2013西城区初二期末数学试题及答案北区
北京课改版初中数学2013年八年级下册期末测试题及答案
北京课改版初中数学2013年八年级下册期末测试题及答案本帖最后由水水水于2013-6-24 00:45 编辑此套北京课改版初中数学2013年八年级下册期末测试题及答案由整理,所有试卷与北京课改版八年级数学教材大纲同步,试卷供大家免费使用下载打印,转载前请注明出处。
如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!试卷内容预览:北京市西城区2012—2013学年第二学期期末测试八年级数学试卷(a卷)(时间100分钟,满分100分)题号一二三四五六七总分得分一、精心选一选(本题共30分,每小题3分)1.在函数y=中,自变量x的取值范围是().a.x≠2 b.x>2 c.x≥2 d.x≤22.当x<0时,反比例函数y=的图象().a.在第二象限内,y随x的增大而增大b.在第二象限内,y随x的增大而减小c.在第三象限内,y随x的增大而增大d.在第三象限内,y随x的增大而减小3.若+(y+3)2=0,则的值为().a.- b.- c. d.-4.下列各组数中,以a、b、c为边长的三角形不是直角三角形的是().a.a=3,b=4,c=5,b.a=5,b=12,c=13c.a=1,b=2,c= d.a=,b=2,c=35.初二1班的数学老师布置了10道选择题作为课后练习,老师把每位同学答对的题数进行了统计,绘制成条形统计图(如右图),那么该班50名同学答对题数的众数和中位数分别为().a.8,8 b.8,9c.9,9 d.9,86.如图,点a在反比例函数y=图象上,过点a作ab⊥x 轴于点b,则△aob的面积是().a.4 b.3c.2 d.17.如图,四边形abcd的对角线ac、bd互相平分,要使它成为正方形,需要添加的条件是().a.ab=cd b.ac=bdc.ac⊥bd d.ac=bd且ac⊥bd8.用配方法解方程x2-6x+2=0时,下列配方正确的是().a.(x-3)2=9 b.(x-3)2=7c.(x-9)2=9 d.(x-9)2=79.将矩形纸片abcd按如图所示的方式折叠,恰好得到菱形aecf.若ad=,则菱形aecf的面积为().a.2 b.4 c.4 d.8第9题图第10题图10.如图,梯形abcd中,ad∥bc,对角线ac⊥bd,垂足为m,过点d作de⊥bc于点e,若ac=8,bd=6,则梯形abcd的高de等于().a.10 b. c. d.二、细心填一填(本题共16分,每小题2分)11.如图,在△abc中,d、e分别是ab、ac的中点,若de=2cm,则bc=______cm.12.如图,在△abc中,∠c=90°,∠b=36°,d为ab的中点,则∠dcb=______°.第11题图第12题图第13题图13.如图,菱形abcd中,对角线ac、bd交于点o,若ac=6cm,bd=8cm,则菱形abcd的周长为____cm.14.甲、乙两地相距100km,如果一辆汽车从甲地到乙地所用时间为x(h),汽车行驶的平均速度为y(km/h),那么y 与x之间的函数关系式为_________________(不要求写出自变量的取值范围).更多免费资源下载http:// 课件|教案|试卷|无需注15.甲和乙一起去练习射击,第一轮10枪打完后两人的成绩如下图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计甲和乙两人中的新手是__________,他们成绩的方差大小关系是____________ (填“<”、“>”或“=”).16.如图,梯形abcd中,ad∥bc,ab=cd,de∥ab交bc于点e,若∠b=60°,ad=2,bc=4,则△dec的面积等于______.17.正方形网格中,每个小正方形的边长为1.如果把图1中的阴影部分图形剪开,拼接成一个新正方形,那么这个新正方形的边长是___________,请你在图2中画出这个正方形.18.矩形abcd中,ab=6,bc=2,过顶点a作一条射线,将矩形分成一个三角形和一个梯形,若分成的三角形的面积等于矩形面积的,则所分成的梯形的上底为______.图1 图2三、认真算一算(本题共18分,第19题8分,第20题10分)19.计算:(1);(2)解:解:20.解下列方程:(1)3x2-8x+2=0;(2)x(x+2)-3(x+2)=0.解:解:四、解答题(本题共12分,每小题6分)21.已知:如图,□abcd中,e、f点分别在bc、ad边上,be =df.(1)求证:△abe≌△cdf;(2)若∠bcd=2∠b,求∠b的度数;(3)在(2)的条件下,过点a作ag⊥bc于点g,若ab=2,ad=5,求□abcd的面积.证明:(1)(2)(3)22.在平面直角坐标系xoy中,若一次函数y=ax+b的图象与反比例函数y=的图象相交于a(1,2)、b(-2,m)两点.(1)求反比例函数和一次函数的解析式;(2)在所给的坐标系中,画出这个一次函数以及反比例函数在第一象限中的图象(可以不列表),并指出x为何值时,一次函数的值大于反比例函数的值.解:(1)(2)五、解答题(本题共10分,第23题4分,第24题6分)23.列方程解应用题甲、乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相同,已知甲、乙两人每天共加工35个玩具,求甲、乙两人每天各加工多少个玩具解:24.某班准备从小明、小红两位同学中选出一名班长,为此分别进行了一次演讲答辩和民主测评活动,由五位老师作为评委,对“演讲答辩”情况进行评分,全班50名同学参加了民主测评,结果分别记录如下:根据以上信息,解决下列问题:(1)小红同学在演讲答辩中,评委老师给分的极差是____分;(2)补全三张表格中小红、小明同学的各项得分;(3)a在什么范围时,小明的综合得分高于小红的综合得分,能当选为班长.解:(3)六、实验与探究(本题5分)图1图225.将两块含30°角、大小与形状完全相同的直角三角板分别记作:rt△abc和rt△def,设短直角边ab=cd=把它们按照图1所示方式摆放在一起.固定△abc,将△def沿射线cb 方向平移到△d1e1f1的位置(如图2).(1)求证:四边形af1d1c是平行四边形;证明:更多免费资源下载http:// 课件|教案|试卷|无需注(2)实验与探究(备用图供画图实验时使用)①当ce1的长为________时,四边形af1d1c为矩形,当ce1长为________时,四边形af1d1c为菱形;备用图备用图备用图②在运动过程中,若△def沿射线cb方向平行移动的距离为x,设四边形af1d1c的面积为s,直接写出s与x之间的函数关系式(不必写出x的取值范围).答:七、解答题(本题共9分,第26题5分,第27题4分)26.如图,直线y=kx+2k(k≠0)与x轴交于点a,与反比例函数y=(m+3)在第一象限内的图象交于点b,已知s△aob=3.(1)求反比例函数的解析式及a、b点的坐标;(2)若点d在直线ab上,点p在坐标平面内,以oa为一边作菱形oadp,写出符合条件的点p的坐标,并画出相应的菱形.解:(1)(2)27.如图,正方形abcd中,ab=4 ,e是ab边上任意一点,连结ec,过点b作bf∥ec交dc延长线于点f,连结ef交bc 于点m,过点m作mg⊥ef,交射线cd于点g,连结eg.(1)求证:ef与bc互相平分;(2)若设be=x,cg=y,求y关于x的函数关系式,并写出x的取值范围.证明:(1)(2)。
北京市西城(北区)2012-2013学年高一上学期期末考试数学试题
北京市西城区2012 — 2013学年度第一学期期末试卷(北区)高一数学 2013.1试卷满分:150分 考试时间:120分钟A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1. 在0到2π范围内,与角3π-终边相同的角是( )A. 3π B.23π C.43π D.53π 2.α是一个任意角,则α的终边与3α+π的终边( )A. 关于坐标原点对称B. 关于x 轴对称C. 关于y 轴对称D. 关于直线y x =对称3. 已知向量(1,2)=-a ,(1,0)=b ,那么向量3-b a 的坐标是( )A.(4,2)-B.(4,2)--C.(4,2)D.(4,2)-4. 若向量(13)=,a 与向量(1,)λ=-b 共线,则λ的值为( )A.3-B.3C.13- D.135. 函数()f x 的图象是中心对称图形,如果它的一个对称中心是π(0)2,,那么()f x 的解 析式可以是( ) A.sin x B.cos x C.sin 1x +D.cos 1x +6. 已知向量(1,=a ,(=-b ,则a 与b 的夹角是( )A. 6πB.4π C.3π D.2π7. 为了得到函数cos(2)3y x π=-的图象,只需将函数cos2y x =的图象( ) A. 向左平移π6个单位长度 B. 向右平移π6个单位长度 C. 向左平移π3个单位长度D. 向右平移π3个单位长度8. 函数212cos y x =- 的最小正周期是( )A.4π B.2π C.πD.2π9. 设角θ的终边经过点(3,4)-,则πcos()4θ+的值等于( )A.10B.10C.10D.10-10. 在矩形ABCD中,AB =,1BC =,E 是CD 上一点,且1AE AB ⋅=,则AE AC ⋅ 的值为( ) A .3B .2C.2 D.3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.sin34π=______. 12. 若1cos , (0,)2αα=-∈π,则α=______.13. 已知向量(1,3)=-a ,(3,)x =-b ,且⊥a b ,则x =_____. 14.已知sin cos αα-=sin2α=______.15. 函数2cos y x =在区间[,]33π2π-上的最大值为______,最小值为______.16. 已知函数()sin f x x x =,对于ππ[]22-,上的任意12x x ,,有如下条件:①2212x x >;②12x x >;③12x x >,且1202x x +>. 其中能使12()()f x f x >恒成立的条件序号是_______.(写出所有满足条件的序号)三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知2απ<<π,4cos 5α=-. (Ⅰ)求tan α的值; (Ⅱ)求sin2cos2αα+的值.18.(本小题满分12分)已知函数2()sin 12xf x x =+.(Ⅰ)求()3f π的值; (Ⅱ)求()f x 的单调递增区间; (Ⅲ)作出()f x 在一个周期内的图象.19.(本小题满分12分)如图,点P 是以AB 为直径的圆O 上动点,P '是点P 关于AB 的对称点,2(0)AB a a =>.(Ⅰ)当点P 是弧 AB 上靠近B 的三等分点时,求AP AB ⋅的值;(Ⅱ)求AP OP '⋅的最大值和最小值.AB 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.1. 已知集合{11}P x x =-<<,{}M a =. 若M P ⊆,则a 的取值范围是________.2. lg2lg5+-=________. 3. 满足不等式122x>的x 的取值范围是_______.4. 设()f x 是定义在R 上的奇函数,若()f x 在(0,)+∞上是减函数,且2是函数()f x 的一个零点,则满足()0x f x >的x 的取值范围是________.5. 已知集合{1,2,,}U n = ,n *∈N .设集合A 同时满足下列三个条件: ①A U ⊆;②若x A ∈,则2x A ∉; ③若U x C A ∈,则2U x C A ∉.(1)当4n =时,一个满足条件的集合A 是________;(写出一个即可) (2)当7n =时,满足条件的集合A 的个数为________.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6. (本小题满分10分)已知函数21()1f x x =-. (Ⅰ)证明函数()f x 为偶函数;(Ⅱ)用函数的单调性定义证明()f x 在(0,)+∞上为增函数.7. (本小题满分10分)设函数(2)(4)2()(2)()2x x x f x x x a x -+≤⎧=⎨-->⎩. (Ⅰ)求函数()f x 在区间[2,2]-上的最大值和最小值;(Ⅱ)设函数()f x 在区间[4,6]-上的最大值为()g a ,试求()g a 的表达式.8. (本小题满分10分)已知函数()log a g x x =,其中1a >.(Ⅰ)当[0,1]x ∈时,(2)1x g a +>恒成立,求a 的取值范围; (Ⅱ)设()m x 是定义在[,]s t 上的函数,在(,)s t 内任取1n -个数1221,,,,n n x x x x -- ,设12x x << 21n n x x --<<,令0,ns x t x==,如果存在一个常数0M >,使得11()()nii i m xm x M -=-≤∑恒成立,则称函数()m x 在区间[,]s t 上的具有性质P . 试判断函数()()f x g x =在区间21[,]a a上是否具有性质P ?若具有性质P ,请求出M 的最小值;若不具有性质P ,请说明理由.(注:1102111()()()()()()()()nii n n i m x m xm x m x m x m x m x m x --=-=-+-++-∑ )北京市西城区2012 — 2013学年度第一学期期末试卷(北区)高一数学参考答案及评分标准 2013.1A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.D;2.A;3.D;4.A;5.B;6.C;7.B;8.C;9.C; 10.B. 二、填空题:本大题共6小题,每小题4分,共24分.11. 2; 12.32π; 13. 1-; 14. 1-; 15. 2,1-; 16. ①③.注:一题两空的试题每空2分;16题,选出一个正确的序号得2分,错选得0分. 三、解答题:本大题共3小题,共36分. 17.解:(Ⅰ)因为4cos 5α=-,2απ<<π,所以3sin 5α=, …………………3分所以sin 3tan cos 4ααα==-. …………………5分 (Ⅱ)24sin22sin cos 25ααα==-, …………………8分27cos22cos 125αα=-=, …………………11分 所以24717sin 2cos2252525αα+=-+=-. …………………12分 18.解:(Ⅰ)由已知2()sin 1363f πππ=+ …………………2分1122==. …………………4分(Ⅱ)()cos )sin 1f x x x -+ …………………6分sin 1x x =+2sin()13x π=-+. …………………7分函数sin y x =的单调递增区间为[2,2]()22k k k πππ-π+∈Z , …………………8分由 22232k x k ππππ-≤-≤π+,得2266k x k π5ππ-≤≤π+.所以()f x 的单调递增区间为[2,2]()66k k k π5ππ-π+∈Z . …………………9分(Ⅲ)()f x 在[,]33π7π上的图象如图所示. …………………12分19.解:(Ⅰ)以直径AB 所在直线为x 轴,以O 为坐标原点建立平面直角坐标系.因为P 是弧AB 靠近点B 的三等分点, 连接OP ,则3BOP π∠=, …………………1分 点P 坐标为1(,)22a a . …………………2分 又点A 坐标是(,0)a -,点B 坐标是(,0)a ,所以3()22AP a a = ,(2,0)AB a =, …………………3分所以23AP AB a ⋅=. …………………4分 (Ⅱ)设POB θ∠=,[0,2)θπ∈,则(cos ,sin )P a a θθ,(cos ,sin )P a a θθ'-所以(cos ,sin )AP a a a θθ=+,(cos ,sin )OP a a θθ'=-. …………所以22222cos cos sin AP OP a a a θθθ'⋅=+- 22(2cos cos 1)a θθ=+- (222119)2(cos cos )2168a a θθ=++- 222192(cos )48a a θ=+-. …………当1cos 4θ=-时,AP OP '⋅ 有最小值298a -当cos 1θ=时,AP OP '⋅ 有最大值22a . …………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1.{11}a a -<<; 2. 12; 3. {1}x x >-; 4. (2,0)(0,2)- ;5. {2},或{1,4},或{2,3},或{1,3,4};16. 注:一题两空的试题每空2分. 二、解答题:本大题共3小题,共30分. 6. 证明:(Ⅰ)由已知,函数()f x 的定义域为{0}D x x =∈≠R . …………………1分设x D ∈,则x D -∈,2211()11()()f x f x x x -=-=-=-. …………………3分 所以函数()f x 为偶函数. …………………4分(Ⅱ)设12x x ,是(0,)+∞上的两个任意实数,且12x x <,则210x x x ∆=->,21222111()()1(1)y f x f x x x ∆=-=--- …………………6分 22212121222222121212()()11=x x x x x x x x x x x x --+=-=. …………………8分 因为120x x <<, 所以210x x +>,210x x ->,所以0y ∆>, …………………9分 所以()f x 在(0,)+∞上是增函数. …………………10分7.解:(Ⅰ)在区间[2,2]-上,()(2)(4)f x x x =-+.所以()f x 在区间[2,1]--上单调递增,在区间[1,2]-上单调递减, ……………1分 所以()f x 在区间[2,2]-上的最大值为(1)9f -=, …………………3分最小值为(2)0f =. …………………4分(Ⅱ)当2a ≤时,()f x 在[4,1]--上单调递增,在[1,6]-上单调递减,所以()f x 的最大值为9. …………………5分当28a <≤时,()f x 在[4,1]--上单调递增,在[1,2]-上单调递减,在2[2,]2a +单调递增,在2[,6]2a +上单调递减, 此时(1)9f -=,222()()922a a f +-=≤,所以()f x 的最大值为9. ……………7分 当810a <≤时,()f x 在[4,1]--上单调递增,在[1,2]-上单调递减,在2[2,]2a +单调递增,在2[,6]2a +上单调递减. 此时222()()(1)22a a f f +-=>-,所以()f x 的最大值为2(2)4a -.………………8分 当10a >时,()f x 在[4,1]--上单调递增,在[1,2]-上单调递减,在[2,6]单调递增,此时(6)4(6)(1)f a f =->-,所以()f x 的最大值为4(6)a -. …………………9分综上,298,(2)()810,44(6)10.a a g a a a a ≤⎧⎪-⎪=<≤⎨⎪->⎪⎩ …………………10分 8.解:(Ⅰ)当[0,1]x ∈时,(2)1xg a+>恒成立,即[0,1]x ∈时,log (2)1xa a +>恒成立, …………………1分因为1a >,所以2xaa +>恒成立, …………………2分即2xa a -<在区间[0,1]上恒成立,所以21a -<,即3a <, …………………4分 所以13a <<. 即a 的取值范围是(1,3). …………………5分 (Ⅱ)由已知()f x =log a x ,可知()f x 在2[1,]a 上单调递增,在1[,1]a上单调递减,对于21(,)a a 内的任意一个取数方法201211n n x x x x x a a -=<<<<<= ,当存在某一个整数{1,2,3,,1}k n ∈- ,使得1k x =时,1011211()()[()()][()()][()()]nii k k i f x f xf x f x f x f x f x f x --=-=-+-++-∑1211[()()][()()][()()]k k k k n n f x f x f x f x f x f x +++-+-+-++-21()(1)()(1)123f f f a f a=-+-=+=. …………………7分当对于任意的{0,1,2,3,,1}k n ∈-,1k x ≠时,则存在一个实数k 使得11k k x x +<<,此时1011211()()[()()][()()][()()]nii k k i f x f xf x f x f x f x f x f x --=-=-+-++-∑1211()()[()()][()()]k k k k n n f x f x f x f x f x f x +++-+-+-++-011()()()()()()k k k n k f x f x f x f x f x f x ++=-+-+-……(*) 当1()()k k f x f x +>时,(*)式01()()2()3n k f x f x f x +=+-<, 当1()()k k f x f x +<时,(*)式0()()2()3n k f x f x f x =+-<, 当1()()k k f x f x +=时,(*)式01()()()()3n k k f x f x f x f x +=+--<.……………9分综上,对于21(,)a a 内的任意一个取数方法201211n n x x x x x a a-=<<<<<= ,均有11()()3nii i f x f x-=-≤∑.所以存在常数3M ≥,使11()()ni i i f x f x M -=-≤∑恒成立,所以函数()f x 在区间21[,]a a上具有性质P .此时M 的最小值为3. …………………10分。
01.2012-2013年北京市西城区(南区)初二数学第一学期期末试题及答案
αCBA-2-1321O北京市西城区(南区)2012—2013学年度第一学期期末质量检测八年级数学一、选择题(请将答案写在下列表格中,本大题共12小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1. 在下列实数中,无理数是( ).A .2B .0C .5D .132. 函数6y x =-中,自变量x 的取值范围是 ( ).A.x ≤6 B. 6x ≥ C. x ≤-6 D. x ≥-63. 在平面直角坐标系中,点(2,3)M -在( ).A .第一象限B .第二象限C .第三象限D .第四象限 4. 计算2(3)-的结果是( ).A .3B .3-C .3±D . 9 5. 边长为4的等边三角形的高为( ). A .2B .4C .3D .236. 等腰三角形的两条边长分别是3、6,那么它的周长是( ). A .15 B .12 C .12或15 D .不能确定7. 一副三角板,如图所示叠放在一起,则图中∠α的度数是( ). A .75︒ B .60︒ C .65︒ D .55︒8. 设191a =-,a 在两个相邻整数之间,则这两个整数是( ).A .1和2 B.2和3 C.3和4 D.4和59. 如图,长方形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( ).A .2.5B .22C .3D .510. 如图,点A 的坐标是(22),,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能...是( ). A .(2,0) B .(4,0)PCBAPCBAE D CBAFEDCBAC .(-22,0)D .(3,0)11. 如图,已知△ABC ,求作一点P ,使P 到∠A 两边的距离相等,且PA =PB .下列确定P 点的方法正确的是( ) .A.P 为∠A 、∠B 两角平分线的交点B.P 为∠A 的角平分线与AB 的垂直平分线的交点 C.P 为AC 、AB 两边上的高的交点 D.P 为AC 、AB 两边的垂直平分线的交点12. 如图,△ABC 中,∠C=90°,∠B=30°,BC=63,点P 是边BC 上的动点(不与B 、C 重合),则AP 的长不可能是( ).A.5B.7C.9D.11二、填空题(请将答案写在横线上,本大题共8小题,每小题3分,共24分) 13. 点P(1,2)关于y 轴对称点的坐标是 . 14. 4的算术平方根是 . 15. 计算362⨯-=_________.16. 已知关于x 的方程224220x x p p --++=的一个根为p ,则p =_________.17. 如图,已知AC FE =,BC DE =,点A 、D 、B 、F 在一条直线上,要使△ABC ≌△FDE ,还需添加一个..条件,这个条件可以是 .18. 若关于x 的一元二次方程220x x a ++=有实数根,则a 的取值范围是_ . 19. 若223(4)0,a b c -+-+-=则a b c -+= .20. 如图,在Rt ABC ∆中,∠90ACB =︒,,,______AC AE BC BD ACD BCE ==∠+∠=则.三、解答题(本大题共7小题,共40分) 21.(8分)计算: (1)1126823-+ ; (2) ()5082-÷.22.(8分)解方程:(1)解方程2410x x -+=(用配方法); (2)解方程:2310.x x ++=EDCB A E D CBA23.(4分)已知: 如图,AB BD ⊥于点B ,ED BD ⊥于点D ,AE 交BD 于点C ,且BC D C =.求证AB ED =.24. (5分) 如图,点D E ,在ABC △的边BC 上,连接AD AE ,.①A B A C =;②A D A E =;③B D C E =.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答) ; (2)请选择一个真命题进行证明(先写出所选命题,然后证明).25. (5分) 2009年海州市出口贸易总值为22.52亿美元,至2011年出口贸易总值达到50.67亿美元,反映了两年来海州市出口贸易的高速增长.(1)求这两年海州市出口贸易的年平均增长率;(2)按这样的速度增长,请你预测2012年海州市的出口贸易总值.(温馨提示:2252=4×563,5067=9×563)26. (4分) 已知关于x 的方程2(1)(31)220k x k x k ++-+-=. (1)讨论此方程根的情况;(2)若方程有两个整数根,求正整数k 的值.OCEDBA27. (6分) 已知:如图,在△ABC 中,如果∠A 是锐角,点D ,E 分别在AB ,AC 上,且∠DCB=∠EBC=12∠A 。
2013年1海淀、西城区丰台、昌平初二期末数学试题及答案
海淀区八年级第一学期期末数学练习一、选择题(本题共30分,每小题3分) 1.2的平方根 A .21BC. D.2.下列图形不是..轴对称图形的是 A .角 B .等腰三角形 C .等边三角形 D .有一个内角为30 的直角三角形 3.在下列各式的计算中,正确的是A .235+a a a =B .22(1)22a a a a +=+C .3225()ab a b=D .22(2)(+2)2y x y x y x -=-4.已知等腰三角形的两边长分别为7和3,则第三边的长是A .7 B .4 C .3 D .3或75.下列有序实数对表示的各点不在..函数42y x =-的图象上的是 A .16--(,) B .(-2, 6) C .(1, 2) D .(3, 10)6.下列各式不能分解因式的是A .224x x -B .214x x ++C .229x y +D .21m -7.若分式 211x x --的值为0,则x 的值为A .1B .0C .1-D .1±8.已知整数m满足1m m <<+,则m 的值为 A .4 B . 5 C .6D .79.如图,把△A B C 沿E F 对折,叠合后的图形如图所示.若60A ∠=︒,195∠=︒,则∠2的度数为A . 24°B . 25°C . 30°D . 35°10.已知一次函数y kx b =+中x 取不同值时,y 对应的值列表如下:则不等式0kx b +>(其中k ,b ,m ,n 为常数)的解集为A .1x >B .2x >C .1x <D .无法确定 二、填空题(本题共18分,每小题3分)AABCB 'C 'EF1211.对于一次函数2y kx=-,如果y随x增大而增大,那么k需要满足的条件是.12.计算:111xx x-=--.13.如图,在△ABC中,AB=AC,∠A=20°,线段AB的垂直平分线交AB 于D,交AC于E,连接BE,则∠CBE为度.14.计算:222()ab ab÷-=().15.若关于x的二次三项式2x+kx b+因式分解为(1)(3)x x--,则k+b的值为__________. 16.如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点. 图①~⑥⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”.(1)当内空格点多边形边上的格点数为10时,此多边形的面积为;(2)设内空格点多边形边上的格点数为L,面积为S,请写出用L表示S的关系式.三、解答题:(本题共19分,第18题4分,其余每小题5分)17.()03π--.解:18.如图, 在△A B C中,=A B A C,D是△A B C内一点,且B D D C=.求证:∠ABD =∠ACD.证明:19. 把多项式33312a b ab-分解因式.解:20. 已知12x=,2y=-,求代数式()22(2)(2)x y x y x y+--+的值.解:四、解答题(本题共20分,每小题5分)21.解方程:54 2332xx x+=--.①②③④⑤⑥AB CD解:22. 已知正比例函数的图象过点(12)-,. (1)求此正比例函数的解析式;(2)若一次函数图象是由(1)中的正比例函数的图象平移得到的,且经过点(12),,求此一次函数的解析式. 解:23. 已知等腰三角形周长为12,其底边长为y ,腰长为x .(1)写出y 关于x 的函数解析式及自变量x 的取值范围; (2)在给出的平面直角坐标系中,画出(1)中函数的图象解:24.如图,在A B C △中,A C B C =,90ACB ∠= ,D 为A B C △内一点,15BAD ∠= ,AD AC =,C E AD ⊥于E ,且5C E =.(1)求B C 的长;(2)求证:B D C D =. 解:(1)(2)证明:五、解答题(本题共13分,第25题6分,第26题7分)25. 我们知道,假分数可以化为带分数. 例如: 83=223+=223. 在分式中,对于只含有一ED CBA个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”. 例如:11x x -+,21xx -这样的分式就是假分式;31x + ,221x x + 这样的分式就是真分式 . 类似的,假分式也可以化为带分式(即:整式与真分式和的形式).例如:1(1)22=1111x x x x x -+-=-+++; 22111(1)1111111x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为带分式;(2)若分式211x x -+的值为整数,求x 的整数值;(3)求函数2211x y x -=+图象上所有横纵坐标均为整数的点的坐标.解:(1)26.在△ABC 中,已知D 为直线BC 上一点,若,ABC x BAD y ∠=∠= .(1)当D 为边BC 上一点,并且CD=CA ,40x =,30y =时,则AB _____ AC (填“=”或“≠”);(2)如果把(1)中的条件“CD=CA ”变为“CD=AB ”,且x ,y 的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由;(3)若CD= CA =AB ,请写出y 与x 的关系式及x 的取值范围.(不写解答过程,直接写出结果)DCBA海 淀 区 八 年 级 第 一 学 期 期 末 练 习数学试卷答案及评分参考 2013.1说明: 与参考答案不同, 但解答正确相应给分. 一、选择题(本题共30分,每小题3分)DCBA二、填空题(本题共18分,每小题3分)11.k > 0 12.1- 13.60 14. b 2 15. 1- 16.4,112S L =-(第1空1分,第2空2分)三、解答题:(本题共19分,第18题4分,其余每小题5分)17. 解:原式421=-+ …………………………3分 3= …………………………5分 18. 证明:A B A C = ,A B C A C B ∴∠=∠.…………………………1分 B D C D = .12∴∠=∠ . …………………………2分 12A B C A C B ∴∠-∠=∠-∠.即A B D A C D ∠=∠.…………………………4分19.解:原式223(4)ab a b =- …………………………3分3(2)(2)ab a b a b =+- …………………………5分20. 解:原式222244(4)x xy y x y =++-- …………………………2分2222444x xy y x y =++-+248xy y =+…………………………3分当12x =,2y =-时,原式2148(2)2=⨯⨯-+⨯-(2)432=-+28=. …………………………5分四、解答题(本题共20分,每小题5分) 21. 解:两边同乘以23x -得54(23)x x -=-…………………………1分5812x x -=-77x =1x = …………………………4分检验:1x =时,230x -≠,1x =是原分式方程的解.∴原方程的解是1x =. …………………………5分 22. 解:(1)设正比例函数解析式为(0)y ax a =≠,依题意有2a =-∴所求解析式为2y x =-. …………………………2分1AB CD2(2)设一次函数解析式为(0)y kx b k =+≠依题意有22k k b =-⎧⎨+=⎩,解得24k b =-⎧⎨=⎩. …………………………4分∴所求解析式为24y x =-+. …………………………5分23. 解:(1)依题意212y x +=,212y x ∴=-+. …………………………2分x ,y 是三角形的边,故有002x y x y >⎧⎪>⎨⎪>⎩,将212y x =-+代入,解不等式组得36x <<. …………………………3分 (2)…………………………5分24.解:(1)在△ABC 中, A C B C =,90A C B ∠=︒, 45B A C ∴∠=︒. 15B A D ∠=︒, 30C A D ∴∠=︒.C E AD ⊥,5CE =, 10A C ∴=.10B C ∴=. …………………………2分 (2)证明:过D 作D F B C ⊥于F .在△A D C 中,30C A D ∠=︒,AD AC =, 75A C D ∴∠=︒.90A C B ∠=︒,15F C D ∴∠=︒.在△AC E 中,30C A E ∠=︒,C E AD ⊥, 60A C E ∴∠=︒.15E C D A C D A C E ∴∠=∠-∠=︒.E C DF C D ∴∠=∠. …………………………3分D F DE ∴=.在Rt △D C E 与Rt △D C F 中,D C D C ,DE DF .=⎧⎨=⎩∴ Rt △D C E ≌Rt △D C F .5C F C E ∴==.10B C =,B F FC ∴=. …………………………4分D F B C ⊥,B DCD ∴=. …………………………5分五、解答题(本题共13分,第25题6分,第26题7分) 25. 解:(1)12331222x x x x x -(+)-==-+++; …………………………1分 (2)2121332111x x x x x -(+)-==-+++. …………………………2分当211x x -+为整数时,31x +也为整数.1x ∴+可取得的整数值为1±、3±.x ∴的可能整数值为0,-2,2,-4. …………………………3分(3)22212(1)112(1)111x x y x x x x --+===-++++. …………………………4分当x ,y 均为整数时,必有11x +=±.x ∴=0或-2. …………………………5分 相应的y 值分别为-1或-7.∴所求的坐标为(0,-1)或(-2,-7). …………………………6分26.(1)= …………………………1分 (2)成立. …………………………2分 解法一:=.,.=.=.B C B E B A A E C D A B B E C D B E D E C D D E B D C E =∴=∴-- 在上截取,连结即:40,70.B BAE BEA ∠=︒∴∠=∠=︒ED CA4030.=110=70.==110.=.=,=,=.A B D B B A D B D A A D E A D E B E A A E C A D A E A B D A C E A D A E B D A C E A B D C E A B D A C E ∆∠=︒∠=︒∴∠︒∠︒∴∠∠∠︒∴∆∆⎧⎪∠∠⎨⎪⎩∴∆∆在中,,,,在和中,≌.=.A B A C ∴ …………………………4分解法二:如图,作30,DAE DAB AE AB ∠=∠=︒=,A E 交BC 于点F .ABD AED ∆∆在和中,.AD AD D AB D AE AB AE =⎧⎪∠=∠⎨⎪=⎩,, .A B D A E D ∴∆∆≌40,.AED B ADB ADE ∴∠=∠=︒∠=∠ ABD ∆在中,40,30.B BAD ∴∠=︒∠=︒110,70.ADE ADB ADC ∴∠=∠=︒∠=︒40.C D E A D E A D C ∴∠=∠-∠=︒40.C D E A E D ∴∠=∠=︒.F D F E ∴=,AB CD AB AE == ,.C D A E ∴=..CD FD AE FE FC FA ∴-=-=即:,.DFE CFA ACB AED ∠=∠∴∠=∠ B AC B ∴∠=∠..A B A C ∴= …………………………4分(3)解:(ⅰ)当D 在线段BC 上时,3902y x =-(060x <≤)(取等号时B 、D 重合). ……………………5分(ⅱ)当D 在CB 的延长线上时,3902y x =-(6090x <<)(取等号时B 、D 重合). ……………………6分FEDCBA(ⅲ)当D 在BC 的延长线上时,31802y x =-,(090x <<). …………………………7分北京市西城区(北区)2012–2013学年度第一学期期末试卷八年级数学 2013.1(时间100分钟,满分100分)一、选择题(本题共30分,每小题3分) 1.计算23-的结果是( ).A .-9B .-9C .19D .19-2.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是( ).A .B .C .D .3.点P (-3,5)关于y 轴的对称点的坐标是( ).A .(3,5)B .(3,-5)C .(5,-3)D .(-3,-5)4.将正比例函数y =3x 的图象向下平移4个单位长度后,所得函数图象的解析式为( ).A .34y x =+B .34y x =-C .3(4)y x =+D . 3(4)y x =- 5.下列各式中,正确的是( ).A .3355x xyy --=- B .a b a b c c +-+-=C .a ba bcc ---=- D .a ab aa b -=--6.如图,三条公路把A 、B 、C 三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在( ).A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处7).A.1与2之间B.2与3之间C.3与4之间D.4与5之间8.一次函数y m x m=+(m为常数且m≠0),若y随x增大而增大,则它的图象经().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限9.如图,在等腰直角三角形ABC中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连结PC,若△ABC的面积为22cm,则△BPC的面积为().A.20.5cm B.21cmC.21.5cm D.22cm10.小华、小明两同学在同一条长为1100米的直路上进行跑步比赛,小华、小明跑步的平均速度分别为3米/秒和5米/秒,小明从起点出发,小华在小明前面200米处出发,两人同方向同时出发,当其中一人到达终点时,比赛停止.设小华与小明之间的距离y(单位:米),他们跑步的时间为x(单位:秒),则表示y与x之间的函数关系的图象是().A.B.C.D.二、填空题(本题共24分,第13题4分,第18题2分,其余各题每小题3分)11.在函数12yx=-中,自变量x的取值范围是__________.12.在0.14 ,117,,π这五个实数中,无理数的是.13.一次函数21y x=-的图象与x轴的交点坐标为,与y轴的交点坐标为.14.如图,在Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连结BD.若AD=12cm,则BC的长为cm.15.若29x=,38y=-,则x+y=.16.某校组织学生到距离学校15千米的西山公园秋游,先遣车队与学生车队同时出发,先B C遣车队比学生车队提前半小时到达公园以便提前做好准备工作.已知先遣车队的速是学生队车速度的1.2倍,若设学生车队的速度为x 千米/时,则列出的方程是 . 17. 如图,在△ABC 中,AB =AC ,D 为BC 边上一点,且∠BAD =30°,若AD =DE ,∠EDC =33°,则∠DAE 的度数为 °18.如果满足条件“∠ABC =30°,AC =1, BC =k (k >0)”的△ABC 是唯一的,那么k 的取值范围是 .三、解答题(本题共28分,第19、20题每小题5分,第21~23题每小题6分) 19.计算:1)++解:20.先化简,再求值:2112()3369m m m m m +÷-+-+,其中9m =.解: 21.解方程:3111x x x -=-+.23.如图,直线y kx b =+经过点A(0,5),B (1,4).(1)求直线AB 的解析式;(2)若直线24y x =-与直线AB 相交于点C,求点C 的坐标; (3)根据图象,写出关于x 的不等式2x -4≥kx +b 的解集. 解:(1) (2)(3)关于x 的不等式2x -4≥kx +b 的解集是 .四、解答题(本题共12分,第24题5分,第25题7分) 24.阅读下列材料:木工张师傅在加工制作家具的时候,用下面的方法在木板上画直角:如图1,他首先在需要加工的位置画一条线段AB ,接着分别以点A 、点B 为圆心,以大于12A B 的适当长为半径画弧,两弧相交于点C ,再以C 为圆心,以同样长为半径画弧交AC 的延长线于点D (点D 需落在木板上),连接DB .则∠ABD 就是直角.木工张师傅把上面的这种作直角的方法叫做“三弧法.解决下列问题: (1)利用图1就∠ABD 是直角作出合理解释(要求:先写出已知、求证,再进行证明);(2)图2表示的一块残缺的圆形木板,请你用“三弧法”,在木板上...画出一个以EF 为一条直角边的直角三角形EFG (要求:尺规作图,不写作法,保留作图痕迹). 解:(1) 25.已知:一次函数132y x =+的图象与正比例函数y kx =的图象相交于点A (a ,1).(1)求a 的值及正比例函数y kx =的解析式;(2)点P 在坐标轴上(不与点O 重合),若PA =OA ,直接写出P 点的坐标;(3)直线x m =与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积记为S ,求S 关于m 的函数关系式(写出自变量的取值范围).ACBD图1图2EF五、解答题(本题6分)26.在△ABC 中,AD 是△ABC 的角平分线. (1)如图1,过C 作CE ∥AD 交BA 延长线于点E ,若F 为CE 的中点,连结AF ,求证:AF ⊥AD ;(2)如图2,M 为BC 的中点,过M 作MN ∥AD 交AC 于点N ,若AB =4, AC =7, 求NC 的长.(1) 证明:(2)解:图1 图2北京市西城区(北区)2012–2013学年度第一学期期末试卷八年级数学附加题2013.1一、填空题(本题共6分)1.在平面直角坐标系xOy中,横、纵坐标都为整数的点称为整点.已知一组正方形的四个顶点恰好落在两坐标轴上,请你观察每个正方形四条边上的整点的个数的变化规律.回答下列问题:(1)经过x轴上点(5,0)的正方形的四条边上的整点个数是;(2)经过x轴上点(n,0)(n为正整数)的正方形的四条边上的整点个数记为m,则m与n之间的函数关系是.二、解答题(本题共14分,第2题8分,第3题6分)2.在平面直角坐标系xOy中,直线6=+与x轴交于点A,与y轴交于点B.y x(1)求∠BAO的度数;(2)如图1,P为线段AB上一点,在AP上方以AP为斜边作等腰直角三角形APD.点Q 在AD上,连结PQ,过作射线PF⊥PQ交x轴于点F,作PG⊥x轴于点G.求证:PF=PQ ;(3)如图2,E为线段AB上一点,在AE上方以AE为斜边作等腰直角三角形AED.若P 为线段EB的中点,连接PD、PO,猜想线段PD、PO有怎样的关系?并说明理由.图1 图23.在Rt △ABC 中,∠ACB =90°,∠A =30°,BD 是△ABC 的角平分线, DE ⊥AB 于点E .(1)如图1,连接EC ,求证:△EBC 是等边三角形;(2)点M 是线段CD 上的一点(不与点C ,D 重合),以BM 为一边,在BM 的下方作∠BMG =60°,MG 交DE 延长线于点G .请你在图2中画出完整图形,并直接写出MD ,DG 与AD 之间的数量关系; (3)如图3,点N 是线段AD 上的一点,以BN 为一边,在BN 的下方作∠BNG =60°,NG 交DE 延长线于点G .试探究ND ,DG 与AD 数量之间的关系,并说明理由.(1)证明:(2)结论: ;(3)证明 :图1图2图3北京市西城区(北区)2012 — 2013学年度第一学期期末试卷八年级数学参考答案及评分标准 2013.1一、选择题(本题共30分,每小题3分)二、填空题(本题共24分,第13题4分,第18题2分,其余各题每小题3分)三、解答题(本题共28分,第19,20题,每小题5分,第21~23题,每小题6分)19.解: 1)++=24-+·······················································································3分=2. ································································································5分20.解:2112()3369m m m m m +÷-+-+=22(3)(3)(3)2m m m m m-⋅-+···············································································3分=33m m -+. ···································································································4分当9m =时,原式=931932-=+. ···································································5分21.解:方程两边同乘(1)(1)x x -+,得(1)3(1)(1)(1)x x x x x +--=-+.···································································2分化简,得331x x -+=-. (4)分 解得2x =. (5)分检验:当2x =时,(1)(1)0x x -+≠,∴2x=是原分式方程的解. ·········································································6分22.解:(1)∵AE ∥BF ,,,,AE BF A FBD AC BD =⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△BFD (SAS ). ····································································5分∴EC =FD . ························································································6分23.解:(1)∵直线y kx b =-+经过点A (5,0)、B (1,4),∴50,4.k b k b +=+=⎧⎨⎩ ······················································································1分 解方程得 1,5.kb=-=⎧⎨⎩ ···········································································2分∴直线AB 的解析式为 5.y x =-+ ·························································3分 (2)∵直线24y x =-与直线AB 相交于点C,∴解方程组5,2 4.yx y x =-+=-⎧⎨⎩得3,2.x y==⎧⎨⎩∴点C 的坐标为(3,2). ···································································· 5分 (3)x ≥3. ································································································ 6分四、解答题(本题共12分,第24题5分,第25题7分)24.(1)已知:在△ABD 中, AC =BC =CD .求证:90ABD ∠=︒.证明:∵AC=BC ,∴12∠=∠. ∵BC=CD ,∴34∠=∠. ························ 1分 在△ABD 中,1234180∠+∠+∠+∠=︒.∴1490∠+∠=︒.即90ABD ∠=︒. ········································· 3分(2)如图,△EFG 为所求作的三角形 .······························································································································ 5分25.解:(1)∵一次函数132y x =+的图象与正比例函数y kx =的图象相交于点A (a ,1), ∴1312a +=.解得4a =-.····················································································1分∴A (-4 ,1). ∴41k -=. 解得 14k =-.∴正比例函数的解析式为14y x =-.·················································2分 (2)P 1(-8 ,0)或P 2(0 ,2); ·························································4分阅卷说明:每个结果1分(3)依题意,得点B 的坐标为(m ,132m +),点C 的坐标为(m ,14m -).作AH ⊥BC 于点H ,H 的坐标为(m ,1). ········································5分 以下分两种情况: (ⅰ)当m <-4时,BC =11(3)42m m --+=334m --.AH =4m --.则12ABC S BC AH ∆=⋅=13(3)(4)24m m ----=23368m m ++.(ⅱ)当m >-4时,BC =11(3)24m m++=34AH =4m +.则12ABCS BC AH∆=⋅=13(3)(4)24m m ++=23368m m ++. 综上所述,ABC S ∆=2338m m +五、解答题(本题6分)26.证明:∵AD 为△ABC 的角平分线, ∴12∠=∠. (1)∵CE ∥AD ,∴1E ∠=∠,23∠=∠. ∴3E ∠=∠. ∴AC =AE . 1分 ∵F 为EC 的中点, ∴AF ⊥BC . ∴90AFE FAD ∠=∠=︒.∴AF ⊥AD .2分(2)延长BA 与MN 延长线于点E ,过B 作BF ∥AC 交NM 延长线于点F . ·············· 3分 ∴3C ∠=∠,4F ∠=∠. ∵M 为BC 的中点∴BM =CM .在△BFM 和△CNM 中,4,3,,F C B M C M ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFM ≌△CNM (AAS ). ····················································································· 4分 ∴BF =CN .∵MN ∥AD ,∴1E ∠=∠,245∠=∠=∠. ∴5E F ∠=∠=∠. ∴AE =AN ,BE =BF .设CN =x ,则BF =x , AE =AN =AC -CN =7-x ,BE =AB +AE =4+7-x . ∴4+7-x =x .解得 x =5.5. ∴CN =5.5. 6分北京市西城区(北区)2012 — 2013学年度第一学期期末试卷八年级数学附加题参考答案及评分标准 2013.1一、填空题(本题6分) 1.(1)20; ············································································································ 3分 (2)4mn=. ········································································································ 3分二、解答题(本题共14分,第2题8分,第3题6分) 2.解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B .∴A (-6,0),B (0,6). ∴OA =OB . ·············································································································· 1分 ∴BAOABO∠=∠在△AOB 中,90AOB ∠=︒. ∴45BAO ABO ∠=∠=︒. ························································································ 2分 (2)在等腰直角三角形APD 中,90PDA ∠=︒,DA =DP ,145APD ∠=∠=︒.AMD CBNE F354412 B∴DP ⊥AD 于D .由(1)可得45BAO ∠=︒. ∴1BAO ∠=∠. 又∵PG ⊥x 轴于G , ∴PG = PD . ············································································································ 3分 ∴90AGP PGF D ∠=∠=∠=︒.∴445BAO ∠=∠=︒.∴490APD DPG ∠+∠=∠=︒.即390G P Q ∠+∠=︒. 又∵PQ ⊥PF , ∴290G PQ ∠+∠=︒.∴23∠=∠.········································· 4分在△PGF 和△PDQ 中,,,23,P G F D P G P D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PGF ≌△PDQ (ASA). ∴PF =PQ . ················································································································5分 (3)答:OP ⊥DP ,OP =DP .证明:延长DP 至H ,使得PH =PD . ∵P 为BE 的中点, ∴PB =PE .在△PBH 和△PED 中,,12,,P B P E P H P D =⎧⎪∠=∠⎨⎪=⎩∴△PBH ≌△PED (SAS ). ∴BH =ED . ··················································· 6分 ∴34∠=∠. ∴BH ∥ED .在等腰直角三角形ADE 中, AD =ED ,45DAE DEA ∠=∠=︒. ∴AD =BH ,90DAE BAO DAO ∠+∠=∠=︒. ∴DE ∥x 轴,BH ∥x 轴, BH ⊥y 轴. ∴90DAOHBO ∠=∠=︒.由(1)可得 OA =OB . 在△DAO 和△HBO 中,,,,AD BH D AO H BO O A O B =⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌△HBO (SAS ).x图1图2。
北京市西城区(南区)2013年八年级下期末数学试卷及答案
北京市西城区(南区)2012-2013学年下学期八年级期末质量检测数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列函数中,不是一次函数的是A. 4+-=x yB. x y 52=C. x y 321-=D. xy 7=2. 下列图形中,既是轴对称图形,又是中心对称图形的是3. 一个多边形的内角和与外角和相等,则这个多边形是 A. 四边形B. 五边形C. 六边形D. 八边形4. 正方形具有而矩形没有的性质是 A. 对角线互相平分 B. 每条对角线平分一组对角 C. 对角线相等D. 对边相等5. 下列各点中,在双曲线xy 12-=上的点是A. (-2,3)B. (4,3)C. (-2,-6)D. (6,-2)6. 甲、乙、丙、丁四名学生10次小测验成绩的平均数(单位:分)和方差如下表:选手 甲 乙 丙 丁 平均数 92 92 92 92 方差 3.61.21.42.2则这四人中成绩最稳定的是A. 甲B. 乙C. 丙D. 丁7. 如图,在平行四边形ABCD 中,已知AD =8cm ,AB =6cm ,DE 平分∠ADC 交BC 边于点E ,则BE 等于A. 2cmB. 4cmC. 6cmD. 8cm8. 一次函数22-=x y 的图象不经过...的象限是 A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 某人驾车从A 地走高速公路前往B 地,中途在服务区休息了一段时间。
出发时油箱中存油40升,到B 地后发现油箱中还剩油4升,则从A 地出发到达B 地的过程中,油箱中所剩燃油y (升)与时间t (小时)之间的函数图象大致是10. 如图,A 、B 是函数=y x2的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则A. 2=SB. 4=SC. 42<<SD. 4>S11. 如图,在梯形ABCD 中,AB ∥DC ,∠A =90°,AD =DC =4,AB =1,BC 的长度是A. 5B. 4C. 7D. 612. 如图,△ABC 中,BC =18,若BD ⊥AC 于D ,CE ⊥AB 于E ,F 、G 分别为BC 、DE 的中点,若ED =10,则FG 的长为A. 142B. 9C. 10D. 无法确定二、填空题(本大题共8小题,每小题3分,共24分。
西城区第二学期八年级数学期末试卷及答案
m),y与x
图1图2
依据以上信息解答以下问题:
(1)由图2可知未调价时的水价为元/
3
m;
(2)图3中,a=,b=,
图1中,c=;
(3)当180<x≤260时,求y与x之间的函数关系式.
解:图3
五、解答题(此题共14分,每题7分)
23.已知:正方形ABCD的边长为6,点E为BC的中点,点F在AB边上,BF2AF.
画出EDF,猜想EDF的度数并写出计算过程.
解:EDF的度数为.
计算过程以下:
24.已知:如图,在平面直角坐标系xOy中,A(0,4),B(0,2),点C在x轴的正半轴上,
点D为OC的中点.
(1)求证:BD∥AC;
(2)当BD与AC的距离等于1时,求点C的坐标;
(3)假如OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的分析式.
90°获得线段OA,则点A的坐标是.
15.如图,直线l1:yx1与直线l2:ymxn订交于点P(a,2),
则对于x的不等式x1≥mxn的解集为.
16.如图1,五边形ABCDE中,∠A=90°,AB∥DE,AE∥BC,点F,G分别是BC,AE的
中点.动点P以每秒2cm的速度在五边形ABCDE的边上运动,运动路径为F→C→D
→E→G,相应的△ABP的面积y(cm2)对于运动时间t(s)的函数图象如图2所示.若
AB=10cm,则(1)图1中BC的长为_______cm;(2)图2中a的值为_________.
三、解答题(此题共30分,第17题5分,第18~20题每题6分,第21题7分)
17.解一元二次方程:
2420
xx.
跳高成绩(m)
人数132351
2013-2014学年北京市西城区八年级(上)期末数学试卷-含详细解析
2013-2014学年北京市西城区八年级(上)期末数学试卷副标题一、选择题(本大题共8小题,共24.0分)1.下列各式中,最简二次根式是( )A. B. C. D.2.如图所示的汽车标志中,不是轴对称图形的是()A. B. C. D.3.下列因式分解结果正确的是()A. B.C. D.4.下列各式中,正确的是( )A. B.C. D.5.如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.6果AC=3cm,△ADC的周长为57cm,那么BC的长为( )A. 7cmB. 10cmC. 12cmD. 22cm6.某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A. B. C. D.7.如果,那么的值为()A. B. C. D.8.如图,将长方形纸片先沿虚线AB向右对折,接着将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,那么打开后的展开图是( )A. B. C. D.二、填空题(本大题共7小题,共21.0分)9.如果分式的值为0,那么x的值为10.如果在实数范围内有意义,那么x的取值范围是.11.下列运算中,正确的是(填写所有正确式子的序号)①a2•a6=a12;② (x3)2=x9;③ (2a)3=8a3;④ (5a-b2)2=25a2-b4-5ab2.12.如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为.13.化简:= .14.计算:(6x4-8x3)÷(-2x2)= .15.如图,∠AOB=64°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为三、计算题(本大题共1小题,共5.0分)16.解分式方程:.四、解答题(本大题共11小题,共70.0分)17.如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P1(3,0).(1)画出点P从第一次到第四次碰到长方形的边的全过程中,运动的路径;(2)当点P第2014次碰到长方形的边时,点P的坐标为18.(1)先化简,再求当a=2,b=1时,代数式(a+3b)(a-b)+a(a-2b)的值.(2)计算:.19.已知:如图,AB=AC,∠DAC=∠EAB,∠B=∠C.求证:BD =CE.20.21.尺规作图:已知:如图,线段a和h.求作等腰三角形ABC,使底边BC=a,底边上的高AD=h.(保留作图痕迹并写出相应的作法.)作法:22.(1)阅读理解:我们知道,只用直尺和圆规不能解决的三个经典的希腊问题之一是三等分任意角,但是这个任务可以借助如图1所示的一边上有刻度的勾尺完成,勾尺的直角顶点为P,“宽臂”的宽度=PQ=QR=RS,(这个条件很重要哦!)勾尺的一边MN满足M,N,Q 三点共线(所以PQ⊥MN).下面以三等分∠ABC为例说明利用勾尺三等分锐角的过程:第一步:画直线DE使DE∥BC,且这两条平行线的距离等于PQ;第二步:移动勾尺到合适位置,使其顶点P落在DE上,使勾尺的MN边经过点B,同时让点R落在∠ABC的BA边上;第三步:标记此时点Q和点P所在位置,作射线BQ和射线BP.23.已知:如图,在平面直角坐标系xOy中,A(-2,0),B(0,4),点C在第四象限,AC⊥AB,AC=AB.(1)求点C的坐标及∠COA的度数;(2)若直线BC与x轴的交点为M,点P在经过点C与x轴平行的直线上,直接写出S△POM+S△BOM的值.24.已知:如图,Rt△ABC中,∠BAC=90°.(1)按要求作图:(保留作图痕迹)①延长BC到点D,使CD=BC;②延长CA到点E,使AE=2CA;③连接AD,BE并猜想线段AD与BE的大小关系;(2)证明(1)中你对线段AD与BE大小关系的猜想.25.我们规定:用[x]表示实数x的整数部分,如[3.14]=3,,在此规定下解决下列问题:(1)填空:=;(2)求的值.26.取一张正方形纸片ABCD进行折叠,具体操作过程如下:第一步:先把纸片分别对折,使对边分别重合,再展开,记折痕MN,PQ的交点为O;再次对折纸片使AB与PQ重合,展开后得到折痕EF,如图1;第二步:折叠纸片使点N落在线段EF上,同时使折痕GH经过点O,记点N在EF 上的对应点为N′,如图2.解决问题:(1)请在图2中画出(补全)纸片展平后的四边形CHGD及相应MN,PQ的对应位置;(2)利用所画出的图形探究∠POG的度数并证明你的结论.27.已知:如图,∠MAN为锐角,AD平分∠MAN,点B,点C分别在射线AM和AN上,AB=AC.(1)若点E在线段CA上,线段EC的垂直平分线交直线AD于点F,直线BE交直线AD于点G,求证:∠EBF=∠CAG;(2)若(1)中的点E运动到线段CA的延长线上,(1)中的其它条件不变,猜想∠EBF与∠CAG的数量关系并证明你的结论.答案和解析1.【答案】D【解析】试题分析:根据最简二次根式的定义解答.A、==,故不是最简二次根式,此选项错误;B、=2,故不是最简二次根式,此选项错误;C、=|x|,故不是最简二次根式,此选项错误;D、二次根式中被开方数不含分母且被开方数不含能开得尽方的因数或因式,是最简二次根式.故选:D.2.【答案】A【解析】试题分析:根据轴对称的定义,结合选项图形进行判断即可.A、不是轴对称图形,故本选项正确;B、是轴对称图形,不合题意,故本选项错误;C、轴对称图形,不合题意,故本选项错误;D、轴对称图形,不合题意,故本选项错误;故选;A.3.【答案】D【解析】试题分析:分别根据提取公因式法以及公式法、十字相乘法分解因式得出即可.A、10a3+5a2=5a2(2a+1),故此选项错误;B、4x2-9=(2x+3)(2x-3),故此选项错误;C、a2-2a-1,无法因式分解,故此选项错误;D、x2-5x-6=(x-6)(x+1),此选项正确.故选:D.4.【答案】D【解析】试题分析:根据分式的分子分母都乘以或除以同一个不为零的整式,分式的值不变,可得答案.A 分母中的a没除以b,故A错误;B 异分母分式不能直接相加,故B错误;C 分式的分子分母没同乘或除以同一个不为零整式,故C错误;D 分式的分子分母都乘以(a-2),故D正确;故选:D.5.【答案】C【解析】试题分析:利用翻折变换的性质得出AD=BD,进而利用AD+CD=BC得出即可.6.【答案】B【解析】试题分析:设原计划平均每天植树棵x棵,根据“现在植树600棵所需的时间与原计划植树450棵所需的时间相同”这一等量关系列出分式方程求解即可.设原计划平均每天植树棵x棵,现在每天植树(x+50)棵,依题意得,=.故选:C.7.【答案】A【解析】试题分析:根据比例的性质得出x=2y,再代入约分即可.∵=,∴3x=2x+2y,∴x=2y,∴=;故选A.8.【答案】D【解析】试题分析:严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来,也可仔细观察图形特点,利用对称性与排除法求解.∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.9.【答案】3【解析】试题分析:根据分式的分子为0,分母不为0,可得答案.x-3=0,且x+2≠0,x=3,故答案为:3.10.【答案】x≥【解析】试题分析:根据二次根式有意义的条件可得2x-1≥0,再解不等式即可.由题意得:2x-1≥0,解得:x≥,故答案为:x≥.11.【答案】③【解析】试题分析:先根据同底数幂的乘法法则,幂的乘方,积的乘方,完全平方根公式分别求出每个式子的值,再判断即可.∵a2•a6=a8,∴①错误;∵(x3)2=x6,∴②错误;∵(2a)3=8a3,∴③正确;∵(5a-b2)2=25a2+b4-10ab2,∴④错误;故答案为:③.12.【答案】70°【解析】试题分析:根据三角形内角和定理计算出∠2的度数,然后再根据全等三角形的对应角相等可得∠1=∠2=70°.根据三角形内角和可得∠2=180°-50°-60°=70°,因为两个全等三角形,所以∠1=∠2=70°,故答案为:70°.13.【答案】【解析】试题分析:首先通分,然后根据同分母的分式加减运算法则求解即可求得答案.注意运算结果需化为最简.=-===.故答案为:.14.【答案】-3x2+4x【解析】试题分析:根据多项式除以单项式,用多项式的每一项除以单项式,把所得的商相加,可得答案.解;原式=6x4÷(-2x2)-8x3÷(-2x2)=-3x2+4x,故答案为:-3x2+4x.15.【答案】124°或75°或34°【解析】试题分析:求出∠AOC,根据等腰得出三种情况,OE=CE,OC=OE,OC=CE,根据等腰三角形性质和三角形内角和定理求出即可.16.【答案】【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.17.【答案】解:(1)如图所示;(2)如图,经过6次反弹后动点回到出发点(0,3),∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,∴点P的坐标为(5,0).故答案为(5,0).【解析】试题分析:(1)根据反射角与入射角的定义作出图形;(2)由图可知,每6次反弹为一个循环组依次循环,用2014除以6,根据商和余数的情况确定所对应的点的坐标即可.18.【答案】解:(1)原式=a 2 +2ab-3b 2 +(a 2 -2ab)=a 2 +2ab-3b 2 +a 2 -2ab=2a 2 -3b 2当a=2,b=1时,原式=2×2 2 -3=5 (2)原式=+-=4+.【解析】试题分析:(1)首先利用多项式的乘法法则以及单项式的乘法法则计算乘法,然后去括号、合并同类项即可化简,最后代入数值计算即可;(2)首先计算二次根式的乘法,化简二次根式,然后合并同类二次根式即可求解.19.【答案】证明:∵∠DAC=∠EAB,∴∠DAC+∠BAC=∠EAB+∠BAC.∴∠EAC=∠DAB.在△EAC和△DAB中,,∴△DAB≌△EAC(ASA),∴BD=CE.【解析】试题分析:要证BD=CE,可利用判定两个三角形全等的方法“两角和它们的夹边对应相等的两个三角形全等”证△DAB≌△EAC,然后由全等三角形对应边相等得出.20.【答案】【解析】试题分析:(1)先提取公因式3,再对余下的多项式利用完全平方公式继续分解;(2)把分式的分子分母分解因式,并把除法转化为乘法,然后根据分式的乘法运算进行计算即可得解.21.【答案】解:如图所示:【解析】试题分析:作出线段BC=a,再做出BC的垂直平分线,垂足为D,再在垂直平分线上截取DA=h,并画出△ABC即可.22.【答案】解:(1)∠ABC的三等分线是射线是BP、BQ;(2)∵PQ=QR,BQ⊥PR,∴BP=BR.(线段垂直平分线上的点与这条线段两个端点的距离相等)∴∠ABQ=∠PBQ.∵PQ⊥MN,PT⊥BC,PT=PQ,∴∠PBQ=∠PBC.(角的内部到角的两边距离相等的点在角的平分线上)∴∠ABQ=∠PBQ=∠PBC.故答案为:(1)BP,BQ;(2)PQ=QR,ABQ,PBQ,PBQ,ABQ,PBQ,PBC;(3)在(1)的条件下探究:∠ABS= ∠ABS不成立,在∠ABC外部所画∠ABV= ∠ABC如图.【解析】试题分析:(1)根据图形可知BP、BQ是角的三等分线;(2)根据线段垂直平分线上的点到两端点的距离相等和角的内部到角的两边距离相等的点在角的平分线上结合图形填空即可;(3)根据阅读材料进行判断并作出图形.23.【答案】解:(1)作CD⊥x轴于点D,∴∠CDA=90°.∵∠AOB=90°,∴∠AOB=∠CDA.∴∠DAC+∠DCA=90°.∵AC⊥AB,∴∠BAC=∠BAD+∠CAD=90°,∴∠BAD=∠ACD.在△AOB和△CDA中∴△AOB≌△CDA(AAS),∴AO=CD,OB=DA.∵A(-2,0),B(0,4),∴OA=2,OB=4,∴CD=2,DA=4,∴OD=2,∴OD=CD.∵点C在第四象限,∴C(2,-2).∵∠CDO=90°,∴∠COD=45°.∴∠COA=180°-45°=135°.(2)∵PC∥x轴,∴点P到x轴的距离相等,∴S△POM=S△COM.∴S△POM+S△BOM=S△COM+S△BOM=S△BOC.∴S△POM+S△BOM=S△BOC==4.故答案为:4.【解析】试题分析:24.【答案】解:(1)由题意,得作图如下:(2)延长AC到点F,使CF=AF,连接BF,在△ACD和△FCB中∴△ACD≌△FCB(SAS)∴AD=FB.∵CF=AF,∴AF=5AC.∵AE=5CA,∴AF=AE,∵∠BAC=90°,∴AB⊥EF,∴AB是EF的垂直平分线,∴BE=BF,∴AD=BE.【解析】试题分析:(1)根据基本作图,作一条线段等于已知线段的作图方法就可以作出图形;(2)延长AC到点F,使CF=AF,连接BF,证明△ACD≌△FCB,就有AD=FB,进而得出AE=AF,就可以得出BE=BF,从而结论AD=BE.25.【答案】解:(1)∵=1;;∴当[ ]≤[]<[ ]时,[ ]=1;当[ ]≤[<[ ]时,[ ]=2∴=1+1+1+2+2+2=9.(2)=1+1+1+2+2+2+2+ (7)=1×3+2×5+3×7+4×9+5×11+6×13+7=210.【解析】试题分析:根据[x]表示实数x的整数部分,判断求出[]的整数部分,再相加计算即可.26.【答案】解:(1)如图2所示:(2)如图2所示:设边长为a,可得到OM=ON=OP=OQ=,设N对应点为N',过N'作N'R⊥PQ于R,则N'R=,所以N 'R=ON',∠N'OP=30°;则∠N'OM=60°,∠NON'=120°,又由于∠N'OG=∠NOG,所以∠N'OG=60°,于是可得∠POG=30°.【解析】试题分析:(1)利用翻折变换的性质得出对应点位置进而得出答案;(2)设N对应点为N',过N'作N'R⊥PQ于R,则N'R=,进而得出,∠N'OP=30°,再求出∠N'OG=∠NOG,即可得出答案.27.【答案】解:(1)如图1,连接EF、CF,∵EC的垂直平分线交直线AD,∴EF=CF,∴∠FEC=∠FCE.∵AD平分∠MAN,∴∠BAF=∠CAF.在△AFB和△AFC中∴△AFB≌△AFC(SAS),∴∠ABF=∠ACF,∴∠ABF=∠FCE.∵∠FEC+∠FEA=180°,∴∠ABF+∠AEF=180°,∴A、B、F、E四点共圆,∴∠EBF=∠CAG;(2)∠EBF+∠CAG=180°理由:如图2,连接EF、CF,∵EC的垂直平分线交直线AD,∴EF=CF,∴∠FEC=∠FCE.∵AD平分∠MAN,∴∠BAF=∠CAF.在△AFB和△AFC中∴△AFB≌△AFC(SAS),∴∠ABF=∠ACF,∴∠ABF=∠FCE.∴∠ABF=∠FCE∴A、B、F、E四点共圆,∴∠EBF=∠FAC.∵∠FAC+∠CAG=180°,∴∠EBF+∠CAG=180°.【解析】试题分析:(1)如图1,连接EF、CF,由中垂线的性质就可以得出EF=CF.就有∠FEC=∠FCE,由△AFB≌△AFC就可以得出∠ABF=∠ACF,由∠FEC+∠FEA=180°就可以得出∠ABF+∠AEF=180°,得出A、B、F、E四点共圆,近而得出∠EBF=∠CAG;(2)如图2,连接EF、CF,由中垂线的性质就可以得出EF=CF.就有∠FEC=∠FCE,由△AFB≌△AFC就可以得出∠ABF=∠ACF,就有∠AEF=∠ABF,近而得出A、B、F、E四点共圆,就有∠EBF=∠FAC;从而得出∠EBF+∠CAG=180°.。
2012-2013西城区初二上学期期末数学试题答案
北京市西城区(北区)2012 — 2013学年度第一学期期末试卷八年级数学参考答案及评分标准2013.1一、选择题(本题共30分,每小题3分)三、解答题(本题共28分,第19,20题,每小题5分,第21~23题,每小题6分)19.解: 1)-++=24+·······················································································3分=2. ································································································5分20.解:2112()3369m m m m m +÷-+-+=22(3)(3)(3)2m m m m m-⋅-+···············································································3分=33m m -+. ···································································································4分当9m =时,原式=931932-=+. ···································································5分21.解:方程两边同乘(1)(1)x x -+,得(1)3(1)(1)(1)x x x x x +--=-+.···································································2分化简,得331x x -+=-. (4)分 解得2x =. (5)分检验:当2x =时,(1)(1)0x x -+≠,∴2x=是原分式方程的解. ········································································6分22.解:(1)∵AE ∥BF ,∴∠A =∠FBD . ················································································· 1分∴△AEC ≌△BFD (SAS ). ·································································5分 ∴EC =FD . ························································································6分23.解:(1)∵直线y kx b =-+经过点A (5,0)、B (1,4),∴50,4.k b k b +=+=⎧⎨⎩······················································································1分解方程得 1,5.k b=-=⎧⎨⎩ ···········································································2分∴直线AB 的解析式为 5.y x =-+·························································3分 (2)∵直线24y x =-与直线AB 相交于点C ,∴解方程组5,2 4.yx y x =-+=-⎧⎨⎩得3,2.x y==⎧⎨⎩∴点C 的坐标为(3,2). ··································································· 5分 (3)x ≥3. ······························································································ 6分四、解答题(本题共12分,第24题5分,第25题7分) 24.(1)已知:在△ABD 中, AC =BC =CD .求证:90ABD ∠=︒.证明:∵AC=BC ,∴12∠=∠. ∵BC=CD , ∴34∠=∠.························ 1分 在△ABD 中,1234180∠+∠+∠+∠=︒.∴1490∠+∠=︒.即90ABD ∠=︒. ········································· 3分(2)如图,△EFG 为所求作的三角形 .······························································································································ 5分25.解:(1)∵一次函数132y x =+的图象与正比例函数y kx =的图象相交于点A (a ,1), ∴1312a +=.解得4a =-.····················································································1分∴A (-4 ,1). ∴41k -=. 解得 14k =-.∴正比例函数的解析式为14y x =-. ················································2分 (2)P 1(-8 ,0)或P 2(0 ,2); ·························································4分阅卷说明:每个结果1分(3)依题意,得点B 的坐标为(m ,132m +),点C 的坐标为(m ,14m-).作AH ⊥BC 于点H ,H 的坐标为(m ,1). ·······································5分以下分两种情况: (ⅰ)当m <-4时,BC =11(3)42m m --+=334m --.AH =4m --.则12ABC S BC AH ∆=⋅=13(3)(4)24m m ----=23368m m ++.(ⅱ)当m >-4时,BC =11(3)24m m++=34AH =4m +.则12ABCS BC AH∆=⋅=13(3)(4)24m m ++=23368m m ++. 综上所述,ABC S ∆=2338m m +五、解答题(本题6分)26.证明:∵AD 为△ABC 的角平分线,∴12∠=∠.(1)∵CE ∥AD ,∴1E ∠=∠,23∠=∠.∴3E ∠=∠. ∴AC =AE . ·································1分 ∵F 为EC 的中点, ∴AF ⊥BC . ∴90AFE FAD∠=∠=︒.∴AF ⊥AD . ·······························2分(2)延长BA 与MN 延长线于点E ,过B 作BF ∥AC 交NM 延长线于点F . ······ 3分∴3C ∠=∠,4F ∠=∠. ∵M 为BC 的中点 ∴BM =CM .在△BFM 和△CNM 中,4,3,,F C B M C M ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFM ≌△CNM (AAS ). ···································································· 4分 ∴BF =CN .∵MN ∥AD ,∴1E ∠=∠,245∠=∠=∠. ∴5E F ∠=∠=∠. ∴AE =AN ,BE =BF .设CN =x ,则BF =x , AE =AN =AC -CN =7-x ,BE =AB +AE =4+7-x . ∴4+7-x =x . 解得 x =5.5.∴CN =5.5. ··························································································· 6分北京市西城区(北区)2012 — 2013学年度第一学期期末试卷八年级数学附加题参考答案及评分标准 2013.1一、填空题(本题6分)1.(1)20; ············································································································ 3分 (2)4m n =.····································································································· 3分 二、解答题(本题共14分,第2题8分,第3题6分) 2.解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B .∴A (-6,0),B (0,6).∴OA =OB . ·························································································· 1分 ∴BAO ABO ∠=∠ 在△AOB 中,90AOB ∠=︒.∴45BAOABO ∠=∠=︒. ···································································· 2分(2)在等腰直角三角形APD 中,90PDA ∠=︒,DA =DP ,145APD∠=∠=︒.∴DP ⊥AD 于D .AMDCBNEF35 41 2由(1)可得45BAO ∠=︒.∴1BAO ∠=∠.又∵PG ⊥x 轴于G , ∴PG = PD . ······················································································· 3分 ∴90AGPPGF D ∠=∠=∠=︒.∴445BAO ∠=∠=︒. ∴490APD DPG ∠+∠=∠=︒.即390G P Q ∠+∠=︒. 又∵PQ ⊥PF , ∴290G PQ ∠+∠=︒.∴23∠=∠. ··················· 4分 在△PGF 和△PDQ 中,,,23,P G F D P G P D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PGF ≌△PDQ (ASA). ∴PF =PQ .···························································································5分 (3)答:OP ⊥DP ,OP =DP .证明:延长DP 至H ,使得PH =PD .∵P 为BE 的中点, ∴PB =PE .在△PBH 和△PED 中,,12,,P B P E P H P D =⎧⎪∠=∠⎨⎪=⎩∴△PBH ≌△PED (SAS ).∴BH =ED . ····························· 6分 ∴34∠=∠. ∴BH ∥ED .在等腰直角三角形ADE 中, AD =ED ,45DAE DEA ∠=∠=︒.∴AD =BH ,90DAE BAO DAO ∠+∠=∠=︒.∴DE ∥x 轴,BH ∥x 轴, BH ⊥y 轴.∴90DAO HBO ∠=∠=︒. 由(1)可得 OA =OB . 在△DAO 和△HBO 中,x图2,,,AD BH D AO H BO O A O B =⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌△HBO (SAS ).∴OD =OH ,∠5=∠6. ···································································· 7分 ∵590AOB DOB ∠=∠+∠=︒, ∴690DOH DOB ∠=∠+∠=︒. ∴在等腰直角三角形△DOH 中, ∵DP =HP , ∴OP ⊥DP ,12745DOH ∠=∠=︒.∴7ODP∠=∠.∴OP =PD . ······················································································ 8分3.(1)证明:在Rt △ABC 中,∠ACB =90°,∠A =30°,∴60ABC∠=︒, BC =12AB .∵BD 平分∠ABC ,∴130DBA A ∠=∠=∠=︒.∴DA =DB .∵DE ⊥AB 于点E . ∴AE =BE =12AB .∴BC =BE . ······················································································ 1分 ∴△BCE 是等边三角形. ································································ 2分(2)结论:AD = DG +DM .······························································································································3分 (3)结论:AD = DG -DN .理由如下:延长BD 至H ,使得DH =DN . ···································································4分 由(1)得DA =DB ,30A∠=︒.ADGC BME图2B 图1∵DE ⊥AB 于点E . ∴2360∠=∠=︒. ∴4560∠=∠=︒.∴△NDH 是等边三角形. ∴NH =ND ,660H∠=∠=︒.∴2H ∠=∠. ∵60BNG ∠=︒, ∴767BNG ∠+∠=∠+∠.即DNG HNB ∠=∠.在△DNG 和△HNB 中,,,2,D N H N D N G H N B H ⎧=⎪∠=∠⎨⎪∠=∠⎩∴△DNG ≌△HNB (ASA ). ∴DG =HB .∵HB =HD +DB =ND +AD , ∴DG = ND +AD .∴AD = DG -ND . ························································································· 6分图3G。
北京市西城区第一学期期末试卷(北区)八年级数学(B卷)
北京市西城区2010—2011学年度第一学期期末试卷(北区)八年级数学(B 卷)(时间100分钟,满分100分)一、精心选一选(本题共30分,每小题3分) 1. 计算4-2的结果是( )。
A. -8B. -81 C. -161 D. 1612. 下列说法中,正确的是( )。
A. 5是25的算术平方根 B. -9的平方根是-3 C. ±4是64的立方根 D. 9的立方根是33. 下列四个交通标志中,轴对称图形是( )。
4. 当b <0时,函数y =-x+b 的图象不经过( )。
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限5. 下列各式中,正确的是( )。
A. b b ab b a +=+1B. 22y x y x +-=+- C. 31932-=--x x x D. 222)(y x y x y x y x +-=+- 6. 在△ABC 和△A′B′C′中,已知∠A =∠A ′,AB=A′B′,添加下列条件中的一个,不能使△ABC ≌△A′B′C′一定成立的是( )。
A. AC=A′C′B. BC=B′C′C. ∠B=∠B′D. ∠C=∠C′7. 点A (-1,y 1)和B (2,y 2)都在直线y=-3x 上,则y 1与y 2的关系是( )。
A. y 1<y 2 B. y 1=y 2 C. y 1>y 2 D. y 2=2y 1 8. 如图,在△ABC 中,D 是BC 边上一点,且AB=AD=DC ,∠BAD =40°,则∠C 为( )。
A. 25°B. 35°C. 40°D. 50°9. 已知一次函数y =kx +b 的图象如图所示,当x >0时,y 的取值范围是( )。
A. y <1B. y >1C. y <-2D. y >-210. 如图所示,长方形ABCD 中,AB =4,BC =43,点E 是折线段A —D —C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点。
2013西城区初二期末数学试题及答案北区
集贸市场应建在( ).
B
A.在 AC、BC 两边高线的交点处
B.在 AC、BC 两边中线的交点处
C.在∠A、∠B 两内角平分线的交点处
D.在 AC、BC 两边垂直平分线的交点处
A
C
7.估计 14 的值在( ).
A.1 与 2 之间 C.3 与 4 之间
B.2 与 3 之间 D.4 与 5 之间
8.一次函数 y mx m (m 为常数且 m≠0),若 y 随 x 增大而增大,则它的图象
经( ).
A.第一、二、三象限 C.第一、三、四象限
B.第一、二、四象限 D.第二、三、四象限
9.如图,在等腰直角三角形 ABC 中,
∠BAC=90°,在 BC 上截取 BD=BA,作∠ABC 的平
分线与 AD 相交于点 P,连结 PC,若△ABC 的面积
为 2cm2 ,则△BPC 的面积为(
).
A. 0.5cm2 C. 1.5cm2
中,属于轴对称图形的是( ).
A.
B.
C.
D.
3.点 P(-3,5)关于 y 轴的对称点的坐标是( ).
A.(3,5)
B.(3,-5)
C.(5,-3)
D.(-3,-5)
4.将正比例函数 y=3x 的图象向下平移 4 个单位长度后,所得函数图象的解析式为
( ).
A. y 3x 4
B. y 3x 4
B. 1cm2 D. 2cm2
B
A P
C D
10.小华、小明两同学在同一条长为 1100 米的直路上进行跑步比赛,小华、小明 跑步的平均速度分别为 3 米/秒和 5 米/秒,小明从起点出发,小华在小明前面 200 米处出发,两人同方向同时出发,当其中一人到达终点时,比赛停止.设 小华与小明之间的距离 y(单位:米),他们跑步的时间为 x(单位:秒),则表 示 y 与 x 之间的函数关系的图象是( ).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17. 如图,在△ABC 中,AB=AC,D 为 BC 边上一
点,且∠BAD=30°,若 AD=DE,∠EDC=33°,则
∠DAE 的度数为 °.
18.如果满足条件“∠ABC=30°,AC=1, BC=k(k>0)”的△ABC 是唯一的,那
9.如图,在等腰直角三角形 ABC 中,
∠BAC=90°,在 BC 上截取 BD=BA,作∠ABC 的平 A
分线与 AD 相交于点 P,连结 PC,若△ABC 的面积
为 2cm2 ,则△BPC 的面积为( ). P
得分
一、选择题(本题共 30 分,每小题 3 分)
1.计算 32 的结果是( ).
1 1
10.小华、小明两同学在同一条长为 1100 米的直路上进行跑步比赛,小华、小明
跑步的平均速度分别为 3 米/秒和 5 米/秒,小明从起点出发,小华在小明前面
200 米处出发,两人同方向同时出发,当其中一人到达终点时,比赛停止.设
小华与小明之间的距离 y(单位:米),他们跑步的时间为 x(单位:秒),则表
解:
1 1 2m
20.先化简,再求值: ( ) ,其中 m 9 .
A.(3,5) B.(3,-5)
C.(5,-3) D.(-3,-5)
4.将正比例函数 y=3x 的图象向下平移 4 个单位长度后,所得函数图象的解析式为
( ).
证明:
A B C D
A. 5y 5y B. c c
a b a b a a
中,属于轴对称图形的是( ).
A. B. C. D.
3.点 P(-3,5)关于 y 轴的对称点的坐标是( ).
m 3 m 3 m2 6m 9
解:
x 3
21.解方程: 1.
x 1 x 1
解:
C.在∠A、∠B 两内角平分线的交点处
D.在 AC、BC 两边垂直平分线的交点处 A C
7.估计 14 的值在( ).
A.1 与 2 之间 B.2 与 3 之间
C. c c D. b a a b
6.如图,三条公路把 A、B、C 三个村庄连成一个三角形区域,某地区决定在这个
出发,先遣车队比学生车队提前半小时到达公园以便提前做好准备工作.已知
先遣车队的速是学生队车速度的 1.2 倍,若设学生车队的速度为 x 千米/时,则
列出的方程是 .
1
11.在函数 y 中,自变量 x 的取值范围是__________.
x 2
11
12.在 0.1&4&, , 2 , , 3 27 这五个实数中,无理数的是 .
22.已知:如图, A、B、C、D 四点在同一直线上, AB=CD,AE∥BF 且
AE=BF. E F
求证: EC=FD.
A.-9 B.-9 C. D.
9 9
2.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品
A. y 3x 4 B. y 3x 4
C. y 3(x 4) ).
3x 3x a b a b
三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个
集贸市场应建在( ).
B
A.在 AC、BC 两边高线的交点处
B.在 AC、BC 两边中线的交点处
C.3 与 4 之间 D.4 与 5 之间
8.一次函数 y mx m (m 为常数且 m≠0),若 y 随 x 增大而增大,则它的图象
经( ).
A.第一、二、三象限 B.第一、二、四象限
C.第一、三、四象限 D.第二、三、四象限
北京市西城区(北区)2012–2013 学年度第一学期期末试卷
八年级数学 2013.1
(时间 100 分钟,满分 100 分)
题号 一 二 三 四 五 总分
E,连结 BD.若 AD=12cm,则 BC 的长为
cm.
15.若 x2 9 , y3 8 ,则 x+y= .
16.某校组织学生到距离学校 15 千米的西山公园秋游,先遣车队与学生车队同时
7
13.一次函数 y 2x 1的图象与 x 轴的交点坐标为 ,与 y 轴的交点坐标
为 .
14.如图,在 Rt△ABC 中,∠ACB=90°,∠A=15°,
AB 的垂直平分线与 AC 交于点 D,与 AB 交于点
A. 0.5cm2 B. 1cm2
2 2 B C
C.1.5cm D. 2cm D
示 y 与 x 之间的函数关系的图象是( ).
A. B. C. D.
二、填空题(本题共 24 分,第 13 题 4 分,第 18 题 2 分,其余各题每小题 3 分)
么 k 的取值范围是 .
三、解答题(本题共 28 分,第 19、20 题每小题 5 分,第 21~23 题每小题 6 分)
19.计算: 2( 3 1) 3 16 .