人教版七年级数学上册重难点专题整式的认识与计算及答案
人教版七年级数学上册《计算重难题型》专题训练-附带答案
人教版七年级数学上册《计算重难题型》专题训练-附带答案一.易错计算强化1.计算:(1)(13−52+16)×(−36);(2)(−1)2022×3−23+(−14)2÷|−125|.试题分析:(1)根据乘法分配律计算即可;(2)先算乘方再算乘除法最后算加减法即可.答案详解:解:(1)(13−52+16)×(−36)=13×(﹣36)−52×(﹣36)+16×(﹣36)=﹣12+90+(﹣6)=72;(2)(−1)2022×3−23+(−14)2÷|−125|=1×3﹣8+116÷132=1×3﹣8+116×32=3﹣8+2=﹣3.2.计算:(1)−14−(−2)3×14−16×(12−14+38).(2)−22−2×[(−3)2−3÷12 ].试题分析:(1)先算乘方再算乘法最后算加减法即可;(2)先算乘方和括号内的式子然后计算括号外的乘法最后算减法即可.答案详解:解:(1)−14−(−2)3×14−16×(12−14+38)=﹣14﹣(﹣8)×14−16×12+16×14−16×38=﹣14+2﹣8+4﹣6=﹣22;(2)−22−2×[(−3)2−3÷1 2 ]=﹣4﹣2×(9﹣3×2)=﹣4﹣2×(9﹣6)=﹣4﹣2×3=﹣4﹣6=﹣10.3.计算:(1)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|;(2)[50−(79−1112+16)×(−6)2]÷(−7)2.试题分析:(1)先算乘方再算乘除法最后算加减法即可;(2)先算乘方再根据乘法分配律计算括号内的式子最后算括号外的除法.答案详解:解:(1)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|=﹣9÷9+3×(﹣2)+4=﹣1+(﹣6)+4=﹣3;(2)[50−(79−1112+16)×(−6)2]÷(−7)2 =[50﹣(79−1112+16)×36]÷49=(50−79×36+1112×36−16×36)÷49 =(50﹣28+33﹣6)÷49 =49÷49 =1.4.计算:(1)(−12)﹣(﹣314)+(+234)﹣(+512);(2)﹣8+12﹣(﹣16)﹣|﹣23|; (3)42×(−23)﹣(−34)÷(﹣0•25); (4)(134−78−712)÷(−78)+(−83);试题分析:按照有理数混合运算的顺序 先乘方后乘除最后算加减 有括号的先算括号里面的 计算过程中注意正负符号的变化.答案详解:解:(1)原式=(−12)+134+114−224 =(−12)+24=0;(2)原式=(﹣8)+12+16﹣23 =﹣3;(3)原式=(﹣28)﹣3 =﹣31; (4)原式=(4224−2124−1424)×(−87)−83=(−13)−83=﹣3. 5.计算下列各题:①−14÷(−5)2×(−53)+|0.8−1|②−52−[(−2)3+(1−0.8×34)÷(−22)×(−2)].试题分析:①原式第一项被除数表示1四次幂的相反数除数表示两个﹣5的乘积再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算最后一项利用绝对值的代数意义化简计算即可得到结果;②原式第一项表示5平方的相反数中括号中第一项表示三个﹣2的乘积第二项算计算括号中的运算再利用乘法法则计算即可得到结果.答案详解:解:①原式=﹣1÷25×(−53)+0.2=﹣1×125×(−53)+0.2=115+15=415;②原式=﹣25﹣[﹣8+(1−35)÷(﹣4)×(﹣2)]=﹣25﹣(﹣8+25×14×2)=﹣25+8−15=−17.2.二.二进制与十进制的转化6.我们常用的数是十进制数计算机程序使用的是二进制数(只有数码0和1)它们两者之间可以互相换算如将(101)2(1011)2换算成十进制数为:(101)2=1×22+0×21+1=4+0+1=5;(1011)2=1×23+0×22+1×21+1=11;两个二进制数可以相加减相加减时将对应数位上的数相加减.与十进制中的“逢十进一”、“退一还十”相类似应用“逢二进一”、“退一还二”的运算法则如:(101)2+(11)2=(1000)2;(110)2﹣(11)2=(11)2用竖式运算如右侧所示.(1)按此方式将二进制(1001)2换算成十进制数的结果是9.(2)计算:(10101)2+(111)2=(11100)2(结果仍用二进制数表示);(110010)2﹣(1111)2=35(结果用十进制数表示).试题分析:(1)根据例子可知:若二进制的数有n位那么换成十进制等于每一个数位上的数乘以2的(n﹣1)方再相加即可;(2)关于二进制之间的运算利用“逢二进一”、“退一还二”的运算法则计算即可.答案详解:解:(1)(1001)2=1×23+0×22+0×21+1=9;(2)(10101)2+(111)2=(11100)2;(110010)2﹣(1111)2=(100011)2=1×25+1×21+1=35.所以答案是:9;(11100)2;35.7.我们常用的数是十进制数计算机程序使用的是二进制数(只有数码0和1)它们两者之间可以互相换算如将(101)2(1011)2换算成十进制数应为:(101)2=1×22+0×21+1×20=4+0+1=5;(1011)2=1×23+0×22+1×21+1×20=8+0+2+1=11.按此方式将二进制(1001)2换算成十进制数和将十进制数13转化为二进制的结果分别为()A.9 (1101)2B.9 (1110)2C.17 (1101)2D.17 (1110)2试题分析:首先理解十进制的含义然后结合有理数运算法则计算出结果然后根据题意把13化成按2的整数次幂降幂排列即可求得二进制数.答案详解:解:(1001)2=1×23+0×22+0×21+1×20=9.13=8+4+1=1×23+1×22+0×21+1×20=(1101)2所以选:A.8.计算机程序使用的是二进制数(只有数码0和1)是逢2进1的计数制二进制数与常用的十进制数之间可以互相换算如将(10)2(1011)2换算成十进制数应为:(10)2=1×21+0×20=2 (1011)2=1×23+0×22+1×21+1×20=11.按此方式则(101)2+(1101)2=18.试题分析:仿照所给的方式进行求解即可.答案详解:解:(101)2+(1101)2=1×22+0×21+1×20+1×23+1×22+0×21+1×20=4+0+1+8+4+0+1=18.所以答案是:18.三.数值转化机9.按如图所示的程序运算:当输入的数据为﹣1时则输出的数据是()A.2B.4C.6D.8试题分析:把x=﹣1代入程序中计算判断结果与0的大小即可确定出输出结果.答案详解:解:把x=﹣1代入程序中得:(﹣1)2×2﹣4=2﹣4=﹣2<0把x=﹣2代入程序中得:(﹣2)2×2﹣4=8﹣4=4>0则输出的数据为4.所以选:B.10.下图是计算机计算程序若开始输入x=﹣2 则最后输出的结果是﹣17.试题分析:把﹣2按照如图中的程序计算后若<﹣5则结束若不是则把此时的结果再进行计算直到结果<﹣5为止.答案详解:解:根据题意可知(﹣2)×4﹣(﹣3)=﹣8+3=﹣5所以再把﹣5代入计算:(﹣5)×4﹣(﹣3)=﹣20+3=﹣17<﹣5即﹣17为最后结果.故本题答案为:﹣1711.按照如图所示的操作步骤若输入值为﹣3 则输出的值为55.试题分析:把﹣3代入操作步骤中计算即可确定出输出结果.答案详解:解:把﹣3代入得:(﹣3)2=9<10则有(9+2)×5=55.所以答案是:55.四.类比推理--规律类的钥匙12.观察下列各式:1 1×2+12×3=(11−12)+(12−13)=1−13=23.1 1×2+12×3+13×4=(11−12)+(12−13)+(13−14)=1−14=34.…(1)试求11×2+12×3+13×4+14×5的值.(2)试计算11×2+12×3+13×4+⋯+1n×(n+1)(n为正整数)的值.试题分析:(1)根据已知等式得到拆项规律原式变形后计算即可得到结果;(2)原式利用拆项法变形计算即可得到结果.答案详解:解:(1)原式=1−12+12−13+14−15=1−15=45;(2)原式=1−12+12−13+..+1n−1n+1=1−1n+1=n n+1.13.阅读下面的文字完成后面的问题.我们知道11×2=1−1212×3=12−1313×4=13−14那么14×5=14−1512005×2006=1 2005−1 2006.(1)用含有n的式子表示你发现的规律1n−1n+1;(2)依上述方法将计算:1 1×3+13×5+15×7+⋯+12003×2005=10022005(3)如果n k均为正整数那么1n(n+k)=1k⋅(1n−1n+k).试题分析:观察发现每一个等式的左边都是一个分数其中分子是1 分母是连续的两个正整数之积并且如果是第n个等式分母中的第一个因数就是n第二个因数是n+1;等式的右边是两个分数的差这两个分数的分子都是1 分母是连续的两个正整数并且是第n个等式被减数的分母就是n减数的分母是n+1.然后把n=4 n=2005代入即可得出第5个等式;(1)先将(1)中发现的第n个等式的规律1n(n+1)=1n−1n+1代入再计算即可;(2)先类比(1)的规律得出1n(n+2)=12(1n−1n+1)再计算即可.(3)根据(2)的规律即可得出结论.答案详解:解:∵第一个式子:11×2=1−12;第二个式子:12×3=12−13;第三个式字:13×4=13−14… ∴14×5=14−1512005×2006=12005−12006.所以答案是:14−1512005−12006;(1)由以上得出的规律可知 第n 个等式的规律 1n(n+1)=1n−1n+1;(2)原式=12(1−13+13−14⋯+12003−12005) =12(1−12005) =10022005(3)由(2)可知n k 均为正整数1k⋅(1n−1n+k).14.类比推理是一种重要的推理方法 根据两种事物在某些特征上相似 得出它们在其他特征上也可能相似的结论.阅读感知:在异分母的分数的加减法中 往往先化作同分母 然后分子相加减 例如:12−13=32×3−23×2=3−26=16我们将上述计算过程倒过来 得到16=12×3=12−13这一恒等变形过程在数学中叫做裂项.类似地 对于14×6可以用裂项的方法变形为:14×6=12(14−16).类比上述方法 解决以下问题.【类比探究】(1)猜想并写出:1n×(n+1)=1n −1n+1; 【理解运用】(2)类比裂项的方法 计算:11×2+12×3+13×4+⋯+199×100;【迁移应用】(3)探究并计算:1−1×3+1−3×5+1−5×7+1−7×9+⋯+1−2021×2023.试题分析:(1)根据题目中的例子 可以写出相应的猜想; (2)根据式子的特点 采用裂项抵消法可以解答本题; (3)将题目中的式子变形 然后裂项抵消即可解答本题. 答案详解:解:(1)1n×(n+1)=1n−1n+1所以答案是:1n−1n+1;(2)由(1)易得:(1−12)+(12−13)+(13−14)+⋯+(199−1100) =1−12+12−13+13−14+⋯+199−1100 =1−1100 =99100; (3)1−1×3+1−3×5+1−5×7+1−7×9+...+1−2021×2023=−12×(21×3+23×5+25×7+27×9+⋯+22021×2023)=−12×(1−13+13−15+15−17+17−19+⋯+12021−12023) =−12×(1−12023) =−12×20222023=−10112023. 15.“转化”是一种解决问题的常用策略 有时画图可以帮助我们找到转化的方法.例如借助图① 可以把算式1+3+5+7+9+11转化为62=36.请你观察图② 可以把算式12+14+18+116+132+164+1128转化为127128.试题分析:根据图形观察发现 把正方形看作单位“1” 即算式可以转化成1−1128 再求出答案即可.答案详解:解:12+14+18+116+132+164+1128=1−1128=127128所以答案是:127128.16.观察下列等式:第1个等式:a 1=11×2=1−12; 第2个等式:a 2=12×3=12−13; 第3个等式:a 3=13×4=13−14; 第4个等式:a 4=14×5=14−15⋯ 请解答下列问题:(1)按以上规律写出:第n 个等式a n = 1n(n+1)=1n−1n+1(n 为正整数);(2)求a 1+a 2+a 3+a 4+…+a 100的值; (3)探究计算:11×4+14×7+17×10+⋯+12020×2023.试题分析:(1)对所给的等式进行分析 不难总结出其规律; (2)利用所给的规律进行求解即可;(3)仿照所给的等式 对各项进行拆项进行 再运算即可. 答案详解:解:(1)∵第1个等式:a 1=11×2=1−12; 第2个等式:a 2=12×3=12−13; 第3个等式:a 3=13×4=13−14; 第4个等式:a 4=14×5=14−15; …∴第n 个等式:a n =1n(n+1)=1n −1n+1 所以答案是:1n(n+1)=1n−1n+1;(2)a 1+a 2+a 3+a 4+…+a 100=11×2+12×3+13×4+14×5+⋯+1100×101 =1−12+12−13+13−14+14−15+⋯+1100−1101=1−1101 =100101; (3)11×4+14×7+17×10+⋯+12020×2023 =13×(1−14+14−17+17−110+⋯+12020−12023) =13×(1−12023)=13×20222023=6742023.五.阅读类--化归思想17.阅读下列材料:计算5÷(13−14+112)解法一:原式=5÷13−5÷14+5÷112 =5×3﹣5×4+5×12=55解法二:原式=5÷(412−312+112) =5÷16=5×6=30解法三:原式的倒数=(13−14+112)÷5=(13−14+112)×15 =13×15−14×15+112×15=130∴原式=30(1)上述的三种解法中有错误的解法 你认为解法 一 是错误的(2)通过上述解题过程 请你根据解法三计算(−142)÷(16−314−23+37)试题分析:(1)根据运算律即可判断;(2)类比解法三计算可得.答案详解:解:(1)由于除法没有分配律所以解法一是错误的所以答案是:一;(2)原式的倒数=(16−314−23+37)÷(−142) =(16−314−23+37)×(﹣42) =16×(﹣42)−314×(﹣42)−23×(﹣42)+37×(﹣42) =﹣7+9+28﹣18=12∴原式=112.18.先阅读下面材料 再完成任务:【材料】下列等式:4−35=4×35+1 7−34=7×34+1 … 具有a ﹣b =ab +1的结构特征 我们把满足这一特征的一对有理数称为“共生有理数对” 记作(a b ).例如:(4 35)、(7 34)都是“共生有理数对”.【任务】(1)在两个数对(﹣2 1)、(2 13)中 “共生有理数对”是 (2 13) ; (2)请再写出一对“共生有理数对” (−12 ﹣3) ;(要求:不与题目中已有的“共生有理数对”重复)(3)若(x ﹣2)是“共生有理数对” 求x 的值;(4)若(m n )是“共生有理数对” 判断(﹣n ﹣m ) 是 “共生有理数对”.(填“是”或“不是”)试题分析:(1)读懂题意 根据新定义判断即可;(2)随意给出一个数 设另一个数为x 代入新定义 求出另一个数即可;(3)根据新定义列等式求出x的值;(4)第一对是“共生有理数对”列等式通过等式判断第二对数是否符合新定义.答案详解:解:(1)(﹣2 1)∵(﹣2)﹣1=﹣3 (﹣2)×1+1=﹣1 ﹣3=﹣1∴(﹣2 1)不是“共生有理数对”;(2 1 3)∵2−13=532×13+1=5353=53∴(2 13)是“共生有理数对”;所以答案是:(2 13);(2)设一对“共生有理数对”为(x﹣3)∴x﹣(﹣3)=﹣3x+1∴x=−1 2∴这一对“共生有理数对”为(−12﹣3)所以答案是:(−12﹣3);(3)∵(x﹣2)是“共生有理数对”∴x﹣(﹣2)=﹣2x+1∴x=−1 3;(4)∵(m n)是“共生有理数对”∴m﹣n=mn+1∴﹣n﹣(﹣m)=(﹣n)(﹣m)+1∴(﹣n﹣m)是“共生有理数对”所以答案是:是.19.阅读材料解决下列问题:【阅读材料】求n个相同因数a的积的运算叫做乘方记为a n.若10n=m(n>0 m≠1 m>0)则n叫做以10为底m的对数记作:lgm=n.如:104=10000 此时4叫做以10为底10000的对数记作:lg10000=lg104=4 (规定lg10=1).【解决问题】(1)计算:lg100=2;lg1000=3;lg100000=5;lg1020=20;(2)计算:lg10+lg100+lg1000+⋅⋅⋅+lg1010;【拓展应用】(3)由(1)知:lg100+lg1000与lg100000之间的数量关系为:lg100+lg1000=lg100000;猜想:lga+lgb=lgab(a>0 b>0).试题分析:(1)应用题目所给的计算方法进行计算即可得出答案;(2)应用题目所给的计算方法和有理数乘方法则进行计算即可得出答案;(3)应用题目所给的计算方法进行计算即可得出答案.答案详解:解:(1)根据题意可得lg100=2;lg1000=3;lg100000=5;lg1020=20;所以答案是:2 3 5 20;(2)lg10+lg100+lg1000+⋅⋅⋅+lg1010=1+2+3+……+10=55;(3)∵lg100+lg1000=2+3=5lg100000=5∴lg100+lg1000=lg100000;所以答案是:lg100+lg1000=lg100000;lga+lgb=lgab.所以答案是:lgab.20.阅读下列各式:(a•b)2=a2b2(a•b)3=a3b3(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×12)100=12100×(12)100=1;(2)通过上述验证归纳得出:(a•b)n=a n b n;(abc)n=a n b n c n.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.试题分析:(1)先算括号内的乘法再算乘方;先乘方再算乘法;②根据有理数乘方的定义求出即可;③根据同底数幂的乘法计算再根据积的乘方计算即可得出答案.答案详解:解:(1)(2×12)100=1 2100×(12)100=1;②(a•b)n=a n b n(abc)n=a n b n c n③原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×1 32=(﹣1)2015×1 32=﹣1×1 32=−132.所以答案是:1 1;a n b n a n b n c n.。
新人教版七年级数学上册第2章整式的加减复习教材全解(重难点、例题解析)
新人教版七年级数学上册第2章整式的加减复习教材全解(重难点、例题解析)复习内容:列式表示数量关系、单项式、多项式、整式等有关概念以及整式加减运算.复习目标:1.知识与技能进一步理解单项式、多项式、整式及其有关概念,准确确定单项式的系数、次数、多项式的项、次数;理解同类项概念,掌握合并同类项法则和去括号规律,熟练地进行整式加减运算.2.过程与方法通过回顾与思考,帮助学生梳理本章内容,提高学生分析、归纳、语言表达能力;提高运算能力及综合应用数学知识的能力.3.情感态度与价值观培养严谨的学习态度和积极思考的学习习惯,通过列式表示数量关系,体会数学知识与实际问题的联系.一、本章知识结构框架图二、易错知题分析误区一书写不规范致误例1 用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数 (2)a 的2倍与b 的31的差除以a 与b 的差的立方。
错解(1)(22y x +)-(x+y ) (2)(2a-1/3b )÷(x+y)剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是(22y x +)-(x+y )。
(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --。
正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 误区二 概念不清致误例2、判断下列各组是否是同类项:(1)0.2x 2y 与0.2xy 2 (2)4abc 与4ac (3)-130与15 (4)-532m n 与423n m(5)-++()()a b a b 332与 (6)7311pq p q n n n n ++与错解:(1)(3)(4)(6)是同类项,(2)(5)不是同类项。
剖析:(1)0.2x 2y 与0.2xy 2因为字母x 的指数不同,字母y 的指数也不同,所以不是同类项。
人教版七年级数学(上)第一章《整式》经典例题及练习含答案
人教版七年级数学(上)第一章《整式》经典例题及练习一. 教学内容:整式1. 单项式的有关概念,如何确定单项式的系数和次数;2. 多项式的有关概念,如何确定多项式的系数和次数;3. 什么是整式;4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力.二. 知识要点:1. 用字母表示数时,应注意以下几点:(1)加、减、乘、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式.(2)代数式中出现的乘号一般用“·”或省略不写,例如4乘a写作4a.(3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作.(4)代数式中大于1的分数系数一般写成假分数,例如2. 单项式(1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式. 对于单项式的理解有以下几点需要注意:①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式(x+1)3不是单项式.②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算.③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式.(2)单项式的系数:是指单项式中的数字因数,如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是-1.(3)单项式的次数:是指一个单项式中所有字母的指数的和. 掌握好这个概念要注意以下几点:①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5aaab,有4个字母因数,因此它的次数就是4.②确定单项式的次数时,不要漏掉“1”. 如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式-2a3b4c5的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14.④单独一个非零数字的次数是零.3. 多项式(1)多项式:是指几个单项式的和. 其含义有:①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式,(2)多项式的项:是指多项式中的每个单项式. 其中不含字母的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号).另外,一个多项式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是n,这一项就叫做n次项. 如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项.(3)多项式的次数:是指多项式里次数最高的项的次数. 应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2+1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.4. 单项式与多项式统称为整式.三. 重点难点:1. 重点:单项式和多项式的有关概念.2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数.【典型例题】例1. (1)(2008年宁夏)某市对一段全长1500米的道路进行改造. 原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天.(2)(2008年全国数学竞赛广东初赛)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是()A. a(1+m%)(1-n%)元B. am%(1-n%)元C. a(1+m%)n%元D. a(1+m%·n%)元分析:(1)修这条路实际用的天数等于这条路的全长1500米除以实际每天的工作量,原计划每天修x米,实际施工时,每天比原计划的2倍还多35米,即(2x+35)米. 用1500除以(2x+35)就可以了. (2)每件衬衣进价为a元,零售价比进价高m%,那么零售价就是a(1+m%),后来零售价调整为原来的n%,也就是a(1+m%)n%.评析:用字母表示数时,要注意书写代数式的惯例(数字在前字母在后,乘号省略,如果是除法写成分数的形式,系数是代分数时写成假分数,数字和字母写在括号的前面等)例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数.单独一个数字是单项式,它的次数是0.8a3x的系数是8,次数是4;-1的系数是-1,次数是0.评析:判定一个代数式是否是单项式,关键就是看式子中的数字与字母或字母与字母之间是不是纯粹的乘积关系,如果含有加、减、除的关系,那么它就不是单项式.例3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计)和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式.分析:容积是长×宽×高,表面积(无盖)是五个面的面积,在分辨它们是不是整式,是单项式还是多项式时,牵牵把握住概念,根据概念判断.解:纸盒的容积为abc;表面积为ab+2bc+2ac(或ab+ac+bc+ac+bc). 它们都是整式;abc是单项式,ab+2bc+2ac(或ab+ac+bc+ac+bc)是多项式.评析:①本题是综合考查本节知识的实际问题,作用有二:一是将本节所学知识直接应用到具体问题的分析和解答中,既巩固了知识,又强化了对知识的应用意识;二是将几何图形与代数有机结合起来,有利于综合解决问题能力的提高. ②本题解答关键:长方体的体积公式和表面积公式.故只剩下-2x2a+1y2的次数是7,即2a+1+2=7,则a=2.解:2评析:本题考查对多项式的次数概念的理解. 多项式的次数是由次数最高的项的次数决定的.例5. 把代数式2a2c3和a3x2的共同点填写在下列横线上.例如:都是整式.(1)都是____________________;(2)都是____________________.分析:观察两式,共同点有:(1)都是五次式;(2)都含有字母a.解:(1)五次式;(2)都含有字母a.评析:主要观察单项式的特征.例6. 如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值.分析:多项式不含x3和x项,则x3和x项的系数就是0. 根据这两项的系数等于0就可以求出a和b 的值了.解:因为多项式不含x3项,所以其系数-(a-1)=0,所以a=1.因为多项式也不含x项,所以其系数-(b+3)=0,所以b=-3.答:a的值是1,b的值是-3.评析:多项式不含某项,则某项的系数为0.【方法总结】1. “用字母表示数”是代数学的基础,这种符号化的表示方法随着学习的深入会逐渐加深数学抽象化的程度,我们要体会这种抽象化,它更接近数学的本质,也是有效地解决数学问题的工具.2. 在学习多项式的时候,要注意和单项式的概念进行比较,通过比较两者之间的相同点和不同点,掌握两个概念之间的联系与区别,突出概念的本质,帮助我们理解多项式的概念.【模拟试题】(答题时间:40分钟)一. 选择题1. 在代数式中单项式共有()A. 2个B. 4个C. 6个D. 8个*2. 下列说法不正确的是()C. 6x2-3x+1的项是6x2,-3x,1D. 2πR+2πR2是三次二项式3. 下列整式中是多项式的是()4. 下列说法正确的是()A. 单项式a的指数是零B. 单项式a的系数是零C. 24x3是7次单项式D. -1是单项式5. 组成多项式2x2-x-3的单项式是下列几组中的()A. 2x2,x,3B. 2x2,-x,-3C. 2x2,x,-3D. 2x2,-x,3*7. 下列说法正确的是()B. 单项式a的系数为0,次数为2C. 单项式-5×102m2n2的系数为-5,次数为58. 下列单项式中的次数与其他三个单项式次数不同的是()**9. (2007年华杯初赛)如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式. 例如:x3+2xy2+2xyz+y3是3次齐次多项式. 若x m+2y2+3xy3z2是齐次多项式,则m等于()A. 1B. 2C. 3D. 4二. 填空题1. (2007年云南)一台电视机的原价为a元,降价4%后的价格为__________元.三. 解答题*1. 下列代数式中哪些是单项式,并指出其系数和次数.2. 说出下列多项式是几次几项式:(1)a3-ab+b3(2)3a-3a2b+b2a-1(3)3xy2-4x3y+12(4)9x4-16x2y2+25y2+4xy-1四. 综合提高题**3. 一个关于字母a、b的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?试写出一个符合这种要求的多项式,若a、b满足︱a+b︱+(b-1)2=0,求你写出的多项式的值.【试题答案】一. 选择题1. B2. D3. B4. D5. B6. C7. D8. B9. B二. 填空题三. 解答题2. (1)三次三项式(2)三次四项式(3)四次三项式(4)四次五项式四. 综合提高题1. 由题意可知m+2+1=8,∴m=52. (1)四次六项式,最高次项是-3x3y,最高次项系数是-3,常数项是1(2)三次三项式,最高次项是y3,最高次项系数是1,常数项是-0.53. 最多有5项(可以含有a3,b3,a2b,ab2),如a3+a2b+ab2+b3+1(答案不唯一). 因为︱a+b ︱+(b-1)2=0,所以b=1,a=-1,所以原式=-1+1-1+1+1=1。
人教版 七年级数学 上册 第二章 2.1整式 (有答案)有答案
12.1 整式【基础知识梳理】1、代数式的有关概念代数式:用基本的运算符号(包括加、减、乘、除、乘方、开方)把数、表示数的字母连结而成的式子叫做代数式,单独一个数或一个字母也是代数式。
说明:代数式书写时需注意:(1)数与字母、字母与字母相乘时乘号省略不写,数字要写在字母前面,如12ab ;数字因数是1或-1时,“1”省略不写,如-mn ;(2)带分数与字母相乘时要化成假分数,如:ab 211要写成ab 23的形式;(3)除号要改写成分数线,如:a ÷b 要写成b a ;(4)书写单位时要把代数式用括号括起来,如(12ab +2R )平方米。
代数式的系数:在代数式中,每一项字母前的数字因数叫做这一项的系数。
2、整式的有关概念(1)单项式的定义:都是数与字母的积的代数式叫做单项式.说明:判断一个代数式是不是单项式,主要是根据代数式中数字和字母间是否都是乘法运算关系.如yx 就不是一个单项式,因为2y 与x 之间是除法运算.但是,12ab 是单项式,因为12是一个数.a 是一个单项式,因为ab 以看作是a ·b 特别地,单独的一个数或单独的一个字母也都是单项式,如-3,0,12,x ,x2等都是单项式(2)单项式次数:一个单项式中,所有字母的指数和叫做这个单项式的次数. 说明:单项式的次数,是指这个单项式中将所有字母指数相加得到的和.如单项式3x 2、2xy 、x 2y 、12x 的次数分别是2、2、3、1.特别地,单独的一个数字,如3,-9等,可以当做0次单项式来看待.(3)单项式的系数:单项式中的数字因数即为单项式的系数.说明:在单项式中,系数只与数字因数有关;次数只与字母有关.如x 3yz 4的系数是1,次数为3+1+4=8.(4)多项式的定义:几个单项式的和叫做多项式.说明:多项式是由几个单项式相加得到的,如多项式x2+2x-1是由单项式x2,2x和-1相加而得到的(5)多项式的次数:一个多项式中,次数最高的项的次数叫做这个多项式的次数.说明:在确定多项式的次数时,应先计算出多项式的每一项的次数,然后再确定多项式的次数,即取次数最大的项的次数作为该多项式的次数.如,多项式x3-x2y2+x中,单项式x3的次数是3,单项式-x2y2的次数是4,单项式x的次数是1,所以多项式x3-x2y2+x 的次数是4.(6)多项式的项数:一个多项式中有几个单项式就有几项.每一个单项式就是一项。
数学七年级上册第二章整式知识点题型总结及练习题
整式一、基本概念:1、用字母表示数:⑴用字母或者含有字母的式子表示一定的数量关系,而不是用复杂的语言进行描述,更易于理解。
⑴用字母表示的数,字母和数一样可以参与运算。
一个问题中相同的字母表示的数相同、意义相同,一个问题中不同的字母表示的数不相同意义不同。
⑴规范书写要求:①字母和字母、数字和字母相乘是乘号可以写作“·”或者省略不写,数字通常写在字母前。
数字和数字相乘必须写乘号。
如a×2写作2a ,3×5不可写成3·5或3 5,a×b 写作a·b 或ab②带分数和字母相乘时,要把带分数写成假分数。
如165×a 写作611a ③除法通常写成分数的形式,如5a÷4b 写作b 4a 5 ④如果这个代数式是一个带有单位的,那么一定要把整个代数式用括号括起来,将单位写在括号外。
⑤字母系数和次数是1时不写,如1a 1是错误的写法,应该写作a2、单项式⑴定义:数或字母的积,表示的式子叫做单项式。
单独的数字、字母,数字和字母的乘积都是单项式。
例5、a、4b等都是单项式(单项式中不含有加减运算,只包含乘法、乘方和分母为数字的除法)⑴单项式的系数:单项式中的数字因数叫做这个单项式的系数。
例33a的系数是33。
ab的系数是1,-xy的系数是-1(字母乘积的形式没有数字,通常看做系数为1.如果前边有负号但没有数字,看做系数是-1)⑴单项式的次数:一个单项式中,所有字母的指数得和叫做这个单项式的次数。
例33a中字母a的指数是1,33a的次数是1.ab中字母a、b的指数都是1,和是2所以ab的次数是2,a3b2中字母a的指数是3,b的指数是2,指数和是5所以a3b2的次数是5.3、多项式:⑴定义:几个单项式的和叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
例多项式a+5b-5中含有a、5b、-5三个项(注意每项的正负号)其中-5为常数项。
数学人教版七年级上册章末重难点题型 整式的加减(解析版)
专题02 整式的加减章末重难点题型汇编【举一反三】【考点1 代数式书写规范】【方法点拨】代数式书写规范:①数和字母相乘,可省略乘号,并把数字写在字母的前面;②字母和字母相乘,乘号可以省略不写或用“·”表示. 一般情况下,按26个字母的顺序从左到右来写;③后面带单位的相加或相减的式子要用括号括起来;④除法运算写成分数形式,即除号改为分数线;⑤带分数与字母相乘时,带分数要写成假分数的形式;⑥当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在那个字母前加上“-”号.【例1】(2019秋•锦江区校级期中)下列各式:①113x;②23;③20%x;④a b c-÷;⑤226m n+;⑥5x-千克;其中,不符合代数式书写要求的有()A.5个B.4个C.3个D.2个【思路点拨】根据代数式书写要求判断即可.【答案】解:①14133x x=,不符合要求;②2•3应为2×3,不符合要求;③20%x,符合要求;④ba b c ac-÷=-,不符合要求;⑤226m n+,符合要求;⑥(x﹣5)千克,不符合要求,不符合代数式书写要求的有4个,故选:B.【方法总结】此题考查了代数式,弄清代数式的书写要求是解本题的关键.【变式1-1】(2018秋•广陵区校级期中)下列代数式的书写格式正确的是()A.112bc B.2a b c⨯⨯÷C.32x y÷D.52xy【思路点拨】根据代数式的书写要求判断各项即可.【答案】解:A.bc正确的书写格式是bc,故选项错误;B.a×b×c÷2正确的书写格式是abc,故选项错误;C.3x•y÷2正确的书写格式是xy,故选项错误;D.代数式xy书写正确.故选:D.【方法总结】本题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.【变式1-2】(2019秋•滦县期中)下列式子中,符合代数式书写格式的有()①m n⨯;②133ab;③1()4x y+;④2m+天;⑤3abcA.2个B.3个C.4个D.5个【思路点拨】根据代数式的书写要求判断各项.【答案】解:①正确的书写格式是mn;②正确的书写格式是ab;③的书写格式是正确的,④正确的书写格式是(m+2)天;⑤的书写格式是正确的.故选:A.【方法总结】此题考查代数式问题,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.【变式1-3】(2019秋•宜宾县期中)在下列的代数式的写法中, 表示正确的一个是( )A .“负x 的平方”记作2x -B .“y 与113的积”记作113yC .“x 的 3 倍”记作3xD .“2a 除以3b 的商”记作23a b 【思路点拨】根据代数式的书写要求逐一分析判断各项. 【答案】解:A 、“负x 的平方”记作(﹣x )2,此选项错误;B 、“y 与1的积”记作y ,此选项错误;C 、“x 的3倍”记作3x ,此选项错误;D 、“2a 除以3b 的商”记作,此选项正确; 故选:D .【方法总结】此题考查代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.【考点2 同类项及合并同类项】【方法点拨】(1)同类项的判别方法:抓住“两个相同”:一是所含的字母要完全相同,二是相同字母的指 数要相同,这两个条件缺一不可;(2)合并同类项的法则:同类项的系数相加,所得的结果作为系数,字 母和字母的指数不变.【例2】(2018秋•徐州期中)下列各组中的两个项不属于同类项的是( )A .23x y 和22x y -B .2a 和23C .1-和114D .xy -和2yx【思路点拨】根据同类项所含字母相同及相同字母的指数相同可判断出正确的选项.【答案】解:A 、两者符合同类项的定义,故本选项正确;B 、两者所含字母不同,故本选项错误;C 、两者符合同类项的定义,故本选项正确;D 、两者符合同类项的定义,故本选项正确;故选:B .【方法总结】本题考查同类项的知识,难度不大,注意掌握同类项所含字母相同及相同字母的指数相同.【变式2-1】(2018秋•海淀区校级期中)下列计算正确的是( )A .2a a a +=B .3265x x x -=C .235325x x x +=D .22234a b ba a b -=-【思路点拨】根据同类项的定义和合并同类法则进行计算,判断即可.【答案】解:A 、a +a =2a ,故本选项错误;B 、6x 3与5x 2不是同类项,不能合并,故本选项错误;C 、3x 2与2x 3不是同类项,不能合并,故本选项错误;D 、3a 2b ﹣4ba 2=﹣a 2b ,故本选项正确;故选:D .【方法总结】本题考查的是合并同类项,掌握同类项的概念、合并同类项法则是解题的关键.【变式2-2】(2019秋•荔湾区期中)若单项式2157n ax y +与475m ax y -的差仍是单项式,则(m n -= ) A .5 B .1- C .1 D .4【思路点拨】根据同类项的概念得出m ,n 的值,进而求解. 【答案】解:∵单项式ax 2yn +1与﹣ax m y 4的差仍是单项式, ∴单项式ax 2y n +1与﹣ax m y 4是同类项, ∴n +1=4,m =2,解得:m =2,n =3,则m ﹣n =2﹣3=﹣1.故选:B .【方法总结】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.【变式2-3】(2019秋•全椒县期中)一个五次六项式加上一个六次七项式合并同类项后一定是( )A .十一次十三项式B .六次十三项式C .六次七项式D .六次整式 【思路点拨】六次多项式,即其次数最高次项的次数六次.也就是说,每一项都可以是六次,也可以低于六次,但不可以超过六次.【答案】解:根据多项式的定义,可知六次多项式最少有两项,并且有一项的次数是6.故选:D.【方法总结】本题考查了多项式.注意多项式最少有两项,多项式里次数最高项的次数,叫做这个多项式的次数.【考点3 列代数式】【方法点拨】列代数式:①要抓住关键词语,明确它们的意义以及它们之间的关系;②理清语句层次明确运算顺序;③牢记一些概念和公式.【例3】(2019秋•罗湖区期末)某商品原价为p元,由于供不应求,先提价10%进行销售,后因供应逐步充足,价格又一次性降价10%,则最后的实际售价为()A.p元B.0.99p元C.1.01p元D.1.2p元【思路点拨】首先表示出提价10%的价格,进而表示出降价10%的价格即可得出答案.【答案】解:∵商品原价为p元,先提价10%进行销售,∴价格是:p(1+10%),∵再一次性降价10%,∴售价为b元为:p(1+10%)×(1﹣10%)=0.99p.故选:B.【方法总结】此题主要考查了一元一次方程的应用,根据已知得出升降价后实际价格是解题关键.【变式3-1】(2019秋•嘉兴期末)已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为()A.99-a b-B.99-C.9a D.9ab a【思路点拨】分别表示出愿两位数和新两位数,进而得出答案.【答案】解:由题意可得,原数为:10(a+b)+b;新数为:10b+a+b,故原两位数与新两位数之差为:10(a+b)+b﹣(10b+a+b)=9a.故选:C.【方法总结】此题主要考查了列代数式,正确理解题意得出代数式是解题关键.【变式3-2】(2018秋•洪山区期中)某部门组织调运一批物资从A地到B地,一运送物资车从A地出发,出发第一小时内按原计划的60千米/小时匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前20分钟到达目的地.设A地到B地距离为x千米,则根据题意得原计划规定的时间为()A.1903x+B.1903x-C.2903x+D.4903x+【思路点拨】原计划规定的时间=1小时+以原来速度的1.5倍匀速行驶的时间+小时.【答案】解:由题意,可得原计划规定的时间为:1++=1+﹣+=+(小时).故选:C.【方法总结】本题考查了列代数式,根据时间=路程÷速度得出以原来速度的1.5倍匀速行驶的时间是解题的关键.【变式3-3】(2019•长丰县期中)如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是()A.a d b c-=-B.2a cb d++=+C.14a b c d++=+D.a d b c+=+【思路点拨】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【答案】解:依题意,得:b=a+1,c=a+7,d=a+8.A、∵a﹣d=a﹣(a+8)=﹣8,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+8)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+8)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+8)=2a+8,b+c=a+1+(a+7)=2a+8,∴a+d=b+c,选项D不符合题意.故选:A.【方法总结】本题考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.【考点4 单项式与多项式概念】【方法点拨】解题关键:①单项式中的数字因数称为这个单项式的系数;②一个单项式中,所有字 母的指数的和叫做这个单项式的次数;③多项式里次数最高项的次数就是多项式的次数.【例4】(2019秋•柯桥区期中)单项式2375x y π-的系数是 ,次数是 ;234625x x y y +-是 次多项式.【思路点拨】根据单项式和多项式的定义解答. 【答案】解:单项式﹣的系数是﹣,次数是 5;6x 2+2x 3y ﹣中次数最高的项是2x 3y ,是4次. 故答案是:﹣;5;4. 【方法总结】考查了多项式和单项式,注意单项式中数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.【变式4-1】(2018秋•沙坪坝区校级期中)若2||1(2)a a x y +-是关于x 、y 的五次单项式,则3(1)a += .【思路点拨】根据单项式的次数,可得关于a 的方程,根据解方程,可得答案.【答案】解:由(a ﹣2)x 2y|a |+1是关于x ,y 的五次单项式,得|a |+1+2=5且a ﹣2≠0,解得a =﹣2.把a =﹣2代入(a +1)3=﹣1,故答案为:﹣1.【方法总结】本题考查了单项式,利用单项式的次数得出关于a 的方程是解题关键.【变式4-2】(2019秋•临川区校级期中)多项式||223(2)1m x y m x y ++-是关于x 、y 的四次三项式,则m 的 值为 .【思路点拨】直接利用绝对值的性质以及多项式的次数与系数确定方法分析得出答案.【答案】解:∵关于x 、y 的多项式3x |m |y 2+(m +2)x 2y ﹣1是四次三项式,∴|m |+2=4,m +2≠0,解得:m =2,故答案为:2.【方法总结】此题主要考查了多项式以及绝对值,正确把握相关定义是解题关键.【变式4-3】(2018秋•莱阳市期中)当k = 时,多项式22(32)378x k xy y xy ---+-中不含xy 项.【思路点拨】先将多项式合并同类项,不含xy 项即系数为0,列出方程求得k 的值.【答案】解:x 2﹣(3k ﹣2)xy ﹣3y 2+7xy ﹣8=x 2﹣3y 2+(9﹣3k )xy ﹣8,由于不含xy 项,故9﹣3k =0,解得k =3.【方法总结】解答此题必须先合并同类项,否则极易根据﹣(3k ﹣2)=0误解出k =.【考点5 整式加减情景题】【例5】(2019春•沂源县期中)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若1x =-,求所捂二次三项式的值.【思路点拨】(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x 的值代入计算即可求出值.【答案】解:(1)根据题意得:x 2﹣5x +1+3x =x 2﹣2x +1;(2)当x =﹣1时,原式=1+2+1=4.【方法总结】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.【变式5-1】(2018秋•高邮市期中)小聪在做题目:化简22(265)2(?2)x x x x ++-++发现x 的系数“?”被污染了,看不清楚. (1)小聪自己想了个“?”表示的数,得到答案为(31)x +,求:小聪想的“?”所表示的数; (2)老师看到了说:“你想错了,该题化简的结果是常数.”请通过计算说明原题中“?”所表示的数.【思路点拨】(1)利用错误式子解出☻;(2)设原题中“☻”所表示的数为a ,化简(2x 2+6x +5)﹣2(ax +x 2+2),根据化简的结果是常数,得出x 的一次项系数为0,即可求解.【答案】解(1)∵(2x 2+6x +5)﹣(3x +1)=2x 2+6x +5﹣3x ﹣1=2x 2+3x +4=2(x +x 2+2),∴☻=;(2)设原题中“☻”所表示的数为a ,∵(2x 2+6x +5)﹣2(ax +x 2+2)=2x 2+6x +5﹣2ax ﹣2x 2﹣4=(6﹣2a )x +1,∵化简结果为常数,∴6﹣2a =0,∴a =3.【方法总结】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.【变式5-2】(2018秋•徐闻县期中)小刚在计算一个多项式A 减去多项式2235b b --的差时, 因一时疏忽忘了对两个多项式用括号括起来, 因此减式后面两项没有变号, 结果得到的差是231b b +-.(1) 求这个多项式A ;(2) 求出这两个多项式运算的正确结果;(3) 当1b =-时, 求 (2) 中结果的值 .【思路点拨】(1)把b 2+3b ﹣1和2b 2+3b +5相加,求得原多项式A ;(2)用求得的多项式减去2b 2﹣b ﹣5,求得正确的结果;(3)把b =﹣1代入(2)中所求的代数式,计算即可.【答案】解:(1)A =(b 2+3b ﹣1)+(2b 2+3b +5)=b 2+3b ﹣1+2b 2+3b +5=3b 2+6b +4;(2)(3b 2+6b +4)﹣(2b 2﹣3b ﹣5)=3b 2+4b +4﹣2b 2+3b +5,=b 2+7b +9;(3)当b =﹣1时,原式=(﹣1)2+7×(﹣1)+9=1﹣7+9=3.【方法总结】本题考查整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.【变式5-3】(2018秋•新洲区期中)已知含字母m,n的代数式是:2222++--+---.m n mn m n mn m3[2(3)]3(2)4(1)(1)化简这个代数式.(2)小明取m,n互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0.那么小明所取的字母n的值等于多少?(3)聪明的小智从化简的代数式中发现,只要字母n取一个固定的数,无论字母m取何数,代数式的值恒为一个不变的数,那么小智所取的字母n的值是多少呢?【思路点拨】(1)原式去括号合并即可得到结果;(2)由m,n互为倒数得到mn=1,代入(1)结果中计算求出b的值即可;(3)根据(1)的结果确定出n的值即可.【答案】解:(1)原式=3[m2+2n2+2mn﹣6]﹣3m2﹣6n2﹣3m2﹣6n2﹣4mn+4m+4=3m2+6n2+6mn﹣18﹣3m2﹣6n2﹣3m2﹣6n2﹣4mn+4m+4=2mn+4m﹣14;(2)∵mn=1,∴原式=2+4m﹣14=0,解得m=3,∴n=;(3)原式=2m(n+2)﹣14,则n+2=0,解得n=﹣2.故小智所取的字母n的值是﹣2.【方法总结】考查了整式的加减,倒数,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.【考点6 整式加减化简求值】【方法点拨】整式加减化简求值的一般步骤:①去括号、合并同类项.;②代入求值.【例6】(2018秋•蒙阴县期中)先化简,再求值:22225[32(2)4]3a b a b ab a b a ab -----,其中3a =-,2b =-. 【思路点拨】先化简,再把给定字母的值代入计算,得出整式的值即可. 【答案】解:原式=5a 2b ﹣(3a 2b ﹣4ab +2a 2b ﹣4a 2)﹣3ab =5a 2b ﹣(5a 2b ﹣4ab ﹣4a 2)﹣3ab =5a 2b ﹣5a 2b +4ab +4a 2﹣3ab =ab +4a 2,当a =﹣3,b =﹣2时,原式=﹣3×(﹣2)+4×(﹣3)2=42.【方法总结】本题主要考查了化简求值问题,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.【变式6-1】(2018秋•朝阳区期中)先化简,再求值:已知2250x y --=,求223(2)(6)4x xy x xy y ----的 值.【思路点拨】原式先去括号,再合并同类项化简,继而由x 2﹣2y ﹣5=0知x 2﹣2y =5,代入原式=2(x 2﹣2y )计算可得.【答案】解:原式=3x 2﹣6xy ﹣x 2+6xy ﹣4y =2x 2﹣4y , ∵x 2﹣2y ﹣5=0, ∴x 2﹣2y =5,则原式=2(x 2﹣2y )=2×5=10.【方法总结】此题考查了整式的加减﹣化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.【变式6-2】(2018秋•金堂县期中)已知2235A a b ab =+-,22234B ab b a =-+,先求2B A -+,并求当12a =-, 2b =时,2B A -+的值.【思路点拨】此题需要先去括号,再合并同类项,将原整式化简,然后再将a ,b 的值代入求解即可. 【答案】解:﹣B +2A =﹣(2ab ﹣3b 2+4a 2)+2(3a 2+b 2﹣5ab ) =﹣2ab +3b 2﹣4a 2+6a 2+2b 2﹣10ab =2a 2+5b 2﹣12ab ,当a =﹣,b =2时,原式=2×(﹣)2+5×22﹣12×(﹣)×2 =2×+5×4+12 =+20+12 =32.【方法总结】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.【变式6-3】(2018秋•杭州期中)化简求值:已知整式226x ax y +-+与整式22351bx x y -+-的差不含x 和 2x 项,试求2322324(2)32(42)a b a b a b a b +-+-+的值.【思路点拨】根据两整式的差不含x 和x 2项,可得差式中x 与x 2的系数为0,列式求出a 、b 的值,然后将代数式化简再代值计算.【答案】解:2x 2+ax ﹣y +6﹣(2bx 2﹣3x +5y ﹣1) =2x 2+ax ﹣y +6﹣2bx 2+3x ﹣5y +1 =(2﹣2b )x 2+(a +3)x ﹣6y +7, ∵两个整式的差不含x 和x 2项, ∴2﹣2b =0,a +3=0, 解得a =﹣3,b =1,4(a 2+2b 3﹣a 2b )+3a 2﹣2(4b 3+2a 2b ) =4a 2+8b 3﹣4a 2b +3a 2﹣8b 3﹣4a 2b =7a 2﹣8a 2b , 当a =﹣3,b =1时, 原式=7a 2﹣8a 2b=7×(﹣3)2﹣8×(﹣3)2×1 =7×9﹣8×9×1 =63﹣72 =﹣9.【方法总结】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 【考点7 代数式求值—整体代入法】【方法点拨】整体代入的思想是把联系紧密的几个量作为一个整体来看的数学思想,运用这种方法,有时 可使复杂问题简单化.【例7】(2019秋•锡山区校级期中)化简与求值: (1)若5m =-,则代数式2115m +的值为 ;(2)若5m n +=-,则代数式221m n ++的值为 ;(3)若535m n -=-,请仿照以上求代数式值的方法求出2()4(2)2m n m n -+-+的值. 【思路点拨】(1)把m =﹣5代入求出即可;(2)把2m +2n +1变成2(m +n )+1,把m +n 的值代入求出即可;(3)把代数式化简得出10m ﹣6n +2,推出2(5m ﹣3n )+2,把5m ﹣3n =﹣5代入求出即可. 【答案】(1)解:当m =﹣5时,m 2+1=×(﹣5)2+1=5+1=6, 故答案为:6.(2)解:∵m +n =﹣5, ∴2m +2n +1 =2(m +n )+1 =2×(﹣5)+1 =﹣9. 故答案为:﹣9.(3)解:∵5m ﹣3n =﹣5, ∴2(m ﹣n )+4(2m ﹣n )+2 =2m ﹣2n +8m ﹣4n +2 =10m ﹣6n +2 =2(5m ﹣3n )+2,当5m ﹣3n =﹣5时,原式=2×(﹣5)+2=﹣8.【方法总结】本题考查了求代数式的值,用了整体代入思想,题目都比较好,难度适中. 【变式7-1】(2019秋•余姚市期末)已知:25x y -=,求22(2)36y x y x --+-的值. 【思路点拨】把2x ﹣y =5整体代入代数式求得答案即可.【答案】解:原式=﹣2(2x ﹣y )2﹣3(2x ﹣y ), 又∵2x ﹣y =5,∴原式=﹣2×52﹣3×5, =﹣65.【方法总结】此题考查代数式求值,利用整体代入是解答此题的关键.【变式7-2】(2019秋•崇川区期末)已知当2x =,4y =-时,31820182ax by ++=,求当4x =-,12y =-时,式子33246ax by -+的值.【思路点拨】将x =2,y =﹣4代入代数式使其值为2018求出4a ﹣b 的值,将x =﹣4,y =﹣代入所求式子,整理后将4a ﹣b 的值代入计算即可求出值. 【答案】解:当x =2,y =﹣4时, 得a ×23+b ×(﹣4)+8=2018, 8a ﹣2b +8=2018. 8a ﹣2b =2010. 4a ﹣b =1005,当x =﹣4,y =﹣时,原式=3a ×(﹣4)﹣24b ×(﹣)3+6 =﹣12a +3b +6 =﹣3(4a ﹣b )+6 =﹣3×1005+6 =﹣3009.【方法总结】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键. 【变式7-3】(2018秋•慈利县期中)先阅读下面例题的解答过程,再解答后面的问题. 例:已知代数式264y y +的值为2,求2237y y ++的值. 解:由2642y y +=得2321y y +=,所以2237178y y ++=+=. 问题:(1)已知代数式223a b +的值为6,求2352a b +-的值;(2)已知代数式214521x x +-的值为2-,求2645x x -+的值.【思路点拨】(1)变形已知直接整体代入计算求值; (2)由已知得方程,把已知变形后代入计算即可求出值. 【答案】解:(1)由2a 2+3b =6得a 2+b =3, 所以a 2+b ﹣5=3﹣5=﹣2;(2)由14x +5﹣21x 2=﹣2得﹣7(3x 2﹣2x )=﹣7, 即3x 2﹣2x =1,所以6x 2﹣4x +5=2(3x 2﹣2x )+5=2+5=7.【方法总结】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键. 【考点8 代数式求值—赋值法】【方法点拨】解决此类问题通常需要去特殊值将其代入等式中,能够得到所求代数式的形式,从而知道代 数式的值.【例8】(2018秋•江都区期中)已知55432(1)x ax bx cx dx ex f -=+++++,求: (1)a b c d e f +++++的值; (2)a c e ++的值 .【思路点拨】(1)令x =1,即可求出a +b +c +d +e +f 的值;(2)令x =﹣1,得到﹣a +b ﹣c +d ﹣e +f 的值,即可求出a +c +e 的值. 【答案】解:(1)令x =1,得:a +b +c +d +e +f =0①; (2)令x =﹣1,得﹣a +b ﹣c +d ﹣e +f =﹣32②, ①+②得:2b +2d +2f =﹣32,即b +d +f =﹣16, 则a +c +e =﹣b ﹣d ﹣f =﹣(b +d +f )=16.【方法总结】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.【变式8-1】(2018秋•莲湖区期中)已知723456701234567(21)x a a x a x a x a x a x a x a x -=+++++++,对于任意的x 的值都成立,求下列各式的值: (1)01234567a a a a a a a a +++++++; (2)1357a a a a +++.【思路点拨】(1)令x =1,然后代入原式进行计算即可;(2)令x =﹣1,然后代入进行计算,最后再与(1)中所得等式进行相减即可求解. 【答案】解:(1)当x =1时,a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=(2×1﹣1)2=1;(2)当x =﹣1时,a 0﹣a 1+a 2﹣a 3+a 4﹣a 5+a 6﹣a 7=﹣37①. a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=1②②﹣①得:2(a 1+a 3+a 5+a 7)=1+37=2188, ∴a 1+a 3+a 5+a 7=1094.【方法总结】本题主要考查的是求代数式的值,特殊值法的应用是解题的关键.【变式8-2】(2019秋•杨浦区校级月考)已知22380128(1)(7)(2)(2)(2)x x a a x a x a x +-=+++++⋯++,则1234567a a a a a a a -+-+-+的值为多少?【思路点拨】可先令x =﹣2,得a 0=﹣27,a 8=1,再令x =﹣3,即x +2=﹣1,那么右边x +2x +2奇次方是﹣1,偶次方是1,就能得到,a 0﹣a 1+a 2﹣a 3+a 4﹣a 5+a 6﹣a 7+a 8=(﹣2)2×23.再把a 0=﹣27,a 8=1代入即求出答案.【答案】解:令x =﹣2 则x +2=0 所以右边只剩下a 0, 所以a 0=(﹣1)2×(﹣3)3=﹣27, 左边8次方的系数是1,右边8次方的系数是a 8,所以a 8=1, 令x =﹣3 则x +2=﹣1,所以x +2奇次方是﹣1,偶次方是1,所以右边=a 0﹣a 1+a 2﹣a 3+…﹣a 7+a 8 左边=(﹣2)2×23=32, 所以﹣27﹣(a 1﹣a 2+a 3﹣a 4+a 5﹣a 6+a 7)+1=32, a 1﹣a 2+a 3﹣a 4+a 5﹣a 6+a 7=﹣58. 故答案为:﹣58.【方法总结】此题考查的知识点是代数式求值,同时考查学生灵活的技巧性,解题的关键是可先令x =﹣2,得a 0=﹣27,a 8=1,再令x =﹣3,即x +2=﹣1,那么右边x +2x +2奇次方是﹣1,偶次方是1. 【变式8-3】(2019秋•诸暨市校级期中)已知55432543210(21)x a x a x a x a x a x a -=+++++对于任意的x 都成立.求: (1)0a 的值(2)012345a a a a a a -+-+-的值 (3)24a a +的值.【思路点拨】(1)令x =0,求出a 0的值即可;(2)令x=﹣1,即可求出所求;(3)令x=1,结合(2)求出所求即可.【答案】解:(1)令x=0,则a0=(2×0﹣1)5=﹣1;(2)令x=﹣1,则a0﹣a1+a2﹣a3+a4﹣a5=[2×(﹣1)﹣1]5=(﹣3)5=﹣243;(3)令x=1,则a0+a1+a2+a3+a4+a5=(2×1﹣1)5=1由(2),可得a0﹣a1+a2﹣a3+a4﹣a5=﹣243,∴a2+a4=﹣120.【方法总结】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.【考点9 代数式求值—面积问题】【例9】(2018秋•淮阴区期中)如图所示(1)用代数式表示长方形ABCD中阴影部分的面积;(2)当10a=,4b=时,求其阴影部分的面积.(其中π取3.14)【思路点拨】(1)用长方形的面积减去2个半径为b的圆的面积,据此可得;(2)将a,b的值代入计算可得.【答案】解:(1)阴影部分的面积为ab﹣2××πb2=ab﹣πb2;(2)当a=10,b=4时,ab﹣πb2=10×4﹣×3.14×16≈14.88.【方法总结】此题主要考查了如何列代数式,以及代数式值的求法,对于阴影面积不规则时,可以借助规则图形的差求出阴影部分的面积.【变式9-1】(2018秋•盐都区期中)如图,长方形的长为a,宽为b.现以长方形的四个顶点为圆心,宽的一半为半径在四个角上分别画出四分之一圆.(1)用含a,b的代数式表示图中阴影部分的面积;(2)当10a=,4b=时,求图中阴影部分的面积.(π取3)【思路点拨】(1)矩形的面积减去四个圆的面积即可求解,四个圆的面积的和是一个整圆的面积;(2)把a,b的值代入求解即可.【答案】解:(1)根据题意知,阴影部分的面积为ab﹣4××π•()2=ab﹣b2;(2)当a=10,b=4时,阴影部分的面积为10×4﹣×42=40﹣12=28.【方法总结】本题考查了列代数式,解答本题的关键是掌握矩形和圆的面积公式,注意用矩形的面积减空白的四个小扇形的面积得阴影部分面积.cm.根据图中【变式9-2】(2018秋•玄武区期中)如图所示是一个长方形,阴影部分的面积为S(单位:2)尺寸,解答下列问题:(1)用含x的代数式表示阴影部分的面积S;(2)若3x=,求S的值.【思路点拨】(1)根据图形可知:阴影部分的面积可用长方形的面积的一半减去直角三角形的面积,据此可得;(2)将x=3代入所得解析式计算可得.【答案】解:(1)S=×10×5﹣×5×(5﹣x)=+x.(2)当x=3时,S=+×3=20.【方法总结】本题考查列代数式求值,涉及长方形的面积公式,三角形面积公式,代数式求值等问题.【变式9-3】(2018秋•甘井子区期中)如图(图中单位长度:)cm求:(1)阴影部分面积(用含x的代数式表示);(2)当89x=求阴影部分的面积(π取3.14,结果精确到0.01).【思路点拨】(1)根据“阴影部分面积=两个矩形的面积和﹣半圆的面积”列式、化简即可得;(2)将x的值代入计算可得.【答案】解:(1)阴影部分面积=×(x+)+×(x+﹣)﹣×π×[×(+)]2=x+﹣π;(2)当x=时,阴影部分的面积为+﹣π≈1﹣×3.14≈0.61(cm2).【方法总结】本题考查列代数式求值,涉及长方形的面积公式,圆的面积公式,代数式求值等问题.【考点10 代数式求值—方案设计问题】【例10】(2018秋•南安市期末)福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球40个,跳绳x条(40)x>(1)若在A网店购买,需付款元(用含x的代数式表示).若在B网店购买,需付款元(用含x的代数式表示).(2)若100x=时,通过计算说明此时在哪家网店购买较为合算?(3)当100x 时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?【思路点拨】(1)由题意在A店购买可列式:40×150+(x﹣40)×30=4800+30x.在网店B购买可列式:(40×150+30x)×0.9=5400+27x(2)将x=100分别代入A店,B店即可以比较(3)由于A店是买一个足球送跳绳,B店是足球和跳绳都按定价的90%付款,所以可以在A店买40个足球,剩下的60条跳绳在B店购买即可【答案】解:依题意(1)A店购买可列式:40×150+(x﹣40)×30=4800+30x在网店B购买可列式:(40×150+30x)×0.9=5400+27x故答案为:4800+30x;5400+27x(2)当x=100时在A网店购买需付款:4800+30x=4800+30×100=7800元在B网店购买需付款:5400+27x=5400+27×100=8100元∵7800<8100∴当x=100时,应选择在A网店购买合算.(3)由(2)可知,当x=100时,在A网店付款7800元,在B网店付款8100元,在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳合计需付款:150×40+30×60×90%=7620∵7620<7800<8100∴省钱的购买方案是:在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳,付款7620元.【方法总结】此题考查的是列代数式并求值,也可作为一元一次方程来考查,因此做此类题需要掌握解应用题的能力.【变式10-1】(2018秋•惠山区校级期中)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价40元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠两盒乒乓球;乙店的优惠办法是:全部商品按定价的8.5折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于8盒).(1)当购买乒乓球的盒数为x盒时,在甲店购买需付款元;在乙店购买需付款元.(用含x的代数式表示)(2)当购买乒乓球盒数为20盒时,去哪家商店购买较合算?请计算说明.(3)当购买乒乓球盒数为20盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付多少元?【思路点拨】(1)根据题意,先列出在甲店、乙店购买付款的代数式;(2)把20代入(1)中代数式,计算出甲店、乙店的花费,比较得结论;(3)综合考虑两店的优惠情况,得结论.【答案】解:(1)当购买乒乓球的盒数为x盒时,在甲店需付款40×4+(x﹣8)×5=5x+120.当购买乒乓球的盒数为x盒时,在乙店需付款(40×4+5x)×0.85=136+4.25x故答案为:5x+120,136+4.25x;(2)购买乒乓球盒数为20盒时,甲店需花费:5×20+120=220(元),乙店需花费:136+4.25x=136+4.25×20=221(元)∵221>220,所以在甲店购买比较合算.答:在甲店买较合算.(3)方案:在甲店买4幅球拍,在乙店购买12盒乒乓球比较省钱.共需支付:40×4+5×12×0.85=160+51=211元.【方法总结】本题考查了列代数式及代数式的计算求值.理解题意并列出代数式是解决本题的关键.【变式10-2】(2018秋•郑州期中)郑东新区九年制实验学校体育组准备在网上为学校订购一批某品牌羽毛球拍和羽毛球,在查阅京东网店后发现羽毛球拍一副定价40元,羽毛球每个定价5元.“双十一”期间A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一副球拍送1个羽毛球;B网店:羽毛球拍和羽毛球都按定价的90%付款.已知要购买羽毛球拍30副,羽毛球x个(30):x>(1)若在A网店购买,需付款元(用含x的代数式表示);若在B网店购买,需付款元.(用含x的代数式表示);(2)若40x=时,通过计算说明此时在哪家网店购买较为合算?(3)当40x=时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算出需付款多少元?【思路点拨】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把x=40代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先A网店购买30副羽毛球拍,送30个羽毛球,另外10副羽毛球拍在B网店购买即可.【答案】解:(1)A网店购买需付款30×40+(x﹣30)×5=5x+30×(40﹣5)=(5x+1050)元;B网店购买需付款40×90%×30+5×90%×x=(4.5x+1080)元.故答案为:(5x+1050),(4.5x+1080);(2)当x=40时,A网店需5×40+1050=1250(元);B网店需4.5×40+1080=1260(元);所以按方案一购买合算;(3)先A网店购买30副羽毛球拍,送30个羽毛球需1200元,差10个羽毛球B网店购买需45元,共需1245元.【方法总结】此题考查列代数式,理解两种方案的优惠方案,得出运算的方法是解决问题的关键.【变式10-3】(2018秋•亭湖区校级期中)迪雅服装厂生产一种夹克和T恤,夹克每件定价120 元,T恤每件定价60 元,厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹x>.克和T恤都按定价的80%付款,现某客户要到该服装厂购买夹克30 件,T恤x件(30)。
人教版-七年级上册-数学-第二章-整式-的加减知识点-例题-练习题-(含答案)
七年级上册第二章整式知识点例题(含答案)第一部分:知识点与例题一.整式1.单项式:都是数字或者字母的积(单独一个数字或字母也是单项式)①单项式中的数字因数叫做这个单项式的系数②一个单项式中,所有字母的指数的和叫做这个单项式的指数。
如:10x2y3z4的指数为9,叫做九次单项式2.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的叫做常数项;多项式里最高项的次数叫做这个多项式的项。
(这个要与单项式区分开)如:x2+x+3这个多项式有三个项,分别为x2,x和常数项3,最高次是2,所以它是一个二次三项式。
3.单项式与多项式统称整数、二.整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项,如2xy2与3 xy2是同类项练习:2xy n-2与4x m+3y2是同类项,则n=,m=2.把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
3.去括号后要注意的点:①如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同②如果括号外面的因数是负数,去括号后原括号内各项的符号与原来的符号相反4.一般地,几个整式相加减,如果有括号的要先去括号,然后再合并同类项例:(1)合并下面各式的同类项① x+y-4(x-y)② 5ab+3a2-4b2-(6b2+a2-3ab)(2)①求多项式(-x2+5+4x)-(5x-4+2x2)的值,其中x=3②求多项式13x-4(x2-12y2)+(-23x+y2)的值,其中x=-1,y=125. 设方程解决问题:(重点,难点)(1)一条河流的水流速度是2.5km/h,如果已知船在静水中的速度,则船在这条河流中顺水行驶和逆水行驶的速度分别要怎么表示?如果甲,乙两船在静水中的速度分别为20 km/h和35 km/h时,则它们在这条河流中顺水的速度和逆水的速度分别是多少km/h?练习:一种商品每件成本a元,按成本增加20%定出价格,每件售价多少元?后来因库存积压减价,按原价的85%出售,现售价多少钱?每件还能盈利多少元?(2)某村小麦种植的面积是a公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5公顷,列式表示水稻,玉米种植面积,并计算水稻种植面积比玉米种植面积大多少?(3)一架飞机无风时的航速为a km/h,风速为20 km/h,从甲地飞到乙地用了3小时,从乙地飞往甲地用了4小时,求飞机的航速a?(4)礼堂第一排有a个座位,后面每排都比前一排多一个座位,第二排有多少个座位?第三排呢?用m表示n排的座位数,m是多少?当a=20,n=19时,m是多少?第二部分:练习题教师用卷:一、精心选一选1、如果与823x y 是同类项,则代数式的值为(C )A 、0B 、-1C 、+1D 、±12、如果2222324,45M x xy y N x xy y =--=+-,则2281315x xy y --等于(D )A 、2M-NB 、2M-3NC 、3M-2ND 、4M-N3、如果22x x -+的值为7,则的值为(A )A 、52B 、32C 、152D 、答案不惟一4、如果2a b -=,3c a -=,则()()234b c b c ---+的值为(C )A 、14B 、2C 、44D 、不能确定5、的值是(C )A 、±3B 、±1C 、±1或±3D 、不能确定6、商场七月份售出一种新款书包a 只,每只b 元,营业额c 元,八月份采取促销活动,优惠广大学子,售出该款书包3a 只,每只打八折,则八月份该款书包的营业额比七月份增加(B )A 、1.4c 元B 、2.4c 元C 、3.4c 元D 、4.4c 元7、一件工作,甲单独做x 天完成,乙单独做y 天完成。
【精品讲义】人教版七年级数学(上)专题2.1整式(知识点+例题+练习题)含答案
第二章整式的加减2.1整式帮锂慣1.用字母表示数(I)用字母或含有字母的式子表示数或数量关系,为我们今后的学习和研究带来了极大的方便.从具体的数字抽象到用字母表示数,在认识上是一个重大飞跃.<2)同一问题中不同的数呈:要用不同的字母表示;不同的问题中不同的数疑可以用相同的字母表示;一个字母表示的数往往不止一个,具有任意性,但要受实际问题的限制.2.单项式(1)_________________ 单项式:由组成的式子叫做单项式.如£“",rn2, -X2V.特別地,单独的___________________________________ 或 _________ 也是单项式.单项式的系数:单项式中的___________ .单项式的次数:一个单项式中,__________ •(2)注意:①圆周率兀是常数,单项式中出现兀时,要将英看成系数.②当一个单项式的系数是“1”或“一1”时,“1”通常省略不写,如0 , _,…2.次数为“1”时,通常也省略不写,如儿③单项式的系数包括它前面的符号,且只与数字因数有关.2④单项式中的数与字母是乘积关系,如L不是单项式.3a⑤单项式的次数与数字因数无关,只与字母有关,是单项式中所有字母的指数的和,如单项式b的次数是1,而不是0,常数-5的次数是0, 9×1 OWc的次数是6,与2无关.3.多项式(1)多项式:几个________ 的和叫做多项式.如F+2ξy+2, a2-2.在多项式中,每个单项式叫做多项式的项,不含字母的项叫做____________ .多项式里,次数最高项的次数,叫做这个多项式的__________ .(2)注意:①多项式的每一项都包括它前而的符号,且每一项都是单项式.②多项式的次数是多项式中次数最髙项的次数,而不是所有项的次数之和.③一个多项式有几项,就叫它几项式.4.整式:单项式与多项式统称 __________ •如果一个式子既不是单项式,也不是多项式,那么它一泄不是整式.晅電。
人教版七年级上册数学重难点题型分类练习
七年级上重难点题型【题型一:整式计算】1. 已知34243--+=-x nx x A m 是关于x 的二次多项式。
(1)求m 的值。
(2)若12422---x x A 的值与x 无关,试求n 的值。
2. 已知多项式222(63)(13)2mx x x x mx x -++-+-。
(1)若2m =,化简此多项式;(2)若多项式的值与x 的值无关,求2462m m -+的值。
3. 已知关于x 的方程2x =x +m ﹣3和关于y 的方程3y ﹣2(n ﹣1)2=m ,试思考: (1)请用含m 的代数式表示方程2x =x +m ﹣3的解;(2)若n =2,且上述两个方程的解互为相反数时,求m 的值;(3)若m =6时,设方程2x =x +m ﹣3的解为x =a ,方程3y ﹣2(n ﹣1)2=m 的解为y =b ,请比较3b ﹣a 与2的大小关系,并说明理由.【题型二:实际应用题】1.专车司机小李某天上午从家出发,营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:﹣1,+6,﹣2,+2,﹣7,﹣4(1)将最后一位乘客送到目的地时,小李在出发地的哪一边?距离出发地多少km?(2)若汽车每千米耗油量为0.2升,这天上午小李接送乘客,出租车共耗油多少升?2.甲商品每件20元,乙商品每件15元,若购买甲、乙两种商品共40件,恰好用去675元,求甲、乙商品各买多少件?3.列方程解应用题.(1)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少m3?(2)加工一批零件,张师傅单独加工需要40天完成,李师傅单独加工需要60天完成.现在由于工作需要,张师傅先单独加工了10天,李师傅接着单独加工了30天后,剩下的部分由张、李二位师傅合作完成,这样完成这批零件一共用了多长时间?4.汽车上坡时每小时走28km,下坡时每小时走35km,去时,下坡路的路程比上坡路的路程的2倍还少14km,原路返回比去时多用了12分钟.求去时上、下坡路程各多少千米?5.小刚和小强从A、B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地,两人的行进速度分别是多少?相遇后经过多少时间小强到达A地?6.已知A、B、C三地是同一条河流上的三个不同地方,且A、B、C在同一直线上,A、C相距28千米,某船先从A地顺流而下来到B地,再立刻调头逆流而上到达C 地,一共用了5小时,调头时间忽略不计.已知该船的静水速度为18km/h,水流速度为2km/h,请问:(1)船在顺水中航行的速度是km/h,船在逆水中航行的速度是km/h.(2)A、B两地相距多少千米?7. 某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?8. 某市根据地方实际情况,决定从2012年5月1日起对居民生活用水试行“阶梯水价”收费,具体收费标准见下表:2013年7月份,该市甲户居民用水9立方米,交水费18元;乙户居民用水36立方米,交水费76元。
人教版数学七年级上册整式及其加减考点
整式及其加减是数学七年级上册的重要知识点之一,在学生学习过程中往往会遇到一些难点和易错点。
为了帮助学生更好地掌握这一知识点,本文将对人教版数学七年级上册整式及其加减考点进行详细分析和解读。
一、整式的概念及特点1. 整式的定义:整式是由若干个字母与常数通过加、减、乘、乘方等运算符号连接而成的代数表达式。
2. 整式的特点:整式和多项式的区别在于,整式中可能含有有理数指数的正整数次幂,也可能含有有理数指数的负整数次幂,并且可能含有有理数指数的零次幂。
二、整式的加减运算规则3. 整式加减的基本规则:整式的加减运算遵循同类项之间可以相加或相减的法则,即同类项可以合并为一个项。
4. 整式加减的步骤:在进行整式的加减运算时,首先要对整式中的同类项进行合并,然后按照合并后的结果进行简化,最终得到一个最简整式。
5. 整式加减的注意事项:在进行整式的加减运算时,需要注意各项系数的正负、字母的次数和字母的顺序,以免出现计算错误。
三、整式加减的常见类型题目6. 整式加减的基础练习:例如给出一个简单的整式加减题目,让学生通过合并同类项和简化整式来求解。
7. 整式加减的拓展练习:例如给出一个较复杂的整式加减题目,涉及到多个字母和多个项的加减运算,考察学生对整式加减运算规则的掌握程度。
8. 实际问题解决类题目:例如给出一个实际生活中的问题,通过建立整式模型来求解,考察学生运用整式加减进行实际问题求解的能力。
四、整式加减的解题技巧和方法9. 整式加减的化简方法:在进行整式加减运算时,可以通过扩括号、合并同类项、提取公因式等方法进行化简,从而简化整式的计算过程。
10. 整式加减的变形技巧:当遇到复杂的整式加减题目时,可以通过整理项的顺序、利用加法逆元等方法进行整式的变形,使得整式的计算更加简便。
11. 整式加减的实际问题转化方法:对于实际问题解决类的整式加减题目,可以通过建立适当的代数模型,将问题转化为整式加减的求解过程,从而更好地解决实际问题。
部编数学七年级上册专题06整式的加减(11个题型)章末重难点题型(解析版)含答案
专题06 整式的加减(11个题型)章末重难点题型一、经典基础题题型1. 代数式的书写规范问题题型2. 根据要求列代数式题型3.整式的相关概念题型4.利用整式的相关概念求字母的取值题型5.利用同类项的概念求值题型6 . 添括号与去括号题型7. 整式“缺项”及与字母取值无关的问题题型8.整式的加减混合运算题型9.整式的化简求值题型10. 求代数式的值与整体思想题型11.整式的实际应用二、优选提升题题型1. 代数式的书写规范问题【解题技巧】代数式书写规范:①数和字母相乘,可省略乘号,并把数字写在字母的前面;②字母和字母相乘,乘号可以省略不写或用“ · ” 表示. 一般情况下,按26个字母的顺序从左到右来写;③后面带单位的相加或相减的式子要用括号括起来;④除法运算写成分数形式,即除号改为分数线;⑤带分数与字母相乘时,带分数要写成假分数的形式;⑥当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在那个字母前加上“-”号.例1.(2022·河北保定·七年级期末)将下列各式按照列代数式的规范要求重新书写:(1)a×5,应写成_______ ;(2)S÷t应写成_________;(3)123a a b´´-´,应写成______;(4)413x, 应写成______.变式1.(2022·河南信阳·七年级期末)下列各式书写符合要求的是( )A .1a b-¸-B .132xy C .ab ×5D .22x y -变式2.(2022·河南驻马店·七年级期末)下列各式符合代数式书写规范的是( )A .a8B .s tC .m ﹣1元D .125x 【答案】B【分析】本题根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进题型2. 根据要求列代数式【解题技巧】解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.例1.(2022·山西临汾·七年级期末)某商品的售价为每件a元,为了参与市场竞争,商店按售价的九折再让利40元销售,此时该商品的售价为___________元.a-【答案】(0.940)【分析】根据题意列出代数式即可.【详解】商品的售价为每件a元,商店按售价的九折再让利40元销售,a-元.现在的售价:(0.940)a-.故答案为:(0.940)【点睛】本题考查了列代数式,读懂题意以及掌握代数式的书写规则是本题的关键.变式1.(2022·山东烟台·期末)阿宜跟同学到西餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为12份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.12-x-y B.12-y C.12-x+y D.12-x【答案】D【分析】根据点的饮料能确定在B和C餐中点了x份意大利面,根据题意可得点A餐12−x.【详解】解:x 杯饮料则在B 和C 餐中点了x 份意大利面,∴点A 餐为12−x ,故选D .【点睛】本题考查列代数式;能够根据题意,以意大利面为依据,准确列出代数式是解题的关键.变式2.(2022·山西·古县教育局教学研究室八年级期末)一辆快递货运车,运送快递到山上的菜鸟驿站,上山的速度是km/h m ,沿原路下山,下山的速度是km/h n ,则这辆快递货运车上山、下山的平均速度是_________km/h .题型3.整式的相关概念(1)代数式的概念:用运算符号把数字与字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式.(2)单项式及相关概念:数或字母的积叫单项式。
整式题型归纳【8大考点题型突破】—七年级数学上册(人教版2024)(解析版)
整式题型归纳【8大考点题型突破】【题型归纳】➢题型一:整式 单项式 多项式的理解➢题型二:数字类的规律探索➢题型三:图形类的规律探索➢题型四:整式的加减➢题型五:整式的加减应用➢题型六:整式的化简求值➢题型七::整式加减的无关类型➢题型八:整式的综合问题【题型探究】题型一:整式 单项式 多项式的理解1.(24-25七年级上·上海)下列叙述正确的是( )A .1a ¸是整式B .22221x x y yx +-+是二次四项式C .3m n -的各项系数都是13D .3221x x -+-的常数项是1-2.(24-25七年级上·上海闵行)下列说法中错误的是( )A .单项式是整式B .231xy x --是三次三项式C .多项式2354x -的常数项是5-D .多项式2354x -的常数项是54-【答案】C3.(24-25七年级上·上海)下列结论中正确的是( )A .单项式2π4xy 的系数14,次数是4B .单项式2-xy z 的系数是1-,次数是4C .多项式2223x xy ++是二次三项式D .单项式m 的次数是1,没有系数题型二:数字类的规律探索4.(24-25七年级上·山东济宁·阶段练习)a 是不为1的有理数,我们把11a -称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知113a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,以此类推,则2024a ( )A .2-B .12C .13D .32【答案】D 【分析】本题考查数字变化的规律,依次求出1a ,a ,a ,¼,发现规律即可解决问题.5.(24-25七年级上·安徽)观察一列数:2-,4,8-,16,32-,64,128-,256,512-…将这列数排成如图所示的形式,则第10行第8个数是( )A .892B .892-C .982D .982-6.(24-25七年级上·江苏镇江·阶段练习)把有理数a 代入410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入得到2a ,称为第二次操作,…,若12a =-,经过第2024次操作后得到的结果是( )A .2-B .6-C .8-D .10-题型三:图形类的规律探索7.(24-25七年级上·山西吕梁·阶段练习)如图1,数轴上方有1个方块,记图1共有1+个方块;图2的数轴上方有1个方块,数轴下方的2个方块,记图2共有1-个方块,图3的数轴上方有4个方块,下方有2个方块,记图3共有2+个方块;同理,记图4共有2-个方块.故按照此规律第2024个图中共有方块( )A .1012+个B .2024+个C .1012-个D .1013-个8.(24-25七年级上·全国·课后作业)将一些相同的“○”按如图所示的规律依次摆放,观察每个图中“○”的个数,则第10个图中“○”的个数是( ).A .90B .95C .100D .105【答案】B 【分析】本题考查图形和数字类规律探究,根据前几个图形中“○”的个数得到变化规律,进而可求解.【详解】解:第1个图形中“○”的个数为5510=+´,第2个图形中“○”的个数为7521=+´,第3个图形中“○”的个数为11532=+´第4个图形中“○”的个数为17543=+´,……,依次类推,第n 个图形中“○”的个数为()51n n +-,∴第10个图形中“○”的个数为510995+´=,故选:B .9.(24-25七年级上·辽宁大连·阶段练习)观察下列“蜂窝图”,按照这样的规律,则第2024个图案中的“”的个数是( )A .6075B .6074C .6073D .6072“”“”“”74=+“”“”“”题型四:整式的加减10.(2024七年级上·上海·专题练习)去括号或添括号.(1)23()a b c +-= ;(2)23()a b c --= ;(3)222(x xy y x -+=- );(4)222(x xy y x -+=+ ).【答案】(1)233a b c+-(2)233a b c-+(3)2xy y -(4)2xy y -+【分析】本题考查的知识点是去括号和添括号,解题关键是熟练掌握去括号和添括号法则.根据去括号和添括号法则分别进行解答即可.【详解】(1)解:23()233a b c a b c +-=+-.故答案为:233a b c +-.(2)解:23()233a b c a b c --=-+.故答案为:233a b c -+.(3)解:()2222x xy y x xy y -+=--.故答案为:2xy y -.(4)解:2222(x xy y x xy y -+=+-+).故答案为:2xy y -+.11.(24-25七年级上·全国·课后作业)合并同类项:(1)4271x y x y ---+-;(2)2224356a b ab a b ----;(3)()()223535mn m m mn ---;(4)()()22742223x x x x +---+.【答案】(1)551x y -+-(2)2349a b ab ---(3)288m mn-+(4)914x -【分析】本题主要考查了合并同类项,去括号法则:(1)根据合并同类项的计算法则求解即可(2)根据合并同类项的计算法则求解即可;(3)先去括号,然后合并同类项即可;(4)先去括号,然后合并同类项即可.【详解】(1)解:4271x y x y ---+-()()41271x y =-----551x y =-+-;(2)解:2224356a b ab a b ----()22549a b ab =---2349a b ab =---;(3)解:()()223535mn m m mn ---223535mn m m mn=--+288m mn =-+;(4)解:()()22742223x x x x +---+22748426x x x x =+--+-914x =-.12.(24-25七年级上·全国)合并同类项:(1)22225432x x x x x -++--;(2)222222137152x y xy x y xy x y --+-+;(3)3331220.55xy x xy x y --+-;(4)3223233521325252xy x y x y xy x y x y -+----.题型五:整式的加减应用13.(2024七年级上·浙江·专题练习)按照“双减”政策,丰富课后托管服务内容,学校准备订购一批篮球和跳绳,经过市场调查后发现篮球每个定价120元,跳绳每条定价20元.某体育用品商店提供A 、B 两种优惠方案:A 方案:买一个篮球送一条跳绳;B 方案:篮球和跳绳都按定价的90%付款.已知要购买篮球50个,跳绳x 条(50x >).(1)若按A 方案购买,一共需付款 元;(用含x 的代数式表示),若按B 方案购买,一共需付款 元;(用含x 的代数式表示)(2)当150x =时,请通过计算说明此时用哪种方案购买较为合算?(3)当150x =时,你能给出一种更为省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?【答案】(1)()()500020,540018x x ++(2)购买150根跳绳时,A 种方案所需要的钱数为8000元,B 种方案所需要的钱数为8100元(3)按A 方案买50个篮球,剩下的100条跳绳按B 方案购买,付款7800元【分析】本题考查列代数式,代数式求值,根据题意,正确的列出代数式,是解题的关键:(1)由题意按A 方案购买可列式:()5012005020x ´+-´,在按B 方案购买可列式:()501200200.9x ´+´;(2)把150x =代入(1)中的结果计算AB 两种方案所需要的钱数即可;(3)先算全按同一种方案进行购买,计算出两种方案所需付款金额,再根据A 方案是买一个篮球送跳绳,B 方案是篮球和跳绳都按定价的90%付款,考虑可以按A 方案买50个篮球,剩下的50条跳绳按B 方案购买,计算出所需付款金额,进行比较即可.【详解】(1)解:A 方案购买可列式:()()501205020500020x x ´+-´=+元;按B 方案购买可列式:()()50120200.9540018x x ´+´=+元;故答案为:()()500020,540018x x ++;(2)由(1)可知,当150x =,A 种方案所需要的钱数为5000201508000=+´=(元),当150x =,B 种方案所需要的钱数为5400181508100=+´=(元),答:购买150根跳绳时,A 种方案所需要的钱数为8000元,B 种方案所需要的钱数为8100元.(3)按A 方案购买50个篮球配送50个跳绳,按B 方案购买150个跳绳合计需付款:501202010090%600018007800´+´´=+=(元);∵780080008100<<,∴省钱的购买方案是:按A 方案买50个篮球,剩下的100条跳绳按B 方案购买,付款7800元.14.(24-25七年级上·山西晋城·阶段练习)小明,小刚,小颖三人玩游戏,每人一张写有已化为最简代数式的卡片,游戏规则为选择两位同学的代数式相减等于第三位同学的代数式,则游戏成功.小明,小刚,小颖的卡片如下,其中小颖的卡片有一部分看不见了.(1)小颖建议选取小明卡片上的代数式减去小刚卡片上的代数式,请你判断此操作能否使游戏成功;(2)小颖发现用她卡片上的代数式减去小明卡片上的代数式可以使游戏成功,你能否帮小颖求出她的代数式.【答案】(1)游戏不成功(2)23544a b ---【分析】本题考查了整式的加减运算,注意计算的准确性即可;(1)计算()()232335286a b a b -+--+-即可判断;(2)计算()()232335286a b a b -++-+-即可求解.【详解】(1)解:根据题意得:()()232323232335286352861168a b a b a b a b a b -+--+-=-++-+=-+;∵231168a b -+的常数项为8,而小颖卡片上代数式中的常数项为4-,∴小明卡片上的代数式减去小刚卡片上的代数式不等于小颖卡片上的代数式.∴游戏不成功.(2)解:根据题意得,小颖卡片上的代数式为:()()23232323233528635286544a b a b a b a b a b -++-+-=-+-+-=---.∴小颖卡片上的代数式为23544a b ---.15.(23-24七年级上·河北沧州·期末)如图,一个长方形运动场被分隔成2个A ,2个B ,1个C 共5个区,A 区是边长为m a 的正方形,C 区是边长为m c 的正方形.(1)列式表示B 区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果25a =,10c =,求整个长方形运动场的面积.【答案】(1)B 区长方形场地的周长为4ma (2)整个长方形运动场的周长为8ma (3)整个长方形运动场的面积为22400m 【分析】本题主要考查列代数式、去括号、合并同类项、求代数式的值等知识点,结合图形、理解每个正方形和长方形的边的表示方法是解题的关键.(1)由图形可知,B 区长方形场地的长和宽分别可以由正方形A 和正方形C 的边长表示,列出代数式后再去括号、合并同类项即可解答;(2)整个长方形运动场的长为()2m a c +,宽为()2m a c -,列出代数式再去括号、合并同类项即可解答;(3)先列代数式,再将a 、c 的值代入所列的代数式求值即可.【详解】(1)解:由题意得,B 区长方形场地的长为()m a c +,宽为()m a c -,∴()()()2222224m a c a c a c a c a ++-=++-=,∴B 区长方形场地的周长为4m a .(2)解:由题意得,整个长方形运动场的长为()2m a c +,宽为()2m a c -,∴()()()222242428m a c a c a c a c a ++-=++-=,∴整个长方形运动场的周长为8m a .(3)解:∵整个长方形运动场的长为()2m a c +,宽为()2m a c -,∴整个长方形运动场的面积为()()222m a c a c +-,当25a =,10c =时,()()()()()22222510225102400ma c a c +-=´+´´-=,∴整个长方形运动场的面积为22400m .题型六:整式的化简求值16.(24-25七年级上·山西忻州)先化简,再求值.(1)()()322x y x y --++,其中1x =-,34y =;(2)()()()322322232x y x y x y x -----+,其中3x =-,2y =-.4642=-+-=-.17.(24-25七年级上·河北石家庄·期末)化简求值:(1)222291244129a ab b a ab b -+-+-,其中11,22a b ==-;(2)()()22222231x x y xy x y éù+---ëû,其中,x y 满足()21202x y ++-=.18.(23-24七年级下·重庆·开学考试)化简求值 :()22222222a b ab a b ab ab éù----ëû,其中130a b -++=.(1)求a ,b 的值(2)化简并求出()22222222a b ab a b ab ab éù----ëû的值.题型七::整式加减的无关类型19.(2024七年级上·贵州)已知()()222325A x x x x =+--+ (1)化简A ;(2)若21B x ax =+-,且A 与B 的差不含x 的一次项,求a 的值.【答案】(1)22310x x ++(2)3a =【分析】本题考查整式的加减运算,整式加减运算中的无关型问题,熟练掌握去括号,合并同类项的法则,是解题的关键:(1)去括号,合并同类项,进行化简即可;(2)先求出A 与B 的差,根据结果不含x 的一次项,得到含x 的一次项的系数为0,进行求解即可.22222233210x x x x =+-++22310x x =++;(2)2223101A B x x x ax -=++--+()2311x a x =+-+,∵A 与B 的差不含x 的一次项,∴30a -=,∴3a =.20.(23-24七年级下·重庆九龙坡)已知2332A x mx y =-+,2233B nx x y =-+是关于x y ,的多项式,其中m n ,为常数.(1)若A B +的值与x 的取值无关,求m n ,的值.(2)在(1)的条件下,先化简()222124322m n m n n m n n æö-+++ç÷,再求值.21.(22-23七年级上·广东佛山·期末)已知4232A a ab b =+-+,156B a b ab =--+.(1)当32a b ab +==,时,求2A B -的值;(2)若2A B -的值与a 的取值无关,求b 的值,并求2A B -的值.题型八:整式的综合问题22.(24-25七年级上·河南新乡)“整体思想”是中学数学解题中的一种重要的思想方法,在多项式化简与求值中应用广泛.(1)把2()x y -看成一个整体,将()()()22225x y x y x y ---+-合并的结果是__________(2)①已知21a a +=,则2222020a a ++=__________;②已知3a b +=-,则5()7711a b a b ++++__________;(3)已知2225,23a ab ab b -=-+=-,求代数式229332a ab b -+的值.23.(24-25七年级上·江西上饶)观察下列等式111122=-´,1112323=-´,1113434=-´,将以上三个等式两边分别相加得:111111111311 1223342233444 ++=-+-+-=-=´´´.(1)猜想并写出:145=´________;()11n n=+________;(2)直接写出下列各式的计算结果:①1111 12233420232024++++=´´´´L________;②1111122334(1)n n++++=´´´+L________;(3)探究并计算:1111 24466820222024 ++++´´´´L.24.(24-25七年级上·全国·课后作业)我们知道,42(421)3x x x x x -+=-+=,类似地,我们把()a b +看成一个整体,则4()2()((421)()3())a b a b a b a b a b =+-+++-++=+.“整体思想”是中学数学中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.(1)把2()a b -看成一个整体,化简:2223()6()2()a b a b a b ---+-;(2)已知31a b =-=-,,求(1)中整式的值;(3)先化简,再求值:()()()22227232322333x x x x x x -++-+--+,其中12x =-.【专题强化】一、单选题25.(24-25七年级上·上海浦东新)代数式32232362x y x y x y +-+是( )A .按x 降幂排列B .按x 升幂排列C .按y 降幂排列D .按y 升幂排列【答案】A【分析】本题考查整式的知识,解题的关键是掌握多项式降幂,升幂排序的定义.根据降幂排序和升幂排列的定义,依据不同的字母进行排列.【详解】解:按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,降幂则相反,常数项应该放在最前面,∵多项式32232362x y x y x y +-+中,x 的指数为:3,2,1,0,y 的指数为:1,2,0,3,∴按x 降幂排列,故选:A .26.(24-25七年级上·上海浦东新·阶段练习)把代数式()221112x x æö----+ç÷èø去括号,正确的结果是( )A .221112x x --++B .221112x x -+++C .221112x x -++-D .221112x x --+-27.(24-25七年级上·上海浦东新·阶段练习)在下列代数式:1x ,2x y +,213a b ,23x -,23a b,0中,是整式的有( )A .3个B .4个C .5个D .6个28.(24-25七年级上·河南洛阳·阶段练习)已知一列数1a ,2a ,3a ,…,它们满足关系式2111a a =-,3211a a =-,4311a a =-,…,当12a =时,则2024a =( )A .2B .1-C .12-D .1229.(24-25七年级上·吉林长春·阶段练习)正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1-,若正方形ABCD 绕着顶点逆时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2-,则翻转11次后,数轴上的数12-所对应的点是( )A .点AB .点BC .点CD .点D 【答案】D 【分析】本题考查的是数轴点的运动规律的探究,由正方形ABCD 在数轴上转动一周的过程中,B 对应的数是2,,,C D A -分别对应的数是3, 4.5,--- 再翻转1次后,B 对应的数是6,-所以四次一循环,再结合11即可得答案.【详解】解:正方形ABCD 在数轴上转动一周的过程中,B 对应的数是2,,,C D A -分别对应的数是3,4,5,--- 再翻转1次后,B 对应的数是6,-则四次一循环,11423,\¸=L\ 数轴上的数12-所对应的点是点.D故选:D .30.(24-25七年级上·山东济南·阶段练习)如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27,第二次输出的结果为9,则第8次输出的结果为( )A .1B .2C .4D .8++++-化简的结果为31.(24-25七年级上·江苏南通·阶段练习)如图所示,a b、是有理数,则式子a b a b a b( )A.3a b+B.3a b-C.3b a+D.3b a-32.(24-25七年级上·全国·课后作业)若222,,,则下列计算正确的是()M a b N ab P a b234===-A.32+=-5+=B.N P abM N a bC.2M P a b+=-D.22N P a b-=2【答案】C【分析】本题考查合并同类项.合并同类项的法则:系数相加减,字母及字母的指数不变.根据合并同类项法则计算即可.【详解】解:A、∵22M NB 、∵23ab 和24a b -不是同类项,∴N 与P 不能合并,故该选项不符合题意;C 、222242a b a b M P a b +==--,故该选项符合题意;D 、∵23ab 和24a b -不是同类项,∴N 与P 不能合并,故该选项不符合题意;故选:C .33.(2024九年级下·重庆·专题练习)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10个图形中●的个数为( )A .50B .53C .64D .76二、填空题34.(24-25七年级上·上海·阶段练习)单项式243x y -的系数是 ,次数是 .35.(24-25七年级上·上海·阶段练习)已知31a b -=则239a b -+= .【答案】1-【分析】本题主要考查了代数式求值,添括号,根据()239233a b a b -+=--,利用整体代入法求解即可.【详解】解:∵31a b -=,∴()2392332311a b a b -+=--=-´=-,故答案为:1-.36.(24-25七年级上·上海·阶段练习)已知531y ax bx cx =++-,且当2x =-时,5y =,那么当2x =时,y 的值为 .37.(24-25七年级上·湖南衡阳·阶段练习)把19~这九个数字填入33´的方格中,使其任意一行、任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛书”,则其中a b -的值为 .85ab 【答案】3【分析】本题考查了整式加减法的应用,理解题意,正确列出等式是解此题的关键.设8下方格子的数为x ,根据“任意一行、任意一列及两条对角线上的数之和都相等”可得85x b x a ++=++,移项即可得到答案.【详解】解:设数字8下方格子的数为x ,根据题意得:85x b x a ++=++,移项得:853a b x x -=+--=,故答案为:3.38.(24-25七年级上·江苏无锡·阶段练习)定义:a 是不为 1 的有理数 我们把11a -称为a 的差倒数,如:2 的差倒数是1112=--,-1 的差倒数是()11112=--,已知113a =-, 2a 是 1a 的差倒数,3a 是2a 的差倒数,……,依此类推,则2017a =.三、解答题39.(2024七年级上·全国·专题练习)化简:(1)()()2245542x x x x -++--+【答案】(1)239x x --+(2)5a-【分析】本题考查整式的加减运算,熟练掌握运算法则是解题关键.(1)去括号后,合并同类项即可;(2)去括号后,合并同类项即可.【详解】(1)原式2245542x x x x =-++-+-,239x x =--+.(2)原式4669a b b a =-+-,5a =-.40.(24-25七年级上·全国·单元测试)化简:(1)()22223x x y y -+-;(2)()()33322a b a b c a b c +---;(3)()()22332x x y x y -+--éùëû;(4)()()22331()()(2)24a b a b a b a b +-+-++-+.41.(24-25七年级上·全国·单元测试)先化简,再求值:(1)221241222m m m m æö-+-+-ç÷èø,其中1m =-;(2)()22225223xy x y x y xy éù---ëû,其中()2210x y -++=.42.(2024七年级上·全国·专题练习)先去括号,再合并同类项:(1)()()()3221x y x y +--+-;(2)()()22425221x x x x +---+;(3)()()223213a a a a a +-----;(4)()()2253235x x ---+;(5)()()()22232326ab b ab a ab ab b --+---【答案】(1)32x y ++;(2)21022x -;(3)2253a a +-;(4)2115x -+;(5)2236b a ab --.【分析】此题主要考查了去括号法则以及合并同类项,正确去括号是解题关键.(1)直接利用去括号法则去掉括号,进而合并同类项得出答案;(2)直接利用去括号法则去掉括号,进而合并同类项得出答案;(3)直接利用去括号法则去掉括号,进而合并同类项得出答案;(4)直接利用去括号法则去掉括号,进而合并同类项得出答案;(5)直接利用去括号法则去掉括号,进而合并同类项得出答案.【详解】(1)解:()()()3221x y x y +--+-3221x y x y =+-++-32x y =++;(2)解:()()22425221x x x x +---+224820422x x x x =+--+-21022x =-;(3)解:()()223213a a a a a +-----223213a a a a a =+---++2253a a =+-;(4)解:()()2253235x x ---+22515610x x =-+--2115x =-+;(5)解:()()()22232326ab b ab a ab ab b --+---2223326466ab b ab a ab ab b =---+-+2236b a ab =--.43.(24-25七年级上·安徽六安·阶段练习)已知m ,n 均为有理数,现规定两种新的运算:22*m n m n =-,()()m n m n m n ⊗=+-.例如:222*323495=-=-=-,()()4242426212⊗=+´-=´=.(1)分别计算()()4*2--和()()23-⊗-的值.(2)观察下面两列等式:①222*1213=-=; ①()()2121213⊗=+-=;②223*2325=-=; ②()()3232325⊗=+-=;③224*3437=-=; ③()()4343437⊗=+-=;④225*4549=-=; ④()()5454549⊗=+-=;… …根据上述规律,直接写出()2025*20244048⊗= .【答案】(1)()()4*212--=,()()235-⊗-=-(2)8097【分析】本题主要考查了数字类的规律探索,有理数的混合计算:(1)根据所给新定义直接列式计算即可;(2)观察前面的4个式子可得,两个连续的自然数做“*”的运算结果为较小的数的2倍加1,两个连续的自然数做“⊗*”的运算结果为较小的数的2倍加1,据此规律先计算出2025*20244049=,再计算出40494048⊗的结果即可.【详解】(1)解:由题意得,()()()()224*24216412--=---=-=;()()()()()()()232323515éùéù-⊗-=-+----=-´=-ëûëû;(2)解:①222*1213=-=; ①()()2121213⊗=+-=;②223*2325=-=; ②()()3232325⊗=+-=;③224*3437=-=; ③()()4343437⊗=+-=;④225*4549=-=; ④()()5454549⊗=+-=;……,以此类推,()()221*121n n n n n +=+-=+,()()()11121n n n n n n n +⊗=+++-=+,∴()2025*20244048⊗()2202414048=´+⊗40494048=⊗240481=´+8097=.44.(24-25七年级上·甘肃平凉·阶段练习)观察下列各式:第1个等式:11111222-´=-+=-;第2个等式:1111123236-´=-+=-;第3个等式:11111343412-´=-+=-;……(1)依据上述规律,写出第5个等式: ;(2)计算111111233420222023æöæöæö-´+-´+¼¼+-´ç÷ç÷ç÷)观察前面三个式子可知,连续的两个奇数的倒数的乘积的相反数等于交小奇数的倒数的相反数加上较大奇数45.(24-25七年级上·北京·阶段练习)若关于x 的关系式()322143k k x kx x x ++++-是关于x 的二次多项式.(1)求k 的值;(2)若该多项式的值是2,且规定[]a 表示不超过a 的最大整数,例如[]3.53=,请在此规定下求221202422k x x éù--êúëû的值.【答案】(1)0k =(2)3-【分析】本题考查了多项式的定义,代数式求值,解题的关键是掌握多项式的定义,理解题意.(1)根据已知的多项式为二次多项式可得多项式不含3x 项,且包含2x 项,推出()10k k +=,且10k +¹,即可求解;,然后把所求代数式变形后代入,结合表示不超46.(2024七年级上·浙江)(1)如图,左边是长方形,右边是三角形,其中有一条边重合,用含x ,y 的代数式表示图中阴影部分的面积S ,并计算当8,4x y ==时的面积.(2)先化简,再求值:已知()()222232352xy y x xy x xy éù-+----ëû,其中x ,y 满足()2230x y ++-=.【答案】(1)16;(2)74-【分析】(1)根据题意列得代数式后代入数值计算即可;(2)将原式去括号,合并同类项,然后根据绝对值及其偶次幂的非负性求得x ,y 的值,将其代入化简结果中计算即可.。
人教版初中七年级数学上册第二章《整式的加减》知识点总结(含答案解析)(1)
1.代数式x 2﹣1y的正确解释是( ) A .x 与y 的倒数的差的平方 B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B .【点睛】 本题考查了代数式,理解题意(代数式的意义)是解题关键.2.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A 解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.3.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b A 解析:A【解析】2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b ,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.4.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B解析:B【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.5.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个B .3个C .4个D .5个A 解析:A【分析】几个单项式的和叫做多项式,结合各式进行判断即可.【详解】 22a b ,3,2ab ,4,m -都是单项式; 2x yz x+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab c xy y π--,是多项式,共有2个.故选:A .【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.6.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.7.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 8.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.9.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .11A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.10.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . D解析:D【分析】 根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D .【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.11.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C 解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误; 2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.12.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B【分析】 根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错; (3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.13.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( )A .AB >B .A B =C .A B <D .无法确定A解析:A【分析】作差进行比较即可.【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6)=x 2-5x +2- x 2+5x +6=8>0,所以A >B .故选A .【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .14.下列说法正确的是( )A .0不是单项式B .25R π的系数是5C .322a 是5次单项式D .多项式2ax +的次数是2D 解析:D【分析】根据整式的相关概念可得答案.【详解】A 、0是单项式,故A 错误;B 、25R π的系数是5π,故B 错误;C 、322a 是2次单项式,故C 错误;D 、多项式2ax +的次数是2,故D 正确.故选:D .【点睛】本题考查单项式的系数,单项式中的数字因数叫做这个单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,也考查了多项式的次数.15.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个C 解析:C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】本题考查单项式的定义,熟练掌握定义是解题关键.1.合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列) (2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列)【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排 解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.2.如图,阴影部分的面积用整式表示为_________.x2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x +6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x 2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2+-m m234【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4,故答案为2m2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.4.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.08a【解析】试题分析:根据题意得:a•(1+20)×90=108a;故答案为108a考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为1.08a.考点:列代数式.5.关于x的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x的次数逐渐减小排列,这个二次三项式为____.-3x2+5x-4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x ,∵常数项是-4,∴这个二次三项式为:-3x 2+5x-4.故答案为:-3x 2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.6.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.【分析】有第1排的座位数看第n 排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n 排座位有(a+n-1)个故答案为:(a+n 解析:a n 1+-【分析】有第1排的座位数,看第n 排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有 a 个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n 排座位有 (a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n 排的座位数与第1排座位数的关系式的规律是解决本题的关键. 7.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.8.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.9.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.-2【分析】先根据代数式为定值求出ab 的值及的值然后对所求代数式进行变形然后代入计算即可【详解】∵对于任意有理数代数式的值不变∴∵∴原式=故答案为:-2【点睛】本题主要考查代数式的求值能够对代数式进解析:-2【分析】先根据代数式 2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++(6)(25)9a x b y =-+-+∵对于任意有理数 ,x y ,代数式 2A B - 的值不变∴60,250a b -=-=,29A B -=56,2a b ∴== ∵121()(2)2(2)333a Ab B a b A B ---=--- ∴原式=51629653223-⨯-⨯=--=-故答案为:-2【点睛】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.10.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a、b、c、d.若|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,则|b﹣c|=___.7【分析】根据数轴和题目中的式子可以求得c﹣b的值从而可以求得|b﹣c|的值【详解】∵|a﹣c|=10|a﹣d|=12|b﹣d|=9∴c﹣a=10d﹣a=12d﹣b=9∴(c﹣a)﹣(d﹣a)+(d解析:7【分析】根据数轴和题目中的式子可以求得c﹣b的值,从而可以求得|b﹣c|的值.【详解】∵|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,∴c﹣a=10,d﹣a=12,d﹣b=9,∴(c﹣a)﹣(d﹣a)+(d﹣b)=c﹣a﹣d+a+d﹣b=c﹣b=10﹣12+9=7.∵|b﹣c|=c﹣b,∴|b﹣c|=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.11.“a的3倍与b的34的和”用代数式表示为______.【分析】a的3倍表示为3ab的表示为b然后把它们相加即可【详解】根据题意得3a+b;故答案为:3a+b 【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列解析:3 34 a b【分析】a的3倍表示为3a,b的34表示为34b,然后把它们相加即可.【详解】根据题意,得3a+34 b;故答案为:3a +34b . 【点睛】 本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.1.设A =2x 2+x ,B =kx 2-(3x 2-x+1).(1)当x= -1时,求A 的值;(2)小明认为不论k 取何值,A-B 的值都无法确定.小红认为k 可以找到适当的数,使代数式A-B 的值是常数.你认为谁的说法正确?请说明理由.解析:(1)A =1;(2)小红的说法正确,理由见解析.【解析】试题分析:(1)把x=-1代入A 进行计算即可得;(2)先计算出A-B ,根据结题即可得.试题(1)当x=-1时,A=2x 2+x=2×(-1)2+(-1)=2-1=1;(2)小红的说法正确,理由如下:A-B=(2x 2+x )-[kx 2-(3x 2-x+1)]=(5-k )x 2+1,所以当k=5时,A-B=1,所以小红的说法是正确的.2.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-.解析:24a b --,-2.【分析】原式合并同类项后代入字母的值计算即可.【详解】解:原式24a b =--,当1a =-,2b =-时,原式2=-.【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.3.计算:(1)()223537a ab a ab -+-++;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭. 解析:(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+---2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键. 4.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.。
七年级上册第二单元 整式重难点题型汇总
七年级上册第二单元整式重难点题型考点一列代数式考点二代数式的概念考点三单项式的判断及系数、次数考点四多项式的判断及系数、次数考点五整式的判断考点六数字规律探究考点七图形规律探究考点八已知字母的值,求代数式的值考点九已知式子的值,求代数式的值考点一列代数式例题:(2022·全国·七年级单元测试)请用代数式表示“比a的3倍小1的数”:______【答案】3a-1##-1+3a【分析】a的3倍即3a,小1即-1,据此可得.【详解】解:“比a的3倍小1的数”用代数式表示为:3a-1,故答案为3a-1.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.【变式训练】1.(2022·吉林·大安市乐胜乡中学校七年级期末)某公园门票价格为成人票每张30元,儿童票每张15元,若购买m张成人票和n张儿童票,则共需花费为_________.【答案】(30m+15n)##(15n+30m)【分析】根据单价×数量=总价,用代数式表示结果即可.【详解】解:根据单价×数量=总价得,共需花费(30m+15n)元,故答案为:(30m+15n).【点睛】本题考查代数式表示数量关系,理解和掌握单价×数量=总价,是列代数式的关键.2.(2021·重庆·垫江第八中学校七年级阶段练习)一个三位数,百位上的数字是2,十位上的数字是x,个位上的数字是y,那么这个三位数可表示为______________【答案】200+10x+y【分析】根据三位数的列法即可求解.【详解】解:根据题意得:这个三位数可表示为200+10x+y.故答案为:200+10x+y【点睛】本题考查了列代数式,解决本题的关键是理解三位数的列法.考点二代数式的概念,考点三单项式的判断及系数、次数考点四多项式的判断及系数、次数考点五整式的判断【分析】根据整式的定义,单项式和多项式都是整式,整式是指没有除法运算,或有除法运算但除式中不含字母的考点六数字规律探究,;考点七图形规律探究为1+4(n﹣1),则可计算出n=5时三角形的个数.(1)图①中三角形的个数为1,图②中三角形的个数为1+4=5,图③中三角形的个数为1+4×2=9;(2)图⑤中三角形的个数为1+4×4=17;第n个图形中三角形的个数为1+4(n﹣1).故答案为5,9;17;1+4(n﹣1).【点睛】本题考查了规律型﹣图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【变式训练】(1)按照这种规律,第5个“100”字样的棋子个数是(2)若有2022个这样的棋子,按这种摆法是否正好摆成一个七年级期末)用长方形和三角形按图示排列规律组成一连串平面图形.考点八已知字母的值,求代数式的值1.(2021·四川广元·七年级期末)若x是最大的负整数,y是最小的正整数,z是绝对值最小的数,w是相反数等于它本身的数,则x﹣z+y﹣w的值是_____.,绝对值最小的数考点九已知式子的值,求代数式的值例题:(2022·四川省九龙县中学校七年级期末)已知代数式x-2y的值是3,则代数式-3x+6y+10的值是____________.【答案】1【分析】由题意得x-2y=3,再将-3x+6y+10化成-3(x-2y)+10,整体代入计算即可.【详解】解:∵x-2y的值是3,即x-2y=3,∴-3x+6y+10=-3(x-2y)+10=-3×3+10=1,故答案为:1.【点睛】本题考查代数式求值,将-3x+6y+10化成-3(x-2y)+10是解决问题的关键.【变式训练】1.(2021·辽宁·朝阳市第一中学七年级期末)已知代数式21+-的值是______.a aa a+=,则代数式2222023【答案】-2021【分析】依据题意得到21a a +=,然后依据等式的性质得到222a a +=(),最后代入计算即可.【详解】解:∵21a a +=,∴2222023a a +-=222023a a +-()=2-2023=-2021,故答案为:-2021.【点睛】本题主要考查的是求代数式的值,求得222a a +=()是解题的关键.2.(2021·江苏·盐城市大丰区实验初级中学七年级阶段练习)已知代数式x-3y 的值是4,则代数式(x-3y )2+2x-6y-1的值是__.【答案】7【分析】把()3x y -看作一个整体并代入代数式进行计算即可解出答案.【详解】将()3x y -看作一个整体可得:()()()2232613231x y x y x y x y --+-=----将()3x y -代入得:242417-⨯-=故答案为:7.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.、分数与字母相乘,带分数应该写成假分数的形式,故此选项不符合题意;【答案】2或3-【分析】直接利用多项式的次数与系数确定方法分析得出答案.【详解】解:∵关于x 、y 的多项式()|1|2||843m m xy m xy m +---++是四次二项式,∴当240m -=,|m +1|=3时,∴m =2;当m +3=0时,m =-3,原多项式为|31|2|32|38[(3)4]85x y x y y x y x -+-=------,综上所述,m 的值为2或3-.故答案为:2或3-.【点睛】本题主要考查了多项式,正确分类讨论得出m 的值是解题关键.三、解答题11.(2022·江苏·七年级专题练习)下列表述中,字母各表示什么?(1)正方形的周长为4a ;(2)买单价为5元的毛巾,花了5a 元钱;(3)某班女生比男生多1人,女生共有(x +1)人.【答案】(1)a 表示正方形的边长(2)a 表示毛巾的数量(3)x 表示男生的人数【分析】(1)根据正方形的周长=边长×4即可得出答案;(2)根据总价=单价×数量即可得出答案;(3)根据女生比男生多1人即可得出答案.(1)解:根据题意可得,a 表示正方形的边长;(2)解:根据题意可得,a 表示毛巾的数量;(3)解:根据题意可得,x 表示男生的人数.【点睛】本题考查了代数式,熟练掌握各代数式的意义是解题的关键.12.(2022·全国·七年级专题练习)已知(m +1)x 3﹣(n ﹣2)x 2+(2m +5n )x ﹣6是关于x 的多项式.(1)当m 、n 满足什么条件时,该多项式是关于x 的二次多项式?(2)当m ,n 满足什么条件时,该多项式是关于x 的三次二项式?【答案】(1)m =﹣1,n ≠2(2)m =﹣5,n =2【分析】(1)根据二次多项式的定义得出m +1=0,且n ﹣2≠0,然后求解即可;(2)根据多项式是关于x 的三次二项式得出m +1≠0,n ﹣2=0,且2m +5n =0,然后求解即可得出答案.(1)解:由题意得:m +1=0,且n ﹣2≠0,解得:m =﹣1,n ≠2,(1)摆第4个图案用根火柴棒.每个对应数加(1)填写表格:图案序号1234…(1)在第5个图中,共有白色瓷砖块;在第n个图中,共有白色瓷砖(2)在第5个图中,共有瓷砖块;在第n个图中,共有瓷砖(3)如果每块黑瓷砖30元,每块白瓷砖40元,当n=10时,铺设长方形地面共需花多少钱购买瓷砖?n n【答案】(1)35,(2)(2)63,(4)(2)n n ++(3)6240【分析】(1)通过观察发现规律,在第5个图中,共有白色瓷砖的数量为7×5块,将上面的规律写出来即可;(2)通过观察发现规律,在第5个图中,共有瓷砖的数量为7×9,将上面的规律写出来即可;(3)求出当n =10时,黑色和白色瓷砖的个数,然后计算总费用即可.(1)解:根据题意得:在第1个图中,共有白色瓷砖的数量为3=3×1;在第2个图中,共有白色瓷砖的数量为8=4×2;在第3个图中,共有白色瓷砖的数量为15=5×3;在第4个图中,共有白色瓷砖的数量为24=6×4;在第5个图中,共有白色瓷砖的数量为35=7×5;……在第n 个图中,共有白色瓷砖的数量为(2)n n +.故答案为:35,(2)n n +(2)解:根据题意得:在第1个图中,共有瓷砖的数量为5=3×5;在第2个图中,共有瓷砖的数量为24=4×6;在第3个图中,共有瓷砖的数量为35=5×7;在第4个图中,共有瓷砖的数量为48=6×8;在第5个图中,共有瓷砖的数量为63=7×9;……在第n 个图中,共有瓷砖的数量为(4)(2)n n ++;故答案为:63,(4)(2)n n ++(3)解:根据题意得:当n =10时,共有白色瓷砖的数量为10×12=120,共有瓷砖的数量为(10+4)×(10+2)=168,∴共有黑色瓷砖的数量为168-120=48,∴铺设长方形地面共需的费用为401204830=⨯+⨯48001440=+6240=答:当n =10时,铺设长方形地面共需花6240元钱购买瓷砖.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,此题有一定拔高难度,属于难题,解答此题的关键是通过观察和分析,找出其中的规律.。
【七年级】2021年七年级数学上期末复习整式的加减专题(人教版带答案和解释
【七年级】2021年七年级数学上期末复习整式的加减专题(人教版带答案和解释专题02整式的加减1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.(1)单项式的系数就是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫作多项式.在多项式中,每个单项式叫作多项式的项.(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最低的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3.多项式的降幂与升幂排序:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.(1)利用乘法交换律重新排列时,各项应当联同它的符号一起移动边线;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式泛称为整式.5.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.分辨同类项必须把科东俄“两相同,两毫无关系”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两毫无关系”就是指:①与系数毫无关系;②与字母的排序顺序毫无关系.6.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.分拆同类项时,只是系数相乘减至,税金结果做为系数,字母及字母的指数维持维持不变.7.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.8.迎括号法则:迎括号后,括号前面就是“+”,括号内各项的符号都不发生改变;迎括号后,括号前面就是“-”,括号内各项的符号都必须发生改变.9.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.考点一、单项式例1(临沂中考)观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…,按照上述规律,第2015个单项式是a.2015x2015b.4029x2014c.4029x2015d.4031x2015【答案】c【解析】由题中规律可知,第个单项为,当时,这个单项式为,故本题应选c.考点二、多项式例2(2021长春中考)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为a.3a+2bb.3a+4bc.6a+2bd.6a+4b【答案】a【解析】矩形较长的边长为正方形的边长与小长方形短边长的和,即.考点三、同类项例3(2021济宁中考)单项式9xmy3与单项式4x2yn是同类项,则m+n的值是a.2b.3c.4d.5【答案】d【解析】所含字母相同,相同字母的指数也相同的项是同类项,所以,,,故本题应选d.考点四、回去括号例4(2021贵州安顺)下面各式运算正确的是a.2(a?1)=2a?1b.a2b?ab2=0c.2a3?3a3=a3d.a2+a2=2a2【答案】d.考点五、整式加减基准5(2021江苏无锡)若a?b=2,b?c=?3,则a?c等同于a.1b.?1c.5d.?5【答案】b【解析】∵a?b=2,b?c=?3,∴a?c=(a?b)+(b?c)=2?3=?1,故挑选b.-一、选择题1.未知a与b互为相反数,且x与y互为倒数,那么|a+b|-2xy的值a.2b.-2c.-1d.无法确认【答案】b【解析】根据未知条件,a与b互为相反数,即a+b=0,x与y互为倒数,即xy=1,所以|a+b|-2xy=0-2×1=-2,故挑选b.2.已知一个单项式的系数是2,次数是3,则这个单项式可以是a.?2xy2b.3x2c.2xy3d.2x3【答案】d.3.存有以下式子:,,,,0,,,,对于这些式子以下结论恰当就是a.有4个单项式,2个多项式b.存有5个单项式,3个多项式c.有7个整式d.存有3个单项式,2个多项式【答案】a【解析】单项式存有,,0,x;多项式存有,,其中,不是整式.4.对于式子,下列说法正确的是a.不是单项式b.是单项式,系数为-1.2×10,次数是7c.就是单项式,系数为-1.2×104,次数就是3d.是单项式,系数为-1.2,次数是3【答案】c【解析】此单项式的系数是以科记数法形式出现的数,所以系数为-1.2×104,次数应为x与y的指数之和,不包括10的指数4,故次数为3.不要犯“见指数就相加”的错误.所以正确答案为c.5.下面排序恰当的就是a.3-=3b.3+2=5c.3+=3d.-0.25+=0【答案】d【解析】a选项,,故错误;b选项,,故错误;c选项,,故错误;d选项,,故恰当.综上所述,故挑选d.6.下列式子正确的是a.x?(y?z)=x?y?zb.?(x?y+z)=?x?y?zc.x+2y?2z=x?2(z+y)d.?a+c+d+b=?(a?b)?(?c?d)【答案】d.7.某工厂现有工人a人,若现有工人数比两年前减少了35%,则该工厂两年前工人数为a.b.(1+35%)ac.d.(1-35%)a【答案】c【解析】把减少前的工人数看作整体“1”,已知一个数的(1-35%)是a,求这个数,则是,注意列式时不能用“÷”号,要写成分数形式.8.若的值8,则的值就是a.2b.-17c.-7d.7【答案】c【解析】,,,故.二、填空题9.比x的15%小2的数是________.【答案】15%x+2【解析】由题意所述,这个数为.10.单项式?x2y3的次数是.【答案】5.【解析】根据次数的定义可知,这个单项式的次数为5.11.未知多项式x|m|+(m?2)x?10就是二次三项式,m为常数,则m的值.【答案】-212.化简:2a-(2a-1)=________.【答案】1【解析】先根据回去括号法则回去括号,然后分拆同类项即可,2a-(2a-1)=2a-2a+1=1.13.如果,,那么________.【答案】5【解析】用前式减去后式可得.14.一个多项式乘以3x等同于,则这个多项式为________.【答案】【解析】建议的多项式实际上就是,化简可以得出结论结果.15.若单项式与单项式的和是单项式,那么.【答案】1【解析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义,可得,.16.如图所示,外圆半径就是r厘米,内圆半径就是r厘米,四个小圆的半径都就是2厘米,则图中阴影部分的面积就是________平方厘米.【答案】【解析】阴影部分的面积=大圆面积-最中间的圆的面积-4个小圆的面积.三、解答题17.分拆同类项:(1)3a?2b?5a+2b(2)(2m+3n?5)?(2m?n?5)(3)2(x2y+3xy2)?3(2xy2?4x2y)【解析】(1)原式=(3a?5a)+(?2b+2b)=?2a;(2)原式=2m+3n?5?2m+n+5=(2m?2m)+(3n+n)+(?5+5)=4n;(3)原式=2x2y+6xy2?6xy2+12x2y=(2x2y+12x2y)+(6xy2?6xy2)=14x2y.18.已知:,,,当时,求代数式的值.19.排序下式的值:其中甲同把错抄成,但他计算的结果也是正确的,你能说明其中的原因吗?【解析】∵化简结果与无关∴将删错不影响最终结果.。
人教版初中七年级数学上册第二章《整式的加减》知识点总结(含答案解析)(1)
一、选择题1.(0分)如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次C解析:C【分析】 首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误;C. a与b的倒数的差:1ab-;该选项正确;D. a的相反数与b的差的倒数:1a b--,该选项错误.故选:C.【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.85D解析:D【分析】观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为()()122n n+++n2,根据规律求解.【详解】通过观察,得到小圆圈的个数分别是:第一个图形为:()1222+⨯+12=4,第二个图形为:()1332+⨯+22=10,第三个图形为:()1442+⨯+32=19,第四个图形为:()1552+⨯+42=31,…,所以第n个图形为:()()122n n+++n2,当n=7时,()()72712+++72=85,故选D.【点睛】此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.4.(0分)化简2a-[3b-5a-(2a-7b)]的值为()A.9a-10b B.5a+4bC.-a-4b D.-7a+10b A解析:A【解析】2a-[3b-5a-(2a-7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.5.(0分)设a是最小的非负数,b是最小的正整数,c,d分别是单项式﹣x3y的系数和次数,则a,b,c,d四个数的和是()A.1 B.2 C.3 D.4D解析:D【分析】根据题意求得a,b,c,d的值,代入求值即可.【详解】∵a是最小的非负数,b是最小的正整数,c,d分别是单项式-x3y的系数和次数,∴a=0,b=1,c=-1,d=4,∴a,b,c,d四个数的和是4,故选:D.【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数.6.(0分)我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3 元/kg,则3a表示买a kg葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.某款运动鞋进价为a元,若这款运动鞋盈利50%,则销售两双的销售额为3a元D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数D解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A、根据“单价×数量=总价”可知3a表示买a kg葡萄的金额,此选项不符合题意;B、由等边三角形周长公式可得3a表示这个等边三角形的周长,此选项不符合题意;C、由“售价=进价+利润”得售价为1.5a元,则2×1.5a=3a(元),此选项不符合题意;D、由题可知,这个两位数用字母表示为10×3+a=30+a,此选项符合题意.故选:D.【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.7.(0分)下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B【分析】 根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错; (3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.8.(0分)在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个C解析:C【分析】根据单项式的定义逐一判断即可.【详解】 3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式,∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】 本题考查单项式的定义,熟练掌握定义是解题关键.9.(0分)﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.10.(0分)根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B解析:B【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数.【详解】根据题中的数据可知:左下角的数=上面的数的平方+1∴28165x =+=右下角的值=上面的数×左下角的数+上面的数∴888658528y x =+=⨯+=∴65528593x y +=+=故选:B.【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式. 二、填空题11.(0分)观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31, 9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n 为正整数)应为【详解】根据分析:即第解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+.【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-.故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解. 12.(0分)数字解密:第一个数是3=2+1,第二个数5=3+2,第三个数是9=5+4,第四个数17=9+8,……,观察并猜想第六个数是_______.65【分析】设该数列中第n 个数为an (n 为正整数)根据给定数列中的前几个数之间的关系可找出变换规律an=2an ﹣1﹣1依此规律即可得出结论【详解】解:设该数列中第n 个数为an (n 为正整数)观察发现规解析:65【分析】设该数列中第n 个数为a n (n 为正整数),根据给定数列中的前几个数之间的关系可找出变换规律“a n =2a n ﹣1﹣1”,依此规律即可得出结论.【详解】解:设该数列中第n 个数为a n (n 为正整数),观察,发现规律:a 1=3=2+1,a 2=5=2a 1﹣1,a 3=9=2a 2﹣1,a 4=17=2a 3﹣1,…,a n =2a n ﹣1﹣1.∴a 6=2a 5﹣1=2×(2a 4﹣1)﹣1=2×(2×17﹣1)﹣1=65.故答案为65.13.(0分)合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列)(2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列)【分析】(1)先合并同类项再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b 的次数由大到小重新排解析:256x x -+ 32222x y x y -- 221022b ab a -- 【分析】 (1)先合并同类项,再将多项式按照字母x 的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x 的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b 的次数由大到小重新排列即可.【详解】解:(1)2222111155232366x x x x x x x x x x ⎛⎫--=-+=-=-+ ⎪⎝⎭; 故答案为:256x x -+; (2)解:322223223222232x y x y y x x y x y x y --+=--; 故答案为:32222x y x y --;(3)解:222222223425621021022a b ab a b a b ab b ab a +--+=-+-=--; 故答案为:221022b ab a --.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.14.(0分)如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.15.(0分)将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可.【详解】折叠1次的折痕为1,1121=-;折叠2次的折痕为3,2321=-;折叠3次的折痕为7,3721=-;……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-=故答案为:31.【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键. 16.(0分)已知5a b -=,3c d +=,则()()b c a d +--的值等于______.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a -b )和(c +d )的式子,然后代入求值即可.【详解】()()()()532b c a d b c a d b a c d +--=+-+=-++=-+=-.故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a -b )和(c +d )的式子是解决此题的关键. 17.(0分)在x y +,0,21>,2a b -,210x +=中,代数式有______个.3【分析】代数式是指把数或表示数的字母用+-×÷连接起来的式子而对于带有=><等数量关系的式子则不是代数式【详解】解:是不等式不是代数式;是方程不是代数式;0是代数式共3个故答案是:3【点睛】本题考解析:3【分析】代数式是指把数或表示数的字母用+、-、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.【详解】解:21>是不等式,不是代数式;210x +=是方程,不是代数式;x y +,0,,2a b -,是代数式,共3个.故答案是:3.【点睛】本题考查了代数式的定义,理解定义是关键.18.(0分)求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.19.(0分)观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________; 4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)定义:若2m n +=,则称m 与n 是关于1的平衡数.(1)3与______是关于1的平衡数,5x -与______(用含x 的整式表示)是关于1的平衡数;(2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1的平衡数,并说明理由.解析:(1)1-,3x -;(2)不是,理由见解析【分析】(1)由平衡数的定义求解即可达到答案;(2)计算a+b 是否等于1即可;【详解】解:(1)1-,3x -;(2)a 与b 不是关于1的平衡数.理由如下:因为()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,所以()()2222342342a b x x x x x x x ⎡⎤+=-+++--+-⎣⎦, 22223342342x x x x x x x =--++-+++,62=≠,所以a 与b 不是关于1的平衡数.【点睛】本题主要考查了整式的加减,准确分析计算是解题的关键.22.(0分)国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人. (1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.解析:(1)甲旅行社收取组团两日游的总费用为425x 元;若人数不超过20人时,乙旅行社收取组团两日游的总费用为450x 元;若人数超过20人时,乙旅行社收取组团两日游的总费用为(4001000x +)元;(2)王老师应选择甲旅行社.【分析】(1)根据总费用等于人数乘以打折后的单价,易得甲旅行社的费用=500 x×0.85,对于乙家旅行社的总费用,应分类讨论:当0≤x≤20时,乙旅行社的费用=500 x×0.9;当x >20时,乙旅行社的费用=500×20×0.9+500(x-20)×0.8;(2)把x=30分别代入(1)中对应关系计算甲旅行社的费用和乙旅行社的费用的值,然后比较大小即可.【详解】(1)甲旅行社收取组团两日游的总费用为:5000.85425x x ⨯=元若人数不超过20人时,乙旅行社收取组团两日游的总费用为:5000.9450x x ⨯=元 若人数超过20人时,乙旅行社收取组团两日游的总费用为:()500(20)0.8500200.94001000-⨯+⨯⨯=+x x 元(2)因为王老师组团参加两日游的人数共有30人,所以甲旅行社收取组团两日游的总费用为:4253012750⨯=元乙旅行社收取组团两日游的总费用为40030100013000⨯+=元1275013000<,王老师应选择甲旅行社.【点睛】本题考查了代数式,能根据具体情境列代数式并求代数式的值是关键.23.(0分)已知单项式﹣2x 2y 的系数和次数分别是a ,b .(1)求a b ﹣ab 的值;(2)若|m|+m=0,求|b ﹣m|﹣|a+m|的值.解析:(1)﹣2;(2)1.【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a 、b 的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m 的取值范围,根据差的绝对值是大数减小数,可得答案.【详解】解:由题意,得a=﹣2,b=2+1=3.a b ﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b ﹣m|﹣|a+m|=b ﹣m+(a+m )=b+a=3+(﹣2)=1;【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键.24.(0分)将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条?解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.25.(0分)某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式321222a b c d ⨯+⨯+⨯+计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为________.解析:070629【分析】利用公式求出图2中每行表示的数据,将其组合起来即可得出结论.【详解】解:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.【点睛】本题考查了规律型:图形的变化类以及尾数特征,读懂题意,利用公式求出图2中每行表示的数据是解题的关键.26.(0分)(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.27.(0分)列出下列代数式:(1)a 、b 两数差的平方;(2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积;(4)a 的相反数与b 的平方的和.解析:(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意. 28.(0分)已知一个多项式加上223x y xy -得222x y xy -,求这个多项式. 佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程. 解析:是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册重难点专题
整式的认识与计算
一、填空题。
1、在
3222112,3,1,,,,4,,43xy x x y m n x ab x x --+---+,π2b 中, 单项式有:________________________,多项式有:______________________。
2、2
5ab π-的系数是( )。
3、7-2xy-3x 2y 3+5x 3y 2z-9x 4y 3z 2是( )次( )项式,其中最高次项是( ),最高次项的系数是( ),常数项是( )。
4、一个多项式加上-x 2+x -2得x 2-1,则此多项式应为________________。
5、如果-31x m y 与2x 2y 1+n 是同类项,则m=_______,n=________。
6、 -3a+3a=( ), 2a -2a=( ),
-5 a -5a=( ), 4a + 4a=( )
7、已知x -y=5,xy=3,则3xy-7x+7y=_______。
8、已知A=3x+1,B=6x-3,则3A-B=_______。
9、一个多项式A 减去多项式2x 2+5x -3,马虎同学错将减号抄成了加号,运算结果得x 2+3x -7,多项式A 是( )。
10、某学校三个班参加植树活动,第一个班种x 棵,第二个班种的树比第一班种的树的2倍还多8棵,第三班种的树比第二班种的树的一半少6棵,三个班共种树( )棵。
二、选择题。
1、在代数式:n
2,33-m ,22-,32m -,22b π中,单项式的个数有( ) A.1个 B.2个 C.3个 D.4个
2、下列语句正确的是( )
A .
中一次项系数为-2 B .n m 232-是二次二项式 C .是四次三项式 D .是五次三项式
3、下列各组中的两项,属于同类项的是( )
A.y x 22-与2xy
B.5y x 2与—0.5z x 2
C.3mn 与—4nm
D.-05
.ab 与abc 4.单项式-3
22
4c ab 的系数与次数分别是( ) A.-2, 6 B.2, 7 C.-
32, 6 D.-3
2, 7 5.下列合并同类项正确的是( ) A.325a b ab += B.770m m -=
C.33622ab ab a b +=
D.-+=a b a b ab 222
6.已知x 2+3x +5的值为7,那么代数式3x 2+9x -2的值是( )
A .0
B .2
C .4
D .6
7.如果綦江电影院第一排有m 个座位,后面每排比前一排多2个座位,那么第n 排的座位数共有( )个
A.m n +2
B.mn +2
C.)1(2-+n m
D.2++n m
8.多项式
83322-+--xy y kxy x 化简后不含xy 项,则k 为( ) A.0 B.-31 C.3
1 D.3 9.当x 分别等于1和-1时,代数式x x 4225++的值( )
A.异号
B. 相等
C. 互为相反数
D. 互为倒数
10.若a b ab -=3,则b ab a b
ab a -+--222等于( )
A. 41
B. 21
C. 43
D. 1
三、解答题。
1、化简下列各题。
(1))34()135(232a a a a --+- (2)
]2)5(2[)3(2222ab a ab b a ab ++----
(3))32(3)21(222x x x x x -+-++--
2、求代数式的值。
(1)求[]mn m mm m m mn 2)(5)3(2323+-----,其中m=1,n=-2
(2)求5ab-2[3ab- (4ab 2+
21ab)] -5ab 2的值,其中a=21,b=-3
2。
3、一位同学做一道题:已知两个多项式A、B,计算2A+B,他误将“2A+B•”看成“A+2B”求得的结果为9x2-2x+7,已知B=x2+3x-2,求正确答案。
4、如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总的点数S是多少?当n=7,100时,S是多少?
参考答案
一、1、xy ,-3,-n m 2,2
ab ,32+x ,π2b ;-341x +1,x-y ,4-2x 2、-5π
3、9 5 -9x 4y 3z 2 -9 7
4、2x 2-x+1
5、2 0
6、0 0 -10a 8a
7、-26
8、3x+6
9、 3x 2+8x -4
10、4x+6
二、1、C 2、A 3、C 4、D 5、B
6、C
7、C
8、C
9、B 10、D 三、1、(1)1543++-a a
(2)ab b a +-2227
(3)81452-+-x x
2、(1)13
(2)-1
3、2012152+-x x
4、S=3(n-1);n=7时,S=18;n=100时,S=297。