勾股定理相关的实际应用问题
勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)
勾股定理中的常考问题6种类型48道【类型一用勾股定理解决折叠问题】1.如图,将长方形ABCD沿着AE折叠,点D落在BC边上的点F处,已知AB=8,BC=10,则EC的长为()A.4B.3C.5D.2【答案】B【分析】长方形ABCD沿着AE折叠,得AD=AF=BC=10,EF=ED,根据勾股定理得BF=6,则CF=4,设EC=x,ED=8−x,根据勾股定理得EF2=EC2+CF2,即可解得EC的长.【详解】解:∵四边形ABCD是长方形,∴AD=BC=10,DC=AB=8,∵长方形ABCD沿着AE折叠,∴AD=AF=BC=10,EF=ED,∴BF=√AF2−AB2=√100−64=6,CF=BC−BF=4,设EC=x,ED=8−x,∴EF2=EC2+CF2,即(8−x)2=x2+42,解得x=3,所以EC=3,故选:B.【点睛】本题主要考查了图形折叠以及勾股定理等知识内容,掌握图形折叠的性质是解题的关键.2.如图,有一块直角三角形纸片,∠C=90°,AC=4,BC=3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()【答案】C【分析】利用勾股定理求得AB=5,由折叠的性质可得AB=AE=5,DB=DE,求得CE=1,设DB=DE=x,则CD=3−x,根据勾股定理可得12+(3−x)2=x2,进而求解即可.【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,由折叠的性质得,AB=AE=5,DB=DE,∴CE=1,设DB=DE=x,则CD=3−x,在Rt△CED中,12+(3−x)2=x2,,解得x=53故选:C.【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.【答案】B【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8−x,再Rt△BCE中利用勾股定理即可求出CE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8−x,∵在Rt△BCE中,CE2=BE2−BC2,即(8−x)2=x2−62,解得,x=7,4.∴CE=74故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()【答案】B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=√AC2−AB2=√52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.【点睛】本题考查了勾股定理与折叠问题,熟练掌握勾股定理是解题的关键.5.如图,矩形纸片ABCD的边AB长为4,将这张纸片沿EF折叠,使点C与点A重合,已知折痕EF长为2√5,则BC长为()A.4.8B.6.4C.8D.10【答案】C【分析】过点F作FG⊥BC于点G,则四边形ABGF是矩形,从而FG=AB=4,在Rt△EFG中,利用勾股定理求得EG=√EF2−FG2=√(2√5)2−42=2.设BE=x,则BG=BE+EG=x+2.由∠AFE=∠CEF=∠AEF 得到AE=AF=BG=x+2,从而在Rt△ABE中,有AB2+BE2=AE2,代入即可解得x的值,从而得到BE,CE的长,即可得到BC.【详解】过点F作FG⊥BC于点G∵在矩形ABCD中,∠DAB=∠B=90°∴四边形ABGF是矩形∴FG=AB=4∴在Rt△EFG中,EG=√EF2−FG2=√(2√5)2−42=2设BE=x,则BG=BE+EG=x+2∵在矩形ABCD中,BC∥AD∴∠AFE=∠CEF由折叠得∠CEF=∠AEF∴AE=AF∵在矩形ABGF中,AF=BG=x+2∴AE=AF=x+2∵在Rt△ABE中,AB2+BE2=AE2∴42+x2=(x+2)2解得x=3即BE=3,AE=5∴由折叠可得CE=AE=5∴BC=BE+EC=3+5=8故选:C【点睛】本题考查矩形的性质,勾股定理的应用,利用勾股定理构造方程是解决折叠问题的常用方法.A.7B.136【答案】B【分析】根据题意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,继而设AE=x,则CE=DE=3−x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD=AB=2,∠B=∠ADB,∵折叠纸片,使点C与点D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴AD2+DE2=AE2,设AE=x,则CE=DE=3−x,∴22+(3−x)2=x2,,解得x=136即AE=13,6故选:B【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边BC沿CE翻折,点B落在点F处,连接CF交AB于点D,则FD的最大值为()【答案】D【分析】根据将边BC沿CE翻折,点B落在点F处,可得FD=CF−CD=4−CD,即知当CD最小时,FD最大,此时CD⊥AB,用面积法求出CD,即可得到答案.【详解】解:如图:∵将边BC沿CE翻折,点B落在点F处,∴CF=BC=4,∴FD=CF−CD=4−CD,当CD最小时,FD最大,此时CD⊥AB,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵2S△ABC=AC⋅BC=AB⋅CD,∴CD=AC⋅BCAB =3×45=125,∴FD=CF−CD=4−125=85,故选:D.【点睛】本题考查直角三角形中的翻折问题,涉及勾股定理及应用,解题的关键是掌握翻折的性质.A.73B.154【答案】B【分析】先求出BD=2,由折叠的性质可得DN=CN,则BN=8−DN,利用勾股定理建立方程DN2= (8−DN)2+4,解方程即可得到答案.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将Rt△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC−CN=8−DN,在Rt△DBN中,由勾股定理得DN2=BN2+DB2,∴DN2=(8−DN)2+4,∴DN=17,4,∴BN=BC−CN=154故选:B.【点睛】本题主要考查了勾股定理与折叠问题,正确理解题意利用方程的思想求解是解题的关键.【类型二杯中吸管问题】9.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支15cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为()A.1cm B.2cm C.3cm D.不能确定【答案】B【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.【详解】解∶∵CD=5cm,AD=12cm,∴AC=√CD2+AD2=√52+122,露出杯口外的长度为=15−13=2(cm).故答案为:B.【点睛】本题考查勾股定理的应用,所述问题是一个生活中常见的问题,与勾股定理巧妙结合,可培养同学们解决实际问题的能力.10.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.3cm D.2cm【分析】根据勾股定理求得AC的长,进而即可求解.【详解】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm).则这只铅笔在笔筒外面部分长度为3cm.故选:C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.4cm D.3cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【详解】解:根据题意可得:AB BC=9cm,在Rt△ABC中∶AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm),则这只铅笔在笔筒外面部分长度为3cm.故选:D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm<ℎ≤16cm【分析】根据勾股定理及直径为最大直角边时即可得到最小值,当筷子垂直于底面时即可得到最大值即可得到答案;【详解】解:由题意可得,当筷子垂直于底面时ℎ的值最大,ℎmax=24−8=16cm,当直径为直角边时ℎ的值最小,根据勾股定理可得,ℎmin=24−√82+152=7cm,∴7cm<ℎ≤16cm,故选D.【点睛】本题考查勾股定理的运用,解题的关键是找到最大与最小距离的情况.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm≤ℎ≤16cm【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出的取值范围.【详解】解:如图1所示,当筷子的底端在D点时,筷子露在杯子外面的长度最长,=24−8=16cm,∴ℎ最大如图2所示,当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17cm,=24−17=7cm,∴此时ℎ最小∴的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键.A.5B.7C.12D.13【答案】A【分析】根据勾股定理求出h的最短距离,进而可得出结论.【详解】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB=√92+122=15(cm),故ℎ=20−15=5(cm);最短故选:A.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm【答案】D可.【详解】解:由题意,可得这只烧杯的直径是:√102−82=6(cm).故选:D.【点睛】本题考查了勾股定理的应用,能够将实际问题转化为数学问题是解题的关键.16.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h cm,则h的取值范围是()A.4<h<5B.5<h<6C.5≤h≤6D.4≤h≤5【答案】C【分析】根据题意,求出牙刷在杯子外面长度最小与最大情况即可得出取值范围.【详解】解:根据题意,当牙刷与杯底垂直时,ℎ最大,如图所示:故ℎ最大=18−12=6cm;∵当牙刷与杯底圆直径、杯高构成直角三角形时,ℎ最小,如图所示:在RtΔABC中,∠ACB=90°,AC=5cm,BC=12cm,则AB=√BC2+AC2=√52+122=13cm,∵牙刷长为18cm,即AD=18cm,∴ℎ最小=AD−AB=18−13=5cm,∴h的取值范围是5≤h≤6,故选:C.【点睛】本题考查勾股定理解实际应用题,读懂题意,根据牙刷的放置方式明确牙刷在杯子外面长度最小与最大情况是解决问题的关键.【类型三楼梯铺地毯问题】17.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.5米D.7米【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度=√52−32=4(米),∵地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(米).故选:D.【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.18.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=√132−52=12m,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(m).故选B.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解答本题的关键.19.如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m2【答案】B【分析】勾股定理求出BC,平移的性质推出防滑毯的长为AC+BC,利用面积公式进行求解即可.【详解】解:由图可知:∠C=90°,∵AC=5米,AB=13米,∴BC=√AB2−AC2=12米,由平移的性质可得:水平的防滑毯的长度=BC=12(米),铅直的防滑毯的长度=AC=5(米),∴至少需防滑毯的长为:AC+BC=17(米),∵防滑毯宽为5米∴至少需防滑毯的面积为:17×5=85(平方米).故选:B.【点睛】本题考查勾股定理.解题的关键是利用平移,将防滑毯的长转化为两条直角边的边长之和.A.13cm B.14cm C.15cm D.16cm【答案】A【分析】根据勾股定理即可得出结论.【详解】如图,由题意得AC=1×5=5(cm),BC=2×6=12(cm),故AB=√122+52=13(cm).故选:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.21.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【答案】C【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【详解】∵△ABC是直角三角形,BC=6m,AC=10m∴AB=√AC2−BC2=√102−62=8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选C【点睛】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.22.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元【答案】C【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为√132−52=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选C.【点睛】本题考查的知识点是勾股定理的应用,生活中的平移现象,解题关键是要注意利用平移的知识,把要求的所有线段平移到一条直线上进行计算.23.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【详解】楼梯竖面高度之和等于AB的长.由于AB=√AC2−BC2=√52−32=4,所以至少需要地毯长4+3=7(m).故选C24.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m【答案】C【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得AB,然后求得地毯的长度即可.【详解】解:由勾股定理得:AB=√2.52−1.52=2因为地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和所以地毯的长度至少是1.5+2=3.5(m)故选C.【点睛】本题考查了图形平移性质和勾股定理,解决本题的关键是要熟练掌握勾股定理.【类型四最短路径问题】25.如图,透明圆柱的底面半径为6厘米,高为12厘米,蚂蚁在圆柱侧面爬行.从圆柱的内侧点A爬到圆柱的外侧点B处吃食物,那么它爬行最短路程是厘米.(π≈3)【答案】30【分析】把圆柱的侧面展开,根据勾股定理即可得到结论.【详解】解:∵透明圆柱的底面半径为6厘米,∴透明圆柱的底面周长为2×6π=厘米≈36厘米,作点A关于直线EF的对称点A′,连接A′B,则A′B的长度即为它爬行最短路程,×36=18厘米,∴A′A=2AE=24厘米,AB=12∴A′B=√AB2+A′A2=√182+242=30(cm),故答案为:30.【点睛】本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.【答案】10【分析】将圆柱侧面展开,由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,再由勾股定理求出.【详解】解:根据圆柱侧面展开图,cm,高为8cm,∵圆柱的底面半径为6π∴底面圆的周长为2×6×π=12cm,π×12=6cm,∴BC=8cm,AC=12由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,AB=√AC2+BC2=10cm,故答案为:10.【点睛】本题考查了平面展开最短路线问题,勾股定理,将立体图形转化成平面图形求解是解题的关键.27.如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是cm.【答案】15【分析】首先把正方体展开,然后连接AC,利用勾股定理计算求解即可.【详解】解:如图,连接AC,由勾股定理得,AC=√92+(9+3)2=15,故答案为:15.【点睛】本题考查了正方体的展开图、勾股定理的应用,解题的关键在于明确爬行的最短路线.28.如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【答案】10【分析】将杯子侧面展开,作A关于杯口的对称点A′,根据两点之间线段最短可知A′P的长度即为所求,再结合勾股定理求解即可.【详解】解:如图所示:将杯子侧面展开,作A关于杯口的对称点A′,连接PA′,最短距离为PA′的长度,)2+(6−1.5+1.5)2=10(厘米),PA′=√PE2+EA′2=√(162最短路程为PA ′=10厘米.故答案为:10.【点睛】本题考查了平面展开−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.【答案】20【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可求得AS 的长.【详解】解:如图,∵在圆柱的截面ABCD 中,AB =24π,BC =32,∴AB =12×24π×π=12,BS =12BC =16, ∴AS =√AB 2+BS 2=20,故答案为:20.【点睛】本题考查平面展开图−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解题的关键.30.如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为 cm .(杯壁厚度不计)【答案】10【分析】如图(见解析),将玻璃杯侧面展开,作B关于EF的对称点B′,根据两点之间线段最短可知AB′的长度即为所求,利用勾股定理求解即可得.【详解】解:如图,将玻璃杯侧面展开,作B关于EF的对称点B′,作B′D⊥AE,交AE延长线于点D,连接AB′,BB′=1cm,AE=9−4=5(cm),由题意得:DE=12∴AD=AE+DE=6cm,∵底面周长为16cm,×16=8(cm),∴B′D=12∴AB′=√AD2+B′D2=10cm,由两点之间线段最短可知,蚂蚁从外壁B处到内壁A处所走的最短路程为AB′=10cm,故答案为:10.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.31.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它要走的路程s取值范围是.【答案】s≥26m【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的长方形长度增加而宽度不变,求出新长方形的对角线长即可得到范围.【详解】解:如图所示,将图展开,图形长度增加4m,原图长度增加4m,则AB=20+4=24m,连接AC,∵四边形ABCD是长方形,AB=24m,宽AD=10m,∴AC=√AB2+BC2=√242+102=26m,∴蚂蚱从A点爬到C点,它要走的路程s≥26m.故答案为:s≥26m.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开−最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.【类型五旗杆高度问题】【答案】6m【分析】设AD=x,在△ABC中,利用勾股定理列出方程,解之即可.【详解】解:∵BF=2m,∴CE=2m,∵DE=1m,∴CD=CE−DE=1m,设AD=x,则AB=x,AC=AD−CD=x−1,由题意可得:BC⊥AE,在△ABC中,AC2+BC2=AB2,即(x−1)2+32=x2,解得:x=5,即AD=5,∴旗杆AE的高度为:AD+DE=5+1=6m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.34.荡秋千是深受人们喜爱的娱乐项目,如图,小丽发现,秋千静止时踏板离地面的垂直高度DE=0.5m,将它往前推送至点B,测得秋千的踏板离地面的垂直高度BF=1.1m,此时水平距离BC=EF=1.8m,秋千的绳索始终拉的很直,求绳索AD的长度.【答案】3m【分析】设绳索AD的长度为xm=(x−0.6)m,在Rt△ABC中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD长为xm,则AB为xm,∵四边形BCEF是矩形,∴BF=CE=1.1m,∵DE=0.5m,∴CD=0.6m则AC为(x−0.6)m在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即:(x−0.6)2+1.82=x2解得:x=3∴绳索AD的长度为3m.【点睛】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.35.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=1米,n=5米,求旗杆AB的长.【答案】12米【分析】设旗杆的高为x米,在Rt△ABC中,推出x2+52=(x+1)2,可得x=12,由此解决问题.【详解】解:设AB=x米,因为∠ABC=90°,所以在Rt△ABC中,根据勾股定理,得:x2+52=(x+1)2,解之,得:x=12,所以,AB的长为12米,答:旗杆AB的长为12米.【点睛】本题考查直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程.【答案】风筝的高度CE为61.68米.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【详解】解:在Rt△CDB中,由勾股定理,得CD=√CB2−BD2=√652−252=60(米).∴CE=CD+DE=60+1.68=61.68(米).答:风筝的高度CE为61.68米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.37.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.【答案】17米【分析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】解:如图所示设旗杆高度为x m,则AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2(x−2)2+82=x2解得:x=17,答:旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解题的关键是构造直角三角形.38.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2= AF2+EF2,根据AC=AE,得出AB2+12=(AB−1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB−1)2+52,又∵AC=AE,∴AB2+12=(AB−1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12= (AB−1)2+52.39.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.【答案】9米【分析】设AB=x,则AC=x+1,AE=x−1,再根据勾股定理可列出关于x的等式,解出x即得出答案.【详解】解:设AB=x依题意可知:在Rt△ACE中,∠AEC=90°,AC=x+1,AE=x−1,CE=6,根据勾股定理得:AC2=AE2+CE2,即:(x+1)2=(x−1)2+62,解得:x=9答:旗杆AB的高度是9米.【点睛】本题考查勾股定理的实际应用.结合题意,利用勾股定理列出含未知数的等式是解题关键.40.如图,学校要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,求旗杆的高度.【答案】12米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12,答:旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,熟知勾股定理是解题关键.【类型六航海问题】【答案】30海里/小时【分析】先根据题意结合方位角的描述求出∠ABC=90°以及AB、BC的长,再利用勾股定理求出AC的长即可得到答案.【详解】解:如图所示,由题意得,∠HAB=90°−60°=30°,∠MBC=90°−∠EBC=60°,∵AH∥BM,∴∠ABM=∠BAH=30°,∴∠ABC=∠ABM+∠MBC=90°,∵巡逻艇沿直线追赶,半小时后在点C处追上走私船,∴BC=18×0.5=9海里,在Rt△ABC中,∠ABC=90°,AB=12海里,BC=9海里,∴AC=√AB2+BC2=15海里,∴我军巡逻艇的航行速度是15=30海里/小时,0.5答:我军巡逻艇的航行速度是30海里/小时.【点睛】本题主要考查了勾股定理的实际应用,正确理解题意在Rt△ABC中利用勾股定理求出AC的长是解题的关键.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为处有一艘轮船准备沿直线向点多能收到多少次信号?(信号传播的时间忽略不计)【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;。
勾股定理的应用的例子
勾股定理的应用的例子:
一、圆柱侧面上两点间的最短距离圆柱侧面的展开图是一个矩形,圆柱上两点之间最短距离的求法,是把圆柱展开成平面图形,依据两点之间线段最短,以最短路线为构造直角三角形,利用勾股定理求解.
二、长方体(或正方体)表面上两点间的最短距离长方体每个面都是平面图形,所以计算同一个面上的两点之间的距离比较容易,若计算不同平面上的两点之间的距离,就变成了两个面之间的问题,必须将它们转化到同一平面内,即把四棱柱设法展开成一个平面图形,再构造直角三角形利用勾股定理解决,正方体的展开图从哪一面上展开都一样,而长方体的展开图一定要注意打开哪一个侧面,并且向上、下与向左、右展开会出现长度不的路线,应通过尝试从几条路线中选一条符合要求的.
三、折叠问题关于折叠问题的解题步骤:(1)利用重叠的图形传递数据(一般不用重叠的图形进行计算);(2)选择或构造直角三角形,这个直角三角形一般一边已知,另两边可通过重叠图形找到数量关系,从而利用勾股定理列方程求解.。
用勾股定理解决实际问题
用勾股定理解决实际问题勾股定理是数学中的基本定理之一,它描述了一个直角三角形中,直角边的平方和等于斜边的平方。
这个定理在实际生活中有着广泛的应用,特别是在计算机图形学、建筑设计、地理测量和航天航空等领域。
本文将通过几个实际问题的例子,探讨如何运用勾股定理解决实际问题。
一、房屋设计中的勾股定理应用在房屋设计中,为了保证建筑的结构稳定和美观,需要进行精确的测量和计算。
勾股定理在房屋设计中起着重要的作用。
例如,在设计一个三角形屋顶的平面布置时,我们需要测量斜边的长度。
假设一栋楼房的两个直角边分别为6米和8米,请问斜边的长度是多少?根据勾股定理,斜边的长度可以通过以下公式计算:斜边长度= √(直角边1的长度² + 直角边2的长度²)代入已知数值,斜边长度= √(6² + 8²) = √(36 + 64) = √100 = 10米因此,该三角形屋顶的斜边长度为10米。
二、地理测量中的勾股定理应用在地理测量中,勾股定理可以帮助我们计算两个点之间的距离、角度和方位。
例如,假设我们需要测量两个山顶之间的直线距离,我们只能在地面上进行测量。
假设山顶A和山顶B之间的两个直角边长度分别为300米和400米,请问山顶A和山顶B之间的直线距离是多少?根据勾股定理,直线距离可以通过以下公式计算:直线距离= √(直角边1的长度² + 直角边2的长度²)代入已知数值,直线距离= √(300² + 400²) = √(90000 + 160000) =√250000 = 500米因此,山顶A和山顶B之间的直线距离为500米。
三、建筑设计中的勾股定理应用在建筑设计中,勾股定理可以用于计算斜面的长度和倾斜角度。
例如,在设计一个斜坡道时,我们需要计算斜坡的长度和倾斜角度。
假设斜坡的水平距离为10米,垂直高度为2米,请问斜坡的长度和倾斜角度分别是多少?根据勾股定理,斜坡的长度可以通过以下公式计算:斜坡长度= √(水平距离² + 垂直高度²)代入已知数值,斜坡长度= √(10² + 2²) = √(100 + 4) = √104 ≈ 10.20米因此,斜坡的长度约为10.20米。
勾股定理实际应用
一、勾股定理在生活中的应用1、理解问题实质,能够从生活问题中转化为几何图形关系。
如图4,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 距点C 5cm ,一只蚂蚁如果要沿着长方体表面从点A 爬到点B ,需要爬行的最短路程是多少?2、弄清方位角知识,在航海、测绘等问题中使用。
如图,一艘船以6海里/小时的速度从港口A 出发向东北方向航行,另一艘船以2.5海里/小时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,两船相距3、利用勾股定理,测量物体高度。
如图,小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为9.0m ,眼睛与地面的距离为1.6m ,那么这棵树的高度大约为4、利用勾股定理,选择最优方案。
在高5m ,长13m 的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要 m . 二. 特殊几何图形中勾股定理计算规律:等腰直角三角形。
(1)斜边中线等于斜边一半并且是特殊的三线合一。
(2)斜边是直角边的2倍。
例题1如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a的距离为2,点B 到直线b 的距离为3,AB=230.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A .6 B .8 C .10 D .12图4 图5 BA 图6 AB例题2如图所示,铁路上有A 、B 两点(看做直线上两点)相距40千米,C 、D 为两村庄(看做两个点),AD ⊥AB ,BC垂直AB ,垂足分别为A 、B ,AD=24千米,BC=16千米,现在要在铁路旁修建一个煤栈,使得C 、D 两村到煤栈的距离相等,问煤栈应建在距A 点多少千米处?联系生活的应用实例:如图,公路AB 和公路CD 在点P 处交会,且∠APC=45°,点Q 处有一所小学,PQ=1202 m ,假设拖拉机行驶时,周围130m 以内会受到噪声的影响,那么拖拉机在公路AB 上沿PA 方向行驶时,学校是否会受到噪声影响?请说明理由;若受影响,已知拖拉机的速度为36km/h ,那么学校受影响的时间为多少秒?根据实际情况分类讨论 实例:为美化小区环境,某小区有一块面积为30平方米的等腰三角形草地,测得其一边长为10米.现要给这块三角形草地围上白色的低矮栅栏,现在准备这种低矮栅栏的长度分别有以下三种:①10+261米;②20+210米;③20+610米,则符合要求的是( )A .只有①②B .只有①③C .只有②③D .①②③一、选择题1、一船向东航行,上午8时到达B 处,看到有一灯塔在它的南偏东60°,距离为72海里的A 处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为( )A .18海里/小时B .183海里/小时C .36海里/小时D .36海里/小时 2 如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .12≤a≤13 B .12≤a≤15 C .5≤a≤12 D .5≤a≤13*3如图,在△ABC 中,已知∠C=90°,AC=60cm ,AB=100cm ,a ,b ,c…是在△ABC 内部的矩形,它们的一个顶点在AB 上,一组对边分别在AC 上或与AC平行,另一组对边分别在BC 上或与BC 平行.若各矩形在AC 上的边长相等,矩形a 的一边长是72cm ,则这样的矩形a 、b 、c…的个数是( )A .6 B .7 C .8 D .9*4下列说法:①已知直角三角形的面积为4,两直角边的比为1:2,则斜边长为10;②直角三角形的最大边长为3,最短边长为1,则另一边长为2;③在△ABC 中,若∠A :∠B :∠C=1:5:6,则△ABC 为直角三角形;④等腰三角形面积为12,底边上的高为4,则腰长为5,其中正确结论的序号是( )A .只有①②③B .只有①②④C .只有③④D .只有②③④**5、如图,在等腰Rt △ABC 中,∠ACB=90°,CA=CB ,点M 、N 是AB 上任意两点,且∠MCN=45°,点T 为AB 的中点.以下结论:①AB=2 AC ;②CM 2+TN 2=NC 2+MT 2;③AM 2+BN 2=MN 2;④S △CAM +S △CBN =S△CMN .其中正确结论的序号是( )A .①②③④B .只有①②③C .只有①③④D .只有②④二、填空题:*6第七届国际数学教育大会的会徽主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA 1A 2是等腰三角形,且OA 1=A 1A 2=A 2A 3=A 3A 4=…=A 8A 9=1,请你计算OA 9的长 .*7如图,在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了180m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C ,那么,由此可知,B 、C 两地相距m .**8如图,四边形ABCD 、EFGH 、NHMC 都是正方形,A 、B 、N 、E 、F 五点在同一直线上,且正方形ABCD 、EFGH 面积分别是4和9,则正方形NHMC 的面积是 .**9我们假设把两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.如果Rt △ABC 是奇异三角形,在Rt △ABC 中,∠C=90°,AB=c ,AC=b ,BC=a ,且b >a ,其中,a=1,那么b= .三、解答题:*10如图,A 、B 两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB ).经测量,森林保护区中心P 点在A 城市的北偏东30°方向,B 城市的北偏西45°方向上.已知森林保护区的范围在以P 为圆心,50千米为半径的圆形区域内.请问:计划修筑的这条高等级公路会不会穿越森林保护区?为什么?*11在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向.在一次反恐演习中,甲队员在A处掩护,乙队员从A处沿12点方向以40米/分的速度前进,2分钟后到达B处.这时,甲队员发现在自己的1点方向的C处有恐怖分子,乙队员发现C处位于自己的2点方向(如图).假设距恐怖分子100米以外为安全位置.(1)乙队员是否处于安全位置?为什么?(2)因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置.为此,乙队员至少应用多快的速度撤离?(结果精确到个位.参考数据:13≈3.6,14≈3.74.)**12如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?13如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=√5,则BC 的长为14如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是15如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于16正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE 是等腰三角形,则腰长为在△ABC中,AB=2√2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为17已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD18如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长。
勾股定理的实际应用【十二大题型】(解析版)
勾股定理的实际应用【十二大题型】【题型1求梯子滑落高度】【题型2求旗杆高度】【题型3求小鸟飞行距离】【题型4求大树折断前的高度】【题型5解一元一次不等式组】【题型6解决水杯中筷子问题】【题型7解决航海问题】【题型8求河宽】【题型9求台阶上地毯长度】【题型10判断汽车是否超速】【题型11选址使到两地距离相等】【题型12求最短路径】【题型1求梯子滑落高度】1(2023春·广东惠州·八年级校考期中)某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1),如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m(即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE,点B在DE上,OE的长即为消防车的高3m)【答案】消防车从原处向着火的楼房靠近的距离AC为3m【分析】在Rt△ABO中,根据勾股定理得到AO和OC,于是得到结论.【详解】解:在Rt△ABO中, ∵∠AOB=90°,AB=15m,OB=12-3=9(m),∴AO=AB2-OB2=152-92=12(m),在Rt△ABO中,∵∠COD=90°,CD=15m,OD=15-3=12(m),∴OC=CD2-OD2=152-122=9(m),∴AC=OA-OC=3(m),答:消防车从原处向着火的楼房靠近的距离AC为3m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.1(2023春·山西晋中·八年级统考期中)如图,小巷左右两侧是竖直的高度相等的墙,一根竹竿斜靠在左墙时,竹竿底端O到左墙角的距离OC为0.7米,顶端B距墙顶的距离AB为0.6米若保持竹竿底端位置不动,将竹竿斜靠在右墙时,竹竿底端到右墙角的距离OF为1.5米,顶端E距墙项D的距离DE为1米,点A、B、C在一条直线上,点D、E、F在一条直线上,AC⊥CF,DF⊥CF.求:(1)墙的高度;(2)竹竿的长度.【答案】(1)墙高3米(2)竹竿的长2.5米【分析】(1)设墙高x米,在RtΔBCO,RtΔEFO根据勾股定理即可表示出竹竿长度的平方,联立即可得到答案;(2)把(1)中的x代入勾股定理即可得到答案.【详解】(1)解:设墙高x米,∵AC⊥CF,DF⊥CF,∴∠BCO=∠EFO=90°,在RtΔBCO,RtΔEFO根据勾股定理可得,BO2=(x-0.6)2+0.72,OE2=(x-1)2+1.52,∵BO=OE,∴(x-1)2+1.52=(x-0.6)2+0.72,解得:x=3,答:墙高3米;(2)由(1得),BO2=(x-0.6)2+0.72,x=3,∴BO=(3-0.6)2+0.72=2.5答:竹竿的长2.5米.【点睛】本题考查勾股定理实际应用题,解题的关键时根据两种不同状态竹竿长不变列等式及正确计算.2(2023春·浙江宁波·八年级统考期末)如图,一条笔直的竹竿斜靠在一道垂直于地面的墙面上,一端在墙面A处,另一端在地面B处,墙角记为点C.(1)若AB=6.5米,BC=2.5米.①竹竿的顶端A沿墙下滑1米,那么点B将向外移动多少米?②竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?如果不可能,请说明理由;如果可能,请求出移动的距离(保留根号).(2)若AC=BC,则顶端A下滑的距离与底端B外移的距离,有可能相等吗?若能相等,请说明理由;若不等,请比较顶端A下滑的距离与底端B外移的距离的大小.【答案】(1)①69-52米;②竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等,理由见解析(2)不可能相等,顶端A下滑的距离大于底端B外移的距离.【分析】(1)先根据勾股定理可得AC=6米,①根据题意得:AA =1m,可得到A C=AC-AA =5米,由勾股定理可得B C的长,即可求解;②设从A处沿墙AC下滑的距离为x米,点B也向外移动的距离为x米,根据勾股定理,列出方程,即可求解;(2)设AC=BC=a,从A处沿墙AC下滑的距离为m米,点B向外移动的距离为n米,则AB=A B =2a,根据勾股定理,列出方程,可得m-n=m2+n22a,即可求解.【详解】(1)解:∠C=90°,AB=A B =6.5米,∴AC=AB2-BC2=6米,①根据题意得:AA =1m,∴A C=AC-AA =5米,∴B C=A B 2-A C2=692米,∴BB =B C-BC=692-2.5=69-52米,即点B将向外移动69-52米;②竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等,理由如下:设从A处沿墙AC下滑的距离为x米,点B也向外移动的距离为x米,根据题意得:6-x2+2.5+x2=6.52,解得:x1=3.5,x2=0(舍去),∴从A处沿墙AC下滑的距离为3.5米时,点B也向外移动的距离为3.5米,即竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等;(2)解:不可能相等,理由如下:设AC =BC =a ,从A 处沿墙AC 下滑的距离为m 米,点B 向外移动的距离为n 米,则AB =A B =2a ,根据题意得:a -m 2+a +n 2=2a 2,整理得:2a m -n =m 2+n 2,即m -n =m 2+n 22a,∵a 、m 、n 都为正数,∴m -n =m 2+n 22a>0,即m >n .∴顶端A 下滑的距离大于底端B 外移的距离.【点睛】本题主要考查了勾股定理的实际应用,熟练掌握勾股定理是解题的关键.3(2023春·辽宁沈阳·八年级统考期中)拉杆箱是人们出行的常用品,采用拉杆箱可以让人们出行更轻松.如图,一直某种拉杆箱箱体长AB =65cm ,拉杆最大伸长距离BC =35cm ,在箱体底端装有一圆形滚轮,当拉杆拉到最长时,滚轮的圆心在图中的A 处,点A 到地面的距离AD =3cm ,当拉杆全部缩进箱体时,滚轮圆心水平向右平移55cm 到A ′处,求拉杆把手C 离地面的距离(假设C 点的位置保持不变).【答案】拉杆把手C 离地面的距离为63cm【分析】过C 作CE ⊥DN 于E ,延长AA '交CE 于F ,根据勾股定理即可得到方程652-x 2=1002-(55+x )2,求得A 'F 的长,即可利用勾股定理得到CF 的长,进而得出CE 的长.【详解】如图所示,过C 作CE ⊥DN 于E ,延长AA '交CE 于F ,则∠AFC =90°,设A 'F =x ,则AF =55+x ,由题可得,AC =65+35=100,A 'C =65,∵Rt △A 'CF 中,CF 2=652-x 2,Rt △ACF 中,CF 2=1002-(55+x )2,∴652-x 2=1002-(55+x )2,解得x =25,∴A 'F =25,∴CF =A C 2-A F 2=60(cm ),又∵EF =AD =3(cm ),∴CE =60+3=63(cm ),∴拉杆把手C 离地面的距离为63cm .【点睛】本题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.【题型2求旗杆高度】1(2023春·山西临汾·八年级统考期末)同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B 的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE 为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2=AF2+EF2,根据AC=AE,得出AB2+12=(AB-1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB-1)2+52,又∵AC=AE,∴AB2+12=(AB-1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12=(AB-1)2+52.1(2023春·江西景德镇·八年级统考期中)2021年是中国共产党建党100周年,大街小巷挂满了彩旗.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在地面上.旗杆从旗顶到地面的高度为240cm,在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.【答案】90cm【分析】首先观察题目,作辅助线构造一个直角三角形,如图,连接DE;已知彩旗为长方形,由题意可知,无风的天气里,彩旗自然下垂时,彩旗最低处到旗杆顶部的长度正好是长方形彩旗完全展开时的对角线的长度,根据勾股定理可求出它的长度;然后用旗杆顶部到地面高度减去这个数值,即可求得答案.【详解】彩旗自然下垂的长度就是长方形DCEF的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,得DE=DF2+EF2=1202+902=150.h=240-150=90(cm).∴彩旗下垂时的最低处离地面的最小高度h为90cm.【点睛】本题考查了勾股定理的实际应用,此类题的难点在于正确理解题意,结合实际运用勾股定理.2(2023春·八年级课时练习)太原的五一广场视野开阔,是一处设计别致,造型美丽的广场园林,成为不少市民放风筝的最佳场所,某校八年级(1)班的小明和小亮同学学习了“勾股定理”之后,为了测得图中风筝的高度CE,他们进行了如下操作:①测得BD的长为15米(注:BD⊥CE);②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高1.7米.(1)求风筝的高度CE.(2)过点D作DH⊥BC,垂足为H,求BH的长度.【答案】(1)风筝的高度CE为21.7米(2)BH的长度为9米【分析】(1)在Rt△CDB中由勾股定理求得CD的长,再加上DE即可;(2)利用等积法求出DH的长,再在Rt△BHD中由勾股定理即可求得BH的长.【详解】(1)在Rt△CDB中,由勾股定理,得:CD=C2-BD2=252-152=20(米),所以CE=CD+DE=20+1.7=21.7(米),答:风筝的高度CE为21.7米.(2)由等积法知:12BD×DC=12BC×DH,解得:DH=15×2025=12(米).在Rt△BHD中,BH=BD2-DH2=9(米),答:BH的长度为9米.【点睛】本题考查了勾股定理的实际应用,正确运用勾股定理是关键,注意计算准确.3(2023春·山西吕梁·八年级统考期中)如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?【答案】6【分析】先根据勾股定理求得AC,进而求得AD,根据勾股定理即可求得范围.【详解】由题意可知AC+BC=8,AB=4,则AC2+AB2=BC2,即AC2+42=(8-AC)2,解得AC=3,若下次大风将旗杆从D处吹断,如图,∴AD=AC-1.25=3-1.25=1.75,∴BD=AB-AD=8-1.75=6.25,AB=BD2-AD2= 6.252-1.752=6.∴则距离旗杆底部周围6米范围内有被砸伤的危险.【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.【题型3求小鸟飞行距离】1(2023春·陕西咸阳·八年级统考期中)如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C点的距离.【答案】17米【分析】已知AB和AC的长度,根据勾股定理即可求出BC的长度,小鸟下降12米,则BD=AB-12,根据勾股定理即可求出CD的长度.【详解】解:由勾股定理得;BC2=AC2-AB2=252-202=225,∴BC=15(米),∵BD=AB-AD=20-12=8(米),∴在Rt△BCD中,由勾股定理得CD=DB2+BC2=82+152=17,∴此时小鸟到地面C点的距离17米.答;此时小鸟到地面C点的距离为17米.【点睛】本题主要考查了勾股定理得实际应用,熟练地掌握勾股定理的内容是解题的关键.1(2023春·八年级课时练习)有两棵树,一棵高6米,另一棵高3米,两树相距4米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了( )米.A.3B.4C.5D.6【答案】C【分析】此题可以过低树的一端向高树引垂线.则构造了一个直角三角形:其斜边是小鸟飞的路程,一条直角边是4,另一条直角边是两树相差的高度3.根据勾股定理得:小鸟飞了5米.【详解】解:如图所示,AB=6m,CD=3m,BC=4m,过D作DE⊥AB于E,则DE=BC=4m,BE=CD=3m,AE=AB-BE=6-3=3m,在Rt△ADE中,AD=5m.故选:C.【点睛】能够正确理解题意,准确画出图形,熟练运用勾股定理即可.2(2023春·山东枣庄·八年级统考期中)有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?【答案】它至少需要5.2s才能赶回巢中.【分析】根据题意,构建直角三角形,利用勾股定理解答.【详解】解:如图,由题意知AB=3,CD=14-1=13,BD=24.过A作AE⊥CD于E.则CE=13-3=10,AE=24,∴在Rt△AEC中,AC2=CE2+AE2=102+242.∴AC=26,26÷5=5.2(s).答:它至少需要5.2s才能赶回巢中.【点睛】本题考查了勾股定理的应用.关键是构造直角三角形,同时注意:时间=路程÷速度.3(2023春·贵州贵阳·八年级校考期中)假期中,小明和同学们到某海岛上去探宝,按照探宝图,他们从A点登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的直线距离是多少千米?【答案】10千米【分析】通过行走的方向和距离得出对应的线段的长度.根据题意构造直角三角形,利用勾股定理求解.【详解】解:过点B作BD⊥AC于点D.根据题意可知,AD=8-3+1=6,BD=2+6=8,在Rt△ABD中,∴AB=AD2+BD2=62+82=10.答:登陆点A到宝藏处B的距离为10千米.【点睛】本题考查勾股定理的实际应用.读懂题意,根据题意找到需要的等量关系,与勾股定理结合求线段的长度是解题的关键.【题型4求大树折断前的高度】1(2023春·八年级课时练习)如图,在倾斜角为45°(即∠NMP=45°)的山坡MN上有一棵树AB,由于大风,该树从点E处折断,其树顶B恰好落在另一棵树CD的根部C处,已知AE=1m,AC=18m.(1)求这两棵树的水平距离CF;(2)求树AB的高度.【答案】(1)3m(2)6m【分析】(1)根据平行的性质,证得AF=CF,根据勾股定理即可求得.(2)在Rt△CEF中,根据勾股定理即可解得.【详解】(1)由题可知MP∥CF,∠F=90°∴∠ACF=∠NMP=45°,∴AF=CF在Rt△ACF中,CF2+AF2=AC2,∴2CF2=18,∴AF=CF=3(m).即这两棵树的水平距离为3m.(2)在Rt△CEF中,CE2=CF2+EF2∴CE=32+42=5,∴AB=AE+CE=5+1=6(m).即树AB的高度为6m.【点睛】此题考查了勾股定理,解题的关键是熟悉勾股定理的实际应用.1(2023春·广东云浮·八年级统考期中)海洋热浪对全球生态带来了严重影响,全球变暖导致华南地区汛期更长、降水强度更大,使得登录广东的台风减少,但是北上的台风增多.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10mB.15mC.18mD.20m【答案】C【分析】如图,勾股定理求出AC的长,利用AC+BC求解即可.【详解】解:如图,由题意,得:BC=5,AB=12,BC⊥AB,∴AC=AB2+BC2=13,∴这棵大树在折断前的高度为13+5=18m;故选C.【点睛】本题考查勾股定理的应用,熟练掌握勾股定理是解题的关键.2(2023春·山西阳泉·八年级统考期末)我国古代数学名著《算法统宗》有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离PA的长为1尺,将它向前水平推送10尺时,即P C=10尺,秋千踏板离地的距离P B和身高5尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为x尺,根据题意可列方程为.【答案】(x+1-5)2+102=x2.【分析】根据勾股定理列方程即可得出结论.【详解】解:由题意知:OP'=x,OC=x+1-5,P'C=10,在Rt△OCP'中,由勾股定理得:(x+1-5)2+102=x2.故答案为:(x+1-5)2+102=x2.【点睛】本题主要考查了勾股定理的应用和列方程,读懂题意是解题的关键.3(2023春·广东珠海·八年级校考期中)如图,一根直立的旗杆高8m,因刮大风旗杆从点C处折断,顶部B着地且离旗杆底部A4m.(1)求旗杆距地面多高处折断;(2)工人在修复的过程中,发现在折断点C的下方1.25m的点D处,有一明显裂痕,若下次大风将旗杆从点D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?【答案】(1)旗杆距地面3m处折断;(2)距离杆脚周围6米大范围内有被砸伤的危险.【分析】(1)由题意可知:AC+BC=8米,根据勾股定理可得:AB2+AC2=BC2,又因为AB=4米,即可求得AC的长;(2)易求D点距地面3-1.25=1.75米,BD=8-1.75=6.25米,再根据勾股定理可以求得AB=6米,所以6米内有危险.【详解】(1)由题意可知:AC+BC=8米,∵∠A=90°,∴AB2+AC2=BC2,又∵AB=4米,∴AC=3米,BC=5米,∴旗杆距地面3m处折断;(2)如图,∵D点距地面AD=3-1.25=1.75米,∴BD=8-1.75=6.25米,∴AB=BD2-AD2=6米,∴距离杆脚周围6米大范围内有被砸伤的危险.【点睛】本题考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.【题型5判断是否受台风影响】1(2023春·湖北武汉·八年级统考期中)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ 上A处距离O点240米,如果火车行驶时,火车头周围150米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为秒.【答案】9【分析】过点A作AC⊥MN,求出最短距离AC的长度,然后在MN上取点B,D,使得AB=AD=150米,根据勾股定理得出BC,CD的长度,即可求出BD的长度,然后计算出时间即可.【详解】解:过点A作AC⊥MN,∵∠QON=30°,OA=240米,OA=120米,∴AC=12在MN上取点B,D,使得AB=AD=150米,当火车到B点时对A处产生噪音影响,∵AB=150米,AC=120米,∴由勾股定理得:BC=AB2-AC2=1502-1202=90米,CD=AD2-AC2=1502-1202=90米,即BD=180米,∵72千米/小时=20米/秒,∴影响时间应是:180÷20=9秒.故答案为:9.【点睛】本题主要考查了勾股定理,解题的关键在于准确找出受影响的路段,从而利用勾股定理求出其长度.1(2023春·陕西西安·八年级统考期中)为了鼓励大家积极接种新冠疫苗,某区镇政府采用了移动宣讲的形式进行广播宣传.如图,笔直的公路MN的一侧点A处有一村庄,村庄到公路MN的距离为300m,宣讲车P周围500m以内能听到广播宣传,宣讲车P在公路上沿MN方向行驶.(1)村庄能否听到广播宣传?请说明理由.(2)已知宣讲车的速度是50m/min,如果村庄能听到广播宣传,那么总共能听多长时间?【答案】(1)能,理由见解析(2)16【分析】(1)根据村庄A到公路MN的距离为300米<500米,即可得出村庄能听到广播宣传.(2)根据勾股定理得到BP=BQ=5002-3002=400(米),求得PQ=800米,即可得出结果.【详解】(1)村庄能听到广播宣传,理由如下:∵村庄A到公路MN的距离为300米<500米,∴村庄能听到广播宣传.(2)如图:假设当宣传车行驶到P点开始能听到广播,行驶到Q点不能听到广播,则AP=AQ=500米,AB=300米,由勾股定理得:BP=BQ=5002-3002=400(米),∴PQ=800米,∴能听到广播的时间为:800÷50=16(分钟),∴村庄总共能听到16分钟的宣传.【点睛】本题考查了勾股定理的应用,结合生活实际,便于更好地理解题意是解题的关键.2(2023春·山东青岛·八年级校考期末)如图所示,在甲村至乙村的公路AB旁有一块山地正在开发,现需要在C处进行爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB.为了安全起见,爆破点C周围半径250米范围内不得进入,在进行爆破时,公路AB 是否有危险而需要封锁?如果需要,请计算需要封锁的路段长度;如果不需要,请说明理由.【答案】公路AB有危险需要封锁,需要封锁的路段长度为140米【分析】过C作CD⊥AB于D,利用勾股定理算出AB的长度,然后利用三角形的面积公式可求出CD的长,用CD的长和250比较大小即可判断是否需要封锁,最后根据勾股定理求出封锁的长度.【详解】解:公路AB需要暂时封锁,理由如下:如图,过C作CD⊥AB于D,因为BC=400米,AC=300米,∠ACB=90°,所以根据勾股定理有AB=500米,因为S△ABC=12AB⋅CD=12BC⋅AC,所以CD=BC⋅ACAB=400×300500=240(米),由于240米<250米,故有危险,封锁长度为:2×2502-2402=140米,因此AB段公路需要暂时封锁,封锁长度为140米.【点睛】本题考查了正确运用勾股定理,善于观察题目的信息是解题的关键.3(2023春·广东广州·八年级校考期中)如图,A城气象台测得台风中心在A城正西方向320km的B 处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,则A城遭受这次台风影响有多长时间?【答案】(1)要,理由见解析(2)6h【分析】(1)由A点向BF作垂线,垂足为C,根据勾股定理求得AC的长,与200km比较即可得结论;(2)BF上分别取D、G,则△ADG是等腰三角形,由AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在GD长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.【详解】(1)解:由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200km,则还有一点G,有AG=200km.∵DA=AG,∴△ADG是等腰三角形,∵AC⊥BF,∴AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200km,AC=160km,由勾股定理得,CD=DA2-AC2=2002-1602=120km,则DG=2DC=240km,遭受台风影响的时间是:t=240÷40=6(h).【点睛】此题主要考查了勾股定理的应用以及点到直线的距离,构造出直角三角形是解题关键.【题型6解决水杯中筷子问题】1(2023春·河北唐山·八年级统考期中)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm的直吸管露在罐外部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.4<a<5B.3≤a≤4C.2≤a≤3D.1≤a≤2【答案】B【分析】如图,当吸管底部在D点时吸管在罐内部分最短,当吸管底部在B点时吸管在罐内部分最长,此时利用勾股定理在Rt△ADB中求出AB即可.【详解】解:如图,当吸管底部在底面圆心时吸管在罐内部分最短,此时吸管的的长度就是圆柱形的高,即12,∴a=16-12=4,当吸管底部在饮料罐的壁底时吸管在罐内部分最长,吸管长度=AD2+BD2=122+52=13,∴此时a=16-13=3,所以3≤a≤4.故选:B.【点睛】本题考查勾股定理的应用,善于观察题目的信息,正确理解题意是解题的关键.1(2023春·重庆渝中·八年级重庆市求精中学校校考期中)一根竹竿插到水池中离岸边1.5m远的水底,竹竿高出水面0.5m,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为()A.2mB.2.5cmC.2.25mD.3m【答案】A【分析】设水池的深度BC=xm,则AB=(0.5+x)m,根据勾股定理列出方程,进而即可求解.【详解】解:在直角△ABC中,AC=1.5m.AB-BC=0.5m.设水池的深度BC=xm,则AB=(0.5+x)m.根据勾股定理得出:∵AC2+BC2=AB2,∴1.52+x2=(x+0.5)2,解得:x=2.故选:A.【点睛】本题主要考查勾股定理的实际应用,根据勾股定理,列出方程,是解题的关键.2(2023春·山东青岛·八年级校考期中)有一个边长为10米的正方形水池,在水池正中央有一根新生的芦苇,它高出水面1米.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问:这个水池水的深度和这根芦苇的长度分别是多少?【答案】水池水深12米,芦苇长13米【分析】根据题意,构造直角三角形,根据勾股定理列出方程求解即可.【详解】解:如图:设芦苇BC长为x米,则水深AB为(x-1)米.∵芦苇长在水池中央,×10=5(米)∴AC=12根据勾股定理得:AC2+AB2=BC2,则:52+(x-1)2=x2,解得:x=13,∴x-1=13-1=12,答:水池水深12米,芦苇长13米.【点睛】本题主要考查勾股定理的实际应用,熟练掌握勾股定理的内容,勾股题意构造直角三角形,,根据勾股定理列出方程求解是解题的关键.3(2023春·河南漯河·八年级统考期中)如图,湖面上有一朵盛开的红莲,它高出水面30cm.大风吹过,红莲被吹至一边,花朵下部刚好齐及水面,已知红莲移动的水平距离为60cm,则水深是cm.【答案】45【分析】设水深h厘米,则AB=h,AC=h+30,BC=60,利用勾股定理计算即可.【详解】红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.设水深h厘米,由题意得:Rt△ABC中,AB=h,AC=h+30,BC=60,由勾股定理得:AC2=AB2+BC2,即h+302=h2+602,解得h=45.故答案为:45.【点睛】本题考查了勾股定理的应用,正确审题,明确直角三角形各边的长是解题的关键.【题型7解决航海问题】1(2023春·重庆巴南·八年级统考期末)在海平面上有A,B,C三个标记点,其中A在C的北偏西54°方向上,与C的距离是800海里,B在C的南偏西36°方向上,与C的距离是600海里.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为500海里,每隔半小时会发射一次信号,此时在点B处有一艘轮船准备沿直线向点A处航行,轮船航行的速度为每小时20海里.轮船在驶向A处的过程中,最多能收到多少次信号?(信号传播的时间忽略不计).【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;∴∠ACB=90°;∵AC=800,BC=600;∴AB=AC2+BC2=1000海里;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里.∵CH⊥AB;∴∠CHB =90°;∵S △ABC =12AC ⋅BC =12AB ⋅CH ;∴CH =480;∵CN =CM =500;∴NH =MH =CM 2-CH 2=140;则信号次数为140×2÷20=14(次).答:最多能收到14次信号.【点睛】本题考查了勾股定理的应用,直角三角形的判定等知识,涉及路程、速度、时间的关系,熟练掌握勾股定理是关键.1(2023春·河南信阳·八年级统考期末)如图,已知港口A 东偏南10°方向有一处小岛B ,一艘货轮从港口A 沿南偏东40°航线出发,行驶80海里到达C 处,此时观测小岛B 在北偏东60°方向.(1)求此时货轮到小岛B 的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.【答案】(1)此时货轮到小岛B 的距离为80海里;(2)轮船向正东方向航行没有触礁危险.【分析】(1)先根据题意求出∠BAC =40°、∠ACB =100°,据此得∠ABC =∠ACB =40°,从而得出AC =BC =40海里;(2)作BD ⊥CD 于点D ,由∠BCD =30°、BC =70知BD =12BC =35,从而做出判断.【详解】解:(1)由题意知∠BAC =90°-10°-40°=40°,∠ACB =40°+60°=100°,∴∠ABC =180°-∠BAC -∠ACB =40°,∴∠ABC =∠BAC ,∴BC =AC =80海里,即此时货轮到小岛B 的距离为80海里;(2)如图,作BD ⊥CD 于点D ,在Rt △BCD 中,∵∠BCD =30°、BC =80,∴BD =12BC =40,∵40>36,。
勾股定理的应用
勾股定理的应用勾股定理是数学中一条基本而重要的定理,也被广泛应用于各个领域。
它描述了直角三角形中三条边之间的关系,为计算直角三角形中未知边长、角度等提供了有效的工具。
本文将探讨勾股定理在几个实际问题中的应用。
一、建筑与测量1.地量测绘勾股定理的应用在地量测绘中非常广泛。
测量一个区域的边长和角度时,可以利用勾股定理来计算直角边的长度。
例如,测量一个房屋的原型,通过测量两个直角边的长度,可以用勾股定理计算出斜边的长度,从而得到房屋的真实尺寸。
2.建筑设计勾股定理在建筑设计中也有重要的应用。
设计师可以根据建筑的具体需求,利用勾股定理计算出建筑物各个部分的长度和角度。
例如,在设计一个大厦的楼梯时,可以根据勾股定理计算出楼梯的长度和高度,以保证楼梯的坡度合理。
二、物理学中的应用1.力学在力学中,勾股定理可以用来求解物体的速度和加速度。
例如,需要计算一个物体在竖直上抛运动中的速度和加速度时,可以利用勾股定理计算出物体在水平方向和竖直方向的速度分量,从而得到物体的总速度。
2.光学在光学中,勾股定理被广泛应用于光的折射和反射问题中。
光的折射定律和反射定律可以通过利用勾股定理推导得出。
例如,在设计光学系统时,可以利用勾股定理计算出光线的折射角度和反射角度,以确定光线的传播路径。
三、电子技术中的应用1.电路设计在电子技术中,勾股定理可以用于计算电路中的电阻、电流和电压之间的关系。
例如,在设计一个交流电路时,可以利用勾股定理计算出电阻和电流之间的关系,从而确定电路的工作状态。
2.无线通信在无线通信技术中,勾股定理被用来计算信号的传播距离和路径损耗。
例如,在设计一个无线网络时,可以利用勾股定理计算信号的传播距离和路径损耗,从而确定网络的覆盖范围和信号强度。
总结:勾股定理作为一条基本的数学定理,在各个领域都有广泛的应用。
无论是在建筑测量、物理学还是电子技术中,勾股定理都发挥着重要的作用。
通过合理地应用勾股定理,我们可以解决各种实际问题,提高工作效率和准确性。
应用勾股定理解实际问题
应用勾股定理解实际问题勾股定理是数学中最基础的定理之一,它描述了直角三角形边长之间的关系。
在实际生活中,勾股定理可以应用于多种场景,解决实际问题。
本文将探讨勾股定理在几个具体问题中的应用。
1. 应用一:测量直角三角形的边长勾股定理最常见的应用就是用来测量直角三角形的边长。
在我们日常生活中,经常会遇到需要测量一些不易直接测量的距离,比如高楼的高度、河流的宽度等等。
这时,我们可以利用勾股定理来求解。
假设我们需要测量一栋建筑物的高度,可以选择一个合适的地方A 站立,从眼睛位置向上仰望,然后测量自己与建筑物底部的距离为a。
接着,我们移动到地点B,使得站立在地点B时看到建筑物顶部,测量自己与建筑物底部的距离为b。
此时,我们可以利用勾股定理计算出建筑物的高度c,即c²=a²+b²。
2. 应用二:求解物体之间的距离在很多实际问题中,我们需要求解两个物体之间的距离。
例如,在导航软件中,我们需要确定两个地点之间的最短路径。
这时,我们可以应用勾股定理帮助我们计算出两个地点的距离。
假设有两个地点A和B,我们知道A点的横坐标为x₁,纵坐标为y₁,B点的横坐标为x₂,纵坐标为y₂。
我们可以通过计算AB两点间的距离来获得最短路径。
根据勾股定理,AB的距离可以表示为d=√((x₂-x₁)²+(y₂-y₁)²)。
3. 应用三:解决投影问题另一个常见的应用领域是求解投影问题。
在日常生活中,我们经常需要计算物体的投影长度,比如阳光下建筑物的影子长度、物体在倾斜地面上的投影长度等等。
勾股定理可以帮助我们解决这些问题。
假设有一个倾斜的平面,上面有一个物体A。
物体A的高度为h,离倾斜平面的水平距离为d。
我们可以利用勾股定理来计算物体A在倾斜平面上的投影长度l。
根据勾股定理,我们可以得到l=√(d²+h²)。
4. 应用四:解决角度问题勾股定理还可以应用于求解角度问题。
在导航、航海等领域中,经常需要精确测量物体的角度。
勾股定理在实际问题中的应用举例
勾股定理在实际问题中的应用举例一、利用勾股定理解决立体图形问题勾股定理是揭示直角三角形的三条边之间的数量关系,可以解决许多与直角三角形有关的计算与证明问题,在现实生活中有着极其广泛的应用,下面就如何运用勾股定理解决立体图形问题举例说明,供参考。
一、长方体问题例1、如图1,图中有一长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )A 、41cmB 、34cmC 、50cmD 、75cm分析:图中BD 为长方体中能放入的最长的木条的长度,可先连接BC ,根据已知条件,可以判断BD 是Rt △BCD 的斜边,BD 是Rt △BCD 的斜边,根据已知条件可以求出BC 的长,从而可求出BD 的长。
解:在Rt △ABC 中,AB=5,AC=4,根据勾股定理,得BC=22AC AB +=41,在Rt △BCD 中,CD=3,BC=41,BD=22CD BC +=50。
所以选C 。
说明:本题的关键是构造出直角三角形,利用勾股定理解决问题。
二、圆柱问题例2、如图2,是一个圆柱形容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口处1cm 的点F 出有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是多少?分析:勾股定理是平面几何中的一个重要定理,在遇到立体图形时,需根据具体情况,把立体图形转化为平面图形,从而使空间问题转化为平面问题。
由题意可知,S 、F 两点是曲面上的两点,表示两点间的距离显然不能直接画出,但我们知道圆柱体的侧面展开图是一个长方形,,于是我们就可以画出如图3的图,这样就转化为平面中的两点间的距离问题,从而使问题得解。
解:画出圆柱体的侧面展开图,如图3,由题意,得SB=60÷2=30(cm ),FB=18―1―1=16(cm ),在Rt △SBF 中,∠SBF=90°,由勾股定理得,SF=22FB SB +=221630+=34(cm ),所以蜘蛛所走的最短路线的长度是34cm 。
第十七章 勾股定理题实际应用型归纳专题训练
第十七章勾股定理题实际应用型归纳专题训练题型一:梯子滑落问题1.如图,一根长25m的梯子,斜靠在一竖直的墙上,这时梯子的底端距墙底端7m.如果梯子的顶端下滑4m,那么梯子的底端将向右滑动()A.15m B.9m C.7m D.8m2.一架长5m的梯子斜靠在墙上,梯子底端到墙的距离为3m.若梯子顶端下滑1m,那么梯子底端在水平方向上滑动了()A.1m B.小于1m C.大于1m D.无法确定AO=,若梯子的顶端沿墙下滑1m,这时梯子的底端也向右3.如图,一个梯子斜靠在一竖直的墙AO上,测得4m滑1m,则梯子AB的长度为________.4.如图所示,一个梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得BD长为1.3米,则梯子顶端A下滑了_____米.5.如图,将长为2.5米长的梯子AB斜靠在墙上,BE的长度为0.7米.(1)求梯子上端到墙底端E的距离;AC=米)则梯脚B往外移多少米?(2)如果梯子顶端A沿墙下滑0.4米,(即0.46.如图,某火车站内部墙面MN 上有破损处(看作点A ),现维修师傅需借助梯子DE 完成维修工作.梯子的长度为5m ,将其斜靠在这面墙上,测得梯子底部E 离墙角N 处3m ,维修师傅爬到梯子顶部使用仪器测量,此时梯子顶部D 距离墙面破损处1m .(1)该火车站墙面破损处A 距离地面有多高?(2)如果维修师傅要使梯子顶部到地面的距离为4.8m .那么梯子底部需要向墙角方向移动多少米?题型二:树木折断问题7.如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=十尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度为()A .3尺B .3.2尺C .3.6尺D .4尺8.《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?题意是:一根竹子原高1丈(1丈10=尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?设折断处离地面的高度为x 尺,则可列方程为()A .()22310x x -=-B .()22310x x +=-C .()222310x x +=-D .()222310x x -=-9.《九章算术》中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意:有一根竹子原来高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面a 尺,根据题意,则可列方程:__________.10.强大的台风使得一根旗杆在离地面3m处折断倒下,旗杆顶部落在离旗杆底部4m处,则旗杆折断之前的高度是_______.11.如图,在距张大爷家房屋17米处有一棵大树.在一次强风中,这颗大树从距地面8米处折断倒下,量得倒下部分AC的长是17米.请你通过计算,判断这棵大树倒下时是否会砸到张大爷的房子.12.如图,一木杆长13m,在离地面的点B处折断,木杆顶端C落在离木杆底端A的12m处.求木杆折断处离地面有多高?题型三:旗杆高度问题13.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.14.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B 离地面0.6m,荡秋千到AB的位置时,下端B 距静止位置的水平距离EB等于2.4m,距地面1.4m,求秋千AB的长.15.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计).题型四:小鸟飞行距离16.如图,有两棵树,一棵树高AC是10米,另一棵树高BD是4米,两树相距8米(即CD=8米),一只小鸟从一棵树的树梢A点处飞到另一棵树的树梢B点处,则小鸟至少要飞行多少米?17.如图,某自动感应门的正上方A处装着一个感应器,离地的高度AB为2.7米,当人体进入感应器的感应范围内BC 米),感应门时,感应门就会自动打开.一个身高1.5米的学生CD正对门,缓慢走到离门1.6米的地方时( 1.6自动打开,AD为多少米?18.如图,有两根直杆隔河相对,杆CD高30m,杆AB高20m,两杆相距BC为50m,两杆顶各有一只鱼鹰,它们同时看到两杆之间的河面上E处浮起一条小鱼,以同样的速度同时飞下来夺鱼,两只鱼鹰同时到达,叼住小鱼.两杆底部距鱼的距离BE,CE各是多少?题型五:最短路径问题19.如图,有一个圆柱形仓库,它的高为10m,地面直径为8m,在该仓库下地面A处有一只蚂蚁,它想吃相对一侧外面中点B处的食物,蚂蚁爬行的速度是0.4m/min,那么蚂蚁吃到食物至少需要爬行( 取3)()A.32.5min B.minC.30min D.25.2min220.如图,圆柱形容器的高17cm,底面周长是24cm,在外侧底面S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm点F处有一苍蝇,急于捕获苍蝇充饥的蜘蛛所走的最短路线长度是()D.24cmA.20cm B.C21.如图,要为一段高为5米,长为13米的楼梯铺上红地毯,则红地毯的长至少要_______米22.如图,在高为6米,坡面长度AB为10米的楼梯表面铺上地毯,则至少需要地毯______米.23.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?题型六:是否受台风影响问题24.如图,A城气象台测得台风中心在A城正西方向240km的O处,以每小时30km的速度向南偏东60 的OB方向移动,距台风中心150km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?(2)求A城受台风影响的时间有多长?25.台风是一种自然灾害,它以台风中心为圆心在周围数十千米的范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,该台风中心现在正以15km/h 的速度沿北偏东30︒方向移动,若在距离台风中心130km 范围内都要受到影响.(结果精确到0.01) 2.236≈≈≈)(1)该城市是否会受到这次台风的影响?说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?题型七:航海问题24.如图,甲货船以16海里/时的速度从港口A 出发向东北方向航行,乙货船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后两船之间的距离是()A .40海里B .32海里C .24海里D .20海里25.一艘渔船从港口A 沿北偏东60°方向航行60海里到达C 处时突然发生故障,位于港口A 正东方向的B 处的救援艇接到信号后,立即沿北偏东45°方向以40海里/小时的速度前去救援,救援艇到达C 处所用的时间为()A .32小时B .23小时C D26.在一次海上救援中,两艘专业救助船A、B同时收到某事故渔船P的求救讯息,已知此时救助船B在A的正北方向,事故渔船P在救助船A的北偏西30°方向上,在救助船B的西南方向上,且事故渔船P与救助船A相距60海里.(1)求收到求救讯息时事故渔船P与救助船B之间的距离(结果保留根号);(2)求救助船A、B分别以20海里/小时,15海里/小时的速度同时出发,匀速直线前往事故渔船P处搜救,试通过计算判断哪艘船先到达.27.如图,甲乙两船从港口A同时出发,甲船以16海里/时的速度向南偏东40︒航行,乙船向北偏东50︒航行,2小时后,甲船到达B岛,乙船到达C岛,若CB两岛相距40海里,∠的度数;(2)求乙船的航速是多少?(1)直接写出CAB题型八:水杯中筷子问题28.如图所示,将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度cm h ,则h 的取值范围是()A .17cmh ≤B .8cm h ≥C .15cm 16cm h ≤≤D .7cm 16cm h ≤≤29.如图是一圆柱玻璃杯,从内部测得底面半径为6cm ,高为16cm ,现有一根长为25cm 的吸管任意放入杯中,则吸管露在杯口外的长度最少是()A .6cmB .5cmC .9cmD .(25cm -30.如图是一个圆柱形饮料罐,底面半径是3,高是4,上底面中心有一个小圆孔,则一条长10的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A .56a ≤≤B .36a ≤≤C .23a ≤≤D .12a ≤≤题型九:汽车超速问题31.如图,一辆小汽车在一条限速70km/h 的街路上沿直道行驶,某一时刻刚好行驶到路面车速检测仪A 的正前方60m 处的C 点,过了5s 后,测得小汽车所在的B 点与车速检测仪A 之间的距离为100m .(1)求B ,C 间的距离.(2)这辆小汽车超速了吗?请说明理由.32.超速行驶是引发交通事故的主要原因.上周末,小威等三位同学在幸福大道段,尝试用自己所学的知识检测车速,观测点设在到公路l 的距离为100m 的P 处.这时,一辆红旗轿车由西向东匀速驶来,测得此车从A 处行驶到B 处所用的时间为3s ,并测得60APO ∠=︒,45BPO ∠=︒,(1)求AP 的长?(2)试判断此车是否超过了80km /h 1.732≈)题型十:河宽问题33.如图,在一条绷紧的绳索一端系着一艘小船,河岸上一男孩拽着绳子另一端向右走,绳端从点C 移动到点E ,同时小船从点A 移动到点B ,且绳长始终保持不变,回答下列问题:(1)根据题意,可知AC ________BC CE +(填“>”“<”“=”);(2)若5CF =米,12AF =米,4AB =米,求男孩需向右移动的距离CE (结果保留根号).34.如图,某人从点A 划船横渡一条河,由于水流的影响,实际上岸地点C 离欲到达点B 有45m ,已知他在水中实际划了75m ,求该河流的宽度AB .。
勾股定理在解决实际问题中的应用
勾股定理在解决实际问题中的应用勾股定理是解决数学问题中最基础的定理之一。
不过,它的应用远不止数学领域。
在现实世界中,勾股定理可以被广泛应用于建筑、制造、科学及其他领域。
本文将介绍一些勾股定理在实际问题中的应用。
一、建筑领域1.房屋布局在建造住宅或其他建筑物时,勾股定理可以帮助工程师确定布局和边角的角度。
例如,在设计一个房间时,可以使用勾股定理确保其拐角处形成一个精确的90度角,使得角落更符合设计标准。
2.斜坡建造斜坡的建造也需要使用勾股定理。
在建设跑道或楼梯时,勾股定理可以帮助工程师确定斜坡的正确角度,以确保它们安全合适。
二、科学领域1.热力学热力学是一门研究热量、压力和温度的学科,在这个学科中,勾股定理被用来计算三角形的斜边长度,并在计算气体和流体的压力和体积方面得到了应用。
2.物理学在物理学中,勾股定理被广泛应用于计算运动物体的速度、加速度和其他参数。
它常常被用于确定投掷物体的轨迹和速度,以及计算两个运动物体之间的距离。
三、万能应用1.测量距离在现实应用中,我们经常需要测量一些难以到达的地方的距离。
勾股定理可以帮助我们测量这些距离。
例如,当我们测量建筑物高度时,可以使用勾股定理计算出梯子爬升的高度,以确定建筑物的高度。
2.导航勾股定理还可以帮助我们在导航时定位。
例如,在导航仪上输入两个坐标,勾股定理可以计算出两个坐标之间的距离,帮助我们确定正确的方向并找到目的地。
以结束语的形式,无论是建筑、制造还是科学领域,勾股定理都有着广泛的应用。
它是解决实际问题的基础,也是进一步发展的基石。
通过这些应用,我们可以更好地理解这个基本的数学原理的真正意义。
勾股定理应用题型大汇总(经典)
勾股定理题型汇总一、用勾股定理解决实际问题 【经典例题】 1.水中芦苇问题在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。
2.梯子滑动问题一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?(3)当梯子的顶端下滑的距离与梯子的底端水平滑动的距离相等时,这时梯子的顶端距地面有多高?【练一练】1、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?2、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?3、如图,南北向MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以每小时6.4海里的速度偷偷向我领海开来,便立即通知正在MN 在线巡逻的我国反走私艇B 密切注意,反走私A 艇通知反走私艇B 时,A 和C 两艇的距离是20海里,A 、B 两艇的距离是12海里,反走私艇B 测得距离C 是16海里,若走私艇C 的速度不变,最早会在什么时间进入我国领海?AA ′BA ′ O二、最短路径问题1、如图1,长方体的长为12cm ,宽为6cm ,高为5cm ,一只蚂蚁沿侧面从A 点向B 点爬行,问:爬到B 点时,蚂蚁爬过的最短路程是多少?2、如图壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处,它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.请问壁虎至少要爬行多少路程才能捕到害虫?3:如图为一棱长为3cm 的正方体,把所有面都分为9个小正方形,其边长都是1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下地面A 点沿表面爬行至右侧面的B 点,最少要花几秒钟?4.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?5、如图,一个高18m ,周长5m 的圆柱形水塔,现制造一个螺旋形登梯,为减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿张白纸动手操作,你一定会发现其中的奥妙)A B 5 316、有一圆柱形食品盒,它的高等于16cm ,底面直径为20cm , 蚂蚁爬行的速度为2cm/s. ⑴如果在盒内下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间? (盒的厚度和蚂蚁的大小忽略不计,结果可含π)⑵如果在盒外下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间? (盒的厚度和蚂蚁的大小忽略不计,结果可含π)7、如图,圆锥的侧面展开图是半径为22cm 的半圆,一只蚂蚁沿圆锥侧面从A 点向B 点爬行,问:(1)爬到B 点时,蚂蚁爬过的最短路程;(2)当爬行路程最短时,求爬行过程中离圆锥顶点C 的最近距离.8、如图,一圆锥的底面半径为2,母线PB 的长为6,D 为PB 的中点.一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D ,则蚂蚁爬行的最短路程为三、面积问题1. 已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 .AB CD E FGA ·B · A· B ·FE DABC2.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形的边长是____ _____.3.在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=______ ___. 4.如图,△ABC 中,∠C =90°,(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S 1+S 2与S 3的关系;(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S 1+S 2与S 3的关系; (3)以直角三角形的三边为直径向形外作半圆(如图③),探究S 1+S 2与S 3的关系.图① 图② 图③5.如图,设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…,记正方形ABCD 的边长a1=1,依上述方法所作的正方形的边长依次为a1,a2,a3,…,an ,根据上述规律,则第n 个正方形的边长an =___ _____记正方形AB -CD 的面积S 1为1,按上述方法所作的正方形的面积依次为S 2,S 3,……,S n (n 为正整数),那么S n =____ ____.6.如图,Rt △ABC 中,∠C=90°,AC=2,AB=4,分别以AC 、BC 为直径作半圆,则图中阴影部分的面积为 .四、翻折问题1、如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG.2、如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F. (1)求证:△FAC 是等腰三角形;(2)若AB=4,BC=6,求△FAC 的周长和面积.3、如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知cm CE 6=,cm AB 16=求BF 的长.G AD A B C DAA B C D EG FF 4、如图,一张矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝。
勾股定理在实际问题中的应用
勾股定理在实际问题中的应用勾股定理是数学中的重要定理之一,被广泛应用于解决各种实际问题。
本文将介绍勾股定理的应用,并通过几个实例来阐述其在不同领域中的重要性。
一、建筑工程中的应用在建筑设计与施工过程中,勾股定理被广泛地应用于测量与校准工作中。
例如,在确定建筑物的平面布局时,我们可以通过测量建筑物两角之间的距离,并应用勾股定理,来确保建筑物的对称性和准确度。
此外,在测量高楼大厦的高度时,也常常利用勾股定理与观察角度的变化,来计算楼高,确保施工的安全与准确。
二、导航系统中的应用现代导航系统如GPS(全球定位系统)依赖于数学算法来确定位置和导航路径。
其中,勾股定理的应用是至关重要的。
通过测量卫星信号发送和接收的时间差,并结合勾股定理计算卫星与接收器的距离,我们可以确定接收器的位置。
因此,导航系统能够精确地提供行车路线、航行路径等信息,大大提高了交通的安全性和效率。
三、射击运动中的应用在射击运动中,射手需要通过准确地测量射程和角度来确定瞄准点。
在这个过程中,勾股定理被广泛用于计算目标与射击点之间的距离。
通过测量瞄准点和目标之间的水平距离,以及射击点相对于水平面的角度,我们可以利用勾股定理来计算目标的相对位置和理想的瞄准点。
这种应用不仅提高了射击运动的精确性,也有助于培养射手的反应能力和准确性。
四、金融投资中的应用在金融投资中,人们经常使用贝塔系数来衡量一个投资资产与整个市场的相关性。
贝塔系数的计算也依赖于勾股定理。
通过测量投资资产的历史回报率与市场指数之间的相关性,我们可以利用勾股定理计算贝塔系数,从而确定投资资产相对于市场的风险敞口。
这种应用方法有助于投资者评估投资组合的风险水平并做出相应决策,提高投资成功的概率。
五、地理测量中的应用在地理测量学中,勾股定理被广泛应用于测量地球表面的距离和角度。
地理测量学家常常使用全球定位系统和勾股定理来计算两地之间的直线距离、高度差、角度变化等。
这些信息在地图制作、航海导航、城市规划等领域中具有重要意义。
勾股定理在实际问题中的应用
勾股定理在实际问题中的应用勾股定理是数学中的重要定理.它揭示了直角三角形三边之间的数量关系,把数与形统一起来.勾股定理不仅在数学的发展中起着重要的作用,而且在现实世界中有着广泛的应用.下面举例说明勾股定理在实际生活中的应用.一、少走几步路例1.如图1,学校有一块长方形花铺,有极少数人从A 走到B ,为了避开拐角C 走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草. 分析:由图可见,走出来的“路”是直角边分别为3m和4m的直角三角形的斜边,由勾股定理,得该“路”的长为5m,因此,行人仅仅少走了2米(即10步)路.点评:爱护花草人人有责,仅仅因为少走10步而不惜踩伤花草,破坏环境的确是大不应该的。
由此可见,只有懂得“三角形两边之和大于第三边”的人才知道走“捷径”的比经过拐角处的路程近些,但掌握的数学知识如果不能用正当的行为上,那将是数学的悲哀。
二、票价为多少元呢?例2.如图2,A 、B 、C 、D 是四个小镇,它们之间(除B 、C 外)都有笔直的公路相连接,公共汽车行驶于城镇之间,其票价与路程成正比.已知各城镇间的公共汽车票价如下:A ↔B :10元;A ↔C :12.5元;A ↔D :8元;B ↔D :6元;C ↔D :4.5元.为了B 、C 之间的交通方便,要在B 、C 之间建成笔直公路,请按上述标准计算出B 、C 之间的公路的票价为多少元.分析:因为票价与路程成正比,故可将票价视为路程来处理,即AB=10,AD=8,BD=6,AC=12.5,CD=4.5,利用勾股定理求解.解:因为票价与路程成正比,故可把票价视为路程来处理.已知:AB=10,AD=8,BD=6,AC=12.5,CD=4.5.因为AD 2+BD 2=82+62=64+36=100=102=AB 2,所以△ABD 为直角三角形,且∠ADB=90°. 连接BC ,在Rt △BDC 中,CD=4.5,BD=6,所以224.567.5BC =+=.故B 、C 之间公共汽车票价为7.5元.点评:本题是利用勾股定理来解决生活中的实际问题.本题的技巧是将票价视为路程来处理,这一点与代数中的换元法极为相似.三、最短路程是多少例3如图3,一圆柱的底面周长为24cm ,高AB 为4cm ,BC 是直径,一只蚂蚁从点A 出发沿着圆柱体的表面爬行到点C 的最短路程大约是( )A .6cmB .12cmC .13cmD .16cm分析:把圆柱沿直径BC 剪开成两半,展开成平面后可得如图4,则蚂蚁从点A 爬行到“路”4m 3m 图1 AB C 图2 A B图3AC 图4 B点C 的最短路程是矩形的对角线AC 的长,由已知,AB=4,BC=12,故AC=22412+≈12.6≈13(cm ),故选C .点评:解立体图形问题的基本思想是把立体图形平面化,因此,圆柱问题通常要把它沿一条母线剪开,然后铺展为矩形,这里要注意到蚂蚁从点A 出发到点C ,当圆柱沿母线AB 展开成矩形时,点C 对应的是矩形一边的中点。
勾股定理在实际问题中的应用
勾股定理,也被称为毕达哥拉斯定理,是一个在初等数学和代数学中非常重要的定理。
其基本形式为:在一个直角三角形中,直角边的平方和等于斜边的平方,即a² + b² = c²,其中a和b是直角边,c是斜边。
尽管这个定理在数学上具有纯粹的抽象性,但其实际应用却深入到我们日常生活的许多方面,包括建筑设计、工程测量、路线规划、计算机图形学等。
以下,我们将深入探讨勾股定理在实际问题中的应用,尝试呈现其广阔的应用场景和深远的影响力。
**一、建筑设计与工程**在建筑设计和工程领域,勾股定理被广泛应用于确定物体的尺寸和位置。
例如,建筑师在设计建筑物的结构时需要确保稳定性,这时就可以利用勾股定理计算支撑柱的高度和位置,以确保整个结构的平衡和稳定。
工程师在建造桥梁时,也需要利用勾股定理进行精确的计算,以确保桥墩的位置能够承受最大的负载并保持桥梁的稳固。
**二、航海与航空**在航海和航空领域,勾股定理同样发挥着重要作用。
航海家可以利用勾股定理计算航线和航程,以确保船只能够安全到达目的地。
同样,飞行员也可以利用勾股定理计算飞行路线和高度,以保证飞行的安全和准确性。
**三、计算机图形学**在计算机图形学中,勾股定理是计算两点之间距离的基础。
例如,在二维平面坐标系中,我们可以利用勾股定理计算两点之间的直线距离。
在三维空间中,勾股定理也可以用来计算三维空间中两点之间的距离。
这种计算对于计算机图形学中的各种应用,如三维建模、动画渲染等至关重要。
**四、物理学与工程学**在物理学和工程学中,勾股定理常被用于解决与力、速度和加速度相关的问题。
例如,在力学中,我们可以利用勾股定理计算合力和分解力;在运动学中,可以利用勾股定理计算物体的速度和加速度;在电磁学中,勾股定理也被用于计算电场和磁场的强度和方向。
**五、信号处理和图像处理**在信号处理和图像处理中,勾股定理也发挥着重要作用。
例如,在音频处理中,我们可以利用勾股定理计算音频信号的幅度和相位;在图像处理中,可以利用勾股定理进行像素点的位置和距离的计算,以实现图像的旋转、缩放和变形等操作。
利用勾股定理解决实际问题的综合练习题
利用勾股定理解决实际问题的综合练习题一、引言勾股定理是数学中的重要定理,其应用非常广泛。
利用该定理可以解决很多实际问题,本文将通过一些综合练习题来展示如何利用勾股定理解决实际问题。
二、练习题1:田地的面积假设有一个长方形的田地,其中一条边长为6米,另一条边长为8米。
现在需要计算该田地的面积。
根据勾股定理,可以知道田地的对角线长度为10米。
而对角线的长度可以直接用来计算长方形的面积,即面积=长×宽。
所以,该田地的面积为48平方米。
三、练习题2:路程和时间的计算假设有一座山,山的高度为300米。
现在有一辆汽车要从山脚下开往山顶,汽车的速度为60公里/小时。
请计算汽车从山脚下到山顶需要多长时间。
根据勾股定理,可以知道汽车行驶的路程实际上就是山的斜面长度。
使用勾股定理计算,斜面长度为√(300^2+√(60^2))≈334.68米。
汽车的速度可以用公式:路程=速度×时间,解得时间=路程/速度。
将已知数据代入公式,计算得到时间约为0.5588小时,也就是约33.53分钟。
所以,汽车从山脚下到山顶需要约33.53分钟。
四、练习题3:建筑的倾斜角度假设有一栋高楼,高度为100米。
为了确保建筑的稳定性,在建造过程中需要确保建筑的倾斜角度不超过5度。
请计算建筑与垂直线的夹角。
根据勾股定理,可以知道建筑与水平线之间的距离就是建筑的高度。
使用勾股定理计算,水平距离为√(100^2-√(5^2))≈99.98米。
建筑与垂直线的夹角可以用正切函数来表示,即tan(θ)=高度/水平距离。
将已知数据代入公式,计算得到夹角约为5度。
所以,建筑与垂直线的夹角约为5度。
五、总结通过以上的综合练习题,我们展示了利用勾股定理解决实际问题的过程。
勾股定理作为数学中的基本定理,可以帮助我们计算距离、面积、角度等多种实际问题。
在实际应用中,我们可以根据问题的具体情况灵活运用勾股定理,从而得到更加准确和高效的解决方案。
简单勾股定理的应用例题
简单勾股定理的应用例题简单勾股定理是数学中的一个基本定理,它描述了直角三角形中的边之间的关系。
根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。
这个定理在实际生活中有很多应用。
下面我们来看几个常见的应用例题。
例题1:一块田地的形状是一个直角三角形,已知两条边的长度分别为3米和4米,求斜边的长度。
解法:根据勾股定理,斜边的平方等于两个直角边的平方和。
即斜边的平方 = 3 + 4 = 9 + 16 = 25。
因此,斜边的长度为√25 = 5米。
例题2:一根电线杆倾斜在地面上,形成一个直角三角形。
已知杆子与地面的夹角为30°,杆子的长度为10米,求电线的长度。
解法:我们可以将问题转化为一个直角三角形中已知一个直角边和斜边,求另一个直角边的问题。
根据勾股定理,斜边的平方等于两个直角边的平方和。
即斜边的平方 = 直角边的平方 + 另一个直角边的平方。
已知斜边为10米,夹角为30°,可知直角边 = 斜边 * sin(夹角) = 10 * sin(30°) ≈ 5米。
因此,电线的长度约为5米。
例题3:一个直角三角形的两条直角边分别是6厘米和8厘米,求斜边的长度。
解法:直接使用勾股定理,斜边的平方等于两个直角边的平方和。
即斜边的平方 = 6 + 8 = 36 + 64 = 100。
因此,斜边的长度为√100 = 10厘米。
通过这些例题,我们可以看到勾股定理在解决直角三角形的问题中起到了重要的作用。
它可以帮助我们求解未知边长、角度等相关问题。
在实际应用中,勾股定理也被广泛应用于建筑、测量、工程等领域。
勾股定理典型应用例题
1.基础应用题目:在一个直角三角形中,已知直角边a为3,直角边b为4,求斜边c的长度。
答案:根据勾股定理,c² = a² + b²,所以c² = 3² + 4² = 9 + 16 = 25,从而c = 5。
2.逆应用题目:已知直角三角形的斜边c为5,一条直角边a为3,求另一条直角边b的长度。
答案:根据勾股定理,b² = c² - a²,所以b² = 5² - 3² = 25 - 9 = 16,从而b = 4。
3.实际应用题目:一个直角三角形的两条直角边分别是6米和8米,一个正方形的一边与这个直角三角形的斜边重合,求这个正方形的面积。
答案:首先,根据勾股定理求出斜边长度c,c² = 6² + 8² = 36 + 64 = 100,所以c = 10。
正方形的面积为边长的平方,即10² = 100平方米。
4.比较大小题目:比较两个数的大小:√17和4。
答案:考虑直角边为1和4的直角三角形,斜边c满足c² = 1² + 4² = 17,所以c = √17。
显然,斜边c(即√17)大于直角边4。
5.多解问题题目:一个直角三角形的周长为12,其中一条直角边长为3,求另外两边的长。
答案:设另一条直角边为a,斜边为b。
根据勾股定理,a² + 3² = b²。
同时,根据周长信息,a + 3 + b = 12,即a + b = 9。
解这两个方程,得到两组解:a = 4, b = 5 和a = 5, b = 4。
6.非整数边长问题题目:在直角三角形中,已知直角边a为√3,直角边b为√4,求斜边c的长度。
答案:根据勾股定理,c² = a² + b²,所以c² = (√3)² + (√4)² = 3 + 4 = 7,从而c = √7。
勾股定理在生活中的应用
勾股定理在生活中的应用勾股定理是初中数学中最基础、最重要的定理之一,它以古希腊数学家毕达哥拉斯的名字命名。
勾股定理简洁而优雅地阐述了直角三角形边长之间的关系,为解决实际问题提供了强有力的工具。
除了在数学教育中的应用外,勾股定理还广泛地应用于日常生活中的种种场景。
本文将介绍勾股定理在生活中的几个实际应用。
1. 构建稳固的建筑结构勾股定理在建筑领域得到了广泛应用。
在设计和建造房屋、桥梁等结构时,工程师需要确保结构的稳固和安全。
而勾股定理可以帮助他们计算和确定角度和边长之间的关系。
例如,在修建房屋时,勾股定理能够帮助工程师计算墙壁、地板等之间的角度和长度,确保结构的稳定性和准确性。
2. 测量不可触及的距离在日常生活中,有时候我们需要测量一些不便直接测量的距离,比如测量高楼的高度、河流的宽度等。
这时,我们可以利用勾股定理来间接测量这些距离。
以测量高楼的高度为例,我们可以选择一条水平线段,然后在该线段与地面相接点测量与地面的距离,再选取一条垂直线段,测量与地面的距离,最后应用勾股定理即可计算出高楼的高度。
3. 导航和航海勾股定理在导航和航海方面有着重要的应用。
在早期航海时代,航海家们通过星体观测来确定自己的位置。
通过观测航海者与天空中两颗星体之间的角度,再结合勾股定理,可以计算出航海者与这两颗星体之间的距离。
这为航海家们提供了参考,帮助他们在航海中确定位置和航线。
4. 解决日常测量问题无论是测量房屋的尺寸还是判断物体是否垂直,勾股定理都可以派上用场。
当我们需要测量不可触及的距离时,勾股定理可以帮助我们计算出这个距离。
另外,当我们需要判断物体是否垂直时,可以使用勾股定理检查物体两条边的长度是否满足勾股定理的关系。
总结:勾股定理是一条在生活中有广泛应用的重要数学定理。
无论是在建筑领域,还是在日常生活中的测量和判断中,勾股定理都能够帮助我们解决实际问题。
它的简洁性和实用性使得它成为数学应用中的核心内容之一。
通过了解和应用勾股定理,我们能够更好地理解数学在现实生活中的价值和意义。
勾股定理的实际应用
勾股定理的实际应用
勾股定理的应用如下:
1、勾股定理理解三角形。
2、勾股定理与网格问题。
3、利用勾股定理解决折叠问题。
4、利用勾股定理证明线段的平方关系。
5、利用勾股定理解决实际问题——求梯子滑落高度。
6、利用勾股定理解决实际问题——求旗杆高度。
7、利用勾股定理解决实际问题——求蚂蚁爬行距离。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
中国古代称直角三角形为勾股形,并且直角边中
较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
实际应用如下:
1、面积法:一个图形或者是面积相等的图形的面积有2种表示方法,从而得出关于边之间的等式。
应用比较普遍,主要用于求边长,找边之间的关系。
2、讲解的是方程思想:通过设未知数,结合某些定理,建立方程来完成解答,数学思想中常见的思想方法。
3、正方形中,利用边长相等,结合全等,找到相等的边,借助勾股定理,找到多个正方形之间的关系。
4、2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的,是由4个全等的直角三角形与1个正方形
构成的图案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理相关的实际应用问题
例1 如图1,把矩形纸条ABCD 沿,EF GH 同时折叠, ,B C 两点恰好落在AD 边的P 点处,若6,8,90===∠︒PH PF FPH ,则矩形ABCD 的边
BC 长为( ).
.20A .22B .24C .30D
例2.如图2,ABC Rt 中,O 为直
角边BC 上一点,以O 为圆心,OC 为半径的圆恰好与斜边AB 相切于点D ,与BC 交于另一点E .
(1)求证: AOC AOD ∆≅∆
(2)若1BE =,3BD =,求O 的半径及图中阴影部
图1
图2
A
分的面积S .
例3、李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.
(1)如图3,正方体的棱长为5cm 一只蚂蚁欲从正方体底面上的点A 沿着正方体表面爬到点1C 处;
(2)如图4,正四棱柱的底面边长为5cm ,侧棱长为6cm ,一只蚂蚁从正四棱柱底面上的点A 沿着棱柱表面爬到1C 处; (3)如图5,圆锥的母线长为4cm ,圆锥的侧面展开图如图6所示,且1120AOA ∠= ,一只蚂蚁欲从圆锥的底面上的点A 出发,沿圆锥侧面爬行一周回到点A .
例4.
1
图6
图5
图4
图3
A
A
A
1
A A A 1
将一块弧长为的半圆形铁皮围成一个圆锥(接头忽略不计),则围成的圆锥的高为 ( )
2
B
C
2
D
例5
:如图(8),水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.
例6:如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处. 大树在折断之前高多少?
例7:如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱
下底面A处有一只蚂蚁,
它想得到上面B处的食物,则蚂蚁经过的最短距离为________ cm。
(π取3)
例8:如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为多少米?。