山东临沂市郯城县2017_2018学年七年级数学下学期期中试题(扫描版)
2017-2018学年度下学期七年级下册期中数学试卷(有答案与解析)
2017-2018学年年级(下)期中数学试卷一、选择题(每题2分,共12分)1.下列是一名同学做的6道练习题:①(﹣3)0=1;②a3+a3=a6;③(﹣a5)÷(﹣a3)=﹣a2;④4m﹣2=;⑤(xy2)3=x3y6;⑥22+22=25,其中做对的题有()A.1道B.2道C.3道D.4道2.下列各式能用平方差公式进行计算的是()A.(x﹣3)(﹣x+3)B.(a+2b)(2a﹣b)C.(a﹣1)(﹣a﹣1)D.(x﹣3)23.已知x2﹣2(m﹣3)x+16是一个完全平方式,则m的值是()A.﹣7B.1C.﹣7或1D.7或﹣14.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1B.3a+2b=1C.4b﹣9a=﹣1D.9a+4b=15.小明在学习之余去买文具,打算购买5支单价相同的签字笔和3本单价相同的笔记本,期间他与售货员对话如图:1支笔和1本笔记本应付()A.10元B.11元C.12元D.13元6.一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=430°,则∠BGD =()A.60°B.70°C.80°D.90°二、填空(每题2分,共16分)7.计算:(﹣2x)3=,=.8.若(x+2)(x﹣n)=x2+mx+8,则m=,n=,9.据测算,5万粒芝麻才200g,则1粒芝麻有千克.(结果用科学记数法表示)10.已知a+b=3,ab=﹣2,则a2+b2的值是.11.当a=时,方程组的解为x=y.12.如图是我们常用的折叠式小刀,刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成∠1与∠2,若∠1=75°,则∠2的度数为.13.小王只带2元和5元两种面值的人民币,他买一件学习用品要支付27元,则付款的方式有种.14.如图,在△ABC中,点D、E分别在边BC、AC上,∠DCE=∠DEC,点F在AC、点G在DE 的延长线上,∠DFG=∠DGF.若∠EFG=35°,则∠CDF的度数为.三、简答题15.(18分)计算或解方程组(1)(2)(3x3)2•(﹣2y2)3÷(﹣6xy4)(3)(y+x)(x﹣y)﹣(x﹣y)2(4)(5)(6)已知9m÷32m+2=m,求m2+2m+1.16.(18分)因式分解①4m2﹣16n2②(a﹣b)(3a+b)2+(a+3b)2(b﹣a)③(x2+2x)2+2(x2+2x)+1④(a2+4)2﹣16a2⑤(x+2)(x+4)+1⑥(x2+4x)2﹣x2﹣4x﹣2017.(6分)在解方程组时,哥哥正确地解得,弟弟因把c写错而解得.求:(1)a+b+c的值.(2)弟弟把c写错成了什么数?18.(6分)已知关于x,y的二元一次方程组的解满足二元一次方程,求m的值.19.(6分)某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、定价各是多少元?20.(8分)把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由1,可得等式:(a+2b)(a+b)=a2+3ab+2b2(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF.若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.21.(10分)现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°)如图(1)放置,其中一块三角板的直角边AC垂直于数轴,AC的中点过数轴的原点O,AC=8,斜边AB交数轴于点G,点G对应数轴上的数是4;另一块三角板的直角边AE交数轴于点F,斜边AD交数轴于点H.(1)如果△AGH的面积是10,△AHF的面积是8,则点F对应数轴上的数是,点H对应数轴上的数是;(2)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,若∠HAO=α,试用α来表示∠M的大小;(3)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,设∠EFH的平分线和∠FOC 的平分线交于点N,求∠N+∠M的值.2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题2分,共12分)1.【分析】原式各式计算得到结果,即可作出判断.【解答】解:①(﹣3)0=1,正确;②a3+a3=2a3,错误;③(﹣a5)÷(﹣a3)=a2,错误;④4m﹣2=,错误;⑤(xy2)3=x3y6,正确;⑥22+22=2×22=23,错误,则做对的题有2道.故选:B.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.2.【分析】本题是平方差公式的应用,在所给的两个式子中,必须有一项完全相同,有一项相反才可用平方差公式.【解答】解:A、B中不存在相同的项,C、﹣1是相同的项,互为相反项是a与﹣a,所以(a﹣1)(﹣a﹣1)=1﹣a2.D、(x﹣3)2符合完全平方公式.因此A、B、D都不符合平方差公式的要求;故选:C.【点评】本题考查了平方差公式,熟记公式结构是解题的关键.3.【分析】利用完全平方公式的特征判断即可得到结果.【解答】解:∵x2﹣2(m﹣3)x+16是一个完全平方式,∴﹣2(m﹣3)=8或﹣2(m﹣3)=﹣8,解得:m=﹣1或7,故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.4.【分析】解此题时可将x,y的值代入方程,化简可得出结论.【解答】解:根据题意得,原方程可化为要确定a和b的关系,只需消去c即可,则有9a+4b=1.故选:D.【点评】此题考查的是对方程组性质的理解,运用加减消元法来求解.5.【分析】设1支签字笔的价格为x元,1本笔记本的价格为y元,根据小明与售货员的对话,列出关于x和y的二元一次方程组,解之即可.【解答】解:设1支签字笔的价格为x元,1本笔记本的价格为y元,根据题意得:,解得:,8+4=12(元),即1支笔和1本笔记本应付12元,故选:C.【点评】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.6.【分析】由多边形的内角和公式,即可求得六边形ABCDEF的内角和,又由∠1+∠2+∠3+∠4+∠5=430°,即可求得∠GBC+∠C+∠CDG的度数,继而求得答案.【解答】解:∵六边形ABCDEF的内角和为:180°×(6﹣2)=720°,且∠1+∠2+∠3+∠4+∠5=430°,∴∠GBC+∠C+∠CDG=720°﹣430°=290°,∴∠G=360°﹣(∠GBC+∠C+∠CDG)=70°.故选:B.【点评】此题考查了多边形的内角和公式.此题难度不大,注意掌握整体思想的应用.二、填空(每题2分,共16分)7.【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:(﹣2x)3=﹣8x3,=(﹣)101×3101×3=﹣3,故答案为:﹣8x3;﹣3.【点评】此题主要考查了积的乘方,关键是掌握积的乘方的计算法则.8.【分析】直接利用多项式乘以多项式运算法则去括号,进而得出关于m,n的等式,即可求出答案.【解答】解:∵(x+2)(x﹣n)=x2+mx+8,∴x2﹣nx+2x﹣2n=x2+mx+8,x2+(2﹣n)x﹣2n=x2+mx+8则,解得:.故答案为:6,﹣4.【点评】此题主要考查了多项式乘以多项式,正确掌握多项式乘法运算法则是解题关键.9.【分析】根据题意用200÷5万,求出1粒芝麻的质量,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:5万=50000,200÷50000=0.004.将0.004用科学记数法表示为4×10﹣3.故答案为:4×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.【分析】首先根据完全平方公式将a2+b2用(a+b)与ab的代数式表示,然后把a+b,ab的值整体代入求值.【解答】解:∵a+b=3,ab=﹣2,∴a2+b2=(a+b)2﹣2ab,=32﹣2×(﹣2),=9+4,=13.故答案为:13.【点评】本题考查了完全平方公式,关键是要熟练掌握完全平方公式的变形,做到灵活运用.11.【分析】把x=y代入方程组得到新的方程组.求解即可.【解答】解:∵x=y,∴,解得a=﹣3,故答案为:﹣3.【点评】本题主要考查了二元一次方程组的解,解题的关键是把x=y代入方程组得到新的方程组.12.【分析】过点E作EF∥AB,利用平行线的性质可知∠1+∠2=∠AEC=90°,进而得到∠2的度数.【解答】解:如图,过E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠1=∠AEF,∠2=∠CEF,∴∠1+∠2=∠AEF+∠CEF=∠AEC=90°,又∵∠1=75°,∴∠2=15°.故答案为:15°.【点评】本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.13.【分析】设付款时用了x张5元面值的人民币,y张2元面值的人民币,根据“小王只带2元和5元两种面值的人民币,他买一件学习用品要支付27元”,列出关于x和y的二元一次方程,分情况讨论x和y的取值情况,找出符合实际情况的x和y的值即可.【解答】解:设付款时用了x张5元面值的人民币,y张2元面值的人民币,根据题意得:5x+2y=27,当x=1时,5+2y=27,y=11,(符合题意),当x=2时,10+2y=27,y=8.5,(不合题意,舍去),当x=3时,15+2y=27,y=6,(符合题意),当x=4时,20+2y=27,y=3.5,(不合题意,舍去),当x=5时,25+2y=27,y=1,(符合题意),当x=6时,30+2y=27,y=﹣1.5(不合题意,舍去),当x≥6时,y<0,不符合实际,即有3种情况符合实际情况,付款的方式有3种,故答案为:3.【点评】本题考查了二元一次方程的应用,正确找出等量关系,列出二元一次方程是解题的关键.14.【分析】根据三角形内角和定理求出x+y=145,在△FDC中,根据三角形内角和定理求出即可.【解答】解:∵∠DCE=∠DEC,∠DFG=∠DGF,∴设∠DCE=∠DEC=x°,∠DFG=∠DGF=y°,则∠FEG=∠DEC=x°,∵在△GFE中,∠EFG=35°,∴∠FEG+∠DGF=x°+y°=180°﹣35°=145°,即x+y=145,在△FDC中,∠CDF=180°﹣∠DCE﹣∠DFC=180°﹣x°﹣(y°﹣35°)=215°﹣(x°+y°)=70°,故答案为:70°.【点评】本题考查了三角形内角和定理,能求出x+y=145是解此题的关键.三、简答题15.【分析】(1)先算乘方,再算乘法,最后算加减;(2)先算乘方,再算乘法即可;(3)先算乘法,再合并同类项即可;(4)①×2﹣②得出3y=15,求出y,把y=5代入①求出x即可;(5)整理后①+②得出6x=18,求出x,把x=3代入①求出y即可;(6)先变形,根据同底数幂的乘法法则进行计算,求出m,最后代入求出即可.【解答】解:(1)原式=3+×(﹣8)﹣1=3﹣2﹣1=0;(2)原式=9x6•(﹣8y6)÷(﹣6xy4)=12x5y2;(3)原式=x2﹣y2﹣x2+xy﹣y2=xy﹣y2;(4)①×2﹣②得:3y=15,解得:y=5,把y=5代入①得:2x﹣5=﹣4,解得:x=0.5,所以原方程的解为;(5)整理得:①+②得:6x=18,解得:x=3,把x=3代入①得:y=0.5,所以原方程的解为:;(6)∵9m÷32m+2=m,∴32m﹣(2m+2)=3﹣m,∴2m﹣(2m+2)=﹣m,∴m=2,∴m2+2m+1=4+4+1=9.【点评】本题考查了整式的混合运算,有理数的混合运算和解二元一次方程组等知识点,能正确运用运算法则进行化简和计算是解此题的关键.16.【分析】①先提公因式,再利用平方差公式因式分解;②先提公因式,再利用平方差公式因式分解;③利用完全平方公式因式分解;④先利用平方差公式,再利用完全平方公式因式分解;⑤先根据多项式乘多项式的运算法则计算,再利用完全平方公式因式分解;⑥利用十字相乘法和完全平方公式因式分解.【解答】解:①4m2﹣16n2=4(m2﹣4n2)=4(m+2n)(m﹣2n);②(a﹣b)(3a+b)2+(a+3b)2(b﹣a)=(a﹣b)(3a+b)2﹣(a+3b)2(a﹣b)=(a﹣b)[(3a+b)2﹣(a+3b)2]=(a﹣b)[(3a+b)+(a+3b)][(3a+b)﹣(a+3b)]=(a﹣b)(4a+4b)(2a﹣2b)=8(a﹣b)2(a+b);③(x2+2x)2+2(x2+2x)+1=(x2+2x+1)2=(x+1)4;④(a2+4)2﹣16a2=(a2+4)2﹣(4a)2=(a2+4a+4)(a2﹣4a+4)=(a+2)2(a﹣2)2;⑤(x+2)(x+4)+1=x2+6x+8+1=x2+6x+9=(x+3)2;⑥(x2+4x)2﹣x2﹣4x﹣20=(x2+4x)2﹣(x2+4x)﹣20=(x2+4x﹣5)(x2+4x+4)=(x+5)(x﹣1)(x+2)2.【点评】本题考查的是多项式的因式分解,掌握提公因式法,公式法和十字相乘法因式分解的一般步骤是解题的关键.17.【分析】(1)把两个解代入方程组得出三个方程,组成方程组,求出方程组的解,代入即可求出答案;(2)把弟弟因把c写错而解得代入cx﹣7y=8,得到关于c的方程,解方程即可求解.【解答】解:(1)∵哥哥正确地解得,弟弟因把c写错而解得,∴代入得:3a﹣2b=2,3c+14=8,﹣2a+2b=2,即,解方程②得:c=﹣2,①+③得:a=4,把a=4代入①得:12﹣2b=2,b=5,∴a+b+c=4+5+(﹣2)=7.(2)∵弟弟因把c写错而解得,∴﹣2c﹣7×2=8,解得c=﹣11.故弟弟把c写错成了﹣11.【点评】本题考查了二元一次方程组得解,关键是得出关于a,b,c的方程组.18.【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用m表示出来,代入方程求出m的值.【解答】解:由题意得三元一次方程组:化简得①+②﹣③得:2y=8m﹣60,y=4m﹣30 ④,②×2﹣①×3得:7y=14m,y=2m⑤,由④⑤得:4m﹣30=2m,2m=30,∴m=15.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.19.【分析】通过理解题意可知本题的两个等量关系,即定价﹣进价=48,6×(90%×定价﹣进价)=9×(定价﹣30﹣进价),根据这两个等量关系可列出方程组,求解即可.【解答】解:设该电器每台的进价为x元,定价为y元,由题意得,解得:.答:该电器每台的进价是162元,定价是210元.【点评】本题考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,根据等量关系,列出方程组.注意获利=定价﹣进价.20.【分析】(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,种是大正方形的面积,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)利用(1)中的等式直接代入求得答案即可;=正方形ABCD的面积+正方形ECGF的面积﹣三角形BGF的面积﹣三角形ABD (3)利用S阴影的面积求解.【解答】解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2 =(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)∵a+b=10,ab=20,∴S=a2+b2﹣(a+b)•b﹣a2=a2+b2﹣ab=(a+b)2﹣ab=×102﹣×20=阴影50﹣30=20.【点评】本题考查了完全平方公式几何意义,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积.21.【分析】(1)由于∠OCB=90°,则OG=OA=4,再根据三角形面积公式可计算出GH=5,FH=4,所以OH=1,OF=5,所以点F对应的数轴上的数是﹣5,点H对应的数轴上的数是﹣1;(2)由∠AHF的平分线和∠AGH的平分线交于点M得到∠FHM=∠FHA,∠HGM=∠HGA,根据三角形外角性质得∠FHM=∠M+∠HGM,∠FHA=∠HGA+∠HAG,则2∠M+2∠HGM=∠HGA+∠HAG,所以∠M=∠HAG=(∠HAO+∠OAG)=α+22.5°;(3)根据(2)中证明方法,可得到∠N=90°﹣∠FAO=90°﹣∠FAH﹣∠OAH=90°﹣15°﹣∠OAH=75°﹣∠OAH,再根据∠M=∠OAH+22.5°,即可得到∠M+∠N=97.5°.【解答】解:(1)如图1,∵AC的中点过数轴的原点O,AC=8,∴AO=4,∵△AGH的面积是10,∴×4×GH=10,解得GH=5,又∵∠AOG=90°,∠OAG=45°,∴OG=OA=4,∴OH=1,∴点H对应的数轴上的数是﹣1,∵△AHF的面积是8,∴FH•4=8,解得FH=4,∴OF=OH+FH=5,∴点F对应的数轴上的数是﹣5,故答案为:﹣5,﹣1;(2)如图2,∵∠AHF的平分线和∠AGH的平分线交于点M,∴∠FHM=∠FHA,∠HGM=∠HGA,∵∠FHM=∠M+∠HGM,∠FHA=∠HGA+∠HAG,∴2∠M+2∠HGM=∠HGA+∠HAG,即2∠M=∠HAG,∴∠M=∠HAG=(∠HAO+∠OAG)=(α+45°)=α+22.5°;(3)如图2,∵∠EFH的平分线和∠FOC的平分线交于点N,∴∠NFO=∠EFO,∠NOF=∠COF,∴△FON中,∠N=180°﹣(∠NFO+∠NOF)=180°﹣(∠EFO+∠COF)=180°﹣(180°﹣∠AFO+180°﹣∠AOF)=180°﹣(360°﹣∠AFO﹣∠AOF)=180°﹣[360°﹣(180°﹣∠FAO)]=180°﹣(180°+∠FAO)=90°﹣∠FAO,即∠N=90°﹣∠FAH﹣∠OAH=90°﹣15°﹣∠OAH=75°﹣∠OAH,又∵∠M=∠OAH+22.5°,∴∠M+∠N=75°﹣∠OAH+∠OAH+22.5°=97.5°.【点评】本题属于三角形综合题,主要考查了等腰直角三角形的性质、三角形内角和定理、三角形的外角性质、角平分线的定义以及三角形面积的计算等知识的综合应用,熟练掌握等腰直角三角形的性质和三角形内角和定理是解决问题的关键.。
2017-2018学年度七年级(下)期中数学试卷(有答案及解析)
2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共16小题,共42.0分)1.下列运算正确的是()A. B. C. D.2.用加减法解方程组时,下列四种变形中正确的是()A. B. C. D.3.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A. B. C. D.4.根据图中提供的信息,可知一个杯子的价格是()A. 51元B. 35元C. 8元D. 元5.已知a,b满足方程组,则a-b的值为()A. B. 0 C. 1 D. 26.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角7.已知x+y=6,xy=4,则x2y+xy2的值为()A. 12B.C.D. 248.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.B.C.D.9.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A. 19B. 18C. 16D. 1510.如图,点在延长线上,下列条件中不能判定BD∥AC的是()A.B.C.D.11.已知x a=3,x b=5,则x3a-2b=()A. 52B.C.D.12.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成为一个矩形,通过计算两个图形(阴影部分)的面积,可以验证的等式是()A. B.C. D.13.如果方程组的解为,那么被“★”“■”遮住的两个数分别是()A. 10,4B. 4,10C. 3,10D. 10,314.已知方程组和有相同的解,则a,b的值为()A. B. C. D.15.四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有()A. 4种B. 11种C. 6种D. 9种16.如图,AB∥EF,∠C=90°,则α、β、γ的关系是()A.B.C.D.二、填空题(本大题共4小题,共12.0分)17.若方程 2x m-1+y2n+m=是二元一次方程,则mn=______.18.如图,将三角板与直尺贴在一起,使三角板的直角顶点C(∠ACB=90°)在直尺的一边上,若∠1=25°,则∠2的度数等于______.19.已知2x+5y=1,则4x•32y的值为______.20.已知21=2,22=4,23=8,24=16,25=32,……,观察规律,试猜想22016的末位数字是______.三、计算题(本大题共3小题,共24.0分)21.用代入法解方程组:22.化简求值:(3a+b)2-(3a-b)(3a+b)-5b(a-b),其中a=1,b=-2.23.列方程解应用题在“元旦”期间,小明,小亮等同学随家长一同到我市某景区游玩,下面是买门票时,小明与他爸爸看了票价后的对话:票价:成人:每张35元;学生:按成人票价的5折优惠;团体票(16人以上含16人):按成人票价的a折优惠.爸爸:大人门票是每张35元,学生门票是5折优惠,我们一共12人,共需350元.小明:爸爸,等一下,让我算一算,如果按团体票方式买票,还可节省14元.试根据以上信息,解答以下问题:(1)小明他们一共去了几个成人?几个学生?(2)求票价中a的值.四、解答题(本大题共4小题,共42.0分)24.(1)已知:如图1,AE∥CF,易知∠A P C=∠A+∠C,请补充完整证明过程:证明:过点P作MN∥AE∵MN∥AE(已作)∴∠APM=______(______),又∵AE∥CF,MN∥AE∴∠MPC=∠______(______)∴∠APM+∠CPM=∠A+∠C即∠APC=∠A+∠C(2)变式:如图2-4,AE∥CF,P1,P2是直线EF上的两点,猜想∠A,∠A P1P2,∠P1P2C,∠C这四个角之间的关系,并直接写出以下三种情况下这四个角之间的关系.25.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.26.27.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的______.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底______.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果______.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.28.探索发现:如图1,已知直线l1∥l2,且l3和l1、l2分别相交于A、B两点,l4和l1、l2分别交于C、D两点,∠ACP记作∠1,∠BDP记作∠2,∠CPD记作∠3.点P在线段AB上.(1)若∠1=20°,∠2=30°,请你求出∠3的度数.归纳总结:(2)请你根据上述问题,请你找出图1中∠1、∠2、∠3之间的数量关系,并直接写出你的结论.实践应用:(3)应用(2)中的结论解答下列问题:如图2,点A在B的北偏东 40°的方向上,在C的北偏西45°的方向上,请你根据上述结论直接写出∠BAC的度数.拓展延伸:(4)如果点P在直线l3上且在A、B两点外侧运动时,其他条件不变,试探究∠1、∠2、∠3之间的关系(点P和A、B两点不重合),写出你的结论并说明理由.答案和解析1.【答案】D【解析】解:A、(a4)3=a12,故此选项错误;B、a6÷a3=a3,故此选项错误;C、(2ab)3=8a3b3,故此选项错误;D、-a5•a5=-a10,故此选项正确.故选:D.分别利用同底数幂的除法、同底数幂的乘法、积的乘方法则分别判断得出即可.本题考查了同底数幂的除法、同底数幂的乘法、积的乘方,解题的关键是掌握相关运算的法则.2.【答案】C【解析】解:用加减法解方程组时,下列四种变形中正确的是,故选:C.方程组中第一个方程左右两边乘以2,第二个方程左右两边乘以3,将两方程y系数化为互为相反数,利用加减法求解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.【答案】A【解析】解:将150 000 000用科学记数法表示为:1.5×108.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:设一杯为x,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故选:C.要求一个杯子的价格,就要先设出一个未知数,然后根据题中的等量关系列方程求解.题中的等量关系是:一杯+壶=43元;二杯二壶+一杯=94.此题的关键是如何把左图中一杯一壶的已知量用到右图中,这就要找规律,仔细看不难发现,右图是左图的2倍+一个杯子.5.【答案】A【解析】解:②-①得:a-b=-1.故选:A.要求a-b的值,经过观察后可让两个方程相减得到.其中a的符号为正,所以应让第二个方程减去第一个方程即可解答.要想求得二元一次方程组里两个未知数的差,有两种方法:求得两个未知数,让其相减;观察后让两个方程式(或整理后的)直接相加或相减.6.【答案】B【解析】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.本题考查了余角和垂线的定义以及对顶角相等的性质.7.【答案】D【解析】解:∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故选:D.直接利用提取公因式法分解因式进而求出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.8.【答案】A【解析】解:∵AD平分∠BAC,∠BAD=70°,∴∠BAC=2∠BAD=140°,∵AB∥CD,∴∠ACD=180°-∠BAC=40°,故选:A.根据角平分线定义求出∠BAC,根据平行线性质得出∠ACD+∠BAC=180°,代入求出即可.本题考查了角平分线定义和平行线的性质的应用,关键是求出∠BAC的度数,再结合∠ACD+∠BAC=180°.9.【答案】C【解析】解:设一个笑脸气球为x元,一个爱心气球为y元,由题意得,,解得:,则2x+2y=16.故选:C.设一个笑脸气球为x元,一个爱心气球为y元,根据图形找出等量关系:3个笑脸+一个爱心=14元,3个爱心+1个笑脸=18元,据此列方程组求出x和y的值,继而可求得第三束气球的价格.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.10.【答案】B【解析】解:选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC∥BD,故A选项不合题意.选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),不能判定BD∥AC,所以B选项符合题意;选项C中,∵∠5=∠C,∴BD∥AC (内错角相等,两直线平行),所以C选项不合题意;选项D中,∵∠C+∠BDC=180°,∴BD∥AC(同旁内角互补,两直线平行),所以D 选项不合题意;故选:B.根据平行线的判定方法直接判定即可.本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11.【答案】B【解析】解:∵x a=3,x b=5,∴x3a-2b=(x a)3÷(x b)2=33÷52=.故选:B.直接利用同底数幂的乘除运算法则将原式变形得出答案.此题主要考查了同底数幂的乘除运算,正确将原式变形是解题关键.12.【答案】D【解析】解:由题意得:a2-b2=(a+b)(a-b).故选:D.利用正方形的面积公式可知剩下的面积=a2-b2,而新形成的矩形是长为a+b,宽为a-b,根据两者相等,即可验证平方差公式.此题主要考查平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.13.【答案】A【解析】解:把代入2x+y=16得12+■=16,解得■=4,再把代入x+y=★得★=6+4=10,故选:A.把代入2x+y=16先求出■,再代入x+y求★.本题主要考查了二元一次方程组的解,解题的关键是理解题意,代入法求解.14.【答案】D【解析】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选:D.因为方程组和有相同的解,所以把5x+y=3和x-2y=5联立解之求出x、y,再代入其他两个方程即可得到关于a、b的方程组,解方程组即可求解.本题主要考查了二元一次方程的解及二元一次方程组的解法,正确理解题意,然后根据题意得到关于待定系数的方程组,解方程组是解答此题的关键.15.【答案】C【解析】解:设6人帐篷用了x个,4人帐篷用了y个,根据题意得:6x+4y=60,即y==,当x=0时,y=15;当x=2时,y=12;当x=4时,y=9;当x=6,y=6;当x=8时,y=3;当x=10时,y=0;则不同的搭建方案有6种.故选:C.设6人帐篷用了x个,4人帐篷用了y个,根据题意列出方程,求出方程的解即可得到结果.此题考查了二元一次方程的应用.(1)找出问题中的已知条件和未知量及它们之间的关系.(2)找出题中的两个关键的未知量,并用字母表示出来.(3)挖掘题目中的关系,找出等量关系,列出二元一次方程.(4)根据未知数的实际意义求其整数解.16.【答案】C【解析】解:延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°-α;△EHD中,∠2=β-γ,∵AB∥EF,∴∠1=∠2,∴90°-α=β-γ,即α+β-γ=90°.故选:C.此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.17.【答案】-1【解析】解:由题意得:m-1=1,2n+m=1,解得:m=2.n=-,mn=-1,故答案为:-1.根据二元一次方程的定义可得m-1=1,2n+m=1,解方程可得m、n的值,进而得到答案.主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.18.【答案】65°【解析】解:∵∠ACB=90°,∠1=25°,∴∠3=90°-25°=65°,∵直尺的两边互相平行,∴∠2=∠3=65°.故答案为:65°.先求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.本题考查了平行线的性质,余角的定义,熟记性质是解题的关键.19.【答案】2【解析】【分析】根据同底数幂的运算法则即可求出答案.本题考查了幂的运算法则,解题的关键是熟练运用同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.【解答】解:当2x+5y=1时,4x•32y=22x•25y=22x+5y=21=2,故答案为2.20.【答案】6【解析】解:这组数个位数位:2、4、8、6…,每4个一个循环,2016÷4=506,余0,∴22016的个位数是6,故答案为6.这组数个位数位:2、4、8、6…,每4个一个循环,2016÷4=506,余0,故22016的个位数是6,本题考查的是位数特征,找到尾数循环的规律即可求解.21.【答案】解:由②得:x=1-5y③把③代入①得:2(1-5y)+3y=-19解这个方程,得y=3,把y=3代入③,得x=-14所以原方程组的解是.【解析】由方程组第二个方程表示出x,代入第一个方程消元x求出y的值,进而求出x的值,即可确定出方程组的解.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.【答案】解:原式=9a2+6ab+b2-9a2+b2-5ab+5b2=ab+7b2,当a=1,b=-2,原式=-2+28=26.【解析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)设他们一共去了x个成人,则有(12-x)个学生,由题意得,35x+35×0.5×(12-x)=350,解得:x=8,12-x=12-8=4,答:他们一共去了8个成人,4个学生;(2)由题意,得35×16×=350-14,解得:a=6.答:a的值为6.【解析】(1)设他们一共去了x个成人,则有(12-x)个学生,根据总票价话费350元,列出方程,求出x的值即可;(2)根据团体价可节省14元,求出团体价所花费的钱数,然后列方程求出a的值即可.本题考查了一元一次方程的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.【答案】∠A两直线平行,内错角相等∠C两直线平行,内错角相等【解析】(1)证明:过点P作MN∥AE,∵MN∥AE(已作),∴∠APM=∠A(两直线平行,内错角相等),又∵AE∥CF,MN∥AE,∴∠MPC=∠C(两直线平行,内错角相等),∴∠APM+∠CPM=∠A+∠C,即∠APC=∠A+∠C,故答案为:∠A,两直线平行两直线平行;C,两直线平行两直线平行;(2)∠AP1P2+∠P1P2C-∠A-∠C=180°,∠AP1P2+∠P1P2C+∠A-∠C=180°,∠AP1P2+∠P1P2C-∠A+∠C=180°.(1)根据平行线的性质得到∠APM=∠A,∠MPC=∠C,于是得到∠APM+∠CPM=∠A+∠C,即可得到结论;(2)根据(1)的结论即可得到结论.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.25.【答案】证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC-∠PBC,∠2=∠BCD-∠BCQ,∴∠1=∠2.【解析】先判定AB∥CD,则∠ABC=∠BCD,再由∠P=∠Q,则∠PBC=∠QCB,从而得出∠1=∠2.本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.26.【答案】C不彻底(x-2)4【解析】解:(1)运用了C,两数和的完全平方公式;(2)x2-4x+4还可以分解,分解不彻底;(3)设x2-2x=y.(x2-2x)(x2-2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2-2x+1)2,=(x-1)4.(1)完全平方式是两数的平方和与这两个数积的两倍的和或差;(2)x2-4x+4还可以分解,所以是不彻底.(3)按照例题的分解方法进行分解即可.本题考查了运用公式法分解因式和学生的模仿理解能力,按照提供的方法和样式解答即可,难度中等.27.【答案】解:(1)∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2=50°;(2)∠1+∠2=∠3,理由:∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠1+∠2=∠3;(3)如图2,过A点作AF∥BD,则AF∥BD∥CE,∴∠BAC=∠DBA+∠ACE=40°+45°=85°;(4)当P点在A的外侧时,如图3,过P作PF∥l1,交l4于F,∴∠1=∠FPC,∵l1∥l4,∴PF∥l2,∴∠2=∠FPD,∵∠CPD=∠FPD-∠FPC,∴∠CPD=∠2-∠1,当P点在B的外侧时,如图4,过P作PG∥l2,交l4于G,∴∠2=∠GPD,∵l1∥l2,∴PG∥l1,∴∠1=∠CPG,∵∠CPD=∠CPG-∠GPD,∴∠CPD=∠1-∠2.【解析】(1)根据两直线平行,同旁内角互补,即可得出∠1+∠PCD+∠PDC+∠2=180°,再根据在△PCD中,∠3+∠PCD+∠PDC=180°,即可得到∠3=∠1+∠2=50°;(2)根据l1∥l2,可得∠1+∠PCD+∠PDC+∠2=180°,再根据在△PCD中,∠3+∠PCD+∠PDC=180°,即可得到∠1+∠2=∠3;(3)过A点作AF∥BD,根据AF∥BD∥CE,即可得到∠BAC=∠DBA+∠ACE=40°+45°=85°;(4)分两种情况进行讨论:P点在A的外侧,P点在B的外侧,分别根据平行线的性质进行求解即可.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.解决问题的关键是作平行线,构造内错角.。
2017-2018学年山东省临沂市临沭县七年级(下)期中数学试卷(解析版)
2017-2018学年山东省临沂市临沭县七年级(下)期中数学试卷一、选择题(本大题共15小题,共45.0分)1.的相反数是()A. 5B.C.D. 252.下列运算正确的是()A. B. C. D.3.若点P(x,5)在第二象限内,则x应是()A. 正数B. 负数C. 非负数D. 有理数4.若y轴上的点P到x轴的距离为3,则点P的坐标是()A. B. C. 或 D. 或5.在下列各数:301415926、、0.2、、、、中无理数的个数是()A. 2B. 3C. 4D. 56.若点A(x,3)与点B(2,y)关于x轴对称,则()A. ,B. ,C. ,D. ,7.若点A(m,n)在第二象限,那么点B(-m,|n|)在()A. 第一象限B. 第二象限;C. 第三象限D. 第四象限8.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是()A. B. C. D.9.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A. B. C. D.10.若a2=9,=-2,则a+b=()A. B. C. 或 D. 或11.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(-2,1)的对应点为A′(3,-1),点B的对应点为B′(4,0),则点B的坐标为()A. B. C. D.12.已知同一平面内的三条直线a,b,c,下列命题中错误的是()A. 如果,,那么B. 如果,,那么C. 如果,,那么D. 如果,,那么13.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A. B.C. D.14.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有()A. 0个B. 1个C. 2个D. 3个15.如图,若AB∥EF,那么∠BCE=()A. B. C.D.二、填空题(本大题共8小题,共24.0分)16.的平方根为______.17.若A(a,b)在第二、四象限的角平分线上,a与b的关系是______.18.在数轴上,-2对应的点为A,点B与点A的距离为,则点B表示的数为______.19.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为______.20.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:______.21.若|x2-16|+=0,则x+y= ______ .22.某数的平方根是a+3和2a-15,那么这个数是______ .23.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于______ .三、计算题(本大题共1小题,共16.0分)24.计算(1)(-1)2-|1-|+(2)+--|-2|(3)(x-1)2=4(4)3x3=-81.四、解答题(本大题共4小题,共35.0分)25.看图填空,并在括号内说明理由:如图,已知∠BAP与∠APD互补,∠1=∠2,说明∠E=∠F.∵∠BAP与∠APD互补,______∴AB∥CD,______∴∠BAP=∠APC.______又∵∠1=∠2,______∴∠BAP-∠1=∠APC-∠2,______即∠3=∠4,∴AE∥PF,______∴∠E=∠F.______ .26.在平面直角坐标系中,△ABC三个顶点的位置如图(每个小正方形的边长均为1).(1)请画出△ABC沿x轴向右平移3个单位长度,再沿y轴向上平移2个单位长度后的△A′B′C′(其中A′、B′、C′分别是A、B、C的对应点,不写画法).(2)直接写出A′、B′、C′三点的坐标:A′(______,______);B′(______,______);C′(______,______).(3)求△ABC的面积.27.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.28.如图1,在平面直角坐标系中,A(a,0),B(b,0),C(-1,2),且|a+2|+(b-4)2=0(1)求a,b的值.(2)在坐标轴上是否存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标.(3)如图2,过点C作CD y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF OE.当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.答案和解析1.【答案】B【解析】解:∵=5,而5的相反数是-5,∴的相反数是5.故选B.一个数的相反数就是在这个数前面添上“-”号,由此即可求解.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【答案】B【解析】解:A、C、=2,故选项错误;B、|-3|=3,故选项正确;D、9不能开三次方,故选项错误.故选:B.A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.此题主要考查了实数的运算,注意,正数的算术平方根是正数.3.【答案】B【解析】解:∵点P(x,5)在第二象限,∴x<0,即x为负数.故选:B.在第二象限时,横坐标<0,纵坐标>0,因而就可得到x<0,即可得解.解决本题解决的关键是熟记在各象限内点的坐标的符号,第一象限点的坐标符号为(+,+),第二象限点的坐标符号为(-,+),第三象限点的坐标符号为(-,-),第四象限点的坐标符号为(+,-).4.【答案】D【解析】解:∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,-3).故选:D.由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.此题考查了由点到坐标轴的距离确定点的坐标,特别对于点在坐标轴上的特殊情况,点到坐标轴的距离要分两种情况考虑点的坐标.5.【答案】A【解析】解:、是无理数.故选:A.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.【答案】D【解析】解:根据轴对称的性质,得x=2,y=-3.故选D.熟悉:平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y).本题比较容易,考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.7.【答案】A【解析】解:∵点A(m,n)在第二象限,∴m<0,n>0,∴-m>0,|n|>0,∴点B在第一象限.根据各象限内点的坐标的特点,由点A(m,n)在第二象限,得m<0,n>0,所以-m>0,|n|>0,从而确定点B的位置.熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).8.【答案】C【解析】解:过(-1,2)、(3,-1)两点分别作x轴、y轴的平行线,交点为(3,2),即为第四个顶点坐标.故选:C.因为(-1,-1)、(-1,2)两点横坐标相等,长方形有一边平行于y轴,(-1,-1)、(3,-1)两点纵坐标相等,长方形有一边平行于x轴,过(-1,2)、(3,-1)两点分别作x轴、y轴的平行线,交点为第四个顶点.本题考查了长方形的性质和点的坐标表示方法,明确平行于坐标轴的直线上的点坐标特点是解题的关键.9.【答案】B【解析】解:根据题意可知,两直线平行,内错角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.本题主要利用两直线平行,内错角相等作答.本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.10.【答案】C【解析】【分析】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.利用平方根、立方根的定义求出a与b的值,即可求出a+b的值.【解答】解:∵a2=9,=-2,∴a=3或-3,b=-8,则a+b=-5或-11,故选C.11.【答案】D【解析】解:∵点A(-2,1)的对应点为A′(3,-1),∴线段A′B′是由线段AB先向右平移5个单位,再向下平移2个单位得到,而点B的对应点为B′(4,0),∴点B的坐标为(-1,2).故选:D.利用点A与点A′的坐标特征得到平移的规律,然后利用此平移规律由B′点的坐标确定点B的坐标.本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.12.【答案】B【解析】解:A、,是真命题,故本选项不符合题意;B、,应为a∥c,故本选项是假命题,故本选项符合题意;C、,是真命题,故本选项不符合题意;D、,是真命题,故本选项不符合题意.故选B.根据平行公理,平行线的判定对各选项作出图形判断即可得解.本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.13.【答案】C【解析】解:A、∵∠3=∠4,∴AC∥BD.本选项不能判断AB∥CD,故A错误;B、∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C、∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D、∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.此题考查了平行线的判定.注意掌握数形结合思想的应用.14.【答案】B【解析】解:(1)同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;(2)强调了在平面内,正确;(3)不符合对顶角的定义,错误;(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.15.【答案】D【解析】解:过C作CD∥AB,∵AB∥EF,∴AB∥CD∥EF,∴∠1=∠BCD,∠2+∠DCE=180°,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1,故选D.过C作CD∥AB,推出AB∥CD∥EF,推出∠1=∠BCD,∠2+∠DCE=180°,即可推出答案.本题考查了平行线的性质,注意:两直线平行,内错角相等,两直线平行,同旁内角互补.16.【答案】±2【解析】解:∵4的立方等于64,∴64的立方根等于4.4的平方根是±2,故答案为:±2.根据立方根的定义可知64的立方根是4,而4的平方根是±2,由此就求出了这个数的平方根.本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根式0.17.【答案】a=-b【解析】解:∵A(a,b)在第二、四象限的角平分线上,第二象限内点的坐标的符号特征是(-,+),第四象限内点的坐标的符号特征是(+,-),原点的坐标是(0,0),所以二、四象限角平分线上的点的横纵坐标的关系是a=-b.A(a,b)在第二、四象限的角平分线上,则a与b的值互为相反数,则a=-b.平面直角坐标系中,象限角平分线上的点的坐标特征,一、三象限角平分线上的点的坐标特征是(x,x),二、四象限角平分线上是点的坐标特征是(x,-x).18.【答案】-2或--2【解析】解:设B点表示的数是x,∵-2对应的点为A,点B与点A的距离为,∴|x+2|=,解得x=-2或x=--2.故答案为:-2或--2.设B点表示的数是x,再根据数轴上两点间的距离公式即可得出结论.本题考查的是实数与数轴,熟知数轴上两点间的距离公式是解答此题的关键.19.【答案】如果两条直线平行于同一条直线,那么这两条直线平行【解析】解:命题可以改写为:“如果两条直线平行于同一条直线,那么这两条直线平行”.命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.本题考查命题的改写.任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.20.【答案】垂线段最短【解析】解:为了使李庄人乘火车最方便(即距离最近),过李庄向铁路画垂线段,根据是垂线段最短.根据从直线外一点到这条直线上各点所连的线段中,垂线段最短可知,要选垂线段.本题主要考查了从直线外一点到这条直线上各点所连的线段中,垂线段最短的性质.21.【答案】7或-1【解析】解:∵|x2-16|+=0,∴x2-16=0,y-3=0,解得x=±4,y=3,∴当x=4,y=3时,x+y=4+3=7;或当x=-4,y=3时,x+y=-4+3=-1.故答案为:7或-1.根据非负数的性质和算术平方根的概念求出x、y的值,代入代数式计算即可.本题考查了非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.22.【答案】49【解析】解:∵一个正数的平方根是a+3和2a-15,∴a+3和2a-15互为相反数,即(a+3)+(2a-15)=0;解得a=4,则a+3=-(2a-15)=7;则这个数为72=49.故答案为49.根据正数的平方根有两个,它们互为相反数,由此列出关于a的方程,解方程得到a的值;进而可得这个正数的平方根,最后可得这个正数的值.本题考查了平方根的概念,注意一个正数有两个平方根,它们互为相反数.23.【答案】115°【分析】根据折叠的性质,得∠BFE=(180°-∠1),再根据平行线的性质即可求得∠AEF的度数.【解答】解:根据长方形ABCD沿EF对折,若∠1=50°,得∠BFE=(180°-∠1)=65°.∵AD∥BC,∴∠AEF=115°.故答案为115°.24.【答案】解:(1)(-1)2-|1-|+=1-+1+3=5-(2)+--|-2|=+3-(-2)-2+=3+2(3)∵(x-1)2=4,∴x-1=±2,解得x=3或-1.(4)3x3=-81∴x3=-27,∴x=-3.【解析】(1)首先计算乘方和开方,然后从左向右依次计算即可.(2)首先计算开方,然后从左向右依次计算即可.(3)根据平方根的求法,求出x的值是多少即可.(4)根据立方根的求法,求出x的值是多少即可.此题主要考查了实数的运算,以及立方根的求法,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然25.【答案】已知;同旁内角互补,两直线平行;两直线平行,内错角相等;已知;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【解析】证明:∵∠BAP与∠APD互补(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠BAP-∠1=∠APC-∠2(等量代换),即∠3=∠4,∴AE∥PF,(内错角相等,两直线平行),∴∠E=∠F(两直线平行,内错角相等).故答案为:已知;同旁内角互补,两直线平行;两直线平行,内错角相等;已知;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.先根据题意得出AB∥CD,再由平行线的性质得出∠BAP=∠APC,根据∠1=∠2可得出∠3=∠4,进而得出AE∥PF,据此可得出结论.本题考查的是平行线的判定与性质,熟知平行线的判定与性质定理是解答此题的关键.26.【答案】0;5;-1;3;4;0【解析】解:(1)△A′B′C′如图所示;(2)A′(0,5),B′(-1,3),C′(4,0);(3)△ABC的面积=5×5-×1×2-×5×3-×4×5,=25-1-7.5-10,=25-18.5,=6.5.(1)根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标即可;(3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置.27.【答案】解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB-∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.【解析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.28.【答案】(1)解:∵|a+2|+(b-4)2=0,|a+2|≥0,(b-4)2≥0,∴a=-2,b=4.(2)解:由(1)可知A(-2,0),B(4,0),①当M在x轴上时,设M(m,0),由题意:•|m|•2=••6•2,∴m=±3,∴M(3,0)或(-3,0).②当M在y轴上时,设M(0,m),由题意:•|m|•1=••6•2,∴m=±6,∴M(6,0)或(0,-6),(3)解:如图2中,结论:的值是定值,=2.理由:∵OE OF,∴∠EOF=90°,∴∠AOE+∠FOG=90°,∵∠AOE=∠EOP,∠EOP+∠POF=90°,∴∠FOG=∠POF,∵∠DOE+∠AOE=90°,∠AOE+∠FOG=90°,∴∠DOE=∠FOG,∵CP∥AG,∴∠OPD=∠POG=2∠FOG,∴∠OPD=2∠FOG,∴=2.【解析】(1)根据非负数的性质即可解决问题.(2)分两种情形讨论①当M在x轴上时,设M(m,0),由题意:•|m|•2=••6•2.②当M在y轴上时,设M(0,m),由题意:•|m|•1=••6•2,解方程即可解决问题.(3)结论:的值是定值.只要证明∠DOE=∠FOG,∠OPD=2∠FOG即可.本题考查三角形综合题、非负数的性质、三角形的面积、平行线的性质、等角的余角相等等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2017-2018学年第二学期期中测试七年级数学试卷.pdf
4. 下列从左到右的变形是因式分解的是(
)
A.(x﹣4)( x+4)=x2﹣16
B .x2﹣y2+2=( x+y)(x﹣y)+2
C.x2+1=x(x+ )
D .a2b+ab2=ab(a+b)
5.在如图的△ ABC 中,正确画出 AC 边上的高的图形是(
)
A.
B.
C.
D.
6. 如图,下列条件中:
( 1)∠ B+∠BCD=18°0 ;(2)∠ 1=∠2;
14. 如图, AB∥ CD,EF与 AB、CD分别相交于点 E、F,EP⊥ EF,与∠ EFD的平分线 FP相
交于点 P,且∠ BEP=20°,则∠ EPF=____
15. 如图,则∠ A+∠ B+∠ C+∠ D+∠E+∠ F 的度数分别为 _____________
16. 小亮解方程组
2x y ● 2x y 12
2017-2018 学年第二学期期中测试七年级数学试卷
(满分 150 分 考试时间 120 分钟)
2018.4
一、 选择题(每小题 3 分,满分 24 分)
1.肥皂泡的泡壁厚度大约是 0.0 007mm, 0.0007 用科学记数法表示为(
)
A.0.7 × 10﹣3 B .7×10﹣3 C. 7×10﹣4 D.7×10﹣5
则△ ABC的面积 =______
刚好遮
三、解答题(共 96 分) 19.计算 (每小 题 4 分,共 16 分 ) ( 1) 2a3?( a2)3 ÷a
( 2)
( 3) (x+y) 2﹣( x﹣ y) 2
2017-2018学年度七年级(下)期中数学试卷(有答案和解析)
2017-2018学年七年级(下)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab22.下列长度的3条线段,能首尾依次相接组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.1cm,3cm,4cm3.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°4.多项式x2﹣4分解因式的结果是()A.x(x﹣4)B.(x﹣2)2C.(x+4)(x﹣4)D.(x+2)(x﹣2)5.给定下列条件,不能判定△ABC三角形是直角三角形的是()A.∠A=35°,∠B=55°B.∠A+∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C6.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±207.如图,在边长为a的正方形中裁掉一个边长为b的小正方形(如图Ⅰ),将剩余部分沿虚线剪开后拼接(如图Ⅱ),通过计算,用接前后两个图形中阴影部分的面积可以验证等式()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a+2b)(a﹣b)=a2+ab﹣2b2D.(a﹣b)2=a2﹣2ab+b28.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6B.7C.8D.9二、填空题(每小题3分,共30分)9.计算:y6÷y2=.10.已知某种植物花粉的直径为0.00035cm,将数据0.00035用科学记数法表示为.11.分解因式:a2﹣2a=.12.一个多边形的内角和等于1260°,则这个多边形是边形.13.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为.14.若a m=3,a n=4,则a m﹣n=.15.如图所示,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是米.16.已知:a﹣b=3,ab=5,则代数式a2+b2的值是.17.如图,△ABC两内角的平分线AO、BO相交于点O,若∠AOB=112°,则∠C=.18.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想(a+b)11的展开式第三项的系数是.三、解答题(本题共9题,满分96分)19.(20分)计算(1)()﹣2﹣(﹣)﹣1+()0(2)m3•m3•m2+(m4)2+(﹣2m2)4(3)(1+2x﹣y)(1﹣2x+y)(4)(3a+1)(﹣1+3a)﹣(3a+1)220.(15分)因式分解(1)4x2﹣64(2)2ax2﹣4axy+2ay2(3)16m4﹣8m2n2+n421.(7分)先化简,再求值:(2x+2)(2﹣2x)+5x(x+1)﹣(x﹣1)2,其中x=﹣2.22.(7分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC平移后得到△A′B′C′,图中点B′为点B的对应点.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出△ABC中AB边上的中线CD;(3)画出△ABC中BC边上的高线AE;(4)△A′B′C′的面积为.23.(7分)如图,某校有一块长为(5a+b)米,宽为(3a+b)米的长方形空地,中间是边长(a﹣b)米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.(1)用含a,b的代数式表示需要硬化的面积并化简;(2)当a=5,b=2时,求需要硬化的面积.24.(8分)如图,直线AC∥BD,BC平分∠ABD,DE⊥BC,∠MAB=80°,求∠EDB的度数.25.(8分)已知:如图∠1=∠2,∠C=∠D,请证明:∠A=∠F.26.(10分)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可将多项式2a2+5ab+2b2因式分解,并写出分解结果.27.(14分)如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.(2)若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.【解答】解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、积的乘方法则,熟练掌握运算性质和法则是解题的关键.2.【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,分别判断出即可.【解答】解:∵三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,∴A.1cm,2cm,4cm,∵1+2<4,∴无法围成三角形,故此选项A错误;B.8cm,6cm,4cm,∵4+6>8,∴能围成三角形,故此选项B正确;C.12cm,5cm,6cm,∵5+6<12,∴无法围成三角形,故此选项C错误;D.1cm,3cm,4cm,∵1+3=4,∴无法围成三角形,故此选项D错误.故选:B.【点评】此题主要考查了三角形三边关系,此定理应用比较广泛,同学们应熟练应用此定理.3.【分析】由同位角相等两直线平行,根据∠1=∠2,判定出a与b平行.【解答】解:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).而∠2=∠3,∠1=∠4,∠2+∠5=180°都不能判断a∥b,故选:A.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故选:D.【点评】此题主要考查了公式法因式分解,正确应用公式是解题关键.5.【分析】根据三角形的内角和定理即可求得三角形中最大的角,即可作出判断.【解答】解:A、∠C=180°﹣∠A﹣∠B=180°﹣35°﹣55°=90°,则是直角三角形;B、∠A+∠B=∠C,则∠C=90°,是直角三角形;C、最大角∠C=×180°=90°,是直角三角形;D、∠A=∠B=2∠C,又∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,不是直角三角形.故选:D.【点评】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.6.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.【分析】易求出图(1)阴影部分的面积=a2﹣b2,图(2)中阴影部分进行拼接后,长为a+b,宽为a﹣b,面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;图(2)中阴影部分为矩形,其长为a+b,宽为a﹣b,则其面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积,∴a2﹣b2=(a+b)(a﹣b).故选:A.【点评】本题考查了利用几何方法验证平方差公式:根据拼接前后不同的几何图形的面积不变得到等量关系.8.【分析】连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,所以S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,所以可以求出S 四边形DHOG .【解答】解:连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故选:B .【点评】此题主要考查了三角形面积,解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.二、填空题(每小题3分,共30分)9.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:y 6÷y 2=y 4.故答案为:y 4.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.00035用科学记数法表示为3.5×10﹣4,故答案为:3.5×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】观察原式,找到公因式a,提出即可得出答案.【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).【点评】提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.12.【分析】这个多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.13.【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°﹣34°=56°.【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故答案为:56°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.14.【分析】根据a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)进行计算即可.【解答】解:a m﹣n=a m÷a n=3÷4=,故答案为:.【点评】此题主要考查了同底数幂的除法,关键是掌握同底数幂的除法法则:底数不变,指数相减.15.【分析】多边形的外角和为360°,每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×12=180米.故答案是:180.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.16.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:∵a﹣b=3,ab=5,∴(a﹣b)2=a2﹣2ab+b2=9,∴a2+b2=9+2×5=19.故答案为:19.【点评】此题主要考查了完全平方公式,正确将已知变形是解题关键.17.【分析】根据三角形内角和定理求出∠OAB+∠OBA,根据角的平分线定义得出∠CAB=2∠OAB,∠CBA=2∠OBA,求出∠CAB+∠CBA,根据三角形内角和定理求出即可.【解答】解:∵∠AOB=112°,∴∠OAB+∠OBA=180°﹣∠AOB=68°,∵△ABC两内角的平分线AO、BO相交于点O,∴∠CAB=2∠OAB,∠CBA=2∠OBA,∴∠CAB+∠CBA=2(∠OAB+∠OBA)=136°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣136°=44°,故答案为:44°.【点评】本题考查了三角形内角和定理和角平分线定义,能求出∠CAB+∠CBA的度数是解此题的关键.18.【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出(a+b)11的展开式第三项的系数.【解答】解:∵(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……∴依据规律可得到:(a+b)2第三个数为1,(a+b)3第三个数为3=1+2,(a+b)4第三个数为6=1+2+3,…(a+b)11第三个数为:1+2+3+…+9+10==55.故答案为:55.【点评】本题考查了完全平方公式,各项是按a的降幂排列的,它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.三、解答题(本题共9题,满分96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用同底数幂的乘法法则,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=9+4+1=14;(2)原式=m8+m8+16m8=18m8;(3)原式=[1+(2x﹣y)][1﹣(2x﹣y)]=1﹣4x2+4xy﹣y2;(4)原式=9a2﹣1﹣9a2﹣6a﹣1=﹣6a﹣2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2a,再利用完全平方公式分解因式即可;(3)直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+4)(x﹣4);(2)2ax2﹣4axy+2ay2=2a(x2﹣2xy+y2)=2a(x﹣y)2;(3)16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m+n)2(2m﹣n)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】根据整式的运算法则即可求出答案.【解答】解:当x=﹣2时,原式=4﹣4x2+5x2+5x﹣x2+2x﹣1=7x+3=﹣14+3=﹣11【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【分析】(1)直接利用得出平移后对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用高线的作法得出答案;(4)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:CD即为所求;(3)如图所示:AE即为所求;(4))△A′B′C′的面积为:×4×4=8.故答案为:8.【点评】此题主要考查了平移变换以及三角形面积求法和三角形中线、高线的作法,正确把握相关定义是解题关键.23.【分析】(1)根据题意和长方形面积公式即可求出答案.(2)将a与b的值代入即可求出答案.【解答】解:(1)硬化总面积为(5a+b)(3a+b)﹣(a﹣b)2=15a2+8ab+b2﹣a2+2ab﹣b2=14a2+10ab;(2)当a=5、b=2时,14a2+10ab=14×52+10×5×2=450,答:需要硬化的面积为450米2.【点评】本题考查代数式求值,解题的关键是根据题意列出代数式,本题属于基础题型.24.【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=∠ABD=40°,进而得出答案.【解答】解:∵AC∥BD,∠MAB=80°,∴∠ABD=∠MAB=80°,∵BC平分∠ABD,∴∠CBD=∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=50°.【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.25.【分析】由∠1=∠2,∠1=∠DGH,根据同位角相等,两直线平行,易证得DB∥EC,又由∠C=∠D,易证得AC∥DF,继而证得结论.【解答】证明:∵∠1=∠2(已知),又∵∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换).∴DB∥EC(同位角相等,两直线平行).∴∠ABD=∠C(两直线平行,同位角相等)∵∠C=∠D(已知)∴∠ABD=∠D(等量代换)∴AC∥DF(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.26.【分析】(1)根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;(2)根据(1)中结果,求出所求式子的值即可;(3)根据已知等式,做出相应图形,如图所示.【解答】解:(1)∵由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2∴由图2可得等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)如图所示:∴2a2+5ab+2b2=(2a+b)(a+2b)【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.27.【分析】(1)①如图1,当点Q落在AB上,根据三角形的内角和即可得到结论;①如图2,当点Q落在CD上,由折叠的性质得到PF垂直平分EQ,得到∠1=∠2,根据平行线的性质即可得到结论;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x根据平行线的性质即可得到结论;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC 得,∠PFC=2x根据平行线的性质即可得到结论.【解答】解:(1)①如图1,当点Q落在AB上,∴FP⊥AB,∴∠EFP=90°﹣∠PEF=42°,①如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°﹣∠PEF=132°,∴∠PFE=QFE=66°;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC得,∠PFC=2x,∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°,综上所述,∠EFP的度数是35°或63°.【点评】本题考查了平行线的性质,折叠的性质,正确的作出图形是解题的关键.。
2017-2018学年七年级数学下期中考试卷及答案
2017-2018学年七年级数学下期中考试卷及答案2017―2018学年度第二学期初一年级数学学科期中检测试卷(全卷满分150分,答题时间120分钟)一、选择题(共8小题,每小题3分,共24分) 1.下列图形中,能将其中一个图形平移得到另一个图形的是(▲) A. B. C. D. 2.下列计算正确的是(▲)A. B. C. D. 3.下列长度的3条线段,能首尾依次相接组成三角形的是(▲) A.1cm,2cm,4cm B.8cm,6cm,4cm C.15cm,5cm,6cm D.1cm ,3cm,4cm 4.下列各式能用平方差公式计算的是(▲) A. B. C. D. 5.若 , ,则的值为(▲) A.6 B.8 C.11 D.18 6.如图,4块完全相同的长方形围成一个正方形. 图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的等式是(▲ ) A. B. C. D. 7.当x=�6,y= 时,的值为(▲)A.�6 B.6 C. D. 8.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为7、9、10,则四边形DHOG面积为(▲) A. 7 B.8 C.9 D.10 二、填空题(共10小题,每小题3分,共30分)9.任意五边形的内角和与外角和的差为度. 10. 已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为. 11.若是一个完全平方式,则= . 12.已知,,则的值是______. 13.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为. 14.若,则= . 15. 若{�(x=3@y=-2)是方程组{�(ax+by=1@ax-by=5)的解,则a+b=________. 16.已知,且,那么的值为. 17.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=78°,则∠C的度数为= . 18. 如图,长方形ABCD中,AB=4cm,BC=3cm,点E是CD的中点,动点P从A点出发,以每秒1cm的速度沿A→B→C→E 运动,最终到达点E.若点P运动的时间为x秒,那么当x= _________时,△APE的面积等于.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答)19.计算(每小题4分,共16分)(1)(2)(3)(4)(a-b +1)(a+b-1) 20. 解方程组(每小题4分,共8分)(1)(2)21. (本题满分8分)画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点. (1)将△ABC向左平移8格,再向下平移1格.请在图中画出平移后的△A′B′C′ (2)利用网格线在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为_____. 22.(本题满分6分)已知:如图,AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H ,∠AGE=40°,求∠BHF 的度数. 23.(本题满分10分)已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形。
2017-2018学年度下学期七年级下册期中数学试卷(有答案和解析)
2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.点(5,8)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.如图,点P到直线l的距离是()A. 线段PA的长度B. 线段PB的长度C. 线段PC的长度D. 线段PD的长度3.在平面直角坐标系中,点M(1,3)向右平移5个单位长度得到点N,则点N的坐标为()A. B. C. D.4.关于x、y的二元一次方程ax+y=5解是,则a的值是()A. B. 2 C. 3 D. 45.下列说法正确的是()A. 正数的平方根是它本身B. 100的平方根是10C. 是100的一个平方根D. 的平方根是6.下列命题是真命题的是()A. 邻补角相等B. 同位角相等C. 两直线平行,同旁内角相等D. 对顶角相等7.有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.篮球、排球队各有多少支参赛?若设x支篮球队和y支排球队参赛,根据题意可列二元一次方程组得()A. B.C. D.8.无理数a在数轴上的位置如图所示,则a的值可能是()A. B. C. D.二、填空题(本大题共8小题,共24.0分)9.=______.10.点A的坐标为(3,4),则点A到y轴的距离是______个单位长度.11.已知方程x-y=3,用含y的代数式表示x,则x=______.12.如图,已知直线a∥b,b∥c,∠1=58°,则∠2的度数是______.13.如图,三角形ABC沿水平方向平移至三角形DEF,点B、E、C、F在一条直线上,已知EF=5,AD=1.5,则EC=______.14. 1.2-的绝对值是______.15.点P(n+1,2n-4)在x轴上,则n=______.16.已知x、y是二元一次方程组的解,则x-y=______.三、计算题(本大题共3小题,共29.0分)17.(1)计算:(2)求25x2-4=0中x的值.18.如图,直线AB、CD交于点O,EO⊥AB,垂足为O,∠EOC=116°,求∠AOD的度数.19.已知当x=3,y=5与x=-4,y=-9都是方程y=kx+b的解,求当x=时,y的值是多少?四、解答题(本大题共7小题,共73.0分)20.如图,在平面直角坐标系中,将△ABC平移后得到△DEF,它们的各顶点坐标如下(1)观察表中各对应点的坐标的变化,可知将△ABC向______平移______个单位长度,再向______平移______个单位长度可以得到△DEF.(2)在平面直角坐标系中画出△ABC及平移后的△DEF;(3)请直接写出△DEF的面积为______.21.解下列方程组:(1)(2)22.请完成下面的证明如图,∠1+∠2=180°,∠3=108°,求∠4的度数.解:∵∠1+∠2=180(已知)∠1+∠5=______°(邻补角定义)∴∠2=∠______(同角的补角相等)∴______∥______(______)∴∠4+∠6=180°(______)又∵∠3=∠6 (______)∴∠3+∠4=______°(等量代换)∵∠3=108(已知)∴∠4=______°23.天气晴朗时,一个人能看到大海的最远距离s(单位:km)可用公式s2=16.88h来估计,其中h(单位:m)是眼晴离海平面的高度.如果一个人站在岸边观察,当眼睛离海平面的高度是16.88m时,能看到多远?如果一个人的眼睛离海平面的高度是am时,请用含a的式子表示他能看到大海的最远距离s是多少km?(s2=16.88h 这是一个经验公式,注意其中h的单位是m,而s的单位是km,不需要进行单位的换算)24.如图,在三角形ABC中,点D、G分别为边BC、AB上的点,DE⊥AC于点E,BF⊥AC于点F,连接FG,且∠BFG+∠BDE=180°.(1)求证:DE∥BF;(2)猜想∠AGF与∠ABC的数量关系,并证明你的猜想.25.如图,三角形ABC三个顶点坐标分别是A(3,1)、B(-1,2)、C(2,3).(1)求三角形ABC的面积;(2)在直线y=-1上且在第四象限内是否存在一点M,使三角形MAB的面积等于三角形ABC面积的?若存在,请求出点M的坐标;若不存在,请说明理由.(3)连接BM交y轴于点N,求点N的坐标.26.如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.答案和解析1.【答案】A【解析】解:∵5>0,8>0,∴点(5,8)所在的象限是第一象限,故选:A.根据各象限点的坐标特征,可得答案.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.【答案】C【解析】解:点P到直线l的距离是线段PC的长度,故选:C.根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.本题考查了点到直线的距离问题,关键是根据点到直线的距离的定义和垂线段的性质解答.3.【答案】B【解析】解:∵点M(1,3)沿x轴向右平移5个单位得到点N,∴点N的横坐标为1+5=6,∴点PN的坐标是(6,3).故选:B.根据向右平移横坐标加解答即可.本题考查了坐标与图形变化-平移,主要利用了平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.4.【答案】C【解析】解:∵关于x、y的二元一次方程ax+y=5解是,∴2a-1=5,解得:a=3.故选:C.直接把x,y的值代入求出a的值.此题主要考查了二元一次方程的解,正确把已知数据代入是解题关键.5.【答案】C【解析】解:A、正数的平方根是它本身,错误;B、100的平方根是10,错误,应为±10;C、-10是100的一个平方根,正确;D、-1没有平方根,故此选项错误;故选:C.直接利用平方根的性质分别分析得出答案.此题主要考查了平方根,正确把握平方根的性质是解题关键.6.【答案】D【解析】解:邻补角互补,A是假命题;两直线平行,同位角相等,B是假命题;两直线平行,同旁内角互补,C是假命题;对顶角相等,D是真命题;故选:D.根据邻补角的定义、平行线的性质、对顶角的性质判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.【答案】A【解析】解:设篮球队有x支,排球队有y支,由题意,得,故选:A.设篮球队有x支,排球队有y支,根据共有48支队,520名运动员建立方程组求出其解即可.本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据条件建立二元一次方程组是关键.8.【答案】D【解析】解:由数轴可得,-1<a<0,∵-1.7<-1,-<-1,<-1,-1<0,故选项A、B、C错误,选项D正确,故选:D.根据数轴可以得到a的取值范围,从而可以解答本题.本题考查实数与数轴、无理数,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】-2【解析】解:=-2.故答案为:-2.因为-2的立方是-8,所以的值为-2.此题考查了立方根的意义.注意负数的立方根是负数.10.【答案】3【解析】解:点A的坐标为(3,4)到y轴的距离是|3|=3,故答案为:3.根据点到y轴的距离是横坐标的绝对值,可得答案.本题考查了点的坐标,利用点到y轴的距离是横坐标的绝对值是解题关键.11.【答案】3+y【解析】解:∵x-y=3,∴x=3+y,故答案为:3+y.把y看做已知数求出x即可.此题考查了解二元一次方程,解题的关键是将y看做已知数求出x.12.【答案】58°【解析】解:∵直线a∥b,b∥c,∴a∥b∥c,∴∠1=∠2=58°.故答案为:58°.结合平行公理得出a∥b∥c,再利用平行线的性质得出答案.此题主要考查了平行公理和平行线的性质,正确得出a∥b∥c是解题关键.13.【答案】3.5【解析】解:∵三角形DEF是由三角形ABC通过平移得到,∴AD=CF,∵EC+CF=EF,∴EC+AD=EF,∴EC=EF-AD=5-1.5=3.5.故答案为3.5.根据平移的性质得AD=CF,再利用EC+CF=EF得到EC+AD=EF,然后解答即可.本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14.【答案】-1.2【解析】解:∵1.2<,∴1.2-<0,则1.2-的绝对值是-1.2,故答案为:-1.2利用绝对值的代数意义化简即可.此题考查了实数的性质,熟练掌握绝对值的代数意义是解本题的关键.15.【答案】2【解析】解:∵点P(n+1,2n-4)在x轴上,∴2n-4=0,解得:n=2,故答案为:2.根据x轴上的点的纵坐标为0可得关于n的方程,解之可得.本题主要考查点的坐标,解题的关键是掌握x轴上的点的纵坐标为0.16.【答案】5【解析】解:,①-②,得2x-2y=10,两边除以2,得x-y=5,故答案为:5.根据加减法,等式的性质,可得答案.本题考查了二元一次方程组的解,利用等式的性质是解题关键.17.【答案】解:(1)原式=+-+3=+3;(2)方程整理得:x2=,开方得:x=±.【解析】(1)原式去括号合并即可得到结果;(2)方程整理后,利用平方根定义计算即可求出x的值.此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.18.【答案】解:∵EO⊥AB,∴∠AOE=90°,∵∠EOC=116°,∴∠AOC=∠EOC-∠AOE=26°,则∠AOD=180°-∠AOC=154°.【解析】由EO⊥AB知∠AOE=90°,结合∠EOC=116°得出∠AOC度数,继而由∠AOD=180°-∠AOC可得答案.本题主要考查角的计算,解题的关键是掌握垂线定义和对顶角与邻补角性质.19.【答案】解:根据题意,得:,解得:,则y=2x-1,当x=时,y=2×-1=7-1=6.【解析】把x=3,y=5与x=-4,y=-9代入方程y=kx+b组成二元一次方程组,解之求得k、b的值,据此得出y关于x的等式,将x=代入计算可得.本题主要考查对解二元一次方程组,解一元一次方程,二元一次方程的解等知识点的理解和掌握,能根据题意得到方程组是解此题的关键.20.【答案】右 4 上 2 6【解析】解:(1)∵A(-1,0)平移得到D(3,2),∴可知将△ABC向右平移4个单位长度,再向上平移2个单位长度可以得到△DEF.故答案为:右,4,上,2;(2)如图所示:△DEF即为所求;(3)△DEF的面积为:×3×4=6.故答案为:6.(1)直接利用A点到D点坐标变化得出平移规律;(2)利用平移规律得出对应点位置;(3)利用三角形面积求法得出答案.此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.21.【答案】解:(1),把①代入②,得5x+2(x+3)=13,解得x=1,把x=1代入①,得y=4,方程组的解是;(2)①×2+②得-9y=-9,解得y=1,把y=1代入②,得x=1方程组的解是.【解析】(1)根据代入消元法,可得答案;(2)根据加减消元法,可得答案.本题考查了解二元一次方程组,利用代入消元或加减消元法是解题关键.22.【答案】180 5 a b同位角相等,两直线平行两直线平行,同旁内角互补对顶角相等180 72【解析】解:∵∠1+∠2=180°(已知),又∠1+∠5=180°(邻补角定义),∴∠2=∠5(同角的补角相等),∴a∥b(同位角相等,两直线平行),∴∠4+∠6=180°(两直线平行,同旁内角互补)∵∠6=∠3=108°(对顶角相等),∴∠3+∠4=180°(等量代换),∵∠3=108(已知),∴∠4=72°.故答案为:180;5;a;b;同位角相等,两直线平行;两直线平行,同旁内角互补;对顶角相等;180;72.先根据等角的补角相等得∠2=∠5,则根据同位角相等,两直线平行得到a∥b,然后根据平行线的性质得∠4+∠6=180°,再根据对顶角相等得到∠6=∠3=108°,最后求得∠4=72°.本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.23.【答案】解:将h=16.88代入得;s2=16.88×16.88.即s=16.88.所以这个人能看到16.88km;当h=a时,s2=ah,所以s=所以能看到大海的最远距离s是k m.【解析】将h=16.88和h=a代入进行计算或化简即可.本题主要考查的是算术平方根、估算无理数的大小,掌握算术平方根的定义是解题的关键.24.【答案】证明:(1)∵DE⊥AC于点E,BF⊥AC于点F,∴∠CED=∠EFB=90°,∴DE∥BF;(2)∠AGF=∠ABC,理由如下:∵DE∥BF,∴∠BDE+∠DBF=180°,∵∠BFG+∠BDE=180°.∴∠BFG=∠DBF,∴FG∥BC,∴∠AGF=∠ABC【解析】(1)根据垂直的定义和平行线的判定证明即可;(2)根据平行线的判定和性质解答即可.本题考查了平行线的性质与判定,是基础题,熟记平行线的性质与判定方法并准确识图是解题的关键.25.【答案】解:(1)如图1,∵A(3,1)、B(-1,2)、C(2,3).∴DE=EF=CF=CD=5、AE=BD=3、AF=BE=2,S△ABC=S矩形CDEF-S△ABE-S△BCD-S△ACF=5×5-×2×3-×3×5-×2×5=25-3--5=;(2)如图1,设M(m,-1),作MG⊥BD于点G,则BG=m+1、MG=1,∴S△ABM=S梯形AEGM-S△ABE-S△BMG=×(1+3)×(m+3)-×2×3-×1×(m+1)=m+,∵S△ABM=S△ABC,∴m+=×,解得:m=3,∴M(3,-1);(3)如图2,由(2)知B(-1,2)、M(3,-1),设直线BM解析式为y=kx+b,则,解得:,∴直线BM的解析式为y=-x+,当x=0时,y=,则点N(0,).【解析】(1)由点A、B、C坐标得出DE=EF=CF=CD=5、AE=BD=3、AF=BE=2,根据-S△ABE-S△BCD-S△ACF列式计算可得;S△ABC=S矩形CDEF(2)设M(m,-1),作MG⊥BD,则BG=m+1、MG=1,根据S△ABM=S梯形-S△ABE-S△BMG可得S△ABM=m+,由S△ABM=S△ABC可得关于m AEGM的方程,解之可得;(3)由B、M两点坐标得出直线BM解析式,求出x=0时y的值即可得.本题主要考查三角形的面积,解题的关键是掌握割补法求三角形的面积及待定系数法求函数解析式.26.【答案】解:(1)如图1,∵MN∥PQ,∴∠MAG=∠BDG,∵∠AGB是△BDG的外角,BG⊥AD,∴∠AGB=∠BDG+∠PBG=90°,∴∠MAG+∠PBG=90°;(2)2∠AHB-∠CBG=90°或2∠AHB+∠CBG=90°,证明:①如图,当点C在AG上时,∵MN∥PQ,∴∠MAC=∠BDC,∵∠ACB是△BCD的外角,∴∠ACB=∠BDC+∠DBC=∠MAC+∠DBC,∵AH平分∠MAC,BH平分∠DBC,∴∠MAC=2∠MAH,∠DBC=2∠DBH,∴∠ACB=2(∠MAH+∠DBH),同理可得,∠AHB=∠MAH+∠DBH,∴∠ACB=2(∠MAH+∠DBH)=2∠AHB,又∵∠ACB是△BCG的外角,∴∠ACB=∠CBG+90°,∴2∠AHB=∠CBG+90°,即2∠AHB-∠CBG=90°;②如图,当点C在DG上时,同理可得,∠ACB=2∠AHB,又∵Rt△BCG中,∠ACB=90°-∠CBG,∴2∠AHB=90°-∠CBG,即2∠AHB+∠CBG=90°;(3)(2)中的结论不成立.存在:2∠AHB+∠CBG=270°;2∠AHB-∠CBG=270°.①如图,当点C在AG上时,由MN∥PQ,可得:∠ACB=360°-∠MAC-∠PBC=360°-2(∠MAH+∠PBH),∠AHB=∠MAH+∠PBH,∴∠ACB=360°-2∠AHB,又∵∠ACB是△BCG的外角,∴∠ACB=90°+∠CBG,∴360°-2∠AHB=90°+∠CBG,即2∠AHB+∠CBG=270°;②如图,当C在DG上时,同理可得,∠ACB=360°-2(∠MAH+∠PBH),∠AHB=∠MAH+∠PBH,∴∠ACB=360°-2∠AHB,又∵Rt△BCG中,∠ACB=90°-∠CBG,∴360°-2∠AHB=90°-∠CBG,∴2∠AHB-∠CBG=270°.【解析】(1)依据平行线的性质以及三角形外角性质,即可得到∠MAG+∠PBG=90°;(2)分两种情况讨论:当点C在AG上时,依据平行线的性质以及三角形外角性质,2∠AHB-∠CBG=90°;当点C在DG上时,依据平行线的性质以及三角形外角性质,2∠AHB+∠CBG=90°;(3)分两种情况讨论:当点C在AG上时,依据平行线的性质以及三角形外角性质,2∠AHB+∠CBG=270°;当C在DG上时,依据平行线的性质以及三角形外角性质,2∠AHB-∠CBG=270°.本题考查了平行线的性质,角平分线的定义的运用,准确识图并理清图中各角度之间的关系是解题的关键,难点在于利用三角形外角性质进行计算.。
2017-2018学年度下学期七年级(下)期中数学试卷(有答案和解析)
2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007(平方毫米),这个数用科学记数法表示为()A.7×10﹣6B.0.7×10﹣6C.7×10﹣7D.70×10﹣82.下列运算正确的是()A.(﹣2a3)2=4a5B.(a﹣b)2=a2﹣b2C.D.2a3•3a2=6a53.16m÷4n÷2等于()A.2m﹣n﹣1B.22m﹣n﹣2C.23m﹣2n﹣1D.24m﹣2n﹣14.若9x2+ax+16是完全平方式,则a应是()A.12B.﹣12C.±12D.±245.下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)6.下列三条线段能构成三角形的是()A.1,2,3B.3,4,5C.7,10,18D.4,12,77.若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0D.q+2p=08.下列分解因式正确的是()A.a﹣16a3=(1+4a)(a﹣4a2)B.3x﹣6y+3=3(x﹣2y)C.x2﹣x﹣2=(x+2)(x﹣1)D.﹣x2+2x﹣1=﹣(x﹣1)29.如图,五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()A.150°B.135°C.120°D.90°10.如图,有下列判定,其中正确的有()①若∠1=∠3,则AD∥BC;②若AD∥BC,则∠1=∠2=∠3;③若∠1=∠3,AD∥BC,则∠1=∠2;④若∠C+∠3+∠4=180°,则AD∥BC.A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题2分,共16分)11.五边形的内角和是°.12.计算﹣a3•(﹣a)2=.13.(x﹣1)0=1成立的条件是.14.若x+3y﹣2=0,则2x•8y=.15.如果,那么a,b,c的大小关系为.16.若(x﹣3)(x+m)=x2+nx﹣15,则n=.17.已知x﹣y=5,(x+y)2=49,则x2+y2的值等于.18.如图a是长方形纸带,∠DEF=22°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是.三、解答题(共9小题,满分64分)19.(12分)计算(1)2a(a﹣2a3)﹣(﹣3a2)2;(2)(﹣1)2017+(π﹣3.14)0﹣()﹣2;(3)(x﹣3)(x+2)﹣(x+1)220.(8分)分解因式(1)4a2x2+16ax2y+16x2y2;(2)a2(a﹣3)﹣a+3.21.(5分)若33×9m+4÷272m﹣1的值为729,求m的值.22.(5分)如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积.23.(6分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.24.(6分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.25.(6分)如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=70°,则∠ABC+∠BCD=°;∠E=°;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F,所添加的条件为.26.(8分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.27.(8分)已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则:①∠ABO的度数是;②如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);(2)如图3,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.【解答】解:0.000 000 7=7×10﹣7.故选:C.【点评】此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【分析】分别利用完全平方公式以及同底数幂的乘法和积的乘方计算分析得出即可.【解答】解:A、(﹣2a3)2=4a6,故此选项错误;B、(a﹣b)2=a2+b2﹣2ab,故此选项错误;C、=2a+,故此选项错误;D、2a3•3a2=6a5,此选项正确.故选:D.【点评】此题主要考查了完全平方公式的应用以及同底数幂的乘法和积的乘方等知识,熟练掌握完全平方公式的形式是解题关键.3.【分析】先转化为底数为2的幂的除法,再利用同底数幂相除,底数不变指数相减计算即可.【解答】解:16m÷4n÷2,=24m÷22n÷2,=24m﹣2n﹣1.故选:D.【点评】本题考查同底数幂的除法,转化为同底数幂的除法是解题的关键.4.【分析】利用完全平方公式的结构特征判断即可得到a的值.【解答】解:∵9x2+ax+16是完全平方式,∴a=±24.故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.5.【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A.【点评】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.6.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、1+2=3,不能组成三角形,不符合题意;B、3+4>5,能够组成三角形,符合题意;C、7+10<18,不能够组成三角形,不符合题意;D、4+7<12,不能够组成三角形,不符合题意.故选:B.【点评】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.【分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答】解:(x2+px+q)(x﹣2)=x2﹣2x2+px2﹣2px+qx﹣2q=(p﹣1)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选:B.【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.8.【分析】分别利用提取公因式法以及公式法和十字相乘法分解因式进而得出答案.【解答】解:A、a﹣16a3=a(1+4a)(1﹣4a),故A错误;B、3x﹣6y+3=3(x﹣2y+1),故B错误;C、x2﹣x﹣2=(x﹣2)(x+1),故C错误;D、﹣x2+2x﹣1=﹣(x﹣1)2,故D正确.故选:D.【点评】此题主要考查了提取公因式法以及十字相乘法和公式法分解因式,熟练应用公式法分解因式是解题关键.9.【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB,根据平行线的性质求出∠ABD+∠EDB,即可求出答案.【解答】解:连接BD,∵BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=180°﹣90°=90°,∵AB∥DE,∴∠ABD+∠EDB=180°,∴∠1+∠2=180°﹣∠ABC+180°﹣∠EDC=360°﹣(∠ABC+∠EDC)=360°﹣(∠ABD+∠CBD+∠EDB+∠CDB)=360°﹣(90°+180°)=90°,故选:D.【点评】本题考查了平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.10.【分析】根据等角对等边,平行线的性质与判定对各小题分析判断即可得解.【解答】解:①若∠1=∠3,则AB=AD,故本小题错误;②若AD∥BC,则∠2=∠3,故本小题错误;③若∠1=∠3,AD∥BC,则∠1=∠2,正确;④若∠C+∠3+∠4=180°,则AD∥BC正确;综上所述,正确的有③④共2个.故选:B.【点评】本题考查了平行线的判定与性质,是基础题,准确识图并熟记平行线的判定方法与性质是解题的关键.二、填空题(本大题共8小题,每小题2分,共16分)11.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:(5﹣2)•180°=540°,故答案为:540°.【点评】本题考查的是多边形的内角和的计算,掌握多边形的内角和可以表示成(n﹣2)•180°是解题的关键.12.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:﹣a3•(﹣a)2=﹣a3•a2=﹣a5.故答案为:﹣a5.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.13.【分析】根据零指数幂:a0=1(a≠0),求解即可.【解答】解:由题意得,x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】本题考查了零指数幂,解答本题的关键是掌握a0=1(a≠0).14.【分析】原式利用幂的乘方及积的乘方运算法则变形,将已知等式变形后代入计算即可求出值.【解答】解:∵x+3y﹣2=0,即x+3y=2,∴原式=2x+3y=22=4.故答案为:4【点评】此题考查了幂的乘方与积的乘方,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.15.【分析】先依据零指数幂的性质和负整数指数幂的性质求得a,b,c的值,然后在比较大小即可.【解答】解:∵a=(﹣0.1)0=1,b=(﹣0.1)﹣1=﹣=﹣10,c=(﹣)2=,∴a>c>b.故答案为:a>c>b.【点评】本题主要考查的是零指数幂的性质和负整数指数幂的性质,掌握相关性质是解题的关键.16.【分析】首先利用多项式乘以多项式计算出(x﹣3)(x+m)=x2+mx﹣3x﹣3m=x2+(m﹣3)x ﹣3m,进而可得x2+(m﹣3)x﹣3m=x2+nx﹣15,从而可得m﹣3=n,﹣3m=﹣15,再解即可.【解答】解:(x﹣3)(x+m)=x2+mx﹣3x﹣3m=x2+(m﹣3)x﹣3m,∵(x﹣3)(x+m)=x2+nx﹣15,∴x2+(m﹣3)x﹣3m=x2+nx﹣15,∴m﹣3=n,﹣3m=﹣15,解得:m=5,n=2,故答案为:2.【点评】此题主要考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.17.【分析】首先得出x2+y2﹣2xy=25①,进而得出x2+y2+2xy=49②,求出x2+y2的值即可.【解答】解:∵x﹣y=5,∴x2+y2﹣2xy=25①,∵(x+y)2=49,∴x2+y2+2xy=49②,∴①+②得:2(x2+y2)=74,∴x2+y2=37.故答案为:37.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.18.【分析】根据两直线平行,内错角相等可得∠EFB=∠DEF,再根据翻折的性质,图c中∠EFB 处重叠了3层,然后根据根据∠CFE=180°﹣3∠EFB代入数据进行计算即可得解.【解答】解:∵∠DEF=22°,长方形ABCD的对边AD∥BC,∴∠EFB=∠DEF=22°,由折叠,∠EFB处重叠了3层,∴∠CFE=180°﹣3∠EFB=180°﹣3×22°=114°.故答案为:114°.【点评】本题考查了翻折变换,平行线的性质,观察图形判断出图c中∠EFB处重叠了3层是解题的关键.三、解答题(共9小题,满分64分)19.【分析】(1)先计算乘法和乘方,再合并同类项即可得;(2)先计算乘方、零指数幂和负整数指数幂,再计算加减可得;(3)先计算乘法和完全平方式,再去括号、合并同类项即可得.【解答】解:(1)原式=2a2﹣4a4﹣9a4=2a2﹣13a4;(2)原式=﹣1+1﹣9=﹣9;(3)原式=x2+2x﹣3x﹣6﹣(x2+2x+1)=x2+2x﹣3x﹣6﹣x2﹣2x﹣1=﹣3x﹣7.【点评】此题考查了整式的混合运算,熟练掌握整式的混合运算顺序和运算法则是解本题的关键.20.【分析】(1)首先提取公因式4x2,再利用完全平方公式分解因式得出答案;(2)直接提取公因式(a﹣3),再利用平方差公式分解因式即可.【解答】解:(1)4a2x2+16ax2y+16x2y2;=4x2(a2+4ay+4y2)=4x2(a+2y)2;(2)a2(a﹣3)﹣a+3=(a﹣3)(a2﹣1)=(a﹣3)(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】直接利用幂的乘方运算法则、同底数幂的乘除运算法则将原式变形进而得出答案.【解答】解:∵33×9m+4÷272m﹣1的值为729,∴33×32m+8÷36m﹣3=36,∴3+2m+8﹣(6m﹣3)=6,解得:m=2.【点评】此题主要考查了幂的乘方运算、同底数幂的乘除运算,正确将原式变形是解题关键.22.【分析】先判断出阴影部分面积等于梯形ABEH的面积,再根据平移变化只改变图形的位置不改变图形的形状可得DE=AB,然后求出HE,根据平移的距离求出BE=6,然后利用梯形的面积公式列式计算即可得解.【解答】解:∵两个三角形大小一样,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=6,∵AB=10,DH=4,∴HE=DE﹣DH=10﹣4=6,∴阴影部分的面积=×(6+10)×6=48.【点评】本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记各性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.23.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.24.【分析】根据多项式乘多项式的法则求出阴影部分的面积,代入计算即可.【解答】解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63(平方米).【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.25.【分析】(1)先根据三角形内角和定理求出∠FBC+∠BCF=180°﹣∠F=110°,再由角平分线定义得出∠ABC=2∠FBC,∠BCD=2∠BCF,那么∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;由四边形ABCD的内角和为360°,得出∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=140°.由角平分线定义得出∠DAE=∠BAD,∠ADE=∠CDA,那么∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,然后根据三角形内角和定理求出∠E =180°﹣(∠DAE+∠ADE)=110°;(2)由四边形ABCD的内角和为360°得到∠BAD+∠CDA+∠ABC+∠BCD=360°,由角平分线定义得出∠DAE+∠ADE+∠FBC+∠BCF=180°,又根据三角形内角和定理有∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,那么∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,于是∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)由(2)可知∠E+∠F=180°,如果∠E=∠F,那么可以求出∠E=∠F=90°,根据三角形内角和定理求出∠DAE+∠ADE=90°,再利用角平分线定义得到∠BAD+∠CDA=180°,于是AB∥CD.【解答】解:(1)∵∠F=70,∴∠FBC+∠BCF=180°﹣∠F=110°.∵∠ABC、∠BCD的角平分线交于点F,∴∠ABC=2∠FBC,∠BCD=2∠BCF,∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;∵四边形ABCD的内角和为360°,∴∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=140°.∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∴∠DAE=∠BAD,∠ADE=∠CDA,∴∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,∴∠E=180°﹣(∠DAE+∠ADE)=110°;(2)∠E+∠F=180°.理由如下:∵∠BAD+∠CDA+∠ABC+∠BCD=360°,∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F,∴∠DAE+∠ADE+∠FBC+∠BCF=180°,∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,∴∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)AB∥CD.故答案为220°;110°;AB∥CD.【点评】本题考查了三角形、四边形内角和定理,角平分线定义,平行线的判定,等式的性质,利用数形结合,理清角度之间的关系是解题的关键.26.【分析】(1)利用配方法把原式变形,根据非负数的性质解答即可;(2)利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可;(3)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=﹣1,a=3,则a﹣b=4;(2)∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a+2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0,b﹣3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(2)∵x+y=2,∴y=2﹣x,则x(2﹣x)﹣z2﹣4z=5,∴x2﹣2x+1+z2+4z+4=0,∴(x﹣1)2+(z+2)2=0,则x﹣1=0,z+2=0,解得x=1,y=1,z=﹣2,∴xyz=﹣2.【点评】本题考查的是配方法的应用和三角形三边关系,灵活运用完全平方公式、掌握三角形三边关系是解题的关键.27.【分析】(1)①利用角平分线的性质求出∠ABO的度数;②利用角平分线的性质和平行线的性质求得∠OAC=60°;(2)需要分类讨论:当点D在线段OB上和点D在射线BE上两种情况.【解答】解:(1)①∵∠MON=80°,OE平分∠MON.∴∠AOB=∠BON=40°,∵AB∥ON,∴∠ABO=40°故答案是:40°;②如答图1,∵∠MON=80°,且OE平分∠MON,∴∠1=∠2=40°,又∵AB∥ON,∴∠3=∠1=40°,∵∠BAD=∠ABD,∴∠BAD=40°∴∠4=80°,∴∠OAC=60°,即x=60°.(2)存在这样的x,①如答图2,当点D在线段OB上时,若∠BAD=∠ABD,则x=40°;若∠BAD=∠BDA,则x=25°;若∠ADB=∠ABD,则x=10°.②如答图3,当点D在射线BE上时,因为∠ABE=130°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=115°,C不在ON上,舍去;综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=10°、25°、40°.【点评】本题考查的是平行线的性质,三角形的内角和定理和三角形的外角性质的应用,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.。
2017-2018第二学期七年级数学期中考试卷(附参考答案)
为
.
20.阅读下面文字,回答问题 大家知道 是无理数,而无理数是无限不循环小数,因此 的小数部分我们不可能全部 地写出来,但是由于 1< <2,所以 的整数部分为 1,将 减去其整数部分 1,所得 的差就是其小数部分 ﹣1.请你根据以上知识,解答下列问题: (1) 的整数部分是 ,小数部分是 ; (2) ﹣1 的整数部分是 ,小数部分是 ; (3)设 的小数部分是 x,1+ 的小数部分是 y,求|x+y﹣ |的值.
即 CG 平分 OCD (2)结论:当 O=60 时
法一:当 O=60 时
,.C…D…平…分……OC…F….……………………………
∵DE//OB,
∴ ∠DCO=∠O=60 .
∴ ∠ACD=120 .
又 ∵CF 平分 ACD
∴ ∠D CF=60 ,
∴ DCO DCF
即 CD 平分 法二:若 CD 平分
6. 数轴上表示 1, 的对应点分别为 A,B,点 B 关于点 A 的对称点为 C,则点 C 所表示 的数是( )
A. ﹣1 B.1﹣
C.2﹣
D. ﹣2
二、填空题(本大题共 6 小题,每小题 3 分,共 18分)
7.在数轴上与原点的距离是 的点所表示的实数是
.
8.命题“等角的余角相等”的题设是
,结论
OOCCFF.…………
∴ DCO DCF
∵ ACF FDC ∴ ACF FDC ∵ AOC 180 ∴ DCO 60
∵DE//OB
DCO
∴ O DOC
∴ O 60
F
D
G
C
O
A E
B
四、解答题(本大题共 3 小题,每小题 8 分,共 24分) 18.解:(1)∵22=4,52=25,62=36,
2017-2018学年最新鲁教版七年级数学第二学期期中测试卷含答案
2017-2018学年七年级(下)期中数学试卷(五四学制)一、选择题1.以下说法合理的是()A.小明在10次抛图钉的试验中发现3次钉朝上,由此他说钉尖朝上的概率是30%B.抛掷一枚普通的正六面体骰子,出现6的概率是的意思是每6次就有1次掷得6C.某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖D.在一次课堂进行的抛掷硬币试验中,某同学估计硬币落地后,正面朝上的概率为2.给出下列事件:①三条线段能组成一个三角形②400人中至少有两人的生日在同一天③|a|≥0④三角形的内角和大于180°其中确定事件有()A.1个 B.2个 C.3个 D.4个3.四张完全相同的卡片上,分别画有圆、平行四边形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的是中心对称图形的概率为()A.B.C.D.14.在一个不透明的口袋中,装有n个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么n等于()A.10个B.12个C.16个D.20个5.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A.B.C.1 D.6.有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为()A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,127.下列两个三角形中,一定全等的是()A.有一个角是40°,腰相等的两个等腰三角形B.有一个角是100°,底相等的两个等腰三角形C.两个等边三角形D.有一条边相等,有一个内角相等的两个等腰三角形8.已知一个等腰三角形底边的长为5cm,一腰上的中线把其周长分成的两部分的差为3cm,则腰长为()A.2cm B.8cm C.2cm或8cm D.10cm9.△ABC中,点O为∠ABC和∠ACB角平分线交点,若∠A=60°,则∠BOC=()A.60°B.90°C.120° D.150°10.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.80°B.70°C.60°D.50°11.x的2倍减3的差不大于1,列出不等式是()A.2x﹣3≤1 B.2x﹣3≥1 C.2x﹣3<1 D.2x﹣3>112.如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.13.不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.14.某次知识竞赛共有30道选择题,称对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?若设答对x题,可得式子为()A.10x﹣3(30﹣x)>70 B.10x﹣3(30﹣x)≤70 C.10x﹣3x≥70 D.10x ﹣3(30﹣x)≥7015.如图,直线y=kx+b交坐标轴于A(﹣2,0)、B(0,3)两点,则不等式kx+b >0的解集是()A.x>﹣2 B.x>3 C.x<﹣2 D.x<3二、填空题(共5小题,每小题4分,共20分)16.从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是.17.如图所示,在1×2的正方形网格格点上已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.18.不等式2x+9≥3(x+2)的正整数解是.19.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是.20.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.三、解答题(共7小题,共55分)21.(8分)解不等式:(1)5(x﹣2)+8<6(x﹣1)+7(2)<.22.(7分)某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图所示的统计图,根据统计图提供的信息解决下面问题:(1)柑橘损坏的概率估计值为,柑橘完好的概率估计值为;(2)估计这批柑橘完好的质量为千克.23.(7分)一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.24.(7分)如图所示,在△ABC,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E(不与点A、D重合),连结BE,CE,求证:EB=EC.25.(8分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.26.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.27.(10分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元)(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)请你根据小红累计购物的金额选择花费较少的商场?参考答案与试题解析一、选择题1.以下说法合理的是()A.小明在10次抛图钉的试验中发现3次钉朝上,由此他说钉尖朝上的概率是30%B.抛掷一枚普通的正六面体骰子,出现6的概率是的意思是每6次就有1次掷得6C.某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖D.在一次课堂进行的抛掷硬币试验中,某同学估计硬币落地后,正面朝上的概率为【考点】概率的意义.【分析】直接利用概率的意义分别分析得出答案.【解答】解:A、小明在10次抛图钉的试验中发现3次钉朝上,由此他说钉尖朝上的概率是30%,不合理;B、抛掷一枚普通的正六面体骰子,出现6的概率是的意思是每6次就有1次掷得6,不合理;C、某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖,不合理;D、在一次课堂进行的抛掷硬币试验中,某同学估计硬币落地后,正面朝上的概率为,正确.故选:D.【点评】此题主要考查了概率的意义,正确理解概率的意义是解题关键.2.给出下列事件:①三条线段能组成一个三角形②400人中至少有两人的生日在同一天③|a|≥0④三角形的内角和大于180°其中确定事件有()A.1个 B.2个 C.3个 D.4个【考点】随机事件.【分析】根据事件的分类对各事件进行逐一分析,根据事先能确定其一定发生或一定不会发生即为确定性事件可得知.【解答】解:∵①是随机事件;②是必然事件;③是必然事件;④是不可能事件;∴是确定事件的①④两个,故选:B.【点评】本题考查的是事件的分类,熟知事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件是解答此题的关键.3.四张完全相同的卡片上,分别画有圆、平行四边形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的是中心对称图形的概率为()A.B.C.D.1【考点】概率公式;中心对称图形.【分析】用中心对称图形的个数除以总卡片数4即为卡片上画的是中心对称图形的概率.【解答】解:根据中心对称图形的概念,知圆、平行四边形是中心对称图形;所以现从中随机抽取一张,卡片上画的是中心对称图形的概率为.故选C.【点评】本题考查了中心对称图形的概念和概率的求法.中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.在一个不透明的口袋中,装有n个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么n等于()A.10个B.12个C.16个D.20个【考点】概率公式.【分析】根据装有n个除颜色不同其余都相同的球,中装有4个红球,摸到红球的概率为列出方程,求出n的值即可.【解答】解:∵口袋中装有4个红球且摸到红球的概率为,∴=,解得:n=10,故选:A.【点评】此题主要考查了求概率问题;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.5.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A.B.C.1 D.【考点】概率公式.【分析】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是.故选A.【点评】明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.6.有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为()A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,12【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理进行分析,从而得到答案.【解答】解:由勾股定理的逆定理分析得,只有C中有62+82=102,故选C.【点评】本题考查了直角三角形的判定.7.下列两个三角形中,一定全等的是()A.有一个角是40°,腰相等的两个等腰三角形B.有一个角是100°,底相等的两个等腰三角形C.两个等边三角形D.有一条边相等,有一个内角相等的两个等腰三角形【考点】全等三角形的判定.【分析】根据全等三角形的判定方法及等腰三角形的性质对各个选项进行分析,从而得到答案.【解答】解:A、当一个三角形的顶角为40°,而另一个三角形的底角为40°时,不能判定这样的两个三角形全等,故本选项错误;B、正确;C、两个等边三角形只是形状相同,大小不一定相等,故本选项错误;D、没有指明边与角具体是腰还是底边,是顶角还是底角,故本选项错误.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题难度适中.8.已知一个等腰三角形底边的长为5cm,一腰上的中线把其周长分成的两部分的差为3cm,则腰长为()A.2cm B.8cm C.2cm或8cm D.10cm【考点】等腰三角形的性质.【分析】作出图形,根据三角形的中线的定义可得AD=CD,然后求出两三角形的周长的差等于腰长与底边的差,然后分情况讨论求解即可.【解答】解:如图,∵BD是△ABC的中线,∴AD=CD,∴两三角形的周长的差等于腰长与底边的差,∵BC=5cm,∴AB﹣5=3或5﹣AB=3,解得AB=8或AB=2,若AB=8,则三角形的三边分别为8cm、8cm、5cm,能组成三角形,若AB=2,则三角形的三边分别为2cm、2cm、5cm,∵2+2=4<5,∴不能组成三角形,综上所述,三角形的腰长为8cm.故选B.【点评】本题考查了等腰三角形的性质,三角形的中线,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.9.△ABC中,点O为∠ABC和∠ACB角平分线交点,若∠A=60°,则∠BOC=()A.60°B.90°C.120° D.150°【考点】三角形内角和定理.【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的性质得出∠OBC+∠OCB的度数,由三角形内角和定理即可得出结论.【解答】解:∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=60°,∴∠OBC+∠OCB=(180°﹣60°)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.故选C【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.10.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A.80°B.70°C.60°D.50°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.【解答】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC==80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC﹣∠ABE=80°﹣20°=60°.故选C.【点评】此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.11.x的2倍减3的差不大于1,列出不等式是()A.2x﹣3≤1 B.2x﹣3≥1 C.2x﹣3<1 D.2x﹣3>1【考点】由实际问题抽象出一元一次不等式.【分析】关系式为:x的2倍﹣3≤1.【解答】解:列出不等式是:2x﹣3≤1,故选A.【点评】根据关键字找到相应的关系式是解决问题的关键;注意“不大于1”表示“小于或等于1”.12.如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.【考点】不等式的性质.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一个个筛选即可得到答案.【解答】解:A,∵a>b,∴a+c>b+c,故此选项正确;B,∵a>b,∴﹣a<﹣b,∴﹣a+c<﹣b+c,故此选项错误;C,∵a>b,c<0,∴ac<bc,故此选项错误;D,∵a>b,c<0,∴<,故此选项错误;故选:A.【点评】此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱,准确把握不等式的性质是做题的关键.13.不等式5x﹣1>2x+5的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,5x﹣2x>5+1,合并同类项得,3x>6,系数化为1得,x>2,在数轴上表示为:故选A.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.14.某次知识竞赛共有30道选择题,称对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?若设答对x题,可得式子为()A.10x﹣3(30﹣x)>70 B.10x﹣3(30﹣x)≤70 C.10x﹣3x≥70 D.10x ﹣3(30﹣x)≥70【考点】由实际问题抽象出一元一次不等式.【分析】根据得分﹣扣分不少于70分,可得出不等式.【解答】解:设答对x题,答错或不答(30﹣x),则10x﹣3(30﹣x)≥70.故选D.【点评】本题考查了由实际问题抽象出一元一次不等式的知识,解答本题的关键是找到不等关系.15.如图,直线y=kx+b交坐标轴于A(﹣2,0)、B(0,3)两点,则不等式kx+b >0的解集是()A.x>﹣2 B.x>3 C.x<﹣2 D.x<3【考点】一次函数与一元一次不等式.【分析】根据图象可得出不等式kx+b>0的解集就是y=kx+b的图象在x轴上方部分横坐标所构成的集合.【解答】解:∵A(﹣2,0),∴不等式kx+b>0的解集是x>﹣2,故选:A.【点评】此题主要考查了一次函数与一元一次不等式,关键是掌握从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题(共5小题,每小题4分,共20分)16.从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是.【考点】概率公式.【分析】看是3的倍数的情况数占总情况数的多少即可.【解答】解:共有9张牌,是3的倍数的有3,6,9共3张,∴抽到序号是3的倍数的概率是.故答案为:.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到抽到序号是3的倍数的情况数是解决本题的关键.17.如图所示,在1×2的正方形网格格点上已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.【考点】概率公式;勾股定理的逆定理.【分析】先确定第三枚棋子随机放在格点上的所有可能的情况,再利用正方形的性质可判断其中以这三枚棋子所在的格点为顶点的三角形是直角三角形的情况数,然后利用概率公式求解.【解答】解:第三枚棋子共有4个格点可以放,放在其中三个格点可以以这三枚棋子所在的格点为顶点的三角形是直角三角形,所以以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.不等式2x+9≥3(x+2)的正整数解是1,2,3.【考点】一元一次不等式的整数解.【分析】先解不等式,求出其解集,再根据解集判断其正整数解.【解答】解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.故答案为:1,2,3.【点评】本题考查了一元一次不等式的整数解,会解不等式是解题的关键.19.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是a<﹣1.【考点】不等式的解集.【分析】根据不等式基本性质3两边都除以a+1,由解集x<1可得a+1<0,可得a的范围.【解答】解:不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<﹣1,故答案为:a<﹣1.【点评】本题主要考查不等式的基本性质3,不等式两边都乘以或除以同一个负数不等号方向要改变是关键.20.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.三、解答题(共7小题,共55分)21.解不等式:(1)5(x﹣2)+8<6(x﹣1)+7(2)<.【考点】解一元一次不等式.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)去括号,得:5x﹣10+8<6x﹣6+7,移项,得:5x﹣6x<﹣6+7+10﹣8,合并同类项,得:﹣x<3,系数化为1,得:x>﹣3;(2)去分母,得:2(x+1)<3(2x﹣1),去括号,得:2x+2<6x﹣3,移项,得:2x﹣6x<﹣3﹣2,合并同类项,得:﹣4x<﹣5,系数化为1,得:x>.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.22.某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图所示的统计图,根据统计图提供的信息解决下面问题:(1)柑橘损坏的概率估计值为0.1,柑橘完好的概率估计值为0.9;(2)估计这批柑橘完好的质量为9000千克.【考点】利用频率估计概率.【分析】(1)根据图形即可得出柑橘损坏的概率,再用整体1减去柑橘损坏的概率即可得出柑橘完好的概率;(2)根据(1)所得出柑橘完好的概率乘以这批柑橘的总质量即可.【解答】解:(1)根据所给的图可得:柑橘损坏的概率估计值为:0.1,柑橘完好的概率估计值为1﹣0.1=0.9;(2)根据(1)可得:这批柑橘完好的质量为:10000×0.9=9000(千克).故答案为:0.1;0.9;9000.【点评】此题考查了利用频率估计概率,解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;用到的知识点为:频率=所求情况数与总情况数之比.23.一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.【考点】概率公式.【分析】(1)根据红、黄、白三种颜色球共有的个数乘以红球的概率即可;(2)设白球有x个,得出黄球有(2x﹣5)个,根据题意列出方程,求出白球的个数,再除以总的球数即可;(3)先求出取走10个球后,还剩的球数,再根据红球的个数,除以还剩的球数即可.【解答】解:(1)根据题意得:100×,答:红球有30个.(2)设白球有x个,则黄球有(2x﹣5)个,根据题意得x+2x﹣5=100﹣30解得x=25.所以摸出一个球是白球的概率P==;(3)因为取走10个球后,还剩90个球,其中红球的个数没有变化,所以从剩余的球中摸出一个球是红球的概率=;【点评】此题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.24.如图所示,在△ABC,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E(不与点A、D重合),连结BE,CE,求证:EB=EC.【考点】作图—复杂作图.【分析】(1)利用基本作图(作已知角的平分线)作∠BAC的平分线交BC于D,则AD为所求;(2)先证明△ABC为等腰三角形,再根据等腰三角形的性质,由AD平分∠BAC可判断AD垂直平分BC,然后根据线段垂直平分线的性质可得EB=EC.【解答】(1)解:如图,AD为所作;(2)证明:如图,∵∠ABC=∠ACB,∴△ABC为等腰三角形,∵AD平分∠BAC,∴AD⊥BC,BD=CD,即AD垂直平分BC,∴EB=EC.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和线段垂直平分线的性质.25.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的判定方法,证明△ACD≌△ABE,即可得出AD=AE,(2)根据已知条件得出△ADO≌△AEO,得出∠DAO=∠EAO,即可判断出OA是∠BAC的平分线,即OA⊥BC.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.【点评】本题考查了全等三角形的判定方法,以及全等三角形的对应边相等,对应角相等的性质,难度适中.26.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,再利用三角形的面积公式求解即可.【解答】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,=AB•BC+AC•CD,∴S四边形ABCD=×1×2+××2,=1+.故四边形ABCD的面积为1+.【点评】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.27.(10分)(2016春•沂源县期中)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元)(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)请你根据小红累计购物的金额选择花费较少的商场?【考点】一元一次不等式的应用;列代数式;一元一次方程的应用.【分析】(1)根据商场的优惠方法计算即可;(2)分成0≤x≤50和x>100两种情况进行讨论,列方程求解;(3)根据(2)的结果进行讨论即可.【解答】解:(1)在甲商场:100+(290﹣100)×0.9=271,100+(x﹣100)×0.9=0.9x+10;在乙商场:50+(290﹣50)×0.95=278,50+(x﹣50)×0.95=0.95x+2.5;故答案是:271;0.9x+10;278;0.95x+2.5;(2)当0≤x≤50时,在两个商场实际花费相同;当x>100时,0.9x+10=0.95x+2.5,解得:x=150,则当小红购物小于或等于50元或150元时,在两个商场的花费相同;(3)当50<x<150时,选择乙商场实际花费少;则当累计购物大于150时上没封顶,选择甲商场实际花费少;当累计购物正好为150元时,两商场花费相同;当小红购物小于或等于50元或150元时,在两个商场的花费相同.【点评】此题主要考查了一元一次不等式的应用和一元一次方程的应用,解决问题的关键是读懂题意,依题意列出相关的式子进行求解.本题涉及方案选择时应与方程或不等式联系起来.。
中学17—18学年下学期七年级期中考试数学试题(附答案)
2017-2018学年度第二学期七年级期中考试数学试卷考试时间:100分钟考试分数:120 分命题人:张殿林一、选择题(每题3分,共24分)1.以下列各组数据为边长,能构成三角形的是( )A. 4, 4, 9B. 4, 5, 9C. 3, 10, 4D. 3, 6, 52.在以下现象中,属于平移的是( )①在荡秋千的小朋友②电梯上升过程③宇宙中行星的运动④生产过程中传送带上的电视机的移动过程A. ①②B. ③④C. ②③D. ②④3. 下列运算正确的是()A. a3•a2=a6B. (a2)2=a4C. (﹣3a)3=﹣9a3D. a4+a5=a94.下列各式能用平方差公式计算的( )A. (-3a + b) (-3a-b)B. (-3a + b) (3a-b)C. (3a+b) (-3a - b)D. (3a + b) (a-b)5. 代数式3x2﹣4x的值为3,则x2﹣+6的值为()A.7 B.18 C.12 D.96.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A. 125°B. 120°C. 130°D. 140°(第6题图) (第7题图)7.如图,a // b,c 与a ,b都相交,∠1=50°,则∠2=( )A. 40°B. 100°C. 50°D. 130°8. 已知13xx-=,则221xx+的值( )A. 9B. 11C. 7D.不能确定 二、填空题(每题3分,共30分)9.内角和与外角和相等的多边形是 .边形.10.在△ABC 中,∠B 、∠C 的平分线相交于点O ,若∠A=40°,则∠BOC=11.(﹣8)2018×0.1252018= . .12.若2m =2. 2n =16,则2m+n = . .13.当x 2+kx+25是一个完全平方式,则k 的值是 . .14.蚕丝是最细的天然纤维,其中桑蚕丝的截面可以近似地看成圆,直径约为0.00000016米.用科学记数法表示为 . 米.15.分解多项式2ab 2﹣48a 2b 时,提出的公因式是 .16. 若13a b -=,2239a b -=,则2()a b += . . 17.如果(x+2)(x+p)的乘积不含一次项,那么p= .18. 阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式: (2x+3)x+2018=1成立的x 的值为 . 三、解答题:(8 题,共66 分) 19. 计算题 (4分×2=8分)(1)4﹣(﹣2)2﹣3﹣2÷(3.14﹣3.1)0 (2)5a 2b. (﹣2ab 2)20. 分解因式:(4分×2=8分)(1)x 2﹣2x+1 (2)a 2(x ﹣y )﹣b 2(x ﹣y )21. (本题8分)(1)先化简,再求值:(2a+b )2+5a (a+b )﹣(3a ﹣b )2,其中a=3, b=2-322.(本题8分)将一副三角板拼成如图所示的图形,过点C 作CF 平分∠DCE 交DE 于点F . (1)求证:CF ∥AB ; (2)求∠DFC 的度数.23. (本题8分) 如图,在方格纸内将△ABC 经过一次平移后得到△A ′B ′C ′, 图中标出了点C 的对应点C ′.(利用网格点和三角板画图) (1)画出平移后的△A ′B ′C ′. (2)画出AB 边上的高线CD ; (3)画出BC 边上的中线AE ; (4)若连接BB ′、CC ′,则这两条 线段之间的关系是 .24.(本题8分)如图,已知∠1=∠2,∠3=∠4,试说明AB ∥CD .25. 如图,△ABC 在方格纸内 (1)画出AB 边上的高线CD ; (2)图中△ABC 的面积是26. ( 10分)你能求999897(1)(1)x x x x x -+++++…的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值. ①2(1)(1)1x x x -+=- ②23(1)(1)1x x x x -++=- ③324(1)(1)1x x x x x -+++=- ……由此我们可以得到:999897(1)(1)x x x x x -+++++=… (3分)请你利用上面的结论,再完成下面两题的计算: (1) 250+249+248+…+22+2+1(3分)(2)若3210x x x +++=,求x 2020的值(4分)2017-2018学年度第二学期七年级期中考试数学(学科)参考答案一、选择题(每题3分,共24分)二、填空题(每题3分,共30分)9. 4 10. 110011. 1 12. 32 13. 5 、-5 14. 1.6×10-715. 2ab 16. 917. -2 18. -1、-2、-2018三、解答题:(8 题,共66 分)19. 计算题(4分×2=8分)(1)4﹣(﹣2)2﹣3-2÷(3.14﹣3.1)0 (2)5a2b. (﹣2ab2)=-1/9 =-10a3b320. 分解因式:(4分×2=8分)(1)x2﹣2x+1 (2)a2(x﹣y)﹣b2(x﹣y)=(x-1)2 =(a+b)(a-b)(x-y)21. 化简得15ab(5分)代入求值得=﹣30(3分)22(1).略(2)105°23.(4)平行且相等24. 略25.(2)8 26.x100 ﹣1; 251﹣1 ; X2020=1。
2017-2018学年山东省临沂市郯城县七年级(下)期中数学试卷(解析版)
2017-2018学年山东省临沂市郯城县七年级(下)期中数学试卷一、选择题(本大题共14小题,共42.0分)1. 如图,∠1和∠2是对顶角的是( ) A. B. C.D. 2. 若点A (m ,n )在第二象限,那么点B (-m ,|n |)在( ) A. 第一象限B. 第二象限;C. 第三象限D. 第四象限 3. 实数√22,-37,0.1010010001,√43,π,√144中,无理数的个数是( )A. 1B. 2C. 3D. 44. 下列选项中能由左图平移得到的是( )A. B. C. D.5. 如图.已知AB ∥CD ,∠1=70°,则∠2的度数是( )A. 60∘B. 70∘C. 80∘D. 1106. 在平面直角坐标系中,线段A ′B ′是由线段AB 经过平移得到的,已知点A (-2,1)的对应点为A ′(3,-1),点B 的对应点为B ′(4,0),则点B 的坐标为( )A. (9,−1)B. (−1,0)C. (3,−1)D. (−1,2)7. 下列说法正确的是( )A. −5是−25的平方根B. 3是(−3)2的算术平方根C. (−2)2的平方根是2D. 8的平方根是±48. 点(x ,x -1)不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 如图是中国象棋的一盘残局,如果用(2,-3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为( )A. (6,4)B. (4,6)C. (1,6)D. (6,1) 10. 如图,如果AB ∥CD ,CD ∥EF ,那么∠BCE 等于( ) A. ∠1+∠2B. ∠2−∠1C. 180∘−∠2+∠1D. 180∘−∠1+∠211.估计√19的值在( ) A. 2和3之间 B. 3和4之间 C. 4和5之间 D. 5和6之间 12.若√0.3673=0.716,√3.673=1.542,则√3673=( ) A. 15.42 B. 7.16 C. 154.2 D. 71.6 13.若√x −1+(y +2)2=0,则(x +y )2017=( ) A. −1 B. 1 C. 32017 D. −32017 14. 若定义:f (a ,b )=(-a ,b ),g (m ,n )=(m ,-n ),例如f (1,2)=(-1,2),g (-4,-5)=(-4,5),则g (f (2,-3))=( )A. (2,−3)B. (−2,3)C. (2,3)D. (−2,−3)二、填空题(本大题共5小题,共15.0分)15. 如果a 是√15的整数部分,b 是√15的小数部分,则a -b =______.16. 如图,若EF ∥BC ,DE ∥AB ,∠FED =40°,则∠B =______.17. 已知点P 在第二象限,点P 到x 轴的距离是2,到y 轴的距离是3,那么点P 的坐标是______.18. 把“同角的余角相等”写成“如果…,那么…”的形式为______.19. 如图,已知A 1(1,0),A 2(1,-1),A 3(-1,-1),A 4(-1,1),A 5(2,1),…,则点A 2010的坐标是______.三、计算题(本大题共1小题,共11.0分)20.计算和化简:3-|1-√2|;(1)计算:√16+√−27(2)已知a、b、c为实数,且它们在数轴上的对应点的位置如图所示,化简:2√(b−a)2+|b+c|-√(a−c)2-2|a|四、解答题(本大题共5小题,共52.0分)21.填写推理理由:如图,CD∥EF,∠1=∠2,求证:∠3=∠ACB.证明:∵CD∥EF,∴∠DCB=∠2______∵∠1=∠2,∴∠DCB=∠1.______∴GD∥CB______.∴∠3=∠ACB______.22.如图,在平面直角坐标系中有三个点A(-3,2)、B(-5,1)、C(-2,0),P(a,b)是△ABC的边AC上一点,△ABC经平移后得到△A1B1C1,点P的对应点为P1(a+6,b+2).(1)画出平移后的△A1B1C1,写出点A1、C1的坐标;(2)若以A、B、C、D为顶点的四边形为平行四边形,同时点D在y轴上,直接写出D点的坐标;(3)求四边形ACC1A1的面积.23.(1)计算填空:√42=______,√0.82=______,√(−3)2=______,√(−2)2=______3(2)根据计算结果,回答:√a2一定等于a吗?你发现其中的规律了吗?并请你把得到的规律描述出来?(3)利用你总结的规律,计算:√(π−3.15)224.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.25.阅读并补充下面推理过程:(1)如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.解:过点A作ED∥BC,所以∠B=______,∠C=______.又因为∠EAB+∠BAC+∠DAC=180°.所以∠B+∠BAC+∠C=180°.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.深化拓展:(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.Ⅰ.如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为______°.Ⅱ.如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED 的度数为______°.(用含n的代数式表示)答案和解析1.【答案】B【解析】解:A、不是对顶角,故本选项错误;B、是对顶角,故本选项正确;C、不是对顶角,故本选项错误;D、不是对顶角,故本选项错误.故选:B.根据对顶角的概念:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,对各选项分析判断即可得解.本题考查了对顶角,邻补角,熟练掌握对顶角的定义是解题的关键.2.【答案】A【解析】解:∵点A(m,n)在第二象限,∴m<0,n>0,∴-m>0,|n|>0,∴点B在第一象限.根据各象限内点的坐标的特点,由点A(m,n)在第二象限,得m<0,n>0,所以-m>0,|n|>0,从而确定点B的位置.熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).3.【答案】C【解析】解:无理数有:,,π共3个.故选:C.[分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.【答案】C【解析】解:能由左图平移得到的是:选项C.故选:C.根据平移的性质,图形只是位置变化,其形状与方向不发生变化进而得出即可.此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.5.【答案】D【解析】解:∵AB∥CD,∴∠1=∠3=70°,∵∠2+∠3=180°,∴∠2=110°.故选:D.由AB∥CD,根据两直线平行,同位角相等,即可求得∠2的度数,又由邻补角的性质,即可求得∠2的度数.此题考查了平行线的性质.注意数形结合思想的应用.6.【答案】D【解析】解:∵点A(-2,1)的对应点为A′(3,-1),∴线段A′B′是由线段AB先向右平移5个单位,再向下平移2个单位得到,而点B的对应点为B′(4,0),∴点B的坐标为(-1,2).故选:D.利用点A与点A′的坐标特征得到平移的规律,然后利用此平移规律由B′点的坐标确定点B的坐标.本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.7.【答案】B【解析】解:A、负数没有平方根,故选项A错误;B、(-3)2=9,9的算术平方根是3,故选项B正确;C、(-2)2=4的平方根是±2,故选项C错误;D、8的平方根是±2,故选项D错误.故选:B.A、B、C、D都根据平方根的定义即可判定.本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a 的平方根.若a>0,则它有两个平方根,我们把正的平方根叫a的算术平方根.若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.8.【答案】B【解析】解:A、x>1时点在第一象限,故A正确;B、x<0时,x-1<-1,故B错误;C、x<0时,x-1<-1,故C正确;D、0<x<1时,故D正确;故选:B.根据第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),可得答案.本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.【答案】C【解析】解:建立平面直角坐标系如图所示,将(1,6).故选C.以帅的坐标向左两个单位,向上3个单位为坐标原点建立平面直角坐标系,然后写出将的坐标即可.本题考查了坐标确定位置,读懂题目信息,准确确定出坐标原点是解题的关键.10.【答案】C【解析】解:∵AB∥CD,CD∥EF.∴∠BCD=∠1,∠ECD=180°-∠2.∴∠BCE=180°-∠2+∠1.故选:C.本题主要利用两直线平行,内错角相等和同旁内角互补作答.本题运用了两次平行线的性质,找到了角之间的关系.11.【答案】C【解析】解:∵<<,∴的值在4和5之间.故选:C.直接利用二次根式的性质得出的取值范围.此题主要考查了估算无理数大小,正确把握最接近的有理数是解题关键.12.【答案】B【解析】解:∵=0.176,=1.542,∴=7.16,故选:B.根据立方根定义,即可解答.本题考查了立方根,解决本题的关键是熟记立方根的定义.13.【答案】A【解析】解:根据题意得x-1=0,y+2=0,解得x=1,y=-2,则原式=(-1)2017=-1.故选:A.根据非负数的性质列出算式,求出x、y的值,计算即可.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.14.【答案】B【解析】解:根据定义,f(2,-3)=(-2,-3),所以,g(f(2,-3))=g(-2,-3)=(-2,3).故选:B.根据新定义先求出f(2,-3),然后根据g的定义解答即可.本题考查了点的坐标,读懂题目信息,掌握新定义的运算规则是解题的关键.15.【答案】6−√15【解析】解:<=4,∴a=3,b=-3,∴a-b=6-.故填6-.<可得a=3,由此可得出答案.本题考查估算无理数的知识,解决本题的关键是找到和相近的能开方的数.16.【答案】40°【解析】解:∵EF∥BC,DE∥AB,∴四边形BDEF为平行四边形,∵∠FED=40°,∴∠B=∠FED=40°.故答案为:40°.根据EF∥BC,DE∥AB,可得四边形BDEF为平行四边形,然后根据平行四边形的性质:对角相等,可得出∠B=∠FED=40°.本题考查了平行线的性质,解答本题的关键是根据直线平行判断四边形BDEF为平行四边形,然后根据平行四边形的性质求出∠B的度数.17.【答案】(-3,2)【解析】解:∵点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是2,∴点P的坐标为(-3,2).故答案为:(-3,2).根据第二象限内点的坐标特征和点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.本题考查了点的坐标,是基础题,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.18.【答案】如果两个角是同一个角的余角,那么这两个角相等【解析】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”.命题有题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.本题考查命题的定义,根据命题的定义,命题有题设和结论两部分组成.19.【答案】(503,-503)【解析】解:易得4的整数倍的各点如A4,A8,A12等点在第二象限,∵2010÷4=502…2;∴A2010的坐标在第四象限,横坐标为(2010-2)÷4+1=503;纵坐标为-503,∴点A2010的坐标是(503,-503).故答案为:(503,-503).经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加-1,纵坐标依次加1;在第三象限的点的横坐标依次加-1,纵坐标依次加-1,在第四象限的点的横坐标依次加1,纵坐标依次加-1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1.本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.20.【答案】解:(1)原式=4-3-(√2-1)=1-√2+1=2-√2;(2)由数轴知a<b<0<c,且|b|<|c|,∴b-a>0,b+c>0,a-c<0,则原式=2|b-a|+b+c-|a-c|+2a=2(b-a)+b+c-(c-a)+2a=2b-2a+b+c-c+a+2a=3b+a.【解析】(1)先计算算术平方根、立方根,取绝对值符号,再去括号,继而计算加减可得;(2)先根据数轴得出b-a>0,b+c>0,a-c<0,再利用二次根式的性质和绝对值的性质化简可得.本题主要考查实数的运算及实数与数轴,解题的关键是掌握算术平方根、立方根的定义、二次根式的性质和绝对值的性质.21.【答案】两直线平行,同位角相等 等量代换 内错角相等,两直线平行 两直线平行,同位角相等【解析】证明:∵CD ∥EF ,∴∠DCB=∠2(两直线平行,同位角相等),∵∠1=∠2,∴∠DCB=∠1(等量代换).∴GD ∥CB (内错角相等,两直线平行).∴∠3=∠ACB (两直线平行,同位角相等).故答案为两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等.根据两直线平行,同位角相等可以求出∠DCB=∠2,等量代换得出∠DCB=∠1,再根据内错角相等,两直线平行得出GD ∥CB ,最后根据两直线平行,同位角相等,所以∠3=∠ACB .本题考查了平行线的判定与性质,熟练掌握平行线的判定方法和性质,并准确识图是解题的关键.22.【答案】解:(1)如图,△A 1B 1C 1即为所求,A 1(3,4)、C 1(4,2).(2)如图,D (0,1);(3)S 四边形ACC 1A 1=4×7-2×12×6×2-2×12×1×2=14. 答:四边形ACC 1 A 1的面积为14.【解析】(1)根据点P 坐标的变化即可得出△ABC 平移的方向和距离,画出△A 1B 1C 1,并写出点A 1、C 1的坐标即可;(2)根据平行四边形的对边互相平行且相等即可得出结论;(3)用长方形的面积减去4个直角三角形的面积即可.本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.23.【答案】4 0.8 3 23【解析】解:(1)=4,=0.8,=3,=;故答案为:4,0.8,3,;(2)不一定等于a,规律:=|a|;(3)=|π-3.15|=3.15-π.(1)依据被开方数即可计算得到结果;(2)根据计算结果,不一定等于a;(3)原式利用得出规律计算即可得到结果.此题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解本题的关键.24.【答案】证明:∵AD∥BE,∴∠A=∠3,∵∠1=∠2,∴DE∥AC,∴∠E=∠3,∴∠A=∠EBC=∠E.【解析】由于AD∥BE可以得到∠A=∠3,又∠1=∠2可以得到DE∥AC,由此可以证明∠E=∠3,等量代换即可证明题目结论.此题考查的是平行线的性质,然后根据平行线的判定和等量代换转化求证.25.【答案】∠EAB∠DAC65 215°-1n2【解析】解:(1)∵ED∥BC,∴∠B=∠EAB,∠C=∠DAC,故答案为:∠EAB,∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)Ⅱ.如图2,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°;故答案为:65;Ⅱ.如图3,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.故答案为:215°-n.(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)Ⅰ.过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;Ⅱ.∠BED的度数改变.过点E作EF∥AB,先由角平分线的定义可得:∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,然后根据两直线平行内错角相等及同旁内角互补可得:∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,进而可求∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.此题考查了平行线的判定与性质,解题的关键是:正确添加辅助线,及作出(3)中的图形.。
2017-2018学年山东省临沂市郯城县七年级(下)期中数学试卷(解析版)
2017-2018学年山东省临沂市郯城县七年级(下)期中数学试卷一、选择题(本大题共14小题,共42.0分)1.如图,∠1和∠2是对顶角的是()A. B.C. D.2.如图,∠1与∠2不是同旁内角的是()A. B.C. D.3.在实数:3.14159,,1.010010001…,,4.,,中,无理数有()A. 1个B. 2个C. 3个D. 4个4.下列运算中,正确的是()A. B. C. D.5.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A. B.C. D.6.车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是()A. B. C. D.7.如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于8,则四边形ABFD的周长等于()A. 8B. 10C. 12D. 148.已知点P(2-4m,m-4)在第三象限,且满足横、纵坐标均为整数的点P有()A. 1个B. 2个C. 3个D. 4个9.点A(-3,-5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A. B. C. D.10.通过估算,估计的大小应在()A. ~之间B. ~之间C. ~之间D. ~之间11.下列命题中,正确的是()A. 相等的角是对顶角B. 两条不相交的线段是平行的C. 过一点有且只有一条直线与已知直线平行D. 互为邻补角的两角的角平分线互相垂直12.点P位于第一象限,距y轴3个单位长度,距离x轴4个单位长度,则点P坐标是()A. B. C. D.13.如图,数轴上,AB=AC,A,B两点对应的实数分别是和-1,则点C所对应的实数是()A. B. C. D.14.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A. B.C. 或D. 或二、填空题(本大题共5小题,共15.0分)15.的算术平方根是______.16.-3的绝对值是______.17.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1=______,∠2=______.18.若点N(a+5,a+2)在y轴上,则N点的坐标为______.19.如图,点A(1,0)第一次跳动至点A1(-1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(-2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是______.三、解答题(本大题共7小题,共63.0分)20.(1)计算+-;(2)解方程:(2x-1)2=36.21.如图,点A在∠O的一边OA上.按要求画图并填空:(1)过点A画直线AB⊥OA,与∠O的另一边相交于点B;(2)过点A画OB的垂线段AC,垂足为点C;(3)过点C画直线CD∥OA,交直线AB于点D;(4)∠CDB=______°;(5)如果OA=8,AB=6,OB=10,则点A到直线OB的距离为______.22.完成证明并写出推理根据:已知,如图,∠1=132°,∠ACB=48°,∠2=∠3,FH⊥AB于H.求证:CD⊥AB.证明:∵∠1=132°,∠ACB=48°,∴∠1+∠ACB=180°∴DE∥BC∴∠2=______(______)又∵∠2=∠3∴∠3=∠DCB∴HF∥______(______)∴∠CDB=______.(______)又∵FH⊥AB,∴∠FHB=______(______)∴∠CDB=______°.∴CD⊥AB.(______)23.如图,BD⊥AC于D,EF⊥AC于F,DM∥BC,∠1=∠2.求证:∠AMD=∠AGF.24.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.25.在平面直角坐标系中,A,B,C三点的坐标分别为(-6,7)、(-3,0)、(0,3).(1)画出△ABC,并求△ABC的面积;(2)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出点A′,B′的坐标;(3)P(-3,m)为△ABC中一点,将点P向右平移4个单位后,再向上平移6个单位得到点Q(n,-3),则m=______,n=______.26.如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a-2)2+|b-4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.答案和解析1.【答案】B【解析】解:A、不是对顶角,故本选项错误;B、是对顶角,故本选项正确;C、不是对顶角,故本选项错误;D、不是对顶角,故本选项错误.故选:B.根据对顶角的概念:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,对各选项分析判断即可得解.本题考查了对顶角,邻补角,熟练掌握对顶角的定义是解题的关键.2.【答案】D【解析】解:选项A、C、B中,∠1与∠2在两直线的之间,并且在第三条直线(截线)的同旁,是同旁内角;选项D中,∠1与∠2的两条边都不在同一条直线上,不是同旁内角.故选:D.根据同旁内角的概念:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.可得答案.此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U”形.3.【答案】C【解析】解:=4,=2,无理数有:1.010010001…,,,共3个.故选C.根据无理数的三种形式,找出无理数的个数.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.【答案】C【解析】解;A、9的算术平方根是3,故A错误;B、-8的立方根是-2,故B错误;C、|-4|=4,4的算术平方根是2,故C正确;D、算术平方根都是非负数,故D错误;故选:C.根据开方运算,可得算术平方根、立方根.本题考查了立方根,负数的立方根是负数.5.【答案】B【解析】解:A、∠3=∠A,无法得到,AB∥CD,故此选项错误;B、∠1=∠2,根据内错角相等,两直线平行可得:AB∥CD,故此选项正确;C、∠D=∠DCE,根据内错角相等,两直线平行可得:BD∥AC,故此选项错误;D、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD∥AC,故此选项错误;故选:B.根据平行线的判定分别进行分析可得答案.此题主要考查了平行线的判定,关键是掌握平行线的判定定理.6.【答案】C【解析】解:过点B作BF∥AE,如图,∵CD∥AE,∴BF∥CD,∴∠BCD+∠CBF=180°,∵AB⊥AE,∴AB⊥BF,∴∠ABF=90°,∠ABC+∠BCD=∠ABF+∠CBF+∠BCD=90°+180°=270°.故选C.过点B作BF∥AE,如图,由于CD∥AE,则BF∥CD,根据两直线平行,同旁内角互补得∠BCD+∠CBF=180°,由AB⊥AE得AB⊥BF,所以∠ABF=90°,于是有∠ABC+∠BCD=∠ABF+∠CBF+∠BCD=270°.故选C.本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.7.【答案】B【解析】解:根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选B.根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.8.【答案】C【解析】解:∵点P(2-4m,m-4)在第三象限,∴,由①得,m>,由②得,m<4,所以,不等式组的解集是<m<4,∴整数m为1、2、3,∴满足横、纵坐标均为整数的点P有3个.故选:C.根据第三象限内点的横坐标是负数,纵坐标是负数,列出不等式求出m的取值范围,然后求出整数m的个数即可得解.本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.【答案】C【解析】解:点A(-3,-5)向上平移4个单位,再向左平移3个单位得到点B,坐标变化为(-3-3,-5+4);则点B的坐标为(-6,-1).故选C.直接利用平移中点的变化规律求解即可.本题考查点坐标的平移变换.关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.10.【答案】C【解析】解:∵64<76<81,∴89,排除A和D,又∵8.52=72.25<76.故选:C.先找到所求的无理数在哪两个和它接近的有理数之间,然后判断出所求的无理数的范围.此题主要考查了无理数的大小估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.11.【答案】D【解析】解:A、相等的角不一定是对顶角,所以A选项错误;B、两条不相交的线段可能平行,所以B选项错误;C、过直线外一点有且只有一条直线与已知直线平行,所以C选项错误;D、互为邻补角的两角的角平分线互相垂直,所以D选项正确.故选D.根据对顶角的定义对A进行判断;根据平行线的判定方法对B进行判断;根据过直线外一点有且只有一条直线与已知直线平行对C进行判断;根据邻补角的定义和垂直的定义对D进行判断.本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.12.【答案】B【解析】【分析】本题考查点的坐标的意义与四个象限点的符号.注意:横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.设P的坐标为(x,y),点P到坐标轴的距离,可得|x|=3,|y|=4,又由P位于第一象限,可得x、y的符号,进而可得答案.【解答】解:设P的坐标为(x,y),根据题意,点P到x轴的距离为4,到y轴的距离为3,则有|x|=3,|y|=4,又由P位于第一象限,故x=3,y=4;故点P的坐标为(3,4).故选B.13.【答案】D【解析】解:AC=AB=+1,C点坐标A点坐标加AC的长,即C点坐标为++1=2+1,故选:D.根据线段中点的性质,可得答案.本题考查了实数与数轴,利用线段中点的性质得出AC的长是解题关键.14.【答案】C【解析】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(-4,0)或(6,0).故选:C.根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x轴上,说明AP=5,已知点A的坐标,可求P点坐标.本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.15.【答案】2【解析】解:∵=4,∴的算术平方根是=2.故答案为:2.首先根据算术平方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.此题主要考查了算术平方根的定义,注意要首先计算=4.16.【答案】3-【解析】解:-3的绝对值是3-,故答案为:3-.根据差的绝对值是大数减小数,可得答案.本题考查了实数的性质,差的绝对值是大数减小数.17.【答案】68°112°【解析】解:∵一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,∴∠MEF=∠FED,∠EFC+∠GFE=180°,∵AD∥BC,∠EFG=56°,∴∠FED=∠EFG=56°,∵∠1+∠GEF+∠FED=180°,∴∠1=180°-56°-56°=68°,又∵∠1+∠2=180°,∴∠2=180°-68°=112°.故答案为:68°,112°.首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据三角形内角和定理求出∠1的度数,最后根据平行线的性质求出∠2的度数.本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.18.【答案】(0,-3)【解析】解:∵点N(a+5,a+2)在y轴上,∴a+5=0,解得:a=-5,∴a+2=-3,∴N点的坐标为(0,-3).故答案填:(0,-3).点N(a+5,a+2)在y轴上,则横坐标是0,求出a的值后即可得到N的坐标.本题主要考查了点在y轴上时横坐标是0的特点.19.【答案】(51,50)【解析】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故答案为:(51,50)根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.20.【答案】解:(1)原式=4+2-=5;(2)∵(2x-1)2=36,∴2x-1=6或2x-1=-6,解得:x=或x=-.【解析】(1)根据二次根式的性质分别化简,再计算加减法可得;(2)直接开平方法求解可得.本题主要考查二次根式的加减法和解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.【答案】90 4.8【解析】解:(1)如图;(2)如图;(3)如图;(4)∵CD∥OA,∴∠CDB=∠OAB=90°;(5)AC==4.8.(1)过点A画直线AB⊥OA,与∠O的另一边相交于点B;(2)过点A画OB的垂线段AC,垂足为点C;(3)过点C画直线CD∥OA,交直线AB于点D;(4)利用两直线平行同位角相等即可确定答案;(5)利用等积法即可求得线段AC的长.本题考查了基本作图的知识,正确的根据题意作出图形是解答本题的关键,难度不大.22.【答案】∠DCB两直线平行,内错角相等CD同位角相等,两直线平行∠FHB两直线平行,同位角相等90°垂直定义90 垂直定义【解析】证明:∵∠1=132°,∠ACB=48°,∴∠1+∠ACB=180°,∴DE∥BC,∴∠2=∠DCB(两直线平行,内错角相等),又∵∠2=∠3,∴∠3=∠DCB,∴HF∥CD(同位角相等,两直线平行),∴∠CDB=∠FHB,(两直线平行,同位角相等),又∵FH⊥AB,∴∠FHB=90°(垂直定义),∴∠CDB=90°,∴CD⊥AB(垂直定义),故答案为:∠DCB,两直线平行,内错角相等,CD,同位角相等,两直线平行,∠FHB,两直线平行,同位角相等,90°,垂直定义,90,垂直定义.求出∠1+∠ACB=180°,根据平行线的判定得出DE∥BC,根据平行线的性质得出∠2=∠DCB,求出∠3=∠DCB,根据平行线的判定得出HF∥CD,根据平行线的性质得出∠CDB=∠FHB,即可求出答案.本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.23.【答案】证明:∵BD⊥AC,EF⊥AC,∴BD∥EF,∴∠2=∠CBD,∵∠2=∠1,∴∠1=∠CBD,∴GF∥BC,∵BC∥DM,∴MD∥GF,∴∠AMD=∠AGF.【解析】由BD⊥AC,EF⊥AC,得到BD∥EF,根据平行线的性质得到∠2=∠CBD,等量代换得到∠1=∠CBD,根据平行线的判定定理得到GF∥BC,证得MD∥GF,根据平行线的性质即可得到结论.本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.24.【答案】解:过点C作CE∥AB,∵AB∥DE,∴AB∥DE∥CE,∵∠1=25°,∠2=110°,∴∠3=∠1=25°,∠4=180°-∠2=180°-110°=70°,∴∠BCD=∠3+∠4=25°+70°=95°.【解析】过点C作CE∥AB,再由平行线的性质即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.25.【答案】-9 1【解析】解:(1)如图,△ABC即为所求;(2)如图,△A′B′C′即为所求,A′(-1,8),B′(2,1);(3)∵P(-3,m)为△ABC中一点,将点P向右平移4个单位后,再向上平移6个单位得到点Q(n,-3),∴n=-3+4=1,m+6=-3,∴n=1,m=-9.故答案为:-9,1.(1)根据各点在坐标系中的位置描出各点,并顺次连接即可;(2)根据图形平移的性质画出平移后的△A′B′C′,并写出点A′,B′的坐标即可;(3)根据点平移的性质即可得出m、n的值.本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.26.【答案】解:(1)∵(a-2)2+|b-4|=0,∴a=2,b=4,∴A(0,2),B(4,2).∵将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,∴C(-1,0),D(3,0).∴S四边形ABDC=AB×OA=4×2=8;(2)在y轴上存在一点M,使S△MCD=S四边形ABCD.设M坐标为(0,m).∵S△MCD=S四边形ABDC,∴×4|m|=8,∴2|m|=8,解得m=±4.∴M(0,4)或(0,-4);(3)当点P在BD上移动时,=1不变,理由如下:过点P作PE∥AB交OA于E.∵CD由AB平移得到,则CD∥AB,∴PE∥CD,∴∠BAP=∠APE,∠DOP=∠OPE,∴∠BAP+∠DOP=∠APE+∠OPE=∠APO,∴=1.【解析】(1)先由非负数性质求出a=2,b=4,再根据平移规律,得出点C,D的坐标,然后根据四边形ABDC的面积=AB×OA即可求解;(2)存在.设M坐标为(0,m),根据S△PAB=S,列出方程求出m的四边形ABDC值,即可确定M点坐标;(3)过P点作PE∥AB交OC与E点,根据平行线的性质得∠BAP+∠DOP=∠APE+∠OPE=∠APO,故比值为1.本题考查了坐标与图形平移的关系,坐标与平行四边形性质的关系,平行线的性质及三角形、平行四边形的面积公式.关键是理解平移规律,作平行线将相关角进行转化.。
临沂市郯城县七年级下学期中段检测数学试题
临沂市郯城县七年级下学期中段检测数学试题一、选择题(本题共10小题,每小题3分,共30分)在每小题所给的四个选项中,只有一项是符合题目要求的。
1.在平面直角坐标系中,点M(2,-3)到x 轴的距离是A .2B .3C .-3D .52.下面四个图形中,线段BE 是△ABC 的高的是3.如图,已知AB ∥CD ,AC ⊥BC ,图中与∠2互余的角有A .1个B .2个C .3个D .4个4.如图,动点P(x ,y )在线段AB 上移动,那么下列结论中成立的是A .x ,y 都可以取任意数B .41<<x ,31≤≤yC .41≤≤x ,31<<yD .41≤≤x ,31≤≤y5.如图,由∠l=∠2,则可得出A .AD ∥BCB .AB ∥CDC .∠D=∠DCED .∠3=∠46.已知在同一平面内有四条直线a ,b ,c ,d ,a ∥b ,c a ⊥,d b ⊥,则c 与d 的关系是A .互相垂直B .互相平行C .相交但不垂直D .可能相交亦可能平行7.用两根长为4cm 和两根长为6cm 的木条钉成一个平行四边形,现在为了使其稳定,可在相对的两个顶点间再钉上一根木条,这根木条的长度可选 A .2cmB .8cmC .10cmD .12cm8.三角形中一条线段将它的面积分成相等的两部分,则这条线段是A .中线B .角平分线C .高D .连接两边中点的线段9.在直角坐标系中,OA 的长为4,B(3,0),C(-3,0),且AB=AC ,则点A 的坐标为A .(0,4)B .(0,-4)C .(0,4)或(0,-4)D .(4,0)或(-4,0)10.下列有关三角形内角、外角的说法中,正确的个数是①三角形中至少有一个内角不小于60°,至少有一个内角不大于60°; ②三角形的内角中,至少有两个锐角,至多有一个直角或钝角; ③三角形的一个外角等于它的两个内角之和; ④三角形的一个外角大于它的任何一个内角;⑤三角形的三个外角(每个顶点处只取一个)中,钝角的个数至少有两个 A .2个B .3个C .4个D .5个二、填空题(每小题3分,共30分)把答案填在题中横线上11.在同一平面内,两条直线的位置关系有_______________________。
人教七年级(下)期中数学试卷(解析版)
2017-2018学年山东省临沂市郯城县七年级(下)期中数学试卷一、选择题(本大题共14小题,共42.0分)1.如图,∠1和∠2是对顶角的是()A. B.C. D.2.若点A(m,n)在第二象限,那么点B(-m,|n|)在()A. 第一象限B. 第二象限;C. 第三象限D. 第四象限3.实数,-,0.1010010001,,π,中,无理数的个数是()A. 1B. 2C. 3D. 44.下列选项中能由左图平移得到的是()A. B. C. D.5.如图.已知AB∥CD,∠1=70°,则∠2的度数是()A.B.C.D. 1106.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(-2,1)的对应点为A′(3,-1),点B的对应点为B′(4,0),则点B的坐标为()A. B. C. D.7.下列说法正确的是()A. 是的平方根B. 3是的算术平方根C. 的平方根是2D. 8的平方根是8.点(x,x-1)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图是中国象棋的一盘残局,如果用(2,-3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()A. B. C. D.10.如图,如果AB∥CD,CD∥EF,那么∠BCE等于()A.B.C.D.11.估计的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间12.若=0.716,=1.542,则=()A. B. C. D.13.若+(y+2)2=0,则(x+y)2017=()A. B. 1 C. D.14.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=()A. B. C. D.二、填空题(本大题共5小题,共15.0分)15.如果a是的整数部分,b是的小数部分,则a-b=______.16.如图,若EF∥BC,DE∥AB,∠FED=40°,则∠B=______.17.已知点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,那么点P的坐标是______.18.把“同角的余角相等”写成“如果…,那么…”的形式为______.19.如图,已知A1(1,0),A2(1,-1),A3(-1,-1),A4(-1,1),A5(2,1),…,则点A2010的坐标是______.三、计算题(本大题共1小题,共11.0分)20.计算和化简:(1)计算:+-|1-|;(2)已知a、b、c为实数,且它们在数轴上的对应点的位置如图所示,化简:2+|b+c|--2|a|四、解答题(本大题共5小题,共52.0分)21.填写推理理由:如图,CD∥EF,∠1=∠2,求证:∠3=∠ACB.证明:∵CD∥EF,∴∠DCB=∠2______∵∠1=∠2,∴∠DCB=∠1.______∴GD∥CB______.∴∠3=∠ACB______.22.如图,在平面直角坐标系中有三个点A(-3,2)、B(-5,1)、C(-2,0),P(a,b)是△ABC的边AC上一点,△ABC经平移后得到△A1B1C1,点P的对应点为P1(a+6,b+2).(1)画出平移后的△A1B1C1,写出点A1、C1的坐标;(2)若以A、B、C、D为顶点的四边形为平行四边形,同时点D在y轴上,直接写出D点的坐标;(3)求四边形ACC1A1的面积.23.(1)计算填空:=______,=______,=______,=______(2)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?并请你把得到的规律描述出来?(3)利用你总结的规律,计算:24.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.25.阅读并补充下面推理过程:(1)如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.解:过点A作ED∥BC,所以∠B=______,∠C=______.又因为∠EAB+∠BAC+∠DAC=180°.所以∠B+∠BAC+∠C=180°.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.深化拓展:(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.Ⅰ.如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为______°.Ⅱ.如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED 的度数为______°.(用含n的代数式表示)答案和解析1.【答案】B【解析】解:A、不是对顶角,故本选项错误;B、是对顶角,故本选项正确;C、不是对顶角,故本选项错误;D、不是对顶角,故本选项错误.故选:B.根据对顶角的概念:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,对各选项分析判断即可得解.本题考查了对顶角,邻补角,熟练掌握对顶角的定义是解题的关键.2.【答案】A【解析】解:∵点A(m,n)在第二象限,∴m<0,n>0,∴-m>0,|n|>0,∴点B在第一象限.根据各象限内点的坐标的特点,由点A(m,n)在第二象限,得m<0,n>0,所以-m>0,|n|>0,从而确定点B的位置.熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).3.【答案】C【解析】解:无理数有:,,π共3个.故选:C.[分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.【答案】C【解析】解:能由左图平移得到的是:选项C.故选:C.根据平移的性质,图形只是位置变化,其形状与方向不发生变化进而得出即可.此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.5.【答案】D【解析】解:∵AB∥CD,∴∠1=∠3=70°,∵∠2+∠3=180°,∴∠2=110°.故选:D.由AB∥CD,根据两直线平行,同位角相等,即可求得∠2的度数,又由邻补角的性质,即可求得∠2的度数.此题考查了平行线的性质.注意数形结合思想的应用.6.【答案】D【解析】解:∵点A(-2,1)的对应点为A′(3,-1),∴线段A′B′是由线段AB先向右平移5个单位,再向下平移2个单位得到,而点B的对应点为B′(4,0),∴点B的坐标为(-1,2).故选:D.利用点A与点A′的坐标特征得到平移的规律,然后利用此平移规律由B′点的坐标确定点B的坐标.本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.7.【答案】B【解析】解:A、负数没有平方根,故选项A错误;B、(-3)2=9,9的算术平方根是3,故选项B正确;C、(-2)2=4的平方根是±2,故选项C错误;D、8的平方根是±2,故选项D错误.故选:B.A、B、C、D都根据平方根的定义即可判定.本题主要考查了平方根、算术平方根概念的运用.如果x2=a(a≥0),则x是a 的平方根.若a>0,则它有两个平方根,我们把正的平方根叫a的算术平方根.若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.8.【答案】B【解析】解:A、x>1时点在第一象限,故A正确;B、x<0时,x-1<-1,故B错误;C、x<0时,x-1<-1,故C正确;D、0<x<1时,故D正确;故选:B.根据第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),可得答案.本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.【答案】C【解析】解:建立平面直角坐标系如图所示,将(1,6).故选C.以帅的坐标向左两个单位,向上3个单位为坐标原点建立平面直角坐标系,然后写出将的坐标即可.本题考查了坐标确定位置,读懂题目信息,准确确定出坐标原点是解题的关键.10.【答案】C【解析】解:∵AB∥CD,CD∥EF.∴∠BCD=∠1,∠ECD=180°-∠2.∴∠BCE=180°-∠2+∠1.故选:C.本题主要利用两直线平行,内错角相等和同旁内角互补作答.本题运用了两次平行线的性质,找到了角之间的关系.11.【答案】C【解析】解:∵<<,∴的值在4和5之间.故选:C.直接利用二次根式的性质得出的取值范围.此题主要考查了估算无理数大小,正确把握最接近的有理数是解题关键.12.【答案】B【解析】解:∵=0.176,=1.542,∴=7.16,故选:B.根据立方根定义,即可解答.本题考查了立方根,解决本题的关键是熟记立方根的定义.13.【答案】A【解析】解:根据题意得x-1=0,y+2=0,解得x=1,y=-2,则原式=(-1)2017=-1.故选:A.根据非负数的性质列出算式,求出x、y的值,计算即可.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.14.【答案】B【解析】解:根据定义,f(2,-3)=(-2,-3),所以,g(f(2,-3))=g(-2,-3)=(-2,3).故选:B.根据新定义先求出f(2,-3),然后根据g的定义解答即可.本题考查了点的坐标,读懂题目信息,掌握新定义的运算规则是解题的关键.15.【答案】【解析】解:<=4,∴a=3,b=-3,∴a-b=6-.故填6-.<可得a=3,由此可得出答案.本题考查估算无理数的知识,解决本题的关键是找到和相近的能开方的数.16.【答案】40°【解析】解:∵EF∥BC,DE∥AB,∴四边形BDEF为平行四边形,∵∠FED=40°,∴∠B=∠FED=40°.故答案为:40°.根据EF∥BC,DE∥AB,可得四边形BDEF为平行四边形,然后根据平行四边形的性质:对角相等,可得出∠B=∠FED=40°.本题考查了平行线的性质,解答本题的关键是根据直线平行判断四边形BDEF为平行四边形,然后根据平行四边形的性质求出∠B的度数.17.【答案】(-3,2)【解析】解:∵点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是2,∴点P的坐标为(-3,2).故答案为:(-3,2).根据第二象限内点的坐标特征和点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.本题考查了点的坐标,是基础题,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.18.【答案】如果两个角是同一个角的余角,那么这两个角相等【解析】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”.命题有题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.本题考查命题的定义,根据命题的定义,命题有题设和结论两部分组成.19.【答案】(503,-503)【解析】解:易得4的整数倍的各点如A4,A8,A12等点在第二象限,∵2010÷4=502…2;∴A2010的坐标在第四象限,横坐标为(2010-2)÷4+1=503;纵坐标为-503,∴点A2010的坐标是(503,-503).故答案为:(503,-503).经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加-1,纵坐标依次加1;在第三象限的点的横坐标依次加-1,纵坐标依次加-1,在第四象限的点的横坐标依次加1,纵坐标依次加-1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1.本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.20.【答案】解:(1)原式=4-3-(-1)=1-+1=2-;(2)由数轴知a<b<0<c,且|b|<|c|,∴b-a>0,b+c>0,a-c<0,则原式=2|b-a|+b+c-|a-c|+2a=2(b-a)+b+c-(c-a)+2a=2b-2a+b+c-c+a+2a=3b+a.【解析】(1)先计算算术平方根、立方根,取绝对值符号,再去括号,继而计算加减可得;(2)先根据数轴得出b-a>0,b+c>0,a-c<0,再利用二次根式的性质和绝对值的性质化简可得.本题主要考查实数的运算及实数与数轴,解题的关键是掌握算术平方根、立方根的定义、二次根式的性质和绝对值的性质.21.【答案】两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,同位角相等【解析】证明:∵CD∥EF,∴∠DCB=∠2(两直线平行,同位角相等),∵∠1=∠2,∴∠DCB=∠1(等量代换).∴GD∥CB(内错角相等,两直线平行).∴∠3=∠ACB(两直线平行,同位角相等).故答案为两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等.根据两直线平行,同位角相等可以求出∠DCB=∠2,等量代换得出∠DCB=∠1,再根据内错角相等,两直线平行得出GD∥CB,最后根据两直线平行,同位角相等,所以∠3=∠ACB.本题考查了平行线的判定与性质,熟练掌握平行线的判定方法和性质,并准确识图是解题的关键.22.【答案】解:(1)如图,△A1B1C1即为所求,A1(3,4)、C1(4,2).(2)如图,D(0,1);(3)S四边形ACC1A1=4×7-2××6×2-2××1×2=14.答:四边形ACC1A1的面积为14.【解析】(1)根据点P坐标的变化即可得出△ABC平移的方向和距离,画出△A1B1C1,并写出点A1、C1的坐标即可;(2)根据平行四边形的对边互相平行且相等即可得出结论;(3)用长方形的面积减去4个直角三角形的面积即可.本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.23.【答案】4 0.8 3【解析】解:(1)=4,=0.8,=3,=;故答案为:4,0.8,3,;(2)不一定等于a,规律:=|a|;(3)=|π-3.15|=3.15-π.(1)依据被开方数即可计算得到结果;(2)根据计算结果,不一定等于a;(3)原式利用得出规律计算即可得到结果.此题考查了二次根式的性质与化简,熟练掌握二次根式的性质是解本题的关键.24.【答案】证明:∵AD∥BE,∴∠A=∠3,∵∠1=∠2,∴DE∥AC,∴∠E=∠3,∴∠A=∠EBC=∠E.【解析】由于AD∥BE可以得到∠A=∠3,又∠1=∠2可以得到DE∥AC,由此可以证明∠E=∠3,等量代换即可证明题目结论.此题考查的是平行线的性质,然后根据平行线的判定和等量代换转化求证.25.【答案】∠EAB∠DAC65 215°-n【解析】解:(1)∵ED∥BC,∴∠B=∠EAB,∠C=∠DAC,故答案为:∠EAB,∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)Ⅱ.如图2,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°;故答案为:65;Ⅱ.如图3,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.故答案为:215°-n.(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)Ⅰ.过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;Ⅱ.∠BED的度数改变.过点E作EF∥AB,先由角平分线的定义可得:∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,然后根据两直线平行内错角相等及同旁内角互补可得:∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,进而可求∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.此题考查了平行线的判定与性质,解题的关键是:正确添加辅助线,及作出(3)中的图形.。
2017-2018学年山东省临沂市郯城县七年级(下)期中数学试卷(解析版)
2017-2018学年山东省临沂市郯城县七年级(下)期中数学试卷一、选择题(本大题共14小题,共42.0分)1.如图,∠1和∠2是对顶角的是()A. B.C. D.2.若点A(m,n)在第二象限,那么点B(-m,|n|)在()A. 第一象限B. 第二象限;C. 第三象限D. 第四象限3.实数,-,0.1010010001,,π,中,无理数的个数是()A. 1B. 2C. 3D. 44.下列选项中能由左图平移得到的是()A. B. C. D.5.如图.已知AB∥CD,∠1=70°,则∠2的度数是()A.B.C.D. 1106.在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(-2,1)的对应点为A′(3,-1),点B的对应点为B′(4,0),则点B的坐标为()A. B. C. D.7.下列说法正确的是()A. 是的平方根B. 3是的算术平方根C. 的平方根是2D. 8的平方根是8.点(x,x-1)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图是中国象棋的一盘残局,如果用(2,-3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()A. B. C. D.10.如图,如果AB∥CD,CD∥EF,那么∠BCE等于()A.B.C.D.11.估计的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间12.若=0.716,=1.542,则=()A. B. C. D.13.若+(y+2)2=0,则(x+y)2017=()A. B. 1 C. D.14.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=()A. B. C. D.二、填空题(本大题共5小题,共15.0分)15.如果a是的整数部分,b是的小数部分,则a-b=______.16.如图,若EF∥BC,DE∥AB,∠FED=40°,则∠B=______.17.已知点P在第二象限,点P到x轴的距离是2,到y轴的距离是3,那么点P的坐标是______.18.把“同角的余角相等”写成“如果…,那么…”的形式为______.19.如图,已知A1(1,0),A2(1,-1),A3(-1,-1),A4(-1,1),A5(2,1),…,则点A2010的坐标是______.三、计算题(本大题共1小题,共11.0分)20.计算和化简:(1)计算:+-|1-|;(2)已知a、b、c为实数,且它们在数轴上的对应点的位置如图所示,化简:2+|b+c|--2|a|四、解答题(本大题共5小题,共52.0分)21.填写推理理由:如图,CD∥EF,∠1=∠2,求证:∠3=∠ACB.证明:∵CD∥EF,∴∠DCB=∠2______∵∠1=∠2,∴∠DCB=∠1.______∴GD∥CB______.∴∠3=∠ACB______.22.如图,在平面直角坐标系中有三个点A(-3,2)、B(-5,1)、C(-2,0),P(a,b)是△ABC的边AC上一点,△ABC经平移后得到△A1B1C1,点P的对应点为P1(a+6,b+2).(1)画出平移后的△A1B1C1,写出点A1、C1的坐标;(2)若以A、B、C、D为顶点的四边形为平行四边形,同时点D在y轴上,直接写出D点的坐标;(3)求四边形ACC1A1的面积.23.(1)计算填空:=______,=______,=______,=______(2)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?并请你把得到的规律描述出来?(3)利用你总结的规律,计算:24.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.。