2011江苏南京中考数学及答案

合集下载

2011中考数学真题解析88 梯形(含答案)

2011中考数学真题解析88 梯形(含答案)
A、6 B、8
C、10﹣2 D、10+2
考点:梯形;菱形的性质。
专题:计算题。
分析:利用菱形和正方形的性质分别求得HE和ID、DE的长,利用梯形的面积计算方法算得梯形的面积即可.
解答:解:四边形ABCD为菱形且∠A=60°⇒∠ADE=180°﹣60°=120°,
又AD∥HE⇒∠DEH=180°﹣120°=60°,
8.(2011山东济南,11,3分)如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,下列结论不一定正确的是()
A.AC=BDB.∠OBC=∠OCB
C.S△AOB=S△DOCD.∠BCD=∠BDC
考点:等腰梯形的性质。
分析:由四边形ABCD是等腰梯形,AD∥BC,根据等腰梯形的对角线相等,即可证得AC=BD,又由△ABC≌△DCB与△AOB≌△DOC,证得B与C正确,利用排除法即可求得答案.
6.(2011江苏连云港,7,3分)如图,在正五边形ABCDE中,对角线AD,AC与EB分别交于点M,N.下列说法错误的是()
A.四边形EDCN是菱形B.四边形MNCD是等腰梯形
C.△AEM与△CBN相似D.△AEN与△EDM全等
考点:相似三角形的判定;全等三角形的判定;菱形的判定;等腰梯形的判定。
专题:计算题。
分析:过D作DE∥AB交BC于E,推出平行四边形ABED,得出AD=BE=2cm,AB=DE=DC,推出等边三角形DEC,求出EC的长,根据BC=EB+EC即可求出答案.
解答:
解:过D作DE∥AB交BC于E,
∵DE∥AB,AD∥BC,
∴四边形ABED是平行四边形,
∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,

2011中考数学真题解析87 正方形的性质与判定(含答案)

2011中考数学真题解析87 正方形的性质与判定(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编正方形的性质与判定一、选择题1.(2011天津,5,3分)如图,将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为()A、15°B、30°C、45°D、60°考点:翻折变换(折叠问题);正方形的性质。

专题:计算题。

分析:利用翻折变换的不变量,可以得到∠EBF为直角的一半.解答:解:∵将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,∴∠ABE=∠DBD=∠DBF=∠FBC,∴∠EBF=12∠ABC=45°,故选C.点评:本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.2.(2011山东济南,15,3分)如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是()A.S1=S2=S3B.S1=S2<S3C.S1=S3<S2D.S2=S3<S1考点:解直角三角形;三角形的面积。

分析:设直角三角形的三边分别为a、b、c,分别表示出三角形的面积比较即可.解答:解:设三角形的三边长分别为a、b、c,∵分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,∴S1=S2=S3=12ab.故选A.点评:本题考查了解直角三角形及三角形的面积的知识,解题的关键是了解三角形的三边与正方形的边长的关系.[来源:学科网]3.(2011泰安,17,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19考点:相似三角形的判定与性质;正方形的性质。

南京市2011年初中毕业生学业考试数学试题和解答

南京市2011年初中毕业生学业考试数学试题和解答

南京市2011年初中毕业生学业考试数学数学注意事项:1.本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答.题卡相应位置......上)1A.3B.-3C.±3D.2.下列运算正确的是A.a2+a3=a5 B.a2•a3=a6C.a3÷a2=a D.(a2)3=a83.在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%.则该市65岁及以上人口用科学记数法表示约为A.0.736×106人B.7.36×104人C.7.36×105人D.7.36×106 人4.为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生5.如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是6.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P的弦AB的长为a的值是A.B.2+C.D.2A.B.C D.(第5题)二、填空题(本大题共10小题,每小题2分,共20分,不需要写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.-2的相反数是________.8.如图,过正五边形ABCDE 的顶点A 作直线l ∥CD ,则∠1=____________.9.计算1)(2=_______________.10.等腰梯形的腰长为5㎝,它的周长是22㎝,则它的中位线长为___________㎝.11.如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则cos ∠AOB 的值等于___________.12.如图,菱形ABCD 的连长是2㎝,E 是AB 中点,且DE ⊥AB ,则菱形ABCD 的面积为_________㎝2.13.如图,海边有两座灯塔A 、B ,暗礁分布在经过A 、B 两点的弓形(弓形的弧是⊙O 的一部分)区域内,∠AOB =80°,为了避免触礁,轮船P 与A 、B 的张角∠APB 的最大值为______°.14.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE =CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向转到△BCF ,旋转角为a (0°<a <180°),则∠a =______. 15.设函数2y x =与1y x =-的图象的交战坐标为(a ,b ),则11a b-的值为__________. 16.甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束; ②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为____________.三、解答题(本大题共12小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)(第12题)(第8题)l(第11题)BA MO(第12题)A(第14题)ABCDF17.(6分)解不等式组523132x x x +⎧⎪+⎨⎪⎩≥>,并写出不等式组的整数解.18.(6分)计算221()a ba b a b b a-÷-+- 19.(6分)解方程x 2-4x +1=0 20.(7分)某校部分男生分3组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如下.⑴求训练后第一组平均成绩比训练前增长的百分数; ⑵小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均数不可能提高3个这么多.”你同意小明的观点吗?请说明理由;⑶你认为哪一组的训练效果最好?请提出一个解释来支持你的观点.21.(7分)如图,将□ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F .⑴求证:△ABF ≌△ECF⑵若∠AFC =2∠D ,连接AC 、BE .求证:四边形ABEC 是矩形.①训练后第二组男生引体向上增加个数分布统计图增加85个②(第20题)B D (第21题)22.(7分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.⑴小亮行走的总路程是____________㎝,他途中休息了________min.⑵①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?23.(7分)从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:⑴抽取1名,恰好是女生;⑵抽取2名,恰好是1名男生和1名女生.24.(7分)已知函数y=mx2-6x+1(m是常数).⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;⑵若该函数的图象与x轴只有一个交点,求m的值.25.(7分)如图,某数学课外活动小组测量电视塔AB的高度,他们借助一个高度为30m 的建筑物CD进行测量,在点C处塔顶B的仰角为45°,在点E处测得B的仰角为37°(B、D、E三点在一条直线上).求电视塔的高度h.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)Bh (第25题)26.(8分)如图,在Rt △ABC 中,∠ACB =90°,AC =6㎝,BC =8㎝,P 为BC 的中点.动点Q 从点P 出发,沿射线PC 方向以2㎝/s 的速度运动,以P 为圆心,PQ 长为半径作圆.设点Q 运动的时间为t s .⑴当t =1.2时,判断直线AB 与⊙P 的位置关系,并说明理由; ⑵已知⊙O 为△ABC 的外接圆,若⊙P 与⊙O 相切,求t 的值.27.(9分)如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点.⑵在△ABC 中,∠A <∠B <∠C .①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.28.(11分)问题情境已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)a y x x x=+>.探索研究⑴我们可以借鉴以前研究函数的经验,先探索函(第26题)①②③(第27题)数1(0)y x x x=+>的图象性质. ① 填写下表,画出函数的图象: ②②观察图象,写出该函数两条不同类型的性质;③在求二次函数y =ax 2+bx +c (a ≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数1y x x=+(x >0)的最小值. 解决问题⑵用上述方法解决“问题情境”中的问题,直接写出答案.答案:一.选择题:ACCDBB 二.填空:7. 2 8. 36 9.10. 6 11.1212. 13. 40 14. 90 15. 12- 16. 4 17.解:解不等式①得:1x ≥- 解不等式②得:2x <所以,不等式组的解集是12x -≤<. 不等式组的整数解是1-,0,1. 18.221)a ba b a b b a-÷-+-解:(()()()()a a b b a b a b a b a b b a ⎡⎤-=-÷⎢⎥+-+--⎣⎦()()b b aa b a b b-=⋅+-1a b=-+ 19. 解法一:移项,得241x x -=-.配方,得24414x x -+=-+, 2(2)3x -=由此可得2x -=12x =22x =解法二:1,4, 1.a b c ==-=224(4)411120b ac -=--⨯⨯=>,422x ±==±12x =,22x =.20.解:⑴训练后第一组平均成绩比训练前增长的百分数是53100%3-⨯≈67%. ⑵不同意小明的观点,因为第二组的平均成绩增加8×10%+6×20%+5×20%+0×50%=3(个).(3)本题答案不唯一,我认为第一组训练效果最好,因为训练后第一组平均成绩比训练前增长的百分数最大.21.证明:⑴∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD .∴∠ABF=∠ECF . ∵EC=DC , ∴AB=EC .在△ABF 和△ECF 中,∵∠ABF=∠ECF ,∠AFB=∠EFC ,AB=EC , ∴⊿ABF ≌⊿ECF .(2)解法一:∵AB=EC ,AB ∥EC ,∴四边形ABEC 是平行四边形.∴AF=EF , BF=CF . ∵四边形ABCD 是平行四边形,∴∠ABC=∠D ,又∵∠AFC=2∠D ,∴∠AFC=2∠ABC . ∵∠AFC=∠ABF+∠BAF ,∴∠ABF=∠BAF .∴F A=FB . ∴F A=FE=FB=FC , ∴AE=BC .∴口ABEC 是矩形.解法二:∵AB=EC ,AB ∥EC ,∴四边形ABEC 是平行四边形. ∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D=∠BCE . 又∵∠AFC=2∠D ,∴∠AFC=2∠BCE ,∵∠AFC=∠FCE+∠FEC ,∴∠FCE=∠FEC .∴∠D=∠FEC .∴AE=AD . 又∵CE=DC ,∴AC ⊥DE .即∠ACE=90°.∴口ABEC 是矩形. 22. 解⑴3600,20.⑵①当5080x ≤≤时,设y 与x 的函数关系式为y kx b =+. 根据题意,当50x =时,1950y =;当80x =,3600y =.所以,y 与x 的函数关系式为55800y x =-.②缆车到山顶的路线长为3600÷2=1800(m ), 缆车到达终点所需时间为1800÷180=10(min ).小颖到达缆车终点时,小亮行走的时间为10+50=60(min ). 把60x =代入55800y x =-,得y=55×60—800=2500.所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100(m ). 23. 解⑴抽取1名,恰好是女生的概率是25. ⑵分别用男1、男2、男3、女1、女2表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共10种,它们出现的可能性相同,所有结果中,满足抽取2名,恰好是1名男生和1名女生(记为事件A )的结果共6种,所以P (A )=63105=. 24.解:⑴当x =0时,1y =.所以不论m 为何值,函数261y mx x =-+的图象经过y 轴上的一个定点(0,1). ⑵①当0m =时,函数61y x =-+的图象与x 轴只有一个交点;②当0m ≠时,若函数261y mx x =-+的图象与x 轴只有一个交点,则方程2610mx x -+=有两个相等的实数根,所以2(6)40m --=,9m =.综上,若函数261y mx x =-+的图象与x 轴只有一个交点,则m 的值为0或9. 25.在Rt ECD ∆中,tan DEC ∠=DCEC. ∴EC =tan DC DEC ∠≈30400.75=(m ).在Rt BAC ∆中,∠BCA =45°,∴BA CA =在Rt BAE ∆中,tan BEA ∠=BA EA .∴0.7540hh =+.∴120h =(m ).答:电视塔高度约为120m . 26.解⑴直线AB 与⊙P 相切.如图,过点P 作PD ⊥AB , 垂足为D . 在Rt △A BC 中,∠ACB =90°,∵AC =6cm ,BC =8cm ,∴10AB cm =.∵P 为BC 的中点,∴PB =4cm .∵∠P DB =∠ACB =90°,∠PBD =∠ABC .∴△PBD ∽△ABC . ∴PD PB AC AB =,即4610PD =,∴PD =2.4(cm) .当 1.2t =时,2 2.4PQ t ==(cm)∴PD PQ =,即圆心P 到直线AB 的距离等于⊙P 的半径. ∴直线AB 与⊙P 相切.⑵ ∠ACB =90°,∴AB 为△ABC 的外切圆的直径.∴152OB AB cm ==. 连接OP .∵P 为BC 的中点,∴132OP AC cm ==. ∵点P 在⊙O 内部,∴⊙P 与⊙O 只能内切. ∴523t -=或253t -=,∴t =1或4. ∴⊙P 与⊙O 相切时,t 的值为1或4.27. 解⑴在Rt △ABC 中,∠ACB =90°,CD 是AB 上的中线,∴12CD AB =,∴CD =BD .∴∠BCE =∠ABC .∵BE ⊥CD ,∴∠BEC =90°,∴∠BEC =∠ACB .∴△BCE ∽△ABC . ∴E 是△ABC 的自相似点. ⑵①作图略. 作法如下:(i )在∠ABC 内,作∠CBD =∠A ;(ii )在∠ACB 内,作∠BCE =∠ABC ;BD 交CE 于点P . 则P 为△ABC 的自相似点.②连接PB 、PC .∵P 为△ABC 的内心,∴12PBC ABC ∠=∠,12PCB ACB ∠=∠. ∵P 为△ABC 的自相似点,∴△BCP ∽△ABC .∴∠PBC =∠A ,∠BCP =∠ABC=2∠PBC =2∠A , ∠ACB =2∠BCP=4∠A .∵∠A +∠ABC+∠ACB =180°. ∴∠A +2∠A+4∠A =180°. ∴1807A ∠=.∴该三角形三个内角的度数分别为1807、3607、7207.28. 解⑴①174,103,52,2,52,103,174. 函数1y x x=+(0)x >的图象如图.②本题答案不唯一,下列解法供参考.当01x <<时,y 随x 增大而减小;当1x >时,y 随x 增大而增大;当1x =时函数1y x x =+(0)x >的最小值为2. ③1y x x =+=22+=22+-=22+,即1x =时,函数1y x x=+(0)x >的最小值为2.。

江苏省2011年中考数学试题(13份含有解析)-10

江苏省2011年中考数学试题(13份含有解析)-10

2011年无锡市初中毕业升学考试数学试题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用28铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答.写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效. 3.作图必须用2B 铅笔作答,并请加黑加粗.描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共l0小题.每小题3分.共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑)1.︳-3︳的值等于 ( ▲ ) A .3 8.-3 C .±3 D .3【答案】A .【考点】绝对值。

【分析】利用绝对值的定义,直接得出结果2.若a>b ,则 ( ▲ ) A .a>-b B .a<-b C .-2a>-2b D .-2a<-2b 【答案】D .【考点】不等式。

【分析】利用不等式的性质,直接得出结果3.分解因式2x 2—4x+2的最终结果是 ( ▲ ) A .2x(x -2) B .2(x 2-2x+1) C .2(x -1)2 D .(2x -2)2 【答案】C .【考点】因式分解。

【分析】利用提公因式法和运用公式法,直接得出结果 ()()22224222121x x x x x -+=-+=-4.已知圆柱的底面半径为2cm ,高为5cm ,则圆柱的侧面积是 ( ▲ ) A .20 cm 2 8.20兀cm 2 C .10兀cm 2 D .5兀cm 2 【答案】B .【考点】图形的展开。

中考数学真题解析矩形的性质与判定,直角三角形斜边上的中线等于斜边的一半(含答案)

中考数学真题解析矩形的性质与判定,直角三角形斜边上的中线等于斜边的一半(含答案)

(2012年1月最新最细)2011全国中考真题解读120考点汇编矩形的性质与判定,直角三角形斜边上的中线等于斜边的一半一、选择题1.(2011•南通)如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=4cm.考点:翻折变换(折叠问题)。

分析:根据题意推出AB= A'B=2,由AE=CE推出AB1=B1C,即AC=4.解答:解:∵AB=2cm,A'B=AB,,∴A'B=2,∵矩形ABCD,AE=CE,∴∠ABE=∠AB1E=90°,∵AE=CE,∴A'B='B C,∴AC=4.故答案为4.点评:本题主要考察翻折的性质、矩形的性质、等腰三角形的性质,解题的关键在于推出AB= A'B.2.(2011江苏无锡,5,3分)菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补考点:矩形的性质;菱形的性质。

专题:推理填空题。

分析:根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.解答:解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项错误;B、菱形和矩形的对角线都相等;故本选项正确;C、菱形和矩形的对角线都互相平分;故本选项正确;D、菱形对角相等,但不互补;故本选项正确;故选A.点评:此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.3.(2011•宁夏,2,3分)如图,矩形ABCD 的两条对角线相交于点O ,∠AOD=60°,AD=2,则AB 的长是( )A 、2B 、4C 、23D 、43考点:矩形的性质;等边三角形的判定与性质。

分析:本题的关键是本题的关键是利用等边三角形和矩形对角线的性质即锐角三角函数关系求长度.解答:解:∵在矩形ABCD 中,AO=21AC ,DO=21BD ,AC=BD , ∴AO=DO , 又∵∠AOD=60°, ∴∠ADB=60°, ∴∠ABD=30°, ∴AB AD=tan30°, 即AB 2=33, ∴AB=23. 故选C .点评:本题考查了矩形的性质和锐角三角函数关系,具有一定的综合性,难度不大属于基础性题目.4.(2011台湾,29,4分)如图,长方形ABCD 中,E 为BC 中点,作∠AEC 的角平分线交AD 于F 点.若AB =6,AD =16,则FD 的长度为何?( )A .4B .5C .6D .8考点:矩形的性质;角平分线的性质;勾股定理。

中考数学真题解析平方根立方根(含答案)

中考数学真题解析平方根立方根(含答案)

精心整理(2012年1月最新最细)2011全国中考真题解析120考点汇编平方根、立方根一、选择题解答:解:∵33=27,∴=3.故选D.点评:本题考查的是立方根的定义,即如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.3.(2011山东日照,1,3分)(﹣2)2的算术平方根是()A.2 B.±2 C.﹣2 D.2考点:算术平方根;有理数的乘方。

解答:解:∵4=(±2)2,∴4的平方根是±2.故选C.点评:本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.(2011四川泸州,1,2分)25的算术平方根是()A.5B.-5C.±5D.57.(2011?黔南,1,4分)9的平方根是()A、3B、±3C、3D、±3考点:算术平方根;平方根。

分析:首先根据平方根概念求出9=3,然后求3的平方根即可.解答:解:∵9=3,∴9的平方根是±3.故选D.64的算术平方根是8,8的算术平方根是22;故选D.点评:本题考查了算术平方根的定义,看懂图表的原理是正确解答的关键.9.(2011福建省漳州市,3,3分)9的算术平方根是()A、3B、±3 C D、考点:算术平方根。

点评:此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.11.(2011湖南怀化,1,3分)49的平方根为()A.7 B.﹣7 C.±7 D.解答:解:∵23=8,∴8的立方根是2.故选A.点评:本题考查的是立方根的定义,即如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.13.(2011?包头,2,3分)3的平方根是()A、±3B、9C、3D、±9故选A.点评:此题主要考查了算术平方根的定义,属于基础题型.二、填空题1.(2011江苏无锡,11,2分)计算:38=2.考点:立方根。

2005-2011年江苏省南京市中考数学试卷及答案(7套)

2005-2011年江苏省南京市中考数学试卷及答案(7套)

浙江省2011年初中毕业生学业考试(金华卷) 数 学 试 题 卷考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑. 参考公式:方差公式()()()[]2222121x x x x x x nS n -++-+-=. 卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分) 1.下列各组数中,互为相反数的是( ▲ )A .2和-2B .-2和12 C .-2和12- D .12和2 2.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( ▲ )A .6B .5C .4D .33.下列各式能用完全平方公式进行分解因式的是( ▲ )A .x 2+ 1B .x 2+2x -1C .x 2+x +1D .x 2+4x +44.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ▲ )A .+2B .-3C .+3D .+45.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( ▲ )A .30oB .25oC .20oD .15o6.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( ▲ )第2题图第5题图A .0.1B .0.15C .0.25D .0.3 7.计算111aa a ---的结果为( ▲ ) A .11a a +- B .1a a -- C .-1 D .28.不等式组211420x x ->⎧⎨-⎩,≤的解在数轴上表示为( ▲ )9.如图,西安路与南京路平行,并且与八一街垂直,曙 光路与环城路垂直.如果小明站在南京路与八一街的交 叉口,准备去书店,按图中的街道行走,最近的路程约 为( ▲ )A .600mB .500mC .400mD .300m10.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是 ( ▲ )A .点(0,3)B . 点(2,3)C .点(5,1)D . 点(6,1)卷 Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题 (本题有6小题,每小题4分,共24分) 11.“x 与y 的差”用代数式可以表示为 ▲ .12.已知三角形的两边长为4,8,则第三边的长度可以是 ▲ (写出一个即可). 13.在中国旅游日(5月19日),我市旅游部门对2011年第一季度游客在金华的旅游时间作抽样调查,统计如下: 的扇形圆心角的度数为 ▲ .14.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 ▲ .15.如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 ▲ .16.如图,将一块直角三角板OAB 放在平面直角坐标系中, B (2,0),∠AOB =60°,点A 在第一象限,过点A 的双曲线第10题图1 02 C 1 02D1 02 A 1 0 2 B 第15题图D为ky x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l , 以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´. (1)当点O ´与点A 重合时,点P 的坐标是 ▲ ; (2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 ▲ .三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程)17.(本题6分)计算:()015cos45π--+4. 18.(本题6分)已知213x -=,求代数式2(3)2(3+)7x x x -+-的值.19.(本题6分)生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬. 现在有一长为6米的梯子AB , 试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC .(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)20.(本题8分)王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均 数,并估算出甲、乙两山杨梅的产量 总和; (2)试通过计算说明,哪个山上的杨 梅产量较稳定?21.(本题8分)如图,射线PG 平分∠EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与∠EPF 的两边相交于A 、B 和C 、D ,连结OA ,此时有OA//PE . (1)求证:AP =AO ; (2)若tan ∠OPB =12,求弦AB 的长; (3)若以图中已标明的点(即P 、A 、B 、C 、D 、O )构造四边形,则能构成菱形的四个点为 ▲ ,能构成等腰梯形的四个点为 ▲ 或 ▲ 或第19题图 C 杨梅树编号第20题图图222.(本题10分)某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:(1)求师生何时回到学校?(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到....学校,往返平均速度分别为每时10km、8km.现有A、B、C、D四个植树点与学校的路程分别是13km、15km、17km、19km,试通过计算说明哪几个植树点符合要求.23.(本题10分)在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上, 设抛物线2y ax bx c=++(a<0)过矩形顶点B、C.(1)当n=1时,如果a=-1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;②直接写出a关于n的关系式.24.(本题12分)如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结第22题图)(1)当∠AOB =30°时,求弧AB 的长度; (2)当DE =8时,求线段EF 的长;(3)在点B 运动过程中,是否存在以点E 、C 、F 为顶点的三角形与△AOB 相似,若存在,请求出此 时点E 的坐标;若不存在,请说明理由.浙江省2011年初中毕业生学业考试(金华卷)数学试卷参考答案及评分标准一、二、11.x -y 12.答案不惟一,在4<x <12之间的数都可 13. 144° 14. 1315. 32 16. (1)(4,0);(2)4≤t ≤2525-≤t ≤-4(各2分) 三、解答题(本题有8小题,共66分) 17.(本题6分)()0185cos45π--1+42 =121221422-⨯+⨯(写对一个2分,两个3分,三个4分,四个5分)2 ……1分 18.(本题6分)由2x -1=3得x =2, ……2分又2(3)2(3+)7x x x -+-=2269627x x x x -+++-=232x +,……2分 ∴当x =2时,原式=14. …2分 19.(本题6分)当α=70°时,梯子顶端达到最大高度, ……1分 ∵sin α=ABAC, ……2分 ∴ AC = sin70°×6=0.94×6=5.64 ……2分≈5.6(米)答:人安全攀爬梯子时,梯子的顶端达到的最大高度约5.6米.……1分 20.(本题8分)(1)40=甲x (千克), ……1分40=乙x (千克), ……1分总产量为78402%9810040=⨯⨯⨯(千克);……2分(2)()()()()[]3840344040403640504122222=-+-+-+-=甲S (千克2 ), ……1分()()()()[]2440364048404040364122222=-+-+-+-=乙S (千克2), ……1分∴22S S乙甲>. ……1分 答:乙山上的杨梅产量较稳定. ……1分 21.(本题8分)(1)∵PG 平分∠EPF , ∴∠DPO =∠BPO , ∵OA//PE ,∴∠DPO =∠POA , ∴∠BPO =∠POA ,∴P A =OA ; ……2分 (2)过点O 作OH ⊥AB 于点H ,则AH =HB =12AB ,……1∵ tan ∠OPB =12OH PH =,∴PH =2OH , ……1分 设OH =x ,则PH =2x ,由(1)可知P A =OA = 10 ,∴AH =PH -P A =2x -10,∵222AH OH OA +=, ∴222(210)10x x -+=, ……1分 解得10x =(不合题意,舍去),28x =,∴AH =6, ∴AB=2AH=12; ……1分(3)P 、A 、O 、C ;A 、B 、D 、C 或 P 、A 、O 、D 或P 、C 、O 、B .……2分(写对1个、2个、3个得1分,写对4个得2分) 22.(本题10分)(1)设师生返校时的函数解析式为b kt s +=,把(12,8)、(13,3)代入得,⎩⎨⎧+=+=b k b k 133,128 解得:⎩⎨⎧=-=68,5b k ∴685+-=t s ,当0=s 时,t =13.6 , ∴师生在13.6时回到学校;……3分 (2)图象正确2分.由图象得,当三轮车追上师生时,离学校4km ; ……2分 (3)设符合学校要求的植树点与学校的路程为x (km ),由题意得:88210+++x x <14, 解得:x <9717,答:A 、B 、C 植树点符合学校的要求.……3分23.(本题10分)(1)由题意可知,抛物线对称轴为直线x =12, ∴122b a -=,得b = 1; ……2分 (2)设所求抛物线解析式为21y ax bx =++,由对称性可知抛物线经过点B (2,1)和点M (12,2) P8.5 9.5)∴1421112 1.42a b ab =++⎧⎪⎨=++⎪⎩, 解得4,38.3a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线解析式为248133y x x =-++;……4分(3)①当n =3时,OC=1,BC =3,设所求抛物线解析式为2y ax bx =+,过C 作CD ⊥OB 于点D ,则Rt △OCD ∽Rt △CBD , ∴13OD OC CD BC ==, 设OD =t ,则CD =3t , ∵222OD CD OC +=,∴222(3)1t t +=, ∴t ==, ∴C (10), 又 B 0), ∴把B 、C 坐标代入抛物线解析式,得010********.101010a b a ⎧=+⎪=+,解得:a =103-; ……2分 ②21n a n+=-. ……2分24.(本题12分) (1)连结BC ,∵A (10,0), ∴OA =10 ,CA =5, ∵∠AOB =30°,∴∠ACB =2∠AOB =60°,∴弧AB 的长=35180560ππ=⨯⨯; ……4分(2)连结OD,∵OA 是⊙C 直径, ∴∠OBA =90°, 又∵AB =BD,∴OB 是AD 的垂直平分线, ∴OD =OA =10, 在Rt △ODE 中,OE ==-22DE OD 681022=-,∴AE =AO -OE=10-6=4,由 ∠AOB =∠ADE =90°-∠OAB ,∠OEF =∠DEA , 得△OEF ∽△DEA, ∴OE EF DE AE =,即684EF=,∴EF =3;……4分 (3)设OE =x ,①当交点E 在O ,C 之间时,由以点E 、C 、F 为顶点的三角形与△AOB 相似,有∠ECF =∠BOA 或∠ECF =∠OAB , 当∠ECF =∠BOA 时,此时△OCF 为等腰三角形,点E 为OC中点,即OE =25, ∴E 1(25,0); 当∠ECF =∠OAB 时,有CE =5-x , AE =10-x ,∴CF ∥AB ,有CF =12AB , ∵△ECF ∽△EAD,∴AD CF AE CE =,即51104x x -=-,解得:310=x , ∴E 2(310,0);②当交点E 在点C 的右侧时,∵∠ECF >∠BOA ,∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO , 连结BE ,∵BE 为Rt △ADE 斜边上的中线, ∴BE =AB =BD, ∴∠BEA =∠BAO, ∴∠BEA =∠ECF ,∴CF ∥BE, ∴OEOCBE CF =, ∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠,∴△CEF ∽△AED, ∴CF CEAD AE =, 而AD =2BE , ∴2OC CEOE AE=, 即55210x x x -=-, 解得417551+=x , 417552-=x <0(舍去), ∴E 3(41755+,0); ③当交点E 在点O 的左侧时,∵∠BOA =∠EOF >∠ECF .∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO连结BE ,得BE =AD 21=AB ,∠BEA =∠BAO ∴∠ECF =∠BEA, ∴CF ∥BE,OB DFC EA xy∴OEOCBE CF =, 又∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠,∴△CEF ∽△AED, ∴AD CFAE CE =, 而AD =2BE , ∴2OC CEOE AE=, ∴5+5210+x x x =, 解得417551+-=x , 417552--=x <0(舍去), ∵点E 在x 轴负半轴上, ∴E 4(41755-,0), 综上所述:存在以点E 、C 、F 为顶点的三角形与△AOB 相似,此时点E 坐标为:1E (25,0)、2E (310,0)、3E (41755+,0)、4E (41755-,0).……4分。

2011年中考数学试题及答案解析江苏南京中考数学试卷试题

2011年中考数学试题及答案解析江苏南京中考数学试卷试题

中考数学说明:本试卷共八大题,总分值120分,考试时间120分钟.请你认真审题,树立信心,沉着应答!一、 填空题〔本大题10小题,每题2分,共20分〕1、计算:6-1= .2、在七巧板拼图中〔如图1〕,∠ABC = 度 .3、“抛出的篮球会下落〞,这个事件是 事件〔填“确定〞或“不确定〞〕.4、南宁国际会展中心是即将举办的中国—东盟博览会的会址,其总建筑面积为112100平方米,用科学记数法表示为________平方米〔保存三个有效数字〕.5、当x 时,分式x-13有意义. 6、如图2,D 、E 分别是⊙O 的半径OA 、OB 上的点,CD ⊥OA 、CE ⊥OB 、CD=CE ,那么AC 与CB 两弧长的大小关系是: .7、写出一个图象位于一、三角限的反比例函数表达式 8、顺次连接一个任意四边形四边的中点,得到一个___________四边形.图1 图2 图3 图49、图3是两张全等的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O 顺时针旋转,至少旋转______度角后,两张图案构成的图形是中心对称图形. 10、如图4,一个机器人从O 点出发,图3向正东方向走3米到达A 1点,再向正北方向走6米到达A 2点,再向正西方向走9米到达A 3点,再向正南方向走12米到达A 4点,再向正东方向走15米到达A 5点.按如此规律走下去,当机器人走到A 6点时,离O 点的距离是 米.______________二、选择题〔本大题8小题,每题3分,共24分〕每题都给出代号为(A)、(B)、(C)、(D)的四个结论,其中只有一个是正确的.选 择正确结论的代号填在括号内.11.以下运算正确的选项是〔 〕 (A)224x x x += (B)22(1)1a a -=- (C)325x x xy +=(D)235a a a =得分评卷人得分评卷人ABCCABDEO·O北南东西O A 1 A 2A 3A 4A 5A 612.分式11a b+计算的结果是〔 〕 (A)b a + (B)1a b + (C)2a b + (D)a bab+13.如图5,ABCD 是平行四边形,那么图中与DEF △相似的三角形共有〔 〕 (A)1个 (B)2分(C)3个 (D)4个14.如图6,CD 是ABC Rt △斜边上的高,43AC BC ==,,那么 cos BCD ∠的值是〔 〕(A)35(B)34(C)43(D)4515.中央电视台“开心辞典〞栏目有这么一道题:小兰从镜子中看到挂在她背后墙上的四个时钟如以下图所示,其中时间最接近四点钟 的是〔 〕 (A) (B) (C) (D)16.如图7,分别以等腰直角三角板的直角边、斜边为旋转轴旋转,所形成的旋转体的全面积依次记为12S S 、,那么12S S 与的大小关系为〔 〕 (A)12S S > (B)12S S < (C)12S S =(D)无法判断17.函数2y ax a =-与(0)ay a=≠在同一直角坐标系中的图象可能是〔〕(A) (B) (C) (D) 18.观察图8寻找规律,在“?〞处填上的数字是〔 〕 (A)128 (B)136(C)162 (D)188B E图5A图6图72 24 8 14 26 48 88?图8三、〔本大题共2小题,每题8分,总分值16分〕19、〔此题总分值 8分〕计算:〔-2〕3+21〔2004-3〕0-|-21|20、〔此题总分值 8分〕化简:4)223(2-÷+-+x xx x x x四、〔此题A类题总分值7分,B类题总分值10分〕21.此题有A、B两类题.A类题总分值7分,B类题总分值10分.请你选择其中一类......证明. 〔A类〕如图9,DE AB DF AC ⊥、⊥.垂足分别为E F 、.请你从下面三个条件中,再选出两个作为条件,另一个为结论,推出一个正确的命题〔只需写出一种情 况〕. ①AB AC = ②BD CD = ③BE CF = :DE AB DF AC ⊥、⊥,垂足分别为E F 、, = , = . 求证: 证明:B C 图9〔B类〕如图10,EG AF ∥,请你从下面三个条件中,再选两个作为条件,另 一个为结论,推出一个正确的命题〔只需写出一种情况〕. ①AB AC = ②DE DF = ③BE CF = :EG AF ∥, = , = . 求证: 证明:友情提醒:假设两题都做的同学,请你确认以哪类题记分,你的选择是 类题.五、〔本大题共6小题,每题10分,共60分〕22、以下资料来源于2003年?南宁统计年鉴?□表示南宁市农民人均纯收入(元)〔1〕分别指出南宁市农民人均纯收相对于上一年哪年增长最快?B2000年 2001年 2002年 8796〔2〕据统计,2000年~2002年南宁市农民年人均纯收入的平均增长率为7.5%,城市居民年人均可支配收入的平均增长率为8.7%,假设年平均增长率不变,请你分别预计2004年南宁市农民人均纯收入和城市居民人均可支配收入各是多少?〔精确到1元〕〔3〕从城乡年人均收入增长率看,你有哪些积极的建议?〔写出一条建议〕23.如图11,石头A和石头B相距80cm,且关于竹竿l对称,一只电动青蛙在距竹竿30cm,距石头A为60cm的1P处,按如下顺序循环跳跃:(1)请你画出青蛙跳跃的路径〔画图工具不作限制〕.(2)青蛙跳跃25次后停下,此时它与石头A相距cm,与竹竿l相距cm.B1Pl竹竿石头A图1124、某饮料厂为了开发新产品,用A、B两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是试验的相关数据:〔1〕假设甲种饮料需配制x千克,请你写出满足题意的不等式组,并求出其解集.〔2〕设甲种饮料每千克本钱为4元,乙种饮料每千克本钱为3元,这两种饮料的本钱总额为y元,请写出y与x的函数表达式.并根据〔1〕的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的本钱总额最少?25、目前国内最大跨径的钢管混凝土拱桥——永和大桥,是南宁市又一标志性建筑,其拱形图形为抛物线的一局部〔如图11〕,在正常情况下,位于水面上的桥拱跨度为350米,拱高为85米.〔1〕在所给的直角坐标系中〔如图12〕,假设抛物线的表达式为y=ax2+b,请你根据上述数据求出a、b的值,并写出抛物线的表达式〔不要求写自变量的取值范围,a、b的值保存两个有效数字〕.85m图12〔2〕七月份汛期将要来临,当邕江水位上涨后,位于水面上的桥拱跨度将会减小 .当水位上涨 4 m 时,位于水面上的桥拱跨度有多大?〔结果保存整数〕.26.OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,106OA OC ==,.(1) 如图13,在AB 上取一点M ,使得CBM △沿CM 翻折后,点B 落在x 轴上,记作B '点.求B '点的坐标;(2) 求折痕CM 所在直线的解析式;(3) 作B G AB '∥交CM 于点G ,假设抛物线216y x m =+过点G ,求抛物线的解析式,并判断以原点O 为圆心,OG 为半径的圆与抛物线除交点G 外,是否图1325、如图14,点P 是圆上的一个动点,弦AB PC =是APB ∠的平分线,30BAC ∠=.(1) 当PAC ∠等于多少度时,四边形PACB 有最大面积?最大面积是多少?(2) 当PAC ∠等于多少度时,四边形PACB 是梯形?说明你的理由.CCP图14。

2005-2011年江苏省南京市中考数学试卷及答案(7套)

2005-2011年江苏省南京市中考数学试卷及答案(7套)

宁夏回族自治区2010年初中毕业暨高中阶段招生数学试题参考答案及评分标准说明:1.除本参考答案外,其它正确解法可根据评分标准相应给分。

2.涉及计算的题,允许合理省略非关键步骤。

3.以下解答中右端所注的分数,表示考生正确做到这步应得的累计分。

一、选择题(3分×8=24分)二、填空题(3分×8=24分)9. -1; 10. 042 11. 2212b ab π-12. 10 13. 14.54 15. 231+ 16. ②③ 三.解答题(共24分)17.解:原式=)12()2(231---++--------------------------------------------------------4分=122231+--+=22------------------------------------------------------------------------------------6分 18.解:由①得:463≤+-x x22-≤-x1≥x ------------------------------------------------------------------------2分由②得:3321->+x x4->-x4<x ---------------------------------------------------------------------------------4分(注:没有用数轴表示解集的不扣分)∴原不等式组的解集为:41<≤x ----------------------------------------------------------- ---6分19.解:原式=a aa aa -⋅+--+1)1212(2=aaa a a a -⋅⎪⎪⎭⎫⎝⎛+--++112)1)(1(2=)1()1(2)1(2+--++a a a a a a =13+a -----------------------------------------------------------------------------------4分 当13-=a 时原式=3331133==+------------------------------------------------------------------------6分所有可能的结果:(A, A) (A, A) (A, A) (A, A) (A, A) (A, A) (B, A) (B, A) (B, A) (B, A) (C, A) (C, A) (A, A) (A, B) (A, A) (A, B) (A, A) (A, B) (B, A) (B, B) (B, A) (B, B) (C, A) (C, B) (A, B) (A, C) (A, B) (A, C) (A, B) (A, C) (B, B) (B, C) (B, B) (B, C) (C, B) (C, C)列出表格或画出树状图得----------------- -----4分91)(=C B P 、母两个小球上分别写有字-----------------------6分 四.解答题(共48分)21.(1)40=a ; 09.0=b -------------------2分 (2)如图------------------------------------------3分 (3)0.12+0.09+0.08=0.29 0.29×24000=6960(名)答:该市24000名九年级考生数学成绩为优秀的学生约有6960名。

南京市2011年初中毕业生学业考试数学答案.

南京市2011年初中毕业生学业考试数学答案.

南京市2011年初中毕业生学业考试数学参考答案一.选择题:ACCDBB二.填空:7. 2 8. 36 9. 10. 6 11. 12 12. 13. 40 14. 90 15. 12- 16. 4 17.解解不等式①得:1x ≥-解不等式②得:2x <所以,不等式组的解集是12x -≤<.不等式组的整数解是1-,0,1. 18.221a b a b a b b a -÷-+-解:(((((a a b b a b a b a b a b b a ⎡⎤-=-÷⎢⎥+-+--⎣⎦((b b a a b a b b -=⋅+-1a b=-+19. 解法一:移项,得241x x -=-.配方,得24414x x -+=-+, 2(23x -=由此可得2x -=12x =,22x =解法二:1,4, 1.a b c ==-=224(4411120b ac -=--⨯⨯=>,2x ==±12x =22x =. 20.解:⑴训练后第一组平均成绩比训练前增长的百分数是53100%3-⨯≈67%. ⑵不同意小明的观点,因为第二组的平均成绩增加8×10%+6×20%+5×20%+0×50%=3(个.(3本题答案不唯一,我认为第一组训练效果最好,因为训练后第一组平均成绩比训练前增长的百分数最大.21.证明:⑴∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD .∴∠ABF=∠ECF .∵EC =DC , ∴AB =EC .在△ABF 和△ECF 中,∵∠ABF =∠ECF ,∠AFB=∠EFC ,AB =EC ,∴△ABF ≌△ECF .(2解法一:∵AB =EC ,AB ∥EC ,∴四边形ABEC 是平行四边形.∴AF =EF , BF =CF .∵四边形ABCD 是平行四边形,∴∠ABC =∠D ,又∵∠AFC =2∠D ,∴∠AFC =2∠ABC .∵∠AFC =∠ABF +∠BAF ,∴∠ABF =∠BAF .∴F A =FB . ∴F A =FE =FB =FC , ∴AE =BC .∴□ABEC 是矩形.解法二:∵AB =EC ,AB ∥EC ,∴四边形ABEC 是平行四边形.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D =∠BCE .又∵∠AFC =2∠D ,∴∠AFC =2∠BCE ,∵∠AFC =∠FCE +∠FEC ,∴∠FCE =∠FEC .∴∠D =∠FEC .∴AE =AD .又∵CE =DC ,∴AC ⊥DE .即∠ACE=90°.∴□ABEC 是矩形.22. 解⑴3600,20. ⑵①当5080x ≤≤时,设y 与x 的函数关系式为y kx b =+.根据题意,当50x =时,1950y =;当80x =,3600y =.所以,y 与x 的函数关系式为55800y x =-.②缆车到山顶的路线长为3600÷2=1800(m ,缆车到达终点所需时间为1800÷180=10(min .小颖到达缆车终点时,小亮行走的时间为10+50=60(min .把60x =代入55800y x =-,得y =55×60—800=2500.所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100(m .23. 解⑴抽取1名,恰好是女生的概率是25.⑵分别用男1、男2、男3、女1、女2表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1,男2,(男1,男3,(男1,女1,(男1,女2,(男2,男3,(男2,女1,(男2,女2,(男3,女1,(男3,女2,(女1,女2,共10种,它们出现的可能性相同,所有结果中,满足抽取2名,恰好是1名男生和1名女生(记为事件A 的结果共6种,所以P (A =63105=. 24.解:⑴当x =0时,1y =.所以不论m 为何值,函数261y mx x =-+的图象经过y 轴上的一个定点(0,1.⑵①当0m =时,函数61y x =-+的图象与x 轴只有一个交点;②当0m ≠时,若函数261y mx x =-+的图象与x 轴只有一个交点,则方程2610mx x -+=有两个相等的实数根,所以2(640m --=,9m =. 综上,若函数261y mx x =-+的图象与x 轴只有一个交点,则m 的值为0或9.25.在Rt ECD ∆中,tan DEC ∠=DCEC . ∴EC =tan DC DEC ∠≈30400.75=(m .在Rt BAC ∆中,∠BCA =45°,∴BA CA = 在Rt BAE ∆中,tan BEA ∠=BA EA .∴0.7540h h =+.∴120h =(m . 答:电视塔高度约为120m . 26.解⑴直线AB 与⊙P 相切.如图,过点P 作PD ⊥AB , 垂足为D .在Rt △ABC 中,∠ACB =90°∴10AB cm =.∵P 为BC 的中点,∴PB =4cm .∵∠PDB =∠ACB =90°,∠PBD =∠ABC .∴△PBD ∽△ABC . ∴PD PB AC AB =,即4610PD =,∴PD =2.4(cm . 当 1.2t =时,2 2.4PQ t ==(cm ∴PD PQ =,即圆心P 到直线AB 的距离等于⊙P 的半径. ∴直线AB 与⊙P 相切.⑵∠ACB =90°,∴AB 为△ABC 的外切圆的直径.∴152OB AB cm ==.连接OP .∵P 为BC 的中点,∴132OP AC cm ==. ∵点P 在⊙O 内部,∴⊙P 与⊙O 只能内切. ∴523t -=或253t -=,∴t =1或4. ∴⊙P 与⊙O 相切时,t 的值为1或4.27. 解⑴在Rt △ABC 中,∠ACB =90°,CD 是AB 上的中线,∴12CD AB =,∴CD =BD .∴∠BCE =∠ABC .∵BE ⊥CD ,∴∠BEC =90°,∴∠BEC =∠ACB .∴△BCE ∽△ABC . ∴E 是△ABC 的自相似点.⑵①作图略. 作法如下:(i 在∠ABC 内,作∠CBD =∠A ;(ii 在∠ACB 内,作∠BCE =∠ABC ;BD 交CE 于点P .则P 为△ABC 的自相似点.②连接PB 、PC .∵P 为△ABC 的内心,∴12PBC ABC ∠=∠,12PCB ACB ∠=∠. ∵P 为△ABC 的自相似点,∴△BCP ∽△ABC .∴∠PBC=∠A ,∠BCP =∠ABC =2∠PBC =2∠A ,∠ACB =2∠BCP =4∠A .∵∠A +∠ABC+∠ACB =180°.∴∠A +2∠A +4∠A =180°.∴1807A ∠=.∴该三角形三个内角的度数分别为1807 、3607 、7207 . 28. 解⑴①174,103,52,2,52,103,174. 函数1y x x=+(0x >的图象如图. ②本题答案不唯一,下列解法供参考.当01x <<时,y 随x 增大而减小;当1x >时,y 随x 增大而增大;当1x =时函数1y x x=+(0x >的最小值为2. ③1y x x =+=22+=22+-=22+当=0,即1x =时,函数1y x x =+(0x >的最小值为2. ⑵当该矩形的长为(第26题。

2011年江苏省南京市中考数学试卷及答案

2011年江苏省南京市中考数学试卷及答案

2011年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1、(2011•南京)的值等于()A、3B、﹣3C、±3D、考点:算术平方根。

分析:此题考查的是9的算术平方根,需注意的是算术平方根必为非负数.解答:解:∵=3,故选A.点评:此题主要考查了算术平方根的定义,一个正数只有一个算术平方根,0的算术平方根是0.2、(2011•南京)下列运算正确的是()A、a2+a3=a5B、a2•a3=a6C、a3+a2=aD、(a2)3=a6考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法。

专题:计算题。

分析:根据合并同类项法则、积的乘方和幂的乘方的法则运算.解答:解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a2•a3=a2+3=a5≠a6,故本选项错误;C、a3与a2不是同类项,不能合并,故本选项错误;D、(a2)3=a2×3=a6,故本选项正确.故选D.点评:此题考查了幂的乘方与积的乘方、合并同类项等知识,属于基本题型.3、(2011•南京)在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%,则该市65岁及以上人口用科学记数法表示约为2%,则该市65岁及以上人口用科学记数法表示约为()A、0.736×106人B、7.36×104人C、7.36×105人D、7.36×106人考点:科学记数法—表示较大的数。

专题:计算题。

分析:先计算出该市65岁及以上人口数,然后用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:该市65岁及以上人口:8000000×9.2%=736000(人)将736 000人用科学记数法表示7.36×105人.故选C.点评:题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、(2011•南京)为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A、随机抽取该校一个班级的学生B、随机抽取该校一个年级的学生C、随机抽取该校一部分男生D、分别从该校初一、初二、初三年级中各随机抽取10%的学生考点:全面调查与抽样调查。

2011中考数学真题解析69 三视图(含答案)

2011中考数学真题解析69 三视图(含答案)
考点:简单几何体的三视图。
分析:拿掉若干个小立方块后保证几何体不倒掉,且三个视图仍都为2×2的正方形,所以最底下一层必须有四个小立方块,这样能保证俯视图仍为2×2的正方形,为保证正视图与左视图也为2×2的正方形,所以上面一层必须保留交错的两个立方块,即可知最多能拿掉小立方块的个数.
解答:解:根据题意,拿掉若干个小立方块后,三个视图仍都为2×2的正方形,所以最多能拿掉小立方块的个数为2个.
A. B.
C. D.
考点:简单组合体的三视图。
专题:几何图形问题。
分析:根据俯视图是从上面看到的图形判定则可.
解答:解:从上面看,是中间一个正方形,两边两个矩形.
故选A.
点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.
21.一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为( )
故选A.
点评:此题主要考查了利用三视图求长方体的表面积,得出长方体各部分的边长是解决问题的关键.
16.(2011天津,7,3分)如图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度,则它的三视图是( )
A、 B、 C、 D、
考点:简单组合体的三视图。
专题:作图题。
分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
解答:A
点评:解决此类问题要具备空间想象能力,根据主视图与俯试图的形状来想象出几何体的组合方式,确定该物体的行数、列数和层数,确定出每层可能的最多小正方体的个数后即可判断.
15.(2011四川凉山,11,4分)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为()
A. B. C. D.

2011中考江苏南京数学卷

2011中考江苏南京数学卷

南京市2011年初中毕业生学业考试数学数学注意事项:1.本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答.题卡相应位置......上)1.A.3B.-3C.±3D.2.下列运算正确的是A.a2+a3=a5 B.a2•a3=a6C.a3÷a2=a D.(a2)3=a83.在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%.则该市65岁及以上人口用科学记数法表示约为A.0.736×106人B.7.36×104人C.7.36×105人D.7.36×106 人4.为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生5.如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是6.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P的弦AB的长为a的值是A.B.2+C.D.2+A.D.(第5题)二、填空题(本大题共10小题,每小题2分,共20分,不需要写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.-2的相反数是________.8.如图,过正五边形ABCDE 的顶点A 作直线l ∥CD ,则∠1=____________.9.计算1)(2-=_______________.10.等腰梯形的腰长为5㎝,它的周长是22㎝,则它的中位线长为___________㎝.11.如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则cos ∠AOB 的值等于___________. 12.如图,菱形ABCD 的连长是2㎝,E 是AB 中点,且DE ⊥AB ,则菱形ABCD 的面积为_________㎝2.13.如图,海边有两座灯塔A 、B ,暗礁分布在经过A 、B 两点的弓形(弓形的弧是⊙O 的一部分)区域内,∠AOB =80°,为了避免触礁,轮船P 与A 、B 的张角∠APB 的最大值为______°.14.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE =CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向转到△BCF ,旋转角为a (0°<a <180°),则∠a =______. 15.设函数2y x=与1y x =-的图象的交战坐标为(a ,b ),则11ab-的值为__________.16.甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束; ②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为____________.三、解答题(本大题共12小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)(第12题)(第8题)l(第11题)BA MO (第12题)AC(第14题)ABCDF17.(6分)解不等式组523132x x x +⎧⎪+⎨⎪⎩≥>,并写出不等式组的整数解.18.(6分)计算221()a b a ba bb a-÷-+-19.(6分)解方程x 2-4x +1=020.(7分)某校部分男生分3组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如下.⑴求训练后第一组平均成绩比训练前增长的百分数;⑵小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均数不可能提高3个这么多.”你同意小明的观点吗?请说明理由;⑶你认为哪一组的训练效果最好?请提出一个解释来支持你的观点.21.(7分)如图,将□ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F .⑴求证:△ABF ≌△ECF⑵若∠AFC =2∠D ,连接AC 、BE .求证:四边形ABEC 是矩形.第一组 第二组 第三组组别①训练后第二组男生引体向上增加个数分布统计图增加85个②(第20题)BDE(第21题)22.(7分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.⑴小亮行走的总路程是____________㎝,他途中休息了________min.⑵①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?23.(7分)从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:⑴抽取1名,恰好是女生;⑵抽取2名,恰好是1名男生和1名女生.24.(7分)已知函数y=mx2-6x+1(m是常数).⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;⑵若该函数的图象与x轴只有一个交点,求m的值.25.(7分)如图,某数学课外活动小组测量电视塔AB的高度,他们借助一个高度为30m 的建筑物CD进行测量,在点C处塔顶B的仰角为45°,在点E处测得B的仰角为37°(B、D、E三点在一条直线上).求电视塔的高度h.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)Bh (第25题)26.(8分)如图,在Rt △ABC 中,∠ACB =90°,AC =6㎝,BC =8㎝,P 为BC 的中点.动点Q 从点P 出发,沿射线PC 方向以2㎝/s 的速度运动,以P 为圆心,PQ 长为半径作圆.设点Q 运动的时间为t s .⑴当t =1.2时,判断直线AB 与⊙P 的位置关系,并说明理由; ⑵已知⊙O 为△ABC 的外接圆,若⊙P 与⊙O 相切,求t 的值.27.(9分)如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△PAB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点.⑵在△ABC 中,∠A <∠B <∠C .①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数. 28.(11分)问题情境已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)a y x x x=+>.探索研究⑴我们可以借鉴以前研究函数的经验,先探索函(第26题)AAA①②③(第27题)数1(0)y x x x=+>的图象性质.① 填写下表,画出函数的图象:②观察图象,写出该函数两条不同类型的性质;③在求二次函数y =ax 2+bx +c (a ≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数1y x x=+(x >0)的最小值.解决问题⑵用上述方法解决“问题情境”中的问题,直接写出答案.答案:一.选择题:ACCDBB 二.填空:7. 2 8. 36 9.10. 6 11.1212. 13. 40 14. 90 15.12- 16. 417.解:解不等式①得:1x ≥- 解不等式②得:2x <所以,不等式组的解集是12x -≤<. 不等式组的整数解是1-,0,1. 18.221)a b a ba bb a-÷-+-解:(()()()()a a b b a b a b a b a b b a ⎡⎤-=-÷⎢⎥+-+--⎣⎦()()b b a a b a b b-=⋅+-1a b=-+19. 解法一:移项,得241x x -=-.配方,得24414x x -+=-+, 2(2)3x -=由此可得2x -=12x =+22x =-解法二:1,4, 1.a b c ==-=224(4)411120b ac -=--⨯⨯=>,422x ±==±12x =+22x =-.20.解:⑴训练后第一组平均成绩比训练前增长的百分数是53100%3-⨯≈67%.⑵不同意小明的观点,因为第二组的平均成绩增加8×10%+6×20%+5×20%+0×50%=3(个).(3)本题答案不唯一,我认为第一组训练效果最好,因为训练后第一组平均成绩比训练前增长的百分数最大.21.证明:⑴∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD .∴∠ABF=∠ECF. ∵EC=DC , ∴AB=EC .在△ABF 和△ECF 中,∵∠ABF=∠ECF ,∠AFB=∠EFC ,AB=EC , ∴⊿ABF ≌⊿ECF .(2)解法一:∵AB=EC ,AB ∥EC ,∴四边形ABEC 是平行四边形.∴AF=EF , BF=CF . ∵四边形ABCD 是平行四边形,∴∠ABC=∠D ,又∵∠AFC=2∠D ,∴∠AFC=2∠ABC . ∵∠AFC=∠ABF+∠BAF ,∴∠ABF=∠BAF .∴FA=FB . ∴FA=FE=FB=FC , ∴AE=BC .∴口ABEC 是矩形.解法二:∵AB=EC ,AB ∥EC ,∴四边形ABEC 是平行四边形. ∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D=∠BCE . 又∵∠AFC=2∠D ,∴∠AFC=2∠BCE ,∵∠AFC=∠FCE+∠FEC ,∴∠FCE=∠FEC .∴∠D=∠FEC .∴AE=AD . 又∵CE=DC ,∴AC ⊥DE .即∠ACE=90°.∴口ABEC 是矩形. 22. 解⑴3600,20.⑵①当5080x ≤≤时,设y 与x 的函数关系式为y kx b =+. 根据题意,当50x =时,1950y =;当80x =,3600y =.所以,y 与x 的函数关系式为55800y x =-.②缆车到山顶的路线长为3600÷2=1800(m ), 缆车到达终点所需时间为1800÷180=10(m in ).小颖到达缆车终点时,小亮行走的时间为10+50=60(m in ). 把60x =代入55800y x =-,得y=55×60—800=2500.所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100(m ). 23. 解⑴抽取1名,恰好是女生的概率是25.⑵分别用男1、男2、男3、女1、女2表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共10种,它们出现的可能性相同,所有结果中,满足抽取2名,恰好是1名男生和1名女生(记为事件A )的结果共6种,所以P (A )=63105=.24.解:⑴当x =0时,1y =.所以不论m 为何值,函数261y mx x =-+的图象经过y 轴上的一个定点(0,1). ⑵①当0m =时,函数61y x =-+的图象与x 轴只有一个交点;②当0m ≠时,若函数261y mx x =-+的图象与x 轴只有一个交点,则方程2610mx x -+=有两个相等的实数根,所以2(6)40m --=,9m =.综上,若函数261y mx x =-+的图象与x 轴只有一个交点,则m 的值为0或9. 25.在R t E C D ∆中,tan D E C ∠=D C E C.∴EC =tan D CD E C ∠≈30400.75=(m ).在R t B A C ∆中,∠BCA =45°,∴BA C A =在Rt BAE ∆中,tan B E A ∠=B A E A.∴0.7540h h =+.∴120h =(m ).答:电视塔高度约为120m . 26.解⑴直线A B 与⊙P 相切.如图,过点P作PD⊥AB, 垂足为D.在Rt△A BC中,∠ACB=90°,∵AC=6cm,BC=8cm,∴10AB cm==.∵P为BC的中点,∴PB=4cm.∵∠P DB=∠ACB=90°,∠PBD=∠ABC.∴△PBD∽△ABC.∴P D P BA C A B=,即4610P D=,∴PD =2.4(cm) .当 1.2t=时,2 2.4PQ t==(cm)∴PD PQ=,即圆心P到直线A B的距离等于⊙P的半径.∴直线A B与⊙P相切.⑵∠ACB=90°,∴AB为△ABC的外切圆的直径.∴15 2O B A B cm==.连接OP.∵P为BC的中点,∴13 2O P A C cm==.∵点P在⊙O内部,∴⊙P与⊙O只能内切.∴523t-=或253t-=,∴t=1或4.∴⊙P与⊙O相切时,t的值为1或4.27. 解⑴在Rt △ABC中,∠ACB=90°,CD是AB上的中线,∴1 2C D A B=,∴CD=BD.∴∠BCE=∠ABC.∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.∴△BCE∽△ABC.∴E是△ABC的自相似点.⑵①作图略.作法如下:(i)在∠ABC内,作∠CBD=∠A;(ii)在∠ACB内,作∠BCE=∠ABC;BD交CE于点P.则P为△ABC的自相似点.②连接PB、PC.∵P为△ABC的内心,∴12P B C A B C∠=∠,12P C B A C B∠=∠.∵P为△ABC的自相似点,∴△BCP∽△ABC.∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.∴∠A+2∠A+4∠A=180°.∴1807 A∠=.∴该三角形三个内角的度数分别为1807、3607、7207.28. 解⑴①174,103,52,2,52,103,174.函数1y x x=+(0)x >的图象如图.②本题答案不唯一,下列解法供参考.当01x <<时,y 随x 增大而减小;当1x >时,y 随x 增大而增大;当1x =时函数1y x x=+(0)x >的最小值为2. ③1y x x=+=22+=22+-=22+=0,即1x =时,函数1y x x=+(0)x >的最小值为2.。

2011年中考数学试题分类26_矩形、菱形与正方形

2011年中考数学试题分类26_矩形、菱形与正方形

第26章 矩形、菱形与正方形一、选择题1. (2011浙江省舟山,10,3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( ) (A )48cm (B )36cm (C )24cm(D )18cm【答案】A2. (2011山东德州8,3分)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n(B )4n(C )12n + (D )22n +【答案】C3. (2011山东泰安,17 ,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为图1图2图3……(第10题)FABCDH EG①②③④⑤A.17B.17C.18D.19 【答案】B4. (2011山东泰安,19 ,3分)如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE 的长为 A.2 3 B.332C. 3D.6【答案】A5. (2011浙江杭州,10,3)在矩形ABCD 中,有一个菱形B F D E (点E ,F 分别在线段AB ,CD 上),记它们的面积分别 为ABCD BFDE S S 和.现给出下列命题:( )①若ABCD BFDE S S =tan EDF ∠=.②若2,DE BD EF =∙则2DF AD =. 则:A .①是真命题,②是真命题B .①是真命题,②是假命题C .①是假命题,②是真命题D ,①是假命题,②是假命题 【答案】A6. (2011浙江衢州,1,3分)衢州市新农村建设推动了农村住宅旧貌变新颜,如图为一农村民居侧面截图,屋坡AF AG 、分别架在墙体的点B 、点C 处,且AB AC =,侧面四边形BDEC 为矩形,若测得100FAG ∠=︒,则FBD ∠=( )A. 35°B. 40°C. 55°D. 70° 【答案】C7. (2011浙江温州,6,4分)如图,在矩形ABCD 中,对角线AC ,BD 交于点O .已知∠AOB = 60°,AC =16,则图中长度为8的线段有( ) A .2条B .4条C .5条D .6条【答案】D8. 2011四川重庆,10,4分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是()A .1B .2C .3D .4【答案】C9. (2011浙江省嘉兴,10,4分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( ) (A )48cm (B )36cm (C )24cm(D )18cm【答案】A10.(2011台湾台北,29)如图(十二),长方形ABCD 中,E 为BC 中点,作AEC 的角平分线交AD 于F 点。

2011南京数学中考试卷+答案

2011南京数学中考试卷+答案

南京市2011年初中毕业生学业考试数学数学注意事项:1.本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其在其他位置答题一律无效.毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置.......上)1.9的值等于的值等于A.3 B.-3C.±3D. 3【答案】A.算术平方根。

【考点】算术平方根。

【分析】利用算术平方根的定义,直接得出结果2.下列运算正确的是下列运算正确的是A.a2+a3=a5 B.a2•a3=a6C.a3÷a2=a D.(a2)3=a8【答案】C.指数运算法则。

【考点】指数运算法则。

【分析】a3÷a2=a= a3-2= a 3.在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%.则该市65岁及以上人口用科学记数法表示约为岁及以上人口用科学记数法表示约为A.0.736×106人B.7.36×104人C.7.36×105人D.7.36×106 人【答案】C.科学记数法。

【考点】科学记数法。

【分析】利用科学记数法的定义,直接得出结果:8000000×9.2%=736000=7.36×105. 4.为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是 A.随机抽取该校一个班级的学生随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生随机抽取该校一个年级的学生C.随机抽取该校一部分男生随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生的学生【答案】D.随机抽样样本的抽取。

2011年江苏省南京市中考数学试题(解析版)

2011年江苏省南京市中考数学试题(解析版)

2011年江苏省南京市中考数学试题(解析版)D知识点:幂的乘方;合并同类项;同底数幂的乘法;同底数幂的除法.题型区分:选择题.专题区分:数与式.难度系数:★分值:2分.试题来源:江苏省南京市.试题年代:2011年.3.在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%,则该市65岁及以上人口用科学记数法表示约为()A.0.736×106人B.7.36×104人C.7.36×105人D.7.36×106人答案:C.解析过程:800万×9.2%=8 000 000×9.2%=736 000=7.36×105.故选C.知识点:科学记数法表示较大的数.题型区分:选择题.专题区分:数与式.难度系数:★分值:2分.试题来源:江苏省南京市.试题年代:2011年.4.为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生答案:D.解析过程:抽取样本应具有广泛性、代表性,且容量适当,所以应选D.知识点:全面调查与抽样调查.题型区分:选择题.专题区分:抽样与数据分析.难度系数:★分值:2分.试题来源:江苏省南京市.试题年代:2011年.5.如图是一个三棱柱.下列图形中,能通过折叠围成一个三棱柱的是()A B C D答案:B.解析过程:三棱柱侧面展开图应为矩形,且两底面三角形在矩形的两侧.故选B.知识点:立体图形的展开与折叠.题型区分:选择题.专题区分:图形的变化.难度系数:★分值:2分.试题来源:江苏省南京市.试题年代:2011年.6.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P 截得的弦AB的长为32,则a 的值是()A.22 B.2+2 C.32 D.2+3第6题图答案:B.解析过程:如图,过P点作PE⊥AB于E,作E第6题图 E D C PC ⊥x 轴于C ,交AB 于D ,连接PA .∵AE=21AB=3,PA=2,∴PE=()222232-=-AE PA =1. 由函数y=x 易得∠PDE=45º, ∠DOC=45º,∴PD=2,DC=OC.∵⊙P 的圆心是(2,a ),∴DC=2.∴a=PD+DC=2+2.故选B.知识点:一次函数;垂径定理;勾股定理;等腰直角三角形的性质.题型区分:选择题.专题区分:图形的性质.难度系数:★★分值:2分.试题来源:江苏省南京市.试题年代:2011年. 7.﹣2的相反数是 .答案:2.解析过程:﹣2的相反数是﹣(﹣2)=2.知识点:相反数.题型区分:填空题.专题区分:数与式.难度系数:★分值:2分.试题来源:江苏省南京市.试题年代:2011年.8.如图,过正五边形ABCDE 的顶点A 作直线l ∥CD ,则∠1= °. 答案:36. 解析过程:由题意,知∠BAE=()1802551⨯-=108°. ∴∠1=21()BAE ∠-180=21(180°﹣108°)=36°. 知识点:平行线的性质;正多边形的性质.题型区分:填空题.专题区分:图形的性质.难度系数:★分值:2分.试题来源:江苏省南京市.试题年代:2011年.9.计算(2+1)(2﹣2)= .答案:2.解析过程:(2+1)(2﹣2)=22﹣2×2+1×2第8题图﹣1×2=22﹣2+2﹣2=2.知识点:二次根式的混合运算.题型区分:填空题.专题区分:数与式.难度系数:★分值:2分.试题来源:江苏省南京市.试题年代:2011年.10.等腰梯形的腰长为5 cm,它的周长是22 cm,则它的中位线长为cm.答案:6.解析过程:因为等腰梯形的腰长为5,它的周长是22,所以等腰梯形的两底边长之和为1×22﹣5﹣5=12.所以梯形的中位线长为212=6(cm).知识点:梯形中位线定理;等腰梯形的性质.题型区分:填空题.专题区分:图形的性质.难度系数:★分值:2分.第12题图 试题来源:江苏省南京市. 试题年代:2011年.11.如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则cos ∠AOB 的值等于 .答案:21. 解析过程:如图,连接AB.∵OA=OB=AB ,∴△OAB 是等边三角形.∴∠AOB=60°.∴cos ∠AOB=cos60°=21. 知识点:特殊角的三角函数值;等边三角形的判定与性质.题型区分:填空题.专题区分:图形的变化.难度系数:★分值:2分.试题来源:江苏省南京市.试题年代:2011年.12. 如图,菱形ABCD 的边长是2 cm ,第11题图第11题答案图E 是AB 的中点,且DE 丄AB ,则菱形ABCD 的面积为 cm 2. 答案:32.解析过程:∵E 是AB 的中点,菱形ABCD 的边长是2, ∴AE=1, ∵DE 丄AB , ∴DE=3122222=-=-AE AD . ∴菱形的面积为:3232=⨯.知识点:菱形的性质;勾股定理. 题型区分:填空题.专题区分:图形的性质. 难度系数:★ 分值:2分.试题来源:江苏省南京市. 试题年代:2011年.13.如图,海边立有两座灯塔A,B ,暗礁分布在经过A,B 两点的弓形(弓形的弧是⊙O 的一部分)区域内,∠AOB=80°.为了避免触礁,轮船P 与A,B 的张角∠APB 的最大值为 . 答案:40°.解析过程:∵海边立有两座灯塔A,B ,暗礁分布第13题图在经过A,B两点的弓形区域内,∠AOB=80°,∴当P点在优弧AB上时,轮船P与A,B的张角∠APB的最大,此时2∠APB=∠AOB=80°,即∠APB=40°.知识点:圆周角定理.题型区分:填空题.专题区分:图形的性质.难度系数:★分值:2分.试题来源:江苏省南京市.试题年代:2011年.14.如图,E,F分别是正方形ABCD的边BC,CD第14题图上的点,BE=CF,连接AE,BF.将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则∠α=°.答案:90.解析过程:如图,连接AC,BD交于点O,则∠AOB即为旋转角.∵四边形ABCD是正方形,∴∠AOB=90°.故∠α=90°.知识点:旋转;全等三角形的判定与性质;正方第14题答案图形的性质.题型区分:填空题.专题区分:图形的变化;图形的性质. 难度系数:★★ 分值:2分.试题来源:江苏省南京市. 试题年代:2011年.15.设函数y=x2与y=x ﹣1的图象的交点坐标为(a ,b ),则a 1﹣b1的值为 . 答案:﹣21. 解析过程:∵函数y=x 2与y=x ﹣1的图象的交点坐标为(a ,b ),∴b=a 2,b=a ﹣1. ∴a 2=a ﹣1.∴a 2﹣a ﹣2=0.解得a=2或a=﹣1. ∴b=1或b=﹣2.当a=2,b=1时,2112111-=-=-b a ;当a=﹣1,b=﹣2时,2121111-=+-=-b a .综上所述,ba 11 的值为﹣21. 知识点:反比例函数与一次函数的图象与性质. 题型区分:填空题. 专题区分:函数. 难度系数:★ 分值:2分.试题来源:江苏省南京市. 试题年代:2011年.16、甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6,…按此规律,后一位同学报出的数比前一位同学报出的数大1.当报到的数是50时,报数结束;②若报出的数为3的倍数,则报该数的同学需拍手一次.在此过程中,甲同学需拍手的次数为 . 答案:4解析过程:∵甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6,…按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束, ∴50÷4=12余2.∴甲共报数13次,分别为1,5,9,13,17,21,25,29,33,37,41,45,49.其中9,21,33,45为3的倍数,所以甲同学需拍手4次.知识点:数字的变化规律. 题型区分:填空题. 专题区分:数与式. 难度系数:★★ 分值:2分.试题来源:江苏省南京市. 试题年代:2011年. 17.解不等式组:⎪⎩⎪⎨⎧>+≥+,231,325x x x 并写出不等式组的整数解.答案:原不等式组的解集为﹣1≤x <2,整数解为﹣1,0,1.解析过程:由第一个不等式,得x≥﹣1;由第二个不等式,得x <2.∴原不等式组的解集为﹣1≤x <2.其整数解是:﹣1,0,1.知识点:解一元一次不等式组. 题型区分:解答题(简). 专题区分:方程与不等式. 难度系数:★ 分值:6分.试题来源:江苏省南京市. 试题年代:2011年. 18.计算:221()a bab a b b a-÷-+-.答案:1a b=-+. 解析过程:原式()()()()a a b ba b a b a b a b b a ⎡⎤-=-÷⎢⎥+-+--⎣⎦()()b b a a b a b b-=⋅+-1a b=-+.知识点:分式的混合运算. 题型区分:解答题(简). 专题区分:数与式. 难度系数:★★ 分值:6分.试题来源:江苏省南京市. 试题年代:2011年. 19.解方程:x 2﹣4x+1=0.答案:12x =22x=.解析过程:解法一:移项,得241xx -=-.配方,得2(2)3x -=.两边开平方,得2x -=.解得12x =,22x =解法二:∵1,4, 1.a b c ==-=, ∴224(4)411120bac -=--⨯⨯=>.代入公式,得422x ±==12x =22x =.知识点:一元二次方程的解法. 题型区分:解答题(简). 专题区分:方程与不等式. 难度系数:★★ 分值:6分.试题来源:江苏省南京市. 试题年代:2011年.20.某校部分男生分3组进行引体向上训练.对训练前后的成绩进行统计分析,相应数据的统计图如下.训练前后各组平均成绩统计图训练后第二组男生引体向上增加个数分布统计图增加8个5个(1)求训练后第一组平均成绩比训练前增长的百分数.(2)小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均成绩不可能提高3个这么多.”你同意小明的观点吗?请说明理由.(3)你认为哪一组的训练效果最好?请提供一个解释来支持你的观点.答案:(1)67%;(2)不同意小明的观点;(3)不唯一,合理即可.解析过程:(1)训练后第一组平均成绩比训练前增长的百分数是335 ×100%≈67%.(2)我不同意小明的观点,因为第二组的平均成绩增加8×10%+6×20%+5×20%+0×50%=3(个).(3)本题答案不唯一,下列解法供参考.我认为第一组的训练效果最好,因为训练后第一组的平均成绩比训练前增长的百分数最大.知识点:条形统计图;扇形统计图.题型区分:解答题.专题区分:抽样与数据分析.难度系数:★★分值:7分.试题来源:江苏省南京市.试题年代:2011年.21.如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC,BE,求证:四边形ABEC是矩形.答案:(1)由AAS证即可;第21(2)由对角线相等的平行四边形是矩形证明.解析过程:(1)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC.∴∠ABF=∠ECF.∵EC=DC,∴AB=EC.在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴△ABF≌△ECF.(2)∵AB=EC,AB∥EC,∴四边形ABEC是平行四边形.∴FA=FE,FB=FC.∵四边形ABCD是平行四边形,∴∠ABC=∠D.又∵∠AFC=2∠D,∴∠AFC=2∠ABC.∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF.∴FA=FB.∴FA=FE=FB=FC.即AE=BC.∴四边形ABEC是矩形.知识点:平行四边形的判定与性质;全等三角形的判定与性质;矩形的判定.题型区分:解答题.专题区分:图形的性质.难度系数:★★分值:7分.试题来源:江苏省南京市.试题年代:2011年.第22题图22.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50 min 才乘上缆车,缆车的平均速度为180 m/min .设小亮出发x min 后行走的路程为y m ,图中的折线表示小亮在整个行走过程中y 与x 的函数关系. (1)小亮行走的总路程是 m ,他途中休息了 min ;(2)①当50≤x≤80时,求y 与x 的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?答案:(1)3600,20;(2)①y=55x ﹣800,②1100 m.解析过程:(1)3600,20;(2)①当50≤x≤80时,设y 与x 的函数关系式为y=kx+b.根据题意,得⎩⎨⎧=+=+.360080,195050b k b k 解得⎩⎨⎧-==.800,55b k ∴y 与x 的函数关系式为y=55x ﹣800.②缆车到山顶的线路长为3600÷2=1800(m ),缆车到达终点所需时间为1800÷180=10(min ).小颖到达缆车终点时,小亮行走的时间为10+50=60(min),把x=60代入y=55x﹣800,得y=55×60﹣800=2500.∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100(m).知识点:一次函数的应用.题型区分:解答题.专题区分:函数.难度系数:★★分值:7分.试题来源:江苏省南京市.试题年代:2011年.23.从3名男生和2名女生中随机抽取2014年南京青奧会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生;(2)抽取2名,恰好是1名男生和1名女生.;答案:(1)25(2)63.105解析过程:⑴抽取1名,恰好是女生的概率是2.5⑵分别用男1、男2、男3、女1、女2表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共10种,它们出现的可能性相同,所有结果中,满足抽取2名,恰好是1名男生和1名女生的结果共6种,所以其概率为63.105知识点:概率计算.题型区分:解答题.专题区分:事件的概率.难度系数:★★分值:7分.试题来源:江苏省南京市.试题年代:2011年.24.已知函数y=mx2﹣6x+1(m是常数).(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;(2)若该函数的图象与x轴只有一个交点,求m的值.答案:(1)经过y轴上一个定点(0,1);(2)m的值为0或9.解析过程::(1)当x=0时,y=1.所以不论m为何值,函数y=mx2﹣6x+1的图象都经过y轴上一个定点(0,1);(2)①当m=0时,函数y=﹣6x+1的图象与x 轴只有一个交点;②当m≠0时,若函数y=mx2﹣6x+1的图象与x 轴只有一个交点,则方程mx2﹣6x+1=0有两个相等的实数根,所以b2-4ac=(﹣6)2﹣4m=0.解得m=9.综上,若函数y=mx2﹣6x+1的图象与x轴只有一个交点,则m的值为0或9.知识点:一次函数的性质;二次函数的性质.题型区分:解答题.专题区分:函数.难度系数:★★分值:7分.试题来源:江苏省南京市.试题年代:2011年.25.如图,某数学课外活动小组测量电视塔AB的高度.他们借助一个高度为30 m的建筑物CD进行测量,在点C 处测得塔顶B 的仰角为45°,在点E 处测得B 的仰角为37°(B ,D ,E 三点在一条直线上).求电视塔的高度h (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75). 答案:120 m.解析过程:在Rt △ECD 中,tan ∠DEC=DC EC , ∴EC=tan DC DEC ∠≈30400.75=(m ). 在Rt △BAC 中,∠BCA=45º,∴CA=BA=h.在Rt △BAE 中,tan ∠BEA=BA EA, ∴.75.040≈+h h∴h=120(m ),∴电视塔的高度h 约为120 m .知识点:解直角三角形的应用.题型区分:解答题(简)专题区分:图形的变化.难度系数:★分值:7分.试题来源:江苏省南京市.试题年代:2011年.第25题图26.如图,在Rt △ABC 中,∠ACB=90°,AC=6 cm ,BC=8 cm .P 为BC 的中点,动点Q 从点P 出发,沿射线PC 方向以2 cm/s 的速度运动,以P 为圆心、PQ 长为半径作圆.设点Q 运动的时间为t s .(1)当t=1.2 s 时,判断直线AB 与⊙P 的位置关系,并说明理由;(2)已知⊙O 为△ABC 的外接圆.若⊙P 与⊙O 相切,求t 的值.答案:(1)直线AB 与⊙P 相切.理由:圆心P 到直线AB 的距离等于⊙P 的半径;(2)t 的值为1或4.解析过程:(1)直线AB 与⊙P 相切.理由如下: 如图,过P 作PD ⊥AB ,垂足为D.∵AB=6 cm ,BC=8 cm ,∴由勾股定理,得AB=10 cm.∵P 为BC 的中点,∴PB=4 cm.∵∠PDB=∠ACB=90°,∠PBD=∠ABC ,∴△PBD ∽△ABC. ∴PD PB AC AB =,即4610PD =. 第26题图第26题答案图D∴PD=2.4(cm).当t=1.2时,PQ=2t=2.4(cm).∴PD=PQ,即圆心P到直线AB的距离等于⊙P 的半径.∴直线AB与⊙P相切.(2)∵∠ACB=90°,∴AB为△ABC的外接圆直径.1AB=5 cm.∴BO=2连接OP.∵P为BC的中点,1AC=3 cm.∴PO=2∵点P在⊙O内部,∴⊙P与⊙O只能内切.∴5﹣2t=3,或2t﹣5=3.∴t=1或t=4.∴⊙P与⊙O相切时,t的值为1或4.知识点:圆与圆的位置关系;勾股定理;直线与圆的位置关系;相似三角形的判定与性质.题型区分:解答题.专题区分:图形的性质.难度系数:★★分值:8分.试题来源:江苏省南京市.试题年代:2011年.27.如图①,P为△ABC内一点,连接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC 的自相似点.(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB边上的中线,过点B 作BE丄CD,垂足为E.试说明E是△ABC的自相似点;(2)在△ABC中,∠A<∠B<∠C.①如图③,利用尺规作出△ABC的自相似点P (写出作法并保留作图痕迹);②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.第27题图答案:(1)证出△BCE ∽△ABC 即可;(2)由题意作图即可;(3)该三角形三个内角的度数分别为 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛772073607180、、.解析过程:(1)∵在Rt △ABC 中,∠ACB=90°,CD 是AB 边上的中线,∴CD=21AB. ∴CD=BD.∴∠BCE=∠ABC.∵BE ⊥CD ,∴∠BEC=90°.∴∠BEC=∠ACB.∴△BCE ∽△ABC.∴E 是△ABC 的自相似点.(2)①如图所示.作法:在∠ABC 内,作∠CB P =∠A ;在∠ACB 内,作∠BCE=∠ABC ,BD 交CE 于点P , 则P 为△ABC 的自相似点;②∵P 是△ABC 的内心,第27题答案图∴∠PBC=21∠ABC ,∠PCB=21∠ACB. ∵P 为△ABC 的自相似点,∴△BCP ∽△ABC.∵∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A ,又∵∠A+∠ABC+∠ACB=180°,∴∠A+2∠A+4∠A=180°. ∴ ⎪⎭⎫ ⎝⎛=∠7180A .∴该三角形三个内角的度数分别为 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛772073607180、、.知识点:相似三角形的判定与性质;直角三角形的性质;内心的性质;作一个角等于已知角. 题型区分:解答题.专题区分:图形的性质与变化.难度系数:★★★分值:9分.试题来源:江苏省南京市.试题年代:2011年.28.问题情境已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少? 数学模型设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)a y x x x=+>. 探索研究(1)我们可以借鉴以前研究函数的经验,先探索函数1(0)y x x x=+>①填写下表,画出函数的图象;②观察图象,写出该函数两条不同类型......的性质; ③在求二次函数y=ax 2+bx+c (a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数1(0)y x x x=+>的最小值.第28题答案图解决问题(2)用上述方法解决“问题情境”中的问题,直接写出答案.答案:(1)①174,103,52,2,52,103,174,②图形和性质见解析过程,③函数1y x x =+(0)x >的最小值是2;(2)a 它的周长最小,最小值为4a解析过程:⑴①174,103,52,2,52,103,174. 函数1y x x=+(0)x >的图象如图. ②答:函数两条不同类型的性质是:当0<x <1时,y 随x 的增大而减小,当x >1时,y 随x 的增大而增大;当x=1时,函数1y x x=+(0)x >的最小值是2. ③().2111222+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+=+=x x x x xx y1x x =0,即1x =时,函数1y x x=+(0)x >的最小值为2.⑵当该矩形的长为a 最小值为知识点:描点法画函数图象;分析函数图象;用配方法求最值.题型区分:解答题.专题区分:函数.难度系数:★★★分值:11分.试题来源:江苏省南京市.试题年代:2011年.。

2011年南京市中考数学试题

2011年南京市中考数学试题
20 16 12 8 4 0 3 8 10 5 3 16
20.5 30.5 40.5 50.5 60.5 70.5 80.5 车速(千米/时)
补全直方图正确……………………………………………………………5 分 (既没有标 16,又没有画出过 16 的虚线的不给分)
频数折线图正确……………………………………………………………6 分 8 (4)240÷ =1350(辆) ………………………………………………7 分 45 答:当天的车流量约为 1350 辆.…………………………………………8 分 21. (本题 7 分) 证明: (1)∵四边形 ABCD 是等腰梯形∴∠A=∠D,AB=CD 又∵M 为 AD 的中点∴AM=DM 在△AMB 与△DMC 中
A D A E D A E D
O
B' G B C F (图 2-1) B C F (图 2-2)
B
C (图 1-1)
(2)第二小组同学将矩形纸片 ABCD 按如下顺序进行操作:对折、展平,得折痕 EF(如图 2-1) ;再沿 GC 折叠,使点 B 落在 EF 上的点 B'处(如图 2-2) ,这样能得到∠B'GC 的大小,你知道∠B'GC 的大小是多少吗?请写出求解过程. (3)第三小组的同学,在一个矩形纸片上按照图 3-1 的方式剪下△ABC,其中 BA=BC, 将△ABC 沿着直线 AC 的方向依次进行平移变换, 每次均移动 AC 的长度, 得到了△CDE、 △EFG 和△GHI,如图 3-2.已知 AH=AI,AC 长为 a,现以 AD、AF 和 AH 为三边构 成一个新三角形,已知这个新三角形面积小于 15 15,请你帮助该小组求出 a 可能的最 大整数值.
车辆数 20 16 12 8 4 0 3 8 10 5 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市2011年初中毕业生学业考试数 学数学注意事项:1. 本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效. 2. 请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上. 3. 答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置.......上) 1.(2011江苏南京,1,2分A .3B .-3C .±3D .【答案】A2.(2011江苏南京,2,2分)下列运算正确的是A .a 2+a 3=a 5B .a 2•a 3=a 6C .a 3÷a 2=aD .(a 2)3=a 8【答案】C3.(2011江苏南京,3,2分)在第六次全国人口普查中,南京市常住人口约为800万人,其中65岁及以上人口占9.2%.则该市65岁及以上人口用科学记数法表示约为 A .0.736×106人 B .7.36×104人 C .7.36×105人 D .7.36×106 人 【答案】C4.(2011江苏南京,4,2分)为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是 A .随机抽取该校一个班级的学生B .随机抽取该校一个年级的学生C .随机抽取该校一部分男生D .分别从该校初一、初二、初三年级中各班随机抽取10%的学生【答案】D5.(2011江苏南京,5,2分)如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是【答案】BA .BD .(第5题)6.(2011江苏南京,6,2分)如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 的弦AB的长为a 的值是 A.B.2+C.D.2+【答案】B二、填空题(本大题共10小题,每小题2分,共20分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上) 7.(2011江苏南京,7,2分)-2的相反数是________. 【答案】28.(2011江苏南京,8,2分)如图,过正五边形ABCDE 的顶点A 作直线l ∥CD ,则∠1=____________.【答案】369.(2011江苏南京,9,2分)计算1)(2-=_______________.10.(2011江苏南京,10,2分)等腰梯形的腰长为5㎝,它的周长是22㎝,则它的中位线长为___________㎝. 【答案】611.(2011江苏南京,11,2分)如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则cos ∠AOB 的值等于_________.(第8题) l【答案】1212.(2011江苏南京,12,2分)如图,菱形ABCD 的连长是2㎝,E 是AB 中点,且DE ⊥AB ,则菱形ABCD 的面积为_________㎝2.【答案】13.(2011江苏南京,13,2分)如图,海边有两座灯塔A 、B ,暗礁分布在经过A 、B 两点的弓形(弓形的弧是⊙O 的一部分)区域内,∠AOB=80°,为了避免触礁,轮船P 与A 、B 的张角∠APB 的最大值为______°.【答案】4014.(2011江苏南京,14,2分)如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向转到△BCF ,旋转角为a (0°<a <180°),则∠a=______.(第14题)A BCDF(第13题)(第12题)A(第11题)BA MO【答案】9015.(2011江苏南京,15,2分)设函数2y x=与1y x =-的图象的交战坐标为(a ,b ),则11ab-的值为__________. 【答案】12-16.(2011江苏南京,16,2分)甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束; ②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为____________. 【答案】4三、解答题(本大题共12小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2011江苏南京,17,6分)解不等式组523132x x x +⎧⎪+⎨⎪⎩≥>,并写出不等式组的整数解.【答案】解:解不等式①得:1x ≥-解不等式②得:2x <所以,不等式组的解集是12x -≤<. 不等式组的整数解是1-,0,1.18.(2011江苏南京,18,6分)计算221()ab a b a bb a-÷-+-【答案】221)a ba b a b b a-÷-+-解:( ()()()()a a b ba b a b a b a b b a ⎡⎤-=-÷⎢⎥+-+--⎣⎦()()b b a a b a b b-=⋅+-1a b=-+19.(2011江苏南京,19,6分)解方程x 2-4x +1=0【答案】解法一:移项,得241x x -=-. 配方,得24414x x -+=-+,2(2)3x -=由此可得2x -=12x =+22x =-解法二:1,4, 1.a b c ==-=224(4)411120b ac -=--⨯⨯=>,422x ±==±12x =+22x =-.20.(2011江苏南京,20,7分)某校部分男生分3组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如下.⑴求训练后第一组平均成绩比训练前增长的百分数; ⑵小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均数不可能提高3个这么多.”你同意小明的观点吗?请说明理由;⑶你认为哪一组的训练效果最好?请提出一个解释来支持你的观点. 【答案】解:⑴训练后第一组平均成绩比训练前增长的百分数是53100%3-⨯≈67%.⑵不同意小明的观点,因为第二组的平均成绩增加8×10%+6×20%+5×20%+0×50%=3(个).(3)本题答案不唯一,我认为第一组训练效果最好,因为训练后第一组平均成绩比训练前增长的百分数最大.21.(2011江苏南京,21,7分)如图,将□ABCD 的边DC 延长到点E ,使CE=DC ,连接AE ,交BC 于点F .⑴求证:△ABF ≌△ECF ⑵若∠AFC=2∠D ,连接AC 、BE .求证:四边形ABEC 是矩形.第一组 第二组 第三组组别①训练前后各组平均成绩统计图训练后第二组男生引体向上增加个数分布统计图增加85个②(第20题)【答案】证明:⑴∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD .∴∠ABF=∠ECF. ∵EC=DC, ∴AB=EC .在△ABF 和△ECF 中,∵∠ABF=∠ECF ,∠AFB=∠EFC ,AB=EC , ∴⊿ABF ≌⊿ECF .(2)解法一:∵AB=EC ,AB ∥EC ,∴四边形ABEC 是平行四边形.∴AF=EF , BF=CF . ∵四边形ABCD 是平行四边形,∴∠ABC=∠D ,又∵∠AFC=2∠D ,∴∠AFC=2∠ABC . ∵∠AFC=∠ABF+∠BAF ,∴∠ABF=∠BAF .∴FA=FB . ∴FA=FE=FB=FC, ∴AE=BC .∴口ABEC 是矩形. 解法二:∵AB=EC ,AB ∥EC ,∴四边形ABEC 是平行四边形. ∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D=∠BCE . 又∵∠AFC=2∠D ,∴∠AFC=2∠BCE , ∵∠AFC=∠FCE+∠FEC ,∴∠FCE=∠FEC .∴∠D=∠FEC .∴AE=AD . 又∵CE=DC ,∴AC ⊥DE .即∠ACE=90°. ∴口ABEC 是矩形.22.(2011江苏南京,22,7分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才乘上缆车,缆车的平均速度为180 m/min .设小亮出发x min 后行走的路程为y m .图中的折线表示小亮在整个行走过程中y 与x 的函数关系.⑴小亮行走的总路程是____________㎝,他途中休息了________min . ⑵①当50≤x≤80时,求y 与x 的函数关系式; ②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?【答案】解:⑴3600,20.⑵①当5080x ≤≤时,设y 与x 的函数关系式为y kx b =+. 根据题意,当50x =时,1950y =;当80x =,3600y =.ABD(第22题)所以,y 与x 的函数关系式为55800y x =-.②缆车到山顶的路线长为3600÷2=1800(m ), 缆车到达终点所需时间为1800÷180=10(m in ).小颖到达缆车终点时,小亮行走的时间为10+50=60(m in ). 把60x =代入55800y x =-,得y=55×60—800=2500.所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100(m ). 23.(2011江苏南京,23,7分)从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:⑴抽取1名,恰好是女生;⑵抽取2名,恰好是1名男生和1名女生. 【答案】解:⑴抽取1名,恰好是女生的概率是25.⑵分别用男1、男2、男3、女1、女2表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共10种,它们出现的可能性相同,所有结果中,满足抽取2名,恰好是1名男生和1名女生(记为事件A )的结果共6种,所以P (A )=63105=.24.(2011江苏南京,24,7分)(7分)已知函数y=mx 2-6x +1(m 是常数).⑴求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点;⑵若该函数的图象与x 轴只有一个交点,求m 的值. 【答案】解:⑴当x=0时,1y =.所以不论m 为何值,函数261y mx x =-+的图象经过y 轴上的一个定点(0,1). ⑵①当0m =时,函数61y x =-+的图象与x 轴只有一个交点;②当0m ≠时,若函数261y mx x =-+的图象与x 轴只有一个交点,则方程2610mx x -+=有两个相等的实数根,所以2(6)40m --=,9m =.综上,若函数261y mx x =-+的图象与x 轴只有一个交点,则m 的值为0或9.25.(2011江苏南京,25,7分)如图,某数学课外活动小组测量电视塔AB 的高度,他们借助一个高度为30m 的建筑物CD 进行测量,在点C 处塔顶B 的仰角为45°,在点E 处测得B 的仰角为37°(B 、D 、E 三点在一条直线上).求电视塔的高度h . (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】解:在R t E C D ∆中,tan D E C ∠=D C E C.∴EC =tan D C D E C∠≈30400.75=(m ). 在R t B A C ∆中,∠BCA =45°,∴BA C A = 在Rt BAE ∆中,tan B E A ∠=B A E A.∴0.7540h h =+.∴120h =(m ). 答:电视塔高度约为120m .26.(2011江苏南京,26,8分)如图,在Rt △ABC 中,∠ACB=90°,AC=6㎝,BC=8㎝,P 为BC 的中点.动点Q 从点P 出发,沿射线PC 方向以2㎝/s 的速度运动,以P 为圆心,PQ 长为半径作圆.设点Q 运动的时间为t s .⑴当t=1.2时,判断直线AB 与⊙P 的位置关系,并说明理由;⑵已知⊙O 为△ABC 的外接圆,若⊙P 与⊙O 相切,求t 的值. 【答案】解:⑴直线A B 与⊙P 相切.如图,过点P 作PD ⊥AB, 垂足为D . 在Rt △ABC 中,∠ACB =90°,∵AC=6cm ,BC=8cm ,∴10AB cm ==.∵P 为BC 的中点,∴PB=4cm .∵∠PDB =∠ACB =90°,∠PBD =∠ABC .∴△PBD ∽△ABC . ∴P D P B A CA B=,即4610P D =,∴PD =2.4(cm) .Bh (第25题)当 1.2t =时,2 2.4PQ t ==(cm)∴PD PQ =,即圆心P 到直线A B 的距离等于⊙P 的半径. ∴直线A B 与⊙P 相切.⑵ ∠ACB =90°,∴AB 为△ABC 的外切圆的直径.∴152O B A B cm ==.连接OP .∵P 为BC 的中点,∴132O P A C cm ==.∵点P 在⊙O 内部,∴⊙P 与⊙O 只能内切. ∴523t -=或253t -=,∴t =1或4. ∴⊙P 与⊙O 相切时,t 的值为1或4.27.(2011江苏南京,27,9分)如图①,P 为△ABC 内一点,连接PA 、PB 、PC ,在△PAB 、△PBC 和△PAC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.⑴如图②,已知Rt △ABC 中,∠ACB=90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点.⑵在△ABC 中,∠A <∠B <∠C .①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数. 【答案】解:⑴在Rt △ABC 中,∠ACB =90°,CD 是AB 上的中线,∴12C D A B =,∴CD=BD . ∴∠BCE =∠ABC .∵BE ⊥CD ,∴∠BEC =90°,∴∠BEC =∠ACB .∴△BCE ∽△ABC .∴E 是△ABC 的自相似点. ⑵①作图略.作法如下:(i )在∠ABC 内,作∠CBD =∠A ;(ii )在∠ACB 内,作∠BCE =∠ABC ;BD 交CE 于点P . 则P 为△ABC 的自相似点.②连接PB 、PC .∵P 为△ABC 的内心,∴12P B C A B C ∠=∠,12P C B A C B ∠=∠.∵P 为△ABC 的自相似点,∴△BCP ∽△ABC . ∴∠PBC =∠A ,∠BCP =∠ABC=2∠PBC =2∠A , ∠ACB =2∠BCP=4∠A .∵∠A+∠ABC+∠ACB =180°.AAA①②③(第27题)∴∠A+2∠A+4∠A =180°. ∴1807A ∠=.∴该三角形三个内角的度数分别为1807、3607、7207.28.(2011江苏南京,28,11分)问题情境已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)a y x x x=+>.探索研究⑴我们可以借鉴以前研究函数的经验,先探索函数1(0)y x x x=+>的图象性质.① 填写下表,画出函数的图象:②观察图象,写出该函数两条不同类型的性质; ③在求二次函数y=ax 2+bx +c (a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数1y x x=+(x >0)的最小值.解决问题11 ⑵用上述方法解决“问题情境”中的问题,直接写出答案.【答案】解:⑴①174,103,52,2,52,103,174. 函数1y x x =+(0)x >的图象如图.②本题答案不唯一,下列解法供参考.当01x <<时,y 随x 增大而减小;当1x >时,y 随x 增大而增大;当1x =时函数1y x x =+(0)x >的最小值为2. ③1y x x =+=22+=22+-=22+=0,即1x =时,函数1y x x =+(0)x >的最小值为2.⑵。

相关文档
最新文档