双极结三极管及其基本电路
双极型晶体三极管及其基本放大电路
4、多级放大电路的耦合方式有阻容耦合、变压器耦合、直接耦 合等类型。前级输出即为后级的输入,前级的输出电阻是后 级的信号源内阻,后级的输入电阻是前级的负载电阻。放大 电路的总增益为各级放大倍数的乘积;输入电阻是第一级电 路的输入电阻,输出电阻是最后一级电路的输出电阻。
5、复合管放大电路的分析可以等效成单管放大电路的分析。
模拟电子技术
ห้องสมุดไป่ตู้
双极型晶体三极管及其基本放大电路
晶体管的结构、原理及特性曲线→放大电路的分析方法→由 晶体管构成的三种基本放大电路→多级放大电路和复合管的 分析→放大电路的频率响应。 1、晶体管按照结构分成和两种,按材料分成硅管和锗管,由 于硅管的温度特性较好,所以硅管应用广泛。 晶体管有三种工作状态:
多级放大电路的级数越多,通频带越窄。
模拟电子技术
由于电路中的电抗元件对不同频率的输入信号呈现的电抗值 不同,电路的电压放大倍数是信号频率的函数,即频率响应。 频率响应分为幅频特性和相频特性,可以用波特图表示。
6、单级放大电路的频率响应:在中频段基本与频率无关;在低 频段,电压放大倍数随频率的降低而减小,输出电压与输入 电压之间的相移也发生变化;在高频段,电压放大倍数随频 率的升高而减小,相移也发生变化。
2、放大电路的分析方法有图解法和微变等效模型法两种。图解 法主要用来分析失真和静态工作点,工程计算中主要使用微 变等效模型法。 晶体管的模型有两种,低频为h参数等效模型,高频为混合π 模型。 分析放大电路的步骤为先直流,后交流。即先用直流通路计 算静态工作点,后画出交流通路,用低频小信号模型计算电 压放大倍数、输入电阻和输出电阻等交流参数。 由于静态工作点影响电路的性能,故实用放大电路都要有静 态工作点稳定的措施。
第三章TTL门电路讲解
5
IB2 80uA
三极管工作在饱和状态的电流条件为:
4
3
放大区 IB1 40uA
2
IB> IBS 电压条件为:
发射结正 0 截止区
集电结正偏:VBC 0,VB VC
0
2468
VCE /V
截止区:IC接近零的区域,IB=0的曲线的下方。
放大区:IC平行于VCE轴的区域,曲线基本 平行等距。 IC IB
T2、T2′截止, T5截止 , T4导通 Y=1
Y=(A+B) ′
其他类型的TTL门电路
1、其他逻辑功能的门电路
1
0
0
1
A=B=1 T2、T5导通, T4截止 Y=0
C=D=1 T2 ′ 、T5导通, T4截止 Y=0
1
0
仅当A、B和C、D每组输
入都不同时为1
1
0
0
(例A=0B=1C=1D=0, T2、T2′截止,T5截止,T4 导通)
线性区
饱和区 转折区(CD)
中点的输入电压称为
阈值电压(门槛电压)VTH
饱和区 (DE)
截止区(AB) VI =0 T2、T5截止, T4导通 VO=1
线性区(BC) VI升高 T2导通, T5截止 VO降低
转折区(CD) VI=1
v
T2、T5导通
VO=0
中点的输入电压VTH
称为阈值电压(门槛电压)
的输出电平,并说明电路参数的设计是否合理。
vB vI vI VEE R1 (vI vI 8 3.3)V
R1 R2
13.3
RB R1 R2 3.310 2.5 KΩ
R1 R2 3.3 10
最新双极型三极管放大电路的三种基本组态知识讲解
=
rbe 1
+Rs′ +β
// Re
10
上页 下页 首页
第五节 双极型三极管放大电路的三种基本组态
[例2.5.1] 估算图示电路的静态工作点,
并计算电流放大倍数、电压放大倍数
和输入、输出电阻。
10kΩ
Rs
+ us
-
+VCC
240kΩ
Rb
C1 +
β=40
VT C2
ui 5.6kΩ 5.6kΩ
Re
RL
Ri ′ c
Ri ′= rbe + (1 + β) Re′
+ RL uo
-
Ri = Rb //[ rbe + (1 + β) Re′]
8
上页 下页 首页
第五节 双极型三极管放大电路的三种基本组态
5. 输出电阻
b ib
e - ie
+ Rs us+ ui
--
rbe Rb
+
iC βib
RL Re
uo
-
c
41 × 2.8 = 1.6 + 41× 2.8 = 0.986
13
上页 下页 首页
第五节 双极型三极管放大电路的三种基本组态
3. 输入、输出电阻
b ib
e - ie
+ Rs us+ ui
rbe Rb
iC βib
+
RL Re
uo
--
-
c
Ri = Rb //[ rbe + (1 + β) Re′] = 78.4 kΩ
双极型三极管放大电路的 三种基本组态
电子电工学——模拟电子技术 第四章 双极结型三极管及发达电路基础
4.1 双极结型三极管BJT
(Bipolar Junction Transistor)
又称半导体三极管、晶 体管,或简称为三极管。
分类: 按材料分:硅管、锗管 按结构分:NPN型、PNP型 按频率分:高频管、低频管 按功率分:小功率、大功率
半导体三极管的型号
国家标准对半导体三极管的命名如下:
3 D G 110 B
c
e V VCE
VCC
V
VBE
也是一组特性曲线
实验电路
1.共射极电路的特性曲线
输入特性 :iB=f(vBE)|vCE=const
(1)VCE=0V时,发射结和集电结均正偏,输入特性相当于两个PN结并联
(2)VCE=1V时,发射结正偏,集电结反偏,收集电子能力增强,发射极发
射到基区的电子大部分被集电极收集,从而使得同样的VBE时iB减小。
ICEO (1 )ICBO 值愈大,则该管的 ICEO 也愈大。
3.极限参数
(1) 集电极最大允许电流 ICM
过流区
当IC过大时,三极管的值要 iC
减小。在IC=ICM时,值下降 ICM
到额定值的三分之二。
PCM = iCvCE
(2) 集电极最大允许耗散功率 PCM
将 iC 与 vCE 乘 积 等 于 规 定 的 PCM 值各点连接起来,可得 一条双曲线。
利用IE的变化去控制IC,而表征三极管电流控制作用的参 数就是电流放大系数 。
共射极组态连接方式
IE UBE
+ Uo
-
49 IC 0.98(mA)
IB
20( A)
共射极接法应用我们得到的结论:
1、从三极管的输入电流控制输出电流这一点看来,这两 种电路的基本区别是共射极电路以基极电流作为输入控制 电流。 2、共基极电路是以发射极电流作为输入控制电流。
双极结型三极管及放大电路基础
集电区收集电子的
能力很弱,iC主要由 vCE决定:vCE↑→ic↑
=80μA =60μA =40μA
=20μA
vCE /V
现以iB=40uA一条加以说明:
(3)当uCE增加到使集电结反偏电压较大时,如:
vCE≥1V vCB≥0.7V 运动到集电结的电子基本上都可以被集电区
收集,此后vCE 再 增加,电流也没有 iC /mA 明显得增加,特性
曲线进入与vCE轴 基本平行的区域。
同理,可作出iB= 其他值的曲线。
=80μA =60μA =40μA
=20μA
vCE /V
输出特性曲线可以划分为三个区域:
饱和区——iC受vCE显著控制的区域,该区域内 vCE的数值较小,一般vCE≤vBE。此时Je正偏,Jc 正偏或反偏电压很小。
iC /mA
=80μA =60μA =40μA
IB+ICBO=IBN IB=IBN-ICBO ≈IBN
c IC
ICBO
IB
RbbIBE
N
ICN
Jc P Je
N
VBB
e IE
Rc VCC
例:共发射极接法
利用BJT组成的放大电路,其中一个电极 作为信号输入端,一个电极作为输出端,另一 个电极作为输入、输出回路的共同端。根据共 同端的不同,BJT可以有三种连接方式(称三 种组态):
=20μA
vCE /V
输出特性曲线可以划分为三个区域:
饱和区——iC受vCE显著控制的区域,该区域内vCE的数值较 小,一般vCE<0.7V(硅管)。此时Je正偏,Jc正偏或反偏电 压很小。
截止区——iC接近零的区域,相当iB=0的曲线的
下方。此时Je反偏,Jc反偏。
双极型晶体三极管
双极型晶体三极管
双极型晶体三极管(BJT)是一种具有三个终端的电子器件,由三部分掺杂程度不同的半导体制成。
这种晶体管的工作同时涉及电子和空穴两种载流子的流动,因此被称为双极性的。
它也被称为双极性载流子晶体管。
这种晶体管能够放大信号,并且具有较好的功率控制、高速工作以及耐久能力,所以它常被用来构成放大器电路,或驱动扬声器、电动机等设备,并被广泛地应用于航空航天工程、医疗器械和机器人等应用产品中。
第2章 双极型晶体管及其基本放大电路 参考答案
均很小。(1)若要求放大电路的最大不失真输出电压幅度尽可能大,则上偏置电阻 Rb1
应为多大?设晶体管的 ICEO 和UCES 皆为零,UBE = 0.7V 。(2)在上述条件下,求
Aɺu = ?
解:(1)Q 点在交流负载线的中点时输出幅度最大,由此可得
,解得 , 。 UICCQERQL′≈=VUCCCEQ− ICQ (Rc +Re )
2.7 分压式稳定工作点共射放大电路如图 ( ) 2.6.4 a
所示,习题 2.7 图为晶体管输出特性及交直流负载线,
且负载电阻 RL = 6kΩ 。(1)确定 Rc 、Re 和VCC 的数值;
( )若 , ,试确定 、 。 2 IRb2 = 370µA UBE = 0.7V
Rb1 Rb2
习题 2.7 图
解:UB
≈
Rb2 Rb1 + Rb2
VCC
=
12 30 +12
×12
≈
3.43V
I EQ
= UB − UBEQ Re1 + Re2
=
3.43 − 0.7 200 +1300
= 1.82mA
rbe
=
rbb′
+
(1 +
β)
26(mV) IEQ (mA)
=
80
+
61× 26 1.82
≈
0.95kΩ
Aɺ u
管 ( 其 极 限 参 数 , , ICM = 30mA
U(BR)CEO = 9V
), ,取 。 , PCM =100mW β = 20 UBE = −0.3V Rb = 24kΩ
Rc = 0.5kΩ ,−VCC = −12V 。试分析:(1)电路中的晶体
第三章 双极性三极管及其放大电路基础
一、双极型三极管BJT
BJT放大的条件和电流分配关系
放大的条件: 发射结正向偏置;集电结反向偏置。 电流分配关系:
I C I B I E I B IC (1 ) I B
这是贯穿模拟电子电路分析的两个最重要的概念
无量纲 电导
三、放大电路的分析方法
小信号模型分析法(等效电路法)
1、晶体管的h参数等效模型(交流等效模型) 交流等效模型(按式子画模型)
U be h11 I b h12U CE I C h21 I b h22U CE
三、放大电路的分析方法
小信号模型分析法(等效电路法)
2、h参数的物理意义
放大的概念与放大电路的性能指标
1、放大的概念
放大的对象:变化量 放大的本质:能量的控制
判断电路能否放 大的基本出发点
放大的特征:功率放大
放大的基本要求:不失真
二、基本共射极放大电路
放大的概念与放大电路的性能指标
2、性能指标
任何放大电路均可看成为两端口网络。
输出电流 输入电流
信号源 内阻
信号源
二、基本共射极放大电路
基本共射放大电路的组成及各元件的作用
动态信号作用时:
uI ib ic iRc uCE (uo )
输入电压 uI为零时,晶体管各 极的电流、b-e间电压、管压降, 称为静态工作点Q。记作IBQ、 ICQ(IEQ)、 UBEQ、 UCEQ。 基本共射放大电路
IC 1 100 I B 0.01
IC 5 50 I B 0.1
一、双极型三极管BJT
讨论
第四章BJT及放大电路基础教材
思考题
1、可否用两个二极管背靠背地相联以构成一个BJT? 2、BJT符号中的箭头方向代表什么?
3、能否将BJT的e、c两电极交换使用?
4、要使BJT具有放大作用,Je和Jc的偏置电压应如何连接?
5、如何判断BJT 的三种组态?
6、有哪几个参数确定BJT的安全工作区
7、三极管组成电路如左图所示,试分析 (1)当Vi=0V时 (2)当Vi=3V时 电路中三极管的工作状态。 解:(1)当Vi=0V时 ∵Vbe=0V,Ib≈0 ∴三极管处于截止状态, Vo=Vcc=12V (2)当Vi=3V时 三极管Je结处于正偏, Jc结处于反偏状态
20
0.4 0.8
PNP型锗管 vBE(V) vBE 0.2 V
死区电压: 硅管0.5V, 锗管0.1V。
2. 输出特性
iC(mA )
4
iC f (vCE ) i
B 常数
输出特性曲线通常分三个工作区:
(1) 放大区
100A
3
2
1
0
在放大区有 iC= iB , 也称为线性区,具有恒 80A 流特性。 60A 放大区 在放大区,发射结处 40A 于正向偏置、集电结处 20A 于反向偏置,晶体管工 iB=0 3 6 9 12 v (V) 作于放大状态。 CE
2、极间反向饱和电流 (1) 集电极基极间 反向饱和电流ICBO
-
ICBO
uA
b
+
c e
VCC Ie =0
4.1.4
主要参数
b c e
ICEO
uA +
2、极间反向饱和电流
(2) 集电极发射极间
反向饱和电流ICEO 即输出特性曲 线IB=0那条曲线所 对应的Y坐标的数 值。 ICEO也称为集 电极发射极间穿透 电流。
第2章 双极型三极管及其放大电路
例1:测晶体管各极电流,当IB=40µA时,IC=1.6mA, :测晶体管各极电流, 时 , 分别画出当I 管或PNP 求 β , 分别画出当 B=70µA,且该管为 , 该管为NPN管或 管或
管时的各极电流。 管时的各极电流。 解:
IC 1600 β≈ = = 40 IB 40
IC ≈ βIB = 2.8mA
温度变化大的环境应选用硅管。 温度变化大的环境应选用硅管。 硅管
集电极- 集电极-发射极之间的穿透电流 ICEO
ICEO与输出特性曲线IB=0对应 与输出特性曲线 对应
穿透电流 I CEO = (1 + β ) I CBO
3、特征频率 fT
β 值下降到 时的信号频率 。 值下降到1时的信号频率
4、极限参数 (1)最大集电极耗散功率 PCM ) PCM = iCuCE=常数 (2)最大集电极电流 ICM )
2、输出特性
iC
iC是关于uCE的函数, 的函数,
受IB限制 (1)放大区 放大区 =100 µA
5 4
UCE>UBE>0, ,
(2)截止区 截止区
IC = βIB
80 µA 放 大 区 60 µA 40 µA 20 µA IB = 0
5 10 15
饱 和 3 区
1、三极管内部载流子的传输过程 IC
c
ICBO
过程: 过程: (1)发射 (2)复合和扩散 (3) 收集 关系: 关系: IC = ICn + ICBO
ICn
Rc IB
b
Rb
e
IE = IC + IB
e
2、三极管内的电流分配关系 (1)共基直流电流放大系数 )
I Cn I C ≈ α= IE IE
双极型三极管及其放大电路
iC
放大区
为什么uCE较小时iC随uCE变 化很大?为什么进入放大状态
曲线几乎是横轴的平行线?
iB
iC
iB
UCE常量
截止区
β是常数吗?什么是理想晶体管?什么情况下 ?
模拟电子技术基础
晶体管的三个工作区域
状态
uBE
iC
uCE
放大
≥ Uon
βiB
≥ uBE
饱和
≥ Uon <βiB
≤ uBE
将三极管同样分为三个区,发射区、基区、集电区,称
它为PNP三极管.
C
c
P
集电区 作用 收集载流子——空穴 b
B
N
基区 作用 传输载流子——空穴
e
P
发射区 作用 向基区发射多子——空穴
E
模拟电子技术基础
三极管的放大原理
1. 放大的条件
▪ 为保证BJT能放大需满足内部和外部条件
▪ 1). BJT放大的内部条件
BJT的结构简介
Bipolar Junction Transistor,BJT,双极结型晶体管 BJT是通过一定工艺,将两个PN结结合在一起的器件。具有 电流放大作用。
为什么有孔?
小功率管中功率管大 Nhomakorabea率管模拟电子技术基础
c
三极管的结构
集电结
C
基极 base
N
b
集电极
collectore
集电区 作用
双极型三极管及其放大电路
1. 三极管的结构 2. 三极管的放大原理 3. 三极管特性曲线(输入特性曲线,输出特性曲线) 4. 共射极放大电路 5. 图解分析法 6. 小信号模型分析法 7. 放大电路的工作点稳定问题 8. 共集电极电路和共基极电路 9. 放大电路的频率响应
双极结型三极管及放大电路基础
析放大电路旳输入电阻、输出电阻等动态性能指标。
4.3.2 小信号模型分析法
1. BJT旳H参数及小信号模型
建立小信号模型旳意义
因为三极管是非线性器件,这么就使得放大电路旳 分析非常困难。建立小信号模型,就是将非线性器件做 线性化处理,从而简化放大电路旳分析和设计。
够不加区别。
4.1.4 BJT旳主要参数
2. 极间反向电流 (1) 集电极基极间反向饱和电流ICBO
发射极开路时,集电结旳反向饱和电流。
4.1.4 BJT旳主要参数
2. 极间反向电流 (2) 集电极发射极间旳反向饱和电流ICEO
ICEO=(1+ )ICBO
4.1.4 BJT旳主要参数
3. 极限参数
4.1.1 BJT旳构造简介
(a) 小功率管 (b) 小功率管 (c) 大功率管 (d) 中功率管
4.1.1 BJT旳构造简介
半导体三极管旳 构造示意图如图所示。 它有两种类型:NPN 型和PNP型。
(a) NPN型管构造示意 图
(b) PNP型管构造示意图 (c) NPN管旳电路符号 (d) PNP管旳电路符号
2. 动态工作情况旳图解分析 • 根据vs旳波形,在BJT旳输入特征曲线图上画出vBE 、 iB 旳
波形
vs Vsm sin ωt vBE VBB vs iB Rb
2. 动态工作情况旳图解分析 • 根据iB旳变化范围在输出特征曲线图上画出iC和vCE 旳波形
vCE VCC iC Rc
4.3.2 小信号模型分析法
1. BJT旳H参数及小信号模型 2. 用H参数小信号模型分析基本共射极放大电路 3. 小信号模型分析法旳合用范围
第三章双极结型三极管及放大电路基础资料
放大电路应遵循以下原则:
RS
1、有直流通路, 并保证合适的直流偏置。
VS +
RL
-
2、有交流通路,即待放大的
输入信号能加到晶体管上,
且放大了的信号能从电路中取出。 直流电源及偏置电路
模拟电子线路
共发射极放大器(建立放大器感性认识)
共发射极放大器是应用最为广泛的基本放大器。
NPN晶体管起放大作用;
远大于ΔvI,实现电压信号的放大。 放大作用:输入回路加微小信号,通过基极电流的改变
量去控制集电极电流,从而将VCC的能量转换为与输入 信号变化规律相同、能量更大的输出信号。
模拟电子线路
对放大器的分析可分为直流分析和交流分析
直流分析:确定晶体管的静态工作点(各节点的直流电 压值)
交流分析:确定电路中各交流信号之间的关系。
50
降到额定值2/3时的iC值。 40
iC值超过ICM时管子易损坏。ICM 30
集电极最大允许功耗PCM
20 10
PCM=iCvCE
反向击穿电压
0
1.0 0.8
0.6 过Leabharlann 坏区0.4 安全工作区iB = 0.2mA
PC <PCM
10
20 V(BR)CEO 30
vCE / V
V(BR)CBO - 发射极开路时,集电极-基极间反向击穿电压。
模拟电子线路
2) 饱和区 vCE较小时,集电结吸引电子能力弱,iC不随iB的增加而增 加,晶体管失去放大作用。饱和时集电极电压称为饱和压 降VCE(sat)。
Si管VCE(sat) ≈0.3V,而发射结的饱和压降VBE(sat) ≈0.8V, 故VCB(sat) = VCE(sat) - VBE(sat) ≈- 0.5V
三极管基本知识及电子电路图详解
三极管基本知识及电子电路图详解
"晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件" 在电子元件家族中,三极管属于半导体主动元件中的分立元件。
广义上,三极管有多种,常见如下图所示。
狭义上,三极管指双极型三极管,是最基础最通用的三极管。
本文所述的是狭义三极管,它有很多别称:
三极管的发明
晶体三极管出现之前是真空电子三极管在电子电路中以放大、开关功能控制电流。
真空电子管存在笨重、耗能、反应慢等缺点。
二战时,军事上急切需要一种稳定可靠、快速灵敏的电信号放大元件,研究成果在二战结束后获得。
早期,由于锗晶体较易获得,主要研制应用的是锗晶体三极管。
硅晶体出现后,由于硅管生产工艺很高效,锗管逐渐被淘汰。
经半个世纪的发展,三极管种类繁多,形貌各异。
小功率三极管一般为塑料包封;
大功率三极管一般为金属铁壳包封。
三极管核心结构
核心是“PN”结
是两个背对背的PN结
可以是NPN组合,也或以是PNP组合
由于硅NPN型是当下三极管的主流,以下内容主要以硅NPN型三极管为例!
NPN型三极管结构示意图
硅NPN型三极管的制造流程
管芯结构切面图。
双极结型三极管
双极结型三极管(Bipolar Junction Transistor,简称BJT)是一种电流控制型半导体器件,具有放大作用,是电子电路的核心元件之一。
双极结型三极管由三个掺杂区组成,分别是发射区、基区和集电区。
发射区和基区之间形成一个PN 结,称为发射结;基区和集电区之间也形成一个PN 结,称为集电结。
在正常工作时,发射结处于正向偏置状态,集电结处于反向偏置状态。
当发射结正向偏置时,发射区的多数载流子(电子)会越过发射结进入基区,形成发射极电流。
这些电子在基区中与少数载流子(空穴)复合,形成基极电流。
基极电流的大小与发射极电流成正比,因此双极结型三极管具有电流放大作用。
双极结型三极管有两种工作状态:截止状态和放大状态。
当发射结没有正向偏置时,发射极电流为零,双极结型三极管处于截止状态;当发射结正向偏置时,发射极电流不为零,双极结型三极管处于放大状态。
双极结型三极管广泛应用于放大电路、开关电路、稳压电路等各种电子电路中。
它具有增益高、输入电阻大、输出电阻小等优点,是电子电路中不可或缺的元件之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.4 BJT的主要参数
2. 极间反向电流 (2) 集电极发射极间的反向饱和电流ICEO ICEO=(1+ )ICBO
4.1.4 BJT的主要参数
3. 极限参数
(1) 集电极最大允许电流ICM
(2) 集电极最大允许功率损耗PCM
PCM= ICVCE
4.1.4 BJT的主要参数
3. 极限参数
end
4.2 基本共射极放大电路
4.2.1 基本共射极放大电路的组成 4.2.2 基本共射极放大电路的工作原理
4.2.1 基本共射极放大电路的组成
基本共射极放大电路
4.2.2 基本共射极放大电路的工作原理
1. 静态(直流工作状态) 输入信号vi=0时, 放大电路的工作状态称 为静态或直流工作状态。
iC f 2 (iB , vCE )
BJT双口网络
在小信号情况下,对上两式取全微分得 vBE vBE dvBE VCEQ diB I BQ dvCE iB vCE iC iC diC VCEQ diB I BQ dvCE iB vCE 用小信号交流分量表示 vbe= hieib+ hrevce
vs Vsm sinωt
vBE VBB vs iB Rb
2. 动态工作情况的图解分析 根据iB的变化范围在输出特性曲线图上画出iC和vCE 的波形
vCE VCC iC Rc
2. 动态工作情况的图解分析 共射极放大电路中的电压、 电流波形
3. 静态工作点对波形失真的影响
3. 三极管的三种组态
BJT的三种组态
(a) 共基极接法,基极作为公共电极,用CB表示; (b) 共发射极接法,发射极作为公共电极,用CE表示; (c) 共集电极接法,集电极作为公共电极,用CC表示。
4. 放大作用
共基极放大电路
若 vI = 20mV 使 iE = -1 mA,当
= 0.98 时,vO=?
直流通路
在输入特性曲线上,作出直线 vBE VBB iB Rb ,两线的交点 即是Q点,得到IBQ。 在输出特性曲线上,作出直流负载线 VCE=VCC-iCRc,与IBQ曲
线的交点即为Q点,从而得到VCEQ 和ICQ。
2. 动态工作情况的图解分析 根据vs的波形,在BJT的输入特性曲线图上画出vBE 、 iB 的 波形
4.1.5 温度对BJT参数及特性的影响
4.1.1 BJT的结构简介
(a) 小功率管
(b) 小功率管
(c) 大功率管
(d) 中功率管
4.1.1 BJT的结构简介
半导体三极管的结 构示意图如图所示。 它有两种类型:NPN型 和PNP型。
(a) NPN型管结构示意图 (b) PNP型管结构示意图
(c) NPN管的电路符号
4.3.1 图解分析法
1. 静态工作点的图解分析 采用该方法分析静态工作点,必须已知三极管的输入 输出特性曲线。
共射极放大电路
4.3.1 图解分析法
1. 静态工作点的图解分析 首先,画出直流通路 列输入回路方程 vBE VBB iB Rb 列输出回路方程(直流负载线) VCE=VCC-iCRc
(3) 共基极直流电流放大系数
=(IC-ICBO)/IE≈IC/IE
(4) 共基极交流电流放大系数α
α =iC/iEvCB=const.
当ICBO和ICEO很小时, ≈、 ≈,可以不 加区分。
4.1.4 BJT的主要参数
2. 极间反向电流 (1) 集电极基极间反向饱和电流ICBO 发射极开路时,集电结的反向饱和电流。
(3) 反向击穿电压 V(BR)CBO——发射极开路时的集电结反
向击穿电压。 V(BR) EBO——集电极开路时发射结的反 向击穿电压。 V(BR)CEO——基极开路时集电极和发射 极间的击穿电压。 几个击穿电压有如下关系 V(BR)CBO>V(BR)CEO>V(BR) EBO
4.1.5 温度对BJT参数及特性的影响
建立小信号模型的思路
当放大电路的输入信号电压很小时,就可以把三极 管小范围内的特性曲线近似地用直线来代替,从而可以 把三极管这个非线性器件所组成的电路当作线性电路来 处理。
1. BJT的H参数及小信号模型 H参数的引出 对于BJT双口网络,已知输入 输出特性曲线如下: iB=f(vBE) vCE=const iC=f(vCE) iB=const 可以写成: vBE f1 (iB , vCE )
hre和hoe都很小,常 忽略它们的影响。
1. BJT的H参数及小信号模型 H参数的确定
一般用测试仪测出;
rbe 与Q点有关,可用图示仪测出。 一般也用公式估算 rbe (忽略 r′e ) rbe= rbb′ + (1+ ) re 其中对于低频小功率管 rbb′≈200
(1)内部条件:发射区杂质浓度远大于基
区杂质浓度,且基区很薄。
(2)外部条件:发射结正向偏置,集电结
反向偏置。
4.1.3 BJT的V-I 特性曲线
(以共射极放大电路为例) 1. 输入特性曲线 iB=f(vBE) vCE=const.
(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。
(2) 当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状态,开 始收集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。
外部条件:发射结正偏
集电结反偏
1. 内部载流子的传输过程 发射区:发射载流子 集电区:收集载流子 基区:传送和控制载流子 (以NPN为例)
IE=IB+ IC IC= INC+ ICBO
放大状态下BJT中载流子的传输过程
2. 电流分配关系
根据传输过程可知 IE=IB+ IC IC= INC+ ICBO
则 iC = iE = -0.98 mA,vO = -iC• RL = 0.98 V, 电压放大倍数
vO 0.98V Av 49 vI 20mV
综上所述,三极管的放大作用,主要是依 靠它的发射极电流能够通过基区传输,然后到 达集电极而实现的。 实现这一传输过程的两个条件是:
end
交流通路
4.3 放大电路的分析方法
4.3.1 图解分析法
1. 静态工作点的图解分析
2. 动态工作情况的图解分析 3. 非线性失真的图解分析 4. 图解分析法的适用范围
4.3.2 小信号模型分析法
1. BJT的H参数及小信号模型 2. 用H参数小信号模型分析基本共射极放大电路
3. 小信号模型分析法的适用范围
截止失真的波形
3. 静态工作点对波形失真的影响
饱和失真的波形
4. 图解分析法的适用范围 幅度较大而工作频率不太高的情况 优点: 直观、形象。有助于建立和理解交、直流共存,静态和 动态等重要概念;有助于理解正确选择电路参数、合理设置 静态工作点的重要性。能全面地分析放大电路的静态、动态 工作情况。
H参数与工作点有关,在放大区基本不变。
H参数都是微变参数,所以只适合对交流信号的分析。
1. BJT的H参数及小信号模型 模型的简化 BJT在共射极连接时,其
H参数的数量级一般为
hie hre 103 103 ~ 104 he 2 h h 10 5 S fe oe 10
ic= hfeib+ hoevce
1. BJT的H参数及小信号模型 H参数的引出 其中:
vBE h ie V iB CEQ iC h fe V iB CEQ vBE h re I vCE BQ iC ; hrevce ic= hfeib+ hoevce
4.1 4.2 4.3 4.4 4.5 4.6 4.7 *4.8
BJT 基本共射极放大电路 放大电路的分析方法 放大电路静态工作点的稳定问题 共集电极放大电路和共基极放大电路 组合放大电路 放大电路的频率响应 单级放大电路的瞬态响应
4.1 BJT
4.1.1 BJT的结构简介
4.1.2 放大状态下BJT的工作原理 4.1.3 BJT的V-I 特性曲线 4.1.4 BJT的主要参数
传输到集电极的电流 设 发射极注入电流
I NC 即 IE
通常 IC >> ICBO
IC 则有 IE
为电流放大系数。它只
与管子的结构尺寸和掺杂浓度 有关,与外加电压无关。一般 = 0.90.99 。 放大状态下BJT中载流子的传输过程
2. 电流分配关系 又设 1
(d) PNP管的电路符号
4.1.1 BJT的结构简介
集成电路中典型NPN型BJT的截面图
4.1.2 放大状态下BJT的工作原理
三极管的放大作用是在一定的外部条件控制下,通过载 流子传输体现出来的。
由于三极管内有两种载流子(自 由电子和空穴)参与导电,故称为双 极型三极管或BJT (Bipolar Junction Transistor)。
1. 温度对BJT参数的影响 (1) 温度对ICBO的影响 温度每升高10℃,ICBO约增加一倍。 (2) 温度对 的影响 温度每升高1℃, 值约增大0.5%~1%。 (3) 温度对反向击穿电压V(BR)CBO、V(BR)CEO的影响 温度升高时,V(BR)CBO和V(BR)CEO都会有所提高。 2. 温度对BJT特性曲线的影响
共射极连接
4.1.3 BJT的V-I 特性曲线
2. 输出特性曲线 iC=f(vCE) iB=const.
输出特性曲线的三个区域:
饱和区:iC明显受vCE控制的区域, 该区域内,一般vCE<0.7V (硅管)。 此时,发射结正偏,集电结正偏或 反偏电压很小。 截止区:iC接近零的区域,相当iB=0 的曲线的下方。此时, vBE小于死区 电压。 放大区:iC平行于vCE轴的区域,曲 线基本平行等距。此时,发射结正 偏,集电结反偏。