高中物理匀速圆周运动1人教版第一册.doc

合集下载

匀速圆周运动的数学模型+课件高一上学期数学人教A版(2019)必修第一册

匀速圆周运动的数学模型+课件高一上学期数学人教A版(2019)必修第一册


55 (
15
×5−

)+
2
65 = 37.5.
最低处
P(0,-55)
图4
转盘直径
110m
匀速圆周运动的学模型
用函数y=Asin(ωx+φ)模型解决实际问题经历了怎样的研究路径和过程?
抽象
实际问题
数学问题
转化
实际问题的解
引入
三角函数模型
构建
求解三角函数问题
Topic. 03
03 课堂小结
最高点高度
120m
如图,设座舱距离地面最近的位置为点P,以轴心O为
原点,与地面平行的直线为x轴建立直角坐标系
解:(1)设t=0 min时,游客甲位于点P(0,-55),以

2
OP为终边的角为 − ; 根据摩天轮转一周大约需要30 min,

15
可知座舱转动的角速度约为 rad/min,由题意可得:
(2)当t=5时, =
人教A版2019必修第一册
第 5 章 三角函数
5.6.1 匀速圆周运动的数学模型
目录
01.
筒车
02.
摩天轮
学习目标
1. 经历匀速圆周运动数学建模的过程,了解正弦型函数的现实
背景,体会三角函数与现实世界的紧密联系.
2. 掌握匀速圆周运动的数学模型,会用其解决相关的实际建模
问题,进一步巩固三角函数的图像与性质.
课堂小结
感谢观看
瞰四周景色.某摩天轮最高点距地面高度为120 m,转盘直径为110 m,设置有48个座舱,开启后按
逆时针方向匀速旋转,游客在座舱转到离地面最近的位置进舱,转一周大约需要30 min.
(1)游客甲坐上摩天轮的座舱,开始转动t min后离地面的高度为H m,求在转动一周的过程中,H

匀速圆周运动

匀速圆周运动

匀速圆周运动当一质点或物体绕某一固定点做圆周运动,且平均角速度恒定时,我们称之为匀速圆周运动。

这种运动形式常见于多种物理现象中,如行星绕太阳运动、卫星绕地球运动等。

1. 性质1.1 运动方向恒定:质点在做匀速圆周运动时,偏向心力与速度方向垂直,使得质点沿圆周运动。

因此,质点在对运动方向有影响的外力作用下,运动方向仍旧呈现恒定的状态。

1.2 角速度恒定:匀速圆周运动中,角速度ω始终为常数,其大小由圆周运动的半径r、线速度v以及ω的定义式ω=v/r共同决定。

当半径和线速度均恒定时,角速度也随之恒定。

1.3 周期是固定的:由于角速度ω为恒定值,周期T也将是不变的。

周期可以被定义为质点在做一圆周运动中所需的时间,或者是一个圆周运动完成的次数。

2. 公式2.1 匀速圆周运动的周期公式:T=2πr/v其中,T代表圆周运动的周期,r代表圆周的半径,v代表线速度。

2.2 线速度与半径之间的关系:v=rω其中,v代表线速度,r代表半径,ω代表角速度。

2.3 运动的加速度公式:a=v²/r其中,a代表质点在圆周运动中的加速度,v代表线速度,r代表半径。

3. 应用匀速圆周运动在现实中的应用非常广泛。

在天体物理学中,行星绕太阳运动和卫星绕地球运动都属于匀速圆周运动,并被广泛应用于天体运动的研究。

此外,在众多机械设备中,旋转部件的运动也往往是匀速圆周运动,例如发动机的曲轴运动、水泵的叶轮运动等。

4. 总结匀速圆周运动是一种常见的运动形式,其关键特征是角速度、周期和运动方向的稳定性。

通过理解匀速圆周运动的性质和公式,我们可以更好地应用它们于实际场景,加深对物理学基础知识的理解。

2019人教版高中物理新教材目录

2019人教版高中物理新教材目录

2019人教版高中物理新教材目录必修一第一章运动的描述1.质点参考系2.时间位移3.位置变化快慢的描述-速度4.速度变化快慢的描述-加速度第二章匀变速直线运动的研究1.探究小车速度随时间变化的规律2.匀变速直线运动速度与时间的关系3.匀变速直线运动位移与时间的关系4.自由落体运动第三章相互作用1.重力与弹力2.摩擦力3.作用力和反作用力4.力的合成和分解5.共点力平衡第四章运动和力的关系1. 牛顿第一定律2.实验探究加速度与力和质量的关系3.牛顿第二定律4.力学单位制5.牛顿运动定律的应用6.超重和失重必修2第五章抛体运动1.曲线运动2.运动的合成与分解3.实验:探究平抛运动的特点4.抛体运动的规律第六章圆周运动1.圆周运动2.向心力3.向心加速度4.生活中的圆周运动第七章万有引力与宇宙航行1.行星的运动2.万有引力定律3.万有引力理论的成就4.宇宙航行5.相对论时空观和牛顿力学的局限性第八章机械能守恒定律1.功与功率2.重力势能3.动能和动能定理4.机械能守恒定律5.实验:验证机械能守恒定律必修三第九章静电场及其应用1.电荷2.库仑定律3.电场电场强度4.静电的防止与利用第十章静电场中的能量1.电势能和电势2.电势差3.电势差与电场强度的关系4.电容器的电容5.带电粒子在电场中的运动第十一章电路及其应用1.电源和电流2.导体的电阻3.导体电阻率的测量4.串联电路和并联电路5.实验:练习使用多用电表第十二章电能能量守恒定律1.电路中的能量转化2.闭合电路的欧姆定律3.实验:电池电动势和内阻的测量4.能源与可持续发展第十三章电磁感应与电磁波初步1.磁场磁感线2.磁感应强度磁通量3.电磁感应现象及应用4.电磁波的发现及应用5.能量量子化选修一第一章动量守恒定律1.动量2.动量定理3.动量守恒定律4.实验:验证动量守恒定律5.弹性碰撞和非弹性碰撞6.反冲现象火箭第二章机械振动1.简谐运动2.简谐运动的描述3.简谐运动的回复力和能量4.单摆5.实验:用单摆测重力加速度6.受迫振动共振第三章机械波1.波的形成2.波的描述3.波的反射折射和衍射4.波的干涉5.多谱勒效应第四章光1.光的折射2.全反射3.光的干涉4.用双缝干涉测光的波长5.光的衍射6.光的偏振和激光选修二第一章安培力与洛伦兹力1.磁场对通电导线的作用力2.磁场对运动电荷的作用力3.带电粒子在匀强磁场中的运动4.质谱仪与回旋加速器第二章电磁感应1.楞次定律2.法拉第电磁感应定律3.涡流电磁阻尼和电磁驱动4.互感和自感第三章交变电流1.交变电流2.交变电流的描述3.变压器4.电能的输送第四章电磁振荡与电磁波1.电磁振荡2.电磁场与电磁波3.无线电波的发射和接收4.电磁波谱第五章传感器1.认识传感器2.常见传感器的工作原理及应用3.利用传感器制作简单的自动控制装置选修3第一章分子动理论1.分子动理论的基本内容2.实验:油膜法测油酸分子的大小3.分子运动速率分布规律4.分子动能和分子势能第二章气体固体和液体1.温度和温标2.气体的等温变化3.气体的等压变化和等容变化4.固体5.液体第三章热力学定律1.功热和内能的改变2.热力学第一定律3.能量守恒定律4.热力学第二定律第四章原子结构和波粒二象性1.普朗克黑体辐射理论2.光电效应3.原子的核式结构模型4.氢原子光谱和玻尔的原子结构模型5.粒子的波动性和量子力学的建立第五章原子核 1.原子核的组成2.放射性元素的衰变3.核力与结合能4.核裂变与核聚变5.基本粒子。

高中物理-匀速圆周运动

高中物理-匀速圆周运动

【知识梳理】一、匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。

(举例:电风扇转动时,其上各点所做的运动;地球和各个行星绕太阳的运动,都认为是匀速圆周运动。

)注意:匀速圆周运动是变速曲线运动,匀速圆周运动的轨迹是圆,是曲线运动,运动的速度方向时刻在变化,因而匀速圆周运动不是匀速运动,而是变速曲线。

“匀速”二字仅指在相等的时间里通过相等的弧长。

二、线速度:物体做匀速圆周运动时,通过的弧长S 与时间t 的比值就是线速度的大小。

用符号v 表示: tS v =1、线速度是物体做匀速圆周运动的瞬时速度。

2、线速度是矢量,它既有大小,也有方向.线速度的方向-----在圆周各点的切线方向上.3、匀速圆周运动的线速度不是恒定的,方向是时刻变化的三、角速度:圆周半径转过的角度ϕ与所用时间t 的比值。

用ω表示:公式:tϕω=单位:s rad /匀速圆周运动的快慢也可以用角速度来描述。

物体在圆周上运动得越快,连接运动物体和圆心的半径在同样的时间内转过的角度就越大。

对某一确定的匀速圆周运动而言,角速度ω是恒定。

注意:同一条链子或绳子上的线速度相同,同一个轮子上的角速度相同。

两交合轮边缘上的线速度大小相等四、周期和频率匀速圆周运动是一种周期性的运动.周期(T ):做匀速圆周运动的物体运动一周所用的时间,单位是s 。

周期也是描述匀速圆周运动快慢的物理量,周期长运动慢,周期短运动快。

频率(f ):物体ls 由完成匀速圆周运动的圈数,单位是赫兹,记作“Hz ”.周期和频率互为倒数.频率也是描述匀速圆周运动快慢的物理量,频率低运动慢,频率高运动快。

Tf 1=转速n :做匀速圆周运动的物体单位时间内转过的圈数叫转速。

单位是r/s 、r/min 。

五、线速度、角速度、周期间的关系 1、定性关系三个物理量都是描述匀速圆周运动的快慢,匀速圆周运动得越快,线速度越大、角速度越大、周期越小. 2、定量关系设想物体沿半径为r 的圆周做匀速圆周运动,则在一个周期内转过的弧长为π2r ,转过的角度为π2,因此有T r v π2=,Tπω2= 比较可知:v =ωr =2πnr =2πfr 结论:由v =r ω知,当v 一定时,ω与r 成反比;当ω一定时,v 与r 成正比;当r 一定时,v 与ω成正比。

人教版高一物理 圆周运动 教案

人教版高一物理 圆周运动 教案

教案环节二:描述圆周运动快慢的方法PPT5:今天我们首先从运动学的角度研究圆周运动,学习描述圆周运动快慢的物理量,同时了解圆周运动的特点。

PPT6:我们以熟悉的自行车为例来研究圆周运动,把自行车的后轮架起,转动脚踏板,大小齿轮以及后轮上的点都在做圆周运动。

请同学们思考下面两个问题(1)后轮上到转轴距离不同的点,哪个运动得更快些?(2)大、小两个齿轮边缘上的点,哪个运动得更快些?你的答案是什么?你判断的依据又是什么呢?同学们可能会有不同的意见,我们一块儿来探讨一下。

PPT7:我们先来考虑第一个问题,后轮上到转轴距离不同的点,哪个运动得更快些?我们在后轮任意一条半径上,分别取A、B两点,转动脚踏板,A、B两点均做圆周运动,任取一段时间Δt发现A点转过的弧长AA’比B点转过的弧长BB’要长,因此我们可以说A点比B点运动的快,实际上我们是用相同时间内、物体转过的弧长、来比较它们运动的快慢的,那么我们如何描述物体沿着圆弧运动的快慢呢?请同学们回想一下,我们在直线运动中是如何描述物体运动的快慢的?我们用物体运动的位移与对应时间的比值,也就是速度来描述直线运动的快慢的。

那么在圆周运动中,我们也可以用物体转过的的弧长除以对应的时间,来描述物体沿着圆弧运动的快慢,在这里弧长实际上是物体运动轨迹线的长度,也就是物体运动的路程,我们把这样的速度叫做。

PPT8:1、线速度①它是用来描述做圆周运动的物体沿着圆弧运动的快慢的由于圆周运动是曲线运动,运动方向时刻发生变化,所以对于曲线运动我们更关注的是物体在某一时刻或者某一位置运动的快慢。

如图所示,物体沿圆弧由M向N运动,在某时刻t经过A点。

为了描述物体经过A点附近时运动的快慢,可以取一段很短设置问题情景,引导学生思考,建立物理概念。

问题(1)的是希望学生从熟悉的直线运动的速度能够更容易的过渡到线速度的概念,并且结合直线运动描述快慢的方法引导学生定义线速度。

2、小齿轮转一圈所用的时间比大齿轮转一圈所用的时间短,小齿轮转动的快,我们是用物体转动一圈所用的时间来比较转动的快慢的;3、小齿轮转过两圈时,大齿轮才转过一圈多一点儿,同样的时间内,小齿轮转过的圈数多,小齿轮转动的快,我们是用相同时间内转过的圈数去比较它们转动的快慢的。

高中高一物理教案:匀速圆周运动2篇

高中高一物理教案:匀速圆周运动2篇

高中高一物理教案:匀速圆周运动高中高一物理教案:匀速圆周运动精选2篇(一)教学目标:1. 理解匀速圆周运动的基本概念与特点。

2. 掌握匀速圆周运动的相关公式与计算方法。

3. 能够解决与匀速圆周运动相关的问题。

教学重点:1. 理解匀速圆周运动的基本概念与特点。

2. 掌握匀速圆周运动的相关公式与计算方法。

教学难点:1. 掌握匀速圆周运动的相关公式与计算方法。

教学准备:1. 教学课件或教学板书。

2. 教材《物理》。

3. 实验器材:小球、细线。

4. 计时器。

教学过程:一、导入(5分钟)1. 引入匀速直线运动的概念,回顾并复习相关内容。

2. 引出匀速圆周运动的问题:小球在细线上做匀速圆周运动时,有哪些物理量与问题需要研究?二、概念讲解与实验演示(10分钟)1. 讲解匀速圆周运动的基本概念与特点:半径、周期、频率、线速度、角速度等。

2. 进行实验演示:利用小球和细线做匀速圆周运动的实验,观察小球的运动特点及相关物理量的变化。

三、问题分析与计算方法(15分钟)1. 分析小球在匀速圆周运动中的问题:速度、加速度、位移、力、功等相关计算。

2. 讲解匀速圆周运动的计算方法:利用速度与半径的关系、加速度的计算、力与功的计算等。

四、解题示范与训练(15分钟)1. 解题示范:通过示例题目,讲解如何运用所学的知识解决匀速圆周运动的问题。

2. 学生训练:布置一些练习题目,让学生运用所学的知识独立解题,并互相交流提问。

五、拓展与应用(10分钟)1. 拓展讲解:引入圆周运动的相关概念与公式,如圆周位移、圆周速度、圆周加速度等。

2. 应用分析:利用所学的知识,分析并解决实际生活中的匀速圆周运动问题。

六、总结与反思(5分钟)1. 总结匀速圆周运动的基本概念与特点。

2. 回顾所学的计算方法与解题技巧。

3. 反思并讨论学习中遇到的困难与问题,互相交流解决方法。

板书设计:高中高一物理教案:匀速圆周运动重点知识点:1. 匀速圆周运动的基本概念- 半径、周期、频率、线速度、角速度2. 匀速圆周运动的计算方法- 速度与半径的关系- 加速度的计算- 力与功的计算拓展内容:- 圆周位移、圆周速度、圆周加速度等注意事项:1. 熟悉相关公式与计算方法。

高中物理公式匀速圆周运动

高中物理公式匀速圆周运动

高中物理公式匀速圆周运动高中物理公式1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr角速度与转速的关系ω=2πn(此处频率与转速意义相同)主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

相关推荐加速度a=(Vt-V0)/t(以V0为正方向,a与V0同向(加速)a>0;a与V0反向(减速)则a<0)实验用推论Δs=aT2(Δs为连续相邻相等时间(T)内位移之差)主要物理量及单位:初速度(V0):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t):秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

a=(Vt-V o)/t只是测量式,不是决定式;其它相关内容:质点、位移和路程、参考系、时间与时刻、s--t 图、v--t图/速度与速率、瞬时速度。

质点的运动----曲线运动、万有引力平抛运动竖直方向位移:y=gt2/2运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)合速度Vt=(Vx2+Vy2)1/2=[V02+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0合位移:s=(x2+y2)1/2位移方向与水平夹角α:tgα=y/x=gt/2V0水平方向加速度:ax=0;竖直方向加速度:ay=g注:平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;运动时间由下落高度h(y)决定与水平抛出速度无关;θ与β的关系为tgβ=2tgα;在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

高中物理-第3节圆周运动

高中物理-第3节圆周运动

小,A 正确,B 错误;题图的图线乙中 a 与 r 成正比,由 a=ω2r
可知,乙球运动的角速度大小不变,由 v=ωr 可知,随 r 的增 大,线速度大小增大,C 错误,D 正确。 答案:AD
返回
4.[沪科版必修 2 P25T1 改编](多选)如图所 示,竖直平面上,质量为 m 的小球在重
力和拉力 F 作用下做匀速圆周运动。若
支持力和提供向心力的指向圆心的静摩擦力作用,故只有选
项 C 正确。 答案:C
返回
2.[人教版必修 2 P19T4 改编]如图是自行车 传动装置的示意图,其中Ⅰ是半径为
r1 的大齿轮,Ⅱ是半径为 r2 的小齿轮,
Ⅲ是半径为 r3 的后轮,假设脚踏板的转速为 n r/s,则自行
车前进的速度为
()
A.πnrr21r3
B.A 点和 B 点的角速度之比为 1∶1
C.A 点和 B 点的角速度之比为 3∶1
D.以上三个选项只有一个是正确的 解析:题图中三个齿轮边缘线速度大小相等,A 点和 B 点的
线速度大小之比为 1∶1,由 v=ωr 可得,线速度大小一定时,
角速度与半径成反比,A 点和 B 点角速度之比为 3∶1,选项 A、C 正确,B、D 错误。 答案:AC
与弯道相切。大、小圆弧圆心 O、O′距离 L
= 100 m。赛车沿弯道路线行驶时,路面
对轮胎的最大径向静摩擦力是赛车重力的 2.25 倍。假设赛车在直道
上做匀变速直线运动,在弯道上做匀速圆周运动。要使赛车不打滑,
绕赛道一圈时间最短(发动机功率足够大,重力加速度 g=10 m/s2,
π=3.14),则赛车
【名师微点】
返回
1.圆周运动各物理量间的关系
返回

人教版(新教材)高中数学第一册 匀速圆周运动的数学模型 函数y=Asin(ωx+φ)的图象

人教版(新教材)高中数学第一册 匀速圆周运动的数学模型 函数y=Asin(ωx+φ)的图象

解析 ω=4>1,因此只需把正弦曲线上所有点的横坐标缩短到原来的14,纵坐标 不变.
答案 B
2.把函数y=2sin 3x的图象上所有点的横坐标变为原来的2倍,纵坐标变为原来的 3倍,得到________的图象. 答案 y=6sin32x
3.将函数 y=cos 2x 的图象向右平移π3个单位长度,所得图象对应的解析式为 ________.
5.6 函数y=Asin(ωx+φ) 5.6.1 匀速圆周运动的数学模型 5.6.2 函数y=Asin(ωx+φ)的图象 第一课时 函数y=Asin(ωx+φ)的图象
课标要求
素养要求
1.会用“五点法”画出y=Asin(ωx+φ)的
图象.
通过整体代换和图象的变换提
2.理解参数A,ω,φ对函数y=Asin(ωx+ 升学生的直观想象、逻辑推理
【训练 1】 请用“五点法”画出函数 y=12sin(2x-π6)的图象. 解 函数 y=12sin2x-π6的周期 T=22π=π,先用“五点法”作它在长度为一个周
期上的图象,令 X=2x-π6,则 x 变化时,y 的值如下表:
X
0
π 2
π
3π 2

x
π 12
π 3
7π 12
5π 6
13π 12
解析 答案
由题意得所得图象对应的解析式为 y=cos 2(x-π3)=cos(2x-23π). y=cos(2x-23π)
[微思考] 1.由y=sin ωx(ω>0)的图象得到y=sin(ωx+φ)的图象是如何平移的呢?
提示 ∵y=sin(ωx+φ)=sin ωx+ωφ, ∴由 y=sin ωx 的图象向左(右)平移ωφ个单位.
y

高中物理匀速圆周运动公式总结.doc

高中物理匀速圆周运动公式总结.doc

高中物理匀速圆周运动公式总结匀速圆周运动是高中物理的重要章节,是高中同学重点掌握的内容。

下面我给大家带来高中物理匀速圆周运动公式,希望对你有帮助。

高中物理匀速圆周运动公式1.线速度V=s/t=2r/T2.角速度=/t=2/T=2f3.向心加速度a=V2/r=2r=(2/T)2r4.向心力F=mV2/r=m2r=mr(2/T)2=mv=F合5.周期与频率:T=1/f6.角速度与线速度的关系:V=r7.角速度与转速的关系=2n(此处频率与转速意义相同)8.主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度():rad/s;向心加速度:m/s2。

注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

高中物理匀速圆周运动知识点1、关于匀速圆周运动(1)条件:①物体在圆周上运动;②任意相等的时间里通过的圆弧长度相等。

(2)性质:匀速圆周运动是加速度变化(大小不变而方向不断变化)的变加速运动。

(3)匀速圆周运动的向心力:①是按力的作用效果来命名的力,它不是具有确定性质的某种力,相反,任何性质的力都可以作为向心力。

例如,小铁块在匀速转动的圆盘上保持相对静止的原因是,静摩擦力充当向心力,若圆盘是光滑的,就必须用线细拴住小铁块,才能保证小铁块同圆盘一起做匀速转动,这时向心力是由细线的拉力提供。

②向心力的作用效果是改变线速度的方向。

做匀速圆周运动的物体所受的合外力即为向心力,它是产生向心加速度的原因,其方向一定指向圆心,是变化的(线速度大小变化的非匀速圆周运动的物体所受的合外力不指向圆心,它既要改变速度方向,同时也改变速度的大小,即产生法向加速度和切向加速度)。

匀速圆周运动

匀速圆周运动

学科:物理教学内容:匀速圆周运动【学习目标】识记1.知道什么是匀速圆周运动.2.知道线速度就是物体做匀速圆周运动的瞬时速度.方向沿圆周该点的切线方向.理解应用3.理解线速度的概念,理解角速度和周期的概念,会用它们的公式进行计算.4.理解线速度、角速度、周期之间的关系:v=ω·r=T rπ2.5.理解匀速圆周运动是变速运动.【基础知识精讲】课文全解1.匀速圆周运动的线速度(1)定义:匀速圆周运动的物体通过的弧长s跟通过这段弧长所用的时间t的比值,叫匀速圆周运动的线速度.(2)公式:v=ts(3)单位:米/秒,符号m/s(4)方向:运动轨迹上某点的切线方向.由圆的性质可知,各点的速度方向总与各点所在半径垂直,而各点的切线方向各不相同,因此做匀速圆周运动的物体的速度方向时刻在改变.线速度是相对于角速度而言的,其实它就是物体做圆周运动的瞬时速度,匀速圆周运动的线速度大小不变,而方向时刻改变,因此,匀速圆周运动是一种变速运动,所谓“匀速”是指速率不变的意思.2.匀速圆周运动的角速度(1)定义:连接运动物体和圆心的半径转过的角度φ跟所用时间的比值叫角速度.(2)公式:ω=tϕ(3)单位:弧度/秒,符号rad/s注意:在角速度的计算中,φ角必须取弧度值,因为弧度是国际单位制,弧度跟度的换算关系为2π=360°.(4)方向:垂直于圆周运动的转动平面,方向始终不变.(高中阶段不要求)(5)矢量,匀速圆周运动的角速度大小和方向都不变,因此匀速圆周运动是角速度不变的运动.(6)物理意义:描述圆周运动快慢的物理量.3.匀速圆周运动的周期(1)定义:做匀速圆周运动的物体运动一周所用的时间叫做周期. (2)符号:T(3)单位:秒,符号:s (4)标量.(5)物理意义:描述匀速圆周运动快慢的物理量,周期长说明运动得慢,周期短说明运动得快.匀速圆周运动具有周期性,即物体经过一定时间后,重复地回到原来的位置,瞬时速度也重复地回到原来的大小和方向.4.匀速圆周运动的频率(1)定义:做匀速圆周运动的物体每秒转过的圈数. (2)符号:f(3)单位:赫兹,符号Hz (4)标量.(5)物理意义:描述匀速圆周运动的快慢的物理量,频率低说明运动慢.(6)频率和周期的关系:f =T15.转数(1)定义:做匀速圆周运动的物体每分钟转过的圈数. (2)符号:n(3)单位:转/分,符号r/min (4)标量.(5)物理意义:描述匀速圆周运动快慢的物理量,转数大说明运动快,转数小说明运动慢.转数在实际生产、生活中比较常用,例如电动机的标签上常标有转数.问题全解v 、ω与r 有什么样的关系?线速度v 和角速度ω都可用以描述圆周运动的快慢,公式v =ωr 反映了它们之间以及它们与半径的关系.1.当r 一定时,v ∝ω,如转动飞轮边缘质点的运动就是如此,当转速增大时,角速度随之增大,线速度也相应增大.又如某人骑自行车时,当快速蹬车时,角速度增大,车速(即车轮边缘质点的线速度)也随之增大.2.当ω一定时,v ∝r ,如时钟的分针转动时,各质点的角速度是相同的,但分针上离圆心越远的质点,半径越大,线速度也越大.又如地球自转时,不同纬度的地面质点做圆周运动的半径不同,但地面各质点随地球自转做圆周运动的角速度是相等的,因而不同纬度的地面质点的线速度大小不等,赤道平面内地面各质点的线速度最大.不难发现,同一转动物体上的各点的角速度是相等的,如同一轮上各点或共轴的几个轮的角速度相同,v ∝r ,又如同一转动杆上各点角速度也相同,即v ∝r .3.当v 一定时,ω∝r1,如皮带传动装置中,若不出现打滑现象,则两轮边缘各质点的线速度大小相等,但大轮的角速度较小.又如某同学骑着18型自行车与骑着26型自行车的父亲并肩前进,要使两车在同样的时间内通过同样多的路程,则要两车轮边缘的线速度大小相等,由于26型车轮半径较大,因此26型车轮速度较小,即角速度较小.不打滑时,皮带传动装置中大轮小轮边缘各质点v 大小相同,齿轮传动装置中,大轮小轮边缘各质点的v大小也相同,但大轮小轮的角速度是不同的.4.若v 、ω、r 三者均不定时,仍有v =ωr ,但已不是简单的正比、反比关系.有兴趣的同学可在学习《万有引力定律》一章时分析卫星沿螺旋轨道下降或上升远离时的情况,此时因其轨道半径逐渐变化,v 和ω的关系也变得特殊复杂了.[例1]如图5-4-1所示的皮带传动装置中,右边的B 、C 两轮粘在一起且同轴,半径R A =R C =2R B ,皮带不打滑,试求A 、B 、C 各轮边缘上的一点线速度大小之比,角速度之比.图5-4-1解析:由于不打滑的皮带传动,两轮边缘上的各点线速度大小相同,则有v A =v B ,在线速度相同的情况下,角速度与半径成反比.其中R A =2R B ,可知ωB =2ωA .固定在一起共轴转动的轮上各点的角速度相同,于是有ωB =ωC ,在角速度相同的情况下,线速度与半径成正比,其中R C =2R B ,由以上分析得:v A ∶v B ∶v C =1∶1∶2 ωA ∶ωB ∶ωC =1∶2∶2 点评:要记住不打滑的皮带传动和摩擦传动的两轮边缘上各点线速度大小相等;同一物体或固定在一起的物体转动时,各点的角速度相同.讨论问题时先搞清是线速度相同还是角速度相同,再讨论与半径的关系.[例2]如图5-4-2所示,半径为R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h 处沿OB 方向水平抛出一个小球,要使球与盘只碰一次,且落点为B ,则小球的初速度v =_________,圆盘转动的角速度ω=_________.图5-4-2解析:①小球做平抛运动,在竖直方向上:h =21gt 2则运动时间t =gh 2又因为水平位移为R 所以球的速度v =tR =R ·hg 2②在时间t 内,盘转过的角度θ=n ·2π,又因为θ=ωt 则转盘角速度: ω=tn π2⋅=2n πhg 2(n =1,2,3…) 点评:上题中涉及圆周运动和平抛运动这两种不同的运动,这两种不同运动规律在解决同一问题时,常常用“时间”这一物理量把两种运动联系起来.[例3]一把雨伞,伞面圆半径为r ,伞面边缘距地面的高度为h ,以角速度ω旋转这把雨伞,问伞面边缘上甩出去的水滴落在水平地面上时形成的圆半径R 多大?解析:水滴从伞面边缘甩出去以后做平抛运动,水平速度不变.水滴在空中做平抛运动的时间是:t =gh 2s =v 0t =ω·r ·gh 2图5-4-3为俯视图,表示水滴从a 点甩离伞面落在地面上的b 点,O 是转动轴(伞柄),可见水滴落在地面上形成的圆半径为:图5-4-3R =gh r sr22221ω+=+[例4]如图5-4-4所示,直径为d 的纸筒,以角速度ω绕O 轴逆时针转动,一颗子弹沿直径水平穿过圆纸筒,先后留下a 、b 两个弹孔,且Oa 与Ob 间的夹角为θ,则子弹的可能速度为_________.图5-4-4解析:子弹通过圆纸筒匀速直线运动的时间为:t =vd其间,纸筒转过的角度为: ϕ=(2n +1)π-θ 由公式ω=tϕ得t =ωϕ=ωθπ-+)12(n , 所以vd =ωθπ-+)12(nv =[]θπω-+)12(n d(n =0,1,2…)点评:对于这类问题,要特别注意其周期性,千万不要简单认为在t s 内纸筒转过的角度ϕ=π-θ.当然有些同学还会误认为纸筒所转过的角度就为θ,这就是没有仔细审题的结果,没有弄清子弹第一次打穿纸筒时a 点在O 点的正左方,若纸筒绕顺时针转动,则转过角度应为ϕ=(2n +1)π+θ.[例5]为了测定子弹的飞行速度,在一根水平放置的轴杆上固定两薄圆盘A 、B ,A 、B 平行且相距2 m ,轴杆的转速为3600 r/min ,子弹穿过两盘留下两弹孔a 、b ,测得两弹孔半径夹角是30°,如图5-4-5所示,则该子弹的速度是图5-4-5A .360 m/sB .720 m/sC .1440 m/sD .108 m/s解析:子弹从A 盘至B 盘,盘转过的角度θ=2n π+6π (n 为整数)由于轴杆转速为3600 r/min ,所以盘转动的角速度为ω=6036002⨯π=120π rad/s子弹在A 、B 间运动的时间等于圆盘转过θ角所用的时间tt =12061212062+=+=n n πππωθ s 所以,子弹的速度为v =tAB =6122401206122+=+n n m/s当n =0时,v =1440 m/s 当n =1时,v =110.8 m/s 所以,符合题意的选项是C .【学习方法指导】极限法:怎样理解线速度是物体做匀速圆周运动的瞬时速度?从本质上说,线速度是做匀速圆周运动的质点在某一时刻(或某一位置)的瞬时速度,其方向沿轨迹的切线方向,其大小是包括该时刻在内的一小段时间内的平均速度的极限值,下面仍从“无限分割,逐渐逼近”的方法来分析.如图5-4-6所示,设质点做匀速圆周运动,在某段时间t 1内从P 点运动到P 1点,那么线速度大小为v 1=,平均速度大小1v =tPP 1 (PP 1为位移大小),方向沿位移PP 1方向.现取更短时间t 2,质点就由P 点运动到P 2点,线速度大小v 2=,平均速度2v =22t PP ,方向沿位移PP 2方向.若时间再短,P 3越接近P ,越接近PP 3的长度.当时间无限短,P n就与P 趋于重合,即线速度大小v P =v ,方向在该点P 的切线方向上.图5-4-6应该指出:匀速圆周运动中线速度大小不变,方向时刻变化,匀速圆周运动实质是匀速率圆周运动,是一种变速曲线运动.【知识拓展】 迁移物体做匀速圆周运动的条件:第一:必须具有初速度.第二:必须受到大小不变且方向始终与速度方向垂直并沿半径指向圆心的力的作用.换句话说,物体受到的合外力全部不用来改变速度的大小.这样,物体所受的合外力就必须时刻垂直速度方向,且大小不变.图5-4-7如果物体所受的合外力不能总垂直速度方向,那么物体是不可能做匀速圆周运动的.如水平抛出的物体,虽然具有初速度,并且初速度与合外力(重力)也垂直,但后来物体的速度与合外力不垂直.如图5-4-7所示,物体也就不可能做圆周运动,当然不做圆周运动的根本原因在于合外力恒定不变,总是竖直向下,而圆周运动中向心力的方向却是时刻改变的.又如用绳子牵着物体在竖直面内做圆周运动时,只有在最高点和最低点两个位置所受的合外力全力以赴提供向心力,其他位置时物体所受外力的合力并不指向圆心,如图5-4-8所示,物体经过A 位置时,F 向=F 合=F A -mg =Rmv A2.物体经过B 位置时,F 向=F 合=F A +mg =mRv B 2,但当物体经过其他位置,如C 、D 位置时,F 合不指向圆心,F 合的一部分用来改变v 的大小,另一部分用来改变v 的方向,因此此时物体所做的是变速圆周运动.图5-4-8发散常识性知识: 1.时钟:①秒针转动的周期:T =60 s ,秒针转动的角速度: ω=602π rad/s②分针转动的周期:T =3600 s ,分针转动的角速度: ω=36002π rad/s③时针转动的周期:T =12×3600 s ,时针转动的角速度: ω=3600122⨯π rad/s2.地球:①自转周期:T =24×3600 s ,自转的角速度: ω=3600242⨯π rad/s②公转周期:T =365×24×3600 s ,公转的角速度: ω=3600243652⨯⨯πrad/s3.月球周期:T =28.5×3600×24 s 角速度:ω=2436005.282⨯⨯πrad/s【同步达纲训练】 1.地球半径R =6400 km ,站在赤道上的人和站在北纬60°上的人随地球转动的角速度多大?他们的线速度各是多少?2.如图5-4-9是测定气体分子速率的实验装置,全部装置放在高真空容器中,A 和B 是两个同轴圆盘,转动的角速度相同,两盘相距为L =20 cm ,盘上各开一条很窄的细缝,两盘的细缝相对错开θ=6°的夹角,当气体分子直射圆盘时,若仅能使速率v =300 m/s 的分子通过两盘的细缝,求圆盘的转速n .图5-4-93.钟表的秒针、分针、时针的角速度各是多少?若秒针长0.2 m ,则它的针尖的线速度是多大?4.(2002年上海)如图5-4-10所示为一试验小车中利用光电脉冲测量车速和行程的装置的示意图.A 为光源,B 为光电接收器,A 、B 均固定在车身上,C 为小车的车轮,D 为与C 同轴相连的齿轮.车轮转动时,A 发出的光束通过旋转齿轮上齿的间隙后变成脉冲光信号,被B 接收并转换成电信号,由电子电路记录和显示,若实验显示单位时间内的脉冲数为n ,累计脉冲数为N ,则要测出小车的速度和行程还必须测量的物理量或数据是_________;小车速度的表达式为v =_________;行程的表达式为s =_________.图5-4-105.如图5-4-11所示是生产流水线上的皮带传输装置,传输带上等间距地放着很多半成品产品,A 轮处装有光电计数器,它可以记录通过A 处的产品数目,已知测得轮A 、B 的半径分别为r A =20 cm ,r B =10 cm .相邻两产品距离为30 cm ,1 min 内有41个产品通过A 处,求:图5-4-11(1)产品随传输带移动的速度大小;(2)A 、B 轮轮缘上的两点P 、Q 及A 轮半径中点M 的线速度和角速度大小,并在图中画出线速度方向;(3)如果A 轮是通过摩擦带动C 轮转动,且r C =5 cm ,在图中画出C 轮的转动方向,求出C 轮的角速度(假设轮不打滑).参考答案1.解:地球不停地由西向东绕南北轴自转,自转周期T =24 h ,设赤道上的人在A 点,北纬60°上的人在B 点,如图所示.地球自转角速度固定不变,A 、B 两点的角速度相同,有: ωA =ωB =Tπ2=36002414.32⨯⨯=7.3×10-5rad/s由v =ωr 知,A 、B 两点的线速度不同,故v A =ωA R =7.3×10-5×6400×103=467.2 m/sv B =ωB R cos60°=21v A =233.6 m/s2.解:气体分子由A 盘细缝到B 盘细缝的运动是与盘的转动相独立的,即气体分子做匀速直线运动,因此所用时间为t =30010202-⨯=vL s =32×10-3s在此期间圆盘转过的角度: θ=2k π+30π,由ω=2π·n =tθ,得:n =(1500k +25) s -1(k =0,1,2…)解本题时需要注意运动的周期性,在时间t 内,圆盘可能是转过θ角,也可能是转过 2π+θ或是4π+θ…3.解:由ω=Tπ2知,要求秒针、分针、时针的角速度,关键是确定它们各自的周期:T 秒=60 s 、T 分=60 min 、T 时=12 hω秒=6014.322⨯=秒T π=0.105 rad/sω分=2π/T 分=1.74×10-3rad/sω时=2π/T 时=1.45×10-4rad/sv 秒=ω秒·R =0.105×0.2=2.1×10-2 m/s4.解:设车轮半径为R 、齿轮的齿数为P ,车的速度应为单位时间行驶的距离v =P Rn π2, s =PR Nπ25.解:在本题中,产品均与传输带保持相对静止,故产品的速度大小就等于传输带上每点的速度大小,如果传输带不打滑,则A 、B 轮缘上每一点的线速度大小均与传输带运动速度大小相等,1 min 内有41个产品通过A 处,说明1 min 内传输带上每点运动的路程为两产品间距的40倍,设传输带运动速度大小为v ,则(1)v =6030.040⨯=t s m/s =0.2 m/s(2)v P =v Q =0.2 m/sA 轮半径上的M 点与P 点角速度相等,故:v M =21v P =21×0.2 m/s =0.1 m/sωP =ωM =2.02.0=AP r v rad/s =1 rad/sωQ =2ωP =2 rad/s(3)C 轮的转动方向应如图所示,如果两轮间不打滑,则它们的接触处是相对静止的,即它们的轮缘的线速度是相等的,故ωC r C =ωA r A , ωC =C A r r ·ωA =05.02.0×1 rad/s =4 rad/s。

《圆周运动》说课稿

《圆周运动》说课稿

《圆周运动》说课稿《圆周运动》说课稿1尊敬的各位评委,各位老师:下午好!我叫王雷,来自通州市刘桥中学,我说课的题目是《匀速圆周运动》。

《匀速圆周运动》选自高中物理第一册第五章。

它是学生在充分掌握了曲线运动的规律后,接触到的一个较为复杂的曲线运动,本节内容作为该部分的起始章节,主要要向学生介绍圆周运动的几个基本概念,为后继的学习打下一个良好的基础。

根据本节课学要求和特点,我设计本课的教学目标有以下几点:教学目标:一、知识目标:1、知道什么是匀速圆周运动2、理解什么是线速度、角速度和周期3、理解线速度、角速度和周期之间的关系二、能力目标:能够匀速圆周运动的有关公式分析和解决有关问题。

再学习过程中能用信息技术手段为物理学习服务。

使抽象的事物形象化;理性的知识感性化;复杂的概念,简单化。

三、德育目标:通过描述匀速圆周运动快慢的教学,使学生了解对于同一个问题可以从不同的侧面进行研究,认识事物的复杂性,多面性。

教学重点:1、理解线速度、角速度和周期2、什么是匀速圆周运动3、线速度、角速度及周期之间的关系教学难点:对匀速圆周运动是变速运动的理解教学方法:讲授、推理归纳法、讨论,通过师生互动,生生互动,让学生主动的去探究知识,激发学习的兴趣和主动性。

教学步骤:为了达成上述教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性和自觉性,对一些主要教学环节,有以下构想:一、导入新课(1)物体的运动轨迹是圆周,这样的运动是很常见的,同学们能举几个例子吗?(例:转动的电风扇上各点的运动,地球和各个行星绕太阳的运动等)(2)今天我们就来学习最简单的圆周运动匀速圆周运动二、新课教学1、匀速圆周运动(1)用通过放录像让学生感知卫星做圆周运动,在相等的时间里通过相等的弧长。

(2)并出示定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相同棗这种运动就叫匀速圆周运动。

2、描述匀速圆周运动快慢的物理量(1)线速度a:分析:物体在做匀速圆周运动时,运动的时间t增大几倍,通过的弧长也增大几倍,所以对于某一匀速圆周运动而言,s与t的比值越大,物体运动得越快。

高中高一物理教案:匀速圆周运动

高中高一物理教案:匀速圆周运动

高中高一物理教案:匀速圆周运动一、教学目标1.理解匀速圆周运动的概念。

2.掌握匀速圆周运动的物理量:线速度、角速度、周期、频率、向心力。

3.能够运用匀速圆周运动的公式解决实际问题。

二、教学重点与难点1.教学重点:匀速圆周运动的概念,线速度、角速度、周期、频率、向心力的计算。

2.教学难点:向心力的来源及计算。

三、教学过程一、导入1.提问:同学们,你们在生活中是否观察到物体做圆周运动的现象?比如地球绕太阳转、自行车轮的运动等。

二、新课讲解1.讲解匀速圆周运动的概念(1)定义:物体在圆周上做匀速运动,即速度大小不变,方向始终沿着圆周切线方向。

(2)特点:物体在圆周运动过程中,速度方向不断变化,但速度大小保持不变。

2.讲解匀速圆周运动的物理量(1)线速度:物体在圆周运动中,沿圆周切线方向的速度。

用公式v表示,单位为m/s。

(2)角速度:物体在圆周运动中,角度的变化率。

用公式ω表示,单位为rad/s。

(3)周期:物体完成一次圆周运动所需的时间。

用公式T表示,单位为s。

(4)频率:物体在单位时间内完成圆周运动的次数。

用公式f表示,单位为Hz。

(5)向心力:物体在圆周运动中,指向圆心的力。

用公式F表示,单位为N。

3.讲解匀速圆周运动的计算公式(1)线速度与角速度的关系:v=ωr,其中r为圆的半径。

(2)周期与角速度的关系:T=2π/ω。

(3)频率与角速度的关系:f=ω/2π。

(4)向心力的计算:F=mv^2/r,其中m为物体的质量。

三、案例分析1.给出案例:一辆汽车在半径为R的圆形跑道上以恒定的速度v 行驶,求汽车在跑道上的角速度、周期、频率和向心力。

2.学生分析并解答:(1)角速度:ω=v/r。

(2)周期:T=2π/ω=2πr/v。

(3)频率:f=ω/2π=v/(2πr)。

(4)向心力:F=mv^2/r。

四、课堂小结2.强调向心力的重要性及计算方法。

五、课后作业(课后自主完成)1.请用所学的知识解释地球绕太阳运动的周期、频率和向心力。

高中物理知识点归类总结-匀速圆周运动

高中物理知识点归类总结-匀速圆周运动

匀速圆周运动线速度: V=t s==ωR=2f R 角速度:ω=f T tππθ22==向心加速度: a =2 f2 R=v ⨯ω向心力: F= ma = m 2 R= mm42πn2 R追及(相遇)相距最近的问题:同向转动:ωAtA=ωBtB+n2π;反向转动:ωAtA+ωBtB=2π 注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心. (2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。

(3)氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。

5.平抛运动:匀速直线运动和初速度为零的匀加速直线运动的合运动(1)运动特点:a 、只受重力;b 、初速度与重力垂直.尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。

在任意相等时间内速度变化相等。

(2)平抛运动的处理方法:平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动。

水平方向和竖直方向的两个分运动既具有独立性又具有等时性. (3)平抛运动的规律:证明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水平总位移的中点。

证:平抛运动示意如图设初速度为V0,某时刻运动到A 点,位置坐标为(x,y ),所用时间为t.此时速度与水平方向的夹角为β,速度的反向延长线与水平轴的交点为'x ,位移与水平方向夹角为α.以物体的出发点为原点,沿水平和竖直方向建立坐标。

依平抛规律有: 速度: Vx= V0 Vy=gt22yx v v v +='0xy v gt v v tan x x y-===β ①位移: Sx= Vot2y gt 21s =22y x s s s +=002gt 21t gt tan 21v v x y ===α ②由①②得: βαtan 21tan = 即)(21'x x y x y -= ③ 所以:xx 21'=④④式说明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水总位移的中点。

高中物理--圆周运动

高中物理--圆周运动

一、描述圆周运动的物理量及其相互关系 1、线速度⑴定义:质点做圆周运动通过的弧长s 和所用时间t 的比值叫做线速度.⑵大小:2s rv t T π==单位为m/s.⑶方向:某点线速度的方向即为该点的切线方向.(与半径垂直) ⑷物理意义:描述质点沿圆周运动的快慢.注:对于匀速圆周运动,在任意相等时间内通过的弧长都相等,即线速度大小不变,方向时刻改变。

2、角速度⑴定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度 跟所用时间t 的比值,就是质点运动的角速度.⑵大小: 单位:rad/s. ⑶物理意义:描述质点绕圆心转动的快慢.注:对于匀速圆周运动,角速度大小不变。

说明:匀速圆周运动中有两个结论:⑴同一转动圆盘(或物体)上的各点角速度相同.⑵不打滑的摩擦传动和皮带(或齿轮)传动的两轮边缘上各点线速度大小相等。

3、周期、频率、转速⑴周期:做匀速圆周运动的物体,转过一周所用的时间叫做周期。

用T 表示,单位为s 。

⑵频率:做匀速圆周运动的物体在1 s 内转的圈数叫做频率。

用f 表示,其单位为转/秒(或赫兹),符号为r/s(或Hz)。

⑶转速:工程技术中常用转速来描述转动物体上质点做圆周运动的快慢。

转速是指物体单位时间所转过的圈数,常用符号n 表示,转速的单位为转/秒,符号是r/s ,或转/分(r/min)。

4、向心加速度⑴定义:做圆周运动的物体,指向圆心的加速度称为向心加速度. ⑵大小:ϕ2t T ϕπω==⑶方向:沿半径指向圆心.⑷意义:向心加速度的大小表示速度方向改变的快慢.说明:①向心加速度总指向圆心,方向始终与速度方向垂直,故向心加速度只改变速度的方向,不改变速度的大小。

②向心加速度方向时刻变化,故匀速圆周运动是一种加速度变化的变加速曲线运动(或称非匀变速曲线运动).③向心加速度不一定是物体做圆周运动的实际加速度。

对于匀速圆周运动,其所受的合外力就是向心力,只产生向心加速度,因而匀速圆周运动的向心加速度是其实际加速度。

高中物理教案:匀速圆周运动

高中物理教案:匀速圆周运动

缀高中物理教案:匀速圆周运动一、教学目标1.理解匀速圆周运动的概念及特点。

2.掌握匀速圆周运动的向心力、向心加速度公式。

3.能够运用公式解决实际问题。

二、教学重点与难点1.教学重点:匀速圆周运动的特点、向心力的计算。

2.教学难点:向心加速度的理解、公式的应用。

三、教学过程1.导入同学们,我们之前学习了直线运动,那么大家思考一下,物体在做什么样的运动时,它的速度大小不变,但方向却在不断改变呢?2.新课导入这就是我们今天要学习的匀速圆周运动。

我们来了解一下匀速圆周运动的概念。

匀速圆周运动是指物体沿着圆周路径运动,速度大小不变,但方向不断改变的运动。

3.知识讲解(1)匀速圆周运动的特点速度大小不变方向不断改变运动轨迹为圆周(2)向心力在匀速圆周运动中,物体受到一个指向圆心的力,这个力叫做向心力。

向心力的大小为F=mω^2r,其中m为物体质量,ω为角速度,r为半径。

(3)向心加速度在匀速圆周运动中,物体受到向心加速度,大小为a=ω^2r。

向心加速度的方向始终指向圆心。

4.公式推导我们来推导一下向心力公式和向心加速度公式。

(1)向心力公式推导根据牛顿第二定律,F=ma。

在匀速圆周运动中,加速度为向心加速度,所以F=mω^2r。

(2)向心加速度公式推导根据加速度的定义,a=Δv/Δt。

在匀速圆周运动中,速度大小不变,但方向改变,所以a=ω^2r。

5.实例讲解现在,我们来讲解一些实例,以便大家更好地理解和运用公式。

(1)一个质量为m的小球,用一根长度为L的绳子系在天花板上,小球在水平面内做匀速圆周运动。

求小球的速度v和向心力F。

解:由圆周运动的特点,我们知道小球受到向心力。

根据向心力公式F=mω^2r,我们可以求出向心力。

又因为小球在水平面内做匀速圆周运动,所以速度v=F/m。

(2)一辆汽车沿着半径为R的圆形跑道行驶,速度为v。

求汽车的向心加速度a。

解:根据向心加速度公式a=ω^2r,我们可以求出汽车的向心加速度。

高中物理 圆周运动

高中物理 圆周运动

高中物理圆周运动全文共四篇示例,供读者参考第一篇示例:高中物理圆周运动是物理学中一个重要的概念,它涉及到围绕某一中心点旋转的物体所具有的运动规律。

在日常生活中,我们经常可以看到许多圆周运动的例子,比如地球围绕太阳的公转、自行车的轮胎转动、风扇的扇叶转动等等。

在物理学中,圆周运动是一个非常重要的研究对象,通过对圆周运动的研究,我们可以了解物体在旋转过程中的运动规律、力学定律以及动能、角动量等物理概念。

在高中物理课程中,学生们会接触到关于圆周运动的相关知识,包括旋转速度、角速度、向心力、离心力等概念。

学生们通过学习这些知识,可以更好地理解围绕中心旋转的物体的运动规律,奠定物理学的基础。

圆周运动也是高中物理中的一个难点,需要学生们通过理论知识的学习和实验的探究来深入理解。

在进行圆周运动的研究时,需要考虑到许多因素,比如物体的质量、半径、角速度、向心力等。

这些因素都会影响到物体在圆周运动中的运动状态,需要通过物理定律进行分析和计算。

在物理学中,关于圆周运动的核心定律有两个,分别是“向心力=质量×向心加速度”和“角动量守恒定律”。

我们来说一下“向心力=质量×向心加速度”这条定律。

在圆周运动中,物体会受到向心力的作用,这个向心力是使物体朝向旋转中心运动的力。

根据牛顿第二定律,向心力等于质量乘以向心加速度,即F=m×a。

这个向心加速度的大小与物体的质量和半径、角速度成正比,根据这个定律可以计算出物体在圆周运动中的加速度和向心力。

我们再来说一下“角动量守恒定律”。

在圆周运动中,物体会具有角动量,而角动量是物体围绕旋转中心转动时所具有的动量。

如果在圆周运动中没有外力作用,那么物体的角动量将会保持不变,这就是角动量守恒定律。

根据这个定律,我们可以推导出物体在圆周运动中的运动规律,例如角速度的变化、速度的大小等等。

在学习高中物理圆周运动的过程中,学生们可以通过实验来加深对这些概念的理解。

高一物理匀速运动知识点归纳大全

高一物理匀速运动知识点归纳大全

高一物理匀速运动知识点归纳大全在高中物理学习中,我们经常接触到各种各样的运动,其中之一便是匀速运动。

匀速运动是指物体在相等时间内走过相等距离的运动,不论是直线运动还是曲线运动,只要速度保持不变,就可以称之为匀速运动。

下面是一些高一物理匀速运动的知识点归纳,帮助我们更加深入了解和掌握这一部分内容。

一、匀速运动的基本概念匀速运动是指物体在单位时间内走过相等距离的运动。

在匀速运动中,物体的速度保持不变,因此,匀速运动的速度与时间是成正比的关系。

二、匀速直线运动1. 位移与时间的关系在匀速直线运动中,物体的位移与时间是成正比的关系。

即位移∝时间。

公式表示为:s = vt其中,s表示位移,v表示速度,t表示时间。

2. 速度与时间的关系在匀速直线运动中,物体的速度保持不变,因此速度与时间无关。

公式表示为:v = v0 = v平均其中,v表示速度,v0表示初速度,v平均表示平均速度。

3. 速度与位移的关系在匀速直线运动中,速度与位移是成正比的关系。

即速度∝位移。

公式表示为:v = s / t其中,v表示速度,s表示位移,t表示时间。

三、匀速曲线运动在匀速曲线运动中,物体的速度大小保持不变,但是速度方向会不断发生变化,因此物体会绘制出曲线轨迹。

四、匀速圆周运动1. 角速度与线速度的关系在匀速圆周运动中,角速度与线速度是成正比的关系。

公式表示为:ω = v / r其中,ω表示角速度,v表示线速度,r表示半径。

2. 角度与弧长的关系在匀速圆周运动中,角度与弧长是成正比的关系。

公式表示为:θ = s / r其中,θ表示角度,s表示弧长,r表示半径。

3. 转速与周期的关系在匀速圆周运动中,转速与周期是成反比的关系。

公式表示为:n = 1 / T其中,n表示转速,T表示周期。

五、匀速运动的应用匀速运动是物理学中最简单的一种运动形式,但它在现实中的应用却非常广泛。

例如,地球公转、自行车匀速行驶、电梯上下运动等都是匀速运动的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

匀速圆周运动
一、教学目标
1.知识目标
(1)知道什么是匀速圆周运动
(2)理解什么是线速度、角速度和周期
(3)理解线速度、角速度和周期之间的关系
2.能力目标
能够用匀速圆周运动的有关公式分析和解决有关问题
3.德育目标
通过描述匀速圆周运动快慢的教学,使学生了解对于同一个问题可以从不同的侧面进行研究。

二、教学重点、难点分析
1.重点:匀速圆周运动及其描述
2.难点:对匀速圆周运动是变速运动的理解
三、教学方法
讲授、推理、归纳法
四、教具
投影仪、投影片、多媒体、能够转动的圆盘
五、教学过程
(一)引入新课
在曲线运动中,轨迹是圆周的物体的运动是很常见的,如转动的电风扇上各点的运动,地球和各个行星绕太阳的运动等,今天我们就来学习最简单的圆周运动──匀速圆周运动。

(二)进行新课
1.速圆周运动
(1)圆周运动
【观察、举例】一个电风扇转动时,其上各点所做的运动,轨迹都是圆;开门或关门时门上各点的运动,轨迹都是一段圆弧。

地球和各个行星绕太阳的运动,轨迹是椭圆,但在中学都认为是圆,这些物体的运动都是圆周运动。

轨迹是圆的曲线运动,叫做圆周运动。

(2)匀速圆周运动
在圆周运动中最简单的是匀速圆周运动,匀速转动的砂轮上各个质点的运动,都是匀速圆周运动。

一个电风扇转动时,其上各点所做的运动,地球和各个行星绕太阳的运动,都认为是匀速圆周运动。

质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫匀速圆周运动。

(3)匀速圆周运动是变速曲线运动
匀速圆周运动的轨迹是圆,是曲线运动,运动的速度方向时刻在变化,因而匀速圆周运动不是匀速运动,而是变速曲线。

“匀速”二字仅指在相等的时间里通过相等的弧长。

2.述匀速圆周运动快慢的物理量
匀速圆周运动可以用前面描述运动的各物理量来描述,但这种运动有它自己的特点,可以引入一些奶反映它本身特点的物理量来加以描述。

(通过电脑模拟:两个物体都做圆周运动,但快慢不同,过渡引入下一问题)
(1)线速度 在转动圆盘的半径上贴上两个红色的小圆A 、B
相同的时间内通过的弧长不同,很显然大圆上的A 分析:物体在做匀速圆周运动时,运动的时间t 增大几倍,通过的弧长也增大几倍,所以对于某一匀速圆周运动而言,S 与t 的比值越大,物体运动得越快。

①概念:线速度就是物体做匀速圆周运动的瞬时速度。

用来描述做匀速圆周运动质点的运动快慢和方向。

②大小:做匀速圆周运动的质点通过的弧长S 与所用时间的比值,即单位时间内通过的弧长,表示线速度的大小。

t s v (量度式) 对确定的匀速圆周运动,V 的大小不变,上式为量度式,V 与S 、t 间无比例关系。

线速度的大小表示匀速圆周运动的快慢,“匀速圆周运动”的“匀速”二字仅指“匀速率”。

③方向:在圆周该点的切线方向上。

④单位:m/s
讨论:匀速圆周运动的线速度是恒量吗?
匀速圆周运动是一种非匀速运动,因为线速度的方向在时刻改变,所以匀速圆周运动的线速度不是恒矢量。

(2)角速度
匀速圆周运动的快慢也可以用角速度来描述。

物体在圆周上运动得越快,连接运动物体和圆心的半径在同样的时间内转过的角度就越大。

①概念:连接运动物体和圆心的半径转过的角度φ跟所用时间t 的比值,叫做匀速圆周运动的角速度。

②公式:角速度用ω来表示,有
ω=t
φ (量度式) 对确定的匀速圆周运动,φ与所用时间t 的比值是恒定不变的。

因此匀速圆周运动也可以说成是角速度不变的圆周运动。

③单位:角速度的单位由角度和时间的单位决定。

在SI 制中,角速度的单位是弧度每秒,符号是rad/s 。

(3)周期、频率和转速
匀速圆周运动是一种周期性运动。

①周期:做匀速圆周运动的物体运动一周所用的时间叫做周期。

符号用T 表示,单位是s 。

周期也是描述匀速圆周运动快慢的物理量,周期长运动慢,周期短运动快。

②频率:单位时间内运动的周数,即周期的倒数,叫做频率。

符号用f 表示,单位是Hz 。

频率也是描述匀速圆周运动快慢的物理量,频率低运动慢,频率高运动快。

f =1/T
③转速:做匀速圆周运动的物体单位时间内转过的圈数叫转速。

符号用n 表示,单位是r/s 、r/min 。

思考与讨论:半径10cm 的砂轮,每0.2s 转一圈。

砂轮边缘上某一质点,它做圆周运动的线速度的大小是多大?砂轮上离转轴不同距离的质点,它们做匀速圆周运动的线速度是否相同?角速度是否相同?周期是否相同?
(答案:略)
(4)线速度、角速度、周期之间的关系
既然线速度、角速度、周期都是用来描述匀速圆周运动快慢的物理量,那么他们之间有什么样的关系呢?
一物体做半径为r 的匀速圆周运动,它运动一周所用的时间为T 。

它在周期T 内转过的弧长为2πr ,转过的角度为2π,所以有
T r v π2= ω=T
π2 由上面两式得 v =r ω=2πnr =2πfr
结论:由v =r ω知,当v 一定时,ω与r 成反比;当ω一定时,v 与r 成正比;当r 一定时,v 与ω成正比。

(三)例题精讲
【例题1】分析下图中,A 、B 两点的线速度有什么关系?
结论:主动轮通过皮带、链条、齿轮等带动从动轮的过程中,皮带(链条)上各点以及两轮边缘上各点的线速度大小相等。

【例题2
结论:同一轮上各点的角速度相同。

(四)巩固训练:某电钟上秒针、分针、时针的长度比为d 1∶d 2∶d 3=1∶2∶3,求
①秒针、分针、时针尖端的线速度之比;
②秒针、分针、时针转动的角速度之比。

(五)总结、扩展
本节课学习了匀速圆周运动及描述匀速圆周运动快慢的物理量,要掌握它们的含义及求解公式,弄清它们间的联系,为后面的学习做好准备。

匀速圆周运动实质是匀速率圆周运动,它是一种变速运动。

描述匀速圆周运动快慢的物理量:
线速度:v =s/t
角速度:ω=φ/t
周期与频率:f =1/T
A A
B B
相互关系:v =2πr /T ω=2π/T v=r ω
(六)布置作业
1.本上的【思考与讨论】
2.课本P 92练习四(1)、(2)、(3)、(4)、(5)
【板书设计】四 匀速圆周运动
1.匀速圆周运动
(1)圆周运动:轨迹是圆的曲线运动,叫做圆周运动。

(2)匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种
运动就叫匀速圆周运动。

(3)匀速圆周运动是变速曲线运动
2.描述匀速圆周运动快慢的物理量(1)线速度
速圆周运动质点的运动快慢和方向。

②大小:做匀速圆周运动的质点通过的弧长S 与所用时间的比值,即单位时间内通过的弧长,表示线速度的大小。

v =t s
(量度式)
③方向:在圆周该点的切线方向上。

④单位:m/s
(2)角速度
①概念:连接运动物体和圆心的半径转过的角度φ跟所用时间t 的比值,叫做匀速圆周运动的角速度。

②公式:角速度用ω来表示,有 ω=
t
φ (量度式) ③单位:在SI 制中,角速度的单位是弧度每秒,符号是rad/s 。

(3)周期、频率和转速
①周期:做匀速圆周运动的物体运动一周所用的时间叫做周期。

符号用T 表示,单位是s 。

②频率:单位时间内运动的周数,即周期的倒数,叫做频率。

符号用f 表示,单位是Hz 。

f=1/T
③转速:做匀速圆周运动的物体单位时间内转过的圈数叫转速。

符号用n 表示,单位是r/s 、r/min 。

(4)线速度、角速度、周期之间的关系
v =T r π2 v =r ω=2πnr =2πfr
2
ω=
T
3、实例分析【例题1】【例题2】。

相关文档
最新文档