初二数学上册一次函数专项练习题
八年级数学上册《第五章 一次函数》练习题-附答案(浙教版)
八年级数学上册《第五章一次函数》练习题-附答案(浙教版)一、选择题1.下列函数中,正比例函数是( )A.y=﹣8xB.y=1x C.y=8x2 D.y=8x﹣42.已知y关于x成正比例,且当x=2时,y=-6,则当x=1时,y的值为( )A.3B.-3C.12D.-123.下列函数中,“y是x的一次函数”的是( )A.y=2x﹣1B.y=12x2 C.y=1 D.y=1﹣x4.若y=x+2–b是正比例函数,则b的值是( )A.0B.–2C.2D.–0.55.下列函数中,是一次函数的有( )①y=12x;②y=3x+1;③y=4x;④y=kx-2.A.1个B.2个C.3个D.4个6.若函数y=(2-m)x|m|-1是关于x的正比例函数,则常数m的值等于( )A.±2B.﹣2C.± 3D.﹣ 37.函数y=(m﹣n+1)x|n﹣1|+n﹣2是正比例函数,则m,n应满足的条件是( ).A.m≠﹣1,且n=0B.m≠1,且n=0C.m≠﹣1,且n=2D.m≠1,且n=28.在y=(k+1)x+k2-1中,若y是x的正比例函数,则k值为( )A.1B.-1C.±1D.无法确定二、填空题9.若函数y=﹣2x m+2是正比例函数,则m的值是.10.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,•该函数的解析式为_______11.若函数y=(n﹣3)x+n2﹣9是正比例函数,则n的值为12.当m=___________时,函数y=(m+3)x2m+1+4x﹣5(x≠0)是一次函数.13.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k________时,它是正比例函数.14.如果函数y=(k﹣2)x|k﹣1|+3是一次函数,则k=_______.三、解答题15.已知y与2x+1成正比例函数,当x=2时,y=10.(1)求y与x的函数关系式;(2)若A(3,m)在此直线上,求m的值.16.已知y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4.(1)求y与x的函数解析式,并说明此函数是什么函数;(2)当x=3时,求y的值.17.已知y与x+2 成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当y=36时x的值;(3)判断点(-7,-10)是否是函数图象上的点.18.已知y﹣1与x成正比例,且x=﹣2时,y=4(1)求出y与x之间的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a的值;(3)如果自变量x的取值范围是0≤x≤5,求y的取值范围.参考答案1.A2.B3.D4.C5.B6.B7.D8.A9.答案为:﹣1.10.答案为:2;y =2x.11.答案为:﹣312.答案为:﹣3,0,﹣12. 13.答案为:≠1,=-1.14.答案为:0.15.解:(1)y=4x+2;(2)m=14.16.解:(1)设y 1=k 1x ,y 2=k 2(x -2),则y =k 1x +k 2(x -2),依题意,得⎩⎨⎧k 1-k 2=0,-3k 1-5k 2=4,解得⎩⎪⎨⎪⎧k 1=-12,k 2=-12. ∴y =-12x -12(x -2),即y =-x +1. ∴y 是x 的一次函数.(2)把x =3代入y =-x +1,得y =-2. ∴当x =3时,y 的值为-2.17.解:(1)设y =k(x +2).∵x =4,y =12,∴6k =12.解得k =2.∴y=2(x+2)=2x+4.(2)当y=36时,2x+4=36,解得x=16.(3)当x=-7时,y=2×(-7)+4=-10 ∴点(-7,-10)是函数图象上的点. 18.解:(1)∵y﹣1与x成正比例∴设y﹣1=kx将x=﹣2,y=4代入,得∴4﹣1=﹣2k解得k=﹣3 2;∴y与x之间的函数关系式为:y=﹣32x+1;(2)由(1)知,y与x之间的函数关系式为:y=﹣32x+1;∴﹣2=﹣32a+1,解得,a=2;(3)∵0≤x≤5∴0≥﹣32x≥﹣152∴1≥﹣32x+1≥﹣132,即﹣132≤y≤1.。
八年级数学上册一次函数专题卷(附答案)
八年级数学上册一次函数专题卷(附答案)选择题(题型注释)n是常数且满足:m+n=6, mn=8那么该直线经过(B .第一■、二、三象限D .第一、二、四象限B C D3.如图,直线y=kx+b经过点A ( - 1, - 2)和点B ( - 2, 0),直线y=2x过点A,则不等式2x< kx+b v 0的解集为()A. xv— 2 B . - 2<x< - 1 C . - 2<x<0 D4.已知一次函数y =kx+5和y =k'x+7 ,假设在()A.第一象限B .第二象限C .第三象限D .第四象限5.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分)变化的图象(全程)如图,根据图象判定下列结论不正确的是()A.甲先到达终点 B .前30分钟,甲在乙的前面C.第48分钟时,两人第一次相遇 D .这次比赛的全程是28千米(5题图)2.如图,A B, G D为。
0的四等分点,动点P从圆心O出发,沿O-C-D-O路线作匀速运动,设运动时间为t (s) . /APB=y(。
),则下列图象中表示y与t之间函数关系最恰当的是()评卷人得分.已知直线其中mA.第二、三、四象限C.第一、三、四象限1小时后,途中靠边停车接了半小时电—1<x< 0k>0且k <0,则这两个一次函数的交点O6.小李驾驶汽车以50千米/小时的速度匀速行驶话,然后继续匀速行驶.已知行驶路程 y (单位:千米)与行驶时间 t (单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为()A. 43.5B. 50C. 56D. 587 .在直角坐标系中,一直线 l 向下平移3个单位后所得直线 b 经过点A (0, 3),将直线b绕点A 顺时针旋转 60。
后所得直线经过点 B (- J 3, 0),则直线l 的函数关系式为()A. y= — 33 x B . y= - 33 x+6 C . y= - x D . y= -x+6_ _.£ 1A,# B. 5 C, 2 D, 2k111.如图,已知y =ax+b 和y =kx 的图象交于点 P,根据图象可得关于 X 、Y 的二元一次12 .如图,直线y i =x+b 与y 2=kx - 1相交于点P,点P 的横坐标为-1,则关于x 的不等式 x+b>kx - 1 的解集 .13 .函数y= " -3中,自变量 x 的取值范围是 .14 .如图,在直角坐标系中,点 A, B 分别在x 轴,y 轴上,点A 的坐标为(-1,0),/ ABO=30 ,线段PQ 的端点P 从点O 出发,沿^ OBA 的边按OH B-A-。
八年级上册数学一次函数测试题及答案
八年级上册数学一次函数测试题及答案填空题.
(1)点A在y轴右侧,距y轴6个单位长度,距x轴8个单位长度,则A点的坐标是,A点离开原点的距离是.
(2)点(-3,2),(a,a+1)在函数y=kx-1的图像上,则k=a= (3)正比例函数的图像经过点(-3,5),则函数的关系式是.
(4)函数y=-5x+2与x轴的交点是,与y轴的交点是,与两坐标轴围成的三角形面积是.
(5)已知y与4x-1成正比例,且当x=3时,y=6,写出y与x的函数关系式.
(6)写出下列函数关系式
①速度60千米的匀速运动中,路程S与时间t的关系
②等腰三角形顶角y与底角x之间的关系
③汽车油箱中原有油100升,汽车每行驶50千米耗油9升,油箱剩余油量y(升)与汽车行驶路程x(千米)之间的关系
④矩形周长30,则面积y与一条边长x之间的关系
在上述各式中,是一次函数,是正比例函数(只填序号)
(7)正比例函数的图像一定经过点.
(8)若点(3,a)在一次函数y=3x+1的图像上,则.
(9)一次函数y=kx-1的图像经过点(-3,0),则k=.
(10)已知y与2x+1成正比例,且当x=3时,y=6,写出y与x的函数关系式.
(11)函数y=-x+m^2与y=4x-1的图像交于轴,则m=.
答案:
(1)、(6,+8)和(6,-8)、10(2)、-1、-1(3)、y=-x
(4)、(0.4,0)、(0,2)、0.4(5)、y=(4x-1)
(6)、s=60t、y=180-2x、y=100-0.18x、y=x(x-15)、①②③、①
(7)、(0,0)(8)、10(9)、-(10)、y=(2x+1)
(11)、正负。
初二上一次函数专项练习题
初二上一次函数专项练习题一、选择题1. 函数y=2x-3与y=-x+4的交点坐标为:A. (3, 3)B. (1, 1)C. (2, 3)D. (3, 1)2. 若函数y=ax^2+bx+c的图象经过点(1, 4),则a、b、c满足的方程是:A. a+b+c=4B. a-b+c=4C. a+b-c=4D. a-b-c=43. 若函数y=f(x)在点(2, 3)处有切线,且切线的斜率为-2,则f(x)的导数f'(x)的值为:A. 1B. 2C. -1D. -24. 已知函数y=2x^2+bx+3的图像通过点(1, 4)和点(-2, -1),则b的值为:A. 2B. 4C. -2D. -45. 若函数y=ax^2+bx+c的图象开口向上,则a和b的符号分别为:A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<0二、填空题1. 若f(x)=x^3,当x取_________时,f(x)取得最小值。
2. 若函数y=ax^2+bx+c的顶点为(2, -3),则a、b、c的值分别为______、______、______。
3. 函数y=ax+b与y=-ax-2在(1, -3)处相切,则a、b的值分别为______、_______。
4. 若函数y=ax^2+bx+c的图像经过点(1, -4),则a、b、c满足的方程是______、_______、______。
5. 函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(-2, 1),则a、b、c的值分别为______、_______、______。
三、解答题1. 若函数y=f(x)的图形关于y轴对称,且f(x)=2x^2+3,则f(x)的对称轴方程为什么?2. 若函数y=f(x)是一个奇函数,且f(-1)=2,则f(1)的值为多少?3. 若函数y=ax^2+bx+c的图象通过点(1, 4)和(-3, 2),则a、b、c的值分别为多少?4. 若函数y=ax^2+bx+c的图象的顶点坐标为(3, -2),则a、b、c的值分别为多少?5. 已知函数y=ax^2+bx+c的图象经过点(2, 3)且在点(1, 1)处有切线,求函数f(x)的表达式和a、b、c的值。
初二数学一次函数练习题及答案
初二数学一次函数练习题及答案一、选择题1.已知函数y = 2x + 3,若x = 4,则y =a) 8b) 11c) 7d) 9答案:b) 112.若函数y = kx + 5,当x = 3时,y = 17,则k的值为:a) 3b) 4c) 5d) 6答案:d) 63.已知函数y = -3x + 2,若x = -2,则y =a) 4b) 8c) -2d) -8答案:a) 44.若函数y = 4x - 5,当x = -1时,y =a) -4b) 9c) -9d) 11答案:c) -9二、填空题1.函数y = 2x + 3表示一条直线,其斜率为____,截距为____。
答案:2,32.已知一次函数y = -5x + k,当x = 2时,y = 9,则k的值为____。
答案:193.已知函数y = 3x + 4,若x = -1,则y的值为____。
答案:14.函数y = -2x - 1与y轴交于点(____,0)。
答案:-0.5三、解答题1.已知函数y = 2x + 1,求:(1)当x = 3时,y的值为多少?(2)当y = 5时,求相应的x值。
解:(1)将x = 3代入函数中,得到y = 2*3 + 1 = 7。
所以当x = 3时,y的值为7。
(2)将y = 5代入函数中,得到5 = 2x + 1,解方程得到x = 2。
所以当y = 5时,相应的x值为2。
2.已知函数y = -3x + 5,求:(1)求函数与x轴和y轴的交点坐标。
(2)求函数的斜率和截距。
解:(1)当函数与x轴交点时,y = 0,代入函数得到0 = -3x + 5,解方程得到x = 5/3。
所以与x轴的交点坐标为(5/3, 0)。
当函数与y轴交点时,x = 0,代入函数得到y = 5。
所以与y轴的交点坐标为(0, 5)。
(2)已知函数y = -3x + 5,斜率为-3,截距为5。
四、应用题1.一个移动应用程序每下载一个应用,需支付固定的5元服务费和每个应用的2元费用。
初中数学一次函数的图像专项练习30题(有答案)ok
一次函数的图像专项练习30题(有答案)1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y 1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D .8.函数y=2x+3的图象是( ) A .过点(0,3),(0,﹣)的直线 B .过点(1,5),(0,﹣)的直线C .过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( ) A . B . C . D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( ) A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( ) A .B .C .D .A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B .C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。
初二上册一次函数练习题
初二上册一次函数练习题一. 选择题(每题4分,共40分)1. 下列不属于一次函数的是:A. y = 5x - 3B. y = -2x^2 + 4x - 1C. y = 0.5x + 2D. y = -22. 若函数y = 2x - 1,那么当x = 3时,对应的y值是:A. -4B. 4C. 5D. -53. 函数y = -0.5x + 3图像与x轴交于点:A. (6, 0)B. (0, -3)C. (3, 0)D. (-3, 0)4. 若平行于y轴的直线与函数y = kx + 4相交于点(2,6),则k的值为:B. 3C. -2D. -35. 函数y = -x + 2的图像在x轴上的截距为:A. 1B. 2C. -1D. -26. 已知直线y = 3x + b与x轴的交点为(4, 0),则常数b的值为:A. -3B. 3C. -4D. 47. 若直线y = mx + 4与函数y = x + 5的图像相交于点(-3, 2),则直线的斜率m为:A. -1B. 1C. 28. 函数y = -2x + 4与x轴的交点为:A. (4, 0)B. (0, 2)C. (-4, 0)D. (0, -4)9. 若函数y = kx + 2过点(3, 5),则k的值为:A. 1B. 2C. -1D. -210. 函数y = 0.5x - 3与y轴的交点为:A. (-3, 0)B. (0, -3)C. (3, 0)D. (0, 3)二. 解答题1. 画出函数y = 2x - 3的图像,并通过图像求出它与x轴的交点坐标。
解:(请在此处画出函数图像,并标出交点坐标)解答:函数y = 2x - 3的图像如上所示。
通过图像可知,该函数与x 轴的交点坐标为(-1.5, 0)。
2. 求函数y = 3x + 2与函数y = -2x + 1的交点坐标。
解:(请在此处书写计算过程,并给出交点坐标)解答:我们需要求解方程3x + 2 = -2x + 1。
初二上数学一次函数练习题
初二上数学一次函数练习题一. 填空题1. 已知线性函数y = 3x - 2,求当x = 2时的函数值y = ______。
2. 若函数y = ax + 3在x = 4处的函数值为7,则a的值为______。
3. 设函数y = kx + 4的图像与x轴交于点(2, 0),则k的值为______。
4. 若函数y = 2x + b在x = 3处的函数值为5,则b的值为______。
5. 若函数y = 2x - 3在x = -1处的函数值为-5,则函数在x = 1处的函数值为______。
6. 设函数y = mx - n的图像与y轴交于点(0, -3),则n的值为______。
7. 若函数y = 5x - 2在x = k处的函数值为7,求k的值为______。
8. 已知函数y = ax + 1在x = 3处的函数值为4,求a的值为______。
9. 设函数y = -2x + n的图像与x轴交于点(4, 0),则n的值为______。
10. 若函数y = 3x + b在x = -2处的函数值为1,则b的值为______。
二. 解方程1. 解方程3x - 4 = 5。
2. 解方程2(3x - 1) + 5 = 7x。
3. 解方程4(2x + 1) - 3(x - 2) = 5(1 - x)。
4. 解方程2(3 - x) - 3(2x - 1) = 1。
5. 解方程5(2x - 1) + 4 = 3(4x + 2) - 10。
三. 判断题1. 当a = 3时,线性函数y = ax - 4的图像与y轴交于点(-4, 0)。
( )2. 若函数y = mx + 5在x = 3处的函数值为-2,则m的值为8。
( )3. 若函数y = 4x + 3在x = -2处的函数值为-5,则函数在x = 2处的函数值为11。
( )4. 当a = -1时,线性函数y = ax + 4的图像与x轴交于点(-4, 0)。
( )5. 若函数y = 2x - 1在x = -2处的函数值为-3,则函数在x = 3处的函数值为7。
初二上一次函数练习题100道
初二上一次函数练习题100道一、选择题1. 若函数y=2x-3与y=3x-4相交,则x的值为()A. -1/5B. 1/5C. -2/3D. 2/32. 已知函数y=3x+2,那么当x=1时,y的值等于()A. 3B. 5C. 6D. 83. 若函数y=ax-b与y=3x-4平行,则a的值为()A. 3B. -3C. 4D. -44. 根据图像判断该函数()。
[图像]A. 是一次函数B. 是二次函数C. 是常数函数D. 是分段函数5. 已知函数y=kx-3在x=2处有零点,则k的值为()A. -3B. 2/3C. 3/2D. 3二、填空题1. 一次函数的图像是一条直线,它与x轴交点的坐标为______。
2. 函数y=2x+1的斜率为______,截距为______。
3. 若函数y=ax与y=2x的图像相同,则a的值为______。
4. 根据图像判断该函数y=f(x)在x=3处的函数值为______。
[图像]三、计算题1. 已知函数y=3x-2与y=kx+1相交于点(2,5),求k的值。
2. 已知函数y=2x-1与y=ax+b平行,且它们的截距之和为3,求a的值。
3. 某种水果每斤7元,小明买了x斤水果,花了y元,求这种水果每斤的均价。
4. 函数y=kx-3经过点(3,-1),求k的值。
四、应用题1. 小明和小红同时从同一起点出发,小明每小时走10km,小红每小时走8km。
若小明比小红早3小时到达目的地,则目的地距离起点多远?2. 一条绳子有12米长,要切成两段,其中一段长x米,另一段长y 米。
若两段绳子的长度满足等式2x+y=10,请求x和y的值。
3. 为了提高学生的数学能力,某学校采用竞赛的方式,每答对一题,奖励1分;每答错一题,扣除2分。
某学生参加了100道题,答对60题,答错10题,不会做的题目数量为30题。
求该学生的得分是多少分?五、综合题1. 已知函数y=ax+b与y=-ax+c平行,且这两个函数的图像的纵坐标之和为2x-1,求a和b的值。
初二上学期一次函数练习题
初二上学期一次函数练习题一、选择题1. 下列函数中,是一次函数的是()A. y = 2x^2 + 3x + 1B. y = 3x + 2C. y = 5/xD. y = √x2. 函数 y = -2x + 5 与 y = 3x - 7 的交点坐标为()A. (3, 4)B. (2, 1)C. (-3, 4)D. (4, 2)二、填空题1. 一次函数的一般形式是 y = __________。
2. 若函数 y = kx + c 与 x 轴交于点 (3, 0),则常数 c 为__________。
3. 若函数 y = 4x + c 与 y 轴交于点 (0, 5),则常数 c 为__________。
三、计算题1. 已知一次函数 y = 3x - 1,求函数图像与 x 轴的交点坐标。
2. 若两个不同的一次函数图像均与 x 轴的交点坐标相同,且都不为零点,求这两个函数的表达式。
3. 函数 y = -2x + 3 的图像上一点到原点的距离为 d,求 d 的值。
解答:一、选择题1. B2. A二、填空题1. 一次函数的一般形式是 y = kx + c。
2. 若函数 y = kx + c 与 x 轴交于点 (3, 0),则常数 c 为 -3。
3. 若函数 y = 4x + c 与 y 轴交于点 (0, 5),则常数 c 为 5。
三、计算题1. 函数 y = 3x - 1 与 x 轴的交点坐标可以通过令 y = 0,求解方程得到:0 = 3x - 13x = 1x = 1/3因此,函数图像与 x 轴的交点坐标为 (1/3, 0)。
2. 设两个不同的一次函数为 y = k1x + c1 和 y = k2x + c2,已知它们与 x 轴的交点坐标相同且不为零点,则可以通过令 y = 0,求解方程组得到:k1x + c1 = 0k2x + c2 = 0由题意可知x ≠ 0,因此可将方程组化简为:k1 + c1/x = 0k2 + c2/x = 0令 k1 + c1/x = k2 + c2/x,解得:c1/x = c2/x由于x ≠ 0,所以得到 c1 = c2因此,这两个函数的常数项相等,但由于题目要求它们不相同,所以没有满足题目条件的解。
初二上数学一次函数练习题
初二上数学一次函数练习题【初二上数学一次函数练习题】一次函数是初中数学中的基础知识之一,也是数学建模中常用的数学模型之一。
通过练习一次函数的相关题目,可以巩固对于一次函数的理解和运用。
以下是一些初二上数学一次函数练习题,希望对你的学习有所帮助。
1. 某公司的月工资总额与员工的收入比例有关,假设员工的月收入为x,月工资总额为y,则可以建立如下的一次函数关系:y = 0.2x + 5000。
根据这个关系回答以下问题:a) 假设一个员工的月收入为8000元,那么该公司的月工资总额是多少?b) 如果该公司的月工资总额为15000元,那么员工的月收入是多少?c) 如果该公司的月工资总额为9000元,员工的月收入满足什么条件?2. 某商场豆浆机的价格与年龄之间存在一次函数关系。
已知一年前该豆浆机的价格为300元,现在的价格为250元。
根据这个关系回答以下问题:a) 设豆浆机年龄为x年,价格为y元,建立对应的一次函数关系。
b) 根据一次函数关系,求出现在豆浆机的年龄。
c) 如果现在的豆浆机价格为200元,求出相应的年龄。
3. 一台车自车站出发,以每小时60公里的速度匀速行驶。
根据这个情况回答以下问题:a) 设车行驶时间为x小时,行驶距离为y公里,建立对应的一次函数关系。
b) 根据一次函数关系,求出行驶2.5小时的距离。
c) 如果行驶的距离为300公里,求出相应的时间。
4. 某手机品牌的市场占有率随时间的增长而变化,已知在2010年时市场占有率为10%,而在2020年时市场占有率为30%。
根据这个情况回答以下问题:a) 设年份为x,市场占有率为y,建立对应的一次函数关系。
b) 根据一次函数关系,求出2015年的市场占有率。
c) 如果市场占有率为50%,求出相应的年份。
以上是初二上数学一次函数的练习题,通过解答这些题目可以加深对一次函数的理解,希望能够帮助你提高数学水平。
在解答题目的过程中,要注意清晰地表达数学关系和运算步骤,以确保解题过程的准确性。
8年级数学上册一次函数测试题-八年级一次函数测试题(共18页)
8年级数学上册一次函数测试题|八年级一次函数测试题[模版仅供参考,切勿通篇使用]努力做八年级数学试题就是光,成功就是影。
没有光哪儿来影?下面XX给大家分享一些8年级数学上册一次函数测试题,大家快来跟XX一起看看吧。
8年级数学上册一次函数试题一、选择题1.下列函数关系中表示一次函数的有①y=2x+1 ②③④s=60t ⑤y=100﹣25x.个个个个2.下列函数中,图象经过原点的为=5x+=﹣5x﹣=﹣ =3.如图,点A的坐标为,点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为4.若y=x+是正比例函数,则m的取值是﹣2C.±2D.任意实数5.如图,线段AB对应的函数表达式为=﹣ x+=﹣ x+2=﹣ x+=﹣ x+20,点P2是一次函数y=﹣4x+3图象上的两个点,且x1y2.故选A.【点评】本题考查了一次函数的增减性,比较简单.7.已知函数y=3x+1,当自变量x增加m时,相应函数值增加+﹣1【考点】一次函数的定义.【分析】将x+m作为x代入函中时,则函数值为y=3×+1,与原函数相比较可得出答案.【解答】解:∵当自变量为x时,函数值为y=3x+1∴当自变量为x+m时,函数值为y=3×+1∴增加了3×+1﹣=3m故选B.【点评】本题需注意应先给定自变量一个值,然后让自变量增加x,让相应的函数值相减即可.8.两条直线y1=ax+b与y2=bx+a在同一坐标系中的图象可能是下列图中的A. B. C. D.【考点】一次函数的图象.【分析】首先设定一个为一次函数y1=ax+b的图象,再考虑另一条的a,b的值,看看是否矛盾即可.【解答】解:A、如果过第一二四象限的图象是y1,由y1的图象可知,a0;由y2的图象可知,a0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y1,由y1的图象可知,a0;由y2的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y1,由y1的图象可知,a0;由y2的图象可知,a0,b>0,两结论相矛盾,故错误.故选A.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b0时,函数y=kx+b的图象经过第一、二、四象限;④当k0。
初二数学上册一次函数专项练习题
初二数学一次函数专项练习题题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点(,)A A A x y1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________. 题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
初二数学一次函数专题试卷
初二数学一次函数专题试卷1、如果函数y=kx的图象经过点P(3,-1),则可以通过代入点的坐标求解k的值。
即:-1=k*3,解得k=-1/3,所以选项D为正确答案。
2、如果函数的图象经过原点,则函数的截距b为0.所以只需要判断哪个函数的截距为0即可,选项C的截距为0,所以C为正确答案。
3、如果y随x的增大而减小,则k必须小于0.而b的符号可以是任意的,所以选项D为正确答案。
4、当x=5时,y=2x+k=2*5+k=10+k;y=3kx-4=3k*5-4=15k-4.因为这两个函数的值相同,所以10+k=15k-4,解得k=2,代入其中一个函数求解得y=14,所以选项A为正确答案。
5、直线经过A(1,-1)和B(-1,1),可以通过求解斜率k和截距b来确定函数关系式。
斜率k=(1-(-1))/(-1-1)=-1/1=-1,截距b可以代入其中一个点求解,比如A点:-1=-1*1+b,解得b=0,所以函数关系式为y=-x。
6、直线y=3-9x与x轴的交点坐标为(1/3.0),与y轴的交点坐标为(0.3)。
7、当k=1或者k=-1时,图象过原点;当k>0时,y随x的增大而增大。
8、根据题意,可以确定函数经过点(-1.2),且函数值随x的增大而减小,所以可以设函数关系式为y=-kx+b,代入已知点得到2=-k+b,即b=k+2.又因为函数值随x的增大而减小,所以k<0.综上所述,符合要求的函数关系式为y=-kx+k+2.9、无法确定各图中k和b的符号。
10、根据题意,可以列出不等式组:2-m>0,2-m0,m0,综合起来,m的取值范围是0<m<2.11、根据题意,可以列出函数关系式为Q=20-5t。
其中,20为水池的初始容积,每小时流出5立方米,所以Q随时间t 的增加而减少。
12、根据题意,可以列出PM+PN的表达式:sqrt((x-4)^2+(y-3)^2)+sqrt(x^2+y^2-2x)=sqrt((x-1)^2+(y+2)^2)+sqrt(x^2+y^2),化简得到y=-3x+5,因为P点在y轴上,所以x=0,代入函数得到y=5,所以答案为D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数知识点总结
(1)函数
1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x 的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应
3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:
(1)关系式为整式时,函数定义域为全体实数;
(2)关系式含有分式时,分式的分母不等于零;
(3)关系式含有二次根式时,被开放方数大于等于零;
(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式
6、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
(2)一次函数
1、一次函数的定义
一般地,形如
(
,
是常数,且
)的函数,叫做一次函数,其中x是自变量。
当
时,一次函数
,又叫做正比例函数。
⑴一次函数的解析式的形式是
,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.
⑵当
,
时,
仍是一次函数.
⑶当
,
时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
2、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式 y=kx (k不为零)
k不为零
x指数为1
b取零
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
(1) 解析式:y=kx(k是常数,k≠0)
(2) 必过点:(0,0)、(1,k)
(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限
(4) 增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小
(5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴
3、一次函数及性质
一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当
b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.
注:一次函数一般形式 y=kx+b (k不为零)
k不为零
x指数为1
b取任意实数
一次函数y=kx+b的图象是经过(0,b)和(-
,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)
(1)解析式:y=kx+b(k、b是常数,k
0) (2)必过点:(0,b)和(-
,0)
(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限
b>0,图象经过第一、二象限;b<0,图象经过第三、四象限
直线经过第一、二、三象限
直线经过第一、三、四象限
直线经过第一、二、四象限
直线经过第二、三、四象限
(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.
(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.
(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;
当b<0时,将直线y=kx的图象向下平移b个单位.
4、一次函数y=kx+b的图象的画法.
根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),
.即横坐标或纵坐标为0的点.
5、正比例函数与一次函数之间的关系
一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)
6、正比例函数和一次函数及性质
性
倾
斜度 |k|越大,越接近y 轴;|k|越小,越接近x 轴 图像的 平 移 b>0时,将直线y=kx 的图象向上平移
个单位;
b<0时,将直线y=kx 的图象向下平移 个单位.
6、直线
( )与 (
)的位置关系
(1)两直线平行
且
(2)两直线相交
(3)两直线重合
且
(4)两直线垂直
7、用待定系数法确定函数解析式的一般步骤:
(1)根据已知条件写出含有待定系数的函数关系式;
(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.
一次函数专项练习题
题型一、点的坐标
方法: x轴上的点纵坐标为0,y轴上的点横坐标为0;
若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;
若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;
若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;
1、若点A(m,n)在第二象限,则点(|m|,-n)在第____象限;
2、若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为
______________________;
3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则
a=_______,b=_________;若A,B关于y轴对称,则a=_______,b=__________;若若A,B关于原点对称,则a=_______,b=_________;
4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题
方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示;
任意两点
的距离为
;
若AB∥x轴,则
的距离为
;
若AB∥y轴,则
的距离为
;
点
到原点之间的距离为
1、点B(2,-2)到x轴的距离是_________;到y轴的距离是
____________;
2、点C(0,-5)到x轴的距离是_________;到y轴的距离是
____________;到原点的距离是____________;
3、点D(a,b)到x轴的距离是_________;到y轴的距离是
____________;到原点的距离是____________;
4、已知点P(3,0),Q(-2,0),则PQ=__________,已知点
,则MQ=________;
,则EF两点之间的距离是__________;已知点G(2,-3)、H(3,4),则G、H两点之间的距离是_________;
5、两点(3,-4)、(5,a)间的距离是2,则a的值为__________;
6、已知点A(0,2)、B(-3,-2)、C(a,b),若C点在x轴上,且
∠ACB=90°,则C点坐标为___________.
题型三、一次函数与正比例函数的识别
方法:若y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数,特别的,当b=0时,一次函数就成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。
☆A与B成正比例A=kB(k≠0)
1、当k_____________时,
是一次函数;
2、当m_____________时,
是一次函数;
3、当m_____________时,
是一次函数;
4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为
________________;
题型四、函数图像及其性质
方法:
☆一次函数y=kx+b(k≠0)中k、b的意义:
k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度;
b(称为截距)表示直线y=kx+b(k≠0)与y轴交点的,也表示直线在y轴上的。
☆同一平面内,不重合的两直线 y=k1x+b1(k1≠0)与 y=k2x+b2(k2≠0)的位置关系:
继续阅读。