专题18.平面几何基础
2023年高考数学真题实战复习(2022高考+模考题)专题18 解析几何中的双曲线问题(解析版)
专题18 解析几何中的双曲线问题【高考真题】1.(2022·北京) 已知双曲线221x y m +=的渐近线方程为y =,则m =__________. 1.答案 3- 解析 对于双曲线221x y m +=,所以0m <,即双曲线的标准方程为221x y m-=-,则1a =,b =,又双曲线221x ym +=的渐近线方程为y =,所以a b =,=解得3m =-;故答案为3-.2.(2022·全国甲理) 若双曲线2221(0)x y m m -=>的渐近线与圆22430x y y +-+=相切,则m =_________.2.答案解析 双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离1d ==,解得m =或m =. 3.(2022·全国甲文) 记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________. 3.答案 2(满足1e <≤) 解析 2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为by x a=±, 结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”,所以c e a ===1e >,所以1e <≤2(满足1e <≤4.(2022·全国乙理) 双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 的两支交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )A B .32 C D4.答案 C 解析 依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,所以1OG NF ⊥, 因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,sin a c β=,cos bcβ=,在21F F N 中,()()12sin sin sin F F N παβαβ∠=--=+4334sin cos cos sin 555b a a bc c cαβαβ+=+=⨯+⨯=,由正弦定理得211225sin sin sin 2NF NF c c F F N αβ===∠,所以112553434sin 2252c c a b a b NF F F N c ++=∠=⨯=,2555sin 222c c a a NF c β==⨯=,又12345422222a b a b aNF NF a +--=-==,所以23b a =,即32b a =,所以双曲线的离心率c e a ==.故选C .5.(2022·浙江)已知双曲线22221(0,0)x y a b ab-=>>的左焦点为F ,过F 且斜率为4ba的直线交双曲线于点 ()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.5.答案 解析 过F 且斜率为4b a 的直线:()4b AB y x c a =+,渐近线2:b l y x a =,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a=,所以离心率e =. 【知识总结】1.双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹. (2)符号表示:||MF 1|-|MF 2||=2a (常数)(0<2a <|F 1F 2|).(3)焦点:两个定点F 1,F 2. (4)焦距:两焦点间的距离,表示为|F 1F 2|. 2.双曲线的标准方程和简单几何性质F (-c ,0),F (c ,0)F (0,-c ),F (0,c )【题型突破】题型一 双曲线的标准方程1.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=11.答案 B 解析 由y =52x 可得b a =52,①.由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+ b 2=9,②.由①②可得a 2=4,b 2=5.所以C 的方程为x 24-y 25=1.故选B .2.(2016·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A .x 24-y 2=1B .x 2-y 24=1C .3x 220-3y 25=1D .3x 25-3y 220=12.答案 A 解析 依题意得b a =12,①,又a 2+b 2=c 2=5,②,联立①②得a =2,b =1.∴所求双曲线 的方程为x 24-y 2=1.3.(2018·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 29=1D .x 29-y 23=13.答案 C 解析 因为双曲线的离心率为2,所以ca =2,c =2a ,b =3a ,不妨令A (2a,3a ),B (2a ,-3a ), 双曲线其中一条渐近线方程为y =3x ,所以d 1=|23a -3a |(3)2+(-1)2=23a -3a 2,d 2=|23a +3a |(3)2+(-1)2=23a +3a 2;依题意得:23a -3a 2+23a +3a 2=6,解得:a =3,b =3,所以双曲线方程为:x 23-y 29=1.4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=14.答案 D 解析 根据题意画出草图如图所示⎝⎛ 不妨设点A⎭⎫在渐近线y =ba x 上.由△AOF 是边长为2的等边三角形得到∠AOF =60°,c =|OF |=2.又点A 在双曲线的渐近线y =b a x 上,∴b a =tan 60°=3.又a 2+b 2=4,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1,故选D5.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A .x 24-3y 24=1 B .x 24-4y 23=1 C .x 24-y 24=1 D .x 24-y 212=15.答案 D 解析 根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b 2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b 2x ,x 2+y 2=4得x A =44+b 2,y A =2b4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1,选D . 6.已知双曲线E 的中心为原点,(3, 0)F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中 点为(12, 15)N --,则E 的方程式为( )A .22136x y -=B .22145x y -=C .22163x y -=D .22154x y -=6.答案 B 解析 设双曲线方程为22222222221, x y b x a y a b a b-=-=即,1122(,),(,)A x y B x y ,由221b x -221a y =2222222222, a b b x a y a b -=得,2212121212()()()0()y y b x x a y y x x -+-+=-,1215AB PN N k k =又中点(-,-),,212b ∴-+222150, 45a b a ==即,22+9b a =,所以224, =5a b =.7.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( )A .x 26-y 25=1B .x 28-y 212=1C .x 28-y 24=1D .x 24-y 26=17.答案 D 解析 不妨设B (0,b ),由BA →=2AF →,F (c ,0),可得A ⎝⎛⎭⎫2c 3,b 3,代入双曲线C 的方程可得 49×c 2a 2-19=1,即49·a 2+b 2a 2=109,所以b 2a 2=32,①.又|BF →|=b 2+c 2=4,c 2=a 2+b 2,所以a 2+2b 2=16,②.由①②可得,a 2=4,b 2=6,所以双曲线C 的方程为x 24-y 26=1,故选D .8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为32,过右焦点F 作渐近线的垂线,垂足为M .若△FOM的面积为5,其中O 为坐标原点,则双曲线的方程为( ) A .x 2-4y 25=1 B .x 22-2y 25=1 C .x 24-y 25=1 D .x 216-y 220=1 8.答案 C 解析 由题意可知e =c a =32,可得b a =52,取双曲线的一条渐近线为y =ba x ,可得F 到渐近线y =b a x 的距离d =bca 2+b2=b ,在Rt △FOM 中,由勾股定理可得|OM |=|OF |2-|MF |2=c 2-b 2=a ,由题意可得12ab =5,联立⎩⎨⎧b a =52,12ab =5,解得⎩⎨⎧a =2,b =5,所以双曲线的方程为x 24-y25=1.故选C .9.已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐 标为-23,则此双曲线的方程是( ).A .x 23-y 24=1B .x 24-y 23=1C .x 25-y 22=1D .x 22-y 25=19.答案 D 解析:设所求双曲线方程为x 2a 2-y 27-a 2=1.由⎩⎪⎨⎪⎧x 2a 2-y 27-a 2=1,y =x -1,得x 2a 2-(x -1)27-a 2=1,(7-a 2)x 2-a 2(x -1)2=a 2(7-a 2),整理得(7-2a 2)x 2+2a 2x -8a 2+a 4=0.又MN 中点的横坐标为-23,故x 0=x 1+x 22=-2a 22(7-2a 2)=-23,即3a 2=2(7-2a 2),所以a 2=2,故所求双曲线方程为x 22-y 25=1.10.双曲线x 2a 2-y 2b2=1(a ,b >0)的离心率为3,左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,|F 2Q |=2,则双曲线的方程为( ) A .x 22-y 2=1 B .x 2-y 22=1 C .x 2-y 23=1 D .x 23-y 2=110.答案 B 解析 ∵∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,∴|PF 1|=|P Q|,P ,F 2,Q 三点共线,而|PF 1|-|PF 2|=2a ,∴|P Q|-|PF 2|=2a ,即|F 2Q|=2=2a ,解得a =1.又e =c a =3,∴c =3,∴b 2=c 2-a 2=2,∴双曲线的方程为x 2-y 22=1.故选B . 题型二 双曲线中的求值11.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A .32 B .3 C .23 D .411.答案 B 解析 由已知得双曲线的两条渐近线方程为y =±13x .设两渐近线的夹角为2α,则有tan α =13=33,所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示.在Rt △ONF 中,|OF |=2,则|ON |=3.则在Rt △OMN 中,|MN |=|ON |·tan 2α=3·tan60°=3.故选B .12.(2019·全国Ⅰ)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( )A .324 B .322C .22D .3212.答案 A 解析 双曲线x 24-y 22=1的右焦点坐标为(6,0),一条渐近线的方程为y =22x ,不妨设点P 在第一象限,由于|PO |=|PF |,则点P 的横坐标为62,纵坐标为22×62=32,即△PFO 的底边长为6,高为32,所以它的面积为12×6×32=324.故选A . 13.已知双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,与x 轴平行的直线交Γ于B ,C 两点,记∠BAC=θ,若Γ的离心率为2,则( )A .θ∈⎝⎛⎭⎫0,π2B .θ=π2C .θ∈⎝⎛⎭⎫3π4,πD .θ=3π413.答案 B 解析 ∵e =ca=2,∴c =2a ,∴b 2=c 2-a 2=a 2,∴双曲线方程可变形为x 2-y 2=a 2.设B (x 0,y 0),由对称性可知C (-x 0,y 0),∵点B (x 0,y 0)在双曲线上,∴x 20-y 20=a 2.∵A (a ,0),∴AB →=(x 0-a ,y 0),AC →=(-x 0-a ,y 0),∴AB →·AC →=(x 0-a )·(-x 0-a )+y 20=a 2-x 20+y 20=0,∴AB →⊥AC →,即θ=π2.故选B .14.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. 14.答案 34 解析 化双曲线的方程为x 22-y 22=1,则a =b =2,c =2,因为|PF 1|=2|PF 2|,所以点P 在双曲线的右支上,则由双曲线的定义,知|PF 1|-|PF 2|=2a =22,解得|PF 1|=42,|PF 2|=22,根据余弦定理得cos ∠F 1PF 2=(22)2+(42)2-162×22×42=34.15.如图,双曲线的中心在坐标原点O ,A ,C 分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F为双曲线的左焦点,直线AB 与FC 相交于点D .若双曲线的离心率为2,则∠BDF 的余弦值是________.15.答案 714 解析 设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由e =ca=2知,c =2a ,又c 2=a 2+b 2,故b =3a ,所以A (0,3a ),C (0,-3a ),B (-a ,0),F (-2a ,0),则BA →=(a ,3a ),CF →=(-2a ,3a ),结合题图可知,cos ∠BDF =cos <BA →,CF →>=BA →·CF →|BA →|·|CF →|=-2a 2+3a 22a ·7a =714.16.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A ,B 两点,若P 为AB 的中点,则|AB |=( )A .22B .23C .33D .4316.答案 D 解析 法一:由已知可得点P 的位置如图所示,且直线AB 的斜率存在,设AB 的斜率为k ,则AB 的方程为y -2=k (x -4),即y =k (x -4)+2,由⎩⎪⎨⎪⎧y =k x -4+2,x 22-y 2=1,消去y 得(1-2k 2)x 2+(16k 2-8k )x -32k 2+32k -10=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系得x 1+x 2=-16k 2+8k1-2k 2,x 1x 2=-32k 2+32k -101-2k 2,因为P (4,2)为AB 的中点,所以-16k 2+8k 1-2k 2=8,解得k =1,满足Δ>0,所以x 1+x 2=8,x 1x 2=10,所以|AB |=1+12×82-4×10=43,故选D .法二:由已知可得点P 的位置如法一中图所示,且直线AB 的斜率存在,设AB 的斜率为k ,则AB 的方程为y -2=k (x -4),即y =k (x -4)+2,设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21-2y 21-2=0,x 22-2y 22-2=0,所以(x 1+x 2)(x 1-x 2)=2(y 1+y 2)(y 1-y 2),因为P (4,2)为AB 的中点,所以k =y 1-y 2x 1-x 2=1,所以AB 的方程为y =x -2,由⎩⎪⎨⎪⎧y =x -2,x 22-y 2=1,消去y 得x 2-8x +10=0,所以x 1+x 2=8,x 1x 2=10,所以|AB |=1+12×82-4×10=43,故选D .17.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A 、B 两点,若P 为AB 中点,则|AB |=( )A .22B .23C .33D .4317.答案 D 解析 易知直线AB 不与y 轴平行,设其方程为y -2=k (x -4),代入双曲线C :x 22-y 2=1,整理得(1-2k 2)x 2+8k (2k -1)x -32k 2+32k -10=0,设此方程两实根为x 1,x 2,则x 1+x 2=8k (2k -1)2k 2-1,又P (4,2)为AB 的中点,所以8k (2k -1)2k 2-1=8,解得k =1,当k =1时,直线与双曲线相交,即上述二次方程的Δ>0,所求直线AB 的方程为y -2=x -4化成一般式为x -y -2=0,x 1+x 2=8,x 1x 2=10,|AB |=2|x 1-x 2|=2·82-40=43.故选D .18.已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为()A .1B .3C .5D .1218.答案 A 解析 在双曲线x 23-y 2=1中,a =3,b =1,c =2.不妨设P 点在双曲线的右支上,则有|PF 1|-|PF 2|=2a =23,又|PF 1|+|PF 2|=25,∴|PF 1|=5+3,|PF 2|=5- 3.又|F 1F 2|=2c =4,而|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=12×|PF 1|×|PF 2|=12×(5+3)×(5-3)=1.故选A .19.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为( )A .215a 2B .15a 2C .30a 2D .15a 2 19.答案 B 解析 (1)由双曲线的对称性不妨设A 在双曲线的右支上,由e =ca=2,得c =2a ,∴△AF 1F 2的周长为|AF 1|+|AF 2|+|F 1F 2|=|AF 1|+|AF 2|+4a ,又△AF 1F 2的周长为10a ,∴|AF 1|+|AF 2|=6a ,又∵|AF 1|-|AF 2|=2a ,∴|AF 1|=4a ,|AF 2|=2a ,在△AF 1F 2中,|F 1F 2|=4a ,∴cos ∠F 1AF 2=|AF 1|2+|AF 2|2-|F 1F 2|22|AF 1|·|AF 2|=(4a )2+(2a )2-(4a )22×4a ×2a =14.又0<∠F 1AF <π,∴sin ∠F 1AF 2=154,∴S △AF 1F 2=12|AF 1|·|AF 2|·sin∠F 1AF 2=12×4a ×2a ×154=15a 2.20.已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( )A .3B .2C .-3D .-220.答案 B 解析 由题意及正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e =2,∴|PF 1|=2|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=4,|PF 2|=2,又|F 1F 2|=4,由余弦定理可知cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=4+16-162×2×4=14,∴F 2P →·F 2F 1→=|F 2P →|·|F 2F 1→|·cos ∠PF 2F 1=2×4×14=2.故选B .题型三 双曲线的离心率21.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线的夹角为60°,则双曲线C 的离心率为( )A .2B .3C .3或233D .233或221.答案 D 解析 秒杀 ∵两条渐近线的夹角为60°,∴一条渐近线的倾斜角为30°,斜率为33.∴e =1+k 2=233.或一条渐近线的倾斜角为60°,斜率为3.∴e =1+k 2=2.故选D .通法 ∵两条渐近线的夹角为60°,且两条渐近线关于坐标轴对称,∴b a =tan 30°=33或ba =tan 60°=3.由b a =33,得b 2a 2=c 2-a 2a 2=e 2-1=13,∴e =233(舍负);由b a =3,得b 2a 2=c 2-a 2a 2=e 2-1=3,∴e =2(舍负).故选D .22.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin 40°B .2cos 40° C.1sin 50° D.1cos 50°22.答案 D 解析 秒杀 由题意可得-ba =tan 130°,所以e =1+b 2a 2=1+tan 2130°=1+sin 2130°cos 2130°=1|cos 130°|=1cos 50°.故选D .23.(2019·全国Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为________.23.答案 2 解析 秒杀 由F 1A →=AB →,得A 为F 1B 的中点.又∵O 为F 1F 2的中点,∴OA ∥BF 2.又F 1B →·F 2B →=0,∴∠F 1BF 2=90°.∴OF 2=OB ,∴∠OBF 2=∠OF 2B .又∵∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B ,∴∠BOF 2=∠OF 2B =∠OBF 2,∴△OBF 2为等边三角形.∴一条渐近线的倾斜角为60°,斜率为3.∴e =1+k 2=2.通法一:由F 1A →=AB →,得A 为F 1B 的中点.又∵O 为F 1F 2的中点,∴OA ∥BF 2.又F 1B →·F 2B →=0,∴∠F 1BF 2=90°.∴OF 2=OB ,∴∠OBF 2=∠OF 2B .又∵∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B ,∴∠BOF 2=∠OF 2B =∠OBF 2,∴△OBF 2为等边三角形.如图所示,不妨设B 为⎝⎛⎭⎫c 2,-32c .∵点B 在直线y=-b a x 上,∴b a =3,∴离心率e =ca=2.通法二:∵F 1B →·F 2B →=0,∴∠F 1BF 2=90°.在Rt △F 1BF 2中,O 为F 1F 2的中点,∴|OF 2|=|OB |=c .如图,作BH ⊥x 轴于H ,由l 1为双曲线的渐近线,可得|BH ||OH |=ba ,且|BH |2+|OH |2=|OB |2=c 2,∴|BH |=b ,|OH |=a ,∴B (a ,-b ),F 2(c ,0).又∵F 1A →=AB →,∴A 为F 1B 的中点.∴OA ∥F 2B ,∴b a =b c -a ,∴c =2a ,∴离心率e =c a =2.24.已知F 1,F 2分别是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A .2B .32C .3D .224.答案 A 解析 秒杀 作出示意图,如图,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13=2.故选A .通法 因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义,得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca =2.故选A .25.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线C 上第二象限内一点,若直线y =ba x 恰为线段PF 2的垂直平分线,则双曲线C 的离心率为( )A .2B .3C .5D .625.答案 C 解析 秒杀 由已知△F 1PF 2是直角三角形,∠F 2PF 1=90°,sin ∠PF 1F 2=b c ,∠PF 2F 1=ac,∴e =c a =sin90°|sin ∠PF 1F 2+sin ∠PF 2F 1|=1|b c -a c|.即b a=2,所以e =1+⎝⎛⎭⎫b a 2=5.故选C .通法 如图,直线PF 2的方程为y =-a b (x -c ),设直线PF 2与直线y =ba x 的交点为N ,易知N ⎝⎛⎭⎫a 2c ,abc .又线段PF 2的中点为N ,所以P ⎝⎛⎭⎫2a 2-c 2c ,2ab c .因为点P 在双曲线C 上,所以(2a 2-c 2)2a 2c 2-4a 2b 2c 2b 2=1,即5a 2=c 2,所以e =ca =5.故选C .26.已知O 为坐标原点,点A ,B 在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,且关于坐标原点O 对称.若双曲线C 上与点A ,B 横坐标不相同的任意一点P 满足k P A ·k PB =3,则双曲线C 的离心率为( ) A .2 B .4 C .10 D .10 26.答案 A 解析 秒杀 ∵k 1·k 2=e 2-1.∴3=e 2-1.∴e =2.故选A .通法 设A (x 1,y 1),P (x 0,y 0)(|x 0|≠|x 1|),则B (-x 1,-y 1),则k P A ·k PB =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21.因为点P ,A 在双曲线C 上,所以b 2x 20-a 2y 20=a 2b 2,b 2x 21-a 2y 21=a 2b 2,两式相减可得y 20-y 21x 20-x 21=b 2a 2,故b 2a 2=3,于是b 2=3a 2.又因为c 2=a 2+b 2,所以双曲线C 的离心率e =1+⎝⎛⎭⎫b a 2=2.故选A .27.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点,且AB 的中点为N (12,15),则双曲线C 的离心率为( )A .2B .32C .355D .5227.答案 B 解析 秒杀 由题意得,k 0·k =e 2-1.∴e =32.故选B .通法 设A (x 1,y 1),B (x 2,y 2),由AB 的中点为N (12,15),则x 1+x 2=24,y 1+y 2=30,由⎩⎨⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式相减得,(x 1+x 2)(x 1-x 2)a 2=(y 1+y 2)(y 1-y 2)b 2,则y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2)=4b 25a 2,由直线AB 的斜率k =15-612-3=1,所以4b 25a 2=1,则b 2a 2=54,双曲线的离心率e =ca = 1+b 2a 2=32,所以双曲线C 的离心率为32.故选B .28.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF →=3FB →,则该双曲线的离心率为( ) A .52 B .62 C .233D .3 28.答案 A 解析 秒杀 由题可知,|31||cos ||31|e θ-=+,即1||2c b a c ⋅=,即12b a =所以e=52,故选B .通法 由题意得直线l 的方程为x =ba y +c ,不妨取a =1,则x =by +c ,且b 2=c 2-1.将x =by +c 代入x 2-y 2b 2=1,(b >0),得(b 4-1)y 2+2b 3cy +b 4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-2b 3cb 4-1,y 1y 2=b 4b 4-1.由AF →=3FB →,得y 1=-3y 2,所以⎩⎨⎧-2y 2=-2b 3cb 4-1-3y 22=b 4b 4-1,得3b 2c 2=1-b 4,解得b 2=14,所以c =b 2+1=54=52,故该双曲线的离心率为e =c a =52,故选A .29.已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0),过双曲线Γ的右焦点F ,且倾斜角为π2的直线l 与双曲线Γ交于A ,B 两点,O 是坐标原点,若∠AOB =∠OAB ,则双曲线Γ的离心率为( ) A .3+72 B .11+332 C .3+396 D .1+17429.答案 C 解析 由题意可知AB 是通径,根据双曲线的对称性和∠AOB =∠OAB ,可知△AOB 为等边三角形,所以tan ∠AOF =b 2a c =33,整理得b 2=33ac ,由c 2=a 2+b 2,得c 2=a 2+33ac ,两边同时除以a 2,得e 2-33e -1=0,解得e =3+396.故选C . 30.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)左焦点F 的直线l 与C 交于M ,N 两点,且FN →=3FM →,若OM ⊥FN ,则C 的离心率为( )A .2B .7C .3D .1030.答案 B 解析 设双曲线的右焦点为F ′,取MN 的中点P ,连接F ′P ,F ′M ,F ′N ,如图所示,由FN →=3FM →,可知|MF |=|MP |=|NP |.又O 为FF ′的中点,可知OM ∥PF ′.∵OM ⊥FN ,∴PF ′⊥FN .∴PF ′为线段MN 的垂直平分线.∴|NF ′|=|MF ′|.设|MF |=t ,由双曲线定义可知|NF ′|=3t -2a ,|MF ′|=2a +t ,则3t -2a =2a +t ,解得t =2a .在Rt △MF ′P 中,|PF ′|=|MF ′|2-|MP |2=16a 2-4a 2=23a ,∴|OM |=12|PF ′|=3a .在Rt △MFO 中,|MF |2+|OM |2=|OF |2,∴4a 2+3a 2=c 2⇒e =7.故选B . 题型四 双曲线的渐近线31.(2018·全国Ⅰ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x 31.答案 A 解析 法一:由题意知,e =c a =3,所以c =3a ,所以b =c 2-a 2=2a ,所以ba=2,所以该双曲线的渐近线方程为y =±ba x =±2x ,故选A .法二:由e =ca =1+⎝⎛⎭⎫b a 2=3,得b a =2,所以该双曲线的渐近线方程为y =±b a x =±2x ,故选A .32.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点,P 是双曲线在第一象限上的点,直线PO 交双曲线C 左支于点M ,直线PF 2交双曲线C 右支于点N ,若|PF 1|=2|PF 2|,且∠MF 2N =60°,则双曲线C 的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±2x D .y =±22x 32.答案 A 解析 由题意得,|PF 1|=2|PF 2|,|PF 1|-|PF 2|=2a ,∴|PF 1|=4a ,|PF 2|=2a ,由于P ,M 关于原点对称,F 1,F 2关于原点对称,∴线段PM ,F 1F 2互相平分,四边形PF 1MF 2为平行四边形,PF 1∥MF 2,∵∠MF 2N =60°,∴∠F 1PF 2=60°,由余弦定理可得4c 2=16a 2+4a 2-2·4a ·2a ·cos60°,∴c =3a ,∴b =c 2-a 2=2a .∴ba =2,∴双曲线C 的渐近线方程为y =±2x .故选A .33.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F (1,0)作x 轴的垂线,与双曲线交于A ,B 两点,O 为坐标原点,若△AOB 的面积为83,则双曲线的渐近线方程为________.33.答案 y =±22x 解析 由题意得|AB |=2b 2a ,∵S △AOB =83,∴12×2b 2a ×1=83,∴b 2a =83①,又a 2+b 2=1②,由①②得a =13,b =223,∴双曲线的渐近线方程为y =±bax =±22x .34.已知双曲线C :x 2a 2-y 2b2=1(a ,b >0)的右顶点A 和右焦点F 到一条渐近线的距离之比为1∶2,则C 的渐近线方程为( )A .y =±xB .y =±2xC .y =±2xD .y =±3x34.答案 A 解析 由双曲线方程可得渐近线为:y =±b a x ,A (a,0),F (c,0),则点A 到渐近线距离d 1=|ab |a 2+b2=ab c ,点F 到渐近线距离d 2=|bc |a 2+b 2=bc c =b ,∴d 1∶d 2=ab c ∶b =a ∶c =1∶2,即c =2a ,则ba =c 2-a 2a =aa =1,∴双曲线渐近线方程为y =±x .故选A .35.双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,F 为其一个焦点,若F 关于l 1的对称点在l 2上,则双曲线的渐近线方程为( )A .y =±2xB .y =±3xC .y =±3xD .y =±2x35.答案 B 解析 不妨取F (c ,0),l 1:bx -ay =0,设其对称点F ′(m ,n )在l 2:bx +ay =0,由对称性可得⎩⎨⎧b ·m +c 2-a ·n 2=0n m -c ·ba =-1,解得⎩⎪⎨⎪⎧m =a 2-b 2a 2+b2cn =2abca 2+b2,点F ′(m ,n )在l 2:bx +ay =0,则a 2-b 2a 2+b 2·bc +2a 2bca 2+b2=0,整理可得b 2a 2=3,∴b a =3,双曲线的渐近线方程为:y =±bax =±3x .故选B.36.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为π6,则双曲线的渐近线方程为( )A .y =±2xB .y =±12xC .y =±22x D .y =±2x36.答案 D 解析 不妨设P 为双曲线右支上一点,则|PF 1|>|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a .又因为⎩⎪⎨⎪⎧2c >2a ,4a >2a ,所以∠PF 1F 2为最小内角,故∠PF 1F 2=π6.由余弦定理,可得(4a )2+(2c )2-(2a )22·4a ·2c =32,即(3a -c )2=0,所以c =3a ,则b =2a ,所以双曲线的渐近线方程为y =±2x .37.已知F 2,F 1是双曲线y 2a 2-x 2b2=1(a >0,b >0)的上、下两个焦点,过F 1的直线与双曲线的上下两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±6x D .y =±66x 37.答案 D 解析 根据双曲线的定义,可得|BF 1|-|BF 2|=2a ,∵△ABF 2为等边三角形,∴|BF 2|=|AB |,∴|BF 1|-|AB |=|AF 1|=2a ,又∵|AF 2|-|AF 1|=2a ,∴|AF 2|=|AF 1|+2a =4a ,∵在△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,∠F 1AF 2=120°,∴|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|cos 120°,即4c 2=4a 2+16a 2-2×2a ×4a ×⎝⎛⎭⎫-12=28a 2,亦即c 2=7a 2,则b =c 2-a 2=6a 2=6a ,由此可得双曲线C 的渐近线方程为y =±66x .38.已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( )A .2x ±y =0B .x ±2y =0C .x ±2y =0D .2x ±y =038.答案 A 解析 由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得,|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a ,所以有|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2·2c ·4a cos 30°,得c =3a ,所以b =c 2-a 2=2a .所以双曲线的渐近线方程为y =±ba x =±2x ,即2x ±y =0. 题型五 双曲线中的最值与范围39.P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线,P 在l 上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为( ) A .1 B .2+155 C .4+155D .22+1 39.答案 D 解析 如图所示,设双曲线右焦点为F 2,则|PF 1|+|PQ |=2a +|PF 2|+|PQ |,即当|PQ |+|PF 2|最小时,|PF 1|+|PQ |取最小值,由图知当F 2,P ,Q 三点共线时|PQ |+|PF 2|取得最小值,即F 2到直线l 的距离d =1,故所求最值为2a +1=22+1.故选D .40.双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线上在第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( )A .8B .10C .4+37D .3+317 40.答案 B 解析 由已知得⎩⎪⎨⎪⎧a b =233,c =7,c 2=a 2+b 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3,c 2=7,则双曲线C 的方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△P AF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,又点P 在第一象限,则|PF ′|+|P A |的最小值为|AF ′|=3,故△P AF 的周长的最小值为10. 41.过双曲线x 2-y 215=1的右支上一点P ,分别向圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1作切线, 切点分别为M ,N ,则|PM |2-|PN |2的最小值为( )A .10B .13C .16D .1941.答案 B 解析 由题意可知,|PM |2-|PN |2=(|PC 1|2-4)-(|PC 2|2-1),因此|PM |2-|PN |2=|PC 1|2-|PC 2|2-3=(|PC 1|-|PC 2|)(|PC 1|+|PC 2|)-3=2(|PC 1|+|PC 2|)-3≥2|C 1C 2|-3=13.故选B . 42.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上 的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4B .5C .6D .742.答案 C 解析 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C .43.若点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为________.43.答案 [3+23,+∞) 解析 由题意,得22=a 2+1,即a =3,设P (x ,y ),x ≥3,FP →=(x +2, y ),则OP →·FP →=(x +2)x +y 2=x 2+2x +x 23-1=43⎝⎛⎭⎫x +342-74,因为x ≥3,所以OP →·FP →的取值范围为[3+23,+∞).44.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 在双曲线的右支上,如果|PF 1|=t |PF 2|(t ∈(1,3]),则双曲线经过一、三象限的渐近线的斜率的取值范围是______________.44.答案 (0,3] 解析 由双曲线的定义及题意可得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|=t |PF 2|,解得⎩⎨⎧|PF 1|=2att -1,|PF 2|=2a t -1.又|PF 1|+|PF 2|≥2c ,∴|PF 1|+|PF 2|=2at t -1+2a t -1≥2c ,整理得e =c a ≤t +1t -1=1+2t -1,∵1<t ≤3,∴1+2t -1≥2,∴1<e ≤2.又b 2a 2=c 2-a 2a 2=e 2-1,∴0<b 2a 2≤3,故0<ba ≤3.∴双曲线经过一、三象限的渐近线的斜率的取值范围是(0,3].45.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),P 是双曲线上任一点,若双曲线的离心率的取值范围为[2,4],则PF 1→·PF 2→的最小值的取值范围是________.45.答案 ⎣⎡⎦⎤-1516,-34 解析 设P (m ,n ),则m 2a 2-n 2b 2=1,即m 2=a 2⎝⎛⎭⎫1+n 2b 2.又F 1(-1,0),F 2(1,0),则PF 1→=(-1-m ,-n ),PF 2→=(1-m ,-n ),PF 1→·PF 2→=n 2+m 2-1=n 2+a 2⎝⎛⎭⎫1+n 2b 2-1=n 2⎝⎛⎭⎫1+a 2b 2+a 2-1≥a 2-1,当且仅当n =0时取等号,所以PF 1→·PF 2→的最小值为a 2-1.由2≤1a ≤4,得14≤a ≤12,故-1516≤a 2-1≤-34,即PF 1→·PF 2→的最小值的取值范围是⎣⎡⎦⎤-1516,-34.。
2019中考数学高频考点剖析专题18平面几何之等腰(边)三角形问题—原卷
备考2019中考数学高频考点剖析专题十八平面几何之等腰(边)三角形问题考点扫描☆聚焦中考等腰(边)三角形,是每年中考的必考重点内容之一,考查的知识点包括等腰三角形的性质与判定和等边三角形的性质与判定两方面,总体来看,难度系数中游,以选择填空为主。
也有少量的解析题。
解析题主要以三角形与四边形和变换相结合进行考查为主。
结合2017、2018年全国各地中考的实例,我们从三方面进行等腰(边)三角形问题的探讨:(1)等腰三角形性质与判定;(2)等边三角形性质与判定;(3)等腰(边)三角形与四边形及其变换综合问题.考点剖析☆典型例题例1(2018?湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE 的度数是()A.20° B.35° C.40°D.70°【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.例2(2018?广安?8分)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形.(2)画一个底边长为4,面积为8的等腰三角形.(3)画一个面积为5的等腰直角三角形.(4)画一个边长为2,面积为6的等腰三角形.【分析】(1)利用三角形面积求法以及直角三角形的性质画即可;(2)利用三角形面积求法以及等腰三角形的性质画出即可.(3)利用三角形面积求法以及等腰直角三角形的性质画出即可;(4)利用三角形面积求法以及等腰三角形的性质画出即可.【解答】解:(1)如图(1)所示:(2)如图(2)所示:(3)如图(3)所示;(4)如图(4)所示.【点评】此题主要考查了等腰三角形的性质、等腰直角三角形的性质以及作图;熟练掌握等腰三角形的性质是关键.例3如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C 重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.例4(2017?乐山)在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.【考点】LO:四边形综合题.【分析】(1)结论:AC=AD+AB,只要证明AD=AC,AB=AC即可解决问题;(2)(1)中的结论成立.以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,只要证明△DAC≌△BEC即可解决问题;(3)结论:.过点C作CE⊥AC交AB的延长线于点E,只要证明△ACE是等腰直角三角形,△DAC≌△BEC即可解决问题;【解答】解:(1)AC=AD+AB.理由如下:如图1中,在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴,同理.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB 延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠B=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CB,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠B=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴,∴.【点评】本题考查四边形综合题、等边三角形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.考点过关☆专项突破类型一等腰三角形性质与判定1.(2017浙江湖州)如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt△ABC的重心,则点P到AB所在直线的距离等于()A.1 B. C. D.22. (2018·四川省攀枝花·3分)如图,等腰直角三角形的顶点 A.C分别在直线 A.b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°3. (2018·台湾·分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC 与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确 B.两人皆错误 C.甲正确,乙错误 D.甲错误,乙正确4. (2018?山东枣庄?3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个5. (2018?江苏扬州?3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:;③2CB2=CP?CM.其中正确的是()①△BAE∽△CAD;②MP?MD=MA?MEA.①②③ B.① C.①② D.②③6. (2018?山东淄博?4分)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A. B. C. D.7. (2018四川省泸州市3分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.8.(2018?山东淄博?9分)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.类型二等边三角形性质与判定1. (2017广西河池)已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC于点E,过E 作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.92.(2018?天津)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.3.(2018?黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n= .4.(2017宁夏)在边长为2的等边三角形ABC中,P是BC边上任意一点,过点 P分别作 PM⊥A B,PN⊥AC,M、N分别为垂足.(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.5.(浙江衢州)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE ≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c 满足的等量关系.类型三等腰(边)三角形的其他问题的综合考查1.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③B.①②④C.①③④D.①②③④2.(2016·湖北武汉·3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.83.(2016·湖北荆门·3分)已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7 B.10 C.11 D.10或114. (2016·黑龙江齐齐哈尔·3分)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.5. 在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1)(1)求证:∠BAD=∠EDC;(2)点E关于直线BC的对称点为M,连接DM,AM.①依题意将图2补全;②小姚通过观察,实验提出猜想:在点D运动的过程中,始终有DA=AM,小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ADM是等边三角形;想法2:连接CM,只需证明△ABD≌△ACM即可.请你参考上面的想法,帮助小姚证明DA=AM(一种方法即可)6. 如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.7. (2016·山东省菏泽市·3分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.8. 如图,在△ABC中,AB=AC=10cm;BC=6cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B出发都逆时针沿△ABC三边运动,直接写出经过多少秒后,点P与点Q第一次在△ABC的那一条边上相遇.。
初中数学平面几何解答题专题练习
平面几何解答题专题练习资料整理:沈于童老师高频考察知识点:一、全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.二、等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.三、等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.四、等腰直角三角形(1)两条直角边相等的直角三角形叫做等腰直角三角形.(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);历年真题:1. (13-14一中月考)如图,△ABC与△CDE均为等边三角形,B、C、E在同一直线上,AE、BD交于点G,AC交BD于M,CD交AE于N,连接CG.(1)若AB=2,DE=5,求AE的长.(2)求证:EG=CG+DG.2.(17-18西附月考)如图,在△ABC中,AB=AC,点D是△ABC内一点,AD=BD,且AD⊥BD,连接CD.过点C作CE⊥BC交AD的延长线于点E,连接BE.过点D作DF ⊥CD交BC于点F.(1)若BD=DE=√5,CE=√2,求BC的长;(2)若BD=DE,求证:BF=CF.3. (17-18一外期中)如图,△ABC中,∠ABC=45°,过C作AB边上的高CD,H为BC边上的中点,连接DH,CD上有一点F,且AD=DF,连接BF并延长交AC于E,交DH 于G.(1)若AC=5,DH=2,求DF的长.(2)若AB=CB,求证:BG=√2AE.4. (17-18八中期中)在Rt△ABC中∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE,BF平分∠ABC交AC于点F(1)如图1,连接EF,当∠C=∠BEF,DE=√6,BC=1时,求BD的长;(2)如图2,AC=DE,BC=BE,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点.连接AH交BD于点K,连接KG,当KB平分∠AKG时,求证:AK=DG+KG.5.(17-18巴南区期末)如图,在三角形ABC中,AB=AC,点D在△ABC内,且∠ADB=90°.(1)如图1,若∠BAD=30°,AD=3√3,点E、F分别为AB、BC边的中点,连接EF,求线段EF的长;(2)如图2,若△ABD绕顶点A逆时针旋转一定角度后能与△ACG重合,连接GD并延长交BC于点H,连接AH,求证:∠DAH=∠DBH.6.(17-18九龙坡区期末)如图1,△ABC中,CA=CB,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E.(1)求证:△ACF≌△CBE;(2)将直线旋转到如图2所示位置,点D是AB的中点,连接DE.若AB=4√2,∠CBE=30°,求DE的长.7. (17-18沙坪坝区期末)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CE⊥AD于点E.(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;(2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.好题练习:1. △ABC为等边三角形,以AB边为腰作等腰Rt△ABD.AC与BD交于点E,连CD.(1)如图1,若BD=2√2,求AE的长;(2)如图2,F为线段EC上一点.连接DF并以DF为斜边作等腰直角三角形DFG,连接BF、AG,M为BF的中点,适接MG.求证:AM⊥MG.2. 如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.3.如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰BC上的中线,CE⊥AD交AB于点E,连接ED,过点D作DF⊥AB于点F,(1)S△ACD S△ABD.(填“>”、“<”或“=”)若AC:AB=1:√2,则DC:DF=:.(2)如图2,过点C作CM⊥AB,垂足为M,CM交AD于点N,求证:∠CDA=∠EDB.4. 如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.(1)若AB=3,AD=√10,求△BMC的面积;(2)点E为AD的中点时,求证:AD=√2BN.难题练习:1. (1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.2. 如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.3.已知四边形ABCD中,∠A=∠C=90°,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.大家好,我们接下来会持续整理专题和真题分析给大家,希望孩子本次期末考试能考出好成绩,不过最终肯定是为中考助力!更多资讯添加微信:cqxiaozhushou666,或扫描下面二维码添加小助手,邀请您进入初三中考家长交流群!有问题和建议可以在群里交流提出,我们一起为孩子中考铺好路!。
初中数学竞赛专题复习 第二篇 平面几何 第18章 整数几何试题 新人教版
第18章 整数几何18.1.1★已知ABC △的两条高长分别是5、15,第三条高的长数,求这条高之长的所有可能值.解析 由面积知,三条高的倒数可组成三角形三边,这是它们的全部条件. 设第三条高为h ,则111,155111.515h h⎧+>⎪⎪⎨⎪+>⎪⎩ 解得151545h <<,h 可取4、5、6、7这四个值. 18.1.2★已知ABC △的三边长分别为3AB n x =+,2BC n x =+,CA n x =+,且BC 边上的高AD 的长为n ,其中n 为正整数,且01x <≤,问:满足上述条件的三角形有几个? 解析 注意AB 为ABC △之最长边,故90B ∠<︒,设BD y =,CD z =,则0y >,而z 可正可负.AB D C由2y z n x +=+,及()()()22223242y z n x n x n x x -=+-+=+⋅,得4y z x -=,32ny x =+,由勾股定理,知()222332n x n n x ⎛⎫++=+ ⎪⎝⎭,展开得12n x =,由01x <≤及n 为正整数,知1n =,2,…,12,这样的三角形有12个.18.1.3★已知一个直角三角形的三条边均为正整数,其中一条直角边不超过20,其外接圆半径与内切圆半径之比为52∶,求此三角形周长的最大值.解析设该直角三角形直角边长为a 、b ,斜边为c ,则外接圆半径2cR =,内切圆半径2a b cr +-=,不妨设20a ≤. 由条件知52c a b c =+-,557a b c +=,平方,得()()222225249a b ab a b ++=+,即()2212250a b ab +-=,()()34430a b a b --=,于是3a k =,4b k =,5c k =,或4a k =,3b k =,5c k =,周长为12k ,k 为正整数.k 的最大值为6,此时各边为18、24、30,周长最大值为72.18.1.4★ABC △为不等边三角形,60A ∠=︒,7BC =,其他两边长均为整数,求ABC △的面积.A BCx y60°解析设AB x =,AC y =,则由余弦定理,有2249x y xy +-=.由条件x y ≠,不妨设x y <,则AB 为ABC △之最小边,x 只能取值1、2、3、4、5、6,分别代入,发现当3x =或5时,8y =,其余情形均无整数解.于是1sin 602ABC S xy =︒=△. 18.1.5★★一点P 与半径为15的圆的圆心距离是9,求经过P 且长为整数的弦的条数. 解析 如图,O e 半径为15,9OP =,过P 的弦ST 长为整数,APB 为直径,6AP =,24PB =,则144SP TP PA PB ⋅=⋅=,因此24ST SP TP =+≥.又30ST AB =≤,故这样的弦共有()302412212-+⨯-=条,其中与AB 垂直的弦及AB 各一条,其余的弦每种长度有两条(关于AB 对称).18.1.6★★在直角三角形ABC 中,各边长都是整数,90C ∠=︒,CD 为边AB 上的高,D 为垂足,且3BD p =(p 奇素数),求ACAB的值(用p 表示). C解析由2BC BD AB =⋅知2BD BC ,故设2BC p t =(t 为正整数),则2BA pt =,又由勾股定理,知22442AC p t p t =-,故tp AC .设AC kpt =,代入得()()222p t k t k t k =-=+-,易知只能有2t k p +=,1t k -=,解得212p t +=,212p k -=,于是2211AC p AB p -=+. 18.1.7★★设正三角形ABC ,M 、N 分别在AB 、AC 上,MN BC ∥,两端延长MN ,交ABC △外接圆于P 、Q ,若PM 、MN 、AB 长均为正整数,求AB 的最小值. 解析 如图, 易知NQ PM =也是整数.设AM x =,BM y =,PM NQ z ==,则MN x =,于是由相交弦定理,得()xy z x z =+,2z x y z=-.APQM NB C设y ks =,z kt =,(),k y z =,s t >,(),1s t =,则2kt x s t=-,由于()2,1s t t -=,故s t k -,要使2t AB x y k ks s t=+=+-达到最小,k 得取s t -,于是()2AB t s t s =+-.由于s t >,2s ≥,1t ≥,知()223t s t s t s +-+≥≥.当1AM =,2BM =时AB 取到最小值3,此时1PM =.18.1.8★★已知凸四边形ABCD 的四边长是两两不相等的整数,对边乘积之和等于四边形面积的两倍,且22250AD BC +=,求该四边形面积、对角线长度.解析 不妨设AB α=,BC b =,CD c =,DA d =,AC 与BD 交于O ,则sin 2ABCD AC BD AOB S ac bd AC BD ⋅⋅∠==+⋅≥,于是由托勒密定理,知A 、B 、C 、D 必共圆,且满足AC BD ⊥.又由已知条件,22250b d +=,22250a c +=.经搜索知250表为平方和只有两组:22515+和22913+.由对称性,不妨设5a =,13b =,15c =,9d =,则19622ABCD ac bdS AC BD +=⋅==.由余弦定理,因cos cos 0BAD BCD ∠+∠=,得222222591315045195BD BD +-+-+=,得BD =AC18.1.9★★是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的ABC △?证明你的结论. 解析 存在满足条件的三角形.当ABC △的三边长分别为6a =,4b =,5c =时,2A B ∠=∠.如图,当2A B ∠=∠时,延长BA 至点D ,使AD AC b ==.连结CD ,ACD △为等腰三角形.CD A因为BAC ∠为ACD △的一个外角,所以2BAC D ∠=∠.由已知,2BAC B ∠=∠,所以B D ∠=∠.所以CBD △为等腰三角形.又D ∠为ACD △与CBD △的一个公共角,有~ACD CBD △△,于是AD CD CD BD =,即b aa b c=+,所以()2a b b c =+.而()26445=⨯+,所以此三角形满足题设条件,故存在满足条件的三角形. 评注满足条件的三角形是唯一的.若2A B ∠=∠,可得()2a b b c =+.有如下三种情形:(ⅰ)当a c b >>时,设1a n =+,c n =,1b n =-(n 为大于1的正整数),代入()2a b bc =+,得()()()21121n n n +=--,解得5n =,有6a =,4b =,5c =;(ⅱ)当c a b >>时,设1c n =+,c n =,1b n =-(n 为大于1的正整数),代入()2a b bc =+,得()212n n n =-⋅.解得2n =,有2a =,1b =,3c =,此时不能构成三角形;(ⅲ)当a b c >>时,设1a n =+,b n =,1c n =-(n 为大于1的正整数),代入()2a b b c =+,得()()2121n n n +=-,即2310n n --=,此方程无整数解.所以,三边长恰为三个连续的正整数,且其中一个内角等于另一个内角的2倍的三角形存在,而且只有三边长分别为4、5、6构成的三角形满足条件.18.1.10★★三边长为连续整数、周长不大于100、且面积是有理数的三角形共有多少个? 解析 设三角形三边依次为1n -、n 、1n +,则333n ≤≤,()131122p n n n n =-+++=,S △==于是()234n -是平方数,令()()22343n k -=,得2243n k -=,则32n ≤,224102034033n k -==≤,18k ≤.又k 不可能是奇数,否则()222343n k k =+≡,得2243n k -=,则32n ≤,224102034033n k -==≤,18k ≤.又k 不可能是奇数,否则()22343mod 4n k =+≡,将2k =,4,6,8,10,12,14,16,18代入,发现仅当2k =,8时满足要求.因此这样的三角形共有两个,三边长依次为3、4、5与13、14、15.18.1.11★★某直角三角形边长均为整数,一直角边比斜边小1575,求其周长的最小值. 解析 设直角三角形直角边长a 、b ,斜边为1575a +,则 ()2221575a b a +=+,()2157521575b a =+.由于221575357=⨯⨯,设105b k =,则2721575k a =+,设7a s =,则22225k s =+,于是k 的最小值为17,此时32s =,224a =,1785b =,1799c =.此时的最小周长为3808. 18.1.12★★已知ABC △,AD 是角平分线,14AB =,24AC =,AD 也是整数,求AD 所有可取的值.AEB DC解析 如图,作DE AB ∥,E 在AC 上,则易知AE ED =. 又ED CD AC AB BC AB AC==+,故 22AB ACAD AE DE ED AB AC⋅<+==+33617.6819==…, 故17AD ≤.又当17AD ≤时,不难通过AED △构造出ABC △,故AD 所有可取的值为1,2, (17)18.1.13★面积为c 的正方形DEFG 内接于面积为1的正三角形ABC ,其中a 、b 、c 是整数,且b 不能被任何质娄的平方整除,求a cb-的值.ADGB E F C解析设正方形DEFG 的边长为x ,正三角形ABC 的边长为m ,则2m ,由ADG ABC △∽△,可得xx m -=.解得()3x m =.于是()222348x m ==.由题意得28a =,3b =,48c =,所以203a cb -=-. 17.1.14★★如图,AD 是ABC △的高,四边形PQRS 是ABC △的内接正方形,若BC ab =(即两位数),SRc =,ADd =,且a 、b 、c 、d 恰为从小到大的4个连续正整数,求ABC S △的所有可能值.AS RP D Q解析易知11SR AR CR SR BC AC AC AD ==-=-,于是有110c c a b d +=+,或11111132a a a +=+++,移项,得()()1111123a a a =+++,或2650a a -+=,解得1a =或5.于是有两解: 12,3,4;BC SR AD =⎧⎪=⎨⎪=⎩56,7,8.BC SR AD =⎧⎪=⎨⎪=⎩易知这两组数据都符合要求,故24ABC S =△或224.18.1.15★★已知ABC △中,B ∠是锐角.从顶点A 向BC 边或其延长线作垂线,垂足为D ;从顶点C 向AB 边或其延长线作垂线,垂足为E .当2BD BC 和2BEAB均为正整数时,ABC △是什么三角形?并证明你的结论. 解析设2BD m BC =,2BEn AB=,m 、n 均为正整数,则 244cos 4BD BE mn B AB BC=⋅⋅=<, 所以,1mn =,2,3. (1)当1mn =时,1cos 2B =,60B ∠=︒,此时1m n ==.所以AD 垂直平分BC ,CE 垂直平分AB ,于是ABC △是等边三角形.(2)当2mn =时,cos B =45B ∠=︒,此时1m =,2n =,或2m =1n =,所以点E 与点A 重合,或点D 与点C 重合.故90BAC ∠=︒,或90BCA ∠=︒,于是ABC △是等腰直角三角形.(3)3mn =时,cos B =,30B ∠=︒,此时1m =,3n =,或3m =,1n =.于是AD 垂直平分BC ,或CE 垂直平分AB .故30ACB ∠=︒,或30BAC ∠=︒,于是ABC △是顶角为120︒的等腰三角形.18.1.6★★某直角三角形两直角边长均为整数,周长是面积的整数倍(就数字上讲),问问这样的直角三角形有多少个?解析 设直角边分别为a 、b ,则斜边c =,由条件知它是有理数,故必定是整数.设2ka b ab +=,k 为正整数,于是k =.由于a b +1、2或4,记作k '.由a b k +-'=()2220ab k a b k -'++'=,()()22a k b k k -'-'=',1k '=时无解;2k '=时,有()()222a b --=,{a ,b }={3,4};4k '=时,()()448a b --=,{a ,b }={5,12}或{6,8},所以这样的直角三角形共有3个.18.1.17★★在等腰ABC △中,已知AB AC kBC ==,这里k 为大于1的自然数,点D 、E 依次在AB 、AC 上,且DB BC CE ==,CD 与BE 相交于O ,求使OCBC为有理数的最小自然数k .ADEBCO解析如图,连结DE ,则DE BC ∥,11DE AD AB BC BC AB AB k -===-,1k DE BC k-=. 由于四边形DBCE 为等腰梯形,则由托勒密定理(或过D 、E 作BC 垂线亦可),2222121k k CD CD BE DE BC DB CE BC BC BCk k --=⋅=⋅+⋅=+=,又21CO BC kCD DE BC k ==+-,于是CO BC =k 与21k -互质,由题设知其必须均为平方数,1k >,25k =适合,这是满足要求的最小自然数.18.1.18★★★对于某些正整数n 来说,只有一组解xyz n =(不计顺序),这里,x 、y 、z是正整数且可构成三角形的三边长,这样的()100n ≤共有多少个? 解析显然,当n p =(素数)时无解;当2n p =或1时只有一组解(1,p ,p )或(1,1,1);当n pq =(p 、q 为不同素数)时无解;当4n p =(p 为大于3的素数)时也无解.剩下的数为8,12,16,18,24,27,30,32,36,40,42,45,48,50,54,56,60,63,64,66,70,72,75,78,80,81,84,88,90,96,98,99,100. 易验证,无解的n 有:30,42,54,56,63,66,70,78,88,99;唯一解的n 有:8,12,16,18,24,27,32,40,45,48,50,75,80,81,84,90,96,98;不止一组解的n 有:36,60,64,72,100.注意:判定无解的主要依据是,abc n =,c ab >时无解,困为1c ab a b ++≥≥. 因此,有解的n 共有23个.18.1.19★★面积为整数的直角三角形周长为正整数k ,求k 的最小值,并求此时这个直角三角形的两条直角边的可取值(如不止一组解,只需举了一组即可).解析设该直角三角形的直角三角形周长分别为a 、b ,则112ab ≥,a b +≥2,2k a b =+,故5k ≥.下令5k =,2ab =,如有解,则可.()5a b -+,平方得()222225102a b a b a b ab +=-++++.取2ab =,得29,102.a b ab ⎧+=⎪⎨⎪=⎩因此a 、b 为方程21029200x x -+=的根,解得a 、bk 的最小值是5.18.1.20★★若ABC △的三边长a 、b 、c 均为整数,且140abc =,求ABC △内切圆半径. 解析 不妨设a b c ≤≤,于是7c ≥.又14011c a b ab c<++=+≤,故140c c ≤,得10c ≤.于是c 只可能为7或10. 7c =时,20ab =,只可能4a =,5b =,()182p a b c =++=,内切圆半径r =. 10c =时,14ab =,没有满足要求的解.18.1.21★★证明:若a 、b 、c 是一组勾股数()222a b c +=,则存在正整数k 、u 、v 、u v >,(),1u v =使得()22c k u v =+,而()22a k u v =-,2b kuv =;或2a kuv =,()22b k u v =-.解析222a b c +=,设(a ,b ,c )k =,则1a ka =,1b kb =,1c kc =,222111a b c +=.易知1a 、1b 、1c 两两互质;1a 与1b 不可能同偶,否则12a ,1b ,1c ;1a 与1b 也不会同奇,否则()212mod 4c =,矛盾.于是1a 与1b 必一奇一偶,不妨设1a 奇而1b 偶,于是1c 为奇数.从而()()211111a c b c b =+-,11c b +与11c b -必互质,否则有一奇素数11|p c b +,11c b -,得|2p c ,12b ,故|p (1c ,1b ),与(1c ,1b )=1矛盾. 于是可设2111c b u +=,2111c b v -=,(1u ,1v )=1,且1u 、1v 均为奇数,解得221111122u v u v c +-⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,11111222u v u v b +-=⋅⋅,221111122u v u v a +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,令112u v u +=,112u v v -=,即得结论. 18.1.22★★★如图,F 、E 在ABC △的边AB 、AC 上,FE 的延长线与BC 的延长线交于D ,求证:AF 、BF 、CB 、CD 、AE 、EC 、FE 、ED 的长度不可能是1~8的排列. 解析 如果1EF =,则1AE AF EF -<=,得AE AF =,矛盾,故1EF ≠,同理AF 、AE 、ED 、CD 、EC 都不等于1.AFE GDCB因此1只可能等于FB 或BC 之长,不失对称性,设1BF =,则1FD BD BF -<=,FD BD =,作CG AB ∥,G 在ED 上,四边形FBCG 乃一等腰梯形,于是EG FG EF BC EF =-=-为正整数.又1EG EC CG BF -<<=,故EG EC =,但BFD ∠为等腰三角形DFB 的底角,90BFD <︒∠,18090EGC BFD =︒->︒∠∠,为EGC △的最大内角,EC EG >,矛盾,因此结论证毕.18.1.23★★★已知梯形ABCD 中,AD BC <,E 、F 分别在AB 、CD 上,EF AD BC ∥∥,ED BF ∥,如果AD 、EF 、BC 均为正整数,称该梯形为“整数梯形”.现对于正整数n ,有正整数x x <′<y ′<y ,x y x +=′+y ′=n ,且x 、y 为一“整数梯形”的上、下底, x ′、y ′为另一“整数梯形”的上、下底,求n 的最小值.解析 如图,由AED EFD △∽△,DEF FBC △∽△,得AD AE DF EFEF BE FC BC===,得EF =,于是问题变为求最小的n ,使xy 与x ′y ′均为平方数.A DEFB Cxy 、x ′y ′不可能都为4,故至少有一组≥9,显然另一组也不可能为4,于是xy ,x ′y ′≥9.如果xy 或x ′y ′25≥,则10n =≥.若xy 或x ′y ′=9或16,则19n =+或2810+=.于是n 的最小值为10,1x =,x ′=2,y ′=8,y =9.18.1.24★★★求证:存在无穷多个每边及对角线长均为不同整数的、两两不相似的凸四边形.ABDPC解析 如图,作圆内接四边形ABCD ,AC 与BD 垂直于P ,设a 为一整数,2a >,4AP a =,24BP a =-,241DP a =-,则24AB a =+,241AD a=+,,由此知()()224414aa CP a--=,而由ABP DCP △∽△,BPC APD △∽△知,()224414a BC a a -=+,()224144a CD a a -=+.同时乘以系数4a ,得()244AB a a =+,()2441AD a a =+,()()22441BC a a =-+,()()22414CD a a =-+,4244AC a a =-+,()2201BD a a =-.易知上述6个多项式无二者恒等,于是任两者相等只能得有限个a ,但正整数有无限个,因此有无限个a ,使6个多项式两两不等,又当a →+∞时,0BDAC→,因此有无限个这样的凸四边形两两不相似. 18.1.25★★★已知PA 、PB 为圆的切线,割线过P ,与圆交于M 、N ,与AB 交于S ,若PA 、PM 、MS 、SN 均为正整数,求PA 的最小值. PMABSN解析 如图,易知有PM PNMS SN=(调和点列). 设PM a =,MS b =,SN c =,则()b a b c ac ++=,()b c b c a b+=-,从而PA == 设a ks =,b kt =,k =(a ,b ),则(s ,t )=1,s t >,s tc kts t+=-,PA =易见(s t +,s t -)=1,则s 、t 一奇一偶.于是由(()t s t +,s t -)=1,得|s t k -,且由PA 为整数知2s t x +=,2s t y -=,x 、y 为奇数.因为|s t k -,于是k 的最小值为s t -,()c t s t =+,PA sxy ==,当s =1,2,3,4时,t 无解(即PA 不是整数),故5s ≥,又3x ≥,1y ≥,于是PA ≥15,当a =5,b =4,c =36时取到15PA =.若(s t +,s t -)=2,此时s 、t 同奇,k 的最小值为2s t-,此时()2t s t c +=,PA =22s t x +=,22s t y -=,当1s =,3时,无t 使PA 为整数,于是5s ≥,又x y >,所以1y ≥,2x ≥,5210PA sxy =⨯=≥.当5a =,3b =,12c =时取到PA =10. 综上,PA 的最小值是10.18.1.26★★★一圆内接四边形的四边长及对角线长都是整数,求这类四边形中周长最小者. 解析 显然长与宽为4、3的矩形满足要求,其周长=14.若等腰梯形上、下底分别为3、4,腰为2,则由托勒密定理,对角线长为4,满足要求,此时周长为11.故最小周长≤11. 显然对圆内接凸四边形ABCD ,无边长为1.否则若设1AB =,—1AD BD AB <=,得AD BD =,同理AC CB =,于是C 、D 均在AB 中垂线上,构不成凸四边形.因此最小周长≥2×4=8.四边均为2,得正方形,对角线为2,另一边为3,得等腰梯形,10.当周长为10时,显然至少有两边为2.若是2、2、2、4能为2、2、3、3故最小周长为11.18.1.27★★★在Rt ABC △中,90BCA =︒∠,CD 是高,已知ABC △的三边长都是整数,且311BD =,求BCD △与ACD △的周长之比.CB D解析 设ABC △的三边长分别为a 、b 、c .由题设知 2BC BD BA =⋅,故2311a c =.于是设211a l =,得211l c =由勾股定理得11b ==2211l -是 完全平方数,设为()20t t >,则22211l t -=,()()211l t l t -+=.由于0l t l t <-<+,所以21,11.l t l t -=⎧⎨+=⎩解得61,60.l t =⎧⎨=⎩于是21161a =⨯,116160b =⨯⨯. 因为BCD CAD △∽△,所以它们的周长比等于它们的相似比,即1160a b =.18.1.28★★★已知锐角三角形ABC 中,AD 是高,矩形SPQR 的面积是ABC △的1/3,其顶点S 、P 在BC 上,Q 、R 分别在AC 、AB 上,且BC 、AD 及矩形SPQR 的周长均为有理数,求AB ACBC+的最小值. 解析 如图,设ABC △的三边长依次为a 、b 、c ,AD h =,PQ x =,RS y =,则16xy ah =,及1x y AQ CQ a h AC AC+=+=.由条件,知a 、h 、x y +均为有理数. AR QB S D P C由16x aa x+=,得x a =y h =)2a h x y a h ++=-,因此只能有a h =.若过A 作BC 的平行线l ,再作C 关于l 的对称点C ',则AB AC AB AC +=+′≥BC ′=,于是AB ACBC+,仅当AB AC =时取到. 18.1.29★★★★整数边三角形ABC 中,90BAC =︒∠,AD 是斜边上的高,BD 也是整数.若对同一个BD 能长度,有两个不全等的直角整数边三角形ABC 满足要求,求BD 的最小值. 解析 不妨设ABC △的三边长为a 、b 、c ,AD h =,BD d =,首先bch a=为有理数,又222h c d =-为整数,因此h 也是整数.又CD 为整数,故2h d也是整数.又ABD CBA △∽△,故h b d c=. AB D C因此,只需正整数h 、c 、d 满足222h c d =-及2|d h ,这样的整数边三角形就存在.因为此时hcb d=是有理数,而222b h CD =+为整数,从而b 为整数.易知由2|d h 可得2|d c . 设21d d σ=,σ、1d 为正整数,且σ无平方因子,于是由2|h σ及2c 知|h σ,c .设1h h σ=,1c c σ=,代入得422111d c h =-,又由2|d h ,2c 得2211|d h σ,21c σ,今对1d 的任一素因子p ,其在1d 的指数()1s d 不会比1h 的指数高,否则()()111s d s h +≥,()()22112s d s h +≥,而()s σ最多为1,于是()()2211s d s h σ>,这是不可能的.于是11|d h ,同理11|d c .又令112h d h =,112c d c =,代入422111d c h =-得222122d c h =-. 于是对1d 有两组不同的2c 、2h 满足222122d c h =-.经计算18d ≥,故64d ≥.当64d =时,确实有满足要求的两组解:80AB =,60AC =,100BC =,和136AB =,255AC =,289BC =.故BD 的最小值是64.18.1.30★★★★试找一不等边三角形ABC ,使BC 及BC 边上的中线、角平分线、高的长度都是整数,BC 可以是多少(此时的中线、角平分线、高的长度分别为多少)?若要求BC 不是整数,但2BC 是整数,则BC 可为多少(此时中线、角平分线、高的长度分别为多少)? 解析 首先处理BC 为整数的问题,我们选择的是直角三角形ABC ,对应边为a 、b 、c ,中线AM ,角平分线AD ,高AH ,2aAM =,bc AH a =,又ABC ABD ACD S S S =+△△△,得)bc b c AD +,故AD ,于是a 为偶数2k ,b ,c =,mnAH k =而2mn AD m n =+,2222m n k +=,这个方程有解1m =,7n =,5k =,得75AH =,5AM =,74AD =.乘以一个系数20,即得直角三角形ABC ,它的斜边为200,斜边上的中线为100,角平分线为35,高为28. 下面处理BC 为无理数、2BC 为整数的情形,如图,延长AD ,与MP 交于P ,此处MP BC ⊥.易知A 、B 、P 、C 共圆(P 是ABC △外接圆弧»BC之中点). 今从基本勾股数出发构造.取12AH =,13AD =,15AM =,则5DH =,9MH =,4MD =,485MD MP AH HD =⋅=,45255PD AD ==. ABMD HCP易知BPD APB △∽△,于是25211760845525BP PD PA =⋅=⨯=,()22222608448302444425255BC BM PB MP ⎛⎫==-=-= ⎪⎝⎭. 再乘以系数5,得所求三角形的高60AH =,角平分线65AD =,中线75AM =,边BC =是无理数,但15120BC =.18.1.31★★作圆外切凸五边形ABCDE ,现知该五边形每边长均为整数,1AB =,又圆与BC 切于K ,求BK .解析 如图,设CD 、DE 、EA 、AB 分别与圆切于P 、Q 、R 、S .则RE DP ED +=为整数,于是由题设,AR CP +亦为整数,而AR CP AS KC +=+.于是22BK BS BK BS ==+为整数,由于1BS AB <=,故22BS <,221BK BS ==,12BK =. A S RB EQ K CPD。
《高考真题》专题18 立体几何综合-2019年高考理数母题题源系列全国Ⅰ专版(原卷版)
【母题来源一】 2019 年高考全国Ⅰ卷理数】如图,直四棱柱 ABCD –A 1B 1C 1D 1 的底面是菱形,AA 1=4,AB =2, 2专题 18 立体几何综合【∠BAD =60°,E ,M ,N 分别是 BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面 C 1DE ;(2)求二面角 A −MA 1−N 的正弦值.【答案】(1)见解析;(2)10 5.【解析】(1)连结 B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点, 所以ME ∥B 1C ,且ME = 1B 1C .又因为N 为A 1D 的中点, 所以ND = 1A D .21由题设知A 1B 1 = DC ,可得B 1C = A 1D ,故ME = ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄ 平面EDC 1,所以MN ∥平面C 1DE .设 m = ( x, y , z) 为平面A 1MA 的法向量,则 ⎨⎪⎩m ⋅ A A = 0 设 n = ( p , q , r ) 为平面A 1MN 的法向量,则 ⎨所以 ⎨ 可取 n = (2,0, -1) .⎧⎪ ,于是 cos 〈m , n 〉 = m ⋅ n. (2)由已知可得DE ⊥DA .以D 为坐标原点, DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz ,则 A(2,0,0) ,A 1(2,0,4), M (1, 3, 2) , N (1,0,2) ,A A = (0,0, -4) , A M = (-1, 3, -2) , A N = (-1,0, -2) , MN = (0, - 3,0) .1 11⎧⎪m ⋅ A M = 011,所以 ⎨- x + 3 y - 2 z = 0 可取 m = ( 3,1,0) .⎪⎩-4 z = 0.⎧⎪n ⋅ MN = 0, ⎪⎩n ⋅ A 1N = 0.⎧⎪- 3q = 0,⎪⎩- p - 2r = 0.2 315= =| m ‖n | 2 ⨯ 5 5,所以二面角 A - MA 1 - N 的正弦值为105.【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题 求解二面角的关键是能够利用,垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.【母题来源二】【2018 年高考全国Ⅰ卷理数】如图,四边形 ABCD为正方形, E ,F 分别为 AD ,BC 的中点,以 DF 为折痕把 △DFC 折起,使点 C 到达点 P 的位置,且 PF BF .(1)证明:平面 PEF平面 ABFD ;(2)求 DP 与平面 ABFD 所成角的正弦值.【答案】(1)见解析;(2)3 4.【解析】方法一:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以 BF ⊥平面 PEF .又 BF平面 ABFD ,所以平面 PEF ⊥平面 ABFD .(2)在平面 DEF 中,过 P 作 PH ⊥EF 于点 H ,连接 DH ,如图,由于 EF 为平面 ABCD 和平面 PEF 的交线,PH ⊥EF ,则 PH ⊥平面 ABFD ,故 PH ⊥DH .则 DP 与平面 ABFD 所成的角为 PDH .在三棱锥 P -DEF 中,可以利用等体积法求 PH .因为 DE ∥BF 且 PF ⊥BF ,所以 PF ⊥DE ,又 △PDF △≌ CDF ,所以∠FPD =∠FCD =90°=12F -PDE = △S DEF =所以 PF ⊥PD ,由于 DE ∩PD =D ,则 PF ⊥平面 PDE ,故 V3 PF ⋅ S △PDE ,因为 BF ∥DA且 BF ⊥平面 PEF ,所以 DA ⊥平面 PEF ,所以 DE ⊥EP .设正方形的边长为 2a ,则 PD =2a ,DE =a ,在 △PDE 中, PE = 3a ,所以 S △PDE =3a 2 ,故 V 3 6a 3,又 1 2a ⋅ 2a = a 2 ,所以 PH = 3V F - P DE a 2 3= a ,2所以在 △PHD 中, sin ∠PDH = PH 3 =PD 4,故 DP 与平面 ABFD 所成角的正弦值为 3 4.方法二:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以 BF ⊥平面 PEF.又 BF ⊂ 平面 ABFD ,所以平面 PEF ⊥平面 ABFD.(2)作 PH ⊥EF ,垂足为 H.由(1)得,PH ⊥平面 ABFD.以 H 为坐标原点, HF 的方向为 y 轴正方向, | BF | 为单位长,建立如图所示的空间直角坐标系 H −xyz.可得PH=3则H(0,0,0),P(0,0,3333|=4=.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=3.又PF=1,EF=2,故PE⊥PF.3,EH=.223),D(-1,-,0),DP=(1,,),HP=(0,0,)为平面ABFD的法向量.222223设DP与平面ABFD所成角为θ,则sinθ=|HP⋅DP3|HP||DP|34所以DP与平面ABFD所成角的正弦值为34.【名师点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可.【母题来源三】2017年高考全国Ⅰ卷理数】如图,在四棱锥P ABCD中,AB//CD,且∠BAP=∠CDP=90.(1)证明:平面P AB⊥平面P AD;所以 PC = (-2⎪ 2 x = 0,⎪(2)若 P A =PD =AB =DC , ∠APD = 90 ,求二面角 A −PB −C 的余弦值.【答案】(1)见解析;(2) - 3 3.【解析】(1)由已知 ∠BAP = ∠CDP = 90︒ ,得 AB ⊥AP ,CD ⊥PD.由于 AB//CD ,故 AB ⊥PD ,从而 AB ⊥平面 P AD .又 AB ⊂ 平面 P AB ,所以平面 P AB ⊥平面 P AD .(2)在平面 P AD 内作 PF ⊥ AD ,垂足为 F ,由(1)可知, AB ⊥ 平面 P AD ,故 AB ⊥ PF ,可得 PF ⊥ 平面 ABCD .以 F 为坐标原点, FA 的方向为 x 轴正方向, | AB | 为单位长,建立如图所示的空间直角坐标系 F - xyz .由(1)及已知可得 A( 2 2 2 ,0,0) , P(0,0, ) , B( ,1,0) , C (-2 2 22 2,1,0) .2 2 2,1, - ) , CB = ( 2,0,0) , P A = ( ,0, - ) , AB = (0,1,0) . 2 2 2 2设 n = ( x , y , z) 是平面 PCB 的法向量,⎧ 2 2⎧n ⋅ PC = 0, ⎪-x + y - z = 0, 则 ⎨ 即 ⎨ 22 ⎪⎩n ⋅ CB = 0, ⎩设 m = ( x , y , z) 是平面 PAB 的法向量,可取 n = (0, -1,- 2) .⎧⎪m⋅P A=0,⎪x-z=0,⎪y=0.⎪⎩m⋅AB=0,则cos<n,m>=n⋅m⎧22则⎨即⎨22⎩可取m=(1,0,1).3=-,|n||m|3所以二面角A-PB-C的余弦值为-33.【思路点拨】(1)根据题设条件可以得出AB⊥AP,CD⊥PD.而AB//CD,就可证明出AB⊥平面P AD,进而证明出平面P AB⊥平面P AD.(2)先找出AD中点,找出相互垂直的线,建立以F为坐标原点,F A的方向为x轴正方向,|AB|为单位长的空间直角坐标系,列出所需要的点的坐标,设n=(x,y,z)是平面PCB的法向量,m=(x,y,z)是平面P AB的法向量,根据垂直关系,求出n=(0,-1,-2)和m=(1,0,1),利用数量积公式可求出二面角的平面角.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.【命题意图】高考对本部分内容的考查以能力为主,重点考查线面关系、面面关系、线面角及二面角的求解,考查数形结合的思想,空间想象能力及运算求解能力等.【命题规律】高考对该部分内容的考查主要有两种形式:一是利用立体几何的知识证明线面关系、面面关系;二是考查学生利用空间向量解决立体几何的能力,考查空间向量的坐标运算,以及平面的法向量等,难度属于中等偏上,解题时应熟练掌握空间向量的坐标表示和坐标运算,把空间立体几何问题转化为空间向量问题.【答题模板】.r (π | a ⋅ μ | ,则 sin θ = 2 ⎭ | a || μ | ⎛运用空间向量坐标运算求空间角的一般步骤:(1)建立恰当的空间直角坐标系;(2)求出相关点的坐标;(3)写出向量坐标;(4)结合公式进行论证、计算;(5)转化为几何结论.【方法总结】1.直线与平面、平面与平面的平行与垂直的向量判定方法设直线 l 的方向向量为 a =(a 1,b 1,c 1),平面 α,β 的法向量分别为 μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则(1)线面平行:l ∥α⇔a ⊥μ⇔aμ =0⇔a 1a 2+b 1b 2+c 1c 2=0; (2)线面垂直:l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2; (3)面面平行:α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3; (4)面面垂直:α⊥β⇔μ⊥v ⇔μ· v =0⇔a 2a 3+b 2b 3+c 2c 3=0.注意:用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线 a ∥b ,只需证明向量 a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外 2.利用向量求异面直线所成的角把角的求解转化为向量运算,“转化”是求异面直线所成角的关键,一般地,异面直线 AC ,BD 的夹角 β 的uuur uuur AC ⋅ BD余弦值为 cos β= uuuuuur . | AC | ⋅ | BD |注意:两条异面直线所成的角 α 不一定是两直线的方向向量的夹角 β,即 cos α=|cos β|.3.利用向量求直线与平面所成的角(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角 或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.注意:直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.设直线 l 的方向向量为 a =(a 1,b 1,c 1),平面 α 的法向量为 μ=(a 3,b 3,c 3),直线 l 与平面 α 的夹角为θ 0 ≤ θ ≤ ⎝⎪ =| cos 〈a , μ〉 | .=(“【4.利用向量求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.注意:两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.设平面α,β的法向量分别为μa3,b3,c3),v=(a4,b4,c4),平面α,β的夹角为θ(0≤θ≤π),则|cosθ|=|μ⋅v||μ||v|=|cos〈μ,v〉|.5.用向量解决探索性问题的方法(1)确定点在线段上的位置时,通常利用向量共线来求.(2)确定点在平面内的位置时,充分利用平面向量基本定理表示出有关向量的坐标而不是直接设出点的坐标.(3)解题时,把要成立的结论当作条件,据此列方程或方程组,把是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.1.陕西省汉中市2019届高三全真模拟考试数学】如图,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90︒,AD=2,AB=AF=1,点P在线段DF上.(1)求证:AF⊥平面ABCD;【(2)若二面角 D - AP - C 的余弦值为6 ,求 PF 的长度.32. 广东省肇庆市 2019 届高中毕业班第三次统一检测数学】如图,在三棱柱 ABC - A B C 中,侧面 ABB A 1 1 11 1是菱形, ∠BAA 1 = 60︒ , E 是棱 BB 1 的中点, CA = CB , F 在线段 AC 上,且 AF = 2FC .(1)证明: CB 1∥平面 A 1EF ;(2)若 CA ⊥ CB ,平面 CAB ⊥ 平面 ABB 1 A 1 ,求二面角 F - A 1E - A 的余弦值..【3.【湖南省师范大学附属中学2019届高三考前演练(五)】在五边形AEBCD中,BC⊥CD,CD∥AB,AB=2CD=2BC,AE⊥BE,AE=BE(如图)将△ABE沿AB折起,使平面ABE⊥平面ABCD,线段AB的中点为O(如图).(1)求证:平面ABE⊥平面DOE;(2)求平面EAB与平面ECD所成的锐二面角的大小.4.河南省百校联盟2019届高三考前仿真试卷数学】如图,在几何体ACD-A B C D中,四边形ADD A,111111 CDD C为矩形,平面ADD A⊥平面CDD C,B A⊥平面ADD A,AD=CD=1,AA=A B=2,1111111111111 E为棱AA1的中点.(1)证明:B1C1⊥平面CC1E;(2)求直线B1C1与平面B1CE所成角的正弦值.11【5.【安徽省 1 号卷 A10 联盟 2019 届高考最后一卷数学】如图,在四棱锥S - ABCD 中,△BCD 为等边三角形, AD = AB = SD = SB, ∠BAD = 120︒ .(1)若点 M , N 分别是线段 SC , C D 的中点,求证:平面 BMN ∥平面 SAD ;(2)若二面角 S - BD - C 为直二面角,求直线 AC 与平面 SCD 所成角的正弦值.6.【河南省八市重点高中联盟“领军考试”2019 届高三第五次测评数学】如图,三棱柱ABC - A B C 中,平 1 1 1 面 ACC 1 A 1 ⊥ 平面 ABC , AA 1 = AC = 2CB , ∠ACB = 90︒ .(1)求证:平面 AB 1C 1 ⊥ 平面 A 1B 1C ;(2)若 A 1 A 与平面 ABC 所成的线面角为 60︒ ,求二面角 C 1 - AB 1 - C 的余弦值.7. 山东省淄博市部分学校 2019 届高三 5 月阶段性检测(三模)数学】已知正方形的边长为 4, E , F 分别为12AD,BC的中点,以EF为棱将正方形ABCD折成如图所示的60︒的二面角,点M在线段AB上.(1)若M为AB的中点,且直线MF,由A,D,E三点所确定平面的交点为O,试确定点O的位置,并证明直线O D∥平面EMC;(2)是否存在点M,使得直线DE与平面EMC所成的角为60︒;若存在,求此时二面角M-EC-F 的余弦值,若不存在,说明理由.13。
高中数学平面解析几何知识点归纳
高中数学平面解析几何知识点有哪些你知道吗?近年的高中数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,一起来看看高中数学平面解析几何知识点,欢迎查阅!高中数学平面解析几何知识点平面解析几何初步:①直线与方程是解析几何的基础,是高考重点考查的内容,单独考查多以选择题、填空题出现;间接考查则以直线与圆、椭圆、双曲线、抛物线等知识综合为主,多为中、高难度试题,往往作为把关题出现在高考题目中。
直接考查主要考查直线的倾斜角、直线方程,两直线的位置关系,点到直线的距离,对称问题等,间接考查一定会出现在高考试卷中,主要考查直线与圆锥曲线的综合问题。
②圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆的'集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中热点为圆的切线问题。
③空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。
空间直角坐标系也是解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排除出现考查基础知识的选择题和填空题。
高中数学平面解析几何知识点平面解析几何,又称解析几何(英语:Analytic geometry)、坐标几何(英语:Coordinate geometry)或卡氏几何(英语:Cartesian geometry),早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。
解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。
平面解析几何基本理论坐标在解析几何当中,平面给出了坐标系,即每个点都有对应的一对实数坐标。
最常见的是笛卡儿坐标系,其中,每个点都有x-坐标对应水平位置,和y-坐标对应垂直位置。
讲义-数学七年级上册-第18讲-几何图形初步专题复习
讲义一、多姿多彩的图形考点·方法·破译1.会识常见的几何图形,并了解它们的名称.2.会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,以根据三视图描述基本几何体或实物原型.3.了解基本几何体与其三视图、展开图之间的关系.经典·考题·赏析【例1】根据下图回答问题(1)请说出①~⑥中几何体的名称,并简要叙述它们的一些特征.(2)将①~⑥中的几何体分类.【解法指导】认识几何体,以直观观察为主,一般特征也以观察者获得的形象加以表述即可.但对几何体尽可能地进行深入观察,全方位发现每个几何体的特征,从而逐步揭示其本质.解:(1) ①圆柱:特征如,两个底面是圆的几何体.②圆锥:特征如,像锥体,且底面是圆.③正方形:特征如,所有面都是正方形.④长方体:特征如,其侧面均为长方形.⑤棱柱:特征如,底面为多边形,侧面为长方形.⑥球:特征如,圆的实体.(2) ①③④⑤为一类,它们都是柱体.②是一类,它是锥体.⑥是一类,它是球体.【变式题组】01.(黄冈)下图四个几何体分别为长方体、圆柱体、球、三棱柱,这四个几何体中有三个从某个角度看到的图形都是一种几何图形,则另一个几何体是( )02. (宜昌)下列物体的形状类似于球体的是( )A .茶杯B .羽毛球C .乒乓球D .白炽灯泡 03. (广东茂名)用平面去截下列几何体,截面的形状不可能是圆的几何体是( )A .球B .圆锥C .圆锥D .正方体 04. (武汉)如图,立方体各面上的数字是连续的整数,如果相对的两个面上的两个数的和都相等,那么这三对数的总和是( ) A .76 B .78 C .80 D .81【例2】 (深圳)如图所示,仔细观察图中的两个物体,则它的俯视图是( )A .B .C .D .【解法指导】 注意结合立体图形的形状并注意从某一方向看到图形的对应关系,抓住其主要特征,同时要分清不同视图的异同.故选择A .【变式题组】01.(重庆)由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( )A .B .C .D .02.(昆明)如图,这个几何体从上面看到的平面图形是( )03.(沈阳)如图所示,圆柱从上面看到的图形是图中的( )04.(成都)如图是由一些完全相同的小立方块搭成的几何体从正面、左面、上面看到的图形,那么搭成这个几何体所用的小立方块的个数是( ) A .3个 B .6个 C .7个 D .8个正面151411从正面看从左面看从上面看【例3】(湛江)将如右图所示的Rt△ABC绕直角边BC旋转一周,所得几何体从左面看到的是( )【解法指导】以直角三角形的直角边AC、BC为旋转轴得到的都是圆锥,故选择A.【变式题组】01.(广州)将右图所示的直角梯形绕直线l旋转一周,得到的立体图形是( )02.(南京)若一个棱柱有12个顶点,则在下列说法正确的为( )A.这个棱柱有5个侧面B.这个棱柱有5条侧棱C.这个棱柱的底面是六边形D.这个棱柱的是一个12棱柱03.(安徽)四棱柱的顶点数、棱数、面数分别为( )A.8,12,6B.8,10,6C.6,8,12D.8,6,12【例4】(福建泉州)观察下列图形,其中不是正方体的展开图的为( )A.B.C.D.【解法指导】学习立体图形的展开图,要养成动手实验的好习惯,动手折一下往往会一目了然,故本题选择D.【变式题组】01.(武汉)一个无盖的正方体盒子的平面展开图可以是下图中的( )A.只有图①B.图①、图②C.图②、图③D.图①、图③①②③02.(唐山)如图所示的是一个由白纸拼成的立体图形,但有两面刷上黑色,将该立体图形展开后应该是( )A.B.C.D.03.(陕西)下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体盒的是( )A.B.C.D.04.(北京)如图所示是三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是( )A.B.C.D.【例5】(山西)一个画家有14个边长为1米的正方体,他在地面上把它们摆成如右图的形状,然后他把露出的表面涂上颜色,那么被涂上颜色的总面积为( )A.19平方米B.21平方米C.33平方米D.34平方米【解法指导】本题把涂上颜色的面积一块一块加起来计算很麻烦,应从整体角度出发,把立体转化为平面,观察题图所给的几何体,从前、后、左、右四个方向都只能看到6个1×1的正方形,从上面看可以看到一个3×3的大正方形轮廓,所以被涂上颜色的总面积应为4×6×1×1+3×3×1×1=33(平方米),故选C.【变式题组】01.(宜宾)如图是由若干个大小相同的小正方体堆砌而成的几何体.那么其三种视图中面积最小的是( )A.正视图B.左视图C.俯视图D.三种一样02.(益阳)将一个底面直径为2 cm,高为2 cm的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图的面积为( )A.2πcm2B.3πcm2C.4πcm2D.5πcm203.(青岛)一个大长方体是由四个完全一样的小长方体拼成的,如果每个小长方体的长、宽、高分别是3,1,1那么这个大长方体的表面积可能有______种不同的值,其中最小值为______.【例6】(巴中)李明为好友制作一个(右图)正方形礼品盒,六个面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )【解法指导】 本例主要考查立方体的展开图中对面、邻面的分布规律,可动手折叠发现答案,故应选择C .【变式题组】01.(资阳)已知一个正方体的每一面都填有唯一一个数字,且各相对面上所填的数互为倒数,若这个正方 体的平面展开图如右图所示,则A 、B 的值分别是( )A .13,12B . 13,1C .12,13D .1,1302.(南宁)在下图中添加一个小正方形,使该图经过折叠后能围成一个四棱柱,不同的添法共有( )A .7种B .4种C .3种D .2种03.(沈阳)将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折后,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是( )【例7】 (第21届江苏省竞赛题)设5 cm ×4 cm ×3 cm 长方体的一个表面展开图的周长为n cm ,则n 的最 小值是______.【解法指导】 把展开图的周长用相应的代数式表示.长方体的展开图的周长为8c +4b +2a .故周长最小值为8×3+4×4+2×5=50,故填50 cm .【变式题组】01.(广州)将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,如图现有一个边长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体 积分别是多大?02.(南京)如图是几个小立方块所搭成的几何体.从上面看图形,小正方形中的数字表示该位置的小立方块的个数,那么是这个几何体从正面看的图形的是( )A .B .C .D .03.(烟台)如图①是由若干个小正方体所搭成的几何体, ②是①从上面看到的图形,则①从左面看到的图 形是( )1122BA 3121①②A .B .C .D .演练巩固 反馈提高01.(连云港)水平位置的下列几何体,从正面看的图形不是长方形的是( )02.(邯郸)有一个外观为圆柱形的物体,它的内部构造从外部看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时(如图),得到了如图所示的(1)、(2)两组形状不同的截面,则 这个物体的内部构造是( ) A .空心圆柱 B .空心圆锥 C .空心球 D .空心半球03.(唐山)将如图所示图形折叠成立方体后,下面四个选项正确的是( )04.(河南)由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是( )A .B .C .D .05.(湖州)一个正方体的表面展开图如图所示,则原正方体中的“★”所在面的对面所标的字是( ) A .上 B .海 C .世 D .博21231★会博世海上006.(芜湖)一个几何体的三视图如图所示,那么这个几何体是( )A .B .C .D .07.(安徽)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是( )08.(哈尔滨)如下图所示的某一几何体的三视图,则这个几何体是( )A .圆柱B .圆锥C .正方体D .球 正视图 左视图 俯视图09.(泰州)如图是一个几何体的三视图,根据图中提供的数据(单位: cm )可求得这个几何体的体积为( ) A .2 cm 2 B .4 cm 2 C .6 cm 2 D .8 cm 2 主视图 左视图 俯视图10.如图所示是无盖长方体盒子的表面展开图(重叠部分不计)则盒子的容积为( )A .4B .6C .12D .1511.(宜黄)宜黄素有“华南虎之乡”的美誉,将“华南虎之乡美”六个字填写在一个正方体的六个面上,其平 面展开图如图所示,那么在该正方体中,和“虎”字相对的字是______.12.(黄冈)如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______.主视图左视图俯视图121211美乡之虎南华13.设有一个边长为1的正三角形,记作A1,将A1的每条边三等分,在中间的线段上向外作正三角形,去掉中间的线段后所得到的图形记作A2;将A2的每条边三等分,重复上述过程,所得到的图形记作A3,现将A3的每条边三等分,重复上述过程,所得到的图形记作A4,则A4的周长是多少?14.(温州)由3个相同的小立方块搭成的几何体如图所示,请画出它的主视图和俯视图.主视方向15.一个五棱柱如图,它的底面边长都是4厘米,侧棱长6厘米,回答下列问题.(1)这个五棱柱一共有多少个面?它们分别是什么形状?哪些面的形状、面积完全相同?(2)这个五棱柱一共有多少条棱?它们的长度分别是多少?02.(北京)根据下列语句画出图形⑴直线AB 经过点C ;⑵经过点M 、N 的射线NM ; ⑶经过点O 的两条直线m 、n ;⑷经过三点E 、F 、G 中的每两点画直线. 03.(温州)如图A 、B 、C 表示3个村庄,它们被三条河隔开,现在打算在每两个村庄之间都修一条笔直公路,则一共需架多少座桥?请你在图上用字母标明桥的位置.【例3】已知:线段AB =10cm ,M 为AB 的中点,在AB 所在直线上有一点P ,N 为AP 的中点,若MN =1.5cm ,求AP 的长.【解法指导】题中已说明P 在AB 所在直线上,即说明P 点可能在线段AB 上,也可能在AB 的延长线上(不可能在BA 的延长线上),故应分类讨论.解:⑴如图①,当点P 在线段AB 上时,点N 在点M 的左侧,则AP =2AN =2(AM -MN )=2(12AB -MN )=2×(5-1.5)=7(cm );⑵当点P 在线段AB 的延长线上时,N 点在M 点的右侧如图②,则AP =2AN =2(AM +MN )=2(12AB+MN )=2×(5+1.5)=13(cm );所以AP 的长为7cm 或13cm【变式题组】 01.(昆明)已知A 、B 、C 为直线l 上的三点,线段AB =9cm ,BC =1cm ,那么A 、C 两点间的距离是( )A .8cmB .9cmC .10cmD .8cm 或10cm 02.(十堰)如图C 、D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3cmB .6cmC .11cmD .14cm 03.(青海)已知线段AB ,C 是AB 的中点,D 是BC 的中点,下面等式不正确的是( )A .CD =AB -BDB .CD =AD -BCC .CD =12AB -BDD .CD =13ABA .B .C .D .bb b bMQNMQNMQN aaaaN Q M①P N M BA ②A N M PB ABDC【例4】往返于甲、乙两地的客车,中途停靠三个站,问: ⑴要有多少种不同的票价? ⑵要准备多少种车票?【解法指导】首先要能把这个实际问题抽象成一个数学问题,把车站和三个停方点当作一条直线上的五个点,票价视路程的长短而变化,实际上就是要找出图中有多少条不同的线段.因为不同的线段就是不同的票价,故求有多少种票价即求有多少条线段,而要求有多少种车票即是求有多少条射线.解:因为图中有10 条不同的线段,故票价有10种;有20条不同的射线,故应准备20种车票. 【变式题组】 01.(河南)如图从A 到C 地,可供选择的方案是走水路、走陆路、走空中、从A 到B 有2条水路、2条陆路;从B 地到C 地有3条陆路可供选择;走空中从A 不经B 地直接到达C 地,则从A 地到C 地可供选择的方案有( )A .20种B .8种C .5种D .13种02.(海南)如图,在菱形ABCD 中,E 、F 、G 、H 分别是菱形四边的中点,连接EG 与FH 交于点O ,则图中的菱形共有( )A .4个B .5个C .6个D .7个 3.(佛山实验区)A 车站到B 车站之间还有3个车站,那么从A 车站到B 车站方向发出的车辆,一共有多少种不同的车票( ) A .8 B .9 C .10 D .11【例5】如图,B 、C 两点把线段AD 分成2∶3∶4的三部分,M 是AD 的中点,CD =8,求MC 的长.【解法指导】由AB ∶BC ∶CD =2∶3∶4,可设AB =2x ,CD =3x ,CD =4x ,由CD =4x =8,而求得x 的值,进而求出MC 的长.解:设AB =2x ,由AB ∶BC ∶CD =2∶3∶4,得CD =4x ,CD =3x ,AD =(2+3+4)x =9x ,∵CD =8,∴x =2,∴AD =9x =18,∵M 是AD 的中点,∴MC =MD -CD =12AD -CD =12×18-8=1【变式题组】01.(河北)如图,长度为12cm 的线段AB 的中点为M ,C 点将线段MB 分MC ∶CB =1∶2,则线段AC 的长度为( )A .2cmB .8cmC .6cmD .4cm02.(随州)已知线段AB =16cm ,点C 在线段AB 上,且BC =13AC ,M 为BC 的中点,则AM 的长为________.03.(黄冈)已知线段AB =12cm ,直线AB 上有一点C ,且BC =6cm ,M 是线段AC 的中点,求线段AM 的长.【例6】如图⑴,一只昆虫要从正方体的一个顶点A 爬行相距它最远的另一个顶点B ,哪条路径最短?说明理由.EDCBADCBAMCBAO HG FAB C DE【解法指导】解答此类题的方法是将立方体展开,再根据两点之间,线段量短. 解:将立方体展开成如图⑵,由两点之间线段最短知线段AB 即为最短路线. 【变式题组】 01.(天津)下列直线的说法错误的是( )A .经过一点可以画无数条直线B .经过两点可以画一条直线C .一条直线上只有两个点D .两条直线至多只有一个公共点 02.(湘潭)如图所示,从A 地到B 地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路线,这是因为( ) A .两点之间线段最短 B .两直线相交只有一个交点 C .两点确定一条直线 D .垂线段最短【例7】(第五局“华罗庚金杯”赛试题)摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃饭,由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C 市到这里路程的二分之一就到达目的地了,问A 、B 两市相距多少千米?【解法指导】条件中只有路程,而没有给出时间与速度,所以可以画出线段表示各段路程,借助图形思考它们之间的关系.解:设小镇为D ,傍晚汽车在E 休息,则AD =12DC ,EB =12CE ,AD +EB =12DE =200,∴AB =AD +EB +DE =200+400=600.答:A 、B 两市相距600千米. 【变式题组】 01.(哈尔滨)已知点O 在直线AB 上,且线段OA 的长度为4cm ,线段OB 的长度为6cm ,E 、F 分别为线段OA 、OB 的中点,则线段EF 的长度为____cm . 02.(银川)AB 、AC 是同一条直线上的两条线段,M 是线段AB 的中点,N 是线段AC 的中点,线段BC 与MN 的大小有什么关系?请说明理由. 03.(河南)如图,线段AB =4,点O 是线段AB 上一点,C 、D 分别是线段OA 、OB 的中点,小明据此很轻松地求得CD =2,但他在反思的过程突发奇想:若点O 运动到AB 的延长线上,原有的结论“CD =2”是否仍成立?请帮小明画出图形并说明理由.图(2)图(1)BAB AEDCBAODCBA演练巩固 反馈提高01.当AB =5cm ,BC =3cm 时,A 、C 两点间的距离是( )A .无法确定B .2cmC .8cmD .7cm 02.下列说法正确的是( )A .延长直线AB B .延长线段ABC . 延长射线ABD .延长线段AB 03.若P A +PB =AB ,则( )A .P 点一定在线段AB 上 B .P 点一定在线段AB 外C .P 点一定在AB 的延长线上D .P 点一定在线段BA 的延长线上 04.(内江)已知点C 是线段AB 上的一点,下列说法中不能说明点C 是线段AB 的中点是( )A .AC =BCB .AC =12ABC .AC +BC =ABD .2AC =AB05.如图,已知线段AD >BC ,则线段AC 与BD 的关系是( )A .AC >BDB .AC =BD C .AC <BD D .不能确定 06.(黄冈)某公司员工分别在A 、B 、C 三个住宅区,A 区有30人,B 区有15人,C 区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,那么它有位置应在( )A .A 区B .B 区C .C 区D .A 、B 两区之间 07.(广州)线段AB =4cm ,在直线AB 上截取BC =1cm ,则AC =________.08.(云南)延长线段AB 到点C ,使BC =13AB ,D 为AC 的中点,且DC =6cm ,则AB 的长是________cm .09.在直线l 上任取一点A ,截取AB =16cm ,再截取AC =40cm ,求AB 的中点D 与AC 的中点E 的距离.10.线段AB 上有两点M 、N ,点M 将AB 分成2∶3两部分,点N 将AB 分成4∶1两部分,且MN =3cm ,求AM 、NB 的长.11.如图,C 是线段AB 上一点,D 是线段BC 的中点,已知图中所有线段长度之和为23,线段AC 与线段CB的长度都是正整数,则线段AC 的长度是多少?12.如图B 、C 两点把线段AD 分成2∶3∶4的三部分,M 是AD 的中点,CD =8,求MC 的长.13.指出图中的射线(以O 为端点)和线段.ABCDACDBM ABCD14.判断下列语句是否正确:⑴直线l 有两个端点A 、B ; ⑵延长射线OA 到C ;⑶已知A 、B 两点,经过A 、B 两点只有一条线段.15.已知A 、B 、C 三点:⑴AB =10cm ,AC =15cm ,BC =5cm ;⑵AB =5.2cm ,AC =9cm ,BC =3.8cm ;⑴AB=3.2cm ,AC =1.5cm ,BC =4.5cm .A 、B 、C 三点是否在一条直线上?3、角考点•方法•破译1.进一步认识角,会比较角的大小,会计算角度的和差,认识度、分、秒,会进行简单的换算. 2.了解角平分线及其性质,了角余角、补角,知道等角的余角相等,等角的补角相等.经典•考题•赏析例1:如图AOE 是直线,图中小于平角的角共有( )A .7个B .9个C .8个D .10个【解法指导】公共端点的两条射线组成的图形叫做角,数角注意抓住概念,表示角用大写字母表示或希腊字母及数字表示,故选择B .【变式题组】01.在下图中一共有几个角?它们应如何表示.02.下列语句正确的是( )A .从同一点引出的两条射线组成的图形叫做角B .两条直线相交组成的图形叫做角C .从同一点引出的两条线段组成的图形叫做角D .两条线段相交组成的图形叫做角 03.关于平角和周角的说法正确的是( )A .平角是一条直线B .周角是一条射线C .反向延长射线OA ,就是成一个平角D .两个锐角的和不一定小于平角A B CO例2:38.33°可化为()A.38°30′3〃B.38°33'C.38°30′30″〃D.38°19′48″〃【解法指导】注意度、分、秒是60进制的,把度转化成分要乘60,把分转化成秒要乘60;反之把秒化成分要除以60,把分化成度要除以60,把秒化成度要除以3600,故选择D.【变式题组】01.把下列各角化成用度表示的角:⑴15°24′36″〃⑵36°59′96″〃⑶50°65′60″〃02.⑴3.76°=度分秒⑵3.76°=分秒⑶钟表在8:30时,分针与时针的夹角为度.03.计算:⑴23°45′36+66°14′24″;⑵180°-98°24′30″;〃⑶15°50′42″×3;⑷88°14′48″÷4例3:若∠α的余角与∠α的补角的和是平角则∠α=.【解法指导】两个角的和等于90°叫做余角,两个角的和等于180°叫做互补,同角或等角的余角相等,同角或等角的补角相等.解:根据题意得90°-∠α+180°-∠α=180°,所以∠α=45°【变式题组】01.如图所示,那么∠2与12(∠1-∠2)之间的关系是()A.互补B.互余C.和为45° D.和为22.5°02.55°角的余角是()A.55° B.45° C.35° D.125°03.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:∠90°-∠β;∠∠α-90°;∠12(∠α+∠β)∠12(∠α-∠β)()A.4个B.3个C.2个D.1个例4:如图,点O是直线AB上的点,OC平分∠AOD,∠BOD=30°,则∠AOC=.【解法指导】注意找出图中角的和、差、倍、分关系,图中有∠AOD+∠BOD=180°,∠AOD=2∠AOC.解:因为∠AOD=180°-∠BOD=180°-30°=150°,又因为OC平分∠AOD,所以∠AOC=12∠AOD=12×150°=75°.【变式题组】01.如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD等于()A.20° B.40° C.50° D.80°02.如图直线a,b相交于点O,若∠1=40°,则∠2等于()A.50° B.60° C.140° D.160°03.一束光线垂直照射水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为()A.45° B.60° C.75° D.80°例5:如图是一块手表早点9时20分的时针、分针位置关系示意图,此时时针和分针所成的角的度数是()A.160° B.180° C.120° D.150°【解法指导】角此类问题可结合题意画出相应刻度的示意图,并准确地把握时针、分针的旋转一圈12小时,则它1小时转的角度为360°×112=30°,1分钟转过的角度为30°×160=0.5°,分针转一圈是1个小时,分针每分钟转过的角度为360°×160=6°.故选择A.【变式题组】01.钟表上12时15分,时针与分针的夹角为()A.90° B.82.5° C.67.5° D.60°02.由2点15分到2点30分,时钟的分针转过的角度是.例6:考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B位于O点南偏东60°,请在图中画出射线OA,OB,并计算∠AOB的度数.【解法指导】此类问题紧扣方位角的概念作出射线OA,OB是关键.解:如图,以O为顶点,正北方向线为始边向东旋转45°,得OA,以O为顶点,正南方向线为始边向东旋转60°,得OB,则∠AOB=180°-(45°+60°)=75°.【变式题组】01.如图所示,某测绘装置有一枚指针,原来指向南偏西50°,把这枚指针按顺时针旋转14周.⑴指针所指方向为;⑵图中互余的角有对,与∠BOC互补的角是.02.轮船航行到C处时,观察到小岛B的方向是北偏西35°,同时从B观察到轮船C的方向是()A.南偏西35° B.北偏西35° C.南偏东35° D.南偏东55°03.如图下列说法不正确的是()A.OA的方向是东偏北30° B.OB的方向是西偏北60°C.OC的方向是西偏南15° D.OD的方向是西南方向例7:如图,O是直线AB上一点,∠AOD=120°,∠AOC=90°,OE平分∠BOD,则图中彼此互补的角共有对.【解法指导】彼此互补的角只要满足一定的数量关系即可,而与位置无关,从计算相应角的度数入手,故共有6对.【变式题组】01.如图所示,A、O、B在一条直线上,∠AOC=12∠BOC+30°,OE平分∠BOC,则∠BOE=.02.如图,已知∠AOB∶∠BOC∶∠COD=3∶2∶4,∠AOD=108°,求∠AOB、∠BOC、∠COD的度数.03.如图,已知∠AOB+∠AOC=180°,OP、OQ分别平分∠AOB、∠AOC,且∠POQ=50°,求∠AOB、∠AOC的度数.演练巩固反馈提高01.已知∠α=35°,则∠α的余角是()A.55° B.45° C.145° D.135°02.如图直线l1与l2相交于点O,OM∠l1,若∠α=44°,则∠β等于()A.56° B.46° C.45° D.44°03.把一张长方形的纸片按图的方位折叠,EM、FM为折痕,折叠后的C点落在MB'的延长线上,则∠EMF 的度数是()A.85° B.90° C.95° D.100°04.书店、学校、食堂在同一个平面上,分别用A、B、C表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC应是()A.65° B.35° C.165° D.135°05.如果∠α=3∠β,∠α=2∠θ,则必有()A.∠β=12∠θ B.∠β=23∠θC.∠β=13∠θ D.∠β=34∠θ06.某校初一年级在下午3:00开展“阳光体育”活动,下午3:00这一时刻,时针上分针与时针所夹角等于°.07.已知∠AOB=30°,又自∠AOB的顶点O引射线OC,若∠AOC:∠AOB=4:3,那么∠BOC等于()A.10° B.40° C.45° D.70°或10°08.已知∠AOB=120°,OC在它的内部,且把∠AOB分成1:3,那么∠AOC的度数是()A.40° B.40°或80° C.30° D.30°或90°09.⑴如图所示,已知∠AOB是直角,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;⑵如果⑴中∠AOB=α,其他条件不变,求∠MON的度数;⑶你从⑴⑵的结果中,能发现什么规律?10.如图,已知OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.⑴若∠AOD=70°,∠MON=50°,求∠BOC的大小;⑵若∠AOD=α,∠MON=β,求∠BOC的大小.(用字母α、β的式子表示)11.如图所示,已知∠AOE=100°,∠DOF=80°,OE平分∠DOC,OF平分∠AOC,求∠EOF的度数.12.如图所示,O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线.⑴求∠DOE的度数;⑵若只将射线OC的位置改变,其他条件不变,那么∠DOE的度数会改变吗?13.如图,根据图回答下列问题:⑴∠AOC是哪两个角的和;⑵∠AOB是哪两个角的差.14.如图,∠1=∠2=∠3=∠4,根据图形回答问题:⑴图中哪些角是∠2的2倍;⑵图中哪些角是∠3的3倍;⑶图中哪些角是∠AOD的12倍;⑷射线OC是哪个角的三等分线.15.如图直线AB与CD相交于点O,那么∠1=∠2吗?试说明理由.。
平面几何的26个定理
高一数学竞赛班二试讲义第1讲 平面几何中的26个定理班级 姓名一、知识点金1. 梅涅劳斯定理:若直线l 不经过ABC ∆的顶点,并且与ABC ∆的三边,,BC CA AB 或它们的延长线分别交于,,P Q R ,则1BP CQ AR PC QA RB⋅⋅= 注:梅涅劳斯定理的逆定理也成立(用同一法证明)2. 塞瓦定理: 设,,P Q R 分别是ABC ∆的三边,,BC CA AB 或它们的延长线上的点,若,,AP BQ CR 三线共点,则1BP CQ AR PC QA RB⋅⋅= 注:塞瓦定理的逆定理也成立3. 托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ⋅+⋅≥⋅,并且当且仅当四边形ABCD 内接于圆时,等式成立。
AB AE AC ADBC ED AC AD==⇒又4. 西姆松定理:若从ABC ∆外接圆上一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F ,则,,D E F 三点共线。
西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F 。
若,,D E F 三点共线,则点P 在ABC ∆的外接圆上。
5. 蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 分别交PQ 于X ,Y ,则M 为XY 之中点。
证明:过圆心O 作AD 与BC 的垂线,垂足为S 、T ,,OY ,OM ,SM ,MT 。
∴AM/CM=AD/BC∵AS=1/2AD,BT=1/2BC ∴AM/CM=AS/CT又∵∠A=∠C ∴△AMS∽△CMT∴∠MSX=∠MTY∴∠OMX+∠OSX=180°∴O,S ,X ,M同理,O ,T ,∴∠MTY=∠MOY,∠MSX=∠MOX∴∠MOX=∠MOY , ∵OM⊥PQ ∴XM=YM注:把圆换成椭圆、抛物线、双曲线蝴蝶定理也成立6. 坎迪定理:设AB 是已知圆的弦,M 是AB 上一点,弦,CD EF 过点M ,连结,CF ED ,分别交AB 于,L N ,则1111LM MN AM MB-=-。
高考数学复习考点题型专题讲解18 几何体的截面或交线
高考数学复习考点题型专题讲解专题18 几何体的截面或交线1.空间几何体截面的作图主要原理:两个基本事实及两个性质.两个基本事实为:(1)如果两个不重合的平面有一个公共点,那么它们相交于过此点的一条直线;(2)如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 两个性质为:(1)如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线就和交线平行;(2)如果两个平面平行,第三个平面和它们相交,那么两条交线平行.2.立体几何中的截面类型(1)平面截球:圆面(见专题17).(2)平面截正方体:三角形、四边形、五边形、六边形.(3)平面截圆柱曲面:圆、椭圆、矩形.(4)平面截圆锥曲面:椭圆、双曲线、抛物线.类型一截面的作法空间几何体的截面作图主要作法:(1)直接法;(2)平行线法;(3)延长法;(4)辅助平面法.例1 已知正方体A1B1C1D1-ABCD,E,F,H分别是A1B1,B1C1,AD的中点,试过三点E,F,H作截面.解如图,连接EF,并且延长,与D1A1,D1C1的延长线分别交于N,R两点,连接NH并延长分别交AA1和D1D的延长线于S,T,连接TR分别交CD,CC1于M,G,顺次连接点E,F,G,M,H,S,E,则六边形EFGMHS就是所作截面.训练1 如图,在正方体ABCD-A1B1C1D1中,E,F,G分别在AB,BC,DD1上,求作过E,F,G三点的截面.解作法:①在底面AC内,过E,F作直线EF,分别与DA,DC的延长线交于L,M.②在侧面A1D内,连接LG交AA1于K.③在侧面D1C内,连接GM交CC1于H.④连接KE,FH,则五边形EFHGK即为所求的截面.类型二截面形状的判断首先根据条件作出相应的截面图形,再结合线面的位置关系的判定与性质加以分析,得到截面图形所满足的特征性质,确定其形状.例2 如图,在正方体ABCD-A1B1C1D1中,点E,F分别是棱B1B,B1C1的中点,点G是棱C 1C的中点,则过线段AG且平行于平面A1EF的截面图形为( )A.矩形B.三角形C.正方形D.等腰梯形答案 D解析取BC的中点H,连接AH,GH,AD1,D1G,由题意得GH∥EF,AH∥A1F,又GH⊄平面A1EF,EF⊂平面A1EF,所以GH∥平面A1EF,同理AH∥平面A1EF,又GH∩AH=H,GH,AH⊂平面AHGD1,所以平面AHGD1∥平面A1EF.故过线段AG 且与平面A 1EF 平行的截面图形为四边形AHGD 1,显然为等腰梯形. 训练2(多选)(2022·苏北四市调研)已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,点E ,F ,G 分别为棱AB ,AA 1,C 1D 1的中点.下列结论中正确是( )A.过E ,F ,G 三点作正方体的截面,所得截面为正六边形B.B 1D 1∥平面EFGC.BD 1⊥平面ACB 1D.异面直线EF 与BD 1所成角的正切值为22答案 ACD解析 对于A ,因为E ,F ,G 为棱AB ,AA 1,C 1D 1的中点,设A 1D 1的中点为M ,BC 的中点为N ,CC 1的中点为P ,连接点M ,F ,E ,N ,P ,G 可得截面为正六边形,所以A 正确; 对于B ,通过以DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,求出B 1D 1→,平面EFG 法向量n 1,可推出B 1D 1→·n 1≠0,故B 1D 1与平面EFG 不平行,所以B 错误; 对于C ,同上建系,求出BD 1→,平面ACB 1的法向量n 2,可推得BD 1→=λn 2,所以BD 1⊥平面ACB 1,所以C 正确;对于D ,同上建系,求出EF →,BD 1→,设夹角为θ, 则cos θ=|EF →·BD 1→||EF →|·|BD 1→|,由sin 2θ+cos 2θ=1,tan θ=sin θcos θ,得tan θ=22,所以D 正确.类型三截面图形面积或周长的计算求截面图形的面积的前提是确定截面的形状,转化为平面图形求解.例3 (1)(2022·济南模拟)已知正四面体ABCD的棱长为2,平面α与棱AB,CD均平行,则α截此正四面体所得截面面积的最大值为( )A.1B.2C.3D.2(2)在三棱锥P-ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于直线PB和AC.则截面的周长为________.答案(1)A (2)8解析(1)如图,设E为棱BC上任一点,且BE→=λBC→,λ∈(0,1),过E作EF∥AB交AC于F,作EN∥CD交BD于N,过F作FM∥CD交AD于M,连接MN,则四边形EFMN即平面α截四面体ABCD所得的截面,所以EFAB=ECBC=1-λ,所以EF=2(1-λ),同理可得EN=2λ. 又四面体ABCD为正四面体,所以AB⊥CD,所以EF⊥EN,截面EFMN为矩形,且EN+EF=2,则矩形EFMN 的面积S =EF ·EN ≤⎝⎛⎭⎪⎫EF +EN 22=1, 当且仅当EF =EN =1,即λ=12时,“=”成立,故选A.(2)过点G 作EF ∥AC 分别交PA ,PC 于点E ,F ,过E ,F 分别作EN ∥PB ,FM ∥PB ,分别交AB ,BC 于点N ,M ,连接MN ,∴四边形EFMN 是平行四边形,∴EF 3=23,即EF =MN =2, FM PB =FM 6=13,即FM =EN =2, ∴截面的周长为2×4=8.训练3 如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1D 1,A 1B 1的中点,过直线BD 的平面α∥平面AMN ,则平面α截该正方体所得截面的面积为( )A.2B.98C.3D.62答案 B解析 如图1,分别取B 1C 1,C 1D 1的中点E ,F ,连接EF ,BE ,DF ,B 1D 1,ME , 易知EF ∥B 1D 1∥BD ∥MN ,AB ∥ME ,AB =EM , 所以四边形ABEM 为平行四边形, 则AM ∥BE ,又BD 和BE 为平面BDFE 内的两条相交直线,所以平面AMN ∥平面BDFE ,即平面BDFE 为平面α,BD =2,EF =12B 1D 1=22,得四边形BDFE 为等腰梯形,DF =BE =52,在等腰梯形BDFE (如图2)中,过E ,F 作BD 的垂线,垂足分别为G ,H ,则四边形EFGH 为矩形, ∴其高FG =DF 2-DG 2=54-18=324, 故所得截面的面积为12×⎝ ⎛⎭⎪⎫22+2×324=98.一、基本技能练1.过一个圆锥的侧面一点(不是母线的端点)作圆锥的截面,则截面与该圆锥侧面的交线可以是图形①圆;②椭圆;③抛物线的一部分;④双曲线的一部分中的( )A.①②③④B.①③④C.①②D.①②④答案 A解析根据截面与圆锥的位置关系,所得的图形如图所示,故截面与该圆锥侧面的交线可以是图形①圆;②椭圆;③抛物线的一部分;④双曲线的一部分.2.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是( )答案 D解析对于A,PS∥QR,故P,Q,R,S四点共面;同理,B、C图中四点也共面;D中四点不共面.3.如图,长方体ABCD-A′B′C′D′中被截去一小部分,其中EH∥A′D′.剩下的几何体是( )A.棱台B.四棱柱C.五棱柱D.六棱柱答案 C解析∵EH∥A′D′,EH∥平面BCC′B′,∴EH∥GF,又平面ABB′A′∥平面DCC′D′,∴EF∥GH,四边形EFGH为平行四边形.故剩下的几何体为五棱柱.4.在正方体ABCD-A1B1C1D1中,M,N分别是棱DD1和BB1上的点,MD=13DD1,NB=13BB1,那么正方体的过M,N,C1的截面图形是( )A.三角形B.四边形C.五边形D.六边形答案 C解析正方体ABCD-A1B1C1D1中,M、N分别是棱DD1和BB1上的点,MD=13DD1,NB=13BB1,延长C1M交CD的延长线于P,延长C1N交CB的延长线于Q,连接PQ交AD于E,AB于F,连接NF,ME,则正方体的过M,N,C1的截面图形是五边形.故选C.5.在棱长为a的正方体ABCD-A1B1C1D1中,点E,F,G分别为棱AB,CC1,C1D1的中点,则该正方体被过E,F,G三点的平面截得的截面面积为( )A.34a2B.32a2C.334a2D.332a2答案 C解析作出过E,F,G三点的截面,如图,由图可知,截面为正六边形,且边长为22a,所以截面面积S=6×12×32×⎝⎛⎭⎪⎫22a2=334a2,故选C.6.若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有( )A.0条B.1条C.2条D.1条或2条答案 C解析如图所示,平面α即平面EFGH,则四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH.∴CD∥平面EFGH,同理,AB∥平面EFGH.所以与平面α(平面EFGH)平行的棱有2条.7.(2022·重庆诊断)在棱长为4的正方体ABCD-A1B1C1D1中,点M为B1C1的中点,过点D 作平面α使α⊥BM,则平面α截正方体所得截面的面积为( )A.42B.4 5C.85D.16 2答案 C解析分别取AA1,BB1的中点E,N,连接DE,CN,EN,则EN∥DC,EN=DC,所以四边形ENCD是平行四边形,由于△B1BM≌△BCN,所以∠MBB1+∠BNC=90°,所以BM⊥CN,又因为DC⊥BM,DC∩CN=C,所以BM⊥平面ENCD,所以平面ENCD即为平面α,又CN=25,所以截面的面积为25×4=8 5.8.(2022·南通调研)已知正方体ABCD-A1B1C1D1的棱长为2,M为CC1的中点,若AM⊥平面α,且B∈平面α,则平面α截正方体所得截面的周长为( )A.32+25B.4+4 2C.22+25D.6 2答案 A解析正方体ABCD-A1B1C1D1中,BD⊥AC,所以BD⊥AM(三垂线定理),如图,取BB1中点N,A1B1中点E,连接MN,AN,BE,可知BE⊥AN,所以BE⊥AM(三垂线定理),所以AM⊥平面DBE,取A1D1中点F,则α即为截面BEFD,易求周长为32+2 5.9.(多选)如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,过对角线BD1的一个平面交棱AA1于点E,交棱CC1于点F,得四边形BFD1E,在以下结论中,正确的是( )A.四边形BFD1E有可能是梯形B.四边形BFD1E在底面ABCD内的投影一定是正方形C.四边形BFD1E有可能垂直于平面BB1D1DD.四边形BFD1E面积的最小值为6 2答案BCD解析对于选项A,过BD1,作平面与正方体ABCD-A1B1C1D1的截面为四边形BFD1E,如图所示,因为平面ABB1A1∥平面DCC1D1,且平面BFD1E∩平面ABB1A1=BE,平面BFD1E∩平面DCC1D1=D1F,所以BE∥D1F,同理D1E∥BF.故四边形BFD1E为平行四边形,因此A错误;对于选项B,四边形BFD1E在底面ABCD内的投影一定是正方形ABCD,因此B正确;对于选项C,当点E,F分别为AA1,CC1的中点时,EF⊥平面BB1D1D,又EF⊂平面BFD1E,则平面BFD1E⊥平面BB1D1D,因此C正确;对于选项D,当F点到线段BD1的距离最小时,平行四边形BFD1E的面积最小,此时点E,F分别为AA1,CC1的中点,此时最小值为12×2×3=62,因此D 正确.故选BCD.10.(多选)(2022·石家庄模拟)在正方体ABCD -A 1B 1C 1D 1中,P 是面对角线BD 上的动点,Q 是棱C 1D 1的中点,用过A 1,P ,Q 三点的平面截正方体ABCD -A 1B 1C 1D 1,则所得截面多边形可能是( )A.三角形B.四边形C.五边形D.六边形 答案 ABC解析 如图①,当点P 与点D 重合时,截面多边形是三角形,选项A 满足题意;图①图②如图②,取棱CD 的中点Q 1,连接QQ 1和AQ 1, 因为Q 是棱C 1D 1的中点,所以QQ1∥DD1∥AA1,将点P移动到平面AA1QQ1与BD交点处,此时截面多边形是四边形,选项B满足题意;图③如图③,令点P距离点B较近,此时截面多边形是五边形,选项C满足题意;易知点P无论如何移动,截面与平面ABCD的交线都平行于A1Q,所以这条交线只能与正方形ABCD的边AB,AD之一有交点(顶点A除外),则截面不可能与正方形ABB1A1和正方形ADD1A1都有交线(棱AA1除外),所以截面不可能与正方体的六个面都有交线,则截面多边形不能是六边形,所以选项D不满足题意.故选ABC.11.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.12.(2022·衡水模拟)在棱长为1的正方体ABCD-A1B1C1D1中,E为棱CD的中点,过B,E,D的截面与棱A1B1交于F,则截面BED1F分别在平面A1B1C1D1和平面ABB1A1上的正投影1的面积之和为________.答案 1解析因为平面BED1F∩平面ABCD=BE,平面BED1F∩平面A1B1C1D1=D1F,平面A1B1C1D1∥平面ABCD,所以BE∥D1F,同理D1E∥BF,所以截面BED1F是平行四边形,所以BE=D1F,所以A1F=CE,从而B1F=DE,截面BED1F在平面A1B1C1D1上的正投影是以B1F为底,该底对应的高为1的平行四边形,在平面ABB1A1上的正投影是以A1F为底,该底上的高为1的平行四边形,因此两个投影的面积和S=(CE+DE)×1=1为定值.二、创新拓展练13.(2022·浙江五校联考)如图,正三棱柱ABC-A1B1C1的高为4,底面边长为43,D是B1C1的中点,P是线段A1D上的动点,过BC作截面α⊥AP于点E,则三棱锥P-BCE体积的最小值为( )A.3B.2 3C.43D.12答案 C解析如图,取BC的中点F,连接FD,FA,FE,FP,过点E作EH⊥AF于点H,则BC⊥平面AFDA1,所以BC⊥EH,AF∩BC=F,所以EH⊥平面ABC.因为AF=6,且V P-ABC=13×123×4=163=V P-EBC+V E-ABC,所以当三棱锥E-ABC体积最大时,三棱锥P-BCE体积最小.因为AE⊥EF,所以AE2+EF2=AF2=36≥2AE·EF,所以AE·EF≤18.设三棱锥E-ABC的高为h,由AE·EF=AF·h,得h=AE·EFAF≤3,因为V E-ABC=13×S△ABC×h=43h,所以(V E-ABC)max=123,所以(V P-EBC)min=43,故选C.14.(多选)如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题中正确的是( )A.当0<CQ<12时,S为四边形B.当CQ=12时,S为等腰梯形C.当CQ=34时,S与C1D1的交点R满足C1R=13D.当34<CQ<1时,S为六边形答案ABC解析如图1,当Q为CC1的中点,即CQ=12时,PQ∥BC1且PQ=12BC1,图1 又AD1綊BC1,故PQ ∥AD 1且PQ =12AD 1,PA =D 1Q ,故截面APQD 1为等腰梯形,故B 正确;当0<CQ <12时,只需在DD 1上取点M 使PQ ∥AM ,即可得截面APQM 为四边形,故A 正确;当CQ =34时,延长AP ,DC 交于M ,连接QM ,直线QM 与C 1D 1交于点R ,如图2,因CQ =34,则C 1Q =14,CS =1,又C 1R CM =C 1Q QC ,故C 1R =13,选项C 正确;图2当34<CQ <1时,S 为五边形,D 错误. 15.(多选)(2022·烟台调研)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=2,M 为AA 1的中点,过B 1M 作长方体的截面α交棱CC 1于点N ,则下列说法正确的是( )A.截面α可能为五边形B.存在点N ,使得BN ⊥截面αC.若截面α为平行四边形,则1≤CN ≤2D.当点N与点C重合时,截面面积为36 4答案ACD解析选项A,设P为CC1的中点,当N在PC1之间时,截面α为平行四边形NQMB1,当N在PC之间时,截面α为五边形N1Q1GMB1,其中NQ∥B1M,N1Q1∥B1M,故选项A,C正确;若BN⊥截面α,则BN⊥B1M,这显然是不成立的,因为如果成立,可以推出B1M⊥平面BB1C1C,显然错误,故选项B错误;当点N与点C重合时,截面为梯形CGMB1,易知G为AD的中点.易求CG=GM=52,MC=3,MB1=2,B1C=5,所以CM⊥B1M,△CGM为等腰三角形,故S=S△CGM+S△CMB1=12×3×22+12×3×2=364,故选项D正确.故选ACD.16.(多选)(2022·南京师大附中模拟)如图,圆柱的底面半径和高均为1,线段AB是圆柱下底面的直径,点O是下底面的圆心.线段EF是圆柱的一条母线,且EO⊥AB.已知平面α经过A,B,F三点,将平面α截这个圆柱所得到的较小部分称为“马蹄体”.记平面α与圆柱侧面的交线为曲线C,则( )A.曲线C是椭圆的一部分B.曲线C是抛物线的一部分C.二面角F-AB-E的大小为π4D.马蹄体的体积为V满足13<V<π4答案ACD解析将相同的圆柱按如图方式拼接在一起,将两个球放入圆柱内,使每一个球既与圆柱相切,又与曲线C所在平面相切,球与曲线C的切点为Q,R,取曲线C上一点P,过P点的圆柱母线与两球交于M,N两点,由于PM,PR同是下面球的切线,PN,PQ同是上面球的切线,可得PM=PR,PN=RQ,则PR+PQ=PM+PN=MN>QR,由椭圆定义知:曲线C是椭圆的一部分,A正确;B错误;连接OF,由EO⊥AB,EF⊥AB,知AB⊥平面EOF,故OF⊥AB,则∠FOE为二面角F-AB-E的平面角,又OE=EF=1,则∠FOE=π4,C正确;由补成的几何体知马蹄体的体积为V小于圆柱体的14,即为V<π4,又V F-AEB=13×12×2×1×1=13,所以V>13,所以13<V<π4,D正确.故选ACD.17.(2022·广州模拟)四棱锥P-ABCD各顶点都在球心为O的球面上,且PA⊥平面ABCD,底面ABCD为矩形,PA=AB=2,AD=4,设E,F分别是PB,BC的中点,则球O被平面AEF所截得的截面面积为________.答案14π3解析由题可知PC的中点即为球心O,故球的半径R=12+12+22=6,设球心O到平面AEF的距离为d,截面圆的半径为r.由题意可知球心O到平面AEF的距离等于点B到平面AEF的距离,在三棱锥B-AEF中,由等体积法可得d=23 3,故r2=R2-d2=143,故截面面积S=πr2=14π3.18.(2022·武汉三模)已知正方体ABCD-A1B1C1D1的棱长为1,点P在线段CB1上,若平面α经过点A,C1,P,则它截正方体ABCD-A1B1C1D1所得的截面的周长最小值为________.答案2 5解析当点P靠近点C或与点C重合时,A,C1,P三点确定的平面α如图①所示,图①因为平面ADD1A1∥BCC1B1,所以AE∥QC1,同理AQ∥EC1,所以四边形AEC1Q是平行四边形,即为所求的截面,设D1E=x(0≤x≤1),则A1E=1-x,所以AQ=EC1=x2+1,QC1=AE=(1-x)2+1,AQ+AE=x2+1+(1-x)2+1=(x-0)2+(0-1)2+(x-1)2+(0-1)2,可以看作R(x,0)到M(0,1)和N(1,1)距离之和的最小值,M(0,1)关于x轴的对称点为M′(0,-1),连接M′N,其长度即AQ+AE的最小值,由勾股定理得|M′N|=5,所以周长的最小值为2 5.图②当点P靠近点B1或与点B1重合时,A,C,P三点确定的平面α如图②所示,因为平面ADD1A1∥BCC1B1,1所以AE∥QC1,同理AQ∥EC1,所以四边形AEC1Q是平行四边形,即为所求的截面,同理,所求周长的最小值为2 5.综上所述,周长的最小值为2 5.。
初三培优专题18 圆的对称性
AC
DB
(第 6 题图)
O
B
A
EC
DF
(第 7 题图)
A
E CP F D
B (第 8 题图)
7.如图,AB 为⊙O 的直径,CD 是弦.若 AB=10cm,CD=8cm,那么 A,B 两点到直线 CD 的距离之和
为( )
A.12cm
B.10cm
C.8cm
D.6cm
8.如图,半径为 2 的⊙O 中,弦 AB 与弦 CD 垂直相交于点 P,连结 OP.若 OP=1,求 AB2+CD2 的
AP
BE
C
O
F
D 图3
⑵ 如图 2,若弦 BC 经过半径 OA 的中点 E,F 是 C»D 的中点,G 是 F»B 的中点,⊙O 的半径为 1,求弦
FG 的长; ⑶ 如图 3,在⑵中若弦 BC 经过半径 OA 的中点 E,P 为劣弧上一动点,连结 PA,PB,PD,PF,求证:
PA PF
的定值.
PB PD
【例 4】如图,已知圆内接△ABC 中,AB>AC,D 为 B¼AC 的中点,DE⊥AB 于 E.求证:BD2-AD2=AB g
AC. (天津市竞赛试题)
解题思路:从化简待证式入手,将非常规几何问题的证明转化为常规几何题的证明. D A E C
B
圆是最简单的封闭曲线,但解决圆的问题还要用到直线形的有关知识和方法.同样,圆也为解决直线形
⑴如图 1,PA+PB= 3 PH;
⑵如图 2,PA+PB=PH;
⑶ 进 一 步 , 如 图 3 , 若 ∠ APB=α , PH 平 分 ∠ APB , 则 PA+PB=2PHcos 为 定
江苏南通2018-2019年中考数学试题分类解析专项8:平面几何基础
江苏南通 2018-2019 年中考数学试题分类分析专项 8:平面几何基础专题 8:平面几何基础一、选择题1. 〔 2001 江苏南通 3 分〕 正多边形的一个外角是 360,那么那个正多边形的边数是【】A 、 4B 、 5C 、 8D 、 10 【答案】 D 。
【考点】 多边形外角性质。
【剖析】 依据多边形外角和为360°,正多边形的每一个外角都相等,得那个正多边形的边数: 360°÷ 36° =10。
应选 D 。
2. 〔江苏省南通市 2003 年 3 分〕 如图,以下条件中,不可以判断直线l ∥ l2的是【】1A 、∠ 1=∠ 3B 、∠ 2=∠ 3C 、∠ 4=∠ 5D 、∠ 2+∠ 4=180° 【答案】 B 。
【考点】 平行线的判断。
【剖析】 在复杂的图形中拥有相等关系或互补关系的两角第一要判断它们是不是同位角、 内错角或同旁内角,被判断平行的两直线能否由“三线八角”而产生的被截直线:∵∠ 1 与∠ 3 是 l 1 与 l 2 形成的内错角,且∠ 1=∠ 3,∴能判断直线 l 1∥ l 2 ;∵∠ 4 与∠ 5 是 l 1与 l 2形成的同位角,且∠ 4=∠ 5,∴能判断直线 l ∥ l ;12∵∠ 2 与∠ 4 是 l 1 与 l 2 形成的同旁内角,且∠ 2+∠ 4=180°,∴能判断直线 l 1∥ l 2;∵∠ 2 与∠ 3 不是 l 1 与 l 2 形成的角,故不可以判断直线l 1∥l 2。
应选 B 。
3. 〔江苏省南通市2004年 2 分〕 如图,在正方体ABCD - A 1B 1C 1D 1 中,以下棱中与面CC 1D 1D垂直的棱是【】A 、 A 1B 1B 、 CC 1C 、 BCD 、 CD【答案】 C 。
【考点】 垂线,认识立体图形。
【剖析】 依据正方体的特征及垂线的定义可解: 与面 CC 1D 1D 垂直的棱共有四条, 是 BC ,B 1C 1,AD , A 1D 1。
2025中考数学二次函数压轴题专题练习18 二次函数与几何交点问题(学生版+解析版)
专题18二次函数与几何交点间题1.(2023·黑龙江大庆中考真题)如图,二次函数y = a:x.2+bx+c的图象与X轴交千A,B两点,且自变量X 的部分取值与对应函数值Y如下表:XL -]。
I2 34L yL。
-3-4-3。
5Ly y备用图备用图(I)求二次函数y=ax 2+bx+c的表达式;(3)若将线段A B 先向上平移3个单位长度,再向右平移l 个单位长度,得到的线段与二次函数y =一(釭2+bx+c)的图象只有一个交点,其中(为常数,请直接写出t的取值范围2.(2023四川德阳中考真题)已知:在平面直角坐标系中,抛物线与x轴交于点A(-4,0)'B (2,0),与y 轴交千点C (O,-4).1付l(I)求抛物线的解析式;E -阳2(2)如图1,如果把抛物线x 轴下方的部分沿x 轴翻折180°,抛物线的其余部分保持不变,得到一个新图象.当平面内的直线y=妇+6与新图象有三个公共点时,求k的值;3.(2023山东济南中考真题)在平面直角坐标系xOy 中,正方形ABCD 的顶点A,B 在X轴上,C(2,3),D(-1,3) 抛物线y =成-2少+c(a«))与X 轴交于点E(-2,0)和点Fy y(1)如图l ,若抛物线过点C,求抛物线的表达式和点F 的坐标;(2)如图2,在(I)的条件下,连接CF,作直线CE,平移线段CF,使点C 的对应点P落在直线CE 上,点F 的对应点Q落在抛物线上,求点Q的坐标;(3)若抛物线y=ax 2-2ax+c(a<0)与正方形ABCD 恰有两个交点,求(1的取值范围,4.(2023山东日照中考真题)在平面百角坐标系xOy 内,抛物线y =动X江女仄+2(a>0)交y轴于点C ,过点C作x轴的平行线交该抛物线千点D.l `一-x(1)求点C,D的坐标;(3)坐标平面内有两点£(�.a +1} F (5,a + I ),以线段EF 为边向上作正方形EFGH.@若a=l,求正方形EFGH 的边与抛物线的所有交点坐标;@当正方形EFGH 的边与该抛物线有且仅有两个交点,且这两个交点到x 轴的距离之差为-5时,求a的值5.(2022吉林长春中考真题)在平面直角坐标系中,抛物线y = x 1-bx (b是常数)经过点(2,0)点A在抛物线上,且点A的横坐标为m(m;1:0)以点A为中心,构造正方形PQMN, P Q=2|『111,且PQ.lx轴.(l)求该抛物线对应的函数表达式:(2若点B是抛物线上一点,且在抛物线对称轴左侧.过点B作x轴的平行线交抛物线千另一点C,连按BC.当BC=4时,求点B的坐标:(3若m>O,当抛物线在正方形内部的点的纵坐标y随x的增大而增大时,或者y随x的增大而减小时,求m的取值范围:3(4)当抛物线与正方形PQMN的边只有2个交点,且交点的纵坐标之差为一时,且接写出m4的值6.(2022湖南永州中考真题)已知关于X的函数y= ax2 +bx+c(1)若a.=l,函数的图象经过点(1,-4)和点(2,I),求该函数的表达式和最小值;(2)若a=l,b=-2, c=m十l时,函数的图象与X轴有交点,求m的取值范围.(3)阅读下面材料:设a>0,函数图象与X轴有两个不同的交点A,B,若A,8两点均在原点左侧,探究系数a, b, c应满足的条件,根据函数图像,思考以下三个方面:@因为函数的图象与X轴有两个不同的交点,所以6.=b2 -4ac> 0:@因为A,8两点在原点左侧,所以x=O对应图象上的点在X轴上方,即c>O:@上述两个条件还不能确保A,8两点均在原点左侧,我们可以通过抛物线的对称轴位置来b进一步限制抛物线的位置:即需-一又0.2a综上所述,系数a,b, c应满足的条件可归纳为:请根据上面阅谅材料,类比解决下而问题:a>O tJ.=li-4ac>0c>Ob -—<02a若函数y= ax2 -2x+3的图象在直线x=1的右侧与人轴有且只有一个交点,求U的取值范围.7.(2022湖南衡阳中考真题)如图,已知抛物线y=x'-x-2交X轴千A、B两点,将该抛物线位千X轴下方的部分沿X轴翻折,其余部分不变,得到的新图象记为“图象W",图象W交Y轴千点c.` ` \ `x, I I、一,,(])写出图象W位于线段AB上方部分对应的函数关系式:(2)若直线y=-x+b与图象W有三个交点,请结合图象,直按写出b的值:(3)p为X轴正半轴上一动点,过点P作PM ff y轴交直线BC千点M,交图象W于点N,是否存在这样的点P,使..CMN与60BC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.专题18二次函数与几何交点间题1.(2023·黑龙江大庆中考真题)如图,二次函数y = a:x .2+bx+c的图象与X轴交千A,B两点,且自变量X 的部分取值与对应函数值Y如下表:X L -]。
专题18 解析几何(选填压轴题)(教师版)-备战2022年高考数学高分必刷必过题(全国通用版)
专题18解析几何(选填压轴题)一、单选题1.(2021·河南高三月考(理))已知点1F ,2F 分别为椭圆()2222:10x y C a b a b+=>>的左、右焦点,点M 在直线:l x a =-上运动,若12F MF ∠的最大值为60︒,则椭圆C 的离心率是()A.13B.12【答案】C 【详解】由题意知,()1,0F c -,()2,0F c ,直线l 为x a =-,设直线1MF ,2MF 的倾斜角分别为α,β,由椭圆的对称性,不妨设M 为第二象限的点,即(),M a t -,()0t >,则tan tc aα=-,tan tc aβ-=+.12F MF βα∠=- ,()12222222tan tan 222tan tan 1tan tan 21t t ct c c cc a c a F MF t b t b b b t c a t βαβααβ---+-∴∠=-====≤==++-+-,当且仅当2b t t=,即t b =时取等号,又12tan F MF ∠得最大值为tan 60c b =︒=c ∴=,即2223c c a =-,整理得c a =C故选:C.2.(2021·山东肥城·高三模拟预测)已知EF 是圆22:2430C x y x y +--+=的一条弦,且CE CF ⊥,P 是EF 的中点,当弦EF 在圆C 上运动时,直线:30l x y --=上存在两点,A B ,使得2APB π∠≥恒成立,则线段AB 长度的最小值是()A.1B.C.D.2【答案】B 【详解】由题可知:22:(1)(2)2C x y -+-= ,圆心()1,2C ,半径r =又CE CF ⊥,P 是EF 的中点,所以112CP EF ==,所以点P 的轨迹方程22(1)(2)1x y -+-=,圆心为点()1,2C ,半径为1R =,若直线:30l x y --=上存在两点,A B ,使得2APB π∠≥恒成立,则以AB 为直径的圆要包括圆22(1)(2)1x y -+-=,点()1,2C 到直线l 的距离为d ==所以AB 长度的最小值为()212d +=+,故选:B.3.(2021·丽水外国语实验学校高三期末)如图,在棱长为1的正方体1111ABCD A B C D -中,E 是线段1B C 的中点,F 是棱11A D 上的动点,P 为线段1BD 上的动点,则PE PF +的最小值是()B.12C.6D.2【答案】C 【详解】在11D C 上取点1F 使得111D F D F =,由对称性可知1PF PF =.连接1BC ,则11BC B C E = ,点P 、E 、1F 都在平面11BC D 内,且111BC C D ⊥,11=1C D ,1BC =在11Rt BC D 所在平面内,以11C D 为x 轴,1C B 为y 轴建立平面直角坐标系如图所示.则1(1,0)D,B,0,2E ⎛ ⎝⎭,所以直线1BD的方程为1x =.设点E 关于直线1BD 的对称点为(,)E m n ',则22122n m n m ⎧⎪=⎪⎪⎨⎪⎪+=⎪⎩,解得236m n ⎧=⎪⎪⎨⎪=⎪⎩,即2,36E ⎛' ⎝⎭.因此,1116PE PF PE PF PE PF E F ''+=+=+≥≥所以,当且仅当1,,E P F '三点共线且111E F C D '⊥时,PE PF +有最小值6.故选:C.4.(2021·四川成都七中高三三模(理))已知双曲线22413y x -=的左右焦点分别为1F ,2F ,点M 是双曲线右支上一点,满足120MF MF →→⋅=,点N 是线段12F F 上一点,满足112F N F F λ→→=.现将12MF F △沿MN 折成直二面角12F MN F --,若使折叠后点1F ,2F 距离最小,则λ=()A.15B.25C.35D.45【详解】由双曲线方程知,12a =,b =,2c =,设2MF x =,则11MF x =+,12F F 120MF MF →→⋅=,则22(1)13x x ++=,解得2x =或-3(舍),设折叠后点1F 达到F 点,如图所示,作FA MN ⊥于A 点,易知FA ⊥平面12MF F ,1FAN F AN ≅ ,1F A MA ⊥,设1F MN α∠=,则22F MN πα∠=-,在1Rt MAF 中,13sin FA F A α==,3cos MA α=,在2MAF 中,由余弦定理知,222222222cos (3cos )423cos 2sin AF MA MF MA MF F MN ααα=+-⋅∠=+-⨯⨯29cos 6sin 24αα=-+,则2222222(3sin )9cos 6sin 24136sin 27FF AF AF αααα=+=+-+=-≥,当且仅当sin 21α=,即4πα=时,等号成立,折叠后点1F ,2F 距离最小.此时MN 为12F MF ∠的角平分线,由角平分线定理知,112232F N MF NF MF ==,则11235F N F F →→=,35λ=故选:C5.(2021·安徽师范大学附属中学高三开学考试(理))已知F 是椭圆2221(1)x y a a+=>的左焦点,A 是该椭圆的右顶点,过点F 的直线l (不与x 轴重合)与该椭圆相交于点,M N .记MAN α∠=,设该椭圆的离心率为e ,下列结论正确的是()A.当01e <<时,2πα<B.当0e <2πα>C.当12e <<23πα>1e <<时,34πα>【详解】不失一般性,设M 在x 轴上方,N 在x 轴下方,设直线AM 的斜率为1k ,倾斜角为θ,直线AN 的斜率为2k ,倾斜角为β,则210,0k k ><,,2πθπ⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,且()0,απθβπ=-+∈.又()2121tan tan tan tan 1+tan tan 1k k k k βθαπθββθ--=-+==+.又直线AM 的方程为()1y k x a =-,由()12222y k x a x a y a ⎧=-⎨+=⎩可得22232422111(1)20a k x a k x a k a +-+-=,故42212211M a k a x a a k -⨯=+,所以3212211Ma k ax a k -=+,故122121M ak y a k -=+,同理3222221N a k ax a k -=+,故222221N ak y a k -=+,因为,,M F N 共线,故21222221323221222221221111ak ak a k a k a k a a k ac ca k a k --++=--++++,整理得到()()()()21212210a a c k k k k c a k k +-+--=即()122c ak k a a c -=+,若01e <<,()()122211c a e k k a a c a e --==++,因为()1211,011e e e -=-∈-++,21a >,故121k k >-,所以2121tan 01k k k k α-=>+,故2πα<.6.(2021·全国高三专题练习)已知过抛物线24y x =的焦点F 的直线与抛物线交于点A 、B ,若A 、B 两点在准线上的射影分别为M 、N ,线段MN 的中点为C ,则下列叙述不正确的是()A.AC BC⊥B.四边形AMCF 的面积等于AC MF ⋅C.AF BF AF BF +=⋅D.直线AC 与抛物线相切【答案】B 【详解】如图,由题意可得()1,0F ,抛物线的准线方程为1x =-.设211,4y A y ⎛⎫ ⎪⎝⎭、222,4y B y ⎛⎫⎪⎝⎭,设直线AB 的方程为1x ty =+,联立214x ty y x=+⎧⎨=⎩,可得2440y ty --=,利用根与系数的关系得124y y =-,因为线段MN 的中点为C ,所以121,2y y C +⎛⎫- ⎪⎝⎭,所以21121,42y y y CA ⎛⎫-=+ ⎪⎝⎭ ,22211,42y y y CB ⎛⎫-=+ ⎪⎝⎭ ,所以,()()2222121212121111210444162y y y y y y y yCA CB -⎛⎫⎛⎫⋅=++-=++=-+= ⎪⎪⎝⎭⎝⎭,所以,AC BC ⊥,A 选项正确;对于B 选项,因为()11,M y -,所以()12,MF y =-,所以()2112112220222y y y y y yCA MF -⋅=+-=+= ,所以AC MF ⊥,所以四边形AMCF 的面积等于12AC BF ⋅,B 选项错误;对于C 选项,根据抛物线的定义知2114y AF AM ==+,2214y BF BN ==+,所以221224y y AF BF ++=+,22222222121212121112441644y y y y y y y y AF BF ⎛⎫⎛⎫++⋅=++=++=+ ⎪⎪⎝⎭⎝⎭,所以,AF BF AF BF +=⋅,C 选项正确;对于D 选项,直线AC 的斜率为()12111212221111422224414ACy y y y y y y k y y y y ⎛⎫++ ⎪--⎝⎭====+++,抛物线24y x =在点A 处的切线方程为2114y y y k x ⎛⎫-=- ⎪⎝⎭,联立211244y y y k x y x⎧⎛⎫-=-⎪ ⎪⎨⎝⎭⎪=⎩,消去x 可得2211440ky y y ky -+-=,由题意可得()211016440k k y ky ≠⎧⎪⎨∆=--=⎪⎩,可得12ky =,即12k y =,则AC k k =.所以,直线AC 与抛物线24y x =相切,D 选项正确.故选:B.7.(2021·全国高三模拟预测(理))如图,已知双曲线()222210x y b a a b-=>>的左、右焦点分别为1F ,2F ,过右焦点作平行于一条渐近线的直线交双曲线于点A ,若12AF F △的内切圆半径为4b,则双曲线的离心率为()A.53B.54C.43D.32【答案】A 【详解】设双曲线的左、右焦点分别为1(,0)F c -,2(,0)F c ,设双曲线的一条渐近线方程为b y x a=,可得直线2AF 的方程为()b y x c a =-,与双曲线22221(0)x yb a a b-=>>联立,可得22(2c a A c +,22()2b a c ac-,设1||AF m =,2||AF n =,由三角形的等面积法可得2211()(2)22422b b c a m n c c ac -⨯++=⨯⋅,化简可得2442c m n a c a+=--,①由双曲线的定义可得2m n a -=,②在三角形12AF F 中22()sin 2b c a n acθ-=,(θ为直线2AF 的倾斜角),由tan baθ=,22sin cos 1θθ+=,可得sin b cθ==,可得222c a n a-=,③由①②③化简可得223250c ac a --=,即为(35)()0c a c a -+=,可得35c a =,则53ce a==.故选:A.8.(2021·湖南天心·长郡中学高三二模)已知正方体ABCD A B C D ''''-的棱长为1,点M ,N 分别为线段AB ',AC 上的动点,点T 在平面BCC B ''内,则MT NT +的最小值是()B.3C.2D.1【答案】B 【详解】解:A 点关于BC 的对称点为E ,M 关于BB '的对称点为M ',记d 为直线EB '与AC 之间的距离,则MT NT M TNT M N d ''+=+≥≥,由//B E D C '',d 为E 到平面ACD '的距离,因为111111333D ACE ACE V S '-=⨯⨯==⨯⨯= ,而21346D ACE E ACD V V d d ''--==⨯⨯⨯=,故3d =,故选:B.9.(2021·贵州贵阳·高三模拟预测(理))在平面内,已知动点P 与两定点,A B 的距离之比为()0,1λλλ>≠,那么点P 的轨迹是圆,此圆称为阿波罗尼斯圆.在空间中,也可得到类似结论.如图,三棱柱111ABC A B C -中,1A A ⊥平面ABC ,2AB BC ==,1BB =,90ABC ∠=︒,点M 为AB 的中点,点P在三棱柱内部或表面上运动,且PA =,动点P 形成的曲面将三棱柱分成两个部分,体积分别为1V ,()212V V V <,则12V V =()A.12B.13C.14D.15【答案】D 【详解】如图,在平面PAB 中,作MPN MAP ∠=∠,交AB 于点N ,则MPN NAP ∠=∠,又因PNM ANP ∠=∠,所以PNM ANP ,所以2PN AN PA MN PN MP ===22,2AN MN PN =,所以22AM AN MN PN =-=.因为112AM AB ==,所以2,1PN MN ==,所以B、N 重合且2BP PN ==所以点P 落在以B 2作BH AC ⊥于H ,则222BH AB ==因为1AA ⊥面ABC ,所以1AA ⊥BH ,又因为1AA AC A = ,所以BH ⊥面11AA CC ,所以B 到面11AA CC 的距离为=2=BH BP ,所以球面与面11AA CC 相切,而122BB π=>所以球面不会与面111A B C 相交,则31142833V BP π== ,111=222222V AB BC AA ππ⨯⨯⨯=⨯⨯=三棱柱,所以2125222=33V V V πππ=-=-三棱柱,所以12V V =15.故选:D.10.(2021·吉林高三月考(理))已知双曲线C :22197x y -=的左焦点为F ,过原点的直线l 与双曲线C 的左、右两支分别交于A ,B 两点,则14FA FB-的取值范围是()A.13,67⎡⎫-⎪⎢⎣⎭B.13,67⎡⎤-⎢⎥⎣⎦C.1,06⎡⎫-⎪⎢⎣⎭D.1,6⎡⎫-+∞⎪⎢⎣⎭【答案】B 【详解】设FA r =,则1r c a ≥-=.设双曲线的右焦点为F ',由对称性可知BF FA r '==,则26FB r a r =+=+,所以14146FA FB r r -=-+.令21463()66r f r r r r r -=-=++,[1,)r ∈+∞,则222223(412)3(2)(6)()(6)(6)r r r r f r r r r r --+-'==++,令()0f r '=得6r =,当(1,6)x ∈时,()0f r '<,()f r 单调递减;当(6,)x ∈+∞时,()0f r '>,()f r 单调递增.所以min 1()(6)6f r f ==-,又当(6,)x ∈+∞时()0f r <,所以max 3()(1)7f r f ==.故14FA FB -的取值范围是13,67⎡⎤-⎢⎥⎣⎦.故选:B.11.(2021·浙江高三月考)如图,椭圆22:143x y C +=,P 是直线4x =-上一点,过点P 作椭圆C 的两条切线PA ,PB ,直线AB 与OP 交于点M ,则sin PMB ∠的最小值是()437B.86565721032【答案】A 【详解】设11(,)A x y 若A 在椭圆的上半部分,则2314xy =-22332214144x x y x x ⎛⎫- ⎪⎝⎭'=---A 在椭圆上,2211143x y +=,111211334414x x x x y y x ===--'.∴过A 点的切线方程是11113()4x y y x x y -=--,221111343412x x y y x y +=+=,即11143x x y y+=,同理可证当A 在下半圆时,过A 的切线方程也是11143x x y y+=,A 是椭圆的左右顶点时,切线方程也是.∴无论A 在椭圆的何处,切线方程都是11143x x y y +=.设22(,)B x y ,则过B 点的切线方程是22143x x y y +=,P 在直线4x =-,设(4,)P m -,则由两切线都过P 点∴11221313y m x y m x ⎧-+=⎪⎪⎨⎪-+=⎪⎩,∴直线AB 方程是13my x -+=,易知直线AB 过定点(1,0)-,该定点为椭圆左焦点F .直线OP 方程为4m y x =-,则由134my x m y x ⎧-+=⎪⎪⎨⎪=-⎪⎩,得221212312x m m y m ⎧=-⎪⎪+⎨⎪=⎪+⎩,即22123,1212m M m m ⎛⎫- ⎪++⎝⎭,3AB k m=,4(1)3PF m m k ==----,1AB PF k k =-,∴PF AB ⊥,PF =PM =∴2sin PFPMB PM =7===≥=.当且仅当22144m m =,即m =±时等号成立.故选:A.12.(2021·吉林长春·高三模拟预测(理))已知F 是椭圆2222+1(0)x y a b a b=>>的一个焦点,若直线y kx =与椭圆相交于,A B 两点,且60AFB ∠=︒,则椭圆离心率的取值范围是()A.(1)2B.(02,C.1(0)2,D.1(1)2,【答案】A 【详解】如图设1,F F 分别为椭圆的左、右焦点,设直线y kx =与椭圆相交于,A B ,连接11,,,AF AF BF BF .根据椭圆的对称性可得:四边形1AF BF 为平行四边形.由椭圆的定义有:12,AF AF a +=12,FF c =1120F AF ∠=︒由余弦定理有:2221112cos120FF AF AF AF AF =+-⋅︒即()()2221211142AF AF c AF AF AF AF AF AF ⎛⎫+=+-⋅≥+- ⎪⎝⎭所以()221222214432AF AF c AF AFa a a⎛⎫+≥+-=-= ⎝⎭当且仅当1AF AF =时取等号,又y kx =的斜率存在,故A B ,不可能在y 轴上.所以等号不能成立,即即2234c a >,所以12e >>故选:A13.(2021·山西阳泉·高三期末(理))已知双曲线()2222100x y a b a b-=>,>的左、右焦点分别为1F ,2F ,过2F 且斜率为247的直线与双曲线在第一象限的交点为A ,若21210F F F A F A →→→⎛⎫+⋅= ⎪⎝⎭,则此双曲线的标准方程可能为()A.x 2212y -=1B.22134x y -=C.221169x y -=D.221916x y -=【答案】D 【详解】解:由题可知,1212F A F F F A →→→=-+,若21210F F F A F A →→→⎛⎫+⋅= ⎪⎝⎭,即为2221210F F F F A F F A →→→→⎛⎫+⋅ ⎛⎫-+⎪⎝ ⎭⎪⎭=⎝,可得21222F AF F →→=,即有221||||2AF F F c ==,由双曲线的定义可知122AF AF a -=,可得1||22AF a c =+,由于过F 2的直线斜率为247,所以在等腰三角形12AF F 中,2124tan 7AF F ∠=-,则217cos 25AF F ∠=-,由余弦定理得:22221744(22)cos 25222c c a c AF F c c+-+∠=-= ,化简得:35c a =,即35a c =,45b c =,可得:3:4a b =,22:9:16a b =,所以此双曲线的标准方程可能为:221916x y -=.故选:D.14.(2021·全国高三专题练习(理))已知O 为坐标原点,抛物线()220C y px p =>:上一点A 到焦点F 的距离为4,若点M 为抛物线C 准线上的动点,给出以下命题:①当MAF △为正三角形时,p 的值为2;②存在M 点,使得0MF MA -=;③若3MF FA =,则p 等于3;④OM MA +的最小值为p 等于4或12.其中正确的是()A.①③④B.②③C.①③D.②③④【答案】C 【详解】对于①,当MAF △为正三角形时,如下图所示,抛物线的准线交x 轴于N ,4AF AM MF ===,由抛物线定义可知AF AM =,则AM 与准线垂直,所以60AMF AFM ∠=∠= ,则30FMN ∠= ,所以12NF MF =,而NF p =,即122p MF ==,所以①正确;对于②,假设存在M 点,使得0MF MA -= ,即MA MF =,所以M 点为AF 的中点,由抛物线图像与性质可知,A 为抛物线上一点,F 为焦点,线段AF 在y 轴右侧,点M 在抛物线C 准线上,在y 轴左侧,因而M 不可能为AF 的中点,所以②错误;对于③,若3MF FA =,则:3:4MF MA =,作AE 垂直于准线并交于E ,准线交x 轴于N ,如下图所示:由抛物线定义可知4AE AF ==,根据相似三角形中对应线段成比例可知MF FN MAAE=,即344p =,解得3p =,所以③正确;对于④,作O 关于准线的对称点O ',连接AO '交准线于M ,作AD 垂直于准线并交于D ,作AH 垂直于x 轴并交于H ,如下图所示:根据对称性可知,此时AO '即为OM MA +的最小值,由抛物线定义可知4AD AF ==,所以A 的横坐标为42p -,代入抛物线可知22242A p y AHp ⎛⎫==- ⎪⎝⎭,OM MA AO +='的最小值为1342pO H NH O N '=+'=+,则22O O AHA H '='+,即(224241322p p p ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,化简可得216480p p -+=,即()()4120p p --=,解得4p =或12p =,当p =12时,不满足点A 到焦点F 的距离为4,所以④错误;综上所述,正确的为①③.故选:C.15.(2021·全国高三专题练习(理))关于x 的实系数方程2450x x -+=和220x mx m ++=有四个不同的根,若这四个根在复平面上对应的点共圆,则m 的取值范围是()A.{}5B.{}1-C.()0,1D.(){}0,11- 【答案】D 【详解】解:由已知x 2﹣4x +5=0的解为2i ±,设对应的两点分别为A ,B ,得A (2,1),B (2,﹣1),设x 2+2mx +m =0的解所对应的两点分别为C ,D ,记为C (x 1,y 1),D (x 2,y 2),(1)当△<0,即0<m <1时,220x mx m ++=的根为共轭复数,必有C 、D 关于x 轴对称,又因为A 、B 关于x 轴对称,且显然四点共圆;(2)当△>0,即m >1或m <0时,此时C (x 1,0),D (x 2,0),且122x x +=﹣m ,故此圆的圆心为(﹣m ,0),半径122x x r -==,又圆心O 1到A 的距离O 1A=,解得m =﹣1,综上:m ∈(0,1)∪{﹣1}.故选:D.16.(2021·信阳市实验高级中学高三开学考试(理))在正方体1111ABCD A B C D -中,球1O 同时与以A 为公共顶点的三个面相切,球2O 同时与以1C 为公共顶点的三个面相切,且两球相切于点F .若以F 为焦点,1AB 为准线的抛物线经过12O O ,,设球12O O ,的半径分别为12r r ,,则12r r=()A.12C.12-D.2【答案】D 【详解】根据抛物线的定义,点2O 到点F 的距离与到直线1AB 的距离相等,其中点2O 到点F 的距离即半径2r ,也即点2O 到面11CDD C 的距离,点2O 到直线1AB 的距离即点2O 到面11ABB A 的距离,因此球2O 内切于正方体,不妨设21r =,两个球心12O O ,和两球的切点F 均在体对角线1AC 上,两个球在平面11ABC D 处的截面如图所示,则122212AC O F r AO ===,221AF AO O F =-.又因为111AF AO O F r =+=+,因此)111r=,得12r =-所以122r r =-故选:D17.(2021·信阳市实验高级中学高三开学考试(理))过抛物线()220y px p =>的焦点F作直线与抛物线在第一象限交于点A ,与准线在第三象限交于点B ,过点A 作准线的垂线,垂足为H .若tan 2AFH ∠=,则AF BF=()A.54B.43C.32D.2【答案】C 【详解】如图,设准线与x 轴的交点为M ,过点F 作FC AH ⊥.由抛物线定义知AF AH =,所以AHF AFH α∠=∠=,2FAH OFB πα∠=-=∠,()()cos 2cos 2MF pBF παπα==--,()()()tan tan sin 2sin 2sin 2CF CH p AF ααπαπαπα===---,所以()2tan tan tan 13tan 2tan 222AFBF αααπαα-====--.故选:C18.(2021·西工大附中分校高三模拟预测(理))设1F ,2F 为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点()0,2P x a 为双曲线上一点,若12PF F ∆的重心和内心的连线与x 轴垂直,则双曲线的离心率为A.2【答案】A 【详解】画出图形如图所示,设12PF F ∆的重心和内心分别为,G I ,且圆I 与12PF F ∆的三边1212,,F F PF PF 分别切于点,,M Q N ,由切线的性质可得1122||||,||||,||||PN PQ F Q F M F N F M ===.不妨设点()0,2P x a 在第一象限内,∵G 是12PF F ∆的重心,O 为12F F 的中点,∴1||||3OG OF =,∴G 点坐标为02(,33x a .由双曲线的定义可得121212||||2||||||||PF PF a F Q F N F M F M -==-=-,又12||||2F M F M c +=,∴12||,||F M c a F M c a =+=-,∴M 为双曲线的右顶点.又I 是12PF F ∆的内心,∴12IM F F ⊥.设点I 的坐标为(,)I I x y ,则I x a =.由题意得GI x ⊥轴,∴3x a =,故03x a =,∴点P 坐标为()3,2a a .∵点P 在双曲线22221(0,0)x y a b a b-=>>上,∴22222294491a a a a b b -=-=,整理得2212b a =,∴2c e a ==.故选A .19.(2021·河西·天津市新华中学高三月考)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,以线段12F F 为直径的圆与C 的渐近线在第一象限的交点为P ,且122PF PF b -=.设C 的离心率为e ,则2e =A.12B.12+【答案】B 【详解】由题意12F P F P ⊥,则222212124F P F P F F c +==①,又122PF PF b -=②,2①-②得12PF PF =22a ,∵P 在渐近线上且OP c =,设A 为双曲线右顶点,如图,则PA b =,且12PA F F ⊥,由1212PF PF F F PA =得222a cb =,于是422222()a b c c c a ==-,变形为4210e e --=,解得212e =(12舍去),故选B.20.(2021·陕西西安·高新一中高三二模(理))我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,已知1F 、2F 是一对相关曲线的焦点,P 是椭圆和双曲线在第一象限的交点,当1260F PF ∠=时,这一对相关曲线中双曲线的离心率是C.3D.2【答案】A 【详解】设椭圆的长半轴长为1a ,椭圆的离心率为1e ,则11c e a =,11c a e =.双曲线的实半轴长为a ,双曲线的离心率为e ,c e a =,c a e=,设1PF x =,2PF y =(x >0)y >,则2222242cos60c x y xy x y xy =+-=+- ,当点P 被看作是椭圆上的点时,有()22214343c x y xy a xy =+-=-,当点P 被看作是双曲线上的点时,有24c =()224x y xy a xy -+=+,两式联立消去xy 得222143c a a =+,即222143c c c e e ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,所以2211134e e ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,又11e e =,所以2234e e+=,整理得42430e e -+=,解得23e =或21e =(舍去),所以e =故选A.二、多选题21.(2021·广东茂名·高三月考)已知曲线C :1x x y y +=,则下列结论正确的是()A.直线0x y +=与曲线C 没有公共点B.直线x y m +=与曲线C 最多有三个公共点C.当直线x y m +=与曲线C 有且只有两个不同公共点()111,P x y ,()222,P x y 时,12x x 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭D.当直线x y m +=与曲线C 有公共点时,记公共点为()*,()i i P x y i N ∈.则1ni i x =∑的取值范围为(【答案】ACD 【详解】由题设得:曲线C 为()()()22222210,010,010,0x y x y x y x y y x x y ⎧+=≥≥⎪-=><⎨⎪-=<>⎩,A:由0x y +=是221x y -=和221y x -=的渐近线,且0x y +=与()2210,0y x y x +=≥≥没有公共点,故正确;B:由A 中的分析知:x y m +=与曲线C 最多有两个公共点,故错误;C:由图可知,若x y m +=与曲线C 有两个公共点或一个公共点,当0m <<x y m +=与曲线C 有两个公共点()111,P x y ,()222,P x y ,由对称性知,()111,P x y ,()222,P x y 关于直线y x =对称,则12y x =,∴1211x x x y =,(1)当01m <<时,120x x -∞<<.(2)当12m ≤<时,由12x x ≠,则21112112122x y x x x y +=<=.(3)当2m =l 与曲线C 只有一个公共点,不合题意.(4)当2m >0m ≤时,直线l 与曲线C 无公共点,综上可知,C 正确;D:由C 的分析,02m <<x y m +=与曲线C 有且只有两个不同公共点,则12111nii xx x x y m ==+=+=∑,即102ni i x =<∑.当2m =x y m +=与曲线C 只有一个公共点,此点为2222⎛⎫⎪ ⎪⎝⎭.此时(111222ni x x ===∑.故正确.故选:ACD.22.(2021·江苏鼓楼·南京市第二十九中学高三开学考试)已知F 为抛物线C :22y px =(0p >)的焦点,下列结论正确的是()A.抛物线2y ax =的的焦点到其准线的距离为12a.B.已知抛物线C 与直线l :4320x y p --=在第一、四象限分别交于,A B 两点,若||||AF FB λ=,则4λ=.C.过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于D ,E 两点,则四边形ADBE 面积的最小值为28p .D.若过焦点F 的直线l 与抛物线C 相交于,M N 两点,过点,M N 分别作抛物线C 的切线1l ,2l ,切线1l 与2l 相交于点P ,则点P 在定直线上.【答案】BCD【详解】A:抛物线2y ax =的的焦点到其准线的距离为12a,故A 错误;B:联立243202x y p y px--=⎧⎨=⎩,则22163440x px p -+=,解得12,28px x p ==,由题意可知25||2222p p p AF x p =+=+= ,15||2828p p p pFB x =+=+= ,故55428p p=⨯,所以4λ=,故B 正确;C:由题意可知直线1l ,2l 的斜率均存在,且不为0,设直线1:2pl x my =+,联立222p x my y px⎧=+⎪⎨⎪=⎩,则2220y pmy p --=,设两交点为()()1122,,,A x y B x y ,结合韦达定理122y y pm +=,所以()()21212221AB x x p m y y p p m =++=++=+;同理2121DE p m ⎛⎫=+ ⎪⎝⎭,所以()22111212122ADBE S AB DE p m p m ⎛⎫=⋅=⨯+⨯+ ⎪⎝⎭222122p m m ⎛⎫=++ ⎪⎝⎭222p ⎛⎫≥+ ⎪ ⎪⎝⎭28p =,当且仅当1m =±时,等号成立;所以四边形ADBE 面积的最小值为28p ,故C 正确;D:设221212,,,22y y M y N y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,不妨设120,0y y ><因为22y px =(0p >),若0y >,则y =y ',所以在点M1p y =,因此在M 处的切线方程为21112y p y y x y p ⎛⎫-=- ⎪⎝⎭,即112y p y x y =+,同理在N 处的切线方程为222y py x y =+,则112222y py x y y py x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得122y y x p=,因为直线MN 过点F ,所以122212002222y y y y p p p p --=--,即212y y p =-,所以2p x =-,故点P 在定直线2px =-上,故D 正确;故选:BCD.23.(2021·全国高三模拟预测)已知点F 为椭圆2222:1x y C a b+=(0a b >>)的左焦点,过原点O 的直线l 交椭圆于P ,Q 两点,点M 是椭圆上异于P ,Q 的一点,直线MP ,MQ 分别为1k ,2k ,椭圆的离心率为e ,若3PF QF =,23PFQ π∠=,则()A.4e =B.4e =C.12916k k =-D.12916k k =【答案】AC 【详解】设椭圆的右焦点F ',连接PF ',QF ',根据椭圆对称性可知四边形PFQF '为平行四边形,则QF PF '=,且由120PFQ ∠=︒,可得60FPF '∠=︒,所以42PF PF PF a ''+==,则12PF a '=,32PF a =.由余弦定理可得()22222931122cos60244222a c PF PF PF PF a a a ''=+-⋅=+-⨯⋅⋅°,所以22716c a =,所以椭圆的离心率e ==.设()00,M x y ,()11,P x y ,则()11,Q x y --,01101y y k x x -=-,01201y y k x x +=+,所以220101011222010101y y y y y y k k x x x x x x -+-=⋅=-+-,又2200221x y a b +=,2211221x y a b +=,相减可得2220122201y y b x x a -=--.因为22716c a =,所以22916b a =,所以12916k k =-.故选:AC.24.(2021·全国高三专题练习(理))已知抛物线2:(0)C y mx m =>的焦点为(4,0)F ,直线l 经过点F 交C 于A ,B 两点,交y 轴于点P ,若2PB BF →→=,则()A.8m =B.点B 的坐标为8,3⎛ ⎝⎭C.50||3AB =D.弦AB 的中点到y 轴的距离为133【答案】CD 【详解】由于(4,0)F 得到16m =,故A 错误;抛物线方程为216y x =,过B 点作BD 垂直于y 轴,垂足为D 点,则//BD OF ,因为2PB BF →→=,所以23PB BD PFOF==,所以83BD =,即83B x =,代入抛物线方程216y x =,解得B y =B 错误;不妨取点B 的坐标为8,3⎛ ⎝⎭,所以直线AB 的方程为:4)y x =-,联立抛物线方程得到:2326480x x -+=,韦达定理可知:12263x x +=,由抛物线的弦长公式可知:12268350|38|AB x x ++=+==,故C 正确;弦AB 的中点到y 轴的距离为121323x x +=,故D 正确;故选:CD.25.(2021·江苏南通·高三模拟预测)已知双曲线222:1(0)5x y C a a -=>的左、右焦点分别为1F ,2F ,O 为坐标原点,圆222:5O x y a +=+,P 是双曲线C 与圆O 的一个交点,且21tan 3PF F ∠=,则下列结论中正确的有()A.双曲线CB.点1FC.21PF F ∆的面积为D.双曲线C 上任意一点到两条渐近线的距离之积为2【答案】ABD 【详解】解:∵双曲线222:105()x y C a a -=>,∴225c a =+,又圆222:5O x y a +=+,∴圆O 的半径为c ,∴12||F F 为圆O 的直径,∴122F PF π∠=,故作图如下:对于A ,∵21tan 3PF F ∠=,∴1212tan 3PF PF F PF ∠==,∴123||PF PF =,令20||()PF m m =>,则1||3PF m =,∴()22221231||0F F m m m =+=,∴12||2F F c ==,又12||22m PF PF a -==,∴双曲线C的离心率2222c e a m ===,故A 正确;对于B,由于()1,0F c -到渐近线y =的距离d ===B 正确;对于C,由离心率2e a ==得2103a =,21025533c =+=,∴122||F F c ===,∴2||m PF ==,1||3PF m ==,∴21PF F的面积为152=,故C 错误;对于D,由2103a =得双曲线C 的方程为:2211053x y -=,故其两条渐近线方程为y =0=,设(),M p q 为双曲线C 上任意一点,则2211053q p -=,即223211010p q -=①,(),M p q到两条渐近线的距离1d =,2d =,∴22123210255p q d d -====,故D 正确;故选:ABD.26.(2021·广东汕头·高三二模)已知抛物线方程为24x y =,直线:220l x y --=,点00(,)P x y 为直线l 上一动点,过点P 作抛物线的两条切线,切点为,A B ,则以下选项正确的是()A.当00x =时,直线AB 方程为1y =B.直线AB 过定点()0,1C.AB 中点轨迹为抛物线D.PAB ∆的面积的最小值为2【答案】ACD 【详解】解析:214y x =Q ,12y x '∴=,设11(,)A x y ,22(,)B x y 则1111:()2PA y y x x x -=-,即211111111222y x x x y x x y =-+=-,同理221:2PB y x x y =-,PA PB 、都过点00(,)P x y ,010102021212y x x y y x x y⎧=-⎪⎪∴⎨⎪=-⎪⎩∴直线001:2AB y x x y =-,即0012y x x y =-,当000,1x y ==-时,:1AB y =.故A 正确;00112y x =- ,01:(1)12AB y x x ∴=-+,∴直线AB 过定点(1,1),故B 错误;联立021(1)124y x x x y⎧=-+⎪⎨⎪=⎩,消去y 得2002240x x x x -+-=,1202x x x ∴+=,12024x x x ⋅=-,212002y y x x +=-+,A B ∴、中点坐标为200011(,1)22x x x -+,故其轨迹方程为211122y x x =-+,故C正确;AB ==d2001122S x x ∴=-+∴当01x =时,min 2S =,故D 正确;故选:ACD 三、填空题27.(2021·浙江高三模拟预测)设正四面体ABCD 的棱长是1,E 、F 分别是棱AD 、BC 的中点,P 是平面ABC 内的动点.当直线EF 、DP 所成的角恒为θ时,点P 的轨迹是抛物线,此时AP 的最小值是______.【详解】设点D 在底面ABC 的射影点为O ,连接OA,则132sin3OA π==,OD =以点O 为坐标原点,CB 、AO 、OD uuu r分别为x 、y 、z 轴的正方向建立如下图所示的空间直角坐标系,则30,3A ⎛⎫- ⎪ ⎪⎝⎭、13,026B ⎛⎫ ⎪ ⎪⎝⎭、13,26C ⎛⎫- ⎪ ⎪⎝⎭、63D ⎛⎫ ⎪ ⎪⎝⎭、360,66E ⎛⎫- ⎪ ⎪⎝⎭、30,6F ⎛⎫⎪ ⎪⎝⎭,设点(),,0P x y ,则3636EF ⎛⎫=- ⎪ ⎪⎝⎭ ,6,,3DP x y ⎛⎫= ⎪ ⎪⎝⎭,223133cos 2223y DP EFDP EFx y θ+⋅==⋅++整理可得2222121231cos 23399x y y y θ⎛⎫++=+ ⎪⎝⎭,由题意可知,方程2222121231cos 2339x y y y θ⎛⎫++=+ ⎪⎝⎭表示的曲线为抛物线,所以211cos 23θ=,故22cos 3θ=,即有2122313999x y ++,可得23326y x =,则()22222423335331344242AP x y x x x x ⎛⎫=++++=++≥ ⎪ ⎪⎝⎭当且仅当0x =时,等号成立,故AP 323228.(2021·全国高三开学考试(理))设1F ,2F 分别是椭圆2222:1(0)x yE a b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF =,若23cos 5AF B ∠=,则椭圆E 的离心率为___________.【答案】2【详解】设1||(0)F B k k =>,则1||3AF k =,||4AB k =,2||23AF a k ∴=-,2||2BF a k =-.23cos 5AF B ∠= ,在2ABF 中,由余弦定理得,22222222||||||2||||cos AB AF BF AF BF AF B =+-⋅∠,2226(4)(23)(2)(23)(2)5k a k a k a k a k ∴=-+----,化简可得()(3)0a k a k +-=,而0a k +>,故3a k =,21||||3AF AF k ∴==,2||5BF k =,22222||||||BF AF AB ∴=+,12AF AF ∴⊥,∴12AF F △是等腰直角三角形,2c a ∴=,∴椭圆的离心率c e a ==,故答案为:2.29.(2021·黑龙江大庆中学高三模拟预测(理))已知圆22:1C x y +=,点(,2)M t ,若C上存在两点,A B 满足2MA AB = ,则实数t 的取值范围___________【答案】⎡⎣【详解】由题意,可得如下示意图,令(,)A x y ,由2MA AB = 知:332(,)22x t y B --,又,A B 在C 上,∴22221(3)(32)144x y x t y +=--+=⎧⎪⎨⎪⎩,整理得22221{24339x y t x y +=⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即两圆有公共点,∴两圆的圆心距离为243t d +=,半径分别为1、23,故当1533d ≤≤时符合题意,∴2021t ≤≤,即t ∈[21,21]-.故答案为:[21,21].30.(2021·全国高三专题练习(理))焦点为F 的抛物线21:4C y x =与圆()()2222:10C x y R R -+=>交于A 、B 两点,其中A 点横坐标为A x ,方程()22224,1,A A y x x x x y R x x ⎧=≤⎪⎨-+=>⎪⎩的曲线记为Γ,C 是圆2C 与x 轴的交点,O 是坐标原点.有下面的四个命题,请选出所有正确的命题:_________.①对于给定的角()0,απ∈,存在R ,使得圆弧 ACB 所对的圆心角AFB α∠>;②对于给定的角0,3πα⎛⎫∈ ⎪⎝⎭,存在R ,使得圆弧 ACB 所对的圆心角AFB α∠<;③对于任意R ,该曲线有且仅有一个内接正△O P Q ;④当2021R >时,存在面积大于2021的内接正△O P Q .【答案】①②③【详解】联立抛物线与圆的方程,消去y 得22(1)4x x R -+=,即22(1)x R +=,而0R >且0x ≥,∴11R x =+≥,即A 、B 横坐标与半径R 的关系,∵抛物线与圆有两个交点,即11R x =+>,∴当2,1R x ==时,AFB πα∠=>,①正确;∵由题意知:,A B 关于x 轴对称,则对于给定的角0,3πα⎛⎫∈ ⎪⎝⎭,存在R 使得圆弧 ACB 所对的圆心角AFB α∠<,即只需存在R 使)3AFB π∠∈(0,即可.∴令||2210sin 212A y AFB x x R R x ∠<==<,则10x x ->23x >+23x <,1、当0743x <<-AFB ∠在如下图阴影部分变化,有)3AFB π∠∈(0,,23x >+x →+∞时0AFB ∠→︒,故AFB ∠在如下图阴影部分变化,有)3AFB π∠∈(0,,∴7x >+07x <<-10sin 22AFB ∠<<即)3AFB π∠∈(0,,所以对于给定的角0,3πα⎛⎫∈ ⎪⎝⎭,存在R ,使得圆弧 ACB 所对的圆心角AFB α∠<,故②正确;由OP OQ =,于是PQ x ⊥轴,直线::OP y x =,同理:OQ y =,∴,OP OQ 与Γ分别都只有一个交点,即对于任意R ,该曲线有且仅有一个内接正△O P Q ,③正确;当1R =时,如下图示,抛物线1C 与圆2C 只有一个交点且交点为原点,不符合题意,但此时1||||sin 23OPQ S OP OQ π==∴当113R <≤时,,OP OQ 与Γ的交点在圆2C 上,OPQ S 会一直增大,如下图示,直到13R =,即,P Q 与A 、B 重合分别为(12,、(12,-,此时1||||sin 23OPQ S OP OQ π==∴OPQ S ∈ (4.当13R >时,,OP OQ 与Γ的交点在抛物线1C 上,R 的变化对OPQ S 没有影响,如下图示,OPQ S =∴④错误.。
高中数学竞赛平面几何基本定理(非常全面)
平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC ACG BCG ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC+=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小; ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心). 24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; )2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,. 旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子); (2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论); (4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立)31.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q,∠C的平分线交边AB于R,∠B的平分线交边CA于Q,则P、Q、R三点共线.32.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.33.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT 交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线.54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线.62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222ABC D 4||R d R S S EF -=∆∆.平面几何的意义就个人经验而言,我相信人的智力懵懂的大门获得开悟往往缘于一些不经意的偶然事件.罗素说过:“一个人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之所以这么说,是因为平面几何曾经救了他一命的缘故.天知道是什么缘故,这个养尊处优的贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家的孩子巴望一辈子都够不到的幸福生活.在上吊或者抹脖子之前,头戴假发的小子想到做最后一件事情,那就是了解一下平面几何到底有多大迷人的魅力.而这个魅力是之前他的哥哥向他吹嘘的.估计他的哥哥将平面几何与人生的意义搅和在一起向他做了推介,不然万念俱灰的的头脑怎么会在离开之前想到去做最后的光顾?而罗素真的一下被迷住了,厌世的念头因为沉湎于平面几何而被淡化,最后竟被遗忘了.罗素毕竟是罗素.平面几何对于我的意义只是发掘了一个成绩本来不错的中学生的潜力,为我解开了智力上的扭结;而在罗素那里,这门知识从一开始就使这个未来的伟大的怀疑论者显露了执拗的本性.他反对不加考察就接受平面几何的公理,在与哥哥的反复争论之后,只是他的哥哥使他确信不可能用其他的方法一步步由这样的公理来构建庞大的平面几何的体系的以后,他才同意接受这些公理.公元前334年,年轻的亚历山大从马其顿麾师东进,短短的时间就建立了一个从尼罗河到印度河的庞大帝国.随着他的征服,希腊文明传播到了东方,开始了一个新的文明时代即“希腊化时代”,这时希腊文明的中心也从希腊本土转移到了东方,准确地说,是从雅典转移到了埃及的亚历山大城.正是在这个城市,诞生了“希腊化时代”最为杰出的科学成就,其中就包括欧几里德的几何学.因为他的成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比的完美体系一直被视为演绎知识的典范,哲学史家更愿意把它看作是古代希腊文化的结晶.它由人类理性不可辩驳的几个极其简单的“自明性公理”出发,通过严密的逻辑推理,演绎出一连串的定理,这些在结构上紧密依存的定理和作为基础的几个公理一起构筑了一个庞大的知识体系.世间事物的简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.还有三角形用拿破仑这个名子来命名的呢!拿破仑与我们的几何图形三角形有什么关系?少年朋友知道拿破仑是法国著名的军事家、政治家、大革命的领导者、法兰西共和国的缔造者,但对他任过炮兵军官,对与射击、测量有关的几何等知识素有研究,却知道得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值的文献,包括欧几里德的名著《几何原本》都送回了巴黎,他还对法国数学家提出了“如何用圆规将圆周四等分”的问题,被法国数学家曼彻罗尼所解决.据说拿破仑在统治法国之前,曾与法国大数学家拉格朗日及拉普拉斯一起讨论过数学问题.拿破仑在数学上的真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一个要求:“将军,我们最后有个请求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相当造诣的数学爱好者吧!不少几何史上有名的题目还和拿破仑有着关联,他曾经研究过的三角形称为“拿破仑三角形”,而且还是一个很有趣的三角形.在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙、的圆心构成的△——外拿破仑的三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一个等边三角形,如下图.△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙的圆心构成的△——内拿破仑三角形⊙、⊙、⊙三圆共点,内拿破仑三角形也是一个等边三角形.如下图.由于外拿破仑三角形和内拿破仑三角形都是正三角形,这两个三角形还具有相同的中心.少年朋友,你是否惊讶拿破仑是一位军事家、政治家,同时还是一位受异书籍、热爱知识的数学家呢?拿破仑定理、拿破仑三角形及其性质是否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与彭赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆.九点圆具有许多有趣的性质,例如:1.三角形的九点圆的半径是三角形的外接圆半径之半;2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.。
小学奥数平面直线型几何专题学生版
A
A1
L1
L2
B
C
若L1 //L2,则S△ABC=S△A1BC
技巧:平行线的来源 A、平行四边形(包括长方形和正方形)和梯形 B、已知平行 C、并排摆放的正方形的同方向对角线 (2)等底同高
A
B
D
C
若D为BC中点,则S△ABD=S△ACD
平面直线型几何专题
(3)等高等底
A
E
by 吴哲 孙雪艳
h1
h2
S阴=
1 2
S平行四边形
图(2)为内部任意一点,相等于把图(1)中两个点变为一个点,
1
S上 +S下 =S左 +下S
= 2
S平行四边形
图(3)中为平行四边形内部一平行线,
S阴=
1 2
S平行四边形
平面直线型几何专题
拓展 2:
by 吴哲 孙雪艳
(1)
(2)
图(1)为平行四边形到长方形的变化
图(2) S正=S长=2S阴
图(3) S正=S长=2S阴,图(3)是图(2)的变形
(3)
2、
梯形的一半模型:
S阴=
1 2
S梯形
(取梯形腰上中点连接三角形)
证明:
A
D
E
F B
C
延长 DE 交 CB 的延长线于 F,得到 S△ADE=S△FBE,S梯形=S△CDF ,因为 E 为 AB
的中点,显然
E
也为
DF
的中点,容易得到
S阴=
1 2
1 8
36
4.5
.
所以阴影部分的面积是: S阴影 18 SEBF 18 4.5 13.5 .
例 3:(第 6 届走美杯 5 年级决赛第 8 题)央如图, A、B、C 都是正方形边的中 点,△COD 比△AOB 大 15 平方厘米。△AOB 的面积为多少平方厘米?
平面几何强化训练题集 万喜人 思考题
平面几何强化训练题集万喜人思考题平面几何强化训练题集万喜人思考题一、前言在学习平面几何的过程中,掌握基本概念和原理是非常重要的。
而进行强化训练则是巩固知识,提高解题能力的重要手段。
本文将围绕着“平面几何强化训练题集万喜人思考题”的内容展开讨论,旨在帮助读者更好地理解和运用平面几何的相关知识。
二、基础概念回顾在进行强化训练之前,我们先来回顾一下平面几何的基础概念。
平面几何是研究平面上的点、线、面及其相互关系的数学分支,是几何学的一个重要分支。
在平面几何中,常见的基本概念包括点、线、面、角、三角形、四边形等。
这些基本概念对于理解和解决平面几何问题至关重要。
三、万喜人思考题训练1. 设点A、B、C不共线,D、E、F不共线,连接线段AB、BC、CA,线段DE、EF、FD。
证明:线段AB、DE相交。
解析:根据已知条件可得,AB、DE有一个公共端点A的必要条件为两线段至少有一个公共顶点。
AB、DE相交。
2. 如图所示,直线l交任意位置,证明:假设关系是两个不共线的相交直线。
解析:根据已知条件可得,l1,l2是两个平行的直线或者是相交的直线与平行于它们的直线。
3. 若在△ABC中,有角B=60°,平分线在另一侧准确平分角C的角。
证明:平分线所在的交点落在AB侧的准确角。
解析:根据已知条件可得,平分线一定经过某个角作定位点或上的角的某一角,且在此角内产生新的等分。
四、个人观点和理解在进行平面几何强化训练时,我们要注重基础知识的牢固掌握,注重题目的多样性和复杂性,在不断练习中提高解题能力。
通过对万喜人思考题的训练,我们能够更加深入地理解和应用平面几何的知识,培养逻辑思维和数学思维能力。
五、总结通过本文对“平面几何强化训练题集万喜人思考题”的讨论,我们可以得出结论:平面几何强化训练是提高解题能力,巩固基础知识的重要手段。
通过持续的练习和思考,我们能够更好地理解和掌握平面几何的相关知识,提高数学学科的学习成绩。
几何数学入门基础题目
选择题
在平面几何中,两条直线相交于一点,它们之间的夹角和为:
A. 90°
B. 180°
C. 270°
D. 360°(正确答案)
一个三角形的内角和为:
A. 90°
B. 180°(正确答案)
C. 270°
D. 360°
下列哪个图形是中心对称的?
A. 等边三角形
B. 平行四边形(正确答案)
C. 直角梯形
D. 不规则四边形
在圆中,从圆心到圆上任一点的距离称为:
A. 弦
B. 弧
C. 半径(正确答案)
D. 直径
若一个矩形的长是宽的两倍,且其周长为18cm,则该矩形的面积为:
A. 9cm²
B. 12cm²
C. 16cm²(正确答案)
D. 18cm²
下列哪项不是平行线的性质?
A. 两直线平行,同位角相等
B. 两直线平行,内错角相等
C. 两直线平行,同旁内角互补
D. 两直线平行,它们一定重合(正确答案)
一个正六边形的每个内角的大小为:
A. 60°
B. 90°
C. 120°(正确答案)
D. 150°
在直角三角形中,除了直角外的两个角分别称为:
A. 锐角和钝角
B. 直角和锐角
C. 锐角和锐角(正确答案)
D. 钝角和钝角
下列关于平行四边形的描述中,错误的是:
A. 对边相等
B. 对角相等
C. 邻边相等(正确答案)
D. 对角线互相平分。
[必刷题]2024三年级数学上册平面几何图形专项专题训练(含答案)
[必刷题]2024三年级数学上册平面几何图形专项专题训练(含答案)试题部分一、选择题:1. 下列哪个图形是长方形?()A. 四个角都是直角的平行四边形B. 四个边都相等的四边形C. 有一个角是直角的平行四边形D. 四个边都不相等的四边形2. 一个正方形的边长是4厘米,它的周长是多少厘米?()A. 8厘米B. 12厘米C. 16厘米D. 20厘米3. 下列哪个图形是轴对称图形?()A. 长方形B. 梯形C. 平行四边形D. 三角形4. 一个三角形有两条边分别是3厘米和5厘米,第三条边的长度可能是多少厘米?()A. 2厘米B. 4厘米C. 6厘米D. 8厘米5. 下列哪个图形既是轴对称图形,又是中心对称图形?()A. 正方形B. 等边三角形C. 长方形D. 梯形6. 一个圆的直径是10厘米,它的半径是多少厘米?()A. 5厘米B. 10厘米C. 15厘米D. 20厘米7. 下列哪个图形的面积最大?()A. 边长为2厘米的正方形B. 长为4厘米,宽为3厘米的长方形C. 底为4厘米,高为3厘米的三角形D. 半径为2厘米的圆8. 一个等腰三角形的底边长是8厘米,腰长是10厘米,这个三角形的周长是多少厘米?()A. 18厘米B. 26厘米C. 28厘米D. 36厘米9. 下列哪个图形不是四边形?()A. 正方形B. 长方形C. 三角形D. 平行四边形10. 一个圆的半径增加了2厘米,它的面积增加了多少平方厘米?()A. 8πB. 12πC. 16πD. 20π二、判断题:1. 所有的三角形都有三个角。
()2. 长方形和正方形的面积相等。
()3. 圆的半径是直径的一半。
()4. 两个完全一样的三角形可以拼成一个平行四边形。
()5. 任意两个等边三角形的面积相等。
()三、计算题:1. 一个长方形的长是10厘米,宽是6厘米,求这个长方形的周长。
2. 一个正方形的边长是8厘米,求这个正方形的面积。
3. 一个三角形的底是5厘米,高是4厘米,求这个三角形的面积。
专题18 三平行相似模型--2024年中考数学核心几何模型重点突破(解析版)
专题18三平行相似模型【理论基础】如图,CD EF AB ////,若,则证明:∵AB EF //,∴△DEF ∽△DAB ,∴,即①同理△BEF ∽△BCD ,∴,即②①+②,得,.【例1】如图,ABCD 的对角线AC ,BD 相交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②4AOD OCF S S = ;③::7AC BD =;④2FB OF DF =⋅.其中正确的有()个A .1B .2C .3D .4【答案】C 【分析】①根据已知的条件首先证明ECB 是等边三角形,因此可得EA EB EC ==,所以可得90ACB ∠=︒,再根据O 、E 均为AC 和AB 的中点,故可得90AOE ACB ∠=∠=︒,便可证明EO AC ⊥;②首先证明OEF BCF ∽,因此可得12OE OF BC FB ==,故可得AOD S 和OCF S 的比.③根据勾股定理可计算的AC :BD ;④根据③分别表示FB 、OF 、DF ,代入证明即可.【解析】解:∵四边形ABCD 是平行四边形,∴,,CD AB OD OB OA OC ==∥,∴180DCB ABC ∠+∠=︒,∵60ABC ∠=︒,∴120DCB ∠=︒,∵EC 平分DCB ∠,∴1602ECB DCB ∠=∠=︒,∴60EBC BCE CEB ∠=∠=∠=︒,∴ECB 是等边三角形,∴EB BC =,∵2AB BC =,∴EA EB EC ==,∴90ACB ∠=︒,∵,OA OC EA EB ==,∴OE BC ∥,∴90AOE ACB ∠=∠=︒,∴EO AC ⊥,故①正确,∵OE BC ∥,∴OEF BCF ∽,∴12OE OF BC FB ==,∴13OF OB =,∴3AOD BOC OCF S S S == ,故②错误,设BC BE EC a ===,则2AB a =,AC =,2OD OB a ===,∴BD =,∴:7AC BD ==,故③正确,∵13OF OB a =,∴BF a =,∴22277,96269BF a OF DF a a a ⎛⎫=⋅=⋅+= ⎪ ⎪⎝⎭,∴2BF OF DF =⋅,故④正确,综上所述:正确的是①③④,共3个.故选C .【例2】如图,AC EF DB ,若AC =8,BD =12,则EF =___________.【答案】245【分析】根据 AC EF DB ∥∥,可得△BEF ∽△BCA ,△AEF ∽△ADB ,从而得到EF DB EF CA DB-=,即可求解.【解析】解:∵ AC EF ∥,∴△BEF ∽△BCA ,∴EF BF CA AB=,∵ EF DB ∥,∴△AEF ∽△ADB ,∴EF AF DB AB =,∴DB EF AB AF DB AB --=,即DB EF BF DB AB -=,∴EF DB EF CA DB-=,∵AC =8,BD =12,∴12812EF EF -=,解得:245EF =.故答案为:245【例3】如图:AD EG BC ∥∥,EG 分别交AB 、DB 、AC 于点E 、F 、G ,已知AD =6,BC =10,AE =3,AB =5,求EG 、FG 的长.【答案】186,5EG FG ==【分析】在△ABC 中,先证明,AEG ABC ∽利用相似三角形的性质求解EG ,在△BAD 中,证明BEF BAD △△∽,利用相似三角形的性质求解EF ,即可求出FG =EG -EF .【解析】解:∵△ABC 中,EG BC ∥,∴,AEG ABC ∽∴EG AE BC AB=,∵BC =10,AE =3,AB =5,∴3105EG =,∴EG =6,∵△BAD 中,EF AD ∥,∴BEF BAD△△∽∴EF BE AD AB=,∵AD =6,AE =3,AB =5,∴5365EF -=,∴EF =125.∴FG =EG -EF =185.一、单选题1.如图,AB 和CD 表示两根直立于地面的柱子,AC 和BD 表示起固定作用的两根钢筋,AC 与BD 相交于点M ,已知12m,15m AB CD ==,则点M 离地面的高度MH 为()A .20m 3B .25m 5C .5mD .16m 3【答案】A【分析】根据已知易得△ABM ∽△CDM ,可得对应高BH 与HC 之比,易得MH ∥AB ,可得△MCH ∽△ACB ,利用对应边成比例可得比例式,把相关数值代入求解即可.【解析】∵AB 和CD 表示两根直立于地面的柱子,∴AB ⊥BC ,CD ⊥BC ,MH ⊥BC ,∴AB ∥CD ∥MH ,∴∠A =∠MCD ,∠ABM =∠D∴△ABM ∽△CDM ,∴BH CH =AB CD =1215=45(相似三角形对应高的比等于相似比),∴BH CH CH +=455+∴BC CH =95,即CH BC =59,∵MH ∥AB ,∴∠A =∠CMH ,∠ABC =∠MHC ,∴△MDH ∽△ADB ,∴MH AB =CH CB =59,,∴12MH =59,解得MH =203.∴点M 离地面的高度MH 为203m .故选:A .2.如图,树AB 在路灯O 的照射下形成投影AC ,已知树的高度3m AB =,树影4m AC =,树AB 与路灯O 的水平距离6m AP =,则路灯高PO 的长是()A .2mB .4.5mC .7.5mD .12m【答案】C 【分析】根据相似三角形的判定与性质直接求解即可.【解析】解: 根据题意可知AB PO ∥,C C ∴∠=∠,CAB CPO ∠=∠,CAB CPO ∴∆∆∽,AB PO AC PC ∴=,即3446PO =+,解得30157.542PO ===m ,∴路灯高PO 的长是7.5m ,故选:C .3.如图1,小明在路灯下笔直的向远离路灯方向行走,将其抽象成如图2所示的几何图形.已知路灯灯泡距地面的距离AB 等于4米,小明CD 身高1.5米,小明距离路灯灯泡的正下方距离BC 等于4米,当小明走到E 点时,发现影子长度增加2米,则小明走过的距离CE 等于()A.在3和4之间B.在4和5之间C.在5和6之间D.在6和7之间【答案】A【分析】根据题意证明△DCM∽△АВМ,得到CM DCBM AB=,代入数值求出CM=2.4,再证△FEN∽△ABN,得到EN FEBN AB=,即4.4 1.54BN=,求出BN=17615,计算CE=BN-BC-EN=17615-4-4.4=103,判断即可.【解析】由图可知小明在点C处时,其影长为CM,在点E处时,其影长为EN,由题意可得AB⊥BN,CD⊥BN,EF⊥BN,EF=CD=1.5米,EN=(CM+2)米,∴∠DCM=∠АВM=90︒,∵∠CMD=∠BMA,∴△DCM∽△АВМ,∴CM DC BM AB=,∵BM=BC+CM=4+CM,∴1.5 44 CMCM=+,解答CM=2.4,∴EN=CM+2=2.4+2=4.4,∵∠FEN=∠ABN=90︒,∠ENF=∠BNA,∴△FEN∽△ABN,∴EN FEBN AB=,即4.4 1.54BN=,解得BN=176 15,∴CE=BN-BC-EN=17615-4-4.4=103,∵3<103<4,∴小明走过的距离CE在3和4之间,故选A .4.如图,已知AB ⊥BC 、DC ⊥BC ,AC 与BD 相交于点O ,作OM ⊥BC 于点M ,点E 是BD 的中点,EF ⊥BC 于点G ,交AC 于点F ,若AB =4,CD =6,则OM -EF 值为()A .75B .125C .35D .25【答案】A【分析】利用三角形中位线定理分别求得FG =12AB =2,EG =12CD =3,得到EF =1,再证明△AOB ∽△COD 和△BOM ∽△BDC ,利用相似三角形的性质求得OM =125,据此即可求解.【解析】解:∵AB =4,CD =6,AB ⊥BC ,CD ⊥BC ,OM ⊥BC ,EF ⊥BC ,∴AB ∥OM ∥FG ∥DC ,又∵点E 是BD 的中点,∴点G 是BC 的中点,点F 是AC 的中点,∴FG =12AB =2,EG =12CD =3,∴EF =EG -FG =1,∵CD ∥AB ,∴△AOB ∽△COD ,∴BO AB OD CD =即4263BO OD ==,∴25BO BD =,∵OM ∥CD ,∴△BOM ∽△BDC ,∴25MO BO CD BD ==,∴OM =125,∴OM -EF =125-1=75.故选:A .5.如图,EF 是一个杠杆,可绕支点O 自由转动,若动力F 动和阻力F 阻的施力方向都始终保持竖直向下,当阻力F 阻不变时,则杠杆向下运动时F 动的大小变化情况是()A .越来越小B .不变C .越来越大D .无法确定【答案】B 【分析】由图证明MOE NOF △∽△,从而得到ME MO NF NO=,即ME NO NF MO ⋅=⋅,再根据题意得出答案.【解析】解:∵MOE NOF ∠=∠,M ONF ∠=∠,∴MOE NOF △∽△,∴ME MO NF NO=,即ME NO NF MO ⋅=⋅,∵阻力F 阻不变,即ME 不变,又∵OM ,ON 不变,∴由ME NO NF MO ⋅=⋅得,NF 不变,即F 动的大小不变.故选:B .6.如图,ABC 和DCB 中,90ABC DCB ∠=∠=︒,斜边AC 、BD 交于点E ,过点E 作EF BC ⊥,垂足为F ,若2AB =,3CD =,则EF 的长度为()A .32B .53C .54D .65【答案】D【分析】通过证明△BEF ∽△BDC ,△CEF ∽△CAB ,可得,,EF BF CF EF CD BC BC AB==即可求解.【解析】解:∵EF BC ⊥,∴∠ABC =∠DCB =90°=∠EFC ,∴AB EF CD ∥∥,∴△BEF ∽△BDC ,△CEF ∽△CAB ,∴,EF BF CF EF CD BC BC AB ==,∵2AB =,3CD =,∴1,32EF EF BF CF BC++==∴65=EF .故选:D .二、填空题7.如图,已如矩形ABCD ,将△BCD 绕点B 顺时针旋转90°至△BEF ,连接AC ,BF ,若点A ,C ,F 恰好在同一条直线上,则AB BC=______.【分析】设AB a =,BC b =,由矩形和旋转的性质可知EF a =,BE b =.易证ABC AEF ,即得出AB BC AB BE EF =+,即a b a b a =+,将b 看作已知数,根据公式法即可求出a =根据a >0,可知2b a +=,最后代入AB BC 即可.【解析】设AB a =,BC b =,由矩形和旋转的性质可知EF a =,BE b =,90E BCD ABC ∠=∠=∠=︒,∴BC EF ∥,∴ABC AEF ,∴AB BC AE EF =,即AB BC AB BE EF =+,∴a b a b a=+,整理,得:220a ab b --=,∴22b b a ±==.∵0a >,∴a =∴122b AB BC b ==.故答案为:12.8.如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x 轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33 OA B ,44 OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.【答案】2【分析】先求出11A B =11OA B S = ,再根据题意可得112233n n A B A B A B A B ⋯⋯∥∥∥∥,从而得到11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,再利用相似三角形的性质,可得11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231:2:2:2::2n ,即可求解.【解析】解:当x =1时,y∴点(1B ,∴11A B =∴111122OA B S =⨯ ,∵根据题意得:112233n n A B A B A B A B ⋯⋯∥∥∥∥,∴11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S :……∶n n OA B S =OA 12∶OA 22∶OA 32∶……∶OAn 2,∵11OA =,212OA OA =,322OA OA =,432OA OA =,……,∴22OA =,2342OA ==,3482OA ==,……,12n n OA -=,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231246221:2:2:2::21:2:2:2::2n n --= ,∴11222n n n OA B OA B S S -= ,∴2202224041202222S ⨯-=⨯故答案为:2三、解答题9.如图,一教学楼AB 的高为20m ,教学楼后面水塔CD 的高为30m ,已知BC =30m ,小张的身高EF 为1.6m .当小张站在教学楼前E 处时,刚好看到教学楼顶端A 与水塔顶端D 在一条直线上,求此时他与教学楼的距离BE .【答案】55.2m【分析】如图,过点F 作FN ⊥CD ,交CD 于点N ,交AB 于点M ,构造相似三角形:△AMF ∽△DNF ,由该相似三角形的对应边成比例求得答案.【解析】解:如图,过点F 作FN ⊥CD ,交CD 于点N ,交AB 于点M ,∵AM ∥DN ,∴△AMF ∽△DNF .∴FM AM FN DN=.由题意知,BE =FM ,BC =MN =30m ,EF =BM =CN =1.6m ,FN =FM +MN =BE +BC =(BE +30)m .∴DN =CD -CN =30-1.6=28.4m ,AM =AB -BM =20-1.6=18.4m .∴18.43028.4BE BE =+.解得BE =55.2m .故此时他与教学楼的距离BE 为55.2m .10.如图,////AB EF CD ,E 为AD 与BC 的交点,F 在BD 上,求证:111AB CD EF+=.【答案】见解析【分析】根据已知条件可得,DEF DAB BEF BCD ∽∽,根据相似三角形的性质列出比例式,即可证明结论【解析】//,//AB EF EF DC,DEF DAB BEF BCD∴ ∽∽,EF FD EF BF AB BD CD BD ∴==1EF EF FD BF BD AB CD BD BD BD ∴+=+==EF EF EF AB CD EF∴+=∴111AB CD EF +=11.如图,AB =4,CD =6,F 在BD 上,BC 、AD 相交于点E ,且AB ∥CD ∥EF .(1)若AE =3,求ED 的长.(2)求EF 的长.【答案】(1)92;(2)125【分析】(1)证明AEB DEC ∆∆∽,得到AE AB DE CD =,把已知数据代入计算即可;(2)根据BEF BCD ∆∆∽,得到EF BF CD BD =,同理得到EF DF AB BD=,两个比例式相加再代入计算,得到答案.【解析】(1)解://AB CD ,AEB DEC ∴∆∆∽,∴AE AB DE CD=,4AB =Q ,6CD =,3AE =,∴346DE =,解得:92DE =;(2)//CD EF ,BEF BCD ∴∆∆∽,∴EF BF CD BD=,同理:EF DF AB BD =,∴1EF EF BF DF CD AB BD BD +=+=,∴164EF EF +=,解得:125EF =.12.如图,圆A 、圆C 为两个不相交的圆,记圆A 的半径为r ,圆C 的半径为R ,有r R <,E 是两圆连心线上的一点,满足关系式EA r EC R =,点F 、G 为圆A 上任意的动点,作直线EF 、EG 分别与圆C 交于H 、I 、J 、K 四点,连接IK(1)设圆A 、圆C 的两条外的公切线分别为12l l 、,证明12l l 、总是在点E 处相交;(2)若固定F 点,让G 点在圆A 上移动,证明:此时EG EJ 的值与G 的位置无关;(3)当IK AC ⊥时,连接FJ 、HG ,设FJ 与HG 交于T ,证明T 在AC 上,且满足··.AT EC CT EA =【答案】(1)证明过程见详解(2)证明过程见详解(3)证明过程见详解【分析】(1)根据公切线的性质,证明三角形相似,利用相似三角形对应边成比例即可求证结果;(2)利用对应边成比例证明两个三角形相似,利用比例的性质即可求证结果;(3)根据两个三角形全等,对应边也相等,证明等腰三角形性,利用等腰三角形的三线合一即可求证结果.【解析】(1)证明:如图所示,EH 是公切线1l ,EK 是公切线2l ,∵12l l 、是A ,C 的公切线,点F ,点G ,点H ,点k 是切点,∴AF EF ⊥,AG EG ⊥,CH EH ⊥,CK EK ⊥,且点E ,点F ,点H 在公切线1l 上,点E ,点G ,点K 在公切线2l 上,∴AF CH ∥,AG CK ∥,AF AG r ==,CH CK R ==,∴EAF ECH ∆∆ ,EAG ECK ∆∆ ,∴EA AF AG r EC CH CK R===,∴A ,C 的公切线12l l 、总是在点E 处相交.(2)证明:如图所示,连接AG ,CJ ,点G ,点J 在圆上,∴AG r =,CJ R =,∵EA r EC R=,∴EAG EJC ∆∆ ,∴EA EJ EG EC=,∴EG EJ EA EC = ,∴EG EJ 的值与G 的位置无关.(3)证明:如图所示,连接FG ,HJ ,AC 所在直线是A ,C 的直径,∵IK AC ⊥,垂足为点M ,∴直线AC 平分IK ,190∠=︒,IM KM =,∴IEM KEM EM EM EMI EMK ∠=∠⎧⎪=⎨⎪∠=⎩,∴()ΔΔEIM EKM ASA ≅,∴EI EK =,EF EG =,EH EJ =,在EFT ∆,EGT ∆中,∵EF EG FET GET ET ET =⎧⎪∠=∠⎨⎪=⎩,∴()ΔΔEFT EGT SAS ≅,∴FT GT =,∴点T 在FEG ∠的角平分线AC 上.如图所示,连接AF ,CH ,且AF r =,CH R =,由等腰三角形EFG ,等腰三角形EHJ 得,FAT HCT ∆∆∽,∴AT AF r CT CH R==,又∵EA r EC R =,∴AT EA CT EC=,即AT EC CT EA = .13.如图,在矩形ABCD 中,点E 在边BC 上,将线段AE 绕点E 顺时针旋转90°,此时点A 落在点F 处,线段EF 交CD 于点M .过点F 作FG ⊥BC ,交BC 的延长线于点G.(1)求证:BE =FG ;(2)如果AB •DM =EC •AE ,连接AM 、DE ,求证:AM 垂直平分DE .【答案】(1)见解析;(2)见解析【分析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到△ABE与△EFG全等,据此即可证明BE=FG;(2)证明△ABE∽△ECM,可得EM=DM,再利用HL证明△AEM≌△ADM即可解决问题.【解析】(1)证明:∵EF⊥AE,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°,∴∠GEF=∠BAE,又∵FG⊥BC,∴∠ABE=∠EGF=90°,在△ABE与△EGF中,ABE EGF BAE GEFAE EF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△EGF(AAS);∴BE=FG;(2)证明:连接AM、DE,∵∠GEF=∠BAE,∠ABE=∠ECM=90°,∴△ABE∽△ECM,∴AB AEEC EM=,即AB•EM=EC•AE,∵AB•DM=EC•AE,∴DM=EM,∵EF⊥AE,∴∠AEM=90°,∴∠AEM=∠ADM=90°,∵DM=EM,AM=AM,∴△AEM≌△ADM(HL),∴AE=AD,∴AM垂直平分DE.14.某天晚上,小明看到人民广场的人行横道两侧都有路灯,想起老师数学课上学习身高与影长的相关知识,于是自己也想实际探究一下.为了探究自己在两路灯下的影长和在两路灯之间的位置关系,小明在网上从有关部门查得左侧路灯(AB )的高度为4.8米,右侧路灯(CD )的高度为6.4米,两路灯之间的距离(BD )为12米,已知小明的身高(EF )为1.6米,然后小明在两路灯之间的线段上行走(如图所示),测量相关数据.(1)若小明站在人行横道的中央(点F 是BD 的中点)时,小明测得自己在两路灯下的影长FP =米,FQ =米;(2)小明在移动过程中,发现在某一点时,两路灯产生的影长相等(FP =FQ ),请问时小明站在什么位置,为什么?【答案】(1)3,2(2)离B 地24m 5(或离D 地36m 5),理由见解析【分析】(1)通过证明CDQ EFQ ,ABP EFP ,再根据相似三角形的性质进行求解即可;(2)由(1)得,EF QF CD QD =,EF PF AB BP=,设FP FQ x ==,可求出512BD x ==,求出x 的值,即可求解.【解析】(1)解:由题意得,,CDQ EFQ CQD EQF ∠=∠∠=∠,CDQ EFQ ∴ ,EF QF CD QD ∴=,4.8, 6.4,12, 1.6AB CD BD EF ==== ,点F 是BD 的中点,6BF DF ∴==,1.66.46QF QF∴=+,解得2QF =;,ABP EFP APB EPF ∠=∠∠=∠,ABP EFP ∴ ,EF PF AB BP∴=4.8, 6.4,12, 1.6AB CD BD EF ==== ,点F 是BD 的中点,6BF ∴=,1.64.86PF PF∴=+,解得3PF =;故答案为:3;2;(2)小明站在离B 点245米处的位置,理由如下:由(1)得,EF QF CD QD =,EF PF AB BP=,4.8, 6.4,12, 1.6AB CD BD EF ==== ,设FP FQ x ==,1.6 1.6,6.4 4.8x x QD BP∴==,4,3QD x BP x ∴==,,2BQ x DP x ∴==,512BD x ∴==,解得125x =,2425BF x ∴==,所以,小明站在离B 点245米处的位置.15.如图1,在四边形ABCD 中,90ABC ∠=︒,16AB DC ==,12AD =,点E 是CD 边的中点,连接AE 交对角线BD 于点F ,EDF FBA ∠=∠,连接CF .(1)求证:四边形ABCD 是矩形;(2)求CFD △的面积;(3)如图2,连接AC 交BD 于点O ,点P 为EC 上一动点,连接OE 、OP .将OPD △沿OP 折叠得到OPM ,PM 交OC 于点N ,当PCN △为直角三角形时,求CP 的长.【答案】(1)见解析(2)32(3)2或5【分析】(1)先证明四边形ABCD 是平行四边形,再由90ABC ∠=︒得四边形ABCD 是矩形;(2)过点F 作FG CD ⊥于点G ,先证DFE BFA ∽,得到12EF DE AF AB ==,再证EGF EDA ∽△△,求得GF 的长,再得出CFD △的面积;(3)先根据勾股定理求出AC 的长,再根据中位线定理求出OE 的长,再由PCN △为直角三角形分两种情况讨论,分别求出CP 的长即可.【解析】(1)证明:EDF FBA ∠=∠ ,AB CD ∴∥,16AB CD == ,∴四边形ABCD 是平行四边形,90ABC ∠=︒ ,∴四边形ABCD 是矩形;(2)如图1,过点F 作FG CD ⊥于点G ,ABCD 是矩形,AD CD ∴⊥,AB CD ,DFE BFA ∴△∽△,12EF DE AF AB ∴==,13EF AE ∴=,易知FG AD ∥,EGF EDA ∴∽△△,13GF EF AD AE ∴==,143GF AD ∴=⨯=,CFD ∴△的面积为111643222CD GF ⨯⨯=⨯⨯=;(3)ABCD 是矩形,E 是CD 中点90ADC ∴∠=︒,点O 是AC 中点,8CE =,20AC ∴==,OE 是ADC 的中位线,162OE AD ∴==,10OC =,90ADC ∠<︒ ,PCN ∴△为直角三角形分两种情况讨论:①如图2,当90CPN ∠=︒时,90DPM ∠=︒,∴由折叠的性质,知45DOP MPO ∠=∠=︒,6PE OE ∴==,2CP CE EP ∴=-=;②如图3,当90PNC ∠=︒时,同理可得OP 平分DPM ∠,OE PD ⊥ ,ON PM ⊥,6OE ON ∴==,4CN OC ON ∴=-=,PCN OCE ∠=∠ ,90PNC OEC ∠=∠=︒,PNC OEC ∴△△∽,PC CN OC CE ∴=,即4108PC =,5PC ∴=,综上所述,CP 的长为2或5。
2021年北京各区中考一模分类汇编-专题18几何综合
初三一模几何综合分类整理共5题(典型、倍长、标记猜、截长补短、无度数自己构造)1.(2021·朝阳一模)如图,在等腰三角形ABC 中,60BAC ∠<︒,AB AC =,D 为BC 边的中点,将线段AC 绕点A 逆时针旋转60°得到线段AE ,连接BE 交AD 于点F 。
(1)依题意补全图形; (2)求∠AFE 的度数;(3)用等式表示线段AF ,BF ,EF 之间的数量关系,并证明。
2.(2021·通州一模)已知点P 为线段AB 上一点,将线段AP 绕点A 逆时针旋转60︒,得到线段AC ;再将线段BP 终点B 逆时针旋转120︒,得到线段BD ;连接AD ,取AD 中点M ,连接,BM CM . (1)如图1,当点P 在线段CM 上时,求证:∥PM BD ;(2)如图2,当点P 不在线段CM 上,写出线段BM 与CM 的数量关系与位置关系,并证明.3.(2021·燕山一模)如图,在正方形ABCD 中,CD =3,P 是CD 边上一动点(不与D 点重合),连接AP ,点D 于点E 关于AP 所在的直线对称,连接AE ,PE ,延长CB 到点F ,使得BF =DP ,连接EF ,AF 。
CBDMP(1)依题意补全图形1;(2)若DP =1,求线段EF 的长;(3)当点P 在CD 边上运动时,能使△AEF 为等腰三角形,直接写出此时△DAP 的面积。
4.(2021·石景山一模)在△ABC 中,AB =AC ,()090αα∠=<<BAC ,点E 是△ABC 内一动点,连接AE ,CE ,将△AEC 绕点A 顺时针旋转α,使AC 边与AB 重合,得到△ADB ,延长CE 与射线BD 交于点M (点M 与点D 不重合)。
(1)依题意补全图形1;(2)探究∠ADM 与∠AEM 的数量关系为___________________;(3)如图2,若DE 平分∠ADB ,用等式表示线段MC ,AE ,BD 之间的数量关系,并证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考专题复习19 线段与角
4.
考点1.基本事实
例1 如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是(
)
A .两点确定一条直线
B .两点之间线段最短
C .垂线段最短
D .在同一平面内,过一点有且只有一条直线与已知直线垂直 【点拨】根据公理“两点确定一条直线”来解答即可.
【解答】经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线. 故选A.
【点评】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生联系生活实际的能力.
【对点练习】
几何体几何体的表面积
几何体的展开图几何体的截面
1.
D.
2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()
A.1枚B.2枚C.3枚D.任意枚
考点2 线段
例3如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()
A. 2cm B.3cm C.4cm D.6cm
【点拨】用好中点及和、差、倍、分等关系,注意分类讨论.
【解答】∵AB=10cm,BC=4cm,
∴AC=AB-BC=6cm,
又点D为AC中点,
∴AD=1
2
AC=3cm.
故选B.
【对点练习】1.
2.
3.
考点3角
【点评】此题考查了角的计算和翻折变换,解题的关键是图形翻折后,找准哪些角是相等的,用好角的互补关系,进行计算.本题是一道基础题.
【解答】
【对点练习】
2.
考点4 几何体
【点拨】认识简单的几何体可以培养空间想象能力非常重要。
根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.
【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,
∴C符合题意.
故选C.
【对点练习】
1.
2.
3.
4.
6.
7.
1.如图,OB是∠AOC的平分线,OD是∠COE的平分线.如果∠AOB=40°,∠COE=60°,那么∠BOD的度数为()
A.50°B.60°C.65°D.70
2.
3.
4.
5.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()
A.白B.红C.黄D.黑
6.已知线段AB=8cm,在直线AB上画线段BC,使BC=3cm,则线段AC=________.
7.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若平面内的不同的n个点最多可确定15条直线,则n的值为________.
8.
9.先阅读下面的材料,然后解答问题:
一条直线上有依次排列的n(n>1)台机床在工作,我们要设置零件供应站P,使这n台机床到供应站P 的距离总和最小,要解决这个问题,先退到比较简单的情形:
如图①,如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙走的距离之和等于A1到A2的距离.
如图②,如果直线上有3台机床时,不难判断,供应站设在中间一台机床A2处最合适,因为如果P放在A2处,甲、乙和丙所走的距离之和恰好为A1到A3的距离,而如果把P放到别处,例如D处,那么甲和丙所走的距离之和是A1到A3的距离,可是乙还得走从A2到D的这一段,是多出来的,所以P放在A2处是最佳选择.
(1)问题:有n台机床时,P应设置在何处?
(2)根据问题(1)的结论,求|x-1|+|x-2|+|x-3|+…+|x-617|的最小值.。