道一元一次不等式应用题和答案过程

合集下载

一元一次不等式练习题及答案

一元一次不等式练习题及答案

一元一次不等式练习题及答案一元一次不等式练习题及答案一元一次不等式是初中数学中的重要内容,也是我们日常生活中经常遇到的问题。

通过解一元一次不等式,我们可以找到满足不等式条件的数值范围,从而解决实际问题。

在这篇文章中,我将为大家提供一些一元一次不等式的练习题及答案,希望能够帮助大家更好地理解和掌握这一知识点。

练习题一:求解不等式2x + 3 > 7。

解答:首先,我们可以将不等式转化为等价的形式,即2x + 3 - 7 > 0。

化简得到2x - 4 > 0。

接下来,我们需要找到x的取值范围使得不等式成立。

将2x - 4 = 0转化为方程得到x = 2。

因此,我们可以得出结论:当x > 2时,不等式2x+ 3 > 7成立。

练习题二:求解不等式3(x - 2) ≤ 5x + 1。

解答:首先,我们可以将不等式化简为等价形式,即3x - 6 ≤ 5x + 1。

接下来,我们将x的项移到一边,常数项移到另一边,得到3x - 5x ≤ 1 + 6。

化简得到-2x ≤ 7。

接下来,我们需要找到x的取值范围使得不等式成立。

将-2x = 7转化为方程得到x = -7/2。

因此,我们可以得出结论:当x ≤ -7/2时,不等式3(x - 2) ≤ 5x + 1成立。

练习题三:求解不等式4x - 3 < 2(x + 1) - 3x。

解答:首先,我们可以将不等式化简为等价形式,即4x - 3 < 2x + 2 - 3x。

接下来,我们将x的项移到一边,常数项移到另一边,得到4x - 2x + 3x < 2 + 3。

化简得到5x < 5。

接下来,我们需要找到x的取值范围使得不等式成立。

将5x= 5转化为方程得到x = 1。

因此,我们可以得出结论:当x < 1时,不等式4x- 3 < 2(x + 1) - 3x成立。

练习题四:求解不等式2x - 5 > 3x + 1 或 4x - 2 < 2x + 6。

含详细解析答案 初中数学一元一次不等式组解法练习40道

含详细解析答案 初中数学一元一次不等式组解法练习40道

.初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2)..19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:.34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.【答案】由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.【答案】由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.【答案】解:由x-3(x-2)≤8得x≥-1由>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了..4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1(2【答案】解:(1)解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,(2解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a【答案】0,两边同乘以6得3x+2(x+1)>0,解得x>由x x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.【答案】解:由①得4x+4+3>x解得x>由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(12x-13x+2(2【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)6分)(2解①得,x<1,解②得,x≥-4.5在数轴上表示出来:.不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. .【答案】解:由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.【答案】解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x求实数a的取值范围.【答案】由①得:x>,由②得:x<2a,则不等式组的解集为:x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a故答案为:1<a【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不.了.14.【答案】解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【答案】解:解不等式2x+9<5x+3,得:x>2,,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,(2)∵x>y>0,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.;【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,.解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.【答案】,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】2m-1<m+8,m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解①得:x≤2,解②得:x>则不等式组的解:x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1(2【答案】解:(1,,(2解①得:,【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可..24.已知关于x,y-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.【答案】解:解不等式2x+1≥x-1,得:x≥-2,3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1(2【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.【答案】,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.【答案】解不等式①得,,解不等式②得,x>-1,.∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.【答案】解:解不等式1-x>3,得:x<-2,x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1(2【答案】解:(1)解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.a,b的值.【答案】解:解第一个不等式,得:∵不等式组的解集为1≤x≤6,2b=1,解得:a=12,b【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1(2【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:.【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.【答案】解:解不等式-2x+1>-11,得:x<6,1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.【答案】,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.负整数解.【答案】由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为,,.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1(2【答案】解:()①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,(2)解不等式x-2x-1),得:x解不等式2x<1,得:x<3,则不等式组的解集为x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y x<0且y<0,求m的范围.【答案】,①+②,得:6x=3m-18,解得:x.. ②-①,得:10y =-m -18,解得:yy <0,解得:-18<m <6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m 的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.【答案】解不等式①,得,解不等式②,得x <2,∴它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程1.某水产品市场管理部门计划建造2400平方米的大棚,内设有A种和B种店面各80间。

A种店面的平均面积为28平方米,月租费为400元;B种店面的平均面积为20平方米,月租费为360元。

全部店面的建造面积不低于大棚总面积的85%。

现在要确定A种店面的数量。

解:设A种店面为a间,B种店面为80-a间。

根据题意,28a+20(80-a)≥2400×85%,化简得8a≥440,即a≥55.因此,A种店面至少应有55间。

为使店面的月租费最高,设月租费为y元,根据题意可得y=75%a×400+90%(80-a)×360=300a+-24a=-24a。

因为a≥55,所以当a=55时,y取最大值,即月租费最高为元。

2.水产养殖户XXX计划进行大闸蟹与河虾的混合养殖。

每亩地水面租金为500元,每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗。

每公斤蟹苗的价格为75元,饲养费用为525元,当年可获得1400元收益;每公斤虾苗的价格为15元,饲养费用为85元,当年可获得160元收益。

现在要求出每亩水面虾蟹混合养殖的年利润,并确定XXX应租多少亩水面,向银行贷款多少元,才能使年利润达到元。

解:每亩水面的成本包括水面年租金、苗种费用和饲养费用,即成本=500+75×4+15×20+525×4+85×20=4900元。

每亩水面的收益为1400×4+160×20=8800元。

因此,每亩水面的年利润为8800-4900=3900元。

设租a亩水面,贷款为4900a-元。

根据题意,收益为8800a,成本不超过元,即4900a≤,解得a≤10.2亩。

为使年利润达到元,可列出方程3900a+0.1(4900a-)=,解得a≈13.08亩,即XXX应租13亩水面,向银行贷款约为元。

某手机生产厂家决定对一款原售价为2000元的彩屏手机进行调价,按新单价的八折优惠出售。

初中数学一元一次不等式训练题(含答案解析)

初中数学一元一次不等式训练题(含答案解析)

一元一次不等式的解法1.解不等式:552(2)x x-<+.2.解下列不等式:(1)726x->;(2)415x x-<+.3.解下列不等式:(1)51541x x+>-;(2)325 23x x--.4.解不等式523(1)x x+-,并把它的解集在数轴上表示出来.5.解不等式:2613x x +>-,并在数轴上表示解集.6.解不等式4113x x --<,并在数轴上表示解集.7.解不等式5124xx ++,并把它的解集在数轴上表示出来.8.解不等式11123x x +-<+,并把它的解集在数轴上表示出来.9.解不等式组:34612553x x x x ++⎧⎪-+⎨<⎪⎩.10.解不等式组:3(1)2122x x x x +<⎧⎪⎨-+>⎪⎩.11.解不等式组541.2x x ⎨+->⎪⎩12.解不等式2(1)4x x -<-,并在数轴上表示出它的解集.13.解不等式组213122x x x +-⎧⎨+>-⎩,并把它的解集在数轴上表示出来.14.解不等式组2361422x x x x -<-⎧⎨--⎩,并在数轴上表示解集.15.解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩16.解不等式组1139x x -+⎨⎪⎩,并将它的解集在数轴上表示出来.17.解不等式组4521,5118x x x x +-⎧⎪⎨+-⋅⎪⎩①② 请结合题意填空,完成本题的解答.()I 解不等式①,得 ;()II 解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来: ()IV 原不等式组的解集为 .18.解不等式组3152113x x x ->⎧⎪+⎨+⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解.19.解不等式组.(1)11213x x +>-⎧⎨+<⎩;(2)3(2)41213x x x x ---⎧⎪+⎨>-⎪⎩.20.解不等式组,并求出整数解33213(1)8x x x x-⎧+⎪⎨⎪--<-⎩.21.解不等式组2(3)535146x x x x --⎧⎪-⎨<+⎪⎩,并把解集表示在下面的数轴上.22.解不等式组2341213x xxx++⎧⎪+⎨>-⎪⎩,并写出它的所有正整数解.23.解不等式组:4537422133x xx x+<+⎧⎪⎨+-⎪⎩,并写出它的整数解.24.解不等式组2(1)12323x xx x-+⎧⎪++⎨⎪⎩,并求出不等式组的整数解之和.参考答案与试题解析1.解不等式:552(2)x x -<+.【解答】解:552(2)x x -<+,5542x x -<+5245x x -<+,39x <,3x <.2.解下列不等式:(1)726x ->;(2)415x x -<+.【解答】解:(1)移项,得:267x >+, 合并同类项得:33x >;(2)移项,得:451x x -<+,合并同类项得:36x <,系数化成1得:2x <.3.解下列不等式:(1)51541x x +>-;(2)32523x x --. 【解答】解:(1)51541x x +>-; 移项,得:54115x x ->--,合并同类项得:16x >-;(2)32523x x --. 去分母,得:3(3)2(25)x x --, 去括号,得:39410x x --,移项,得:34109x x --+,合并同类项,得:1x --,系数化成1得:1x .4.解不等式523(1)x x +-,并把它的解集在数轴上表示出来.【解答】解:去括号,得:5233x x +-, 移项,得:5332x x ---,合并同类项,得:25x -,系数化为1,得: 2.5x -,将不等式的解集表示在数轴上如下:5.解不等式:2613x x +>-,并在数轴上表示解集. 【解答】解:移项,得:2163x x +>-, 合并同类项,得:553x >-, 系数化为1,得:3x >-,将不等式的解集表示在数轴上如下:6.解不等式4113x x --<,并在数轴上表示解集.【解答】解:去分母得:4133x x --<, 移项合并同类项得:4x <,在数轴上表示为:.7.解不等式5124xx ++,并把它的解集在数轴上表示出来.【解答】解:去分母,得:425x x ++, 移项,得:254x x --,合并,得:1x ,将不等式的解集表示在数轴上如下:8.解不等式11123x x +-<+,并把它的解集在数轴上表示出来.【解答】解:去分母得:3(1)2(1)6x x +<-+, 去括号得:33226x x +<-+, 移项合并得:1x <.9.解不等式组:34612553x x x x ++⎧⎪-+⎨<⎪⎩. 【解答】解:34612553x x x x ++⎧⎪⎨-+<⎪⎩①②,解不等式①得:1x ,解不等式②得:4x >-,不等式组的解集为:41x -<.10.解不等式组:3(1)2122x x x x +<⎧⎪⎨-+>⎪⎩. 【解答】解:()312122x x x x +<⎧⎪⎨-+>⎪⎩①②, 解不等式①得:3x <-,解不等式②得:5x >-,则不等式组的解集为53x -<<-.11.解不等式组280,541.2x x x -⎧⎪⎨+->⎪⎩ 【解答】解:2805412x x x -⎧⎪⎨+->⎪⎩①②, 解不等式①,得4x ,解不等式②,得2x <-, ∴原不等式组的解集为2x <-.12.解不等式2(1)4x x -<-,并在数轴上表示出它的解集.【解答】解:去括号,得224x x -<-, 移项,得242x x +<+, 合并同类项,得36x <, 系数化为1,得2x <. 解集在数轴上表示如图:13.解不等式组213122x x x +-⎧⎨+>-⎩,并把它的解集在数轴上表示出来.【解答】解:213122x x x +-⎧⎨+>-⎩①②, 由①得:2x -,由②得:3x <,不等式组的解集为:23x -<, 在数轴上表示:.14.解不等式组2361422x x x x -<-⎧⎨--⎩,并在数轴上表示解集. 【解答】解:2361422x x x x -<-⎧⎨--⎩①②, 解不等式①得:3x <, 解不等式②得:12x , 不等式组的解集为:132x <,在数轴上表示为:.15.解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩【解答】解:1076713x x x x >+⎧⎪⎨+-<⎪⎩①②, 解不等式①得2x >,解不等式②得5x <.故原不等式组的解集是25x <<.16.解不等式组121139x x x x ->⎧⎪-+⎨⎪⎩,并将它的解集在数轴上表示出来. 【解答】解:解不等式12x x ->,得:1x <-, 解不等式1139x x -+,得:2x , 将解集表示在数轴上如下:∴不等式组的解集为1x <-.17.解不等式组4521,5118x x x x +-⎧⎪⎨+-⋅⎪⎩①② 请结合题意填空,完成本题的解答.()I 解不等式①,得 3x - ;()II 解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来: ()IV 原不等式组的解集为 .【解答】解:()I 解不等式①,得3x -; ()II 解不等式②,得:3x ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:()IV 原不等式组的解集为33x -.故答案为:3x -,3x ,33x -.18.解不等式组3152113x x x ->⎧⎪+⎨+⎪⎩,把解集在数轴上表示出来,并写出不等式组的所有整数解. 【解答】解:3152113x x x ->⎧⎪⎨++⎪⎩①②, 解不等式①得:2x >,解不等式②得:4x ,∴不等式组的解集是24x <, 在数轴上表示不等式组的解集为:,所以不等式组的所有整数解是3,4.19.解不等式组.(1)11213x x +>-⎧⎨+<⎩; (2)3(2)41213x x x x ---⎧⎪+⎨>-⎪⎩. 【解答】解:(1)11213x x +>-⎧⎨+<⎩①②, 解不等式①得:2x >-,解不等式②得:1x <,则不等式组的解集为21x -<<;(2)()3241213x x x x ⎧---⎪⎨+>-⎪⎩①②, 解不等式①得:1x ,解不等式②得:4x <,∴不等式组的解集为1x .20.解不等式组,并求出整数解 33213(1)8x x x x-⎧+⎪⎨⎪--<-⎩. 【解答】解()3321318x x x x -⎧+⎪⎨⎪--<-⎩①② 解不等式①得:3x ,解不等式②得:2x >-,则不等式组的解集为23x -<, 所以不等式组的整数解为1-,0,1,2,3.21.解不等式组2(3)535146x x x x --⎧⎪-⎨<+⎪⎩,并把解集表示在下面的数轴上.【解答】解:解不等式2(3)5x x --,得:1x , 解不等式35146x x -<+,得:3x >-, 则不等式组的解集为31x -<,将不等式组的解集表示在数轴上如下:22.解不等式组2341213x x x x ++⎧⎪+⎨>-⎪⎩,并写出它的所有正整数解. 【解答】解:2341213x x x x ++⎧⎪⎨+>-⎪⎩①②解①得:1x,解②得:4x<,不等式组的解集为:14x <,则它的所有正整数解为3,2,1.23.解不等式组:4537422133x xx x+<+⎧⎪⎨+-⎪⎩,并写出它的整数解.【解答】解:4537422133x xx x+<+⎧⎪⎨+-⎪⎩①②,解①得2x<,解②得12x-,故不等式组的解集为122x-<,则其整数解为0,1.24.解不等式组2(1)12323x xx x-+⎧⎪++⎨⎪⎩,并求出不等式组的整数解之和.【解答】解:解不等式2(1)1x x-+,得:3x,解不等式2323x x++,得:0x,则不等式组的解集为03x,所以不等式组的整数解之和为01236+++=.。

一元一次不等式组应用题及答案复习过程

一元一次不等式组应用题及答案复习过程

一元一次不等式组应用题及答案精品文档一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答一.分配问题:1.把若干颗花生分给若干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。

问猴子有多少只,花生有多少颗?2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?5. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。

(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。

已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程

一元一次不等式解应用题一、某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B 种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。

(1)试确定A种类型店面的数量?(2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间?解:设A种类型店面为a间,B种为80-a间根据题意28a+20(80-a)≥2400×85%28a+1600-20a≥20408a≥440a≥55A型店面至少55间设月租费为y元y=75%a×400+90%(80-a)×360=300a+25920-324a=25920-24a很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:1、每亩地水面组建为500元,。

2、每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;3、每公斤蟹苗的价格为75元,其饲养费用为525元,当年可或1400元收益;4、每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;问题:1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?解:1、水面年租金=500元苗种费用=75x4+15x20=300+300=600元饲养费=525x4+85x20=2100+1700=3800元成本=500+600+3800=4900元收益1400x4+160x20=5600+3200=8800元利润(每亩的年利润)=8800-4900=3900元2、设租a亩水面,贷款为4900a-25000元那么收益为8800a成本=4900a≤25000+250004900a≤50000a≤50000/4900≈10.20亩利润=3900a-(4900a-25000)×10%3900a-(4900a-25000)×10%=366003900a-490a+2500=366003410a=34100所以a=10亩贷款(4900x10-25000)=49000-25000=24000元三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A 型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?解:设还需要B型车a辆,由题意得20×5+15a≥30015a≥200a≥40/3解得a≥13又1/3 .由于a是车的数量,应为正整数,所以x的最小值为14.答:至少需要14台B型车.四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。

一元一次不等式应用题专题

一元一次不等式应用题专题

一元一次不等式应用题专题(附答案)1、某校王校长暑假将带领该校市级三好学生去北京旅游。

甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元) ①设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式) ②当学生数是多少时,两家旅行社的收费一样? ③就学生数x讨论哪家旅行社更优惠。

解:设设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,根据题意,得①y甲=1200+1200×50%×x=1200+600xy乙=(x+1)×1200×60%=720(x+1)=720x+720②当学生数是多少时,两家旅行社的收费一样?当y甲=y乙时,即1200+600x=720x+720120x=480x=4所以,当学生数为4人时,两家旅行社的收费一样!③就学生数x讨论哪家旅行社更优惠。

若y甲>y乙,即1200+600x>720x+720120x<480x<4,此时乙旅行社便宜。

若y甲<y乙,即1200+600x<720x+720解得,x>4,此时甲旅行社便宜。

答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;当学生人数等于4人时,两个旅行社一样优惠。

2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。

解:设到第x个月李明的存款超过王刚的存款,根据题意,得600+500x>2000+200x300x>1400x>14/3因为x为整数,所以x=5答:到第5个月李明的存款超过王刚的存款。

3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。

一元一次不等式(组)应用题及练习(含答案)

一元一次不等式(组)应用题及练习(含答案)

类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。

一元一次不等式(销售问题)应用题专题(附答案)

一元一次不等式(销售问题)应用题专题(附答案)

一元一次不等式(销售问题)应用题专题(销售问题)1、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。

(1)试求该商品的进价和第一次的售价;(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?解:(1)设进价是x元, (一件商品)(1-10%)×(x+30)=x+18x=90第一次的售价x+30=90+30=120该商品的进价和第一次的售价分别是90元和120元(2)设剩余商品售价应不低于y元,(90+30)×m×65%+(90+18)×m×25%+y×m×(1-65%-25%)≥90×(1+25%) ×my≥75剩余商品的售价应不低于75元2.水果店进了某中水果1t,进价是7元/kg。

售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售。

如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?解:方法一:设按原价的x折出售所以:1000×1/2×10+1000×1/2×10×x/10>=7×1000+20005000+500x>=90005x>=40x>=8所以至多打8折方法二:1.货款:7.00*1000=7000.00元2、已销售产生的利润:(10.00*500)-(7.00*500)=5000.00-3500.00=1500.00元3、剩余商品需要产生的利润:2000-1500.00=500.00元4、产生利润需要的单价:7.00+500/500=8元5、需要在10元基础上打折:8/10=0.8,也就是八折3.“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克1.5元,销售中有6%的苹果损耗,商家把售价至少定为每kg多少元,才能避免亏本?解:设这批苹果有 a千克,商家把售价至少定为每千克 x元a(1-6%)×x≥a×1.5解得:x≥1.60(哟等于)2、某电影院暑假向学生优惠开放,每张票2元。

一元一次不等式的应用题

一元一次不等式的应用题

一元一次不等式的应用题一元一次不等式是数学中的重要概念之一,其在实际问题中的应用十分广泛。

本文将通过具体的应用例题来介绍一元一次不等式的应用。

请参考以下内容:案例一:商品打折小明在某商场看中了一双原价为200元的鞋子,商店正好在进行优惠活动,打折力度为n折。

小明想知道如果商品可以享受到2折优惠,他需要支付多少钱?解析:根据题意,我们可以建立如下一元一次不等式:n * 200 ≤ 200,其中n表示折扣数。

通过对不等式进行运算,得到n ≤ 1/10。

由于n是折扣数,因此n必须为正数。

因此,小明实际上需要支付的金额不能低于0,所以他最多享受到1折的优惠。

案例二:车辆超速违章某城市的高速公路对车辆速度进行限制,标识要求车辆速度不得超过v km/h。

小红驾驶汽车行驶在某路段上,她想知道自己的车速是否超过了限制。

解析:根据题意,我们可以建立如下一元一次不等式:v - x ≥ 0,其中v表示限速值,x表示小红的车速。

如果不等式成立,说明小红未超速;如果不等式不成立,则说明小红超速了。

案例三:裁剪布料小张在裁剪布料时,从一块长方形的布料中切割出一块长为x米、宽为y米的布料。

他想要知道是否有足够的布料满足要求。

解析:根据题意,我们可以建立如下一元一次不等式:x ≤ 长度,y ≤ 宽度,其中x表示所需的布料长度,y表示所需的布料宽度。

如果不等式成立,说明有足够的布料满足要求;如果不等式不成立,则说明没有足够的布料满足要求。

通过上述案例,我们可以看到一元一次不等式在实际问题中的应用。

无论是商品打折、车辆超速还是裁剪布料,一元一次不等式都能帮助我们解决具体问题,找到满足条件的解答。

总结:一元一次不等式的应用包括但不限于商品打折、车辆超速违章、布料裁剪等。

通过建立一元一次不等式,并利用不等式的性质进行数学运算,我们可以得出所需的答案。

在实际问题中,我们需要根据题意确定不等式的形式以及解的意义,从而找到正确的解法。

不等式的应用不仅能够帮助我们解决实际生活中的问题,还可以提升我们的逻辑思维能力和数学运算能力。

初二数学列一元一次不等式解应用题试题答案及解析

初二数学列一元一次不等式解应用题试题答案及解析

初二数学列一元一次不等式解应用题试题答案及解析1.小刚准备用自己节省的零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少有280元.设x个月后小刚至少有280元,则可列计算月数的不等式为()A.30x+50>280B.30x﹣50≥280C.30x﹣50≤280D.30x+50≥280【答案】D【解析】此题的不等关系:已存的钱与每月节省的钱数之和至少为280元.至少即大于等于.解:根据题意,得50+30x≥280.故选D.2.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x页,所列不等式为()A.10+8x≥72B.2+10x≥72C.10+8x≤72D.2+10x≤72【答案】A【解析】设以后每天读x页,根据小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,可列出不等式即可.解:设以后每天读x页,2×5+(10﹣2)x≥72,整理得出10+8x≥72.故选:A.3. y与4的和的一半是负数,用不等式表示为()A.y+4>0B.y+4<0C.(y+4)<0D.(y+4)>0【答案】C【解析】理解:负数值小于0.解:由题意可得:(y+4)<0.故选C.4.在开山工程爆破时,已知导火索燃烧速度为0.5cm/s,人跑开的速度是4m/s,为了使放炮的人在爆破时能安全跑到100m以外的安全区,导火索的长度x(cm)应满足的不等式是()A.4×≥100B.4×≤100C.4×<100D.4×>100【答案】D【解析】为了安全,则人跑开的路程应大于100米.路程=速度×时间,其中时间即导火索燃烧的时间,是s.解:根据题意,得4×>100.故选D.5.小明身高1.5米,小明爸爸身高1.8米,小明走上一处每级高a米,共10级的平台说:“爸爸,现在两个你的身高都比不上我了!”由此可得关于a的不等式是()A.10a>1.8×2B.1.5+a+10>1.8×2C.10a+1.5>1.8×2D.1.8×2>10a+15【答案】C【解析】根据小明的身高+10级高台的高度>爸爸身高的2倍列式即可.解:根据题意,得10a+1.5>1.8×2.故选:C.6.“x与y的和大于1”用不等式表示为.【答案】x+y>1【解析】表示出两个数的和,用“>”连接即可.解:x与y的和可表示为:x+y,“x与y的和大于1”用不等式表示为:x+y>1,故答案为:x+y>1.7.去年夏汛期间,某条河流的最高水位高出警戒水位2.5米,最低水位低于警戒水位0.5米,则这期间的水位与警戒水位相比,高出的部分h(米)的范围是.【答案】﹣0.5米≤h≤2.5米【解析】由于某条河流的最高水位高出警戒水位2.5米,最低水位低于警戒水位0.5米,那么这期间的水位与警戒水位相比,高出的部分h的最大为2.5,最小为﹣0.5,由此即可求解.解:依题意得,﹣0.5米≤h≤2.5米.故答案为:﹣0.5米≤h≤2.5米.8.用不等式表示“a的3倍与8的差是一个非负数”应是.【答案】3a﹣8≥0【解析】差是一个非负数,即是最后算的差应大于或等于0.解:根据题意,得3a﹣8≥0.故答案为:3a﹣8≥0.9. x的3倍减去2的差不大于零,列出不等式是.【答案】3x﹣2≤0【解析】不大于0就是小于等于0,根据x的3倍减去2的差不大于零可列出不等式.解:根据题意得:3x﹣2≤0.故答案为:3x﹣2≤0.10.某学校为学生安排宿舍,现有住房若干间,若每间5人,则还有14人安排不下,若每间7人,则有一间不足7人.问学校至少有几间房可以安排学生住宿?可以安排住宿的学生有多少人?【答案】解:设学校有x间房可以安排y名学生住宿,∵若每间5人,则还有14人安排不下,∴y=5x+14.∵若每间7人,则有一间不足7人,∴0<y﹣7(x﹣1)<7.将y=5x+14代入上式得:0<5x+14﹣7x+7<7,解得:7<x<10.5,故学校至少有8间房可以安排学生住宿,可以安排住宿的学生有5×8+14=54(人).【解析】设学校有x间房可以安排y名学生住宿,根据题意得:,求解即可.11.某市自来水公司按如下标准收取水费:若每户每月用水不超过10m3,则每立方米收费1.5元;若每户每月用水超过10m3,则超过的部分每立方米收费2元.小亮家某月的水费不少于25元,那么他家这个月的用水量(xm3)至少是多少?请列出关于x的不等式.【答案】解:设小亮家每个月的用水量是xm3,根据题意,得1.5×10+2(x﹣10)≥25.【解析】不少于25元,意思是大于或等于25元,根据收费标准,知小亮家的用水一定超过了10m3.故本题的不等关系为:10m3的水费与超过部分的水费.12.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.【答案】解:设应打x折,根据题意,得750×﹣500≥500×5%.【解析】利润率不低于5%,即是利润应大于或等于利润率的5%.利润有两种表示方法:利润=售价﹣成本=成本×利润率.本题满足的关系为:售价﹣进价≥500×5%.13.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或不答倒扣1分,在这次竞赛中,小明获得80分以上,则小明至少答对多少道题?设小明答对x道题,用不等式表示题目中的不等关系.【答案】解:设小明答对x道题,根据题意,得4x﹣(30﹣x)>80.【解析】理解:80分以上,意思是大于80分.本题的不等关系为:4×答对的题数﹣1×答错或不答的题数>80.14.用甲、乙两种原料配制成某种果汁,已知这两种原料的维生素C的含量及购买这两种原料的价格如表:C,试写出所需甲种原料的质量x(kg)应满足的不等式;(2)如果还要求购买甲、乙两种原料的费用不超过1 800元,那么请你写出所需甲种原料的质量x(kg)应满足的另一个不等式.【答案】解:(1)若所需甲种原料的质量为xkg,则需乙种原料(200﹣x)kg.根据题意,得800x+200(200﹣x)≥52000;(2)由题意得,18x+14(200﹣x)≤1800.【解析】(1)根据甲种原料所需的质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有52000单位的维生素C”这一不等关系列不等式;(2)根据甲种原料和乙种原料每千克的费用分别为18和14,总费用不超过1800元,列出不等式.15.有5支排球劲旅A队、B队、C队、D队、E队,参加排球锦标赛,成绩如下:D队的名次比C队低,A队比B队高,但低于E队;E队比C低,B队比D队高,请问:这5支球队各是第几名.解决这类问题,一个非常方便的方法是利用数学符号帮忙,此处用“>”或“<”,将成绩可简单表示成不等式,很快就得出这5个队的名次,试一下吧?【答案】解:∵D队的名次比C队低,A队比B队高,但低于E 队;E队比C低,B队比D队高,∴D<C,B<A<E,E<C,D<B,∴D<B<A<E<C.【解析】分别利用各队之间的不等关系即可得出A队、B队、C队、D队、E队的名次大小关系.16.电脑公司销售一批计算机,第一个月以3500元/台的价格售出40台,第二个月起降价,以3000元/台的价格将这批计算机全部售出,销售总量超过30万元,则这批计算机最少有多少台?若设这批计算机有x台,则下列不等式表示正确的是()A.3500×40+3000(x﹣40)>30B.3500×40+3000(x﹣40)≥30C.3500×40+3000(x﹣40)>300000D.3500×40+3000(x﹣40)≥300000【答案】C【解析】根据题意设这批计算机有x台,第二个月还有(x﹣40)台,先表示出第一个月销售量,再表示出第二个月销售量,然后用第一个月销售量+第二个月销售量>30万元即可.解:∵第一个月以3500元/台的价格售出40台,∴第一个月销售量=3500×40=140000(元),设这批计算机有x台,第二个月还有(x﹣40)台,∴第二个月销售量=3000×(x﹣40),∵销售总量超过30万元,∴3500×40+3000×(x﹣40)>300000.故选:C.17. x的3倍与2的差不大于0,用不等式表示为()A.3x﹣2≤0B.3x﹣2≥0C.3x﹣2<0D.3x﹣2>0【答案】A【解析】不大于就是小于等于的意思,根据x的3倍与2的差不大于0,可列出不等式.解:根据题意得:3x﹣2≤0.故选A.18.用不等式表示a的一半与2的差大于﹣1,正确的是()A.B.﹣2>﹣1C.(a﹣2)≥﹣1D.a﹣2<﹣1【答案】B【解析】利用关键描述语是:差大于﹣1,表示出a的一半与2的差,即可得出答案.解:根据题意,得a﹣2>﹣1.故选:B.19.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x页,所列不等式为()A.10+8x≥72B.2+10x≥72C.10+8x≤72D.2+10x≤72【答案】A【解析】设以后每天读x页,根据小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,可列出不等式即可.解:设以后每天读x页,2×5+(10﹣2)x≥72,整理得出10+8x≥72.故选:A.20. a的3倍与3的和不大于1,用不等式表示正确的是()A.3a+3<1B.3a+3≤1C.3a﹣3≥1D.3a+3≥1【答案】B【解析】“不大于1”意思是小于或等于1.解:a的3倍与3的和不大于1,用不等式表示为3a+3≤1,故选B.。

(完整版)《一元一次不等式组的应用》典型例题

(完整版)《一元一次不等式组的应用》典型例题

《一元一次不等式组的应用》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题7一条铁路线上E,,A,,各站之间的路程如图所示,单位为千米.一BDC列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题8某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题9某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三类:A,BA类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题10有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题11大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。

一元一次不等式练习题 (4)

一元一次不等式练习题 (4)

一元一次不等式练习题题目一求解不等式:3x + 5 > 2x - 1解答过程将不等式中的变量移到一边,数字移到另一边,得到:3x - 2x > -1 - 5 化简得:x > -6所以,解集为 x > -6题目二求解不等式:2x - 7 < 3x + 2解答过程将不等式中的变量移到一边,数字移到另一边,得到:2x - 3x < 2 + 7 化简得:-x < 9因为不等号左边乘以-1,所以不等号方向要改变,得到:x > -9所以,解集为 x > -9求解不等式:4x + 9 <= 2x + 1解答过程将不等式中的变量移到一边,数字移到另一边,得到:4x - 2x <= 1 - 9 化简得:2x <= -8将不等式两边除以2,得到:x <= -4所以,解集为 x <= -4题目四求解不等式:5x + 3 > 8x - 6解答过程将不等式中的变量移到一边,数字移到另一边,得到:5x - 8x > -6 - 3 化简得:-3x > -9因为不等号左边乘以-1,所以不等号方向要改变,得到:x < 3所以,解集为 x < 3求解不等式:6 - 4x >= 2x + 9解答过程将不等式中的变量移到一边,数字移到另一边,得到:-4x - 2x >= 9 - 6 化简得:-6x >= 3将不等式两边除以-6,需要将不等号方向改变,得到:x <= -1/2所以,解集为 x <= -1/2题目六求解不等式:2(3x - 4) > x - 2解答过程先进行分配律,得到:6x - 8 > x - 2将不等式中的变量移到一边,数字移到另一边,得到:6x - x > -2 + 8 化简得:5x > 6将不等式两边除以5,得到:x > 6/5所以,解集为 x > 6/5总结通过上述练习题的解答过程,我们可以看到求解一元一次不等式的方法是相似的。

初二数学一元一次不等式试题答案及解析

初二数学一元一次不等式试题答案及解析

初二数学一元一次不等式试题答案及解析1.求不等式组的整数解。

【答案】-1,0.【解析】先分别解不等式,然后根据“口诀”确定不等式组的解,然后找出整数解即可.试题解析:解不等式5+2x≥3,得:x≥-1.解不等式,得:x<1所以不等式组的解为:-1≤x<1所以整数解为:-1,0.【考点】一元一次不等式组的解法;不等式整数解.2.不等式2m﹣1≤6的正整数解是_________.【答案】1,2,3.【解析】先求出不等式的解集,再在不等式的解集范围内确定它的正整数解即可.试题解析:由2m﹣1≤6解得:m≤,故不等式2m﹣1≤6的正整数解是1,2,3.【考点】解一元一次不等式.3.如果不等式(m-2)x>2-m的解集是x<-1, 则有()A.m>2B.m<2C.m=2D.m≠2【答案】B.【解析】∵(m-2)x>2-m的解集是x<-1,∴m-2<0,∴m<2.故选:B.【考点】不等式的性质.4.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?【答案】10.【解析】关系式为:4×第一层房间数<48;5×第一层房间数>48;3×第二层房间数<48;4×第二层房间数>48,把相关数值代入求整数解即可.试题解析:设第一层有客房x间,则第二层有(x+5)间,由题可得由①得:,解得:;由②得:,解得:7<x<11.∴原不等式组的解集为.∴整数x的值为x=10.答:一层有客房10间.【考点】一元一次不等式组的应用.5.不等式的解集在数轴上表示正确的是()【答案】D.【解析】不等式x≥1的解集在数轴上表示正确的是.故选D.考点: 在数轴上表示不等式的解集.6.已知关于x,y的方程组的解为非负数,求整数m的值.【答案】7,8,9,10.【解析】此题考查了解方程组与解不等式组,根据题意可以先求出方程组的解(解中含有字母m),然后根据x≥0,y≥0,组成关于m的不等式组,解不等式组即可求解.试题解析:解方程组可得.因为x≥0,y≥0,所以解得所以≤m≤,因为m为整数,故m=7,8,9,10.考点: 1一元一次不等式组的整数解;2.解二元一次方程组.7.某校男子100m跑的记录是12s,在今年的校田径运动会上,肖华的100m跑成绩是ts,打破了该校男子100m跑的记录。

初二数学列一元一次不等式解应用题试题答案及解析

初二数学列一元一次不等式解应用题试题答案及解析

初二数学列一元一次不等式解应用题试题答案及解析1. m与3的和的一半是正数,用不等式表示为()A.B.C.D.【答案】B【解析】正数就是大于0的数,根据题意可列不等式.解:根据题意得:.故选B.2. x的3倍与2的差不大于0,用不等式表示为()A.3x﹣2≤0B.3x﹣2≥0C.3x﹣2<0D.3x﹣2>0【答案】A【解析】不大于就是小于等于的意思,根据x的3倍与2的差不大于0,可列出不等式.解:根据题意得:3x﹣2≤0.故选A.3.下列说法错误的是()A.a是负数,则写作a<0B.a与b的积小于0,则写作ab<0C.b不小于0,则写作b≥0D.x不小于y,则写作x≤y【答案】D【解析】是负数就是小于0的意思,不小于的意思,就是大于等于.解:A、a是负数,则写作a<0,故本选项不符合题意;B、a与b的积小于0,则写作ab<0,故本选项不符合题意;C、b不小于0,则写作b≥0,故本选项不符合题意;D、x不小于y,就应该是大于等于y,应记作x≥y.所以本选项符合题意.故选D.4.“x的2倍与3的差不大于8”列出的不等式是()A.2x﹣3≤8B.2x﹣3≥8C.2x﹣3<8D.2x﹣3>8【答案】A【解析】理解:不大于8,即是小于或等于8.解:根据题意,得2x﹣3≤8.故选A.5.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打()A.六折B.七折C.八折D.九折【答案】B【解析】由题意知保持利润不低于26%,就是利润大于等于26%,列出不等式.解:设打折为x,由题意知,解得x≥0.7,故至少打七折,故选B.6.小明身高1.5米,小明爸爸身高1.8米,小明走上一处每级高a米,共10级的平台说:“爸爸,现在两个你的身高都比不上我了!”由此可得关于a的不等式是()A.10a>1.8×2B.1.5+a+10>1.8×2C.10a+1.5>1.8×2D.1.8×2>10a+15【答案】C【解析】根据小明的身高+10级高台的高度>爸爸身高的2倍列式即可.解:根据题意,得10a+1.5>1.8×2.故选:C.7. x与3的和的一半是负数,用不等式表示为()A.x+3>0B.x+3<0C.(x+3)>0D.(x+3)<0【答案】D【解析】理解:和的一半,应先和,再一半;负数,即小于0.解:根据题意,得(x+3)<0.故选D.8.某种植物适宜生长温度为18~20的山区,已知山区海拔每升高100米,气温下降0.55,现测得山脚下的气温为22,问该植物种在山上的哪一部分为宜如果设该植物种植在海拔高度为x米的山区较适宜,则由题意可列出的不等式为()A.18≤22﹣B.18≤22﹣≤20C.18≤22﹣0.55x≤20D.18≤22﹣≤20×0.55≤20【答案】A【解析】每升高100米,气温下降0.55,那么每升高1米,气温下降米;海拔为x米,则升高了x米,气温就在22的基础上下降了x×,而温度适宜的范围是18~20.解:根据题意,得18≤22﹣×0.55≤20.故选A.9.某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x(张)满足的不等式为.【答案】50+0.3x≤1200【解析】至多意思是小于或等于.本题满足的不等关系为:制版费+单张印刷费×数量≤1200.解:根据题意,得50+0.3x≤1200.10.有如图所示的两种广告牌,其中图1是由两个等腰直角三角形构成的,图2是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a、b的不等式表示为.【解析】由图上可看出:图1也可看做是长为a,宽为b的长方形加上一个小直角三角形;图2是长为a,宽为b的长方形.所以隐含的不等关系:图1的面积一定>图2的面积.解:根据图形的面积公式,得图1的面积是a2+b2;图2的面积是ab.再根据图形的面积大小关系,得a2+b2>ab.11.一家企业向银行申请了一年期贷款500万元,到期后归还银行的钱超过532.8万元,若设该项贷款的年利率为x,则x应满足的不等式为.【答案】500(1+x)>532.8【解析】根据本金×(1+利率)=本息和,结合题意可得本金×(1+利率)>532.8万元,代入数据可得答案.解:设该项贷款的年利率为x,由题意得:500(1+x)>532.8,故答案为:500(1+x)>532.8.12.用不等式表示“a的3倍与8的差是一个非负数”应是.【答案】3a﹣8≥0【解析】差是一个非负数,即是最后算的差应大于或等于0.解:根据题意,得3a﹣8≥0.故答案为:3a﹣8≥0.13.“2x与1的和小于零”用不等式表示:.【答案】2x+1<0【解析】题目中明确给出小于0,根据“2x与1的和小于零”可列出不等式.解:根据题意得:2x+1<0.故答案为:2x+1<0.14.某学校为学生安排宿舍,现有住房若干间,若每间5人,则还有14人安排不下,若每间7人,则有一间不足7人.问学校至少有几间房可以安排学生住宿?可以安排住宿的学生有多少人?【答案】解:设学校有x间房可以安排y名学生住宿,∵若每间5人,则还有14人安排不下,∴y=5x+14.∵若每间7人,则有一间不足7人,∴0<y﹣7(x﹣1)<7.将y=5x+14代入上式得:0<5x+14﹣7x+7<7,解得:7<x<10.5,故学校至少有8间房可以安排学生住宿,可以安排住宿的学生有5×8+14=54(人).【解析】设学校有x间房可以安排y名学生住宿,根据题意得:,求解即可.15.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.【答案】解:设应打x折,根据题意,得750×﹣500≥500×5%.【解析】利润率不低于5%,即是利润应大于或等于利润率的5%.利润有两种表示方法:利润=售价﹣成本=成本×利润率.本题满足的关系为:售价﹣进价≥500×5%.16.燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m以外的安全区域.已知导火线的燃烧速度为0.02m/s,人离开的速度为4m/s,导火线的长x(m)应满足怎样的关系式?请你列出.【答案】解:设导火线的长x(m),根据题意得出:.【解析】利用行走10m所用时间,应小于导火索燃烧所用时间,进而得出不等式.17.亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x个月后他至少有300元,则可以用于计算所需要的月数x的不等式是()A.30x﹣45≥300B.30x+45≥300C.30x﹣45≤300D.30x+45≤300【答案】B【解析】此题中的不等关系:现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.至少即大于或等于.解:x个月可以节省30x元,根据题意,得30x+45≥300.故选B.18.一辆轿车在某高速公路上正常行驶时的速度为akm/h,已知该公路对轿车的限速为100km/h,那么a满足的不等关系应表示为()A.a<100B.a>100C.a≤100D.a≥100【答案】C【解析】因为该公路对轿车的限速为100km/h,所以轿车的速度应不超过100.解:根据题意,得a≤100.故选C.19.“x的2倍与3的差不大于8”列出的不等式是()A.2x﹣3≤8B.2x﹣3≥8C.2x﹣3<8D.2x﹣3>8【答案】A【解析】理解:不大于8,即是小于或等于8.解:根据题意,得2x﹣3≤8.故选A.20. y的与z的5倍的差的平方是一个非负数,列出不等式为()A.5(﹣y)2>0B.y﹣(5z)2≥0C.(y﹣5z)2≥0D.y﹣5z2≥0【答案】C【解析】“非负数”即为“大于或等于0”的数.差的平方应先差,再平方.解:根据题意,得(y﹣5z)2≥0.故选C.。

解一元一次不等式专项练习50题(有答案)-不等式去分母的题

解一元一次不等式专项练习50题(有答案)-不等式去分母的题

解一元一次不等式专项练习50题(有答案)-不等式去分母的题1.解:去分母得 3(x+1)。

2x+6,去括号得 3x+3.2x+6,移项合并同类项得 x。

3,因此不等式的解集为 x。

3.2.解:去分母得 x+1-2(x-1) ≤ 2,化简得 -x ≤ -1,两边同乘-1得x ≥ 1,因此不等式的解集为x ≥ 1.3.解:去分母得 2(x+4)-6.3(3x-1),化简得 2x+8-6.9x-3,移项合并同类项得 -7x。

-5,化系数为1得 x < 5/7.4.解:去分母得 3x+6.-1,因此不等式的解集为 x。

-1.5.解:去分母得6x+2(x+1) ≤ 6-(x-14),化简得8x+8 ≤ 20-x,移项合并同类项得9x ≤ 12,因此不等式的解集为x ≤ 4/3.6.解:去分母得 2(2x-3)。

3(3x-2),化简得 4x-6.9x-6,移项合并同类项得 -5x。

0,化系数为1得 x < 0.7.解:去分母得 3(3x-4)+30 ≥ 2(x+2),化简得 9x-12+30 ≥2x+4,移项合并同类项得7x ≥ -14,化系数为1得x ≥ -2.8.解:将原不等式化简得:x-3<24-2(3-4x)。

x-3<24-6+8x。

x<21。

x>-3.9.解:将原不等式化简得:6(3x-1)<(10x+5)-6。

8x>=-16。

x>=-2.10.解:将原不等式化简得:3(x+1)-8>4(x-5)-8x。

3x+3-8>4x-20-8x。

7x>-15。

x>-15/7.11.解:将原不等式化简得:x+5-2<3x+2。

x-3x<2+2-5。

2x<-1。

x>1/2.12.解:将原不等式化简得:3(x+1)>=2(2x+1)+6。

3x+3>=4x+2+6。

x>=5。

x<=-5.13.解:将原不等式化简得:2(2x-1)-24>-3(x+4)。

40道一元一次不等式组计算及答案

40道一元一次不等式组计算及答案

(1)2X-4秋+2 与X為解集为3秋詬(2)2X-1 > 1与4-2X切解集为无解(3)3X+2 >5 与5-2 羽解集为 1 VX<2(4)X - 1 V 2 与2X+3 >2+X 解集为-1 V X V 3(5)X+3 > 1 与X + 2 (X-1 ) < 解集为-2 V X<(6)2X+1 <3 与X>-3 解集为1>-3(7)2X+5 > 1 与3X+7X <0 解集为 1 冰>2(8)2X-1 >X+1 与X+8 V4X-1 解集为X>3(9)1-2 (X-1) <5与2/ (3X-2) V X+1/2 解集为-1 V 3(10)2X<4+X 与X+2 V4X-1 解集为 1 V X<1(11)2-X > 0 与2/ (5X+1 ) +1 冯/ (2X-1 ) 解集为-1 «V 2(12)1-X V0 与2/ (X-2) V 1 解集为 1 V X V4(13)2-X V3与2-X为解集为2冰> 1(14)2X+10 >-5 与6X-7 羽0 解集为X> 17/6(15)6X+6 >8 与3X+10 V 5 解集为-(3/5) > X>-3(16)6X+6X24 与10X+ (1/2) X V -42 解集为无解(17)24X-20X >4 与8X+4X <24解集为 2 冰> 1(18)9X-5X V 8 与15X+5X >80 解集为无解(19)X+X < 与2X+ (1/2) X > 100 解集为无解(20)2011X-2012X W1 与2013X-2012X 羽解集为 1 秋(21)4X-X > 6 与10X+5X V 15 解集为无解(22)-5X-6X <22 与5X-9X ^24 解集为无解 (23) (1/5)X+ (1/5 ) X > 2/5 与X+10X > 22 解集为X > 2(24)55X+55X V 220 与66X+10X V 38 解集为X V 1/2(25)70X+1 <71 与53X-13X <40 解集为X <1(26)X+1 V 7与X-1 > 10解集为无解(27)5X+5 > 5 与2X+3X > 9 解集为X > 9/5 (28) 85X-5X V 8 与50X+30X V 5 解集为X V 1/16 (29) 2X <14 与6X V 6解集为X V 1(30)15X+15 ^30与6X-8X纽解集为-2冰羽(31)2X 羽60 与4X 冯16 解集为X%0 (32) 35X-27X > 136 与20X+20X V 800 解集为20 > X > 17(33)55X <165 与56X > 112 解集为 2 V X <5(34)20X+18X身6 与2X场解集为X缎(35)59X+X > 600 与55X+35X V 1350 解集为10 V X V 15(36)60X V 120 与5X+5X V 10 解集为X V 1(37)100X V 20X+1200 与2X V 30X+10 解集为X V 5/14 ((38)50X羽00与50X为0 解集为X羽(39)25X > 250 与26X > 26解集为X > 10 (40) 2X > 2与3X V -5解集为无解。

(完整版)一元一次不等式应用题附答案

(完整版)一元一次不等式应用题附答案

郭氏数学内部资料一元一次不等式应用题〔1〕附答案修筑高速公路经过某村,需搬迁一批农户,为了节约土地资源和保持环境,政府统一规划搬迁建房区域,规划要求区域内绿色环境占地面积不得低于区域总面积的20%,假设搬迁农民建房每户占地150m2,那么绿色环境面积还占总面积的40%;政府又鼓励其他有积蓄的农户到规划区域建房,这样又有20户参加建房,假设仍以每户占地150m2计算,那么这时绿色环境面积只占总面积的15%,为了符合规划要求,又需要退出局部农户。

〔1〕最初需搬迁的农户有多少户?政府规划的建房区域总面积是多少?〔2〕为了保证绿色环境占地面积不少于区域总面积的 20%,至少需要退出农户几户?某公司为了扩大经营,决定购进6台机器用于生产某种活塞。

现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示。

经过预算,本次购置机器所耗资金不能超过34万元。

甲乙价格〔万元/台〕 7 5每台日产量〔个〕100 60〔1〕按该公司要求可以有几种购置方案?〔2〕假设该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?3.有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,甲种蔬菜每亩可收入万元,乙种蔬菜每亩可收入万元,假设使总收入不低于万,那么最多只能安排多少人种甲种蔬菜?4.小杰到学校食堂买饭,看到A、B两窗口前面排队的人一样多〔设为a人,a>8〕,就站到A窗口队伍的后面.过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.〔1〕此时,假设小杰继续在A窗口排队,那么他到达窗口所花的时间是多少〔用含a的代数式表示〕?〔2〕此时,假设小杰迅速从A窗口队伍转移到B窗口队伍后面重新排队,且到达B窗口所花1郭氏数学内部资料的时间比继续在A窗口排队到达A窗口所花的时间少,求a的取值范围〔不考虑其他因素〕.A B小明在上午8:20分步行出发去春游,10:20小刚在同一地骑自行车出发,小明每小时走4千米,小刚要在11点前追上小明,小刚的速度应至少是多少?某厂原定方案年产某种机器1000台,现在改良了技术,准备力争提前超额完成,但开始的三个月内,由于工人不熟悉新技术,只生产100台机器,问以后每个月至少要生产多少台?学校图书馆有15万册图书需要搬迁,原准备每天在一个班级的劳动课上,安排一个小组同学帮助搬运图书,两天共搬了万册。

10道一元一次不等式应用题和答案过程

10道一元一次不等式应用题和答案过程

一元一次不等式解应用题1.某水产品市场管理部门规划建造面积为2400平方米的大棚.大棚设A 种类型和B种类型的店面共80间.每间A种类型的店面的平均面积为28平方米.月租费为400元.每间B种类型的店面的平均面积为20平方米..月租费为360元.全部店面的建造面积不低于大棚总面积的85%。

(1) 试确定A种类型店面的数量?(2)该大棚管理部门通过了解.A种类型店面的出租率为75%.B种类型店面的出租率为90%.为使店面的月租费最高.应建造A种类型的店面多少间?. . . 资料. .解:设A种类型店面为a间.B种为80-a间根据题意28a+20(80-a)≥2400×85%28a+1600-20a≥20408a≥440a≥55 A型店面至少55间设月租费为y元y=75%a×400+90%(80-a)×360=300a+25920-324a=25920-24a很明显.a≥55.所以当a=55时.可以获得最大月租费为25920-24x55=24600元. . . 资料. .二、水产养殖户大爷准备进行大闸蟹与河虾的混合养殖.他了解到情况:每亩地水面组建为500元;每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;每公斤蟹苗的价格为75元.其饲养费用为525元.当年可获1400元收益;每公斤虾苗的价格为15元.其饲养费用为85元.当年可获160元收益;问题:1、水产养殖的成本包括水面年租金.苗种费用和饲养费用.求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);2、大爷现有资金25000元.他准备再向银行贷款不超过25000元.用于蟹虾混合养殖.已知银行贷款的年利率为10%.试问大爷应租多少亩水面.并向银行贷款多少元.可使年利润达到36600元?. . . 资料. .解:1、水面年租金=500元苗种费用=75x4+15x20=300+300=600元饲养费=525x4+85x20=2100+1700=3800元成本=500+600+3800=4900元收益1400x4+160x20=5600+3200=8800元利润(每亩的年利润)=8800-4900=3900元2、设租a亩水面.贷款为4900a-25000元那么收益为8800a成本=4900a≤25000+250004900a≤50000a≤50000/4900≈10.20亩利润=3900a-(4900a-25000)×10%3900a-(4900a-25000)×10%=36600. . . 资料. .3900a-490a+2500=366003410a=34100所以a=10亩贷款(4900x10-25000)=49000-25000=24000元三、某物流公司.要将300吨物资运往某地.现有A、B两种型号的车可供调用.已知A型车每辆可装20吨.B型车每辆可装15吨.在每辆车不超载的条件下.把300吨物资装运完.问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?解:设还需要B型车a辆.由题意得20×5+15a≥30015a≥200a≥40/3解得a≥13又1/3 .. . . 资料. .由于a是车的数量.应为正整数.所以x的最小值为14.答:至少需要14台B型车.四、某城市平均每天产生生活垃圾700吨.全部由甲.乙两个垃圾厂处理.已知甲厂每小时处理垃圾55吨.需费用550元;乙厂每小时处理垃圾45吨.需费用495元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

道一元一次不等式应用题和答案过程Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT一元一次不等式解应用题1.某部门规划建造面积为2400平方米的,内设A种类型和B种类型的店面共80间,每间A 种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于总面积的85%。

(1) 试确定A种类型店面的数量(2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间?解:设A种类型店面为a间,B种为80-a间根据题意28a+20(80-a)≥2400×85%28a+1600-20a≥20408a≥440a≥55 A型店面至少55间设月租费为y元y=75%a×400+90%(80-a)×360=300a+25920-324a=25920-24a很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元二、户李大爷准备进行与的混合养殖,他了解到情况:每亩地水面组建为500元;每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;问题:1、的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?解:1、水面年租金=500元苗种费用=75x4+15x20=300+300=600元饲养费=525x4+85x20=2100+1700=3800元成本=500+600+3800=4900元收益1400x4+160x20=5600+3200=8800元利润(每亩的年利润)=8800-4900=3900元2、设租a亩水面,贷款为4900a-25000元那么收益为8800a成本=4900a≤25000+250004900a≤50000a≤50000/4900≈亩利润=3900a-(4900a-25000)×10%3900a-(4900a-25000)×10%=366003900a-490a+2500=366003410a=34100所以a=10亩贷款(4900x10-25000)=49000-25000=24000元三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆解:设还需要B型车a辆,由题意得20×5+15a≥30015a≥200a≥40/3解得a≥13又1/3 .由于a是车的数量,应为正整数,所以x的最小值为14.答:至少需要14台B型车.四、某城市平均每天产生700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。

如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时解:设甲场应至少处理垃圾a小时550a+(700-55a)÷45×495≤7370550a+(700-55a)×11≤7370550a+7700-605a≤7370330≤55aa≥6甲场应至少处理垃圾6小时五、学校将若干间宿舍分配给一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处可住;若每个房间住8人,则空出一间房,并且还有一间房也不满。

有多少间宿舍,多少名女生解:设有宿舍a间,则女生人数为5a+5人根据题意a>0(1)0<5a+5<35(2)0<5a+5-[8(a-2)]<8(3)由(2)得 -5<5a<30-1<a<6由(3)0<5a+5-8a+16<8-21<-3a<-1313/3<a<7由此我们确定a的取值范围1/3<a<6a为正整数,所以a=5那么就是有5间宿舍,女生有5×5+5=30人六、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。

(1)求调整后这款彩屏手机的新单价是每部多少元让利后的实际销售价是每部多少元?(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部(1)解:手机原来的售价=2000元/部每部手机的成本=2000×60%=1200元设每部手机的新单价为a元a×80%-1200=a×80%×20%==1200a=1875元让利后的实际销售价是每部1875×80%=1500元(2)20万元=200000元设至少销售b部利润=1500×20%=300元根据题意300b≥200000b≥2000/3≈667部至少生产这种手机667部。

七、我市某村计划建造A,B两种型号的共20个,以解决该村所有农户的燃料问题.两种型号的的占地面积,使用农户数以及造价如下表:型号占地面积(平方米/个)使用农户数(户/个)造价(万元/个)A 15 18 2B 20 30 3已知可供建造的占地面积不超过365平方米,该村共有492户.(1).满足条件的方法有几种写出解答过程.(2).通过计算判断哪种建造方案最省钱?解: (1) 设建造A型沼气池 x 个,则建造B 型沼气池(20-x )个18x+30(20-x) ≥49218x+600-30x≥49212x≤108x≤915x+20(20-x)≤36515x+400-20x≤3655x≥35x≤7解得:7≤ x ≤ 9∵ x为整数∴ x = 7,8 ,9 ,∴满足条件的方案有三种.(2)设建造A型沼气池 x 个时,总费用为y万元,则:y = 2x + 3( 20-x) = -x+ 60∵-1< 0,∴y 随x 增大而减小,当x=9 时,y的值最小,此时y= 51( 万元 ) ∴此时方案为:建造A型沼气池9个,建造B 型沼气池11个解法②:由(1)知共有三种方案,其费用分别为:方案一: 建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2 + 13×3 = 53( 万元 )方案二: 建造A型沼气池8个,建造B型沼气池12个,总费用为:8×2 + 12×3 = 52( 万元 )方案三: 建造A型沼气池9个,建造B型沼气池11个,总费用为:9×2 + 11×3 = 51( 万元 )∴方案三最省钱.八、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本学生有多少个解:设学生有a人根据题意 3a+8-5(a-1)<3(1)3a+8-5(a-1)>0(2)由(1)3a+8-5a+5<3 2a>10 a>5由(2)3a+8-5a+5>0 2a<13 a<那么a的取值范围为5<a<那么a=6有6个学生,书有3×6+8=26本九、某部门规划建造面积为2400m2的集贸大棚。

大棚内设A种类型和B种类型的店面共80间。

每间A种类型的店面的平均面积为28m2月租费为400元;每间B种类型的店面的平均面积为20m2月租费为360元。

全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%。

试确定有几种建造A,B两种类型店面的方案。

解:设A种类型店面为a间,B种为80-a间根据题意28a+20(80-a)≥2400×80%(1)28a+20(80-a)≤2400×85%(2)由(1)28a+1600-20a≥19208a≥320a≥40由(2)28a+1600-20a≤20408a≤440a≤5540≤a≤55方案: A B40 4041 39……55 25一共是55-40+1=16种方案十、某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子;(2)按总价的%付款。

某单位需购买5张桌子和若干把椅子(不少于10把)。

如果已知要购买X把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱?设需要买x(x≥10)把椅子,需要花费的总前数为y第一种方案:y=300x5+60×(x-10)=1500+60x-600=900+60x第二种方案:y=(300x5+60x)×%=+若两种方案花钱数相等时900+60x=+=x=55当买55把椅子时,两种方案花钱数相等大于55把时,选择第二种方案小于55把时,选择第一种方案。

相关文档
最新文档