/22) (8/28)37. 计算:(17/30) + (14/40) (10/25)38. 计算:(19/36) + (16/48) (11/44)39. 计算:(21/42) + (18/56) (12/36)40. 计算:(23/60) + (20/72) (13/65)41. 计算:5 + 2/3 442. 计算:7 3/5 + 643. 计算:8 + 4/9 7 2/344. 计算:10 + 5/12 + 9 3/445. 计算:12 6/15 + 11 4/1046. 计算:14 + 7/18 13 + 5/2447. 计算:16 + 8/21 15 6/2848. 计算:18 + 9/27 + 17 7/3649. 计算:20 10/33 + 19 8/4050. 计算:22 + 11/39 21 + 9/49一、整数加减题51. 计算:23 + 4752. 计算:35 5953. 计算:(68) + 8454. 计算:(92) 3755. 计算:58 + (24)56. 计算:(73) (38)57. 计算:101 5258. 计算:(119) + 6459. 计算:76 + (113)60. 计算:(135) 81二、分数加减题61. 计算:1/2 + 3/462. 计算:2/3 5/663. 计算:(7/8) + 4/964. 计算:(9/10) 2/565. 计算:11/12 + (3/4)66. 计算:(13/14) (5/7)67. 计算:15/16 + 8/968. 计算:(17/18) + 12/1369. 计算:19/20 7/870. 计算:(21/22) (9/10)三、小数加减题71. 计算:2.5 + 3.772. 计算:4.8 6.273. 计算:(7.3) + 8.974. 计算:(9.6) 1.475. 计算:10.1 + (2.8)76. 计算:(11.5) (3.6)77. 计算:12.7 4.378. 计算:(13.9) + 5.579. 计算:14.4 + (6.6)80. 计算:(15.8) 7.2四、混合运算题81. 计算:5 + 2/3 3.482. 计算:7 4/5 + 2.883. 计算:8.6 + 3/7 6 1/284. 计算:9.9 + 5/9 + 7.3 2/385. 计算:11.2 6/11 + 8.8 3/4. 计算:12.5 + 7/13 9.9 + 4/987. 计算:13.7 + 8/17 10.2 5/1488. 计算:14.8 + 9/19 + 11.4 6/1189. 计算:16.1 10/23 + 12.9 7/1690. 计算:17.4 + 11/29 13.5 + 8/25五、复杂运算题91. 计算:(3 + 2/5) (7 4/7)92. 计算:(4 3/8) + (6 + 5/9)93. 计算:(5 + 4/12) (8 6/11)94. 计算:(6 5/15) + (9 + 7/13)95. 计算:(7 6/18) + (10 8/14)96. 计算:(8 + 7/21) (11 9/16)97. 计算:(9 + 8/24) (12 10/20)98. 计算:(10 9/27) + (13 + 11/22)99. 计算:(11 10/30) + (14 12/26) 100. 计算:(12 + 11/33) (15 13/28)答案一、整数加减题51. 7052. 2453. 1654. 12955. 3456. 3557. 4958. 5559. 3760. 216二、分数加减题62. 1/663. 41/7264. 13/10 或 1 3/1065. 1/366. 1/1467. 23/18 或 1 5/1868. 5/3669. 1/4070. 1/22三、小数加减题71. 6.272. 1.473. 1.674. 1175. 7.376. 7.977. 8.478. 4.479. 7.880. 23四、混合运算题81. 2.26 或 2 3/1282. 4.97 或 4 97/10084. 0.36 或 9/2585. 9.06 或 9 3/12 . 3.18 或 3 9/5087. 4.32 或 4 3/1788. 1.55 或 1 11/1289. 9.26 或 9 13/2390. 4.73 或 4 73/100五、复杂运算题91. 1 2/3592. 10 23/7293. 1 13/16594. 14 14/6595. 15 1/12696. 2 29/25297. 1 7/10598. 24 11/30899. 24 19/390100. 2 41/364。

完整版)有理数加减法单元测试题

完整版)有理数加减法单元测试题

完整版)有理数加减法单元测试题有理数加减单元检测一、填空题(每小题3分,共30分)1.-2+2=0.+2-(-2)=4.2.(-1)+(-2)-2+(-3)=-8.3.-5+5=-10.-2-(-4)=-6.4.比-5大6的数是1.5.+2-(-1)=3.6.乙潜水员的所在高度是-30米.7.统一成加法的形式是(-12)+(-13)+(-14)+(-15)+(+16),省略加号的形式是-12-13-14-15+16,读作负十二负十三负十四负十五加十六.8.-3-(-5)=2.9.两个负数的和的符号是负,和是-1/3,和的绝对值是1/3,差的符号是负,差是-1/3,差的绝对值是1/3.10.两数5和-6的相反数的和是-11,两数和的相反数是-1,两数和的绝对值是11.二、选择题(每题2分,共16分)11.(C)-12C.12.(D)(2/3)+(-10/3)=8.13.(A)-6-6=-12.14.(C)最多有两个正数.15.B 6-3-7-2.16.A 正数.17.(B) a+b是正数.18.(B) -5>-6.2>-4.改写后的文章:有理数加减单元检测一、填空题(每小题3分,共30分)1.-2+2=0.+2-(-2)=4.2.(-1)+(-2)-2+(-3)=-8.3.-5+5=-10.-2-(-4)=-6.4.比-5大6的数是1.5.+2-(-1)=3.6.乙潜水员的所在高度是-30米。

7.统一成加法的形式是(-12)+(-13)+(-14)+(-15)+(+16),省略加号的形式是-12-13-14-15+16,读作负十二负十三负十四负十五加十六。

8.-3-(-5)=2.9.两个负数的和的符号是负,和是-1/3,和的绝对值是1/3,差的符号是负,差是-1/3,差的绝对值是1/3.10.两数5和-6的相反数的和是-11,两数和的相反数是-1,两数和的绝对值是11.二、选择题(每题2分,共16分)11.室外温度比室内温度低12C。

专题 有理数加减法(专题测试)(原卷版)

专题 有理数加减法(专题测试)(原卷版)

专题03 有理数加减法(专题测试)满分:100分时间:90分钟一、选择题(每小题3分,共36分)1.(2022•河西区二模)计算(﹣12)+7的结果等于()A.﹣8B.﹣7C.﹣5D.192.(2020秋•大冶市期末)武汉市元月份某一天早晨的气温是﹣3℃,中午上升了8℃,则中午的气温是()A.﹣5℃B.5℃C.3℃D.﹣3℃3.(2022秋•宜兴市月考)将6+(+3)+(﹣7)﹣(﹣2)改写成省略括号的和的形式是()A.﹣6﹣3+7﹣2B.6﹣3﹣7+2C.6﹣3+7﹣2D.6+3﹣7+2 4.(2022•呼和浩特)计算﹣3﹣2的结果是()A.﹣1B.1C.﹣5D.55.(2022春•巧家县期中)小明家的冰箱冷藏室温度是4℃,冷冻室的温度是﹣12℃,则他家的冰箱冷藏室比冷冻室温度高()A.8℃B.16℃C.﹣8℃D.﹣16℃6.(2021秋•朝阳区校级月考)某校规定英语竞赛成绩85分以上为优秀,老师将85分记为0,并将一组5名同学的成绩简记为﹣3,+14,0,+5,﹣6,这5名同学的平均成绩是()A.83分B.87分C.82分D.84分7.(2021秋•桓台县期末)如果a﹣b>0,且a+b<0,那么一定正确的是()A.a为正数,且|b|>|a|B.a为正数,且|b|<|a|C.b为负数,且|b|>|a|D.b为负数,且|b|<|a|8.(2021秋•金沙县期末)设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a+b﹣c的值为()A.0B.2C.﹣2D.2或﹣2 9.(2021秋•郏县期中)若|x|=1,|y|=3.且x,y异号,则x+y的值为()A.±2B.2或﹣4C.﹣2D.4或210.(2021秋•思明区校级期末)实际测量一座山的高度时,有时需要在若干个观测点中测量两个相邻可视观测点的相对高度如A﹣C为90米表示观测点A比观测点C高90米),然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录,根据这次测量的数据,可得A﹣B是()米.A﹣C C﹣D E﹣D F﹣E G﹣F B﹣G90米80米﹣60米50米﹣70米40米A.210B.130C.390D.﹣210 11.(2021秋•孟村县期末)已知图中各行、各列及对角线上的3个数之和都相等,则y﹣x 的值为()0﹣3y﹣2y4xA.﹣6B.﹣5C.﹣4D.﹣212.(2021秋•鹿城区校级期中)“幻方”最早记载于春秋时期的《大戴礼记》中,如图1所示,每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等,现﹣1,2,﹣2,﹣4,5,﹣5,6,8填入如图2所示的“幻方”中,部分数据已填入,则图中a+b+c﹣d的值为()A.4B.5C.6D.7二、填空题(每小题2分,共10分)13.(2021秋•山西期末)2021年11月6日,山西太原降雪来袭,当天最高气温1℃,最低气温是﹣9℃,那么太原市这一天的温差为℃.14.(2021秋•密山市期末)一个热气球在200米的空中停留,然后它依次上升了15米,﹣8米,﹣20米,这个热气球此时停留在米.15.(2021秋•普陀区期末)已知|a|=9,|b|=3,则|a﹣b|=b﹣a,则a+b的值为.16.(2021秋•临沭县校级月考)如图,小明在写作业时不慎将一滴墨水滴在数轴上,根据图中的数值,可以确定墨迹盖住的所有整数的和是.17.(2022春•朝阳区期末)某校七年级举办的趣味“体育节”共设计了五个比赛项目,每个项目都以班级为单位参赛,且每个班级都需要参加全部项目,规定:每项比赛中,只有排在前三名的班级记成绩(没有并列班级),第一名的班级记a分,第二名的班级记b 分,第三名的班级记c分(a>b>c,a、b、c均为正整数);各班比赛的总成绩为本班每项比赛的记分之和.该年级共有四个班,若这四个班在本次“体育节”的总成绩分别为21,6,9,4,则a+b+c=,a的值为.三.解答题(共54分)18.(8分)(2020秋•和平区校级月考)(1)(﹣52)+24+(﹣74)+12;(2)(+)+(﹣)+(+)+(﹣).19.(16分)(2022秋•朝阳区校级月考)计算:(1)(﹣52)+(﹣19)﹣(+37)﹣(﹣24);(2);(3);(4).20.(8分)(2021秋•盘龙区期末)某食堂购进30袋大米,每袋以50千克为标准,超过的记为正,不足的记为负,称重记录如表.与标准重量偏差(单位:千克)﹣2﹣10123袋数5103156(1)这30袋大米的总重量比标准总重量是多还是少?相差多少?(2)大米单价是每千克5.5元,食堂购进大米总共花多少钱?21.(10分)(2021秋•南阳期末)阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如图,线段AB=1=0﹣(﹣1);线段BC=2=2﹣0;线段AC=3=2﹣(﹣1)问题(1)数轴上点M、N代表的数分别为﹣9和1,则线段MN=;(2)数轴上点E、F代表的数分别为﹣6和﹣3,则线段EF=;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为2,则另一个点表示的数为m,求m.22.(10分)(2021秋•旌阳区校级月考)(1)请观察下列算式:=1﹣,=﹣,=﹣,=﹣,…,则第10个算式为=,第n个算式为=;(2)运用以上规律计算:+++…+++.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数加法和减法提高训练
林东六中初一数学备课组
一、填空题
1、若,,且,则=
2、已知=3,=2,且ab<0,则a-b= 。

3、若互为相反数,互为倒数,则。

4、下面是一个简单的数值运算程序,当输入的值为2时,输出的数值是.
5、在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如右
图所示,则图中阴影部分的面积是。

6、符号“”表示一种运算,它对一些数的运算结果如下:
(1),,,,…
(2),,,,…
利用以上规律计算:.
二、选择题
7、将6-(+3)-(-7)+(-2)写成省略加号的和的形式为 ( )
A.-6-3+7-2 B.6-3-7-2
C.6-3+7-2 D.6+3-7-2
8、若b<0,则a-b、a、a+b的大小关系是( )
A.a-b<a<a+b B.a<a-b<a+b
C.a+b<a-b<a D.a+b<a<a-b
9、两个数相加,如果和为负数,则这两个数( )
A.必定都为负 B.总是一正一负 C.可以都为正 D.至少有一个负数
10、已知、互为相反数,且,则的值为()
A.2 B.2或3 C.4 D.2或4
11、如果表示有理数,那么的值…………………………………………… ( )
A、可能是负数
B、必定是正数
C、不可能是负数
D、可能是负数也可能是正数
12、利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()
A.73cm B.74cm C.75cm D.76cm
13、若a>0>b>c,a+b+c=1,M=,N=,P=,则M、N、P之间的大小关系是( )
A、M>N>P
B、N>P>M
C、P>M>N
D、M>P>N
14、一张纸片,第一次将其撕成2小片,以后每次将其中的一小片撕成更小的2片,则15次后共有纸片( )
A.30张 B.15张 C.16张 D.以上答案都不对
15、如图,数轴上的两个点A、B所表示的数分别是,在中,是正数的有()
A.1个 B.2个 C.3个 D.4个
16、某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年购买8罐液化气,则购买液化气最省钱的方法是()
A.买甲站的B.买乙站的
C.买两站的都可以D.先买甲站的1罐,以后再买乙站的
三、简答题
四、17、2011年月日,中国汽车协会发布最新汽车产销数据显示:上半年汽车销售量
万辆.某汽车厂计划一周生产汽车辆,平均每天生产辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):

一二三四五六日



(1) 根据记录的数据可知该厂星期五生产汽车辆;
(2) 产量最多的一天比产量最少的一天多生产汽车辆;
(3) 根据记录的数据可知该厂本周实际生产汽车辆,该厂实行每周计件工资制,每生产一辆车可得元,那么该厂工人这一周的实际工资总额是元.
18、对于有理数ab6,定义运算“”,a~b=a·b-a-b-2.
(1)计算(-2)3的值;
(2)填空:4(-2)_______(-2)4(填“>”“=”或“<”);
(3)我们知道:有理数的加法运算和乘法运算满足交换律.那么,由(2)计算的结果,你认为这种运算“”是否满足交换律?请说明理由.
19、探索性问题
数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础。

请利用数轴回答下列问题:
已知点A、B在数轴上分别表示数a、b.
(1)填写下表:
数列A 列B 列C 列D 列E 列F
a 5 -5 -6 -6 -10 -2.5
b 3 0 4 -4 2 -2.5
A、B两点的距

(2)任取上表一列数,你发现距离表示可列式为,则轴上表示和的两点之间的距离可表示为 .
(3)若表示一个有理数,且,则= .
(4)若A、B两点的距离为d,则d与a、b有何数量关系.
20、【阅读】表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点
之间的距离;可以看做,表示5与-2的差的绝对值,也可理解为5与-2两数在数轴上所对应的两点之间的距离.
【探索】
(1) =___________.
(2) 利用数轴,找出所有符合条件的整数,使所表示的点到5和—2的距离之和为7
(3) 由以上探索猜想,对于任何有理数,是否有最小值? 如果有,写出最
小值;如果没有,说明理由.。

相关文档
最新文档