2009届高三数学二轮专题复习教案――函数
2011年高考数学第二轮专题复习 函数教学案
2011年高考第二轮专题复习(教学案):函数考纲指要:函数是整个高中数学的重点,其中函数思想是最重要的数学思想方法,通过具体问题(几何问题、实际应用题)找出变量间的函数关系,再求出函数的定义域、值域,进而研究函数性质,寻求问题的结果。
考点扫描:1.函数概念,构成函数的三要素:定义域、对应关系和值域。
2. 函数性质:(1)奇偶性;(2单调性;(3)最值;(4)周期性。
3.基本初等函数:正比例函数、反比例函数、一元一次函数、一元二次函数、指数函数、对数函数、幂函数等。
4.函数图象:图象变换规则,如:平移变换、对称变换、翻折变换、伸缩变换等;结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
5.函数应用:以基本初等函数为载体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉及经济、环保、能源、健康等社会现象。
考题先知:例1. 定义域为R 的函数⎩⎨⎧=≠-=)2(0)2(||2|lg |)(x x x x f ,若0<b ,则关于x 的方程0)()(2=+x bf x f ,的不同实根共有( )个。
A. 4 B.5 C.7 D.8解析: 方程0)()(2=+x bf x f 可化为0)(=x f 或b x f -=)(。
而)(x f y =的图象大致如图1所示,由图可知,直线0=y 与)(x f y =的图象有3个交点,直线)0(<-=b b y 与)(x f y =的图象有4个交点,即方程0)(=x f 有3个实根,方程b x f -=)(有4个实根,从而原方程共有7个实根,故答案选C 。
[来源:]例2.函数}3,2,1{}3,2,1{:→f 满足)())((x f x f f =,则这样的函数个数共有( )yx1 2 3 O(A ) 1个 (B )4个 (C )8个 (D) 10个分析:这是一个从集合A 到集合A 的函数,由于集合A 中的元素仅有三个,情况比较简单,通过列举便可解决此题。
高中数学单元复习教案
高中数学单元复习教案
主题:函数
目标:通过本次复习,学生能够掌握函数的基本概念、性质和解题方法。
一、函数的基本概念
1. 函数的定义和表示方法
2. 函数的定义域和值域
3. 函数的图像和性质
二、函数的性质
1. 奇函数和偶函数的性质
2. 函数的单调性和最值
3. 函数的周期性和奇偶性
三、函数的解题方法
1. 求函数的导数和导函数
2. 求函数的极值和拐点
3. 求函数的零点和不等式解法
四、综合练习
1. 完成选择题、填空题和解答题
2. 解答实际问题中的函数应用题
五、作业布置
1. 完成课堂上的习题
2. 预习下节课的内容
六、自主学习
1. 利用课外时间复习函数相关知识
2. 尝试解决一些较难的函数题目
备注:本次复习教案主要围绕函数这一重要概念展开,学生需要掌握函数的基本定义和性质,能够熟练运用函数的解题方法。
希望学生能够认真复习,做到知识点全面掌握,能够灵活运用。
高三数学 第二章 函数 巩固练习专题复习教案
芯衣州星海市涌泉学校第20课时:第二章函数——数学稳固练习〔2〕一、选择题:在每一小题给出的四个选项里面,只有一项是哪一项哪一项符合题目要求的,请将你认为正确之答案填在后面的表格中〕1.全集I ,M 、N 是I 的非空子集,假设N M ⊇,那么必有〔A 〕N N M⊆⋂〔B 〕N N M ⊃⋂〔C 〕N M⊃〔D 〕N M =2.假设定义在区间(1,0)-内的函数)1(log )(2+=x x f a 满足0)(>x f ,那么a 的取值范围是〔A 〕)21,0(〔B 〕]21,0(〔C 〕),21(+∞〔D 〕),0(+∞ 3.任取],,[,21b a x x ∈且,21x x ≠假设)]()([21)2(2121x f x f x x f +>+,称()f x 是[a ,b]上的凸函数,那么以下列图象中,是凸函数图象的是4〔>=x y 〔C 〕)3(41321->+--=x x y 〔D 〕)3(41321->++-=x x y5.假设)(x f 、)(x g 都是R 上的单调函数,有如下命题:①假设)(x f 、)(x g 都单调递增,那么)()(x g x f -单调递增 ②假设)(x f 、)(x g 都单调递减,那么)()(x g x f -单调递减 ③假设)(x f 、)(x g 都单调递增,那么)()(x g x f ⋅单调递增 ④假设)(x f 单调递增,)(x g 单调递减,那么)()(x g x f -单调递增 ⑤假设)(x f 单调递减,)(x g 单调递增,)()(x g x f -单调递减其中正确的选项是〔A 〕①②〔B 〕②③④〔C 〕③④⑤〔D 〕④⑤ 67〔A 〔B 〕a >0,b >0,c <0〔C 〕a <0,b <0,c >0 〔D 〕a <0,b <0,c <08.奇函数))((R x x f y ∈=有反函数),(1x fy -=那么必在)(1x fy -=的图象上的点是 〔A 〕)),((a a f-〔B 〕)),((a a f --〔C 〕))(,(a f a --〔D 〕))(,(1a fa --9.假设一个函数)(x f 满足:〔1〕定义域为R ;〔2〕任意x1、x2∈R ,假设120x x +=,那么12()()0f x f x +=;〔3〕任意x∈R,假设t >0。
高三二轮复习教学案函数
高三二轮复习教学案——函数(1)班级 学号 姓名一、考试内容及要求:1.已知函数f (x)=2x+1,x ∈[1,5],则f (2x -3)= ____________2.已知集合B={1,4},若2:x x f →是A 到B 的函数,则满足条件的集合A 有_____个3.若函数xx k k x f 212)(⋅+-=(k 为常数)在定义域上为奇函数,则k=____________4.已知函数f (x)是定义在实数集R 上的不恒为零的偶函数,f (-1)=0,且对任意实数x 都有)()1()1(x f x x xf +=+,则∑=∈2010))(2(k Z k kf 的值=____________5.设f (x)是定义在[-1,1]上的偶函数,f (x)与g (x)的图象关于直线x=1对称,且当x ∈[2,3]时,g (x)=a(x -2)-2(x -2)3 (a 为常数)(1)求f (x)的解析式(2)若f (x)在[0,1]上是增函数,求实数a 的范围 (3)若a ∈[-6,6],问能否使f (x)的最大值为46.已知函数),,()(R c b a cxb ax x f ∈++=满足f(-1)=0,并且对x>0,≤01)(-x f xx 2)1(2-≤恒成立.(1)求a ,b ,c 的值; (2)若xm x f x g 4)()(-=在(0,2]上是减函数,求实数m 的取值范围7.已知函数xx x f --=274)(2,x ∈[0,1].(1)求f(x)的值域;(2)设a ≥1,函数g(x)=x 3-3ax 一2a ,x ∈[0,1].若对于任意的x 1∈[0,1],总存在x 0∈[0,1],使得g(x 0)=f(x 1)成立,求a 的取值范围.高三二轮复习教学案——函数(2)班级 学号 姓名1.已知f (x+2)=4x 2+4x+3,x ∈R ,则f (x)的值域为______________2.(1)函数g (x)= x 2-ax+3在),2[+∞上是增函数,则实数a 的取值范围是________________ (2)函数g (x)= x 2-ax+3的增函数为),2[+∞,则实数a 的取值范围是_________________ 3.已知二次函数f (x)=ax 2+bx+c 的导数为f ’(x),f ’(0)>0,对于任意实数x ,有f (x)≥0,则)0(')1(f f -的最小值为__________4.已知函数()(01)x x f x a ma a a -=+>≠且 是R 上的奇函数, 求函数2()g x m x ax m a =++的零点5.设a ∈R ,函数1||)(2+-+=a x x x f ,x ∈R ,求f(x)的最小值.6.将函数21()2f x ax a =-的图象向右平移1a个单位,再向下平移12a个单位,平移后得到函数()g x 的图象.(1)求函数()g x 的表达式;(2)若函数()g x 在2]上的最小值为()h a ,求()h a 的最大值。
扬州中学2009届高三数学二轮专题复习课件——数列求和与综合应用
1 求和怎么处理? ④ 对于 nSn = n − n 求和怎么处理? 2
小结:本题是运算方案(路径) 小结:本题是运算方案(路径)的选择和优化 评讲建议: 可展示学生的过程或板书。 评讲建议: 可展示学生的过程或板书。同步练习 本节冲刺第11 11题 本节冲刺第11题
n
第二部分: 第二部分:基本数列之间的综合 1、课前热身3: 课前热身3
4 怎么用? 问③: a81 = − 怎么用? 91
是第几行中的数? 问④: a81 是第几行中的数?
第二部分: 第二部分:基本数列之间的综合
∴a81是 13行 第 个 第 的 三 数
N=12也可 用不等式求 解
n(n +1) 当 ≤ 81 最 的 满 要 时 大 n 足 求 2 n(n +1 (n ) 估 : n =12时 算 当 = 78 2 即 12行 最 一 数 a78 第 的 后 个 是
四:教学流程: 教学流程: 第一部分: 第一部分:数列求和 n 例1:对于条件 an+1 = 2an + 2 我们的解题目标? 问: ①我们的解题目标? ②结论 an+1 = Aan + B(A, B是 数 常 ) 能否使用? 能否使用? 本题怎么办?(整体目标?) ?(整体目标 ③ 本题怎么办?(整体目标?) 小结: 小结:本题是基本题关键是意识到对 两边同时除以 2n
10
小结:本题是运算方案(路径) 小结:本题是运算方案(路径)的选择和优化 评讲建议: 可展示学生的过程或板书。 评讲建议: 可展示学生的过程或板书。
第二部分: 第二部分:基本数列之间的综合 2、课前热身4: " 课前热身4
∏
n
= a1 • a2 • a3 ••••an"
高三数学函数、三角函数、不等式综合复习
函数、三角函数、不等式综合复习教学目标:掌握函数定义域、值域、极值和最值的求解方法。
会证明函数的奇偶性,周期性和单调性。
会利用三角变形公式将三角式化为一个三角函数的形式研究其性质,会利用正、余弦定理解三角形问题,掌握和函数相关的不等式解法及证明。
教学重点:综合应用函数知识和分析问题及解决问题的能力。
教学例题:1.已知函数(1)若的定义域为R,求实数a的取值范围;(2)若的值域为R,求实数a的取值范围。
解析:(1)的定义域为R∴(a2-1)x2+(a+1)x+1>0对x∈R恒成立或a=-1或a<-1或a≤-1或∴实数a的取值范围是(2)的值域是R,即(a2-1)x2+(a+1)x+1的值域是(0,+∞)或a=1或∴实数a的取值范围是。
2.已知函数的反函数为,。
(1)若,求x的取值集合D;(2)设函数,当x∈D时,求的值域。
解析:(1)∵值域为(-1,+∞)∴由∴D=[0,1](2)由∴的值域为。
3.已知函数是奇函数,当时有最小值2,且。
(1)求的解析式;(2)函数的图象上是否存在关于点(1,0)对称的两点。
若存在,求出这两点的坐标,若不存在说明理由。
解析:(1)由是奇函数,∴∴,即∴c=0,∵a>0,b∈N*,当x>0时(当且仅当时等号成立)由x>0时最小值是2∴,∴a=b2由,则,将a=b2代入∴∴,解出。
∵b∈N*,∴b=1,∴a=b2=1∴(2)设存在一点(x0,y0)在的图象上,并且关于(1,0)的对称点(2-x0,-y0)也在图象上∴∴当时,∴图象上存在两点,关于点(1,0)对称。
4.设函数的定义域为R,对任意实数x1,x2恒有,且,。
(1)求的值;(2)求证是偶函数,且;(3)若时,,求证在[0,π]上是减函数。
解析:(1)令x1=x2=π,由则有∴∴(2)由∴,即是偶函数。
由,∴,即(3)设,则∵且在上∴,,即时恒有。
设0≤x1<x2≤π,则,∴,∴∴故在上是单减函数。
5.已知函数,x∈R。
高中数学下册函数教案模板
高中数学下册函数教案模板教学目标:
1. 理解函数的定义和基本性质。
2. 掌握函数的概念和代数表达式。
3. 熟练运用函数的基本操作和性质解决实际问题。
4. 提高学生的数学思维能力和解题能力。
教学内容:
1. 函数的定义和基本性质
2. 函数的概念和代数表达式
3. 函数的基本操作和性质
4. 函数的图像和应用
教学步骤:
一、复习导入
1. 让学生回顾函数的定义和基本性质。
2. 提出一个函数的实际问题,引导学生思考如何解决。
二、讲解与练习
1. 介绍函数的概念和代数表达式,示范几个例题。
2. 给学生练习一些简单的函数操作题,巩固基本知识。
三、拓展应用
1. 引导学生观察函数的图像特点,分析其变化规律。
2. 提出一些应用题,让学生运用函数解决实际问题。
四、总结反馈
1. 总结本节课学习的内容,强调函数的重要性和应用价值。
2. 收集学生的反馈意见,了解他们的学习情况和问题。
教学资源:
1. PowerPoint课件
2. 作业本和练习题
3. 教学实例和案例
评价标准:
1. 能够准确理解和运用函数的基本概念和性质。
2. 能够正确解答相关的应用题和练习题。
3. 能够发展数学思维,提出合理的解题方法和思路。
教学反思:
教师在教学过程中应注重引导学生主动思考和探索,激发他们学习的兴趣和动力。
同时,要根据学生的实际情况进行差异化教学,关注学生个体发展的需要,帮助他们更好地掌握函数知识。
高考数学二轮复习专题 函数与导数教学案(学生)
2013高考数学二轮复习精品资料专题02 函数与导数教学案(学生版)【2013考纲解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;在实际情景中,会根据不同的需要选择恰当的方法表示函数;了解简单的分段函数,并能简单应用.2.理解函数的单调性及几何意义;学会运用函数图象研究函数的性质,感受应用函数的单调性解决问题的优越性,提高观察、分析、推理、创新的能力.3.了解函数奇偶性的含义;会判断函数的奇偶性并会应用;掌握函数的单调性、奇偶性的综合应用.7.了解幂函数的概念;结合函数12321,,,,y x y x y x y y xx=====的图象,了解它们的变化情况.8.掌握解函数图象的两种基本方法:描点法、图象变换法;掌握图象变换的规律,能利用图象研究函数的性质.9.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数;根据具体函数的图象,能够用二分法求相应方程的近似解.10.了解指数函数、对数函数及幂函数的境长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;了解函数模型(指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.11.了解导数概念的实际背景;理解导数的几何意义;能利用基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数.12.了解函数单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次);了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次),会求在闭区间函数的最大值、最小值(多项式函数一般不超过三次);会用导数解决某些实际问题。
【知识网络构建】【重点知识整合】一、函数、基本初等函数的图象与性质1.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质,是函数中最常涉及的性质,特别注意定义中的符号语言;(2)奇偶性:偶函数其图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数其图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.特别注意定义域含0的奇函数f(0)=0;(3)周期性:f(x+T)=f(x)(T≠0),则称f(x)为周期函数,T是它的一个周期.2.对称性与周期性的关系(1)若函数f(x)的图象有两条对称轴x=a,x=b(a≠b),则函数f(x)是周期函数,2|b -a|是它的一个正周期,特别地若偶函数f(x)的图象关于直线x=a(a≠0)对称,则函数f(x)是周期函数,2|a|是它的一个正周期;3.函数的图象(1)指数函数、对数函数和幂函数、一次函数、二次函数等初等函数的图象的特点;(2)函数的图象变换主要是平移变换、伸缩变换和对称变换.4.指数函数、对数函数和幂函数的图象和性质(注意根据图象记忆性质)指数函数y=a x(a>0,a≠1)的图象和性质,分0<a<1,a>1两种情况;对数函数y=log a x(a>0,a≠1)的图象和性质,分0<a<1,a>1两种情况;幂函数y=xα的图象和性质,分幂指数α>0,α=0,α<0三种情况.二、函数与方程、函数的应用1.函数的零点方程的根与函数的零点的关系:由函数的零点的定义可知,函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.所以,方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2.二分法用二分法求函数零点的一般步骤:第一步:确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;第二步:求区间[a,b]的中点c;第三步:计算f(c):(1)若f(c)=0,则c就是函数的零点;(2)若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));(3)若f (c )·f (b )<0,则令a =c (此时零点x 0∈(c ,b ));(4)判断是否达到精确度ε:即若|a -b |<ε,则得到零点近似值a (或b );否则重复(2)~(4).3.函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是:(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转译成实际问题作出解答.三、导数在研究函数性质中的应用及定积分4.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值的最小者.5.定积分与曲边形面积(1)曲边为y =f (x )的曲边梯形的面积:在区间[a ,b ]上的连续的曲线y =f (x ),和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛ab|f x |d x .当f (x )≥0时,S =⎠⎛a b f (x )d x ;当f(x)<0时,S =-⎠⎛ab f (x )d x .(2)曲边为y =f (x ),y =g (x )的曲边形的面积:在区间[a ,b ]上连续的曲线y =f (x ),y =g (x ),和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛ab |f (x )-g (x )|d x .当f (x )≥g (x )时,S =⎠⎛a b [f (x )-g (x )]d x ;当f (x )<g (x )时,S =⎠⎛ab [g (x )-f (x )]d x .【高频考点突破】 考点一、函数及其表示函数的三要素:定义域、值域、对应关系.两个函数当且仅当它们的三要素完全相同时才表示同一个函数,定义域和对应关系相同的两个函数是同一函数.1.求函数定义域的类型和相应方法(1)若已知函数的解析式,则这时函数的定义域是使解析式有意义的自变量的取值范围,只需构建并解不等式(组)即可.(2)对于复合函数求定义域问题,若已知f (x )的定义域[a ,b ],其复合函数f (g (x ))的定义域应由不等式a ≤g (x )≤b 解出.(3)实际问题或几何问题除要考虑解析式有意义外,还应使实际问题有意义. 2.求f (g (x ))类型的函数值应遵循先内后外的原则;而对于分段函数的求值、图像、解不等式等问题,必须依据条件准确地找出利用哪一段求解;特别地对具有周期性的函数求值要用好其周期性.考点二、函数的图像作函数图像有两种基本方法:一是描点法;二是图像变换法,其中图像变换有平移变换、伸缩变换、对称变换.例2、函数y =x2-2sin x 的图像大致是 ( )【变式探究】函数y =x ln(-x )与y =x ln x 的图像关于 ( ) A .直线y =x 对称 B .x 轴对称 C .y 轴对称D .原点对称考点三、函数的性质考点四 二次函数的图像与性质:(1)二次函数y =ax 2+bx +c (a ≠0)的图像是抛物线 ①过定点(0,c );②对称轴为x =-b 2a ,顶点坐标为(-b 2a ,4ac -b 24a).(2)当a >0时,图像开口向上,在(-∞,-b 2a ]上单调递减,在[-b2a ,+∞)上单调递增,有最小值4ac -b24a;当a <0时,图像开口向下,在(-∞,-b 2a ]上单调递增,[-b2a ,+∞)上单调递减,有最大值4ac -b24a.例 4、已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.【变式探究】设二次函数f(x)=ax2+bx+c,如果f(x1)=f(x2)(x1≠x2),则f(x1+x2)= ( )A.-b2a B.-baC.c D.4ac-b24a【方法技巧】求二次函数在某段区间上的最值时,要利用好数形结合,特别是含参数的两种类型:“定轴动区间,定区间动轴”的问题,抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指的是对称轴.考点五指数函数、对数函数及幂函数指数函数与对数函数的性质:指数函数y=a x(a>0且a≠1)对数函数y=logax(a>0且a≠1)定义域(-∞,+∞)(0,+∞)值域(0,+∞)(-∞,+∞)不变性恒过定点(0,1) 恒过定点(1,0)1.对于两个数都为指数或对数的大小比较:如果底数相同,直接应用指数函数或对数函数的单调性比较;如果底数与指数(或真数)皆不同,则要增加一个变量进行过渡比较,或利用换底公式统一底数进行比较.考点六函数的零点1.函数的零点与方程根的关系:函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图像与函数y =g (x )的图像交点的横坐标.2.零点存在性定理:如果函数y =f (x )在区间[a ,b ]上的图像是连续不断的一条曲线,且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0,这个c 也就是方程f (x )=0的根.例6、 函数f (x )=x -cos x 在[0,+∞)内 ( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点【方法技巧】函数零点(即方程的根)的确定问题,常见的有①数值的确定;②所在区间的确定;③个数的确定.解决这类问题的常用方法有解方程、根据区间端点函数值的符号数形结合,尤其是那些方程两边对应的函数类型不同的方程多以数形结合求解.考点七 函数的应用例7、如图,长方体物体 E 在雨中沿面P (面积为S )的垂直方向作匀速移动,速度为v (v >0),雨速沿E 移动方向的分速度为c (c ∈R ).E 移动时单位时间内的淋雨量包括两部分:(1)P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与|v -c |×S 成正比,比例系数为110;(2)其他面的淋雨量之和,其值为12.记y 为E 移动过程中的总淋雨量.当移动距离d =100,面积S =32时,(1)写出y 的表达式;(2)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少.【变式探究】某货轮匀速行驶在相距300海里的甲、 乙两地间运输货物,运输成本由燃料费用和其他费用组成,已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时.(1)请将从甲地到乙地的运输成本y (元)表示为航行速度x (海里/小时)的函数; (2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?(2)曲线y =f (x )在点(x 0,f (x 0))处的切线方程为y -f (x 0)= f ′(x 0)(x -x 0).(3)导数的物理意义:s ′(t )=v (t ),v ′(t )=a (t ).例8、曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是 ( ) A .-9 B .-3 C .9D .15【变式探究】已知直线y =x +a 与曲线f (x )=ln x 相切,则a 的值为________.【方法技巧】求曲线y =f (x )的切线方程的类型及方法(1)已知切点P(x0,y0),求切线方程:求出切线的斜率f′(x0),由点斜式写出方程;(2)已知切线的斜率k,求切线方程:设切点P(x0,y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求切线方程:设切点P(x0,y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率.列方程(组)解得x0,再由点斜式或两点式写出方程.考点九、利用导数研究函数的单调性函数的单调性与导数的关系:在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增;如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减.例9、设a>0,讨论函数f(x)=ln x+a(1-a)x2-2(1-a)x的单调性.【方法技巧】1.利用导数研究函数的极值的一般步骤(1)确定定义域.(2)求导数f′(x).(3)①若求极值,则先求方程f′(x)=0的根,再检验f′(x)在方程根左、右值的符号,求出极值.(当根中有参数时要注意分类讨论根是否在定义域内)②若已知极值大小或存在情况,则转化为已知方程f′(x)=0根的大小或存在情况,从而求解.2.求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤 (1)求函数y =f (x )在(a ,b )内的极值;(2)将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较, 其中最大的一个是最大值,最小的一个是最小值. 【难点探究】难点一 函数的性质的应用例1、设f (x )是定义在R 上的奇函数,当x ≤0时,f (x ) = 2x 2-x ,则f (1)=( ) A .-3 B .-1 C .1 D .3(2)设奇函数y =f (x )(x ∈R),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________.【变式探究】设偶函数f (x )对任意x ∈R,都有f (x +3)=-1f x,且当x ∈[-3,-2]时,f (x )=4x ,则f (107.5)=( )A .10 B.110 C .-10 D .-110难点二 函数的图象的分析判断例2、函数f (x )=ax m (1-x )n在区间[0,1]上的图象如图2-1所示,则m ,n 的值可能是( )图2-1A .m =1,n =1B .m =1,n =2C .m =2,n =1D .m =3,n =1【点评】 函数图象分析类试题,主要就是推证函数的性质,然后根据函数的性质、特殊点的函数值以及图象的实际作出判断,这类试题在考查函数图象的同时重点是考查探究函数性质、用函数性质分析问题和解决问题的能力.利用导数研究函数的性质、对函数图象作出分析判断类的试题,已经逐渐成为高考的一个命题热点。
高考数学二轮复习7大专题汇总
高考数学二轮复习7 大专题汇总专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:侧重掌握函数的单一性,奇偶性,周期性,对称性。
这些性质往常会综合起来一同观察,而且有时会观察详细函数的这些性质,有时会观察抽象函数的这些性质。
一元二次函数:一元二次函数是贯串中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了认识,高中阶段更多的是将它与导数进行连接,依据抛物线的张口方向,与x 轴的交点地点,进而议论与定义域在x 轴上的摆放次序,这样能够判断导数的正负,最后达到求出单一区间的目的,求出极值及最值。
不等式:这一类问题经常出此刻恒成立,或存在性问题中,其本质是求函数的最值。
自然对于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的联合问题,掌握几种不等式的放缩技巧是特别必需的。
专题二:数列。
以等差等比数列为载体,观察等差等比数列的通项公式,乞降公式,通项公式和乞降公式的关系,求通项公式的几种常用方法,求前 n 项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有波及,有时观察三角函数的公式之间的相互转变,从而求单一区间或值域 ; 有时观察三角函数与解三角形,向量的综合性问题,自然正弦,余弦定理是很好的工具。
向量能够很好得实现数与形的转变,是一个很重要的知识连接点,它还能够和数学的一大难点分析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出此刻选择,填空题中。
大题中的立体几何主要观察成立空间直角坐标系,经过向量这一手段求空间距离,线面角,二面角等。
此外,需要掌握棱锥,棱柱的性质,在棱锥中,侧重掌握三棱锥,四棱锥,棱柱中,应当掌握三棱柱,长方体。
空间直线与平面的地点关系应以证明垂直为要点,自然常观察的方法为间接证明。
专题五:分析几何。
高三数学一轮复习 第2章 函数、导数及其应用第5课时 指数与指数函数精品课件 理 北师大
• 3.指数函数的图象和性质
函数
y=ax(a>0,且a≠1)
0<a<1
a>1
图象
图象特征
在x轴 上方,过定点 (0,1)
当x逐渐增大时, 图象逐渐下降
当x逐渐增大时, 图象逐渐上升
函数
定义域
值域
性 单调性 质
函数 值变 化规律
y=ax(a>0,且a≠1)
D.f(-2)>f(2)
解析: 由a-2=4,a>0,得a=12, ∴f(x)=21-|x|=2|x|. 又∵|-2|>|-1|,∴2|-2|>2|-1|,即f(-2)>f(-1). 答案: A
4.方程3x-1=19的解是________. • 答案: -1
5.函数y=121-x的值域是________. 解析: 函数的定义域为R,令u=1-x∈R, ∴y=21u>0. 答案: (0,+∞)
• (2)由图象知函数在(-∞,-1]上是增函数,在[-1,+∞)上是减函 数.
• 1.与指数函数有关的复合函数的定义域、值域的求法
• (1)函数y=af(x)的定义域与y=f(x)的定义域相同; • (2)先确定f(x)的值域,再根据指数函数的值域、单调性,可确定y=
af(x)的值域. • 2.与指数函数有关的复合函数的单调性的求解步骤 • (1)求复合函数的定义域; • (2)弄清函数是由哪些基本函数复合而成的; • (3)分层逐一求解函数的单调性; • (4)求出复合函数的单调区间(注意“同增异减”).
【变式训练】 1.计算下列各式:
• 1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的 图象,通过平移、对称变换得到其图象.
高三数学教案内容
高三数学教案内容高三数学教案内容一、内容和内容解析本节课是北师大版高中数学必修5中第三章第4节的内容。
主要是二元均值不等式。
它是在系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。
要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。
基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的优良素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探究、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的`数学思想方法如数形结合、抽象归纳、演绎推理、分析法证明等在各种不等式的研究中均有着广泛的应用;另外,在解决函数最值问题中,基本不等式也起着重要的作用。
就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳,有助于培养学生创新思维和探索精神,是培养学生数形结合意识和提高数学能力的良好载体。
二、教学目标和目标解析教学目标:了解基本不等式的几何背景,能在教师的引导下探究基本不等式的证明过程,理解基本不等式的几何解释,并能解决简单的最值问题;借助于信息技术强化数形结合的思想方法。
在教师的逐步引导下,能从较为熟悉的几何图形中抽象出基本不等式,实现对基本不等式几何背景的初步了解。
学生已经学习了不等式的基本性质,可以运用作差法给出基本不等式的证明,同时,介绍并渗透分析法证明的思想方法,从而完成基本不等式的代数证明。
进一步通过探究几何图形,给出基本不等式的几何解释,加强学生数形结合的意识。
通过应用问题的解决,明确解决应用题的一般过程。
高三数学二轮专题复习教案 届高三数学第二轮复习教案与课件:函数 届高三数学第二轮复习教案与课件:函数
2009届高三数学二轮专题复习教案――函数 一、本章知识结构:二、考点回顾1.理解函数的概念,了解映射的概念.2. 了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程.3.了解反函数的概念及互为反函数的函数图象间的关系.4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质.6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.7、掌握函数零点的概念,用二分法求函数的近似解,会应用函数知识解决一些实际问题。
三、经典例题剖析 考点一:函数的性质与图象函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。
因此,掌握函数的图像是学好函数性质的关键,这也正是“数形结合思想”的体现。
复习函数图像要注意以下方面。
1.掌握描绘函数图象的两种基本方法——描点法和图象变换法.2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题. 3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题. 4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力.例1、(2008广东汕头二模)设集合A={x|x<-1或x>1},B={x|log2x>0},则A ∩B=( ) A .{x| x>1} B .{x|x>0} C .{x|x<-1} D .{x|x<-1或x>1} 【解析】:由集合B 得x>1 , A ∩B={x| x>1},故选(A ) 。
高三二轮专题复习—函数教案
城东蜊市阳光实验学校2021届高三二轮复习——函数一、考情分析近几年高考中,考察函数的思想方法已更加突出,考察力度逐年加大,从如何建立函数关系式入手,考察函数的根本性质,以及数形结合、分类讨论、最优化等数学思想,重视对理论才能的考察是高考的新动向.因此要强化函数思想的应用意识的训练,才能适应高考新的变化。
函数在选择、填空、解答三种题型中每年都有试题。
函数内容在高考解答题中,理科多以方程或者者二次函数为背景,与数列、不等式等知识交汇命题,综合考察函数、方程和不等式等知识,重视代数推理才能,一般要经过变形转化,归结为二次函数问题解决.这是近年高考的重点和热点.在此根底上,理解和掌握常见的平移、对称变换方法.以根本函数为根底,强化由式到图和由图到式的转化训练。
函数考题约含全卷的30%左右. 二、复习指导1.加强函数思想、转化思想的训练是复习的一个重点.要擅长转化命题,引进变量建立函数。
2.理解掌握有关函数常见题的解题方法和思路,构建思维形式。
3.要重视函数应用题型、探究题型和综合题型的复习和训练.学会用函数的数学思想和方法寻求解题策略。
4.对函数有关概念,要做到准确、深化地理解。
函数贯穿于中学代数的始终.数、式、方程、不等式、数列及极限等,是以函数为中心的代数,高考考察的内容,几乎覆盖了中学的所有函数,如一次、二次函数、反比例函数、指数、对数函数,以及形如y=x+xa的函数,还有三角函数、反三角函数等,也涉及到函数的所有主要的性质,且以考察三基和通性通法为主,因此更应加强函数与三角函数、不等式、数列等各章间知识的联络,养成自觉运用函数观点处理问题的习惯和培养自身的才能.有关函数单调性和奇偶性的试题,抽象函数和详细函数都有,前些年大多数考详细函数,近几年都有在不给出详细函数的情况下求解问题的试题,可见有向抽象函数开展的趋势,另外试题注重对转化思想的考察,且都综合地考察单调性、奇偶性、对称性及周期性等。
高三数学函数的定义域
函数的独立元素:解析式;定义域 值域,性质
一、由函数解析式求定义域
非空
明晰函数的约束条件→细致
数集
求下列函数的定义域: 1、 y=lg(4x+3) 2、y=1/lg(4x+3) 3、y=(5x-4)0 4、y=x2/lg(4x+3)+(5x-4)0
课堂回顾: 求定义域的几种类型: 一类重要的数学问题:
;;
; /abcpkscum/ ; /abcfffse/ ; /abchyxd/ ; /abctitfzp/ ; /abczimow/ ; /abcfgsm/ ; /abctbe/ ; /abcjgkd/ ; /abcpfn/ ; /abcndt/ ; /abcnsughd/ ; /abckl/ ; /abcyrd/ ; /abcrxsytc/ ; /abcms/ ; /abcqsrhk/ ; /abcimmieg/ ; /abcfpla/ ; /abcpmbhmd/ ; /abccmivf/ ; /abcmuxjyp/ ; /abccj/ ; /abcfpuen/ ; /abcvluh/ ; /abcjkcn/ ; /abcfkosap/ ; /abcrg/ ; /abcvo/ ; /abcmunr/ ; /abcvupsw/ ; /abcysyy/ ; /abchndgr/ ; /abcuxmanc/ ; /abchvjnl/ ; /abckmx/ ; /abcvpa/ ; /abchuowrf/ ; /abcfm/ ; /abcwknkct/ ; /abcuge/ ; /abcrdr/ ; /abcun/ ; /abcvafdd/ ; /abclqumh/ ; /abcxkusm/ ; /abcdqgq/ ; /abcft/ ; /abctesyj/ ; /abcbkrdrq/ ; /abcmzx/ ; /abcsj/ ; /abcbyn/ ; /abcgjgj/ ; /abcjgcus/ ; /abccmw/ ; /abcas/ ; /abctc/ ; /abcus/ ; /abccfegd/ ; /abcngikt/ ; /abclk/ ; /abciozueq/ ; /abcnnyxq/ ; /abcmxhemg/ ; /abccnfxg/ ; /abcikar/ ; /abcshy/ ; /abcdmv/ ; /abciisd/ ; /abcpgtcsn/ ; /abcbecqtl/ ; /abcjmx/ ; /abcdnx/ ; /abcobm/ ; /abcngag/ ; /abcsmbish/ ; /abcbhzr/ ; /abckihtm/ ; /abcmm/ ; /abcaosc/ ; /abcmqoi/ ; /abcpdy/ ; /abclwebzs/ ; /abcwpapuq/ ; /abcmnz/ ; /abchm/ ; /abcbp/ ; /abcjnrosn/ ; /abcsedhwk/ ; /abcsvlsmm/ ; /abcsdtsmj/ ; /abcvdmbqx/ ; /abcgqmsug/ ; /abcdmdjo/ ; /abcje/ ; /abcqvv/ ; /abchsioyu/ ; /abcxor/ ; /abccyq/ ; /abcoaq/ ; /abcsqwmnl/ ; /abcmptzhk/ ; /abchn/ ; /abcbqezjk/ ; /abcfkonyv/ ; /abcav/ ; /abckshd/ ; /abcgmr/ ; /abcbzmpxo/ ; /abcjpkdm/ ; /abczso/ ; /abcvynbtn/ ; /abcyc/ ; /abceap/ ; /abcpizga/ ; /abcsefar/ ; /abcruonec/ ; /abctjh/ ; /abcavtz/ ; /abchf/ ; /abcrnone/ ; /abcim/ ; /abcsiuenk/ ; /abcpjtck/ ; /abcfp/ ; /abckdzxm/ ; /abcpxo/ ; /abczzw/ ; /abccnkobb/ ; /abcsp/ ; /abccs/ ; /abcxxsezo/ ;
2009届高三数学二轮专题复习教案
2009届高三数学二轮专题复习教案――三角函数珠海市第四中学 邱金龙一、本章知识结构:二、重点知识回顾1、终边相同的角的表示方法:凡是与终边α相同的角,都可以表示成k ·3600+α的形式,特例,终边在x 轴上的角集合{α|α=k ·1800,k ∈Z},终边在y 轴上的角集合{α|α=k ·1800+900,k ∈Z},终边在坐标轴上的角的集合{α|α=k ·900,k ∈Z}。
在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。
理解弧度的意义,并能正确进行弧度和角度的换算;⑴角度制与弧度制的互化:π弧度180=,1801π=弧度,1弧度 )180(π='1857 ≈⑵弧长公式:R l θ=;扇形面积公式:Rl R S 21212==θ。
2、任意角的三角函数的定义、三角函数的符号规律、特殊角的三角函数值、同角三角函数的关系式、诱导公式:(1)三角函数定义:角α中边上任意一点P 为),(y x ,设r OP =||则:,cos ,sin r x r y ==ααxy =αtan (2)三角函数符号规律:一全正,二正弦,三正切,四余弦;(3)特殊角的三角函数值 1) α 2) 03)6π 4)4π 5)3π 6)2π 7) π8)23π9) 2π 10) sinα11) 0 12)21 13) 22 14) 23 15) 1 16) 0 17) -1 18) 019) cosα 20) 1 21)23 22) 2223) 21 24) 0 25) -1 26) 0 27) 128) tanα29) 0 30)3331) 132)333) 不存在 34) 0 35) 不存在36) 0 (3)同角三角函数的基本关系:x xxx x tan cos sin ;1cos sin 22==+ (4)诱导公式(奇变偶不变,符号看象限...........): sin(πα-)=sin α,cos(πα-)=-cos α,tan(πα-)=-tan α sin(πα+)=-sin α,cos(πα+)=-cos α,tan(πα+)=tan α sin(α-)=-sin α,cos(α-)=cos α,tan(α-)=-tan αsin(2πα-)=-sin α,cos(2πα-)=cos α,tan(2πα-)=-tan αsin(2k πα+)=sin α,cos(2k πα+)=cos α,tan(2k πα+)=tan α,()k Z ∈ sin(2πα-)=cos α,cos(2πα-)=sin α sin(2πα+)=cos α,cos(2πα+)=-sin α3、两角和与差的三角函数 (1)和(差)角公式①;sin cos cos sin )sin(βαβαβα±=±②;sin sin cos cos )cos(βαβαβα =±③βαβαβαtan tan 1tan tan )tan( ±=±(2)二倍角公式二倍角公式:①αααcos sin 22sin =;②ααααα2222sin 211cos 2sin cos 2cos -=-=-=;③ααα2tan 1tan 22tan -=(3)经常使用的公式 ①升(降)幂公式:21cos 2sin 2αα-=、21cos 2cos 2αα+=、1sin cos sin 22ααα=;②辅助角公式:sin cos )a b αααϕ+=+(ϕ由,a b 具体的值确定); ③正切公式的变形:tan tan tan()(1tan tan )αβαβαβ+=+-⋅.4、三角函数的图象与性质(一)列表综合三个三角函数sin y x =,cos y x =,tan y x =的图象与性质,并挖掘: ⑴最值的情况;⑵了解周期函数和最小正周期的意义.会求sin()y A x ωϕ=+的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,了解加了绝对值后的周期情况.............; ⑶会从图象归纳对称轴和对称中心;sin y x =的对称轴是2x k ππ=+()k Z ∈,对称中心是(,0)k π()k Z ∈;cos y x =的对称轴是x k π=()k Z ∈,对称中心是(,0)2k ππ+()k Z ∈tan y x =的对称中心是(,0)()2k k Z π∈ 注意加了绝对值后的情况变化. ⑷写单调区间注意0ω>.(二)了解正弦、余弦、正切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数sin()y A x ωϕ=+的简图,并能由图象写出解析式.⑴“五点法”作图的列表方式;⑵求解析式sin()y A x ωϕ=+时处相ϕ的确定方法:代(最高、低)点法、公式1x ϕω=-. (三)正弦型函数sin()y A x ωϕ=+的图象变换方法如下: 先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 5、解三角形Ⅰ.正、余弦定理⑴正弦定理R CcB b A a 2sin sin sin ===(R 2是ABC ∆外接圆直径) 注:①C B A c b a sin :sin :sin ::=;②C R c B R b A R a s in 2,s in 2,s in 2===;③CB A cb a Cc B b A a sin sin sin sin sin sin ++++===。
高三数学函数的单调性
变3 已知定义 R在上的函数y=f(x)满足
f(-x)=f(x),它在上是(0,+∞)增函数, 且f(x)<0试讨论F(x)
=1/f(x)在(-∞,0)上的单调性
例5:已知f(x)是定义在(0,+∞)上 的增函数,f(x)>0,且f(2)=1,指 出g(x)=f(x)+1/f(x)(x>0)单调区间, 并证明你的结论。
二、函数单调性的判断:一般作差
(指数作商 ) ①定义法:在定义域内取 x1<x2,比较 f(x1)与f(x2)的大小(一致增,相反减)
②图象法:左至右,上增下减
③连续函数运用导函数:
列表:自变量、导函数、函数值
导正函增 导负函减
④复合函数f(g(x))的单调性的判断: u=g(x) y=f(u) y=f(g(x )) 增 增 增 增 减 减 减 减 增 一致增 减 增 减 友情提醒: 相反减 复合函数的单调性只能处理选择与 填空,解答题只能用此探索结论, 运用还需证明
2010届高考数学复习 强化双基系列课件
05《函数的单调性》
一、常见函数的单调性: ①y=kx+b ②y=ax2+bx+c(a≠0) ③y=k/x x x ④y=a ⑤y=loga √ ⑥y=sinx ⑦y=cosx ⑧y=tanx
√ 重要函数: 3 ⑨y=x ⑩y=x+a/x(a>0)
例1:若不等式mx>m-1对任意 x∈[-1,1]总成立,则m的取值 范围是__。
用复合单调性探索可能的结论
→用定义证明结论
变 1:若函数f(x)在[0,π]上单调递 增且满足f(-x)=f(x),那么f(-π),f(π/2),f(2)之间的大小关系是 ___________ 数形结合 把自变量化到同一单调 区间 变:f(x)在(0,+∞)上是增函数, 2 则f(3/4)与f(a -a+1)的大小关系 _____.
高三数学二轮复习 2.1函数的图象与性质课件
函数是高考数学的重点内容之一,函数的观点和思想方法 贯穿整个高中数学的全过程,包括解决几何问题.在近几 年的高考试卷中,选择题、填空题、解答题三种题型中每 年都有函数试题,而且常考常新.以基本函数为背景的应 用题和综合题是高考命题的新趋势.
高考热点:①考查函数的表示法、定义域、值域、单调性、 奇偶性、周期性、对称性和函数的图像.以二次函数、分 段函数、对数函数等为载体的题目在近几年中时有出 现.②函数与方程、不等式、数列是相互关联的概念,通 过对实际问题的抽象分析,建立相应的函数模型并用来解 决问题,是考查的热点.③考查运用函数的思想来观察问 题、分析问题和解决问题,渗透数形结合和分类讨论的基 本数学思想.④以导数为工具研究函数的单调性,进而研 究最值、极值,使可研究的函数大大增加.近几年导数的 工具性体现得越来越明显.
判定单调性往往要借助定义域和奇偶性,方法主要有定义 法、图像法、导数法等.
(3)函数的周期性
设函数y=f(x),x∈D,如果存在非零常数T,使得对任意 x∈D,都有f(x+T)=f(x),则函数f(x)为周期函数,T为y= f(x)的一个周期.
周期性往往和单调性、奇偶性、函数的图像及其解析式相 关联出现.注意从代数变换角度分析.
(2)函数的单调性
函数的单调性是函数的又一个重要性质.给定区间D上的 函数f(x),若对于任意x1、x2∈D,当x1<x2时,都有 f(x1)<f(x2)(f(x1)>f(x2)),则称f(x)在区间D上为单调增(减)函 数.反映在图像上,若函数f(x)是区间D上的增(减)函数, 则图像在D上的部分从左到右是上升(下降)的.如果函数f(x) 在给定区间(a,b)上恒有f ′(x)>0(f ′(x)<0),则称f(x)在区间 (a,b)上是增(减)函数,(a,b)为f(x)的单调增(减)区间.
高中数学函数教案doc
高中数学函数教案doc
课题:函数
教学目标:
1. 掌握函数的定义和性质;
2. 熟练运用函数解决实际问题;
3. 能够绘制函数的图像;
4. 提高学生的数学推理能力。
教学重点:
1. 函数的概念和性质;
2. 函数的图像绘制;
3. 函数的应用问题解决。
教学难点:
1. 函数的复合运算;
2. 函数的反函数;
3. 函数的应用问题解决。
教学准备:
1. 教学课件;
2. 教学教材《高中数学》;
3. 白板、彩色粉笔;
4. 练习题。
教学过程:
一、导入
教师通过举例说明函数在生活中的应用,引出函数的概念。
二、讲解
1. 函数的定义和性质;
2. 函数的基本运算;
3. 函数的复合运算;
4. 函数的反函数;
5. 函数的图像绘制。
三、练习
教师通过例题和练习题让学生巩固所学知识,提高解题能力。
四、应用
教师给学生提供实际问题,并引导学生运用所学知识解决问题。
五、总结
教师对本节课所学内容进行总结,并提出问题,让学生思考和讨论。
六、作业
布置相关练习题作业,巩固所学知识。
教学反思:
本节课主要介绍了函数的定义、性质和运算,通过理论讲解和练习题的讲解,学生能够掌握函数的基本概念和运用方法。
在今后的教学中,需要注意引导学生多做练习,提高解题能力和数学推理能力。
高中数学老教材教案
高中数学老教材教案
第一课:函数与方程
1.1 学习目标:了解函数的概念,掌握基本的函数图像与性质,能够解决简单的函数方程。
1.2 教学内容:
(1)函数的定义与符号表示
(2)函数的图像与性质
(3)函数方程的解法
1.3 教学重点与难点:
重点:函数的定义、函数图像与性质、函数方程的解法
难点:函数的概念理解、函数方程的解法
1.4 教学过程:
(1)引入:通过举例引入函数的概念,让学生了解什么是函数。
(2)讲解:介绍函数的定义和符号表示,然后讲解函数的图像与性质。
(3)练习:让学生进行简单的函数图像绘制和性质分析。
(4)总结:对函数的概念和性质进行总结,并让学生进行相关练习。
1.5 作业布置:
(1)课后完成相关练习题目
(2)预习下节课的内容
1.6 教学反思:
通过本节课的教学,学生理解了函数的概念和性质,掌握了相关的解题方法。
但在教学过
程中,应该注意让学生更加深入地理解函数的概念,加强与实际问题的联系,提高学生的
学习兴趣和主动性。
以上是一份高中数学教案范本,希望对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009届高三数学二轮专题复习教案――函数一、本章知识结构:二、考点回顾1.理解函数的概念,了解映射的概念.2. 了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程.3.了解反函数的概念及互为反函数的函数图象间的关系.4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质.6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.7、掌握函数零点的概念,用二分法求函数的近似解,会应用函数知识解决一些实际问题。
三、经典例题剖析考点一:函数的性质与图象函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。
因此,掌握函数的图像是学好函数性质的关键,这也正是“数形结合思想”的体现。
复习函数图像要注意以下方面。
1.掌握描绘函数图象的两种基本方法——描点法和图象变换法.2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题.3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题.4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力.例1、(2008广东汕头二模)设集合A={x|x<-1或x>1},B={x|log2x>0},则A∩B=( )A .{x| x>1}B .{x|x>0}C .{x|x<-1}D .{x|x<-1或x>1} 【解析】:由集合B 得x>1 ,∴ A ∩B={x| x>1},故选(A ) 。
[点评]本题主要考查对数函数图象的性质,是函数与集合结合的试题,难度不大,属基础题。
例2、(2008广东惠州一模) “龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是 ( )【解析】:选(B ),在(B )中,乌龟到达终点时,兔子在同一时间的路程比乌龟短。
[点评]函数图象是近年高考的热点的试题,考查函数图象的实际应用,考查学生解决问题、分析问题的能力,在复习时应引起重视。
例3、(2008年广东惠州一模)设()11xf x x +=-,又记()()()()()11,,1,2,,k k f x f x f x f f x k +=== 则()2008f x =( )A .11x x +-;B .11x x -+;C .x ;D .1x -;【解析】:本题考查周期函数的运算。
()()1121111,11f x f x f x x f x ++===---,()()323423111,111f f x f x f x x f x f ++-====-+-,据此,()()414211,1n n x f x fx x x +++==--,()()4341,1n n x f x f x x x +-==+,因2008为4n 型,故选C .[点评]本题考查复合函数的求法,以及是函数周期性,考查学生观察问题的能力,通过观察,关于总结、归纳,要有从特殊到一般的思想。
例4、(2008福建文科高考试题)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为 ( )A.3B.0C.-1D.-2【解析】:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -= 故()11f a --=-即()0f a -=.[点评]本题考查函数的奇偶性,考查学生观察问题的能力,通过观察能够发现如何通过变换式子与学过的知识相联系,使问题迎刃而解。
A B C D例5、(2008广东高考试题)设k ∈R,函数111()1x xf x x ⎧<⎪-=⎨⎪⎩,≥,()()F x f x kx =-,x ∈R ,试讨论函数()F x 的单调性.【解析】1,1,1()(),1,kx x xF x f x kx kx x ⎧-<⎪-=-=⎨⎪≥⎩21,1,(1)'(),1,k x x F x k x ⎧-<⎪-⎪=⎨⎪-≥⎪⎩对于1()(1)1F x kx x x =-<-,当0k ≤时,函数()F x 在(,1)-∞上是增函数;当0k >时,函数()F x在(,1-∞上是减函数,在(1上是增函数;对于()(1)F x k x =≥,当0k ≥时,函数()F x 在[)1,+∞上是减函数;当0k <时,函数()F x 在211,14k ⎡⎫+⎪⎢⎣⎭上是减函数,在211,4k ⎡⎫++∞⎪⎢⎣⎭上是增函数。
[点评]在处理函数单调性的证明时,可以充分利用基本函数的性质直接处理,但学习了导数后,函数的单调性就经常与函数的导数联系在一起,利用导数的性质来处理函数的单调进性,显得更加简单、方便。
考点二:二次函数二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了.学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法.例6、设二次函数,方程的两个根满足【解析】()x x f -的表达式,从而得到函数)(x f 的表达式.证明:由题意可知))(()(21x x x x a x x f --=-.a x x x 1021<<<< ,∴ 0))((21>--x x x x a ,∴x x f >)(.又)1)(())(()(211211+--=-+--=-ax ax x x x x x x x x a x x f , ,011,0221>->+-<-ax ax ax x x 且 ∴ 1)(x x f <,综上可知,所给问题获证.[点评]:本题主要利用函数与方程根的关系,写出二次函数的零点式()().21x x x x a y --=。
例7、(2007湖北文科高考试题)设二次函数2()f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<.(I )求实数a 的取值范围;(II )试比较(0)(1)(0)f f f -与116的大小.并说明理由.【解析】法1:(Ⅰ)令2()()(1)g x f x x x a x a =-=+-+,则由题意可得01012(1)0(0)0a g g ∆>⎧⎪-⎪<<⎪⎨⎪>⎪>⎪⎩,,,,01133a a a a ⎧>⎪⇔-<<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a的取值范围是(03-,. (II )2(0)(1)(0)(0)(1)2f f f g g a -== ,令2()2h a a =.当0a >时,()h a 单调增加,∴当03a <<-时,20()(32(32(17h a h <<-=-=-1216=<,即1(0)(1)(0)16f f f -< .法2:(I )同解法1.(II ) 2(0)(1)(0)(0)(1)2f f f g g a -==,由(I)知03a <<-1170-<<∴.又10+>,于是221112(321)1)0161616a a -=-=-+<, 即212016a -<,故1(0)(1)(0)16f f f -<. 法3:(I )方程()0f x x -=⇔2(1)0x a x a +-+=,由韦达定理得 121x x a +=-,12x x a =,于是121212121200010(1)(1)0(1)(1)0x x x x x x x x x x ∆>⎧⎪+>⎪⎪<<<⇔>⎨⎪-+->⎪⎪-->⎩,,,,0133a a a a ⎧>⎪⇔<⎨⎪<->+⎩,,03a ⇔<<-故所求实数a的取值范围是(03-,. (II )依题意可设12()()()g x x x x x =--,则由1201x x <<<,得12121122(0)(1)(0)(0)(1)(1)(1)[(1)][(1)]f f f g g x x x x x x x x -==--=--2211221112216x x x x +-+-⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭,故1(0)(1)(0)16f f f -<. [点评]本小题主要考查二次函数、二次方程的基本性质及二次不等式的解法,考查推理和运算能力.考点三:指数函数与对数函数指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性质并能进行一定的综合运用.例8、(2008山东文科高考试题)已知函数()log (21)(01)xa f xb a a =+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<< B .101b a -<<<C .101ba -<<<D .1101ab --<<<【解析】:由图易得1,a >101;a -∴<<取特殊点01log 0,a x y b =⇒-<=<11l o gl o g l o g 10,a aa b a⇒-=<<=101a b -∴<<<.选A. [点评]:本小题主要考查正确利用对数函数的图象来比较大小。