高等数学Ⅱ本科类第阶段练习题及答案

合集下载

高等数学2-习题集(含答案)

高等数学2-习题集(含答案)

《高等数学2》课程习题集【说明】:本课程《高等数学2》(编号为01011)共有计算题1,计算题2等多种试题类型,其中,本习题集中有[]等试题类型未进入。

一、计算题11. 计算 行列式6142302151032121----=D 的值。

2. 计算行列式5241421318320521------=D 的值。

3.用范德蒙行列式计算4阶行列式12534327641549916573411114--=D 的值。

4. 已知2333231232221131211=a a a a a a a a a , 计算:333231232221131211101010a a a a a a a a a 的值。

5.计算行列式 0111101111011110=D 的值。

6. 计算行列式199819981997199619951994199319921991 的值.7. 计算行列式50007061102948023---=D 的值. 8. 计算行列式3214214314324321=D 的值。

9. 已知10333222111=c b a c b a c b a ,求222111333c b a c b a c b a 的值. 10. 计算行列式x a a a xa a ax D n=的值。

11.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2100430000350023A ,求1-A 。

12.求⎪⎪⎪⎭⎫ ⎝⎛=311121111A 的逆.13.设n 阶方阵A 可逆,试证明A 的伴随矩阵A *可逆,并求1*)(-A 。

14. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=1100210000120025A 的逆。

15. 求⎪⎪⎪⎭⎫⎝⎛-----=461351341A 的逆矩阵。

16. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=2300120000230014A 的逆。

17. 求⎪⎪⎪⎭⎫⎝⎛--=232311111A 的逆矩阵。

18.求矩阵⎪⎪⎪⎭⎫⎝⎛-=101012211A 的逆.19. 求矩阵112235324-⎛⎫⎪=- ⎪ ⎪-⎝⎭A 的逆。

(2)高等数学B2试卷参考答案

(2)高等数学B2试卷参考答案

华南农业大学期末考试试卷(A 卷)2009学年第2学期 考试科目: 高等数学B Ⅱ 考试类型:(闭卷)考试 考试时间:120分钟学号 姓名 年级专业一、 填空题(本大题共5小题,每小题3分,共15分)1. 试定义函数在点的值的 ,使得函数在该点连续。

2.函数在点处可微分的必要条件是函数在该点处连续或可偏导;充分条件是函数的偏导数在该点处连续。

3.设函数在闭区域上连续,且,则。

4. 判断敛散性:已知且,则是收敛的。

5. 已知某二阶常系数非齐次线性微分方程的通解为,则该微分方程为。

二、选择题(本大题共5小题,每小题3分,共15分) 1. 直线与平面的交点是(B )。

(A )(9,2,-3)。

(B )(2,9,11)。

(C )(2,11,13)。

(D )(11,9,2)。

2. 若级数在处收敛,则此级数在处(A )。

(A )绝对收敛。

(B )条件收敛。

(C )发散。

(D )收敛性不能确定。

3.二元函数 在点处 (C )(A )连续,偏导数存在。

(B )连续,偏导数不存在。

(C )不连续,偏导数存在。

(D )不连续,偏导数不存在。

4. 设是连续的奇函数,是连续的偶函数, ,则以下结论正确的是( A )。

(A ) 。

(B ) 。

(C ) 。

(A ) 。

5. 微分方程的一个特解应具有形式(A,B,C 是待定常数)( B )。

(A )。

(B )。

(C )。

(D )。

三、计算题(本大题共5小题,每小题6分,共30分) (1)设,其中和具有连续导数,求。

【解】(2)求由方程所确定的函数的全微分。

【解】方程两边求微分得 整理得(3)交换积分次序。

【解】(4)求差分方程在给定初始条件下的特解。

【解】特征方程为,所以对应的齐次方程的通解为。

又不是特征根,故可令特解为,代入原方程,得比较系数可得,,故非齐次方程的一个特解为,于是非齐次方程的通解为,由所给初始条件,可得,所以方程满足给定初始条件下的特解为。

成人高考成考高等数学(二)(专升本)试卷与参考答案

成人高考成考高等数学(二)(专升本)试卷与参考答案

成人高考成考高等数学(二)(专升本)自测试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=x3−3x+2),则(f(x))在区间[-2, 2] 上的最大值为:A、2B、4C、6D、82、已知函数(f(x)=e x lnx),则该函数的定义域是:A.((0,+∞))B.((−∞,0))C.((0,1))D.((1,+∞))3、设函数f(x)=x3−3x2+2在区间[−1,3]上的最大值为M,最小值为m。

则M−m 的值是:A. 4B. 6C. 8D. 10),则该函数的间断点是:4、设函数(f(x)=11+x2A.(x=0)B.(x=1)C.(x=−1)D.(x)无间断点5、设函数(f(x)=x3−3x+1),则该函数在区间 [-2, 2] 上的最大值为:A、4B、3C、2D、16、设函数f(x)=x3−6x2+9x+1,则该函数的极值点为:A.x=1B.x=2C.x=3D.x=47、若函数(f(x)=ln(x2+1)),则(f(x))在(x=1)处的导数(f′(1))是:)A、(12B、1C、2)D、(238、设函数(f(x)=x3−6x2+9x+1),则函数的极值点个数是:A. 0B. 1C. 2D. 39、设函数(f(x)=3x2−4x+5),则该函数的对称轴为:A.(x=1))B.(x=−13)C.(x=23D.(x=2)10、在下列函数中,连续函数为:())(x∈R)A.(f(x)=1x3)(x∈R)B.(f(x)=√xC.$( f(x) =)$D.(f(x)=|x|)(x∈R)),则(f′(0))的值为:11、已知函数(f(x)=1x2+1A. 0B. 1C. -1D. 不存在),求(f′(x))。

12、设函数(f(x)=2x+3x−1)A.(2(x−1)2B.(2x2−1)C.(2(x+1)(x−1))D.(1x−1)二、填空题(本大题有3小题,每小题7分,共21分)1、设函数(f(x)=e ax+b),其中(a,b)为常数,若(f(x))的单调递减区间为((−∞,1a)),则(a)的取值范围为______ 。

本科高等数学(二)题目和答案

本科高等数学(二)题目和答案

山东大学网络教育专升本入学考试高等数学(二)模拟题 (1)一、选择题:本大题5个小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。

1、函数291)(xx f -=的定义域是( A )A 、(-3,3)B 、[-3,3 ]C 、(3,3-,) D 、(0,3) 2、xx 1sinlim ∞→=( A ) A. 0 B. 1 C.∞ D. 不存在3、设()()()()()4321----=x x x x x x f 则()2f '=( D )A 、0B 、1C 、2D 、4 4、设函数()x x f =,则)1(f '等于 ( C )A.1B.-1C.21 D.-215、曲线3x y =在点)1,1(M 处的切线方程是 ( C ) A. 023=-+x y B. 03231=-+x y C.023=+-x y D. 043=--x y 二、填空题:本大题共15个小题,共15个空,每空3分,共45分。

把答案填在题中横线上。

1、设()112--=+x x x f ,则()x f =132+-x x2、判断函数的奇偶性:()x x x f cos 3= 是 奇函数3、=-+∞→531002lim33x x x x 324、13+=xy 的反函数是 C5、已知()32tan lim0=→xkx x ,则k = 66、=⎪⎭⎫⎝⎛++∞→xx x x 12lim e7、设x x x y -=ln ,则y '=x ln8、曲线22xy =在()2,1处的切线方程是064=-+y x 9、设x x y sin =,则y ''=x x x sin cos 2- 10、设()431-=x y ,则=dy ()dx x x 233314⋅-11、不定积分⎰+dx x 121= ()C x ++12ln 2112、不定积分⎰=dx xe x C e xe xx +-13、定积分=+⎰-11211dx x 2π 14、定积分=⎰exdx 1ln 115、设()dt t t x x⎰-+⋅=321φ,则()='x φ 三、计算题:本大题共10个小题,每小题6分,共60分。

高等数学二试题及答案

高等数学二试题及答案

高等数学二试题及答案一、选择题1. 函数y=2x^3-3x^2+4x-1的导数为:A. 6x^2 - 6x + 4B. 6x^2 - 4x + 4C. 6x^3 - 6x^2 + 4D. 6x^3 - 6x + 4答案:A2. 极限lim(x→0) (sin(x) - x) / x^3的值为:A. 1B. 0C. 不存在D. 无穷大答案:A3. 曲线y=x^2在点x=1处的切线方程为:A. y=2x-1B. y=x+1C. y=2xD. y=x-1答案:A4. 定积分∫(0,1) x^2 dx的值为:A. 1/3B. 1/2C. 1D. 0答案:A5. 级数Σ(n=1 to ∞) (n^2 / 2^n)收敛于:A. 1B. 2C. 3D. 4答案:B二、填空题1. 函数z=e^(x+y)在点(0,0)的偏导数∂z/∂x为_________。

答案:12. 极限lim(x→∞) (1+1/x)^x的值为_________。

答案:e3. 曲线y=2x^3在点x=-1处的法线方程为_________。

答案:y=-6x+24. 定积分∫(1,2) (2t^2 + 3t + 1) dt的值为_________。

答案:10/35. 幂级数Σ(n=0 to ∞) (x^n / 2^n)在|x|≤2时收敛于_________。

答案:1 + x三、计算题1. 求函数f(x)=ln(x^2-4)的反函数,并证明其在定义域内是单调的。

解:首先找到反函数的定义域,由于ln(x^2-4)的定义域为x^2-4>0,解得x^2>4,因此x<-2或x>2。

设y=ln(x^2-4),则x^2-4=e^y,解得x=±√(e^y+4)。

由于x<-2或x>2,我们选择x=√(e^y+4)作为反函数,定义域为y>ln(4)。

显然,当y>ln(4)时,函数√(e^y+4)是单调递增的,因此反函数也是单调的。

高等数学2习题教材答案

高等数学2习题教材答案

高等数学2习题教材答案第一章:极限与连续1. 习题1.1(1)设函数 f(x) = 2x + 3,求 f(x) 的极限值。

解:要求 f(x) 的极限值,即求极限lim(x→∞) f(x)。

由极限的定义可得:lim(x→∞) f(x) = lim(x→∞) (2x + 3) = ∞因此,f(x) 的极限值为正无穷。

(2)确定以下函数的间断点,并判断其类型:a) f(x) = (x - 2) / (x^2 - 4)解:首先求解分母为零的情况,即 x^2 - 4 = 0,解得 x = 2 或 x = -2。

当 x = 2 或 x = -2 时,分母为零,因此两个点都是间断点。

当 x < -2,x 在 -2 左边时,f(x) 的分子和分母都为负数,所以 f(x) 是负数。

当 -2 < x < 2 时,分子为负数,分母为正数,所以 f(x) 是负数。

当 x > 2,x 在 2右边时,分子和分母都为正数,所以 f(x) 是正数。

因此,x = 2 为跳跃间断点,x = -2 为可去间断点。

b) f(x) = (x^2 - x - 6) / (x - 3)解:首先求解分母为零的情况,即 x - 3 = 0,解得 x = 3。

当 x = 3 时,分母为零,因此该点是间断点。

当 x < 3 时,f(x) 的分子为正,分母为负,所以 f(x) 是负数。

当 x > 3 时,f(x) 的分子和分母都为正数,所以 f(x) 是正数。

因此,x = 3 为跳跃间断点。

习题1.2求以下函数的极限:(1)lim(x→1) (x^2 - 1) / (x - 1)解:由于分子和分母都包含 (x - 1) 因子,可以进行因式分解:(x^2 - 1) / (x - 1) = [(x + 1)(x - 1)] / (x - 1)然后可以约分 (x - 1):= x + 1因此,lim(x→1) (x^2 - 1) / (x - 1) = lim(x→1) (x + 1) = 2(2)lim(x→∞) (3x^2 - 2x + 1) / (4x^2 + x - 2)解:由于 x 的次数越来越大,可以忽略掉次高项和常数项,得到:lim(x→∞) (3x^2 - 2x + 1) / (4x^2 + x - 2) ≈ lim(x→∞) (3x^2 / 4x^2) = 3/4第二章:一元函数微分学1. 习题2.1求以下函数的导数:(1)f(x) = 3x^4 - 2x^3 + 4x^2 - 5x + 1解:对于 x 的 n 次幂,导数是 n 乘以 x 的 n-1 次幂。

本科高等数学练习题(II)(含答案)

本科高等数学练习题(II)(含答案)
2 2
dxdy
D
. . .

dxdy
D
3.设 D ( x, y) x y 1 , 且 y 0 ,则
2 2


dxdy
D
4. 6.


0
4 0
dy ydx
0
2
. . . .
5. 7. 9.
12.已知三点 A(1,3,4) 、B(2,1,1)、C (3,1,1) , 则BA与BC 的夹角 ABC 13.过点 A(1, 0 , 2 ) 且与向量 a 2i 7 j k 垂直的平面方程是 14.过点 A(1,1,2) 且与平面 2 x y z 7 0 平行的平面方程是 15.过点 A(1,1,2)、B(0,1,3) 的直线方程是 16.过点 M (4,1,0) 且与直线 . . . .
.
x2 y 3
13.设 z x ln( xy ) ,求
z z 2 z 2 z 2 z 、 、 、 、 . x y x 2 y 2 xy
14.设 z y ( ) ln( 2 x y ) ,其中 (u ) 有二阶连续导数,求
x y
2z . xy
xy
.Байду номын сангаас
则 x2 1,
z y (2,1)
2
.
4. 设 z xe
xy 2
, 则
z y (1,2)
y
.
5 . 设 z xy l n ( x y ) ,则
2
z y (1,2)
.
6 . 设 f ( x, y ) e x , 则
f x (1,1)
2 3

成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。

大学高等数学(下)试题二含答案

大学高等数学(下)试题二含答案

D 2 2
5 若级数 un 收敛,则 列级数中 n1
收敛
A (un 0.001) n1
B
u n 1 0 0 0
n1
C un n1
D 1000 u n1 n
6 微 方程 2y'' y' y 0 的通解是
A y c1e x c2e2x 计算与求解 49
B y c1ex c2e x / 2
二 选择题 18
1 设 z f (x, y, z), f 可微,则 z x
f
A
x
B f
x f
C f (1 f )
x
z
D (f f y ) (1 f )
x y x
z
y
2 设 n 是曲面 2x2 3y 2 z 2 6 在点 P(1,1,1)处指向外侧的法向量,则u P 沿方向 n 的方向导数为
6x2 8y 2 在点 z
A0
11
B
7
7
C
11
D2
3 设 D (x, y) : x2 y2 a2 ,则当 a
时, a2 x2 y 2 dxdy 2
D
A1
B2
C 33
D
3
3
2
4 如果 L 为圆周 x2 y 2 1,则 (x2 y 2 )ds L
A 2 B 2
C 2 2
xy
y 2
7

x x
2y y
2
z2
3 2y2
z2
3
因此 I 3ds L
3Lds
3 2 3 6
x
0
x
x
四 tf (t x)dtu t x (u x) f (u)du uf (u)du x f (u)du

《高等数学(二)》 作业及参考答案

《高等数学(二)》 作业及参考答案

《高等数学(二)》作业一、填空题1.点A (2,3,-4)在第 卦限。

2.设22(,)sin,(,)yf x y x xy y f tx ty x=--=则 .3。

4.设25(,),ff x y x y y x y∂=-=∂则。

5.设共域D 由直线1,0x y y x ===和所围成,则将二重积分(,)Df x y d σ⎰⎰化为累次积分得 。

6.设L 为连接(1,0)和(0,1)两点的直线段,则对弧长的曲线积分()Lx y ds +⎰= 。

7.平面2250x y z -++=的法向量是 。

8.球面2229x y z ++=与平面1x y +=的交线在0x y 面上的投影方程为 。

9.设22,z u v ∂=-=∂z而u=x-y,v=x+y,则x。

10.函数z =的定义域为 。

11.设n 是曲面22z x y =+及平面z=1所围成的闭区域,化三重积为(,,)nf x y z dx dy dz ⎰⎰⎰为三次积分,得到 。

12.设L 是抛物线2y x =上从点(0,0)到(2,4)的一段弧,则22()Lx y dx -=⎰。

13.已知两点12(1,3,1)(2,1,3)M M 和。

向量1212M M M M =的模 ;向量12M M 的方向余弦cos α= ,cos β= ,cos γ= 。

14.点M (4,-3,5)到x 轴的距离为 。

15.设sin ,cos ,ln ,dzz uv t u t v t dt=+===而则全导数。

16.设积分区域D 是:222(0)x y a a +≤>,把二重积分(,)Df x y dx dy ⎰⎰表示为极坐标形式的二次积分,得 。

17.设D 是由直线0,01x y x y ==+=和所围成的闭区域,则二重积分Dx d σ⎰⎰= 。

18.设L 为XoY 面内直线x=a 上的一段直线,则(,)Lp x y dx ⎰= 。

19.过点0000(,,)p x y z 作平行于z 轴的直线,则直线方程为 。

高等数学2二课后习题答案

高等数学2二课后习题答案

高等数学2二课后习题答案高等数学2二课后习题答案高等数学是大学数学的重要组成部分,对于理工科学生来说尤为重要。

而高等数学2二作为高等数学的延伸和深化,对于学生来说难度也相应增加。

在学习过程中,课后习题是巩固知识、提高能力的重要途径。

本文将为大家提供高等数学2二课后习题的答案,希望对大家的学习有所帮助。

一、函数极限与连续1. 设函数f(x) = 3x^2 + 2x - 1,求lim(x→2)f(x)的值。

解:将x代入函数f(x),得到f(2) = 3(2)^2 + 2(2) - 1 = 17。

所以lim(x→2)f(x) = 17。

2. 已知函数f(x) = (x^2 + 1) / (x - 1),求lim(x→1)f(x)的值。

解:将x代入函数f(x),得到f(1) = (1^2 + 1) / (1 - 1) = 2 / 0。

由于0不能作为分母,所以lim(x→1)f(x)不存在。

3. 设函数f(x) = √(x + 1),求lim(x→∞)f(x)的值。

解:将x代入函数f(x),得到f(∞) = √(∞ + 1) = ∞。

所以lim(x→∞)f(x) = ∞。

二、导数与微分1. 求函数f(x) = x^3 - 3x^2 + 2x的导数。

解:对函数f(x)求导,得到f'(x) = 3x^2 - 6x + 2。

2. 求函数f(x) = √x的导数。

解:对函数f(x)求导,得到f'(x) = 1 / (2√x)。

3. 求函数f(x) = e^x的导数。

解:对函数f(x)求导,得到f'(x) = e^x。

三、定积分1. 求函数f(x) = 2x在区间[0, 1]上的定积分。

解:对函数f(x)在区间[0, 1]上进行定积分,得到∫[0, 1]2xdx = [x^2]0^1 = 1。

2. 求函数f(x) = x^2在区间[-1, 1]上的定积分。

解:对函数f(x)在区间[-1, 1]上进行定积分,得到∫[-1, 1]x^2dx = [x^3/3](-1)^1 = 2/3。

高等数学II试题6套

高等数学II试题6套

高等数学II试题6套高等数学II试题一、填空题(每小题3分,共计15分)1.设由方程确定,则。

2.函数在点沿方向的方向导数最大。

3.为圆周,计算对弧长的曲线积分= 。

4.已知曲线上点处的切线平行于平面,则点的坐标为或。

5.设是周期为2的周期函数,它在区间的定义为,则的傅里叶级数在收敛于。

二、解答下列各题(每小题7分,共35分)1.设连续,交换二次积分的积分顺序。

2.计算二重积分,其中是由轴及圆周所围成的在第一象限内的区域。

3.设是由球面与锥面围成的区域,试将三重积分化为球坐标系下的三次积分。

4.设曲线积分与路径无关,其中具有一阶连续导数,且,求。

5.求微分方程的通解。

三、(10分)计算曲面积分,其中∑是球面的上侧。

四、(10分)计算三重积分,其中由与围成的区域。

五、(10分)求在下的极值。

六、(10分)求有抛物面与平面所围立体的表面积。

七、(10分)求幂级数的收敛区间与和函数。

高等数学(下)模拟试卷五一.填空题(每空3分,共21分).已知函数,则。

.已知,则。

.设L为上点到的上半弧段,则。

.交换积分顺序。

.级数是绝对收敛还是条件收敛?。

.微分方程的通解为。

二.选择题(每空3分,共15分).函数在点的全微分存在是在该点连续的()条件。

A.充分非必要 B.必要非充分 C.充分必要 D.既非充分,也非必要.平面与的夹角为()。

A. B. C. D..幂级数的收敛域为()。

A. B. C. D..设是微分方程的两特解且常数,则下列()是其通解(为任意常数)。

A. B.C. D..在直角坐标系下化为三次积分为(),其中为,所围的闭区域。

A. B. C.D.三.计算下列各题(共分,每题分)1、已知,求。

2、求过点且平行直线的直线方程。

3、利用极坐标计算,其中D为由、及所围的在第一象限的区域。

四.求解下列各题(共分,第题分,第题分)、利用格林公式计算曲线积分,其中L为圆域:的边界曲线,取逆时针方向。

、判别下列级数的敛散性:五、求解下列各题(共分,第、题各分,第题分)、求函数的极值。

高等数学2课后习题答案

高等数学2课后习题答案

高等数学2课后习题答案高等数学2课后习题答案高等数学2作为大学数学课程的一部分,是一门相对较难的课程。

在学习过程中,课后习题是巩固和深化知识的重要手段。

然而,对于许多学生来说,课后习题往往是一个难以逾越的障碍。

因此,为了帮助大家更好地学习和掌握高等数学2,本文将提供一些常见习题的答案及解析。

一、极限与连续1. 计算极限这类题目主要考察对极限的计算能力。

在计算过程中,我们需要运用一些基本的极限性质和运算法则。

例如,当求解形如lim(x→a) (f(x) + g(x))时,我们可以利用极限的加法法则,将其拆分为lim(x→a) f(x) + lim(x→a) g(x)。

2. 判断函数的连续性对于连续性的判断,我们需要掌握连续函数的定义和连续函数的性质。

例如,根据连续函数的定义,如果一个函数在某个点a处连续,那么lim(x→a) f(x) = f(a),这是判断函数连续性的一个重要条件。

二、导数与微分1. 求导函数求导函数是导数与微分章节的重点内容之一。

在求导函数时,我们需要掌握导数的基本定义和运算法则。

例如,当求解f(x) = x^n的导数时,我们可以利用幂函数的导数公式,即f'(x) = n*x^(n-1)。

2. 利用导数求解问题在实际问题中,我们常常需要利用导数来求解一些相关的问题。

例如,求解函数的极值点、判断函数的单调性等。

在这类题目中,我们需要将问题转化为数学模型,然后利用导数的性质来求解。

三、定积分1. 计算定积分计算定积分是定积分章节的核心内容之一。

在计算过程中,我们需要掌握定积分的基本定义和运算法则。

例如,当计算∫[a,b] f(x)dx时,我们可以利用定积分的性质,将其转化为求解不定积分的问题。

2. 利用定积分解决几何问题定积分在解决几何问题中有着广泛的应用。

例如,我们可以利用定积分来计算曲线与坐标轴所围成的面积、计算曲线的弧长等。

在这类题目中,我们需要将几何问题转化为数学模型,然后利用定积分的性质来求解。

高等数学Ⅱ答案。同济大学应用数学系本科少学时类型第三版

高等数学Ⅱ答案。同济大学应用数学系本科少学时类型第三版

习题7-11. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c习题7-21. 在空间直角坐标系中, 指出下列各点在哪个卦限?A (1, −2, 3);B (2, 3, −4);C (2, −3, −4);D (−2, −3, 1).解A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.2. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A (3,4, 0); B (0, 4, 3); C (3, 0, 0); D (0, −1, 0).解在xOy 面上, 的点的坐标为(x , y , 0); 在yOz 面上, 的点的坐标为(0, y , z ); 在zOx 面上, 的点的坐标为(x , 0, z ).在x 轴上, 的点的坐标为(x , 0, 0); 在y 轴上, 的点的坐标为(0, y , 0), 在z 轴上, 的点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上.3. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标. 解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , −c ); 点(a , b , c )关于yOz 面的对称点为(−a, b, c); 点(a, b, c)关于zOx面的对称点为(a, −b, c).(2)点(a, b, c)关于x轴的对称点为(a, −b, −c); 点(a, b, c)关于y轴的对称点为(−a, b, −c); 点(a, b, c)关于z轴的对称点为(−a, −b, c).(3)点(a, b, c)关于坐标原点的对称点为(−a, −b, −c).4.自点P0(x, y, z)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.解在xOy面、yOz面和zOx面上, 垂足的坐标分别为(x0, y, 0)、(0, y, z)和(x, 0, z).在x轴、y轴和z轴上, 垂足的坐标分别为(x0, 0, 0), (0, y, 0)和(0, 0, z).5.过点P0(x, y, z)分别作平行于z轴的直线和平行于xOy面的平面, 问在它们上面的点的坐标各有什么特点?解在所作的平行于z轴的直线上, 点的坐标为(x0, y, z); 在所作的平行于xOy面的平面上,点的坐标为(x, y, z).6. 一边长为a的立方体放置在xOy面上, 其底面的中心在坐标原点, 底面的顶点在x轴和y 轴上, 求它各顶点的坐标.7.已知两点M1(0, 1, 2)和M2(1, −1, 0). 试用坐标表示式表示向量及11.在yOz面上, 求与三点A(3, 1, 2)、B(4, −2, −2)和C(0, 5, 1)等距离12. 试证明以三点A(4, 1, 9)、B(10, −1, 6)、C(2, 4, 3)为顶点的三角形是等腰三角直角三角形.14. 求点M(4, −3, 5)到各坐标轴的距离.17. 设已知两点和计算向量的模、方向余弦和方向角.18. 设向量的方向余弦分别满足(1)cosα=0; (2)cosβ=1; (3)cosα=cosβ=0, 问这些向量与坐标轴或坐标面的关系如何?20.设向量r的模是4, 它与轴u的夹角是60°, 求r在轴u上的投影.21. 设m=3i+5j+8k, n=2i-4j-7k, p=5i+j-4k,求向量a=4m+3n-p在x轴上的投影及在y轴上的分向量.解:a=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k在x轴上的投影a x=13,在y轴上分向量为7j.习题7-31.设a=3i−j−2k, b=i+2j−k, 求(1)a⋅b及a×b; (2)(−2a)⋅3b及a×2b; (3)a、b夹角的余弦.解(1)a⋅b=3×1+(−1)×2+(−2)×(−1)=3,(2)(−2a)⋅3b =−6a⋅b = −6×3=−18,a×2b=2(a×b)=2(5i+j+7k)=10i+2j+14k .2. 设a、b、c为单位向量, 且满足a+b+c=0, 求a⋅b+b⋅c+c⋅a .解因为a+b+c=0, 所以(a+b+c)⋅(a+b+c)=0,即a⋅a+b⋅b+c⋅c+2a⋅b+2a⋅c+2c⋅a=0,于是3.已知M1(1, −1, 2)、M2(3, 3, 1)和M3(3, 1, 3). 求与、同时垂直的单位向量.4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).5.在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与成角θ的力F 1作用着; 在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与成角θ的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解:因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的 规定可得, 使杠杆保持平衡的条件为6.求向量a =(4, −3, 4)在向量b =(2, 2, 1)上的投影. 解:7. 设a =(3, 5, −2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直?解λa +μb =(3λ+2μ, 5λ+μ, −2λ+4μ), λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, −2λ+4μ)⋅(0, 0, 1)=0,即−2λ+4μ=0, 所以λ=2μ . 当λ=2μ 时, λa +μb 与z 轴垂直. 试用向量证明直径所对的圆周角是直角. 8. 试用向量证明直径所对的圆周角是直角. 证明设AB 是圆O 的直径, C 点在圆周上, 则.9. 设已知向量a =2i −3j +k , b =i −j +3k 和c =i −2j , 计算: (1)(a ⋅b )c −(a ⋅c )b ; (2)(a +b )×(b +c ); (3)(a ×b )⋅c .解 (1)a ⋅b =2×1+(−3)×(−1)+1×3=8, a ⋅c =2×1+(−3)×(−2)=8,(a ⋅b )c −(a ⋅c )b =8c −8b =8(c −b )=8[(i −2j )−(i −j +3k )]=−8j −24k . (2)a +b =3i −4j +4k , b +c =2i −3j +3k,11.(1)解: xy z xyzi j ka b a a a b b b ⨯=r r r r r=-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k r r r ()()()则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅r r u r ()()()()x y z xy z xyza a ab b b C C C = 若,,C a b r r u r共面,则有 a b ⨯r r 后与 C u r 是垂直的. 从而C 0a b ⨯⋅=r r u r () 反之亦成立. (2) C xy z x y z xyza a a ab b b b C C C ⨯⋅=r r u r Q()ax y z x y z x y z b bbb C C C Ca a a⨯⋅=r u r r()bx y zx y zx y zC C CC a a a ab b b⨯⋅=u r r r()由行列式性质可得:x y z x y z x y zx y z x y z x y zx y z x y z x y za a ab b b C C Cb b b C C C a a aC C C a a a b b b==故C a?ba b b C C a⨯⋅=⨯⋅=⨯⋅r r u r r u r r u r r rQ()()()习题7-43. 求过点(3, 0, −1)且与平面3x−7y+5z−12=0平行的平面方程.解所求平面的法线向量为n=(3, −7, 5), 所求平面的方程为3(x−3)−7(y−0)+5(z+1)=0, 即3x−7y+5z−4=0.4.求过点M(2, 9, −6)且与连接坐标原点及点M的线段OM垂直的平面方程.解所求平面的法线向量为n=(2, 9, −6), 所求平面的方程为2(x−2)+9(y−9)−6(z−6)=0, 即2x+9y−6z−121=0.5.求过(1, 1, −1)、(−2, −2, 2)、(1, −1, 2)三点的平面方程.解n1=(1, −1, 2)−(1, 1,−1)=(0, −2, 3), n1=(1, −1, 2)−(−2, −2, 2)=(3, 1, 0), 所求平面的法线向量为所求平面的方程为−3(x −1)+9(y −1)+6(z +1)=0, 即x −3y −2z =0.6. 指出下列各平面的特殊位置, 并画出各平面: (1)x =0;解x =0是yOz 平面. (2)3y −1=0;解 3y −1=0是垂直于y 轴的平面, 它通过y 轴上的点 (0 ,1/3 ,0). (3)2x −3y −6=0;解 2x −3y −6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和−2. (4) x −3y =0解x −3y =0是通过z 轴的平面, 它在xOy 面上的投影的斜率为33. (5)y +z =1;解y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1. (6)x −2z =0;解x −2z =0是通过y 轴的平面. (7)6x +5−z =0.解 6x +5−z =0是通过原点的平面.求平面2x −2y +z +5=0与各坐标面的夹角的余弦. 解此平面的法线向量为n =(2, −2, 1).此平面与yOz 面的夹角的余弦为8.一平面过点(1, 0, −1)且平行于向量a =(2, 1, 1)和b =(1, −1, 0), 试求这平面方程.解所求平面的法线向量可取为9.求三平面x +3y +z =1, 2x −y −z =0, −x +2y +2z =3的交点.解解线性方程组分别按下列条件求平面方程: (1)平行于zOx 面且经过点(2, −5, 3);解所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为 0⋅(x −2)−5(y +5)+0⋅(z −3)=0, 即y =−5. (2)通过z 轴和点(−3, 1, −2);解所求平面可设为Ax+By=0.因为点(−3, 1, −2)在此平面上, 所以−3A+B=0,将B=3A代入所设方程得Ax+3Ay=0,所以所求的平面的方程为x+3y=0,(3)平行于x轴且经过两点(4, 0, −2)和(5, 1, 7).解所求平面的法线向量可设为n=(0, b, c). 因为点(4, 0, −2)和(5, 1, 7)都在所求平面上, 所以向量n1=(5, 1, 7)−(4, 0, −2)=(1, 1, 9)与n是垂直的, 即b+9c=0, b=−9c ,于是n=(0, −9c, c)=−c(0, 9, −1).所求平面的方程为9(y−0)−(z+2)=0, 即9y−z−2=0.10.求点(1, 2, 1)到平面x+2y+2z−10=0的距离.解点(1, 2, 1)到平面x+2y+2z−10=0的距离为习题7-51.求过点(4, −1, 3)且平行于直线的直线方程.解所求直线的方向向量为s=(2, 1, 5), 所求的直线方程为2.求过两点M1(3, −2, 1)和M2(−1, 0, 2)的直线方程.解所求直线的方向向量为s=(−1, 0, 2)−(3, −2, 1)=(−4, 2, 1), 所求的直线方程为10. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 11. 求过点(1, 2, 1)而与两直线平行的平面的方程. 解直线的方向向量为12. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-13. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-=即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2221332(13)(1)(2)222d =-+-++-=习题7-6 5.6. 指出下列方程所表示的是什么曲面,并画出其图形:(1)(2)(4)221 49x y-+=;(5)22194x z +=; (6)20y z -=; 解:(1)(2)(4)母线平行于z 轴的双曲柱面,如图7-8.图7-8(5)母线平行于y 轴的椭圆柱面,如图7-9. (6)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-107. 画出下列各曲面所围成的立体图形: (1)x =0, y =0, z =0, x =2, y =1, 3x +4y +2z −12=0;(1)(2)习题8-11. 已知f (x , y )=x 2+y 2-xy tan xy,试求(,)f tx ty .解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f ( x + y , x -y , x y ) =( x + y )xy +(x y )x +y +x -y =(x + y )xy +(x y )2x . 4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z =(4)u =+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>-> (4){(,,)|0,0,0}.D x y z x y z =>>>22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:22001(2)lim ;x y x y →→+ ()yx e lim 2x ln 32y 0y 1x ++→→)((2)xy xy y x 42lim 00+-→→ 解:(2)原式=+∞. (3)原式0ln 2.=(2)原式0014x y →→==- 6.证明:当(x ,y )→(0,0)函数f (x ,y )=yx y x -+lim 不存在极限.解令y kx =则0011lim limx x y y x yx kx k x yx kx k→→→→+++==---,不同的路径极限不同,故极限不存在。

《高等数学(二)》题库及答案

《高等数学(二)》题库及答案

《高等数学(二)》题库及答案一、填空题1.点A (2,3,-4)在第 卦限。

2.设22(,)sin ,(,)yf x y x xy y f tx ty x=--=则 .3的定义域为 。

4.设25(,),ff x y x y y x y∂=-=∂则。

5.设共域D 由直线1,0x y y x ===和所围成,则将二重积分(,)Df x y d σ⎰⎰化为累次积分得 。

6.设L 为连接(1,0)和(0,1)两点的直线段,则对弧长的曲线积分()Lx y ds +⎰= 。

7.平面2250x y z -++=的法向量是 。

8.球面2229x y z ++=与平面1x y +=的交线在0x y 面上的投影方程为 。

9.设22,z u v ∂=-=∂z而u=x-y,v=x+y,则x。

10.函数z =的定义域为 。

11.设n 是曲面22z x y =+及平面z=1所围成的闭区域,化三重积为(,,)nf x y z dx dy dz ⎰⎰⎰为三次积分,得到 。

12.设L 是抛物线2y x =上从点(0,0)到(2,4)的一段弧,则22()Lx y dx -=⎰。

13.已知两点12(1,3,1)(2,1,3)M M 和。

向量1212M M M M =的模 ;向量12M M 的方向余弦cos α= ,cos β= ,cos γ= 。

14.点M (4,-3,5)到x 轴的距离为 。

15.设sin ,cos ,ln ,dzz uv t u t v t dt=+===而则全导数。

16.设积分区域D 是:222(0)x y a a +≤>,把二重积分(,)Df x y dx dy ⎰⎰表示为极坐标形式的二次积分,得 。

17.设D 是由直线0,01x y x y ==+=和所围成的闭区域,则二重积分Dx d σ⎰⎰= 。

18.设L 为XoY 面内直线x=a 上的一段直线,则(,)Lp x y dx ⎰= 。

19.过点0000(,,)p x y z 作平行于z 轴的直线,则直线方程为 。

高等数学2真题及答案解析

高等数学2真题及答案解析

高等数学2真题及答案解析高等数学2作为大学数学课程的一部分,是对高等数学1内容的拓展与深化。

它涵盖了微分方程、多元函数与偏导数、重积分等重要知识点。

许多学生在面对高等数学2的考试时,可能会遇到一些难题,对一些概念和方法有一定的困惑。

为了帮助大家更好地掌握这门课程,以下将对一道典型的高等数学2题目进行详细分析和解答。

【题目】设函数$f(x,y)=x^2+y^2+xy-x-2y+3$,求$f(x,y)$在椭圆$2x^2+4y^2=9$上的最大值和最小值。

【解析】首先,我们需要找到$f(x,y)$在椭圆上的极值点。

根据多元函数极值的判定条件,我们需要求得$f(x,y)$的偏导数。

求得$f(x,y)$的偏导数后,我们将其分别与椭圆方程联立解方程组。

先求$f(x,y)$的偏导数:$f_x=2x+y-1$,$f_y=2y+x-2$。

联立椭圆方程与偏导数方程组,得到方程组:$2x^2+4y^2=9$,$2x+y=1$,$2y+x=2$。

解方程组得到$x=1$,$y=0$,我们需要验证这个点是否是极值点。

计算得$f(1,0)=1$。

接下来,我们需要求出椭圆方程$2x^2+4y^2=9$的参数方程。

设$x=\frac{3}{\sqrt{2}}\cos t$,$y=\frac{3}{2}\sin t$。

代入$f(x,y)$中,得到:$f(t)=\frac{9}{2}\cos^2 t+\frac{9}{4}\sin^2t+\frac{9}{2}\sin t\cos t-\frac{3}{\sqrt{2}}\cos t-\frac{9}{2}\sin t+3$化简,得到$f(t)=\frac{9}{2}\cos^2 t+\frac{9}{4}\sin^2 t-\frac{3}{\sqrt{2}}\cos t-\frac{9}{2}\sin t+\frac{21}{4}$。

我们需要求得$f(t)$的极值点。

对$f(t)$求导,得到:$f'(t)=-\frac{9}{2}\sin t\cos t+\frac{9}{2}\sin t-\frac{3}{\sqrt{2}}\sin t-\frac{9}{4}\cos t=\frac{1}{2}(9\sin t-6\sin 2t-\sqrt{2}\sin t-9\cos t)$。

成人高考专升本(高等数学二)考试真题答案

成人高考专升本(高等数学二)考试真题答案

空间解析几何:空间直线、平面、曲面、 球面、柱面等几何体的性质和计算
向量与空间解析几何的关系:向量在空间 解析几何中的应用,如向量积、混合积等
向量代数与空间解析几何在成人高考专 升本(高等数学二)考试中的重要性:作 为考试重点内容,需要熟练掌握和运用
提前规划好答 题时间,避免
时间不足
遇到难题时, 不要过于纠结, 先做其他题目
常微分方 程的解: 满足方程 的函数
常微分方 程的解法: 包括分离 变量法、 积分法、 幂级数法 等
无穷级数 的收敛性: 判断无穷 级数是否 收敛,包 括绝对收 敛、条件 收敛等
无穷级数 的求和: 计算无穷 级数的和, 包括直接 求和、积 分法求和 等
向量代数:向量的加法、减法、数乘、向 量积、混合积等运算
答案:2
解析:利用洛必达法则求 解
解析:利用洛必达法则求 解
● 题目:求极限lim(x→0)((x^2+1)/(x^2-1)) ● 答案:2 ● 题目:求极限lim(x→0)((x^2+1)/(x^2-1)) ● 答案:2 ● 题目:求极限lim(x→0)((x^2+1)/(x^2-1)) ● 答案:2 ● 题目:求极限lim(x→0)((x^2+1)/(x^2-1)) ● 答案:2 ● 题目:求极限lim(x→0)((x^2+1)/(x^2-1)) ● 答案:2
合理分配答题 时间,确保每 道题目都有足 够的时间完成
考试结束前, 检查答题卡是 否填写完整,
避免遗漏
阅读题目,理解题意
确定答题顺序,先易 后难
仔细审题,避免漏题
答题时,注意书写工 整,保持卷面整洁
答题完毕,检查答案, 确保无误
审题不清:仔细阅读题目,理 解题意

2021年山东专升本高等数学真题及答案详解

2021年山东专升本高等数学真题及答案详解

山东省2021年普通高等教育专升本统一考试高等数学Ⅱ试题一、选择题(本大题共5道小题,每小题3分,共15分)1.已知函数42)(2-+=x x x f ,则2=x 是)(x f 的() A.连续点 B.可去间断点 C.跳跃间断点 D.无穷间断点2.微分方程0)(322=+'++''y y x y 的阶数为()A.1B.2C.3D.43.曲线3323+-=x x y 的拐点是()A.(-1,-1)B.(0,3)C.(1,1)D.(2,-1) 4.已知函数y xy z )sin(=,则=∂∂22xz () A.)sin(-xy x B.)sin(xy x C.)cos(xy x - D.)cos(xy x5.已知函数)(x f 在区间[]∞+1.上的连续函数,且dt tt f x F x ⎰=21)()(,则=')(x F () A.)(2x f B.)(22x xf C.22)(x x f D.x x f )(2 二、填空题(本大题共5道小题,每小题3分,共15分)6.已知2lim ,1lim ==∞→∞→n n n n b a ,则=+∞→)2(lim 2n n n b a ___________________. 7.已知2)(lim =-∞→x x xa x ,则=a ___________________. 8.曲线01ln =-+y xy 在)1,1(处的法线方程为___________________.9.直线0,4==y x 与曲线x y =围城的平面图形面积为___________________.10.已知函数),(y x f 在2R 连续,设dy y x f dx dy y x f dx I x x ⎰⎰⎰⎰---+=21201011022),(),(交换积分次序后___________________.三、解答题(本大题共8个小题,每小题7分,共56分)11.求极限⎪⎪⎭⎫ ⎝⎛--+∞→x x x x 12lim 212.求极限x x x x tan lim 30-→13.已知函数⎪⎪⎩⎪⎪⎨⎧<+=+>-+=0,cos 20,120,11)(x x b x b x x axx f 在0=x 连续,求实数ba ,14.求不定积分dx x xx ⎰+22sin 41cos sin15.求定积分dxe x ⎰-511216.求微分方程0)1)(cos 1(22=++-dx y x ydy 在条件0=x y 条件下的特解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江南大学现代远程教育第三阶段练习题
一.选择题(每题4分,共20分)
1.设22(,)x f y x y x y -=-,则(,)f x y =(D). (a)2(1)1y x x +-(b)2(1)1y x x -+(c)2(1)1x x x
+-(d)2(1)1x y y +- 2.设函数(,)z f x y =在点00(,)x y 的某邻域内有定义,且存在一阶偏导数,则
00x x y y z y ==∂=∂(B) (a)00000
(,)(,)lim y f x x y y f x y y ∆→+∆+∆-∆(b)00000(,)(,)lim y f x y y f x y y ∆→+∆-∆(c)000()()lim y f y y f y y ∆→+∆-∆(d)0000(,)(,)lim y f x x f x y y
∆→+∆-∆ 3.若D 是平面区域22{19}x y ≤+≤,则D
dxdy ⎰⎰=(B)
(a)7π(b)8π(c)9π(d)10π
4.下面各微分方程中为一阶线性方程的是(B)
(a)32xy y '+=(b)2cos y xy x '+=(c)2yy x '=(d)21y xy '-=
5.微分方程()0x y y x y '++-=的通解是(D).
(a)221arctan
ln()2y x y C x ++=(b)22arctan ln()y x y C x
-+= (c)22arctan ln()y x y C x ++=(d)221arctan ln()2
y x y C x -+= 二.填空题(每题4分,共28分) 6.设3z xy =,则1
3x y z
x ==∂=∂__________
7.设2cot()z y xy =-,则z y ∂=∂___________
8.设sin y x z e x y =+,则2z x y ∂∂∂=___________
9.设2
ln(32)x y
z y x e
=-+,则dz=_____________.
10.交换二次积分次序
ln
10(,)
e x
I dx f x y dy
=⎰⎰=______________.
11.微分方程
4
4
3
d u
u v
dv
+=的自变量为______,未知函数为________,方程的阶数为
___4____
12.微分方程
1
dy
dx xy
-=的通解是__________
三.解答题(满分52分)
13.设
(,)
z z x y
=是由方程2cos()0
z
e x y x z
-+-=所确定的隐函数,求dz
14.求函数
(3),(0,0)
z xy x y x y
=-->>的极值。

15.计算
2
D
xy dxdy
⎰⎰
,其中D是由曲线
2
1,,3
xy y x y
===围成的平面区域。

16.计算
22
x y
D
e dxdy
+
⎰⎰
,其中D是由
22
25
x y
≤+≤确定。

17.求微分方程
2
dy y
dx y x
=
-的通解。

18.求微分方程
cos
dy y
x
dx x
+=
的通解。

19.求微分方程(sin)tan0
y x dx xdy
-+=满足初始条件
()1
6
y
π
=
的解。

相关文档
最新文档