双极结三极管及其基本电路

合集下载

双极型晶体三极管及其基本放大电路

双极型晶体三极管及其基本放大电路
3、三极管放大电路共有三种基本接法:共射、共集和共基电路。 其中共射电路能放大电压和电流,输入与输出反相,应用广 泛。共集电路无电压放大能力,能放大电流,因为其输入电 阻大,输出电阻小,多用作输入级,输出级及缓冲级。共基 电路能放大电压,无电流放大能力,且其输入电阻小,输出 电阻大,一般只用作高频放大。
4、多级放大电路的耦合方式有阻容耦合、变压器耦合、直接耦 合等类型。前级输出即为后级的输入,前级的输出电阻是后 级的信号源内阻,后级的输入电阻是前级的负载电阻。放大 电路的总增益为各级放大倍数的乘积;输入电阻是第一级电 路的输入电阻,输出电阻是最后一级电路的输出电阻。
5、复合管放大电路的分析可以等效成单管放大电路的分析。
模拟电子技术
ห้องสมุดไป่ตู้
双极型晶体三极管及其基本放大电路
晶体管的结构、原理及特性曲线→放大电路的分析方法→由 晶体管构成的三种基本放大电路→多级放大电路和复合管的 分析→放大电路的频率响应。 1、晶体管按照结构分成和两种,按材料分成硅管和锗管,由 于硅管的温度特性较好,所以硅管应用广泛。 晶体管有三种工作状态:
多级放大电路的级数越多,通频带越窄。
模拟电子技术
由于电路中的电抗元件对不同频率的输入信号呈现的电抗值 不同,电路的电压放大倍数是信号频率的函数,即频率响应。 频率响应分为幅频特性和相频特性,可以用波特图表示。
6、单级放大电路的频率响应:在中频段基本与频率无关;在低 频段,电压放大倍数随频率的降低而减小,输出电压与输入 电压之间的相移也发生变化;在高频段,电压放大倍数随频 率的升高而减小,相移也发生变化。
2、放大电路的分析方法有图解法和微变等效模型法两种。图解 法主要用来分析失真和静态工作点,工程计算中主要使用微 变等效模型法。 晶体管的模型有两种,低频为h参数等效模型,高频为混合π 模型。 分析放大电路的步骤为先直流,后交流。即先用直流通路计 算静态工作点,后画出交流通路,用低频小信号模型计算电 压放大倍数、输入电阻和输出电阻等交流参数。 由于静态工作点影响电路的性能,故实用放大电路都要有静 态工作点稳定的措施。

第三章TTL门电路讲解

第三章TTL门电路讲解

5
IB2 80uA
三极管工作在饱和状态的电流条件为:
4
3
放大区 IB1 40uA
2
IB> IBS 电压条件为:
发射结正 0 截止区
集电结正偏:VBC 0,VB VC
0
2468
VCE /V
截止区:IC接近零的区域,IB=0的曲线的下方。
放大区:IC平行于VCE轴的区域,曲线基本 平行等距。 IC IB
T2、T2′截止, T5截止 , T4导通 Y=1
Y=(A+B) ′
其他类型的TTL门电路
1、其他逻辑功能的门电路
1
0
0
1
A=B=1 T2、T5导通, T4截止 Y=0
C=D=1 T2 ′ 、T5导通, T4截止 Y=0
1
0
仅当A、B和C、D每组输
入都不同时为1
1
0
0
(例A=0B=1C=1D=0, T2、T2′截止,T5截止,T4 导通)
线性区
饱和区 转折区(CD)
中点的输入电压称为
阈值电压(门槛电压)VTH
饱和区 (DE)
截止区(AB) VI =0 T2、T5截止, T4导通 VO=1
线性区(BC) VI升高 T2导通, T5截止 VO降低
转折区(CD) VI=1
v
T2、T5导通
VO=0
中点的输入电压VTH
称为阈值电压(门槛电压)
的输出电平,并说明电路参数的设计是否合理。
vB vI vI VEE R1 (vI vI 8 3.3)V
R1 R2
13.3
RB R1 R2 3.310 2.5 KΩ
R1 R2 3.3 10

最新双极型三极管放大电路的三种基本组态知识讲解

最新双极型三极管放大电路的三种基本组态知识讲解

=
rbe 1
+Rs′ +β
// Re
10
上页 下页 首页
第五节 双极型三极管放大电路的三种基本组态
[例2.5.1] 估算图示电路的静态工作点,
并计算电流放大倍数、电压放大倍数
和输入、输出电阻。
10kΩ
Rs
+ us
-
+VCC
240kΩ
Rb
C1 +
β=40
VT C2
ui 5.6kΩ 5.6kΩ
Re
RL
Ri ′ c
Ri ′= rbe + (1 + β) Re′
+ RL uo
-
Ri = Rb //[ rbe + (1 + β) Re′]
8
上页 下页 首页
第五节 双极型三极管放大电路的三种基本组态
5. 输出电阻
b ib
e - ie
+ Rs us+ ui
--
rbe Rb
+
iC βib
RL Re
uo
-
c
41 × 2.8 = 1.6 + 41× 2.8 = 0.986
13
上页 下页 首页
第五节 双极型三极管放大电路的三种基本组态
3. 输入、输出电阻
b ib
e - ie
+ Rs us+ ui
rbe Rb
iC βib
+
RL Re
uo
--
-
c
Ri = Rb //[ rbe + (1 + β) Re′] = 78.4 kΩ
双极型三极管放大电路的 三种基本组态

电子电工学——模拟电子技术 第四章 双极结型三极管及发达电路基础

电子电工学——模拟电子技术 第四章 双极结型三极管及发达电路基础

4.1 双极结型三极管BJT
(Bipolar Junction Transistor)
又称半导体三极管、晶 体管,或简称为三极管。
分类: 按材料分:硅管、锗管 按结构分:NPN型、PNP型 按频率分:高频管、低频管 按功率分:小功率、大功率
半导体三极管的型号
国家标准对半导体三极管的命名如下:
3 D G 110 B
c
e V VCE
VCC
V
VBE
也是一组特性曲线
实验电路
1.共射极电路的特性曲线
输入特性 :iB=f(vBE)|vCE=const
(1)VCE=0V时,发射结和集电结均正偏,输入特性相当于两个PN结并联
(2)VCE=1V时,发射结正偏,集电结反偏,收集电子能力增强,发射极发
射到基区的电子大部分被集电极收集,从而使得同样的VBE时iB减小。
ICEO (1 )ICBO 值愈大,则该管的 ICEO 也愈大。
3.极限参数
(1) 集电极最大允许电流 ICM
过流区
当IC过大时,三极管的值要 iC
减小。在IC=ICM时,值下降 ICM
到额定值的三分之二。
PCM = iCvCE
(2) 集电极最大允许耗散功率 PCM
将 iC 与 vCE 乘 积 等 于 规 定 的 PCM 值各点连接起来,可得 一条双曲线。
利用IE的变化去控制IC,而表征三极管电流控制作用的参 数就是电流放大系数 。
共射极组态连接方式
IE UBE
+ Uo
-
49 IC 0.98(mA)
IB
20( A)
共射极接法应用我们得到的结论:
1、从三极管的输入电流控制输出电流这一点看来,这两 种电路的基本区别是共射极电路以基极电流作为输入控制 电流。 2、共基极电路是以发射极电流作为输入控制电流。

双极结型三极管及放大电路基础

双极结型三极管及放大电路基础

集电区收集电子的
能力很弱,iC主要由 vCE决定:vCE↑→ic↑
=80μA =60μA =40μA
=20μA
vCE /V
现以iB=40uA一条加以说明:
(3)当uCE增加到使集电结反偏电压较大时,如:
vCE≥1V vCB≥0.7V 运动到集电结的电子基本上都可以被集电区
收集,此后vCE 再 增加,电流也没有 iC /mA 明显得增加,特性
曲线进入与vCE轴 基本平行的区域。
同理,可作出iB= 其他值的曲线。
=80μA =60μA =40μA
=20μA
vCE /V
输出特性曲线可以划分为三个区域:
饱和区——iC受vCE显著控制的区域,该区域内 vCE的数值较小,一般vCE≤vBE。此时Je正偏,Jc 正偏或反偏电压很小。
iC /mA
=80μA =60μA =40μA
IB+ICBO=IBN IB=IBN-ICBO ≈IBN
c IC
ICBO
IB
RbbIBE
N
ICN
Jc P Je
N
VBB
e IE
Rc VCC
例:共发射极接法
利用BJT组成的放大电路,其中一个电极 作为信号输入端,一个电极作为输出端,另一 个电极作为输入、输出回路的共同端。根据共 同端的不同,BJT可以有三种连接方式(称三 种组态):
=20μA
vCE /V
输出特性曲线可以划分为三个区域:
饱和区——iC受vCE显著控制的区域,该区域内vCE的数值较 小,一般vCE<0.7V(硅管)。此时Je正偏,Jc正偏或反偏电 压很小。
截止区——iC接近零的区域,相当iB=0的曲线的
下方。此时Je反偏,Jc反偏。

双极型晶体三极管

双极型晶体三极管

双极型晶体三极管
双极型晶体三极管(BJT)是一种具有三个终端的电子器件,由三部分掺杂程度不同的半导体制成。

这种晶体管的工作同时涉及电子和空穴两种载流子的流动,因此被称为双极性的。

它也被称为双极性载流子晶体管。

这种晶体管能够放大信号,并且具有较好的功率控制、高速工作以及耐久能力,所以它常被用来构成放大器电路,或驱动扬声器、电动机等设备,并被广泛地应用于航空航天工程、医疗器械和机器人等应用产品中。

第2章 双极型晶体管及其基本放大电路 参考答案

第2章 双极型晶体管及其基本放大电路 参考答案

均很小。(1)若要求放大电路的最大不失真输出电压幅度尽可能大,则上偏置电阻 Rb1
应为多大?设晶体管的 ICEO 和UCES 皆为零,UBE = 0.7V 。(2)在上述条件下,求
Aɺu = ?
解:(1)Q 点在交流负载线的中点时输出幅度最大,由此可得
,解得 , 。 UICCQERQL′≈=VUCCCEQ− ICQ (Rc +Re )
2.7 分压式稳定工作点共射放大电路如图 ( ) 2.6.4 a
所示,习题 2.7 图为晶体管输出特性及交直流负载线,
且负载电阻 RL = 6kΩ 。(1)确定 Rc 、Re 和VCC 的数值;
( )若 , ,试确定 、 。 2 IRb2 = 370µA UBE = 0.7V
Rb1 Rb2
习题 2.7 图
解:UB

Rb2 Rb1 + Rb2
VCC
=
12 30 +12
×12

3.43V
I EQ
= UB − UBEQ Re1 + Re2
=
3.43 − 0.7 200 +1300
= 1.82mA
rbe
=
rbb′
+
(1 +
β)
26(mV) IEQ (mA)
=
80
+
61× 26 1.82

0.95kΩ
Aɺ u
管 ( 其 极 限 参 数 , , ICM = 30mA
U(BR)CEO = 9V
), ,取 。 , PCM =100mW β = 20 UBE = −0.3V Rb = 24kΩ
Rc = 0.5kΩ ,−VCC = −12V 。试分析:(1)电路中的晶体

第三章 双极性三极管及其放大电路基础

第三章 双极性三极管及其放大电路基础
子的结构尺寸和掺杂浓度有关,与外加电压无关。 一般 >> 1 。
一、双极型三极管BJT
BJT放大的条件和电流分配关系
放大的条件: 发射结正向偏置;集电结反向偏置。 电流分配关系:
I C I B I E I B IC (1 ) I B
这是贯穿模拟电子电路分析的两个最重要的概念
无量纲 电导
三、放大电路的分析方法
小信号模型分析法(等效电路法)
1、晶体管的h参数等效模型(交流等效模型) 交流等效模型(按式子画模型)
U be h11 I b h12U CE I C h21 I b h22U CE
三、放大电路的分析方法
小信号模型分析法(等效电路法)
2、h参数的物理意义
放大的概念与放大电路的性能指标
1、放大的概念
放大的对象:变化量 放大的本质:能量的控制
判断电路能否放 大的基本出发点
放大的特征:功率放大
放大的基本要求:不失真
二、基本共射极放大电路
放大的概念与放大电路的性能指标
2、性能指标
任何放大电路均可看成为两端口网络。
输出电流 输入电流
信号源 内阻
信号源
二、基本共射极放大电路
基本共射放大电路的组成及各元件的作用
动态信号作用时:
uI ib ic iRc uCE (uo )
输入电压 uI为零时,晶体管各 极的电流、b-e间电压、管压降, 称为静态工作点Q。记作IBQ、 ICQ(IEQ)、 UBEQ、 UCEQ。 基本共射放大电路

IC 1 100 I B 0.01
IC 5 50 I B 0.1
一、双极型三极管BJT
讨论

第四章BJT及放大电路基础教材

第四章BJT及放大电路基础教材

思考题
1、可否用两个二极管背靠背地相联以构成一个BJT? 2、BJT符号中的箭头方向代表什么?
3、能否将BJT的e、c两电极交换使用?
4、要使BJT具有放大作用,Je和Jc的偏置电压应如何连接?
5、如何判断BJT 的三种组态?
6、有哪几个参数确定BJT的安全工作区
7、三极管组成电路如左图所示,试分析 (1)当Vi=0V时 (2)当Vi=3V时 电路中三极管的工作状态。 解:(1)当Vi=0V时 ∵Vbe=0V,Ib≈0 ∴三极管处于截止状态, Vo=Vcc=12V (2)当Vi=3V时 三极管Je结处于正偏, Jc结处于反偏状态
20
0.4 0.8
PNP型锗管 vBE(V) vBE 0.2 V
死区电压: 硅管0.5V, 锗管0.1V。
2. 输出特性
iC(mA )
4
iC f (vCE ) i
B 常数
输出特性曲线通常分三个工作区:
(1) 放大区
100A
3
2
1
0
在放大区有 iC= iB , 也称为线性区,具有恒 80A 流特性。 60A 放大区 在放大区,发射结处 40A 于正向偏置、集电结处 20A 于反向偏置,晶体管工 iB=0 3 6 9 12 v (V) 作于放大状态。 CE
2、极间反向饱和电流 (1) 集电极基极间 反向饱和电流ICBO
-
ICBO
uA
b
+
c e
VCC Ie =0
4.1.4
主要参数
b c e
ICEO
uA +
2、极间反向饱和电流
(2) 集电极发射极间
反向饱和电流ICEO 即输出特性曲 线IB=0那条曲线所 对应的Y坐标的数 值。 ICEO也称为集 电极发射极间穿透 电流。

第2章 双极型三极管及其放大电路

第2章 双极型三极管及其放大电路

例1:测晶体管各极电流,当IB=40µA时,IC=1.6mA, :测晶体管各极电流, 时 , 分别画出当I 管或PNP 求 β , 分别画出当 B=70µA,且该管为 , 该管为NPN管或 管或
管时的各极电流。 管时的各极电流。 解:
IC 1600 β≈ = = 40 IB 40
IC ≈ βIB = 2.8mA
温度变化大的环境应选用硅管。 温度变化大的环境应选用硅管。 硅管
集电极- 集电极-发射极之间的穿透电流 ICEO
ICEO与输出特性曲线IB=0对应 与输出特性曲线 对应
穿透电流 I CEO = (1 + β ) I CBO
3、特征频率 fT
β 值下降到 时的信号频率 。 值下降到1时的信号频率
4、极限参数 (1)最大集电极耗散功率 PCM ) PCM = iCuCE=常数 (2)最大集电极电流 ICM )
2、输出特性
iC
iC是关于uCE的函数, 的函数,
受IB限制 (1)放大区 放大区 =100 µA
5 4
UCE>UBE>0, ,
(2)截止区 截止区
IC = βIB
80 µA 放 大 区 60 µA 40 µA 20 µA IB = 0
5 10 15
饱 和 3 区
1、三极管内部载流子的传输过程 IC
c
ICBO
过程: 过程: (1)发射 (2)复合和扩散 (3) 收集 关系: 关系: IC = ICn + ICBO
ICn
Rc IB
b
Rb
e
IE = IC + IB
e
2、三极管内的电流分配关系 (1)共基直流电流放大系数 )
I Cn I C ≈ α= IE IE

双极型三极管及其放大电路

双极型三极管及其放大电路

iC
放大区
为什么uCE较小时iC随uCE变 化很大?为什么进入放大状态
曲线几乎是横轴的平行线?
iB
iC
iB
UCE常量
截止区
β是常数吗?什么是理想晶体管?什么情况下 ?
模拟电子技术基础
晶体管的三个工作区域
状态
uBE
iC
uCE
放大
≥ Uon
βiB
≥ uBE
饱和
≥ Uon <βiB
≤ uBE
将三极管同样分为三个区,发射区、基区、集电区,称
它为PNP三极管.
C
c
P
集电区 作用 收集载流子——空穴 b
B
N
基区 作用 传输载流子——空穴
e
P
发射区 作用 向基区发射多子——空穴
E
模拟电子技术基础
三极管的放大原理
1. 放大的条件
▪ 为保证BJT能放大需满足内部和外部条件
▪ 1). BJT放大的内部条件
BJT的结构简介
Bipolar Junction Transistor,BJT,双极结型晶体管 BJT是通过一定工艺,将两个PN结结合在一起的器件。具有 电流放大作用。
为什么有孔?
小功率管中功率管大 Nhomakorabea率管模拟电子技术基础
c
三极管的结构
集电结
C
基极 base
N
b
集电极
collectore
集电区 作用
双极型三极管及其放大电路
1. 三极管的结构 2. 三极管的放大原理 3. 三极管特性曲线(输入特性曲线,输出特性曲线) 4. 共射极放大电路 5. 图解分析法 6. 小信号模型分析法 7. 放大电路的工作点稳定问题 8. 共集电极电路和共基极电路 9. 放大电路的频率响应

双极结型三极管及放大电路基础

双极结型三极管及放大电路基础
缺陷: 不能分析工作频率较高时旳电路工作状态,也不能用来分
析放大电路旳输入电阻、输出电阻等动态性能指标。
4.3.2 小信号模型分析法
1. BJT旳H参数及小信号模型
建立小信号模型旳意义
因为三极管是非线性器件,这么就使得放大电路旳 分析非常困难。建立小信号模型,就是将非线性器件做 线性化处理,从而简化放大电路旳分析和设计。
够不加区别。
4.1.4 BJT旳主要参数
2. 极间反向电流 (1) 集电极基极间反向饱和电流ICBO
发射极开路时,集电结旳反向饱和电流。
4.1.4 BJT旳主要参数
2. 极间反向电流 (2) 集电极发射极间旳反向饱和电流ICEO
ICEO=(1+ )ICBO
4.1.4 BJT旳主要参数
3. 极限参数
4.1.1 BJT旳构造简介
(a) 小功率管 (b) 小功率管 (c) 大功率管 (d) 中功率管
4.1.1 BJT旳构造简介
半导体三极管旳 构造示意图如图所示。 它有两种类型:NPN 型和PNP型。
(a) NPN型管构造示意 图
(b) PNP型管构造示意图 (c) NPN管旳电路符号 (d) PNP管旳电路符号
2. 动态工作情况旳图解分析 • 根据vs旳波形,在BJT旳输入特征曲线图上画出vBE 、 iB 旳
波形
vs Vsm sin ωt vBE VBB vs iB Rb
2. 动态工作情况旳图解分析 • 根据iB旳变化范围在输出特征曲线图上画出iC和vCE 旳波形
vCE VCC iC Rc
4.3.2 小信号模型分析法
1. BJT旳H参数及小信号模型 2. 用H参数小信号模型分析基本共射极放大电路 3. 小信号模型分析法旳合用范围

第三章双极结型三极管及放大电路基础资料

第三章双极结型三极管及放大电路基础资料

放大电路应遵循以下原则:
RS
1、有直流通路, 并保证合适的直流偏置。
VS +
RL

2、有交流通路,即待放大的
输入信号能加到晶体管上,
且放大了的信号能从电路中取出。 直流电源及偏置电路
模拟电子线路
共发射极放大器(建立放大器感性认识)
共发射极放大器是应用最为广泛的基本放大器。
NPN晶体管起放大作用;
远大于ΔvI,实现电压信号的放大。 放大作用:输入回路加微小信号,通过基极电流的改变
量去控制集电极电流,从而将VCC的能量转换为与输入 信号变化规律相同、能量更大的输出信号。
模拟电子线路
对放大器的分析可分为直流分析和交流分析
直流分析:确定晶体管的静态工作点(各节点的直流电 压值)
交流分析:确定电路中各交流信号之间的关系。
50
降到额定值2/3时的iC值。 40
iC值超过ICM时管子易损坏。ICM 30
集电极最大允许功耗PCM
20 10
PCM=iCvCE
反向击穿电压
0
1.0 0.8
0.6 过Leabharlann 坏区0.4 安全工作区iB = 0.2mA
PC <PCM
10
20 V(BR)CEO 30
vCE / V
V(BR)CBO - 发射极开路时,集电极-基极间反向击穿电压。
模拟电子线路
2) 饱和区 vCE较小时,集电结吸引电子能力弱,iC不随iB的增加而增 加,晶体管失去放大作用。饱和时集电极电压称为饱和压 降VCE(sat)。
Si管VCE(sat) ≈0.3V,而发射结的饱和压降VBE(sat) ≈0.8V, 故VCB(sat) = VCE(sat) - VBE(sat) ≈- 0.5V

三极管基本知识及电子电路图详解

三极管基本知识及电子电路图详解

三极管基本知识及电子电路图详解
"晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件" 在电子元件家族中,三极管属于半导体主动元件中的分立元件。

广义上,三极管有多种,常见如下图所示。

狭义上,三极管指双极型三极管,是最基础最通用的三极管。

本文所述的是狭义三极管,它有很多别称:
三极管的发明
晶体三极管出现之前是真空电子三极管在电子电路中以放大、开关功能控制电流。

真空电子管存在笨重、耗能、反应慢等缺点。

二战时,军事上急切需要一种稳定可靠、快速灵敏的电信号放大元件,研究成果在二战结束后获得。

早期,由于锗晶体较易获得,主要研制应用的是锗晶体三极管。

硅晶体出现后,由于硅管生产工艺很高效,锗管逐渐被淘汰。

经半个世纪的发展,三极管种类繁多,形貌各异。

小功率三极管一般为塑料包封;
大功率三极管一般为金属铁壳包封。

三极管核心结构
核心是“PN”结
是两个背对背的PN结
可以是NPN组合,也或以是PNP组合
由于硅NPN型是当下三极管的主流,以下内容主要以硅NPN型三极管为例!
NPN型三极管结构示意图
硅NPN型三极管的制造流程
管芯结构切面图。

双极结型三极管

双极结型三极管

双极结型三极管(Bipolar Junction Transistor,简称BJT)是一种电流控制型半导体器件,具有放大作用,是电子电路的核心元件之一。

双极结型三极管由三个掺杂区组成,分别是发射区、基区和集电区。

发射区和基区之间形成一个PN 结,称为发射结;基区和集电区之间也形成一个PN 结,称为集电结。

在正常工作时,发射结处于正向偏置状态,集电结处于反向偏置状态。

当发射结正向偏置时,发射区的多数载流子(电子)会越过发射结进入基区,形成发射极电流。

这些电子在基区中与少数载流子(空穴)复合,形成基极电流。

基极电流的大小与发射极电流成正比,因此双极结型三极管具有电流放大作用。

双极结型三极管有两种工作状态:截止状态和放大状态。

当发射结没有正向偏置时,发射极电流为零,双极结型三极管处于截止状态;当发射结正向偏置时,发射极电流不为零,双极结型三极管处于放大状态。

双极结型三极管广泛应用于放大电路、开关电路、稳压电路等各种电子电路中。

它具有增益高、输入电阻大、输出电阻小等优点,是电子电路中不可或缺的元件之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1.4 BJT的主要参数
2. 极间反向电流 (2) 集电极发射极间的反向饱和电流ICEO ICEO=(1+ )ICBO
4.1.4 BJT的主要参数
3. 极限参数
(1) 集电极最大允许电流ICM
(2) 集电极最大允许功率损耗PCM
PCM= ICVCE
4.1.4 BJT的主要参数
3. 极限参数
end
4.2 基本共射极放大电路
4.2.1 基本共射极放大电路的组成 4.2.2 基本共射极放大电路的工作原理
4.2.1 基本共射极放大电路的组成
基本共射极放大电路
4.2.2 基本共射极放大电路的工作原理
1. 静态(直流工作状态) 输入信号vi=0时, 放大电路的工作状态称 为静态或直流工作状态。
iC f 2 (iB , vCE )
BJT双口网络
在小信号情况下,对上两式取全微分得 vBE vBE dvBE VCEQ diB I BQ dvCE iB vCE iC iC diC VCEQ diB I BQ dvCE iB vCE 用小信号交流分量表示 vbe= hieib+ hrevce
vs Vsm sinωt
vBE VBB vs iB Rb
2. 动态工作情况的图解分析 根据iB的变化范围在输出特性曲线图上画出iC和vCE 的波形
vCE VCC iC Rc
2. 动态工作情况的图解分析 共射极放大电路中的电压、 电流波形
3. 静态工作点对波形失真的影响
3. 三极管的三种组态
BJT的三种组态
(a) 共基极接法,基极作为公共电极,用CB表示; (b) 共发射极接法,发射极作为公共电极,用CE表示; (c) 共集电极接法,集电极作为公共电极,用CC表示。
4. 放大作用
共基极放大电路
若 vI = 20mV 使 iE = -1 mA,当
= 0.98 时,vO=?
直流通路
在输入特性曲线上,作出直线 vBE VBB iB Rb ,两线的交点 即是Q点,得到IBQ。 在输出特性曲线上,作出直流负载线 VCE=VCC-iCRc,与IBQ曲
线的交点即为Q点,从而得到VCEQ 和ICQ。
2. 动态工作情况的图解分析 根据vs的波形,在BJT的输入特性曲线图上画出vBE 、 iB 的 波形
4.1.5 温度对BJT参数及特性的影响
4.1.1 BJT的结构简介
(a) 小功率管
(b) 小功率管
(c) 大功率管
(d) 中功率管
4.1.1 BJT的结构简介
半导体三极管的结 构示意图如图所示。 它有两种类型:NPN型 和PNP型。
(a) NPN型管结构示意图 (b) PNP型管结构示意图
(c) NPN管的电路符号
4.3.1 图解分析法
1. 静态工作点的图解分析 采用该方法分析静态工作点,必须已知三极管的输入 输出特性曲线。
共射极放大电路
4.3.1 图解分析法
1. 静态工作点的图解分析 首先,画出直流通路 列输入回路方程 vBE VBB iB Rb 列输出回路方程(直流负载线) VCE=VCC-iCRc
(3) 共基极直流电流放大系数
=(IC-ICBO)/IE≈IC/IE
(4) 共基极交流电流放大系数α
α =iC/iEvCB=const.
当ICBO和ICEO很小时, ≈、 ≈,可以不 加区分。
4.1.4 BJT的主要参数
2. 极间反向电流 (1) 集电极基极间反向饱和电流ICBO 发射极开路时,集电结的反向饱和电流。
(3) 反向击穿电压 V(BR)CBO——发射极开路时的集电结反
向击穿电压。 V(BR) EBO——集电极开路时发射结的反 向击穿电压。 V(BR)CEO——基极开路时集电极和发射 极间的击穿电压。 几个击穿电压有如下关系 V(BR)CBO>V(BR)CEO>V(BR) EBO
4.1.5 温度对BJT参数及特性的影响
建立小信号模型的思路
当放大电路的输入信号电压很小时,就可以把三极 管小范围内的特性曲线近似地用直线来代替,从而可以 把三极管这个非线性器件所组成的电路当作线性电路来 处理。
1. BJT的H参数及小信号模型 H参数的引出 对于BJT双口网络,已知输入 输出特性曲线如下: iB=f(vBE) vCE=const iC=f(vCE) iB=const 可以写成: vBE f1 (iB , vCE )
hre和hoe都很小,常 忽略它们的影响。
1. BJT的H参数及小信号模型 H参数的确定
一般用测试仪测出;
rbe 与Q点有关,可用图示仪测出。 一般也用公式估算 rbe (忽略 r′e ) rbe= rbb′ + (1+ ) re 其中对于低频小功率管 rbb′≈200
(1)内部条件:发射区杂质浓度远大于基
区杂质浓度,且基区很薄。
(2)外部条件:发射结正向偏置,集电结
反向偏置。
4.1.3 BJT的V-I 特性曲线
(以共射极放大电路为例) 1. 输入特性曲线 iB=f(vBE) vCE=const.
(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。
(2) 当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状态,开 始收集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。
外部条件:发射结正偏
集电结反偏
1. 内部载流子的传输过程 发射区:发射载流子 集电区:收集载流子 基区:传送和控制载流子 (以NPN为例)
IE=IB+ IC IC= INC+ ICBO
放大状态下BJT中载流子的传输过程
2. 电流分配关系
根据传输过程可知 IE=IB+ IC IC= INC+ ICBO
则 iC = iE = -0.98 mA,vO = -iC• RL = 0.98 V, 电压放大倍数
vO 0.98V Av 49 vI 20mV
综上所述,三极管的放大作用,主要是依 靠它的发射极电流能够通过基区传输,然后到 达集电极而实现的。 实现这一传输过程的两个条件是:
end
交流通路
4.3 放大电路的分析方法
4.3.1 图解分析法
1. 静态工作点的图解分析
2. 动态工作情况的图解分析 3. 非线性失真的图解分析 4. 图解分析法的适用范围
4.3.2 小信号模型分析法
1. BJT的H参数及小信号模型 2. 用H参数小信号模型分析基本共射极放大电路
3. 小信号模型分析法的适用范围
截止失真的波形
3. 静态工作点对波形失真的影响
饱和失真的波形
4. 图解分析法的适用范围 幅度较大而工作频率不太高的情况 优点: 直观、形象。有助于建立和理解交、直流共存,静态和 动态等重要概念;有助于理解正确选择电路参数、合理设置 静态工作点的重要性。能全面地分析放大电路的静态、动态 工作情况。
H参数与工作点有关,在放大区基本不变。
H参数都是微变参数,所以只适合对交流信号的分析。
1. BJT的H参数及小信号模型 模型的简化 BJT在共射极连接时,其
H参数的数量级一般为
hie hre 103 103 ~ 104 he 2 h h 10 5 S fe oe 10
ic= hfeib+ hoevce
1. BJT的H参数及小信号模型 H参数的引出 其中:
vBE h ie V iB CEQ iC h fe V iB CEQ vBE h re I vCE BQ iC ; hrevce ic= hfeib+ hoevce
4.1 4.2 4.3 4.4 4.5 4.6 4.7 *4.8
BJT 基本共射极放大电路 放大电路的分析方法 放大电路静态工作点的稳定问题 共集电极放大电路和共基极放大电路 组合放大电路 放大电路的频率响应 单级放大电路的瞬态响应
4.1 BJT
4.1.1 BJT的结构简介
4.1.2 放大状态下BJT的工作原理 4.1.3 BJT的V-I 特性曲线 4.1.4 BJT的主要参数
传输到集电极的电流 设 发射极注入电流
I NC 即 IE
通常 IC >> ICBO
IC 则有 IE
为电流放大系数。它只
与管子的结构尺寸和掺杂浓度 有关,与外加电压无关。一般 = 0.90.99 。 放大状态下BJT中载流子的传输过程
2. 电流分配关系 又设 1
(d) PNP管的电路符号
4.1.1 BJT的结构简介
集成电路中典型NPN型BJT的截面图
4.1.2 放大状态下BJT的工作原理
三极管的放大作用是在一定的外部条件控制下,通过载 流子传输体现出来的。
由于三极管内有两种载流子(自 由电子和空穴)参与导电,故称为双 极型三极管或BJT (Bipolar Junction Transistor)。
1. 温度对BJT参数的影响 (1) 温度对ICBO的影响 温度每升高10℃,ICBO约增加一倍。 (2) 温度对 的影响 温度每升高1℃, 值约增大0.5%~1%。 (3) 温度对反向击穿电压V(BR)CBO、V(BR)CEO的影响 温度升高时,V(BR)CBO和V(BR)CEO都会有所提高。 2. 温度对BJT特性曲线的影响
共射极连接
4.1.3 BJT的V-I 特性曲线
2. 输出特性曲线 iC=f(vCE) iB=const.
输出特性曲线的三个区域:
饱和区:iC明显受vCE控制的区域, 该区域内,一般vCE<0.7V (硅管)。 此时,发射结正偏,集电结正偏或 反偏电压很小。 截止区:iC接近零的区域,相当iB=0 的曲线的下方。此时, vBE小于死区 电压。 放大区:iC平行于vCE轴的区域,曲 线基本平行等距。此时,发射结正 偏,集电结反偏。
相关文档
最新文档