信号与系统-实验报告-实验五

合集下载

信号与系统综合实验报告

信号与系统综合实验报告

目录实验一常用信号的观察 (4)实验二零输入、零状态及完全响应 (7)实验五无源与有源滤波器 (8)实验六低通、高通、带通、带阻滤波器间的变换 (14)实验七信号的采样与恢复实验 (19)实验八调制与解调实验 (31)实验体会 (35)实验一常用信号的观察一、任务与目标1。

了解常用信号的波形和特点。

2。

了解相应信号的参数。

3。

学习函数发生器和示波器的使用。

二、实验过程1.接通函数发生器的电源。

2.调节函数发生器选择不同的频率的正弦波、方波、三角波、锯齿波及组合函数波形,用示波器观察输出波形的变化。

三、实验报告(x为时间,y为幅值)100Hz 4V 正弦波y=2sin(628x—π/2)100Hz 4V 方波y=2 t=(2n-1)x*0.0025~(2n+1)x*0.0025 x为奇y=-2 t=(2n-1)x*0。

0025~(2n+1)x*0.0025 x为偶100Hz 4V 锯齿波100Hz 4V 三角波由50Hz的正弦波和100Hz正弦波组合的波形y=0.2sin(628x)+0.1sin(314x)实验二零输入、零状态及完全响应一、实验目标1.通过实验,进一步了解系统的零输入响应、零状态响应和完全响应的原理。

2.学习实验电路方案的设计方法——本实验中采用用模拟电路实现线性系统零输入响应、零状态响应和完全响应的实验方案.二、原理分析实验指导书P4三、实验过程1、接通电源;2、闭合K2,给电容充电,断开K2闭合K3,观察零输入响应曲线;3、电容放电完成后,断开K3,闭合K1,观察零状态响应曲线;4、断开K1,闭合K3,再次让电容放电,放电完成后断开K3闭合K2,在电容电压稳定于5V后断开K2,闭合K1,观察完全响应曲线.四、实验报告上图为零输入响应、零状态响应和完全响应曲线。

五、实验思考题系统零输入响应的稳定性与零状态响应的稳定性是否相同?为什么?答:相同。

因为系统零输入响应和零状态响应稳定的充分必要条件都是系统传递函数的全部极点si(i=1,2,3,…,n),完全位于s平面的左半平面。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。

二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。

傅里叶级数有三角形式和指数形式两种。

1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。

Matlab中进行数值积分运算的函数有quad函数和int函数。

其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。

因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。

quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。

其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。

信号实验报告

信号实验报告

第一部分正文实验一常用信号观察一、实验目的:1.了解常用波形的输出和特点;2.了解相应信号的参数;3.了解示波器与函数发生器的使用;4.了解常用信号波形的输出与特点。

二、实验原理:描述信号的方法有很多可以是数学表达式(时间的函数),也可以是函数图形(即为信号的波形)。

信号的产生方式有多种,可以是模拟量输出,也可以是数字量输出。

本实验由数字信号发生器产生,是数字量输出,具体原理为数字芯片将数字量通过A/D 转换输出,可以输出广泛频率范围内的正弦波、方波、三角波、锯齿波等等。

示波器可以暂态显示所观察到的信号波形,并具有信号频率、峰值测量等功能。

三、实验内容:1.由数字信号发生器产生正弦波、三角波、方波以及锯齿波并输入示波器观察其波形。

2.使用示波器读取信号的频率与幅值。

四、实验设备:1.函数信号发生器一台2.数字示波器一台。

五、实验步骤:1.接通函数发生器的电源,连接示波器。

2.利用函数发生器产生各种基本信号波形,并将波形结果导入计算机中,保存图像,写出各种信号的数学表达式。

六、实验结果:根据实验测量的数据,绘制各个信号的波形图,并写出相应的数学函数表达式。

该试验包括交流:① 该正弦信号的数学表达式为:)1001sin(4t y π=图1-1输入正弦波(Hz 504,V ±) ② 该方波的数学表达式为: )]02.001.0()02.0([4∑∞-∞=----=k k t u k t u y图1-2 输入方波(Hz 504,V ±) ③ 该三角波的数学表达式为:∑∞-∞=-------+-----=k k t u k t u k t k t u k t u k t y )]}02.002.0()02.001.0()][02.0(02.0[800)]02.001.0()02.0()[02.0(800{图1-3 输入三角波(Hz 504,V ±) ④ 该锯齿波的数学表达式为:∑∞-∞=-----=k k t u k t u k t y )]}02.002.0()02.0()[02.0(400{图1-4 输入锯齿波(Hz 504,V ±) 实验的一些问题:数字信号发生器的示值与示波器测量有一定的误差。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号与系统课程实验报告

信号与系统课程实验报告

合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。

二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。

它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。

2.实验线路检查无误后,打开实验箱右侧总电源开关。

3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。

4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。

信号与系统 matlab实验报告

信号与系统 matlab实验报告

信号与系统 matlab实验报告信号与系统 Matlab 实验报告引言:信号与系统是电子信息类专业中的一门重要课程,它研究了信号的产生、传输和处理过程,以及系统对信号的响应和影响。

通过实验,我们可以更直观地理解信号与系统的基本概念和原理,并掌握使用 Matlab 进行信号与系统分析和处理的方法。

实验一:信号的产生与显示在信号与系统课程中,我们首先需要了解不同类型的信号,以及如何产生和显示这些信号。

在 Matlab 中,我们可以使用一些函数来生成常见的信号波形,如正弦波、方波、三角波等。

通过编写简单的 Matlab 程序,我们可以实现信号的产生和显示。

实验二:信号的采样与重构在实际应用中,信号通常以连续时间的形式存在,但在数字系统中需要将其转换为离散时间的信号进行处理。

这就需要进行信号的采样和重构。

在 Matlab 中,我们可以使用采样函数和重构函数来模拟这一过程,并观察采样率对信号重构质量的影响。

实验三:信号的滤波与频谱分析信号滤波是信号处理中的重要环节,它可以去除信号中的噪声和干扰,提高信号质量。

在 Matlab 中,我们可以使用滤波函数来实现不同类型的滤波器,并观察滤波对信号频谱的影响。

此外,我们还可以使用频谱分析函数来研究信号的频谱特性,如频谱密度、功率谱等。

实验四:系统的时域与频域分析系统是信号处理中的重要概念,它描述了信号在系统中的传输和变换过程。

在Matlab 中,我们可以使用系统函数来模拟不同类型的系统,并观察系统对信号的时域和频域响应。

通过实验,我们可以深入理解系统的时域特性和频域特性,如冲击响应、频率响应等。

实验五:信号的调制与解调信号调制是将信息信号转换为调制信号的过程,而解调则是将调制信号恢复为原始信号的过程。

在 Matlab 中,我们可以使用调制函数和解调函数来模拟不同类型的调制和解调方式,如调幅、调频、调相等。

通过实验,我们可以了解不同调制方式的原理和特点,并观察调制和解调对信号的影响。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告在现代科学与工程领域中,信号与系统是一个至关重要的研究方向。

信号与系统研究的是信号的产生、传输和处理,以及系统对信号的响应和影响。

在这个实验报告中,我们将讨论一些关于信号与系统实验的内容,以及实验结果的分析和讨论。

实验一:信号的采集与展示在这个实验中,我们学习了信号的采集与展示。

信号是通过传感器或其他仪器采集的电压或电流的变化,可以是连续的或离散的。

我们使用示波器和数据采集卡来采集信号,并在计算机上进行展示和分析。

实验二:线性时不变系统的特性线性时不变系统是信号与系统中的重要概念。

在这个实验中,我们通过观察系统对不同的输入信号作出的响应来研究系统的特性。

我们使用信号发生器产生不同的输入信号,并观察输出信号的变化。

通过比较输入信号和输出信号的频谱以及幅度响应,我们可以了解系统的频率响应和幅频特性。

实验三:系统的时域特性分析在这个实验中,我们将研究系统的时域特性。

我们使用了冲击信号和阶跃信号作为输入信号,观察输出信号的变化。

通过测量系统的冲击响应和阶跃响应,我们可以了解系统的单位冲激响应和单位阶跃响应。

实验四:卷积与系统的频域特性在这个实验中,我们学习了卷积的概念和系统的频域特性。

卷积是信号与系统中的重要运算,用于计算系统对输入信号的响应。

我们通过使用傅里叶变换来分析系统的频域特性,观察输入信号和输出信号的频谱变化。

实验五:信号的采样与重构在这个实验中,我们研究了信号的采样与重构技术。

信号的采样是将连续时间的信号转换为离散时间的过程,而信号的重构是将离散时间的信号恢复为连续时间的过程。

我们使用数据采集卡来对信号进行采样,并使用数字滤波器来进行信号的重构。

通过观察信号的采样和重构结果,我们可以了解采样率对信号质量的影响。

实验六:系统的稳定性与性能在这个实验中,我们研究了系统的稳定性与性能。

系统的稳定性是指系统对输入信号的响应是否有界,而系统的性能是指系统对不同频率信号的响应如何。

我们使用极坐标图和Nyquist图来分析系统的稳定性和性能,通过观察图形的变化来评估系统的性能。

信号与系统实验五(docX页)

信号与系统实验五(docX页)

实验五 低通滤波系统的频率特性分析实验报告一、实验名称低通滤波系统的频率特性分析二、实验目的(1)观察理想低通滤波器的单位冲击响应与频谱图;(2)观察RC 低通网络的单位冲击响应与频谱图。

三、实验原理RC 低通滤波电路如图其系统函数为()()()()12211tan 11j RC RC H RC H RC RC ωωωωωω-==∠-∠∂++式中()()2211RC H RC ωω=+称为幅频特性; ()()1tan RC H ωωω-∂=- 称为相频特性。

当0ω=,()()1,;H ωω=∂当11RC ωτ==时,()12H ω=,()45ω︒∂=-;当ω→+∞时,()0H ω→,()90ω︒∂→-。

电路的幅频特性表明,对于同样大小的输入信号,频率越高,输出信号衰减越大;频率越低,输出信号衰减越小或者可以认为无衰减。

也就是说,对该电路而言,低频信号比较容易通过,而高频信号则不容易通过,因此这个电路称为低通滤波器。

(1)理想低通的单位冲击响应为()0Sa t t - 函数,幅频特性在通带内为常数,阻带内为零。

在截止频率点存在阶越性跳变。

相频特性为通过原点斜率为 0t ω- 的直线。

(2)实际物理可实现的RC 低通网络通带阻带存在过渡时间,与RC 时间常数有关,通带阻带也不在完全是常数。

相频特性为通过原点的曲线(在原点附近近似为直线)。

四、实验步骤(1)打开MA TLAB 软件,建立一个M 文件。

(2)MA TLAB 所在目录的\work 子目录下建立一个名为heaviside 的M 文件,创建子程序函数。

(3)建立一个新的M 文件,编写主程序并保存。

(4)运行主程序,观察理想低通滤波器及实际RC 低通滤波电路的单位冲击响应与频谱图并记录试验结果。

五、实验结果(1)实验程序1.子程序(定义阶越函数)function f=heaviside(t)f=(t>0);2.主程序%理想低通滤波器的单位冲击响应、幅频特性、相频特性syms t f w;figure(1)f=sin(t-1)/(t-1); Fw=fourier(f); %傅里叶变换x=[-20:0.05:20]; fx=subs(f,t,x);subplot(2,1,1);plot(x,fx); %波形图grid;W=[-4:0.01:4];FW=subs(Fw,w,W);subplot(2,2,3);plot(W,abs(FW)); %幅频特性grid;xlabel('频率');ylabel('幅值');subplot(2,2,4);plot(W,angle(FW)); %相频特性grid;xlabel('频率');ylabel('相位');%RC低通网络的单位冲击响应、幅频特性、相频特性figure(2)f=exp(-2*t)*sym('heaviside(t)');Fw=fourier(f); %傅里叶变换x=[-4:0.02:4]; fx=subs(f,t,x);subplot(2,1,1);plot(x,fx); %波形图grid;W=[-4:0.02:4];FW=subs(Fw,w,W);subplot(2,2,3);plot(W,abs(FW)); %幅频特性grid;xlabel('频率');ylabel('幅值');subplot(2,2,4);plot(W,angle(FW)); %相频特性grid;xlabel('频率');ylabel('相位');(2)运行结果理想低通滤波器的单位冲击响应及频率特性RC低通滤波电路的单位冲击响应及频率特性六、思考题(1)理想低通滤波电路的幅频曲线和相频曲线有什么特点?(2)实际RC低通与理想低通滤波器的频谱有何不同?为什么?(3)在实验中的低通网络RC时间常数是多少?对低通滤波器有何影响?。

实验报告五_信号的采样与恢复

实验报告五_信号的采样与恢复

指导教师批阅意见:
成绩评定:
指导教师签字: 年 月 日 备注:
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。 2、教师批改学生实验报告时间应在学生提交实验报告时间后 10 日内。
f t
F
0
t
(a) 连续信号的频谱
m
0
m

f s t
Fs
1 TS
s
(b) 高抽样频率时的抽样信号及频谱(不混叠)
f s t
Fs
1 TS
0
0 Ts
t
s
m
m
s

(c) 低抽样频率时的抽样信号及频谱(混叠)
深 圳 大 学 实 验 报 告
课程名称:
信号与系统
实验项目名称:
信号的采样与恢复
学院:
信息工程
专业:
电子信息
指导教师:
报告人: 学号: 班级:
实验时间:
实验报告提交时间:
教务部制
实验目的与要求:
1、了解信号的采样方法与过程以及信号恢复的方法。 2、验证抽样定理。
实验内容:
1、观察抽样脉冲、抽样信号、抽样恢复信号。 2、观察抽样过程中,发生混叠和非混叠时的波形。
采样信号 1
恢复信号 1
采样信号 2
恢复信号 2
采样信号 3
恢复信号 3
实验结果与分析
1.由实验原理理论得当选用
fs>2 fmax 采样频率对连续信号进行
采样,信号采样后能不失真地还原,但实验中往往不能达到理想的 效果。 如实验中对频率为 500hz 的正弦波信号采样并通过低通滤波 器恢复时,当 fs=4 fmax=1968hz 时,信号采样后能不失真地还原。 2.若原信号为方波或三角波,可用示波器观察到离散的采样信 号,但由于本装置难以实现一个理想的低通滤波器,以及高频窄脉 (即冲激函数) ,所以方波或三角波的离散信号经低通滤波器后只 能观测到它的基波分量,无法恢复原信号。实验结果 2 和 3 验证了 这一结果。实验结果显示方波采样后的信号是一系列谐波的合成, 从细节图中可以明显的看出方波没有完全恢复,而是转变成一系列 谐波的合成波。 因为方波或者三角波分解成傅里叶级数后存在频率 很高的谐波分量,在本实验条件下无法还原成原信号,只能是低频 波的合成,还原后图像是原信号的大致波形。 3. 实验中由于采样信号不是标准的冲击信号,低通滤波器也 不能达到标准理论值,所以非标准的正余弦信号恢复不到原信号。

信号与系统实验报告

信号与系统实验报告

实验三常见信号的MATLAB表示及运算一、实验目的1. 熟悉常见信号的意义、特性及波形2. 学会使用MATLAB表示信号的方法并绘制信号波形3.掌握使用MATLAB进行信号基本运算的指令4.熟悉用MATLAB实现卷积积分的方法二、实验原理根据MA TLAB的数值计算功能和符号运算功能, 在MATLAB中, 信号有两种表示方法, 一种是用向量来表示, 另一种则是用符号运算的方法。

在采用适当的MATLAB语句表示出信号后, 就可以利用MATLAB中的绘图命令绘制出直观的信号波形了。

1.连续时间信号从严格意义上讲, MATLAB并不能处理连续信号。

在MATLAB中, 是用连续信号在等时间间隔点上的样值来近似表示的, 当取样时间间隔足够小时, 这些离散的样值就能较好地近似出连续信号。

在MATLAB中连续信号可用向量或符号运算功能来表示。

⑴向量表示法对于连续时间信号, 可以用两个行向量f和t来表示, 其中向量t是用形如的命令定义的时间范围向量, 其中, 为信号起始时间, 为终止时间, p为时间间隔。

向量f为连续信号在向量t所定义的时间点上的样值。

⑵符号运算表示法如果一个信号或函数可以用符号表达式来表示, 那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。

⑶常见信号的MATLAB表示单位阶跃信号单位阶跃信号的定义为:方法一: 调用Heaviside(t)函数首先定义函数Heaviside(t) 的m函数文件,该文件名应与函数名同名即Heaviside.m。

%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为yfunction y= Heaviside(t)y=(t>0); %定义函数体, 即函数所执行指令%此处定义t>0时y=1,t<=0时y=0, 注意与实际的阶跃信号定义的区别。

方法二: 数值计算法在MATLAB中, 有一个专门用于表示单位阶跃信号的函数, 即stepfun( )函数, 它是用数值计算法表示的单位阶跃函数。

信号与系统 实验四、五 实验报告

信号与系统 实验四、五 实验报告

实验五:基于Matlab的连续信号生成及时频域分析一、实验要求1、通过这次实验,学生应能掌握Matlab软件信号表示与系统分析的常用方法。

2、通过实验,学生应能够对连续信号与系统的时频域分析方法有更全面的认识。

二、实验内容一周期连续信号1)正弦信号:产生一个幅度为2,频率为4Hz,相位为π/6的正弦信号;2)周期方波:产生一个幅度为1,基频为3Hz,占空比为20%的周期方波。

非周期连续信号3)阶跃信号;4)指数信号:产生一个时间常数为10的指数信号;5)矩形脉冲信号:产生一个高度为1、宽度为3、延时为2s的矩形脉冲信号。

三、实验过程一1)t=0:0.001:1;ft1=2*sin(8*pi*t+pi/6);plot(t,ft1);2)t=0:0.001:2;ft1=square(6*pi*t,20);plot(t,ft1),axis([0,2,-1.5,1.5]);3)t=-2:0.001:2;y=(t>0);ft1=y;plot(t,ft1),axis([-2,2,-1,2]);4)t=0:0.001:30;ft1=exp(-1/10*t);plot(t,ft1),axis([0,30,0,1]);5)t=-2:0.001:6;ft1=rectpuls(t-2,3);plot(t,ft1),axis([-2,6,-0.5,1.5]);四、实验内容二1)信号的尺度变换、翻转、时移(平移)已知三角波f(t),用MATLAB画信号f(t)、f(2t)和f(2-2t) 波形,三角波波形自定。

2)信号的相加与相乘相加用算术运算符“+”实现,相乘用数组运算符“.*”实现。

已知信号x(t)=exp(-0.4*t),y(t)=2cos(2pi*t),画出信号x(t)+y(t)、x(t)*y(t)的波形。

3)离散序列的差分与求和、连续信号的微分与积分已知三角波f(t),画出其微分与积分的波形,三角波波形自定。

信号与系统matlab实验报告

信号与系统matlab实验报告

信号与系统matlab实验报告信号与系统MATLAB实验报告引言信号与系统是电子工程、通信工程和控制工程等领域中的重要基础课程。

通过实验,我们可以更好地理解信号与系统的概念和基本原理,并掌握使用MATLAB进行信号与系统分析的方法。

本报告将介绍我们在信号与系统实验中的实验过程、结果和分析。

实验一:连续时间信号的采样与重构在这个实验中,我们研究了连续时间信号的采样与重构。

首先,我们通过MATLAB生成了一个连续时间信号,并使用采样定理确定了采样频率。

然后,我们对连续时间信号进行采样,并通过重构方法将采样信号还原为连续时间信号。

最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果。

实验二:线性时不变系统的频率响应在这个实验中,我们研究了线性时不变系统的频率响应。

首先,我们通过MATLAB生成了一个输入信号,并设计了一个线性时不变系统。

然后,我们通过将输入信号输入到系统中,并记录输出信号的幅度和相位,从而得到系统的频率响应。

最后,我们绘制了系统的幅频特性和相频特性曲线,并对其进行了分析和讨论。

实验三:离散时间信号的采样与重构在这个实验中,我们研究了离散时间信号的采样与重构。

首先,我们通过MATLAB生成了一个离散时间信号,并使用采样定理确定了采样周期。

然后,我们对离散时间信号进行采样,并通过重构方法将采样信号还原为离散时间信号。

最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果,并讨论了离散时间信号的采样与重构的特点。

实验四:离散时间系统的差分方程在这个实验中,我们研究了离散时间系统的差分方程。

首先,我们通过MATLAB生成了一个输入信号,并设计了一个离散时间系统。

然后,我们通过将输入信号输入到系统中,并根据系统的差分方程计算输出信号。

最后,我们对输入信号和输出信号进行了分析和比较,并讨论了离散时间系统的差分方程的特点和应用。

实验五:连续时间信号的傅里叶变换在这个实验中,我们研究了连续时间信号的傅里叶变换。

信号与系统实验实验报告

信号与系统实验实验报告

实验五连续系统分析一、实验目的深刻理解连续时间系统的系统函数在分析连续系统的时域特性、频域特性及稳定性中的重要作用及意义,掌握根据系统函数的零极点设计简单的滤波器的方法。

掌握利用MATLAB分析连续系统的时域响应、频响特性和零极点的基本方法。

二、实验原理MATLAB提供了许多可用于分析线性时不变连续系统的函数,主要包含有系统函数、系统时域响应、系统频域响应等分析函数。

三、实验内容1.已知描述连续系统的微分方程为,输入,初始状态,计算该系统的响应,并与理论结果比较,列出系统响应分析的步骤。

结果分析:理论值y(t)=0.8*exp(-10t)*u(t)+0.2程序运行出的结果与理论预期结果相差较大误差随时间增大而变小,初始值相差最大,而后两曲线基本吻合,表明该算法的系统响应在终值附近有很高的契合度,而在初值附近有较大的误差。

2.已知连续时间系统的系统函数为,求输入分别为,,时,系统地输出,并与理论结果比较。

实验结果:可见数值计算和理论计算曲线基本重合。

误差分析:可见误差小于0.001,计算值与理论值契合度很高。

3. 研究具有以下零极点的连续系统:(a) 1个极点s=—0.1,增益k=1。

(b) 1个极点s=0,增益k=1。

(c) 2个共轭极点,增益k=1。

(d) 2个共轭极点,增益k=1。

(e) 零点在,极点在,增益k=1。

(f) 零点在,极点在,增益k=1。

完成下列任务:(1) 利用zpk和tf命令建立系统的系统函数,画出系统的零极点图。

(2) 分析系统是否稳定。

若稳定,画出系统的幅频特性曲线。

(3) 画出系统的冲激响应波形。

(4) 详细列出根据零极点分析系统特性的过程。

实验代码:(a)结果分析:(a)~(e)均为因果稳定系统,他们的极点都在jw轴左侧。

当且仅当H(s)的全部极点都位于s平面的左半平面时,一个具有有理系统函数H(s)的因果系统才是稳定的。

《信号与系统》实验报告

《信号与系统》实验报告

《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。

通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。

本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。

本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。

每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。

在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。

1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。

通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。

连续时间信号与系统的频域分析实验报告(共9篇)

连续时间信号与系统的频域分析实验报告(共9篇)

连续时间信号与系统的频域分析实验报告(共9篇)信号与系统实验五__连续时间信号的频域分析实验名称:连续时间信号的频域分析报告人:姓名班级学号一、实验目的1、熟悉傅里叶变换的性质;2、熟悉常见信号的傅里叶变换;3、了解傅里叶变换的MATLAB实现方法。

二、实验内容及运行结果1、编程实现下列信号的幅度频谱:(1)求出f(t)=u(2t+1)-u(2t-1)的频谱函数F(w);请与f1(t) u(2t+1)-u(2t-1)的频谱函数F1(w)进行比较,说明两者的关系。

%(1)f(t)=u(2t+1)-u(2t-1)与f(t)=u(t+1)-u(t-1) syms t w t1 w1Gt=sym(&#39;Heaviside(2*t+1)-Heaviside(2*t-1)&#39;);Gt1=sym(&#39;Heaviside(t1+1)-Heaviside(t1-1)&#39;);Fw=fourier(Gt,t,w);Fw1=fourier(Gt1,t1,w1);FFw=maple(&#39;convert&#39;,Fw,&#39;piecewise&#39;);FFw1=maple(&#39;convert&#39;,Fw1,&#39;piecewise&#39;);FFP=abs(FFw);FFP1=abs(FFw1);subplot(2,1,1);ezplot(FFP,[-10*pi 10*pi]);axis([-10*pi 10*pi 0 1.5]);subplot(2,1,2);ezplot(FFP1,[-10*pi 10*pi]);grid;axis([-10*pi 10*pi 0 2.2]);不同点:F1(w)的图像在扩展,幅值是F(w)的两倍。

(2)三角脉冲f2(t)=1-|t|;|t|=1;ft=sym(&#39;(1+t)*Heaviside(t+1)-2*t*Heaviside(t)+(t-1)*Heaviside( t-1)&#39;);Fw=fourier(ft);subplot(211)ezplot(abs(Fw)); g2)&#39;);ft=ifourier(Fw,w,t)ft =exp(-4*t)*heaviside(t)-exp(4*t)*heaviside(-t)(2)F(w)=((i*w)+5*i*w-8)/((i*w)+6*i*w+5)syms t wFw=sym(&#39;((i*w)+5*i*w-8)/((i*w)+6*i*w+5)&#39;);ft=ifourier(Fw,w,t)ft =dirac(t)+(2*exp(-5*t)-3*exp(-t))*heaviside(t)三、讨论与总论通过本实验,掌握了信号的傅里叶变换的性质以及方法,对傅里叶变换的性质有进一步的提高。

信号与系统的实验报告(2)

信号与系统的实验报告(2)

信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。

L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。

L=laplace(F,t)用t 替换结果中的变量s 。

F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。

F=ilaplace(L,x)用x 替换结果中的变量t 。

2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。

对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。

信号与系统实验五 连续线性时不变系统分析

信号与系统实验五 连续线性时不变系统分析

信号与系统实验陈述课程名称:信号与系统实验实验项目名称:连续线性时不变系统分析专业班级:姓名:学号:完成时间:年月日一、实验目的1.掌握连续LTI系统的单位冲激响应、单位阶跃响应和任意激励对应响应的求解方法。

2.掌握连续LTI系统的频域分析方法。

3.掌握连续LTI系统的复频域分析方法。

4.掌握连续LTI系统的时域、频域和复频域分析方法的相互转换。

二、实验原理1.连续LTI系统的时域分析(1)连续线性时不变系统的描述设连续线性时不变系统的激励为,响应为,则描述系统的微分方程可暗示为为了在Matlab编程中调用有关函数,我们可以用向量和来暗示该系统,即这里要注意,向量和的元素排列是按微分方程的微分阶次降幂排列,缺项要用0补齐。

(2) 单位冲激响应单位冲激响应是指连续LTI系统在单位冲激信号激励下的零状态响应,因此满足线性常系数微分方程(5.1)及零初始状态,即,依照定义,它也可暗示为对于连续LTI系统,若其输入信号为,冲激响应为,则其零状态响应为可见,能够刻画和表征系统的固有特性,与何种激励无关。

一旦知道了系统的冲激响应,就可求得系统对任何输入信号所发生的零状态响应。

Matlab提供了专门用于求连续系统冲激响应的函数impulse(),该函数还能绘制其时域波形。

(3)单位阶跃响应单位阶跃响应是指连续LTI系统在单位阶跃信号激励下的零状态响应,它可以暗示为Matlab提供了专门用于求连续系统单位阶跃响应的函数step( ),该函数还能绘制其时域波形。

(4)任意激励下的零状态响应已经知道,连续LTI系统可用常系数线性微分方程(5.1)式来描述,Matlab提供的函数lsim( )能对上述微分方程描述的连续LTI系统的响应进行仿真,该函数不但能绘制指定时间范围内的系统响应波形图,而且还能求出系统响应的数值解。

其调用格式有lsim(b,a,x,t)y=lsim(b,a,x,t) :只求出系统的零状态响应的数值解,而不绘制响应曲线需要特别强调的是,Matlab总是把由分子和分母多项式暗示任何系统都当作是因果系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五 连续信号与系统的S 域分析学院 班级 姓名 学号一、实验目的1. 熟悉拉普拉斯变换的原理及性质2. 熟悉常见信号的拉氏变换3. 了解正/反拉氏变换的MATLAB 实现方法和利用MATLAB 绘制三维曲面图的方法4. 了解信号的零极点分布对信号拉氏变换曲面图的影响及续信号的拉氏变换与傅氏变换的关系二、 实验原理拉普拉斯变换是分析连续时间信号的重要手段。

对于当t ∞时信号的幅值不衰减的时间信号,即在f(t)不满足绝对可积的条件时,其傅里叶变换可能不存在,但此时可以用拉氏变换法来分析它们。

连续时间信号f(t)的单边拉普拉斯变换F(s)的定义为:拉氏反变换的定义为:显然,上式中F(s)是复变量s 的复变函数,为了便于理解和分析F(s)随s 的变化规律,我们将F(s)写成模及相位的形式:()()()j s F s F s e ϕ=。

其中,|F(s)|为复信号F(s)的模,而()s ϕ为F(s)的相位。

由于复变量s=σ+jω,如果以σ为横坐标(实轴),jω为纵坐标(虚轴),这样,复变量s 就成为一个复平面,我们称之为s 平面。

从三维几何空间的角度来看,|()|F s 和()s ϕ分别对应着复平面上的两个曲面,如果绘出它们的三维曲面图,就可以直观地分析连续信号的拉氏变换F(s)随复变量s 的变化情况,在MATLAB 语言中有专门对信号进行正反拉氏变换的函数,并且利用 MATLAB 的三维绘图功能很容易画出漂亮的三维曲面图。

①在MATLAB 中实现拉氏变换的函数为:F=laplace( f ) 对f(t)进行拉氏变换,其结果为F(s)F=laplace (f,v) 对f(t)进行拉氏变换,其结果为F(v)F=laplace ( f,u,v) 对f(u)进行拉氏变换,其结果为F(v)②拉氏反变换f=ilaplace ( F ) 对F(s)进行拉氏反变换,其结果为f(t)f=ilaplace(F,u) 对F(w)进行拉氏反变换,其结果为f(u)f=ilaplace(F,v,u ) 对F(v)进行拉氏反变换,其结果为f(u)注意: 在调用函数laplace( )及ilaplace( )之前,要用syms 命令对所有需要用到的变量(如t,u,v,w )等进行说明,即要将这些变量说明成符号变量。

对laplace( )中的f 及ilaplace( )中的F 也要用符号定义符sym 将其说明为符号表达式。

具体方法参见第一部分第四章第三节。

例①:求出连续时间信号 ()sin()()f t t t ε=的拉氏变换式,并画出图形求函数拉氏变换程序如下:syms t s %定义符号变量ft=sym('sin(t)*Heaviside(t)'); %定义时间函数f(t)的表达式Fs=laplace(ft) %求f(t)的拉氏变换式F(s)运行结果:Fs = 1/(s^2+1)绘制拉氏变换三维曲面图的方法有2种:方法一:syms x y ss=x+i*y; %产生复变量sFFs=1/(s^2+1); %将F(s)表示成复变函数形式FFss=abs(FFs); %求出F(s)的模ezmesh(FFss); %画出拉氏变换的网格曲面图ezsurf(FFss); %画出带阴影效果的三维曲面图colormap(hsv); %设置图形中多条曲线的颜色顺序方法二:figure(2) %打开另一个图形窗口x1=-5: 0.1:5; %设置s 平面的横坐标范围y1=-5: 0.1: 5; %设置s 平面的纵坐标范围[x,y]=meshgrid(x1,y1); %产生矩阵s=x+i*y; %产生矩阵s 来表示所绘制曲面图的复平面区域,%其中矩阵s 包含了复平面-6<σ<6,-6<j ω<6范围内%以间隔0.01取样的所有样点 fs=1./(s.*s+1); %计算拉氏变换在复平面上的样点值ffs=abs(fs); %求幅值mesh(x,y,ffs); %绘制拉氏变换的三维网格曲面图surf(x,y,ffs); %绘制带阴影效果的三维曲面图axis([-5,5,-5,5,0,8]); %设置坐标显示范围colormap(hsv); %设置图形中多条曲线的颜色顺序说明:从拉普拉斯变换的三维曲面图中可以看出,曲面图上有象山峰一样突出的尖峰,这些峰值点在s 平面的对应点就是信号拉氏变换的极点位置。

而曲面图上的谷点则对应着拉氏变换的零点位置。

因此,信号拉氏变换的零极点位置决定了其曲面图上峰点和谷点位置。

例②:求出函数21()1F s s =+的拉氏反变换式 MATLAB 程序如下:syms t s %定义符号变量Fs =sym('1/(1+s^2)'); %定义F(s)的表达式ft=ilaplace(Fs) %求F(s)的拉氏反变换式f(t)运行结果:ft=sin(t)注意: 在MATLAB 中,求拉氏反变换的函数ilaplace(),在默认情况下是指拉氏右变换,其运行结果是单边函数。

如例②中的运行结果为ft= sin(t),实际上是指ft= sin(t)。

三、 实验内容1. 求出下列函数的拉氏变换式,并用MATLAB 绘制拉氏变换在s 平面的三维曲面图 ① 3()2()5()t tf t e t e t εε--=+解:syms t sft=sym('(-2*exp(-t)+5*exp(-3*t))*Heaviside(t)');Fs=laplace(ft)syms x y ss=x+i*y;FFs=-2/(s+1)+5/(s+3);FFss=abs(FFs);ezmesh(FFss);ezsurf(FFss);colormap(hsv② ()()(2)f t t t εε=--解:syms t sft=sym('Heaviside(t)-Heaviside(t-2)');Fs=laplace(ft)syms x y ss=x+i*y;FFs=1/s-exp(-2*s)/s;FFss=abs(FFs);ezmesh(FFss);ezsurf(FFss);colormap(hsv);③ 3()sin()()t f t e t t ε-=解:syms t sft=sym('exp(-3*t)*sin(t)*Heaviside(t)');Fs=laplace(ft)syms x y ss=x+i*y;FFs=1/((s+3)^2+1);FFss=abs(FFs);ezmesh(FFss);ezsurf(FFss);colormap(hsv);④ []()sin()()(2)f t t t t πεε=--解:syms t sft=sym('sin(pi*t)*(Heaviside(t)-Heaviside(t-2))');Fs=laplace(ft)syms x y ss=x+i*y;FFs=pi/(s^2+pi^2)-exp(-2*s)*pi/(s^2+pi^2);FFss=abs(FFs);ezmesh(FFss);ezsurf(FFss);colormap(hsv);2. 已知信号的拉氏变换如下,请用MATLAB 画出其三维曲面图,观察其图形特点,说出函数零极点位置与其对应曲面图的关系,并且求出它们所对应的原时间函数f (t ), ①22(3)(3)()(5)(16)s s F s s s -+=-+ 解:syms x y ss=x+i*y;FFs=(2*(s-3)*(s+3))/((s-5)*(s^2+16));FFss=abs(FFs);ezmesh(FFss);ezsurf(FFss);colormap(hsv);②(1)(3)()(2)(5)s s F s s s s ++=++ 解:syms x y ss=x+i*y;FFs=((s+1)*(s+3))/((s+2)*(s+5)*s);FFss=abs(FFs);ezmesh(FFss);ezsurf(FFss);colormap(hsv);3. 已知连续时间信号[]()s(2)()(4)f t co t t t πεε=--,请分别求出该信号的拉氏变换()F s 及其傅里叶变换()F j ω,并用MATLAB 绘出()F s 的曲面图及振幅频谱()F j ω的波形,观察()F s 的曲面图在虚轴上的剖面图,并将它与信号的振幅频谱曲线进行比较,分析两者的对应关系。

解:syms t sft=sym('cos(2*pi*t)*(Heaviside(t)-Heaviside(t-4))');Fs=laplace(ft)syms x y ss=x+i*y;FFs=s/(s^2+4*pi^2)-exp(-4*s)*s/(s^2+4*pi^2);FFss=abs(FFs);ezmesh(FFss);ezsurf(FFss);colormap(hsv);syms t wGt=sym('cos(2*pi*t)*(Heaviside(t)-Heaviside(t-4))'); Fw=fourier(Gt,t,w);FFw=maple('convert',Fw,'piecewise');FFP=abs(FFw);ezplot(FFP,[-10*pi 10*pi]);grid;axis([-10*pi 10*pi 0 2.2])。

相关文档
最新文档