实验五1实验五 信号的抽样与恢复
信号与系统实验教程
信号与系统实验教程信号与系统实验是电子信息类专业中一门重要的实验课程。
在这门实验中,学生将学习如何利用实验仪器和软件工具来分析和处理信号,并理解信号在系统中的作用和相互之间的关系。
以下是一些常见的信号与系统实验教程:1. 实验一:信号的采集与表示- 学习使用信号采集仪器(例如信号发生器、示波器等)。
- 了解采样原理和采样频率对信号的影响。
- 学习如何将模拟信号转换为数字信号。
- 使用编程语言或工具对信号进行采样和表示。
2. 实验二:信号的变换与处理- 学习傅里叶变换和信号频谱分析的原理。
- 使用傅里叶变换工具(例如FFT算法)对信号进行频谱分析。
- 学习信号的时域和频域表示之间的转换关系。
- 学习数字滤波器的原理和应用。
3. 实验三:线性时不变系统的特性分析- 学习线性时不变系统的定义和性质。
- 了解系统的单位冲激响应和冲激响应与输入信号的卷积关系。
- 利用实验仪器测量系统的冲激响应。
- 使用软件工具对系统进行时域和频域特性分析。
4. 实验四:信号采样与重构- 学习信号采样和重构的理论基础。
- 利用实验仪器对信号进行采样和重构。
- 学习采样定理的应用和限制。
- 学习插值和抽取技术对信号进行采样和重构。
5. 实验五:系统的频率响应与稳定性- 学习系统的频率响应和稳定性分析。
- 使用频率响应仪器(例如频谱分析仪)对系统进行测量和分析。
- 学习系统的振荡和稳定条件。
- 学习系统的幅频特性和相频特性之间的关系。
以上是信号与系统实验教程的一些基本内容,具体的实验内容和教程可以根据教学大纲和教材进行更详细的设计和安排。
信号与系统综合实验报告
目录实验一常用信号的观察 (4)实验二零输入、零状态及完全响应 (7)实验五无源与有源滤波器 (8)实验六低通、高通、带通、带阻滤波器间的变换 (14)实验七信号的采样与恢复实验 (19)实验八调制与解调实验 (31)实验体会 (35)实验一常用信号的观察一、任务与目标1。
了解常用信号的波形和特点。
2。
了解相应信号的参数。
3。
学习函数发生器和示波器的使用。
二、实验过程1.接通函数发生器的电源。
2.调节函数发生器选择不同的频率的正弦波、方波、三角波、锯齿波及组合函数波形,用示波器观察输出波形的变化。
三、实验报告(x为时间,y为幅值)100Hz 4V 正弦波y=2sin(628x—π/2)100Hz 4V 方波y=2 t=(2n-1)x*0.0025~(2n+1)x*0.0025 x为奇y=-2 t=(2n-1)x*0。
0025~(2n+1)x*0.0025 x为偶100Hz 4V 锯齿波100Hz 4V 三角波由50Hz的正弦波和100Hz正弦波组合的波形y=0.2sin(628x)+0.1sin(314x)实验二零输入、零状态及完全响应一、实验目标1.通过实验,进一步了解系统的零输入响应、零状态响应和完全响应的原理。
2.学习实验电路方案的设计方法——本实验中采用用模拟电路实现线性系统零输入响应、零状态响应和完全响应的实验方案.二、原理分析实验指导书P4三、实验过程1、接通电源;2、闭合K2,给电容充电,断开K2闭合K3,观察零输入响应曲线;3、电容放电完成后,断开K3,闭合K1,观察零状态响应曲线;4、断开K1,闭合K3,再次让电容放电,放电完成后断开K3闭合K2,在电容电压稳定于5V后断开K2,闭合K1,观察完全响应曲线.四、实验报告上图为零输入响应、零状态响应和完全响应曲线。
五、实验思考题系统零输入响应的稳定性与零状态响应的稳定性是否相同?为什么?答:相同。
因为系统零输入响应和零状态响应稳定的充分必要条件都是系统传递函数的全部极点si(i=1,2,3,…,n),完全位于s平面的左半平面。
信号与系统实验(MATLAB版) (1)
《信号与系统MATLAB实现》实验指导书电气信息工程学院2014年2月长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MA TLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。
MATLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MATLAB 再多了解一些。
MATLAB究竟有那些特点呢?1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来;2.完备的图形处理功能,实现计算结果和编程的可视化;3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握;4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具;MATLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。
正是基于这些背景,我们编写了这本《信号与系统及MATLAB实现》指导书,内容包括信号的MA TLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。
通过这些练习,同学们在学习《信号与系统》的同时,掌握MATLAB的基本应用,学会应用MATLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、难点及部分习题用MATLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。
另外同学们在进行实验时,最好事先预习一些MATLAB的有关知识,以便更好地完成实验,同时实验中也可利用MATLAB的help命令了解具体语句以及指令的使用方法。
数字信号处理实验五
实验五:抽样定理一、实验目的1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。
2、进一步加深对时域、频域抽样定理的基本原理的理解。
3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。
二、实验内容及步骤1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。
2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m =1Hz 。
(1)分别显示原连续信号波形和F s =f m 、F s =2f m 、F s =3f m 三种情况下抽样信号的波形;dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]);课程名称 数字信号处理 实验成绩 指导教师实 验 报 告院系 信息工程学院 班级 学号 姓名 日期end-2-1.5-1-0.50.511.5200.51原连续信号和抽样信号(2)求解原连续信号和抽样信号的幅度谱; dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; N=length(t); f=sinc(t); wm=2*pi*fm; k=0:N-1; w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3;if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1; w=k*wm/N; F=f*exp(-j*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end00.511.522.533.540.20.40.60.811.200.511.522.533.54012(3)用时域卷积的方法(内插公式)重建信号。
信号与系统实验报告
电气学科大类2012 级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名丁玮学号U201216149 专业班号水电1204 同组者1 余冬晴学号U201216150 专业班号水电1204 同组者2 学号专业班号指导教师日期实验成绩评阅人实验评分表基本实验实验编号名称/内容实验分值评分实验一常用信号的观察实验二零输入响应、零状态相应及完全响应实验五无源滤波器与有源滤波器实验六LPF、HPF、BPF、BEF间的变换实验七信号的采样与恢复实验八调制与解调设计性实验实验名称/内容实验分值评分创新性实验实验名称/内容实验分值评分教师评价意见总分目录1.实验一常用信号的观察 (1)2.实验二零输入响应、零状态响应及完全响应 (4)3.实验五无源滤波器与有源滤波器 (7)4.实验六 LPF、HPF、BPF、BEF间的转换 (14)5.实验七信号的采样与恢复 (19)6.实验八调制与解调 (29)7.实验心得与自我评价 (33)8.参考文献 (34)实验一常用信号的观察一.任务与目标1.了解常见信号的波形和特点;2.了解常见信号有关参数的测量,学会观察常见信号组合函数的波形;3.学会使用函数发生器和示波器,了解所用仪器原理与所观察信号的关系;4.掌握基本的误差观察与分析方法。
二.总体方案设计1.实验原理描述信号的方法有许多种,可以用数学表达式(时间的函数),也可以使用函数图形(信号的波形)。
信号可以分为周期信号和非周期信号两种。
普通示波器可以观察周期信号,具有暂态拍摄功能的示波器可以观察到非周期信号的波形。
目前,常用的数字示波器可以方便地观察周期信号及非周期信号的波形。
2.总体设计⑴观察常用的正弦波、方波、三角波、锯齿波等信号及一些组合函数的波形,如y=sin(nx)+cos(mx)。
⑵用示波器测量信号,读取信号的幅值与频率。
三.方案实现与具体设计1.用函数发生器产生正弦波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;2.用函数发生器产生方波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;3.用函数发生器产生三角波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;4.用函数发生器产生锯齿波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;5.用函数发生器产生两个不同频率的正弦波,分别设定波形的峰值及频率,用示波器叠加波形,并观察组合函数的波形。
实验五 抽样定理与信号恢复
一. 实验目的
1、掌握连续时间信号与抽样信号的关系。 2、掌握抽样信号频谱的特点。 3、验证抽样定理。
二. 实验原理
1 . 信号抽样的原理 2. 抽样信号频谱的特点
3. 抽样信号恢复原信号的条件
三. 实验仪器及材料
1、双踪示波器
1台
2、信号与系统实验箱
1台
3、函数信号发生器
a. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为2KHz时Fs(t)和F'(t)的波形;
b. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为4KHz时Fs(t)和F'(t)的波形;
五. 实验报告要求
1、画出抽样频率分别为3KHz、6KHz和12KHz 时抽样信号的波形。
1台
四. 实验内容和步骤
1. 抽样信号波形的观测 2. 验证抽样定理与信号恢复
1.抽样信号波形的观测
1. 调节信号源,使之输出f=1KHz,幅度A=3V的三角波; 2. 连接信号源输出端与抽样定理模块上点P41; 3. 拨码开关K401拨至左边; 4. 用示波器观察TP42处抽样信号的波形,调整电位器 W41改变抽样频率,使抽样频率分别为3K、6K和12K, 观察并记录这3种情况下抽样信号的波形。
2、整理信号恢复实验的结果,画出各种情况下 F(t)与F′(t)波形,比较后得出结论。
3、比较F(t)分别为正弦波和三角波,其 Fs(t)的频谱特点。
4、通过本实验你有何体会。
2. 调节信号源,使其输出f=1KHz,A=1V的三角波;连接 信号源输出端与P41,并把抽样信号Fs(t)的输出端P42 与低通滤波器输入端相连,示波器CH1接原始被抽样 信号输入点P41,CH2接恢复信号输出点TP45,对比观 察信号恢复情况:
通信原理实验5
实验五抽样定理实验一、实验目的1、了解抽样定理在通信系统中的重要性。
2、掌握自然抽样及平顶抽样的实现方法。
3、理解低通采样定理的原理。
4、理解实际的抽样系统。
5、理解低通滤波器的幅频特性对抽样信号恢复的影响。
6、理解低通滤波器的相频特性对抽样信号恢复的影响。
7、理解带通采样定理的原理。
二、实验器材1、主控&信号源、3号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图图1-1 抽样定理实验框图2、实验框图说明抽样信号由抽样电路产生。
将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。
平顶抽样和自然抽样信号是通过开关S1切换输出的。
抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。
这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。
反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。
要注意,这里的数字滤波器是借用的信源编译码部分的端口。
在做本实验时与信源编译码的内容没有联系。
四、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。
信号源:MUSIC 模块3:TH1(被抽样信号)将被抽样信号送入抽样单元信号源:A-OUT 模块3:TH2(抽样脉冲)提供抽样时钟模块3:TH3(抽样输出)模块3:TH5(LPF-IN) 送入模拟低通滤波器2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。
调节主控模块的W1使A-out输出峰峰值为3V。
3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。
抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。
信号与系统实验报告
信号与系统实验实验一 常用信号分类与观察一、实验目的1、了解单片机产生低频信号源2、观察常用信号的波形特点及产生方法。
3、学会使用示波器对常用波形参数的测量。
二、实验仪器1、20MHz 双踪示波器一台。
2、信号与系统实验箱一台。
三、实验内容1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。
2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。
四、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。
因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。
在本实验中,将对常用信号和特性进行分析、研究。
信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。
常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。
1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。
其波形如下图所示:图 1 正弦信号2、指数信号:指数信号可表示为atKe t f =)(。
对于不同的a 取值,其波形表现为不同的形式,如下图所示:图 2 指数信号3、指数衰减正弦信号:其表达式为 ⎪⎩⎪⎨⎧><=-)0()sin()0(0)(t t Ke t t f at ω其波形如下图:图 3 指数衰减正弦信号4、抽样信号:其表达式为: sin ()tSa t t=。
)(t Sa 是一个偶函数,t = ±π,±2π,…,±n π时,函数值为零。
该函数在很多应用场合具有独特的运用。
其信号如下图所示:图4 抽样信号5、钟形信号(高斯函数):其表达式为:2()()tf t Ee-τ= , 其信号如下图所示:图 5 钟形信号6、脉冲信号:其表达式为)()()(T t u t u t f --=,其中)(t u 为单位阶跃函数。
实验五1实验五 信号的抽样与恢复
实验五1实验五信号的抽样与恢复————————————————————————————————作者:————————————————————————————————日期:实验五 信号的抽样与恢复一、实验目的(1) 验证抽样定理;(2) 熟悉信号的抽样与恢复过程;(3) 通过实验观察欠采样时信号频谱的混迭现象;(4) 掌握采样前后信号频谱的变化,加深对采样定理的理解; (5) 掌握采样频率的确定方法.二、 实验内容和原理信号的抽样与恢复示意图如图4.1所示。
图5-1 信号的抽样与恢复示意图抽样定理指出:一个有限频宽的连续时间信号)(t f ,其最高频率为m ω,经过等间隔抽样后,只要抽样频率s ω不小于信号最高频率m ω的二倍,即满足m s ωω2≥,就能从抽样信号)(t f s 中恢复原信号,得到)(0t f 。
)(0t f 与)(t f 相比没有失真,只有幅度和相位的差异。
一般把最低的抽样频率m s ωω2min =称为奈奎斯特抽样频率.当m s ωω2<时,)(t f s 的频谱将产生混迭现象,此时将无法恢复原信号。
)(t f 的幅度频谱为)(ωF ;开关信号)(t s 为周期矩形脉冲,其脉宽τ相对于周期s T 非常小,故将其视为冲激序列,所以)(t s 的幅度频谱)(ωS 亦为冲激序列;抽样信号)(t f s 的幅度频谱为)(ωs F ;)(0t f 的幅度频谱为)(0ωF .如图4。
1所示。
观察抽样信号的频谱)(ωs F ,可以发现利用低通滤波器(其截止频率满足m s c m ωωωω-<<)就能恢复原信号。
信号抽样与恢复的原理框图如图4。
2所示。
图 5-2 信号抽样与恢复的原理框图由原理框图不难看出,A/D 转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A 转换环节实现数/模转换,得到连续时间信号;低通滤波器的作用是滤除截止频率以外的信号,恢复出与原信号相比无失真的信号)(0t f 。
信号的采样与恢复
实验五信号的采样与恢复一、实验目的1.了解电信号的采样方法与过程及信号的恢复。
2.验证采样定理。
二、实验设备1.THBCC-1型信号与系统.控制理论及计算机控制技术实验平台2.PC机(含THBCC-1软件)三、实验内容1 研究正弦信号和三角波信号被采样的过程以及采样后的离散化信号恢复为连续信号的波形。
2.用采样定理分析实验结果。
四、实验原理1.离散时间信号可以从离散信号源获得,也可以从连续时间信号经采样而获得。
采样信号fs(t)可以看成连续信号f(t)和一组开关函数S(t)的乘积。
S(t)是一组周期性窄脉冲。
由对采样信号进行傅立叶级数分析可知,采样信号的频谱包括了原连续信号以及无限多个经过平移的原信号频谱。
平移的频率等于采样频率fs及其谐波频率2fs、3fs· · ·。
当采样后的信号是周期性窄脉冲时,平移后的信号频率的幅度按(sinx)/x规律衰减。
采样信号的频谱是原信号频谱的周期性延拓,它占有的频带要比原信号频谱宽得多。
2.采样信号在一定条件下可以恢复原来的信号,只要用一截止频率等于原信号频谱中最高频率fn 的低通滤波器,滤去信号中所有的高频分量,就得到只包含原信号频谱的全部内容,即低通滤波器的输出为恢复后的原信号。
3.原信号得以恢复的条件是fs≥2B,其中fs 为采样频率,B 为原信号占有的频带宽度。
Fmin=2B 为最低采样频率。
当fs<2B 时,采样信号的频谱会发生混迭,所以无法用低通滤波器获得原信号频谱的全部内容。
在实际使用时,一般取fs=(5-10)B 倍。
实验中选用fs<2B、fs=2B、fs>2B 三种采样频率对连续信号进行采样,以验证采样定理⎯要是信号采样后能不失真的还原,采样频率fs 必须远大于信号频率中最高频率的两倍。
4.用下面的框图表示对连续信号的采样和对采样信号的恢复过程,实验时,除选用足够高的采样频率外,还常采用前置低通滤波器来防止信号频谱的过宽而造成采样后信号频谱的混迭。
信号的抽样与恢复实验报告
信号的抽样与恢复实验报告信号的抽样与恢复实验报告引言:信号的抽样与恢复是数字信号处理中的重要概念,它涉及到模拟信号的数字化处理和数字信号的还原。
通过对信号进行抽样,可以将连续的模拟信号转化为离散的数字信号,方便存储、传输和处理。
而信号的恢复则是将离散的数字信号重新转化为连续的模拟信号,以便于人们感知和理解。
本实验旨在通过实际操作,探究信号的抽样与恢复原理,并验证其有效性。
一、实验目的本实验旨在:1. 了解信号的抽样与恢复原理;2. 掌握信号抽样的方法和过程;3. 掌握信号恢复的方法和过程;4. 验证信号抽样与恢复的有效性。
二、实验器材和方法1. 实验器材:- 信号发生器:用于产生模拟信号;- 示波器:用于观测信号波形;- 数字示波器:用于观测数字信号;- 信号恢复电路:用于将数字信号恢复为模拟信号。
2. 实验方法:- 将信号发生器与示波器连接,产生连续的模拟信号;- 将信号发生器与数字示波器连接,观测抽样后的数字信号;- 将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号;- 通过示波器观测恢复后的信号波形,与原始信号进行对比。
三、实验过程1. 连接实验器材:将信号发生器与示波器连接,设置合适的频率和振幅,产生连续的模拟信号。
将信号发生器与数字示波器连接,设置适当的抽样频率和采样率,观测抽样后的数字信号。
将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号。
2. 观测信号波形:通过示波器观测连续的模拟信号波形,并记录相关参数,如频率、振幅等。
然后,通过数字示波器观测抽样后的数字信号波形,并记录相关参数,如抽样频率、采样率等。
最后,通过示波器观测恢复后的信号波形,并与原始信号进行对比。
3. 分析实验结果:根据观测到的信号波形,分析信号的抽样与恢复过程。
比较抽样后的数字信号与原始信号的相似性,以及恢复后的信号与原始信号的差异。
根据实验结果,验证信号抽样与恢复的有效性。
四、实验结果与讨论通过实验观测,我们可以发现信号的抽样与恢复过程中存在一定的误差。
信号与系统Matlab实验作业
实验一典型连续时间信号和离散时间信号一、实验目的掌握利用Matlab画图函数和符号函数显示典型连续时间信号波形、典型时间离散信号、连续时间信号在时域中的自变量变换。
二、实验内容1、典型连续信号的波形表示(单边指数信号、复指数信号、抽样信号、单位阶跃信号、单位冲击信号)1)画出教材P28习题1-1(3) ()[(63)(63)]t=----的波形图。
f t e u t u t2)画出复指数信号()()j t f t e σω+=当0.4, 8σω==(0<t<10)时的实部和虚部的波形图。
t=0:0.01:10;f1='exp(0.4*t)*cos(8*t)';f2='exp(0.4*t)*sin(8*t)';figure(1)ezplot(f1,t);grid on;figure(2)ezplot(f2,t);grid on;3)画出教材P16图1-18,即抽样信号Sa(t)的波形(-20<t<20)。
t=-10:0.01:10;f='sin(t)/t';ezplot(f,t);grid on;4)用符号函数sign画出单位阶跃信号u(t-3)的波形(0<t<10)。
t=0:0.01:10;f='(sign(t-3)+1)/2';ezplot(f,t);grid on;5)单位冲击信号可看作是宽度为∆,幅度为1/∆的矩形脉冲,即t=t 1处的冲击信号为11111 ()()0 t t t x t t t otherδ∆⎧<<+∆⎪=-=∆⎨⎪⎩画出0.2∆=, t 1=1的单位冲击信号。
t=0:0.01:2;f='5*(u(t-1)-u(t-1.2))';ezplot(f,t);grid on;axis([0 2 -1 6]);2、典型离散信号的表示(单位样值序列、单位阶跃序列、实指数序列、正弦序列、复指数序列)编写函数产生下列序列:1)单位脉冲序列,起点n0,终点n f,在n s处有一单位脉冲。
实验五 信号的采样与恢复
2、 语音信号的抽样与恢复
把话筒插进 V1 耳机插进 V2(看清标识不要接错),用导线将“PCM 信号输 出”连接到“PCM 信号输入”,检查无误后就可以对着话筒讲话了,会在耳机 里听到清楚的声音。 (W01 用来调节语音信号的放大倍数,W02 用来调节声音 的大小)
数据处理:
抽样频率变化后的采样信号与其分别对应的恢复信号
s
2
2
t)
该信号在采样周期 2
s 整数倍点上
的值都是零;因此在这个采样频率下所产生的信号全是零。当这个零输入加到理想低通 滤波器上时,所得输出当然也都是零。 5、为了实现对连续信号的抽样和抽样信号的复原,除选用足够高的抽样频率外, 常采用前置低通滤波器来防止原信号频谱宽而造成抽样后信号频谱的混叠。但这也会造 成失真。原始的语音信号带宽为 40Hz 到 10000Hz,但实际中传输的语音信号的带宽为 300Hz 到 3400Hz,并不影响我们的听觉效果,因此本实验加了前置滤波器。 6、语音抽样还原实验采用集成方式,本实验采用PCM编译码器TP3067专用大规模集 成电路,它是CMOS工艺制造的单片PCM A律编译码器.片内带有输入输出话路滤波器.它 把编译码器(Codec)和滤波器(Filter)集成在一个芯片上。 脉冲编码调制(PCM)就是把一个时间连续、取值连续的模拟信号变换成时间离散、 取值离散的数字信号后在信道中进行传输。而脉冲编码调制就是对模拟信号先进行抽样 后,再对样值的幅度进行量化、编码的过程。话音信号先经过防混叠低通滤波器,得到 限带信号(300Hz~3400Hz),进行脉冲抽样,变成 8kHz 重复频率的抽样信号(即离散 的脉冲调幅 PAM 信号),然后将幅度连续的 PAM 信号用“四舍五入”办法量化为有限个 幅度取值的信号,再经编码,转换成二进制码。对于电话,CCITT(国际电话与电报顾 问委员会 International Telephone and Telegraph Consultative Committee)规定 8 抽样率为 8kHz,每抽样值编 8 位码,即共有 2 =256 个量化值,因而每话路 PCM 编码后 的标准数码率是 64kb/s。
数字信号处理学习指导与课后答案第8章
Xˆ a ( j ) xa (nT )e j nT n
第8章 上机实验
上式中, 在数值上xa(nT)=x(n), 再将ω=ΩT代入, 得到
Xˆ a ( j ) x(n)e j n n
上式的右边就是序列的傅里叶变换X(ejω), 即
Xˆ a ( j ) X (e j ) T
x(n)=sin(0.014n)+sin(0.4n) 求出系统的输出响应y4. 思考题 (1) 如果输入信号为无限长序列, 系统的单位脉冲响 应是有限长序列, 可否用线性卷积法求系统的响应? 如何求 (2) 如果信号经过低通滤波器, 信号的高频分量被 滤掉, 时域信号会有何变化? 用前面第一个实验的结果进 行分析说明。 5. (1) 简述在时域求系统响应的方法。 (2) 简述通过实验判断系统稳定性的方法。 分析上面 第三个实验的稳定输出的波形。 (3) 对各实验所得结果进行简单分析和解释。 (4) 简要回答思考题。 (5) 打印程序清单和要求的各信号波形。
第8章 上机实验
8.1.2
实验1程序: exp1.m %实验1: close all; clear all %==================================== %内容1: 调用filter解差分方程, 由系统对u(n)的响应判
A=[1, -0.9]; B=[0.05, 0.05]; %系统差分方程系数向量B和A
第8章 上机实验
8.1 实验一:
8.1.1
1. (1) 掌握求系统响应的方法。 (2) 掌握时域离散系统的时域特性。 (3) 分析、 观察及检验系统的稳定性。
第8章 上机实验
2. 在时域中, 描写系统特性的方法是差分方程和单位脉 冲响应, 在频域可以用系统函数描述系统特性。 已知输入 信号可以由差分方程、 单位脉冲响应或系统函数求出系统对 于该输入信号的响应。 本实验仅在时域求解。 在计算机上 适合用递推法求差分方程的解, 最简单的方法是采用 MATLAB语言的工具箱函数filter函数。 也可以用MATLAB 语言的工具箱函数conv函数计算输入信号和系统的单位脉冲 响应的线性卷积, 求出系统的响应。
信号的抽样与恢复(抽样定理)
实验一 信号的抽样与恢复(抽样定理)一、实验目的1.了解信号的抽样方法与过程以及信号恢复的方法。
2.验证抽样定理。
二、实验设备1.Dais -XTB 信号与系统实验箱 一台 2.双踪示波器 一台 3.任意函数发生器 一台三、实验原理1.离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号()s x t 可以看成连续信号()x t 和一组开关函数()s t 的乘积。
()s t 是一组周期性窄脉冲,如图1-1,s T 称为抽样周期,其倒数1/s s f T =称抽样频率。
图1-1 矩形抽样信号对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。
当抽样信号是周期性窄脉冲时,平移后的频率幅度按sin x /x 规律衰减。
抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2.在一定条件下,从抽样信号可以恢复原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。
3.原信号得以恢复的条件是f s ≥2f max ,f s 为抽样频率,f max 为原信号的最高频率。
当f s <2 f max 时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的,因此恢复后的信号失真还是难免的。
实验中选用f s <2 f max 、f s =2 f max 、f s >2 f max 三种抽样频率对连续信号进行抽样,以验证抽样定理。
4.连续信号的抽样和抽样信号的复原原理框图如图1-2所示。
除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成抽样后信号频谱的混迭,但这也会造成失真。
基于Matlab的信号与系统实验指导
基于Matlab 的信号与系统实验指导实验一 连续时间信号在Matlab 中的表示一、实验目的1、学会运用Matlab 表示常用连续时间信号的方法2、观察并熟悉这些信号的波形和特性二、实验原理及实例分析1、信号的定义与分类2、如何表示连续信号?连续信号的表示方法有两种;符号推理法和数值法。
从严格意义上讲,Matlab 数值计算的方法不能处理连续时间信号。
然而,可利用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能被Matlab 处理,并且能较好地近似表示连续信号。
3、Matlab 提供了大量生成基本信号的函数。
如:(1)指数信号:K*exp(a*t)(2)正弦信号:K*sin(w*t+phi)和K*cos(w*t+phi)(3)复指数信号:K*exp((a+i*b)*t)(4)抽样信号:sin(t*pi)注意:在Matlab 中用与Sa(t)类似的sinc(t)函数表示,定义为:)t /()t (sin )t (sinc ππ=(5)矩形脉冲信号:rectpuls(t,width)(6)周期矩形脉冲信号:square(t,DUTY),其中DUTY 参数表示信号的占空比DUTY%,即在一个周期脉冲宽度(正值部分)与脉冲周期的比值。
占空比默认为0.5。
(7)三角波脉冲信号:tripuls(t, width, skew),其中skew 取值范围在-1~+1之间。
(8)周期三角波信号:sawtooth(t, width)(9)单位阶跃信号:y=(t>=0)三、实验内容1、验证实验内容直流及上述9个信号2、程序设计实验内容(1)利用Matlab 命令画出下列连续信号的波形图。
(a ))4/3t (2cos π+(b ))t (u )e 2(t -- (c ))]2()(u )][t (cos 1[--+t u t π(2)利用Matlab 命令画出复信号)4/t (j 2e)t (f π+=的实部、虚部、模和辐角。
抽样定理与信号恢复
实验五 抽样定理与信号恢复一、实验目的1. 观察离散信号频谱,了解其频谱特点;2. 验证抽样定理并恢复原信号。
二、实验原理说明1. 离散信号不仅可从离散信号源获得,而且也可从连续信号抽样获得。
抽样信号 Fs (t )=F (t )·S (t )其中F (t )为连续信号(例如三角波),S (t )是周期为Ts 的矩形窄脉冲。
Ts 又称抽样间隔,Fs=1Ts 称抽样频率,Fs (t )为抽样信号波形。
F (t )、S (t )、Fs (t )波形如图4-1。
t-4T S -T S 0T S 4T S8T S 12T S tt2/1τ1τ2/31τ2/1τ1τ2/31τ2/1τ-(a)(b)(c)图5-1 连续信号抽样过程将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图5-2所示。
2. 连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱()∑∞∞--•=m s s m m SaTsA j )(22s F ωωπδτωτω 它包含了原信号频谱以及重复周期为fs (f s =πω2s 、幅度按S T A τSa (2τωs m )规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。
因此,抽样信号占有的频带比原信号频带宽得多。
以三角波被矩形脉冲抽样为例。
三角波的频谱 F (j ω)=∑∞-∞=-K k k sa E )2()2(12τπωδππ 抽样信号的频谱Fs (j ω)=式中 取三角波的有效带宽为31ω18f f s =作图,其抽样信号频谱如图5-3所示。
)()2(212s m k s m k k Sa m SaTSEA ωωωδπτωτπ--••∑∞-∞=-∞=111112ττπω==f 或(a) 三角波频谱f1111f Fs(f)fs2fs(b) 抽样信号频谙f图5-3 抽样信号频谱图如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五 信号的抽样和恢复一、实验目的(1) 验证抽样定理;(2) 熟悉信号的抽样和恢复过程;(3) 通过实验观察欠采样时信号频谱的混迭现象;(4) 掌握采样前后信号频谱的变化,加深对采样定理的理解; (5)掌握采样频率的确定方法。
二、 实验内容和原理信号的抽样和恢复示意图如图4.1所示。
图5-1 信号的抽样和恢复示意图抽样定理指出:一个有限频宽的连续时间信号)(t f ,其最高频率为m ω,经过等间 隔抽样后,只要抽样频率s ω不小于信号最高频率m ω的二倍,即满足m s ωω2≥,就能从抽样信号)(t f s 中恢复原信号,得到)(0t f 。
)(0t f 和)(t f 相比没有失真,只有幅度和相位的差异。
一般把最低的抽样频率m s ωω2min =称为奈奎斯特抽样频率。
当m s ωω2<时,)(t f s 的频谱将产生混迭现象,此时将无法恢复原信号。
)(t f 的幅度频谱为)(ωF ;开关信号)(t s 为周期矩形脉冲,其脉宽τ相对于周期s T 非常小,故将其视为冲激序列,所以)(t s 的幅度频谱)(ωS 亦为冲激序列;抽样信号)(t f s 的幅度频谱为)(ωs F ;)(0t f 的幅度频谱为)(0ωF 。
如图4.1所示。
观察抽样信号的频谱)(ωs F ,可以发现利用低通滤波器(其截止频率满足m s c m ωωωω-<<)就能恢复原信号。
信号抽样和恢复的原理框图如图4.2所示。
图 5-2 信号抽样和恢复的原理框图由原理框图不难看出,A/D 转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A 转换环节实现数/模转换,得到连续时间信号;低通滤波器的作用是滤除截止频率以外的信号,恢复出和原信号相比无失真的信号)(0t f 。
三、涉及的MATLAB 函数subplot(2,1,1)xlabel('时间, msec');ylabel('幅值'); title('连续时间信号 x_{a}(t)'); axis([0 1 -1.2 1.2]) stem(k,xs);grid;linspace(-0.5,1.5,500)'; ones(size(n)freqs(2,[1 2 1],wa); plot(wa/(2*pi),abs(ha)buttord(Wp, Ws, 0.5, 30,'s'); [Yz, w] = freqz(y, 1, 512); M= input('欠采样因子 = '); length(nn1) y = interp(x,L)[b,a] = butter(N, Wn, 's'); get(gfp,'units');set(gfp,'position',[100 100 400 300]); fx1=fft(xs1) abs(fx2(n2+1))y = resample(x,L,M);四、实验内容和方法1. 验证性实验 1) 正弦信号的采样 MATLAB 程序:clf;t = 0:0.0005:1;f = 13;xa = cos(2*pi*f*t);subplot(2,1,1)plot(t,xa);gridxlabel('时间, msec');ylabel('幅值');title('连续时间信号x_{a}(t)');axis([0 1 -1.2 1.2])subplot(2,1,2);T = 0.1;n = 0:T:1;xs = cos(2*pi*f*n);k = 0:length(n)-1;stem(k,xs);grid;xlabel('时间,msec');ylabel('幅值');title('离散时间信号x[n]');axis([0 (length(n)-1) -1.2 1.2])正弦信号的采样结果如图4.3所示。
图5-3 正弦信号的采样2)采样和重构MATLAB程序:clf;T = 0.1;f = 13;n = (0:T:1)';xs = cos(2*pi*f*n);t = linspace(-0.5,1.5,500)';ya = sinc((1/T)*t(:,ones(size(n))) - (1/T)*n(:,ones(size(t)))')*xs;plot(n,xs,'o',t,ya);grid;xlabel('时间, msec');ylabel('幅值');title('重构连续信号y_{a}(t)');axis([0 1 -1.2 1.2]);正弦信号的采样和重构结果如图4.4所示。
图5-4 正弦信号的采样和重构结3)采样的性质MATLAB程序:clf;t = 0:0.005:10;xa = 2*t.*exp(-t);subplot(2,2,1)plot(t,xa);gridxlabel('时间信号, msec');ylabel('幅值');title('连续时间信号x_{a}(t)');subplot(2,2,2)wa = 0:10/511:10;ha = freqs(2,[1 2 1],wa);plot(wa/(2*pi),abs(ha));grid;xlabel('频率, kHz');ylabel('幅值');title('|X_{a}(j\Omega)|');axis([0 5/pi 0 2]);subplot(2,2,3)T = 1;n = 0:T:10;xs = 2*n.*exp(-n);k = 0:length(n)-1;stem(k,xs);grid;xlabel('时间n');ylabel('幅值');title('间散时间信号x[n]');subplot(2,2,4)wd = 0:pi/255:pi;hd = freqz(xs,1,wd);plot(wd/(T*pi), T*abs(hd));grid;xlabel('频率, kHz');ylabel('幅值');title('|X(e^{j\omega})|');axis([0 1/T 0 2])信号采样的性质如图4.5所示。
图5-5 信号采样的性质4)模拟低通滤波器设计MATLAB程序:clf;Fp = 3500;Fs = 4500;Wp = 2*pi*Fp; Ws = 2*pi*Fs;[N, Wn] = buttord(Wp, Ws, 0.5, 30,'s');[b,a] = butter(N, Wn, 's');wa = 0:(3*Ws)/511:3*Ws;h = freqs(b,a,wa);plot(wa/(2*pi), 20*log10(abs(h)));gridxlabel('Frequency, Hz');ylabel('Gain, dB');title('Gain response');axis([0 3*Fs -60 5]);模拟低通滤波器的设计结果如图4.6所示图5-6所示模拟低通滤波器的设计5)时域过采样MATLAB程序:clf;n=0:50;x = sin(2*pi*0.12*n);y=zeros(1,3*length(x));y([1:3:length(y)])=x;subplot(2,1,1)stem(n,x);title('输入序列');subplot(2,1,2)stem(n,y(1:length(x)));title('输出序列');离散信号的时域过采样结果如图4.7所示。
图5-7 离散信号的时域过采样6)时域欠采样MATLAB程序:clf;n=0:49;m=0:50*3-1;x = sin(2*pi*0.042*m);y=x([1:3:length(x)]);subplot(2,1,1)stem(n,x(1:50));axis([0 50 -1.2 1.2]);title('输入序列');subplot(2,1,2)stem(n,y); axis([0 50 -1.2 1.2]);title('输出序列');离散信号的时域欠采样结果如图4.8所示。
图5-8 离散信号的时域欠采样7)频域过采样MATLAB程序:freq = [0 0.45 0.5 1];mag = [0 1 0 0];x = fir2(99, freq, mag);[Xz, w] = freqz(x, 1, 512);Subplot(2,1,1);plot(w/pi, abs(Xz)); gridtitle('输入谱');Subplot(2,1,2);L = input('过采样因子= ');y = zeros(1, L*length(x));y([1: L: length(y)]) = x;[Yz, w] = freqz(y, 1, 512);plot(w/pi, abs(Yz)); axis([0 1 0 1]);gridtitle('输出谱');信号的频域欠采样结果如图4.9所示。
图5-9 信号的频域欠采样8)频域欠采样freq = [0 0.42 0.48 1];mag = [0 1 0 0];x = fir2(101, freq, mag);[Xz, w] = freqz(x, 1, 512);Subplot(2,1,1);plot(w/pi, abs(Xz)); gridtitle('输入谱');M= input('欠采样因子= ');y=x([1:M: length(x)]);[Yz, w] = freqz(y, 1, 512);Subplot(2,1,2);plot(w/pi, abs(Yz));gridtitle('输出谱');信号的频域欠采样结果如图4.10所示。
图5-10 信号的频域欠采样9)采样过程演示MATLAB程序:clf;M = input('欠采样因子= ');n = 0:99;x = sin(2*pi*0.043*n) + sin(2*pi*0.031*n);y = decimate(x,M,'fir');gfp=figure;get(gfp,'units');set(gfp,'position',[100 100 400 300]);subplot(2,1,1);stem(n,x(1:100));title('输入序列');subplot(2,1,2);m = 0:(100/M)-1;stem(m,y(1:100/M));title('输出序列');信号的采样结果如图4.11所示。