热负荷及散热量计算
第2章 热负荷计算 (2)

W/ m2· ℃
c. 地面的传热系数 地面通常用地带划分法: 第一地带 K j =0.47 W/㎡· ℃
第二地带 K j =0.23 W/㎡· ℃
第三地带 K j =0.12 W/㎡· ℃ 第四地带 K j =0.07 W/㎡· ℃ 地面传热地带的划分 非保温地面的传热系数和热阻
地 带
(㎡· ℃/W) 第一地带 第二地带 第三地带 第四地带 (W/㎡· ℃)
A R n R w R p j n Ai R 0 i i 1
修 正 系 数
序 1 2 3 4 号
2 / 1 或 (2 3 ) / 21
0.09~0.19 0.20~0.39 0.40~0.69 0.70~0.99 0.86 0.93 0.96 0.98
供暖系统设计热负荷是供暖设计中最基本的 数据。它直接影响供暖系统方案的选择,供暖管
道管径和散热器等设备的确定,关系到供暖系统
的使用和经济效果。
二、围护结构的耗热量
围护结构耗热量包含内容:
①围护结构温差传热量。
②冷风渗透(缝隙渗入冷空气)耗热量。
③冷风侵入(外门开启侵入)耗热量。
④太阳辐射得热量。
按围护结构的不同朝向,选择不同的朝向修正率。 (注意各地规定)
Qch X ch .Q j
ቤተ መጻሕፍቲ ባይዱ
选用修正率时应考虑当地冬季日照率及辐射强度的大小。 冬季日照率小于35%的地区,东南、西南和南向的修正率 宜采用0~-10%,其他朝向可不修正。
② 风力附加耗热量
a. 主要原因: 考虑室外风速变化而对围护结构基本耗热量
供暖室外计算温度的用途:计算供暖建筑物围护结
房间供暖热负荷

房间的供暖负荷(Qg)系指为维持房间空气的某一平均温度而需要提供的热量,其值应等于房间失热量与得热量的差值:即房间供暖热负荷(Qg)=房间失热量(Q 失)-房间得热量(Q 失)对一般民用建筑(特别是居住建筑)而言,房间的得热量包括人体、电器和炊事等项散热,为不稳定且数量较小的得热量,一般情况下多不予计算(作为安全度考虑,也有的按建筑面积计算一定数量)。
这时的房间热负荷即简化成等于该房间的失热量。
即Qg=Q 失=QW+QF。
房间的失热量主要包括围护结构耗热量(QW)及空气渗入(或渗出)耗热量(QF)两大部分,计算是比较复杂的,现简述于后:(1)房间的围结构耗热量QW 围护结构的耗热量包括基本耗热量和附加耗热量两部分。
基本耗热量为包括围护结构的温差修正系数Ai在内的围护结构传热量;附加耗热量主要有朝向修正、风力附加、外门附加、高度附加等。
但对一般民用住宅建筑而言,主要附加耗热量为朝向修正Bi。
下面仅列出包括Ai、Bi的围护结构耗热量计算公式,至于其他的修正或附加不再详述,需要时按相关设计手册查取。
QW=∑(Ki*Fi*△tr)Ai*(1+Bi)(w)式中,QW为该房间所有外墙、外窗、顶板、地面的总耗热量,按小时计算;对楼板和内墙,一般不予计算。
但在分户热计量系统中,如相邻房间温差过大(大于5℃),就需要计算。
Ki 为某一围护结构(如外墙或外窗)的传热系数,可从相关设计手册查出,W/m2*℃;Fi 为与上述围护结构相对应的计算传热面积,m2;△tr为采暖设计计算传热温差,△tr=tn-tw,tn为室内计算温度,按房间用途确定,可从相关设计手册查取;tw为室外采暖计算温度,可从暖通空调设计规范查取,或根据当地气象资料计算取得。
值得注意的是,tw的数值,仅为按一定不保证时间、根据当地气象资料及其他情况确定的设计计算采用的数值,在此温度范围内,房间的空气平均温度能达到设计规范规定的tn±2℃的要求。
散热器的热负荷计算与系统优化方法

散热器的热负荷计算与系统优化方法引言:随着工业化和科技进步的发展,许多机械设备和电子产品在运行过程中会产生大量的热能。
为了保证这些设备的正常运行,避免因高温而引发的故障,散热器的设计与优化变得尤为重要。
散热器作为热交换装置的重要组成部分,起着将热能从高温区域传递到低温区域的关键作用。
本文将从散热器的热负荷计算和系统优化方法两方面,对散热器进行详细探讨。
一、散热器的热负荷计算1. 热负荷的概念与计算公式热负荷是指在设备或系统运行过程中所产生的热能,一般以功率的形式表示。
热负荷的计算公式为:热负荷 = 负荷密度 ×容积 ×系数。
其中,负荷密度是指单位体积或单位表面积的负荷功率;容积是指散热器的容积大小;系数是考虑冷却介质对传热效果的修正系数,可以根据实际情况进行调整。
2. 热负荷计算的方法(1)经验法:这种方法是根据历史数据和经验公式进行计算,通常适用于简单的散热器设计。
根据物体的体积、形状、材料等参数,选择适当的经验公式进行计算。
(2)数值模拟法:数值模拟法是利用计算机模拟的方法对散热器进行热传导分析,通过数学模型计算散热器内部的温度分布和传热效果。
这种方法可以更准确地预测散热器的热负荷,但需要借助专业的建模软件和计算能力。
(3)试验法:试验法是通过实际的实验测试来测量散热器的热负荷。
根据散热器和冷却介质的特性,设计合适的实验设备和测试方法,通过测量温度、流速等参数,得到散热器的热负荷数据。
二、散热器的系统优化方法1. 散热器的材料选择散热器的材料直接影响其散热效果和使用寿命。
常见的散热器材料有铝合金、铜、塑料等。
铝合金具有优良的散热性能和轻质化特点,广泛应用于电子产品散热器;铜的传导性能较好,适用于高功率设备的散热器;塑料散热器轻巧且价格低廉,适用于一些低功率设备。
2. 散热器的结构设计散热器的结构设计是影响散热效果的关键因素之一。
设计合理的结构可以增强热能传递、降低温度梯度,提高散热效率。
热负荷、冷负荷与湿负荷的计算

1、冷负荷:为了保持建筑物的热湿环境,在单位时间内需要向房间供的冷量。
热负荷:为了补偿房间失热,在单位时间内向房间供应的热量。
湿负荷:为了维持房间的相对湿度,在单位时间内需从房间去除的湿量。
也就是为维持室内含湿量恒定需从房间除去的湿量。
2、
膨胀水箱
1 2 3 4 5
1是溢流管:用于排出水箱内超过规定水位多余的水
2是信号管:用于监督水箱中的水位
3是补水管:水位低于设定值时将向水箱补水
4是膨胀管:它将系统中水因加热膨胀所增加的体积转入膨胀箱
5是循环管:在水箱和膨胀箱可能发生冻结时用来使水循环
7、水力失调:实际流量分配偏离所要求的流量
热力失调:供热量或室内温度偏离设计要求
9、单管热水采暖系统,管路末端阻力大,水力稳定性好,不易产生水力失调
双管热水采暖系统,易产生竖向水力失调。
暖气散热量计算方法

图三
式中D——直径;
K——1.05;
N——法兰个数。
(5)设备和管道法兰翻边防腐蚀工程量计算式:(图四)
图4
S=π×(D+A)×A
式中D——直径;
A——法兰翻边宽。
(6)带封头的设备防腐(或刷油)工程量计算式:(图五)
图五
S=L×π×D+(D[]22)×π×1.5×N
式中N——封头个数;
总结一句,也就是说正常集中供暖,房间阳面,可按每平米80W散热量计算,要是阴面则需要按105W来计算.要是一楼、顶楼、端头户(也就是把边),则还需要加大散热量,独立供暖、别墅则阳面最少要按105W的散热量来计算,设计的以上因素还是要按比例加大。这才能达到国家标准温度。
第十一册 刷油、防腐蚀、绝热工程
采暖地点1 2 3 4 5 6
阳阴阳阴阳阴阳阴阳阴阳阴
居民住宅80 105 122 159 114 137 139 168 213 257 166 200
3、独立供暖楼房:按集中供暖状态热指标X110%
4、独立别墅:按集中供暖状态热指标X130%
5、联体别墅:按集中供暖状态热指标X120%
6、平房:按集中供暖状态热指标X150%:
2、集中供暖楼房常规状态单位面积热指标:
常规状态指进水温度80度,回水温度60度、室温18度(结合北京实际供暖情况)
单位面积热指标:
无保温层
采暖地点1 2 3 4 5 6
阳阴阳阴阳阴阳阴阳阴阳阴
居民住宅105 126 153 183 166 199 158 191 228 272 175 195
有保温层
首先,我们要了解,暖气片的购买单位是组,它是由多少片暖气片组成的,大多数暖气片厂家都可以定制。其次了解暖气片的高度,市面上常见的一般有670mm、1500mm、1800mm三种,不同高度的暖气片散热量也不一样,高度越高散热量越大。
热负荷计算公式

热负荷计算公式在我们的日常生活和工业生产中,热负荷的计算是一项非常重要的工作。
热负荷指的是在某一特定条件下,为了维持室内或设备的温度,所需供应的热量。
准确计算热负荷对于合理设计供暖、空调、制冷等系统至关重要,它不仅能够保证系统的正常运行,还能有效地节约能源和降低成本。
热负荷的计算涉及到多个因素,包括室内外温度差、建筑物的围护结构特性、室内人员数量、设备的散热量等等。
下面我们就来详细介绍一下常见的热负荷计算公式及其应用。
一、围护结构传热引起的热负荷围护结构包括墙壁、屋顶、窗户、门等,它们的传热会导致热量的散失或增加。
围护结构传热引起的热负荷可以通过以下公式计算:Q1 = K × F ×(tn tw)其中,Q1 表示围护结构的传热热负荷(W);K 表示围护结构的传热系数 W/(m²·℃);F 表示围护结构的面积(m²);tn 表示室内计算温度(℃);tw 表示室外计算温度(℃)。
传热系数 K 取决于围护结构的材料和构造,不同的材料和构造具有不同的传热性能。
例如,砖墙的传热系数比保温材料的传热系数大,意味着热量更容易通过砖墙散失。
在实际计算中,需要分别计算不同朝向的墙壁、屋顶、窗户和门的传热热负荷,然后将它们相加得到总的围护结构传热热负荷。
二、冷风渗透引起的热负荷在建筑物中,由于门窗的缝隙等原因,室外的冷空气会渗入室内,从而带走热量。
冷风渗透引起的热负荷可以通过以下公式计算:Q2 =028 × cp × ρ × L × (tn tw)其中,Q2 表示冷风渗透热负荷(W);cp 表示空气的定压比热容kJ/(kg·℃),约为 101 kJ/(kg·℃);ρ 表示室外空气的密度(kg/m³);L 表示渗透冷空气量(m³/h)。
渗透冷空气量 L 的计算比较复杂,通常可以根据建筑物的类型、门窗的密封性等因素,采用经验公式或查表的方法来确定。
散热量计算公式

一、标准散热量标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室按规定条件所测得的散热量,单位是瓦(W)。
而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。
散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。
那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。
二、工程上采用的散热量与标准散热量的区别标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。
而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。
因此,在对工程热工计算中必须按照工程上的散热量来进行计算。
在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。
欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。
而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室温度20摄氏度,所对应的计算温差△T=50摄氏度。
欧洲标准散热量是在温差△T=50摄氏度的散热量。
那么怎么计算散热器在不同温差下的散热量呢?散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。
但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室温度,来计算出温差△T,然后计算各种温差下的散热量。
采暖工程量计算公式

采暖工程量计算公式随着冬季的到来,采暖工程的规划变得尤为重要。
而对于采暖工程量的计算公式,是进行规划和设计的基础。
本文将介绍一种常用的采暖工程量计算公式,以帮助读者准确地进行工程规划。
1. 采暖负荷计算公式采暖负荷是指为保持室内空气温度适宜而必须供应的热量。
常用的采暖负荷计算公式为:Q = Qv + Qs + Qw其中,Q为采暖负荷(单位:千瓦),Qv为室内人员热量负荷,Qs为外墙及外表面传热负荷,Qw为气流带来的换气热负荷。
2. 室内人员热量负荷计算公式室内人员热量负荷是指由人员活动所产生的热量。
计算公式如下:Qv = N × P × Qp其中,Qv为室内人员热量负荷(单位:千瓦),N为人员数量,P 为单位面积的人员数(单位:人/平方米),Qp为单位人员的热量负荷(单位:瓦/人)。
3. 外墙及外表面传热负荷计算公式外墙及外表面传热负荷是指建筑外墙和外表面散热所需的热量。
计算公式如下:Qs = (Uw × Aw + Us × As) × ΔT其中,Qs为外墙及外表面传热负荷(单位:千瓦),Uw为外墙传热系数(单位:瓦/平方米·摄氏度),Aw为外墙面积(单位:平方米),Us为外表面传热系数(单位:瓦/平方米·摄氏度),As为外表面积(单位:平方米),ΔT为室内外温差(单位:摄氏度)。
4. 气流带来的换气热负荷计算公式气流带来的换气热负荷是指由于通风和换气而引起的热量损失。
计算公式如下:Qw = V × ΔT × 1.2其中,Qw为气流带来的换气热负荷(单位:千瓦),V为空气流量(单位:立方米/小时),ΔT为室内外温差(单位:摄氏度),1.2为空气的比热容。
5. 举例说明以某办公室建筑为例,已知人员数量为50人,单位面积的人员数为0.1人/平方米,单位人员的热量负荷为100瓦/人。
外墙传热系数为1.5瓦/平方米·摄氏度,外墙面积100平方米,外表面传热系数为2瓦/平方米·摄氏度,外表面积50平方米,室内外温差为20摄氏度,空气流量为500立方米/小时。
热负荷计算

1 室内供暖系统的设计热负荷供暖热负荷的估算对于只设供暖系统的建筑物,在进行方案初选或只做技术方案比较时,其供暖的供热量可采用下面方法之一进行估算。
1)单位面积热指标法当只知道总面积时,其供暖热指标可参考表2-6的数值。
表2-6 供暖指标(单位 W/m2)若建筑物总面积大,外围护结构热工性能好,窗户面积小,采用下限的指标;反之,采用较大的上限指标。
2)窗墙比公式法当已知外墙面积、窗墙比及建筑面积时,供暖指标也可按下式估算:q={(1.163κ(6a+1.5)A)}•(t N-t W)/F (W/m2)式中 q——建筑物供暖热负荷指标,W/m2,按表2-6选取;κ——新风系数,1.3~1.5;a——外窗面积与外墙面积(包括窗)之比;A——外墙总面积(包括窗),m2F——总建筑面积,m2t N——冬季空调室内计算温度,℃;t W——冬季空调室外计算温度,℃。
在冬季,人们为了满足正常活动和生产工艺的需要,要求室内具有一定的温度。
为此就得向房间供给一定的热量,以维持供暖房间在该温度下的热平衡。
所谓供暖系统的设计热负荷,是指在某一室外温度下,为了维持所要求的室内温度,供暖系统在单位时间内向建筑物供给的热量。
该热量随着房间失热量与得热量的变化而变化。
当室内能维持在一定温度时,必须保持供暖房间在该温度下的热平衡。
通过对供暖房间热平衡时得热量和失热量情况的分析和计算,就可以确定供暖系统的设计热负荷。
供暖系统的热负荷是指在某一室外温度下,为了达到要求的室内温度,供暖系统在单位时间内向建筑物供给的热量。
它随建筑物得失热量的变化而变化,是一个动态的概念[5]。
1.1供暖房间的热平衡冬季供热通风系统的热负荷应根据建筑物或房间的得、失热量确定,即根据(建筑物 或房间的)热平衡确定热负荷Q 。
(1)失热量失热量(sh Q )包括以下几部分: (1)围护结构传热耗热量Q1。
;(2)冷风渗透耗热量Q2(加热由门窗缝隙渗入的冷空气的耗热量);(3)冷风渗入耗热量Q3(加热由外门、孔洞及相邻房间侵入的冷空气的耗热量); (4)水分蒸发耗热量Q4;(5)加热外部进入的冷物料和运输工具的耗热量Q5;(6)通风耗热量Q6(通风系统将空气从室内排到室外所带走的热量)。
数据中心热负荷计算

数据中心热负荷计算数据中心的热负荷计算是设计和运营数据中心的重要步骤之一。
正确的热负荷计算可以帮助我们充分了解数据中心的散热需求,确保数据中心设备正常运行,提高能源利用效率。
本文将对数据中心热负荷计算的方法和步骤进行详细介绍。
一、热负荷计算的重要性数据中心是大规模计算机设备集中存放的场所,高密度的设备运行会产生大量的热量,而恰当的热负荷计算可以帮助我们评估数据中心的散热需求,从而配备合适的散热设备,优化散热系统的效率。
合理的散热设计可以提高数据中心的可靠性和稳定性,并且降低能源消耗。
二、热负荷计算的方法数据中心热负荷计算主要有两种方法,分别是经验法和数学模型法。
1. 经验法经验法是一种基于历史数据和经验调整的热负荷计算方法。
通过对过往数据中心运行情况的观察和分析,结合实际情况对数据中心的热负荷进行估算。
这种方法简单直观,适用于规模较小、设备类型单一的数据中心。
但是由于依赖于经验和历史数据,对于不同类型的数据中心可能会存在误差。
2. 数学模型法数学模型法是一种基于热力学原理和计算机仿真的热负荷计算方法。
通过建立数据中心的热力学模型,结合数据中心的设备布局、功耗信息等参数,使用计算机软件模拟数据中心的热传导、对流和辐射等过程,得到热负荷的准确计算结果。
这种方法的优点是准确性高,适用于规模较大、复杂设备类型的数据中心。
但是需要专业知识和软件支持。
三、热负荷计算的步骤进行数据中心热负荷计算时,需要按照以下步骤进行。
1. 收集数据首先,需要收集数据中心的相关信息,包括数据中心的布局、设备类型和功耗、环境条件等。
这些数据将用于后续的计算和分析。
2. 计算设备功耗根据数据中心的设备类型和规模,计算每个设备的功耗。
设备的功耗通常可以从设备的技术参数或者设备供应商提供的信息中得到。
3. 计算散热功耗根据设备的功耗和工作状态,计算数据中心的散热功耗。
散热功耗包括设备直接散发的热量和空调系统消耗的能量。
4. 估算散热能力根据数据中心的设计和散热设备的技术参数,估算数据中心的散热能力。
散热量计算公式

一、标准散热量标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。
而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。
散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。
那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。
二、工程上采用的散热量与标准散热量的区别标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。
而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。
因此,在对工程热工计算中必须按照工程上的散热量来进行计算。
在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。
欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。
而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,所对应的计算温差△T=50摄氏度。
欧洲标准散热量是在温差△T=50摄氏度的散热量。
那么怎么计算散热器在不同温差下的散热量呢?散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。
但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。
散热量计算公式

散热量计算公式(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、标准散热量标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。
而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=摄氏度,室温18摄氏度,计算温差△T=摄氏度-18摄氏度=摄氏度,这是散热器的主要技术参数。
散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。
那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。
二、工程上采用的散热量与标准散热量的区别标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=摄氏度时的散热量。
而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。
因此,在对工程热工计算中必须按照工程上的散热量来进行计算。
在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。
欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。
而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,所对应的计算温差△T=50摄氏度。
欧洲标准散热量是在温差△T=50摄氏度的散热量。
那么怎么计算散热器在不同温差下的散热量呢散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=摄氏度时的散热量)。
热负荷计算

2.1室内外空气计算参数
一 、室外空气计算参数
(1)室外空气计算参数:指在负荷计算中所采用 的室外空气参数。
(2)确定室外空气计算参数:按现行的《民用建 筑供暖通风与空气调节设计规范》(GB507362012)中规定的计算参数。
(3)我国确定室外空气计算参数的基本原则:按不 保证天数(小时数)法,即全年允许有少数时间不 保证室内温湿度标准。若必须全年保证时,参数需 另行确定。 (4)室外空气计算参数主要有: 供暖室外计算温度: 供暖室外计算温度的确定:《规范》规定取冬季历 年平均不保证5天的日平均温度。
1、冷负荷:为补偿房间得热,保持一定热湿环境,在单位时 间内所需向房间供应的冷量,称为冷负荷。 2、热负荷:为补偿房间失热在单位时间内所需向房间供应的 热量,称为热负荷。 3、湿负荷:为了维持房间湿度恒定需从房间除去湿量称为湿 负荷。 4、正确确定冷热湿负荷的意义:负荷计算是暖通空调设计的 依据,关系到环境指标,保证设备容量大小,方案确定,系统 管道大小等。
a. 主要原因: 考虑室外风速变化而对围护结构基本耗热量 的修正。
b. 修正方法: 规范5.2.6规定:设在不避风的高地、河边、 海岸、旷野上的建筑物、以及城镇中明显高出周围其他建筑 物的建筑物,其垂直外围护结构宜附加5%—10%。
一般城市中建筑物可不附加。
.
Qf X f Qj
③ 外门附加率
a. 产生原因:在冬季受风压和热压作用下,冷空气由开启的 外门侵入室内,这部分冷空气加热到室内温度所消耗的热 量。
第2章 热负荷计算
2.1室内外空气计算参数 2.2冬季建筑的热负荷 2.3计算例题
建筑热工分区:
严寒地区:最冷月平均温度 < -10℃。 设计要求:必须充分满足冬季保温要求, 一般可不考虑夏季防热。 寒冷地区:最冷月平均温度0~-10℃。 设计要求:应满足冬季保温要求,部分地区兼 顾夏季防热。
第2讲供暖热负荷计算全

Q KF(tn tw' )
传热系数
供暖室外计算温度 供暖室内计算温度
第2讲 供暖设计热负荷的计算
(2)与非供暖房间或空间相邻的围护结构,两种计算方法:
供
tn
暖 房
间
q′
非
供 暖
th
房
间
t′w
不知道相邻房间温度时,按温差修正系数的方法
5、两面及两面以上外墙附加xlmwq 将外墙、外窗、外门的基本耗热量附加5%。
6、窗墙比附加xcqb 当窗墙比大于0.5,窗的基本耗热量附加10%。
第2讲 供暖设计热负荷的计算
7、间歇附加xjx 仅白天使用的建筑物,间歇附加率取20%; 对不经常使用的建筑物,间歇附加率可取30%。
8、与相邻房间的温差大于或等于5℃时,应计算通 过隔墙或楼板的传热量;与相邻房间的温差小于 5℃时,但通过隔墙或楼板的传热量大于该房间热 负荷的10%时,应计算其传热量。
第2讲 供暖设计热负荷的计算
五、围护结构耗热量Q1计算公式
Q1 (1 xjx)(1 xg ) [aKF(tn tw' )(1 xch xf xwm xchqb xlmwq )]
三、居住建筑对流供暖热负荷的计算 1、基本公式
Qn Qsh Qd Q1 Q2 Q1j Q1f Q2
Q1—围护结构传热耗热量(包括基本耗热量 Q1j和附加耗热量Q1 f)
Q2 —冷风渗透耗热量。
第2讲 供暖设计热负荷的计算
2、围护结构基本耗热量 基本耗热量是指在设计条件下通过房间各部分
第2讲 供暖设计热负荷的计算
1、朝向修正率xch 北、东北、西北向:0~10%; 东、西:-5%; 东南、西南:-10%~-15%; 南向:-15%~30%。 冬季日照率小于35%的地区,东南、西南和南 向的修正率宜采用-10%~0%,东西可不修正。
暖气散热量计算方法

首先,我们要了解,暖气片的购买单位是组,它是由多少片暖气片组成的,大多数暖气片 厂家都可以定制。
其次了解暖气片的高度,市面上常见的一般有 670mm、1500mm、1800mm 三种,不同高度的暖气片散热量也不一样,高度越高散热量越大。
暖气片片数需要根据房间面积来计算的。
首先选择一款性价比最高的暖气片,记住它每片 的散热量,用这个【散热量】除以 100 就得到【每平米需要的片数】,然后用【房间面积】 除以【每平米需要的片数】,就得到这个房间需要的【总片数】。
举个例子:小编客厅面 积为 20 平米,选中鲁本斯塞尚大水道 1800 高的暖气片,每片的散热量是 260W,算法是: 用散热量 260W 除以 100 等于 2.6(每平米需要的片数),(房间面积)20 除以 2.6 等于 7.7,所以 20 平房间需要 8 片一组的暖气片。
最后,建议房屋密封性不好的买家在此算法的基础上多买一到两片,这样能达到更好的采 暖效果。
1)影响散热量的因素可以归结为两个方面:一是散热器本身的特点,如它的材料、形状、壁厚、焊接质 量和表面处理等;二是它的使用条件,也就是外界条件,如流过散热器的热媒种类、温度、流量,进出水 的方式,房间里的空气温度和流速,四周墙面的颜色和温度,散热器的安装方式,组装片数等。
因此,不 仅不同的散热器散热性能不同,而且同一片或同一组散热器在不同外界条件下的散热性能也不相同。
散热器的散热量可用下式表示: Qs=KsFs(tp-tn)式中 Qs——散热器的散热量(W); Ks——散热器的传热系数[W/(m2•℃)]; Fs——散热器的散热面积(m2); tp——散热器内热媒的平均温度(℃); tn——散热器所在室内的空气温度(℃)。
由式中可见,温差 tp-tn 越大,散热量也越大。
如果它们成直线关系变化,则 Ks 就应该是常数。
但是,事 实上散热量的增大倍数要高于温差的增长倍数。
Ks 值并不能直接测得,即便有了 Qs、tp、tn 的数值之后,Ks 还和散热器的面积 Fs 有关。
空气能采暖热负荷计算公式

空气能采暖热负荷计算公式空气能采暖在2015年成为行业的一大热点,众多空气能企业试水空气能采暖。
对于空气能企业而言,空气能本身的技术可能不是问题,但如何去计算设计采暖热负荷,这倒是一个问题。
采暖热负荷的估算公式:Qn=a*qn*V*(tn-tw),式中:Qn —采暖热负荷W ;tn—室内空气温度℃;tw —室外供暖计算温度;V—建筑的体积m3;qn—体积热指标(根据建筑的保温情况宜取0.4-0.7);a—修正系数。
:你要考虑房间的散热量房间的散热量主要由以下几部分够成:1.外墙散热量;2.外窗散热量;3.户门传热量;4.隔墙传热量;5.屋顶散热量;6.地面散热量;7.冷风渗透耗热量;8.冷风侵入耗热量。
你还要考虑独立分户供暖的负荷特点独立分户供暖负荷具有以下的特点:1.独立控制,室温可调;2.间歇运行,短时间加热功率大;3.存在户间传热的问题。
基于以上原因,独立分户供热热源的加热功率要高于按照传统集中供热,计算所得的热负荷一般需要乘以1.3~1.5 的系数。
另外还有一些特别注意事项1.地板辐射供暖与一般散热器对流供暖方式相比,热工特性有许多区别。
辐射供暖房间热负荷的严格计算是很复杂的,为简化计算,可近似采用按对流采暖方式热负荷计算的基础上,进行一些特殊的修正和调整。
2.应按《采暖通风及空气调节设计规范》的有关规定,进行房间的供暖热负荷计算。
但与常规对流式供暖方式热负荷计算应有所区别。
3.不计算有敷设有加热管道地面的供暖热负荷。
4.供暖热负荷计算宜将室内计算温度降低2摄氏度,或取常规对流式供暖方式计算供暖热负荷的80至90%。
5.地板辐射用于房间局部区域供暖、其它区域不供暖时,地板辐射所需散热量可按全面辐射供暖所需散热量,乘以计算系数。
供暖区面积与房间总面积的比值>0.80 0.55 0.40 0.256.供暖区面积比值在0.20至0.80区间的其它数值时,按插入法确定计算系数。
7.进深大于6m的房间,宜以距外墙6m为界分区,当作不同的单独房间,分别计算其供暖热负荷和进行地板辐射供暖的设计。
热负荷的计算

热负荷的计算一、供暖系统的设计热负荷——指在设计室外温度tw'下,为了达到要求的室内温度tn,供暖系统在单位时间内向建筑物供给的热量。
影响房间内空气温度升降的因素是房间得热量与失热量。
在供暖设计热负荷计算中,通常涉及到的房间得失热量有:1.失热量:(1).通过建筑围护结构的传热耗热量;(2).加热由门、窗缝隙渗入室内的冷空气的耗热量,称为冷风渗透耗热量;(3).加热由门、孔洞及相邻房间侵入的冷空气耗热量,称为冷风侵入耗热量。
2.得热量:太阳辐射进入室内的热量(人体散热量、炊事和照明散热量,一般散发量不大,且不稳定,通常可不计入)。
二、通过围护结构的温差传热量围护结构的基本耗热量是按一维稳定传热过程进行计算的,即假设在计算时间内,室内外空气温度和其他传热过程参数都不随时间变化。
围护结构传热耗热量,可按下式计算:Q’=KF(tn-tw’)a·(1+β)K—围护结构的传热系数,W/㎡℃,查询表二及“2005年公共建筑节能设计标准”;F —围护结构的面积,㎡;tn —冬季室内计算温度,℃,查询表三;tw’—供暖室外计算温度,℃,查表一;a—围护结构的温差修正系数,通常情况下取值为1;β—朝向修正系数,由于太阳辐射对耗热量的修正。
《暖通规范》规定,β宜按下列规定数值,选用不同朝向修正率。
北、东北、西北 0—10﹪;东南、西南 -10﹪—-15﹪;东、西 -5﹪;南 -15﹪—-30﹪。
选用修正率时,应考虑当地冬季日照率、建筑物使用和被遮挡情况。
整个建筑物或房间的传热耗热量等于他的围护结构各个部分传热耗热量的总和。
表一常见城市供暖室外计算温度' w t表 二 非节能建筑常用围护结构的传热系数K 值(C m W ︒∙2/)表三 室内计算温度n t (推荐值)2005年公共建筑节能设计标准注:建筑物体型系数S指建筑物与室外大气接触的外表面积与所包围的体积的比值。
外表面积中不包括地面和不采暖楼梯间隔墙和户门的面积。
热负荷计算

热负荷:变化的值
设计热负荷:定值
供暖系统的设计热负荷
一般民用建筑(没有机械通风时):
Q2 Q3 Q Q1
Q 设计热负荷 围护结构传热耗热量 Q1 冷风渗透耗热量 Q2 冷风侵入耗热量 Q3
供暖系统的设计热负荷
又由于:
j Q1, x Q1 Q1, j 围护结构基本耗热量 Q1, x 围护结构修正(附加)耗热量 Q1,
各层材料导热系数
见有关规范和设计手册
有封闭空气间层的围护结构传热系数确定:
见民规5.1.8-4
一些常用的围护结构的传热系数可直接 从《实用供热空调设计手册》查取
地面的传热系数K值
用平均传热系数法: 当围护物是贴土的非保温地面时,其温 差传热量计算式为:,
地面的传热系数K值
Qj , d kpj.dFd tn tw
《全国民用建筑工程设计技术措施暖通空调. 动力(2009) 2.5.2居住建筑的室内采暖计算温度,不应低 于表中的规定值
续上表
冬季空气集中加湿耗能较大, 延续我国供暖系统设计习惯,供暖 建筑不做湿度要求。
层高较高的建筑
层高超过4m的建筑物或房间,室内 温度分布不均匀,由于对流作用,使 顶部空气温度高于底部空气温度,通 过上部围护结构的传热量增加。由于 温度梯度的存在,tn的取法不一。应按 下列规定采用:
一、朝向修正耗热量的计算
需要修正的耗热量等于垂直的外围护 结构 (门、窗、外墙及屋顶的垂直部 分)的基本耗热量乘以相应的修正率。 朝向修正率xch的取值见有关资料 。
朝向修正率的确定
民规: 选用不同朝向的修正率: 北、东北、西北 0—10%; 东、西 -5% ; 东南、西南 -10%一-15%; 南-15%一-30%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. Word 资料 热负荷及散热量计算 所谓热负荷是指维持室内一定热湿环境所需要的在单位时间向室内补充的热量。所谓得热量是指进入建筑物的总量,它们以导热、对流、辐射、空气间热交换等方式进入建筑。 系统热负荷应根据房间得、失热量的平衡进行计算,即 房间热负荷=房间失热量总和-房间得热量总和 房间的失热量包括: 1)围护结构传热量Q1; 2)加热油门、窗缝隙渗入室内的冷空气的耗热量Q2; 3)加热油门、孔洞和其他相邻房间侵入的冷空气的耗热量Q3; 4)加热由外部运入的冷物料和运输工具的耗热量Q4; 5)水分蒸发的耗热量Q5; 6)加热由于通风进入室内冷空气的耗热量Q6; 7)通过其他途径散失的热量Q7; 房间的得热量包括: 1)太阳辐射进入房间的热量Q8; 2)非供暖系统的管道和其他热表面的散热量Q9; 3)热物料的散热量Q10; 4)生产车间最小负荷班的工艺设备散热量Q11; 5)通过其他途径获得的散热量Q12; 1.1围护结构的基本耗热量
attKFqwn)(''
式中 'q—围护结构的基本耗热量,W; K—围护结构的传热系数,w/(㎡.℃); F—围护结构的面积,㎡;
wt'—供暖室外计算温度,℃;
nt—冬季室内计算温度,℃;
a—围护结构的温差修正系数。 整个建筑物的基本耗热量等于各个部分围护结构的基本耗热量的总和:
)(Q'''1wnttKFq 1.2围护结构的附加耗热量 在实际中,气象条件和建筑物的结构特点都会影响基本耗热量使其发生变化,此时需要对基本耗热量加以修正,这些修正耗热量称为围护结构附加耗热量。附加耗热量主要有朝向修正,风力附加和高度附加耗热量。 1.2.1朝向修正耗热量 朝向修正耗热量是太阳辐射对建筑围护耗热量的修正。 . Word 资料 表1-1朝向修正率 朝向 修正率 朝向 修正率 北 0 西 -5% 东 -5% 南 20% 1.2.2风力附加耗热量 《暖通规范》规定:在一般情况下不必考虑风力附加。 1.2.3高度附加耗热量 《暖通规范》规定:民用建筑和工业辅助建筑(除楼梯间外) 的高度附加率,当房高超过四米时,每增加一米,为附加围护基本耗热量和其他修正量总和的2%,但总附加率不超过总附加率的15%。 所以,建筑物的总耗热量等于围护结构基本耗热量和朝向修正,风力附加和高度附加耗热量的总和,则
)1()'(1Q'1fchwngxxttaKFx)(
式中 chx—朝向修正率,%; fx—风力附加率,%;
gx —高度附加率,%;
1.3冷风渗透耗热量 在室内外风压和热压压差作用下,室外的冷空气通过门窗的缝隙渗入室内,被加热后又溢出室外。把冷空气加热到室内温度所消耗的热量称为冷风渗透耗热量。本设计采用百分数法计算冷风渗透耗热量。 根据建筑结构特点,本设计渗透热量占围护结构的总耗热量的30%。 1.4冷风侵入耗热量 冬季在风压和热压的共同作用下,当外门开启时,会有大量的冷空气进入室内,把将这部分冷空气加热到室温时所消耗的热量称为冷风侵入耗热量。采用外门附加的方法计算, 冷风侵入耗热量=外门基本耗热量×外门附加率 公共建筑工业产房中,其外门附加率为500%。 1.5工作工况下围护结构耗热量及其修正 以电炉变压室为例 1)围护结构基本耗热量计算
取定nt=12℃,耗热量包括基本耗热量和附加耗热量,计算全部列于附表1-1中,所得电炉变压室、电气间围护结构传热耗热量'1Q=3209.30(W) 2)冷风渗透耗热量 按百分数法计算,根据建筑物特点,查得百分率为30%。
'1'2%30QQ962.79(W)
3)冷风侵入耗热量 按短时间开启的外门计算,取外门基本耗热量的60%。 冷风侵入耗热量=1150.50×0.6=690.30(W) . Word 资料 1.6工艺设备耗热量 1)熔炼工段工频感应电炉的散热量
cos)1(N860Q
e
式中 Ne—感应电炉额定功率,KW; η—感应电炉的总效率,%,根据工艺资料采取; cosφ—补偿后的功率因数,一般为0.9-0.95。 当工频感应电炉装有排烟罩时,散入室内的热量为其总散热量的30% 根据公式 Q=860×125×(1-80%)×0.9×0.3=6449.2(KW) 2)浇注工段的散热量 浇注金属与落砂在同一房间进行时,金属至浇注温度至冷却至室温的全部热量,一部分热量由水分蒸发时吸收,其余全部散落车间内,每浇注一吨金属的散热量为:
1000)](175.0)(605[-Q-QQ2121nttgddg)(
式中 Q1—浇注金属在熔化时的含热量,KW/吨; Q2—铸件落砂在离开本工段时的含热量,KW/吨; g—每浇注一吨金属所需的型砂重量,公斤;
1d—浇筑前型砂的含湿量,公斤/公斤;
2d—落砂后型砂含湿量,公斤/公斤;
t—落砂时型砂温度,℃;
nt—室内温度,℃;
根据公式得, Q=(263200-187600)-[605×4.5(0.055-0.02)-0.175×4.5(43-12)]×1000 =4725(KW) (3)电动设备散热量 清理工段,砂处理的工段有抛丸机,破碎机,所有的工艺设备都在室内,电动设备散热量公式为:
N1000Q321
式中 Q—电动设备发热量,W; N—电动设备安装功率(额定功率),KW; η—电动机效率
1—电机容量利用系数,是电动机最大实效功率原装功率之比,一般取0.7-0.9;
2—电动机负荷系数,电动机每小时平均时耗功率与机器设计时最大时耗功率之
比一般取0.5-0.8; . Word 资料 3—同时使用系数,电动机同时使用的安装功率与总安装功率之比,一般取0.5-1.0;
以清理工段的橡胶履带抛丸清理机为例计算电动设备散热量 由设备参数知,橡胶履带抛丸清理机电动设备安装功率N=,电动机效率η=,η1=0.7,η2=0.6,η3=0.8 则每台橡胶履带抛丸清理机电动设备散热量为:
N1000Q321
=1000×0.7×0.6×0.8×24.3÷0.8 =10206(W) (4)照明设备耗热量 Q=n1n2n3N 式中 Q—散热量,W; N—灯具安装功率,KW; n1—同时使用系数; n2—整流器散热系数,装在室内取1.2,装在棚顶取1.0; n3—安装系数,明装时取1.0,暗装灯罩上部穿有小孔时,取0.5-0.6,灯罩上无孔时取0.6-0.8; 则根据公式得, Q=1000×1.0×1.2×1.0×100=120(KW) (5)人员散热量 Q=φnq 式中 Q—人体散热量,KJ/h; φ—考虑不同的工作场所性质,取φ=1.0; n—人数,个; q—每个人的平均散热量,KJ/h,取q=1348KJ/h; 则根据公式得, Q=1.0×16×1348=21568(KJ/h) 数据汇总: 表1-3车间电动设备的散热量汇总 设备名称 台数 散热量(W/台) 总散热量W 橡胶履带抛丸清理机机 3 10206 30618
金属履带抛丸机 1 3150 3150 颚式破碎机 2 6300 12600 混砂机 1 12600 12600 射芯机 12 5833.33 69999.96 造型机 12 756 9072 .
Word 资料 2局部排风系统设计 2.1排风量确定 此车间为铸造车间,在型砂配制、制型、落砂、清砂等过程,都可使粉尘飞扬,特别是用喷砂工艺修整铸件时,粉尘浓度很高,所用的石英危害较大。在机械加工过程中,对金属零件的磨光与抛光过程可产生金属和矿物性粉尘。所以各工部采用局部排风,在需要排风部位加局部排风罩即可。 局部排风罩的一般形式有:密闭罩,柜式排风罩,外部吸气罩,接受式排风罩,吹吸式排风罩。 局部排风罩的设计原则: (1)局部排风罩应尽可能包围或靠近有害物,使有害物源局限于较小的局部空间。应尽可能减小吸气范围,便于捕集与控制。 (2)排风罩的吸气气流方向应尽可能与污染气流运动方向一致。 (3)已被污染的吸入气流不允许进入人的呼吸区。 (4)排风罩力求结构简单,造价低,便于安装和维护。 (5)局部排风罩的配置应与生产工艺协调一致,力求不影响工艺操作。 (6)要尽可能避免干扰气流和过堂风,送风气流等对吸气气流的影响。 熔炼工段主要产生大量的烟尘和热,在炉口热源上部设置接受式排风罩。清理工段主要产生扬尘,橡胶履带抛丸机和履带抛丸清理机采用伞型排风罩;破碎机采用局部密闭罩;混砂机采用整体密闭罩。浇注工段主要产生大量的热,采用移动式排风罩。 热源上部接受式排风罩排风量的计算 接受罩罩口尺寸按下式计算: 低悬圆形罩 D=d+0.5H 低悬矩形罩 A=a+0.5H B=b+0.5H 式中 D—罩口直径(m); A,B—罩口的长和宽(m); d—热源水平投影直径(m); a,b—热源水平投影长和宽(m);
高悬罩 Hdg8.0D 低悬罩排风量按下式计算
''0vvFqqv
式中 0vq —热源上部热射流起始流量(sm/3) ; V'—罩口扩大面积上空气的气流速度(m/s),通常取0.5-0.75m/s; F'—罩口扩大面积,即罩口面积减去热射流的断面面积(㎡); 高悬罩排风量按下式计算
'',vvFqqzv
式中 zq,v罩口所在断面上的热射流流量(sm/3);