2004年成人高考数学试题及答案(高起点理工类)
2004年普通高等学校招生全国统一考试数 学(浙江卷)(理工类)
2004年普通高等学校招生全国统一考试数 学(浙江卷)(理工类)第Ⅰ卷 (选择题 共60分)一、选择题: 本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 若U={1,2,3,4}, M={1,2},N={2,3}, 则 =⋃)(N M ( )(A) {1,2,3}(B) {2}(C) {1,3,4}(D) {4}(2) 点P 从(1,0)出发,沿单位圆122=+y x 逆时针方向运动32π弧长到达Q 点,则Q 的坐标为( )(A) )23,21(-(B) ()21,23--(C) ()23,21--(D) ()21,23-(3) 已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a = ( )(A) –4(B) –6 (C) –8 (D) –10 (4)曲线x y 42=关于直线x=2对称的曲线方程是( )(A) x y 482-= (B) 842-=x y (C) x y 4162-=(D) 1642-=x y(5) 设z=x —y ,式中变量x 和y 满足条件⎩⎨⎧≥-+≥-03,02y x y x 则z 的最小值为( )(A) 1(B) –1(C) 3(D) –3(6) 已知复数i t z i z +=+=21,43,且21z z ⋅是实数,则实数t= ( )(A)43(B)34(C) --34(D) --43 (7) 若n xx )2(3+展开式中存在常数项,则n 的值可以是( )(A) 8(B) 9(C) 10 (D) 12 (8)在ΔABC 中,“A>30º”是“sinA >21”的( )(C) 充分必要条件 (D) 既不充分也不必要条件(9)若椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5:3两段,则此椭圆的离心率为( )(A)1716(B )17174 (C )54(D )552 (10)如图,在正三棱柱ABC —A 1B 1C 1中已知AB=1,D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则α= ( )(A)3π(B)4π(C)410arcsin(D)46arcsin(11)设)(x f '是函数)(x f 的导函数,)(x f y '= 的图象如图所示,则)(x f y =的图象最有可能 的是( )(12)若)(x f 和g(x)都是定义在实数集R 上的函数,且方程0)]([=-x g f x 有实数解,则)]([x f g 不可..能.是 (A )512-+x x (B )512++x x(C )512-x(D )512+x 第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题4分,满分16分.把答案填在题中横线上.(13)已知⎩⎨⎧≥〈-=,0,1,0,1)(x x x f 则不等式)2()2(+⋅++x f x x ≤5的解集是 .(14)已知平面上三点A 、B 、C ,5=CA BC AB 则AB· BC+BC ·CA+CA·AB 的值等于 .(15)设坐标平面内有一个质点从原点出发,沿x 轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方法共有 种(用数字作答). (16)已知平面α和平面β交于直线l ,P 是空间一点,PA ⊥α,垂足为A ,PB ⊥β,垂足为B ,且PA=1,PB=2,若点A 在β内的射影与点B 在α内的射影重合,则点P 到l 的距离为 . 三、 解答题:本大题共6小题,满分74分.解答应写出文字说明,证明过程或演算步骤. (17)(本题满分12分) 在ΔABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且31cos =A . (Ⅰ)求A CB 2cos 2sin2++的值; (Ⅱ)若3=a ,求bc 的最大值.(18)(本题满分12分)盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ. (Ⅰ)求随机变量ξ的分布列; (Ⅱ)求随机变量ξ的期望ξE .(19)(本题满分12分)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.(Ⅰ)求证AM∥平面BDE;(Ⅱ)求二面角A—DF—B的大小;(Ⅲ)求点B到平面CMN的距离.(20)(本题满分12分)设曲线x e y x(-=≥0)在点M (t,e --t )处的切线l 与x 轴y 轴所围成的三角形面积为S (t ). (Ⅰ)求切线l 的方程;(Ⅱ)求S (t )的最大值.(21)(本题满分12分)已知双曲线的中心在原点,右顶点为A (1,0)点P 、Q 在双曲线的右支上,支M (m,0)到直线AP 的距离为1.(Ⅰ)若直线AP 的斜率为k ,且]3,33[∈k ,求实数m 的取值范围; (Ⅱ)当12+=m 时,ΔAPQ 的内心恰好是点M ,求此双曲线的方程.(22)(本题满分14分)如图,ΔOBC 的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P 为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n,P n+3为线段P n P n+1的中点,令P n 的坐标为(x n,y n ),.2121++++=n n n n y y y a (Ⅰ)求321,,a a a 及n a ; (Ⅱ)证明;,414*+∈-=N n y y nn (Ⅲ)若记,,444*+∈-=N n y y b n n n 证明{}n b 是等比数列.2004年普通高等学校招生全国统一考试数 学(浙江卷)参考答案一.选择题: 本大题共12小题,每小题5分,共60分.1. D2.A3.B4.C5.A6.A7.C8.B9.D 10.D 11.B 12.D 二.填空题:本大题共4小题,每小题4分,满分16分.13. ]23,(-∞ 14. 14 --25 15. 5 16. 5三.解答题:本大题共6小题,满分74分. 17. (本题满分12分)解: (Ⅰ)A CB 2cos 2sin2++ =)1cos 2()]cos(1[212-++-A C B=)1cos 2()cos 1(212-++A A=)192()311(21-++= 91-(Ⅱ) ∵31cos 2222==-+A bc a c b ∴2222232a bc a cb bc -≥-+=, 又∵3=a∴.49≤bc 当且仅当 b=c=23时,bc=49,故bc 的最大值是49. (18) (满分12分)解: (Ⅰ)由题意可得,随机变量ξ的取值是2、3、4、6、7、10. 随机变量ξ的概率分布列如下随机变量ξ的数学期望ξE =2×0.09+3×0.24+4×0.16+6×0.18+7×0.24+10×0.09=5.2.(19) (满分12分)方法一解: (Ⅰ)记AC 与BD 的交点为O,连接OE,∵O 、M 分别是AC 、EF 的中点,ACEF 是矩形, ∴四边形AOEM 是平行四边形, ∴AM ∥OE.∵⊂OE 平面BDE , ⊄AM 平面BDE , ∴AM ∥平面BDE.(Ⅱ)在平面AFD 中过A 作AS ⊥DF 于S ,连结BS , ∵AB ⊥AF , AB ⊥AD , ,A AF AD =I ∴AB ⊥平面ADF ,∴AS 是BS 在平面ADF 上的射影, 由三垂线定理得BS ⊥DF.∴∠BSA 是二面角A —DF —B 的平面角. 在RtΔASB 中,,2,36==AB AS ∴,60,3tan ︒=∠=∠ASB ASB∴二面角A —DF —B 的大小为60º.(Ⅲ)设CP=t (0≤t≤2),作PQ ⊥AB 于Q ,则PQ ∥AD , ∵PQ ⊥AB ,PQ ⊥AF ,A AF AB =I , ∴PQ ⊥平面ABF ,⊂QF 平面ABF , ∴PQ ⊥QF.在RtΔPQF 中,∠FPQ=60º, PF=2PQ.∵ΔPAQ 为等腰直角三角形, ∴).2(22t PQ -=又∵ΔPAF 为直角三角形, ∴1)2(2+-=t PF ,∴).2(2221)2(2t t -⋅=+- 所以t=1或t=3(舍去) 即点P 是AC 的中点.(Ⅰ)建立如图所示的空间直角坐标系. 设N BD AC =I ,连接NE , 则点N 、E 的坐标分别是()0,22,22、(0,0,1), ∴NE=()1,22,22--, 又点A 、M 的坐标分别是 (0,2,2)、()1,22,22 ∴ AM=()1,22,22--∴NE=AM 且NE 与AM 不共线,∴NE ∥AM.又∵⊂NE 平面BDE , ⊄AM 平面BDE , ∴AM ∥平面BDF.(Ⅱ)∵AF ⊥AB ,AB ⊥AD ,AF ,A AD =I ∴AB ⊥平面ADF .∴)0,0,2(-=AB 为平面DAF 的法向量.∵NE·DB=()1,22,22--·)0,2,2(-=0, ∴NE·NF=()1,22,22--·)0,2,2(=0得 NE ⊥DB ,NE ⊥NF ,∴为平面BDF 的法向量. ∴cos<AB,NE>=21 ∴与的夹角是60º.即所求二面角A —DF —B 的大小是60º.(Ⅲ)设P(t,t,0)(0≤t≤2)得),1,2,2(t t PF --=∴CD=(2,0,0) 又∵PF 和CD 所成的角是60º.第 11 页 共 13 页 ∴21)2()2(2)2(60cos 22⋅+-+-⋅-=︒t t t解得22=t 或223=t (舍去), 即点P 是AC 的中点.(20)(满分12分)解:(Ⅰ)因为,)()(x x e e x f ---='='所以切线l 的斜率为,x e-- 故切线l 的方程为).(t x e ey t t--=---即0)1(=+-+--t e y x e t t . (Ⅱ)令y=0得x=t+1,又令x=0得)1(+=-t e y t 所以S (t )=)1()1(21+⋅+-t e t t =t e t -+2)1(21 从而).1)(1(21)(t t e t S t +-='- ∵当∈t (0,1)时,)(t S '>0,当∈t (1,+∞)时,)(t S '<0,所以S(t)的最大值为S(1)=e 2 (21) (满分12分)解: (Ⅰ)由条件得直线AP 的方程),1(-=x k y即.0=--k y kx因为点M 到直线AP 的距离为1,∵,112=+-k kmk即221111k k k m +=+=-. ∵],3,33[∈k第 12 页 共 13 页 ∴,21332≤-≤m 解得332+1≤m ≤3或--1≤m ≤1--332. ∴m 的取值范围是].3,3321[]3321,1[+--Y (Ⅱ)可设双曲线方程为),0(1222≠=-b by x 由),0,1(),0,12(A M + 得2=AM .又因为M 是ΔAPQ 的内心,M 到AP 的距离为1,所以∠MAP=45º,直线AM 是∠PAQ 的角平分线,且M 到AQ 、PQ 的距离均为1.因此,1,1-==AQ AP k k (不妨设P 在第一象限)直线PQ 方程为22+=x .直线AP 的方程y=x-1, ∴解得P 的坐标是(2+2,1+2),将P 点坐标代入1222=-b y x 得, 32122++=b所以所求双曲线方程为,112)32(22=++-y x即.1)122(22=--y x (22)(满分14分)解:(Ⅰ)因为43,21,153421=====y y y y y , 所以2321===a a a ,又由题意可知213+++=n n n y y y ∴321121++++++=n n n n y y y a =221121++++++n n n n y y y y =,2121n n n n a y y y =++++ ∴{}n a 为常数列.第 13 页 共 13 页∴.,21*∈==N n a a n(Ⅱ)将等式22121=++++n n n y y y 两边除以2,得 ,124121=++++n n n y y y 又∵2214++++=n n n y y y ∴.414n n y y -=+ (Ⅲ)∵)41()41(44444841n n n n n y y y y b ---=-=+++- )(41444n n y y --=+ ,41n b -= 又∵,041431≠-=-=y y b ∴{}n b 是公比为41-的等比数列.。
数学2004年高考理科试题解析
2004年浙江省高考数学卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分。
1. 若U ={1,2,3,4},M ={1,2}, N ={2,3}, 则U ð(M N )=(A){1,2,3} (B){2} (C){1,3,4} (D){4} 2. 点P 从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动23π弧长到达Q 点,则Q 的坐标为(A)(-21,) (B) (-21) (C)(-21,(D)(,21)3. 已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=(A)-4 (B)-6 (C)-8 (D)-104. 曲线y 2=4x 关于直线x =2对称的曲线方程是(A)y 2=8-4x (B)y 2=4x -8 (C)y 2=16-4x (D)y 2=4x -165. 设z =x -y , 式中变量x 和y 满足条件3020x y x y +-≥⎧⎨-≥⎩, 则z 的最小值为(A)1 (B)-1 (C)3 (D)-36. 已知复数z 1=3+4i , z 2=t +i , 且12z z 是实数,则实数t =(A)43 (B)34 (C)-34(D)-437.若n展开式中存在常数项,则n 的值可以是 (A)8 (B)9 (C)10 (D)128. 在△ABC 中,“A >30︒”是“sin A >21”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件9. 若椭圆12222=+by a x (a >b >0)的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5∶3的两段,则此椭圆的离心率为 (A)1617(C)4510. 如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,若AD 与平面AA 1CC 所成的角为α,则α=(A)3π(B)4π (C)(D)CC 1 1D11.设f '(x)是函数f(x)的导函数,y=f '(x)的图象如右图所示,则y=f(x)的图象最有可能的是(A) (B)(D)12.若f(x)和g(x)都是定义在实数集R上的函数,且方程x-f[g(x)]=0有实数解,则g[f(x)]不可能是(A)x2+x-51(B)x2+x+51(C)x2-51(D)x2+51二、填空题:本大题共4小题,每小题4分,满分16分。
2004年高考.浙江卷.理科数学试题及答案
2004年普通高等学校招生全国统一考试数学(理工类)(浙江卷)第Ⅰ卷 (选择题 共60分)一.选择题: 本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 若U={1,2,3,4}, M={1,2},N={2,3}, 则C U (M ∪N)=(A) {1,2,3} (B) {2} (C) {1,3,4} (D) {4} (2) 点P 从(1,0)出发,沿单位圆122=+y x 逆时针方向运动32π弧长到达Q 点,则Q 的坐标为 (A) )23,21(-(B) ()21,23-- (C) ()23,21--(D) ()21,23- (3) 已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a = (A) –4 (B) –6 (C) –8 (D) –10 (4)曲线x y 42=关于直线x=2对称的曲线方程是(A) x y 482-= (B) 842-=x y (C) x y 4162-= (D) 1642-=x y(5) 设z=x —y ,式中变量x 和y 满足条件⎩⎨⎧≥-+≥-03,02y x y x 则z 的最小值为 (A) 1 (B) –1 (C) 3 (D) –3 (6) 已知复数i t z i z +=+=21,43,且21z z ⋅是实数,则实数t= (A)43 (B) 34 (C) --34 (D) --43 (7) 若n x )x2(3+展开式中存在常数项,则n 的值可以是(A) 8 (B) 9 (C) 10 (D) 12(8)在ΔABC 中,“A>30º”是“sinA>21”的 (A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D) 既不充分也必要条件(9)若椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx的焦点分成5:3两段,则此椭圆的离心率为(A )1716 (B )17174 (C )54(D )552(10)如图,在正三棱柱ABC —A 1B 1C 1中已知AB=1,D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则α=(A )3π (B )4π(C )410arcsin(D )46arcsin(11)设)(x f '是函数f(x)的导函数,y=)(x f '的图象 如图所示,则y= f(x)的图象最有可能的是(12)若)(x f 和g(x)都是定义在实数集R 上的函数,且方程0)]([=-x g f x 有实数解,则)]([x f g 不可能...是 (A )512-+x x (B )512++x x (C )512-x (D )512+x 第Ⅱ卷 (非选择题 共90分)二.填空题:三大题共4小题,每小题4分,满分16分。
2004年普通高等学校招生全国统一考试(天津卷)数 学(理工类)
2004年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分第一卷(选择题)和第二卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么)()()(B P A P B A P +=+ 如果事件A 、B 相互独立,那么)()()(B P A P B A P ⋅=⋅ 柱体(棱柱、圆柱)的体积公式Sh V =柱体 其中S 表示柱体的底面积,h 表示柱体的高一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. i 是虚数单位,3)2)(1(ii i ++-=( )A . i +1B . i --1C . i 31+D . i 31-- 2. 不等式21≥-xx 的解集为( ) A . )0,1[- B . ),1[∞+-C . ]1,(--∞D . ),0(]1,(∞+--∞3.若平面向量与向量)2,1(-=的夹角是︒180,且53||=,则= ( )A . )6,3(-B . )6,3(-C . )3,6(-D . )3,6(-4. 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF ( ) A . 1或5B . 6C . 7D . 95.若函数log )(=x f aA .42ABCD 的中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于 ( ) A . 510 B . 515C .54 D .32 7. 若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是 ( ) A . 03=--y x B . 032=-+y xC . 01=-+y xD . 052=--y x8. 已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a为等差数列”的( )A . 必要而不充分条件B . 充分而不必要条件C . 充要条件D . 既不充分也不必要条件9. 函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是( )A . ]3,0[πB . ]127,12[ππC . ]65,3[ππD . ],65[ππ10. 如图,在长方体1111D C B A ABCD -中,AB=6,AD=4,31=AA 。
2004高考数学试题(全国4理)及答案
2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α 18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512,图2Cy所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--=BD PA 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x ex f x x x----=+-++-='由,0)(='x f 得.0sin 2=--x e x解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn n n nn n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。
2004年普通高等学校招生全国统一考试数 学(浙江卷)(理工类)
2004年普通高等学校招生全国统一考试数 学(浙江卷)(理工类)第Ⅰ卷 (选择题 共60分)一、选择题: 本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 若U={1,2,3,4}, M={1,2},N={2,3}, 则 =⋃)(N M ( )(A) {1,2,3}(B) {2}(C) {1,3,4}(D) {4}(2) 点P 从(1,0)出发,沿单位圆122=+y x 逆时针方向运动32π弧长到达Q 点,则Q 的坐标为( )(A) )23,21(-(B) ()21,23--(C) ()23,21--(D) ()21,23-(3) 已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a = ( )(A) –4(B) –6 (C) –8 (D) –10 (4)曲线x y 42=关于直线x=2对称的曲线方程是( )(A) x y 482-= (B) 842-=x y (C) x y 4162-=(D) 1642-=x y(5) 设z=x —y ,式中变量x 和y 满足条件⎩⎨⎧≥-+≥-03,02y x y x 则z 的最小值为( )(A) 1(B) –1(C) 3(D) –3(6) 已知复数i t z i z +=+=21,43,且21z z ⋅是实数,则实数t= ( )(A)43(B)34(C) --34(D) --43 (7) 若n xx )2(3+展开式中存在常数项,则n 的值可以是( )(A) 8(B) 9(C) 10 (D) 12 (8)在ΔABC 中,“A>30º”是“sinA >21”的( )(A) 充分而不必要条件 (B) 必要而不充分条件(9)若椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5:3两段,则此椭圆的离心率为( )(A)1716(B )17174 (C )54(D )552 (10)如图,在正三棱柱ABC —A 1B 1C 1中已知AB=1,D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则α= ( )(A)3π(B)4π(C)410arcsin(D)46arcsin(11)设)(x f '是函数)(x f 的导函数,)(x f y '= 的图象如图所示,则)(x f y =的图象最有可能 的是( )(12)若)(x f 和g(x)都是定义在实数集R 上的函数,且方程0)]([=-x g f x 有实数解,则)]([x f g 不可..能.是 (A )512-+x x (B )512++x x(C )512-x(D )512+x 第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题4分,满分16分.把答案填在题中横线上. (13)已知⎨⎧≥=,0,1)(x x f 则不等式)2()2(+⋅++x f x x ≤5的解集是 .(14)已知平面上三点A 、B 、C ,5=CA BC AB 则AB· BC+BC ·CA+CA·AB 的值等于 .(15)设坐标平面内有一个质点从原点出发,沿x 轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方法共有 种(用数字作答). (16)已知平面α和平面β交于直线l ,P 是空间一点,PA ⊥α,垂足为A ,PB ⊥β,垂足为B ,且PA=1,PB=2,若点A 在β内的射影与点B 在α内的射影重合,则点P 到l 的距离为 . 三、 解答题:本大题共6小题,满分74分.解答应写出文字说明,证明过程或演算步骤. (17)(本题满分12分) 在ΔABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且31cos =A . (Ⅰ)求A CB 2cos 2sin2++的值; (Ⅱ)若3=a ,求bc 的最大值.(18)(本题满分12分)盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ. (Ⅰ)求随机变量ξ的分布列; (Ⅱ)求随机变量ξ的期望ξE .(19)(本题满分12分)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.(Ⅰ)求证AM∥平面BDE;(Ⅱ)求二面角A—DF—B的大小;(Ⅲ)求点B到平面CMN的距离.(20)(本题满分12分)设曲线x e y x(-=≥0)在点M (t,e --t )处的切线l 与x 轴y 轴所围成的三角形面积为S (t ). (Ⅰ)求切线l 的方程;(Ⅱ)求S (t )的最大值.(21)(本题满分12分)已知双曲线的中心在原点,右顶点为A (1,0)点P 、Q 在双曲线的右支上,支M (m,0)到直线AP 的距离为1.(Ⅰ)若直线AP 的斜率为k ,且]3,33[∈k ,求实数m 的取值范围; (Ⅱ)当12+=m 时,ΔAPQ 的内心恰好是点M ,求此双曲线的方程.(22)(本题满分14分)如图,ΔOBC 的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P 为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n,P n+3为线段P n P n+1的中点,令P n 的坐标为(x n,y n ),.2121++++=n n n n y y y a (Ⅰ)求321,,a a a 及n a ; (Ⅱ)证明;,414*+∈-=N n y y nn (Ⅲ)若记,,444*+∈-=N n y y b n n n 证明{}n b 是等比数列.2004年普通高等学校招生全国统一考试数 学(浙江卷)参考答案一.选择题: 本大题共12小题,每小题5分,共60分.1. D2.A3.B4.C5.A6.A7.C8.B9.D 10.D 11.B 12.D 二.填空题:本大题共4小题,每小题4分,满分16分.13. ]23,(-∞ 14. 14 --25 15. 5 16. 5三.解答题:本大题共6小题,满分74分. 17. (本题满分12分)解: (Ⅰ)A CB 2cos 2sin2++ =)1cos 2()]cos(1[212-++-A C B=)1cos 2()cos 1(212-++A A=)192()311(21-++= 91-(Ⅱ) ∵31cos 2222==-+A bc a c b ∴2222232a bc a cb bc -≥-+=, 又∵3=a∴.49≤bc 当且仅当 b=c=23时,bc=49,故bc 的最大值是49. (18) (满分12分)解: (Ⅰ)由题意可得,随机变量ξ的取值是2、3、4、6、7、10. 随机变量ξ的概率分布列如下ξ2 3 4 6 7 10 P0.090.240.160.180.240.09随机变量ξ的数学期望ξE =2×0.09+3×0.24+4×0.16+6×0.18+7×0.24+10×0.09=5.2.(19) (满分12分)方法一解: (Ⅰ)记AC 与BD 的交点为O,连接OE,∵O 、M 分别是AC 、EF 的中点,ACEF 是矩形, ∴四边形AOEM 是平行四边形,∵⊂OE 平面BDE , ⊄AM 平面BDE , ∴AM ∥平面BDE.(Ⅱ)在平面AFD 中过A 作AS ⊥DF 于S ,连结BS , ∵AB ⊥AF , AB ⊥AD , ,A AF AD =I ∴AB ⊥平面ADF ,∴AS 是BS 在平面ADF 上的射影, 由三垂线定理得BS ⊥DF.∴∠BSA 是二面角A —DF —B 的平面角. 在RtΔASB 中,,2,36==AB AS ∴,60,3tan ︒=∠=∠ASB ASB∴二面角A —DF —B 的大小为60º.(Ⅲ)设CP=t (0≤t≤2),作PQ ⊥AB 于Q ,则PQ ∥AD , ∵PQ ⊥AB ,PQ ⊥AF ,A AF AB =I , ∴PQ ⊥平面ABF ,⊂QF 平面ABF , ∴PQ ⊥QF.在RtΔPQF 中,∠FPQ=60º, PF=2PQ.∵ΔPAQ 为等腰直角三角形, ∴).2(22t PQ -=又∵ΔPAF 为直角三角形, ∴1)2(2+-=t PF ,∴).2(2221)2(2t t -⋅=+- 所以t=1或t=3(舍去) 即点P 是AC 的中点.方法二(Ⅰ)建立如图所示的空间直角坐标系. 设N BD AC =I ,连接NE , 则点N 、E 的坐标分别是()0,22,22、(0,0,1), ∴NE=()1,22,22--, 又点A 、M 的坐标分别是(0,2,2)、()1,22,22 ∴ AM=()1,22,22--∴NE=AM 且NE 与AM 不共线,∴NE ∥AM.又∵⊂NE 平面BDE , ⊄AM 平面BDE , ∴AM ∥平面BDF.(Ⅱ)∵AF ⊥AB ,AB ⊥AD ,AF ,A AD =I ∴AB ⊥平面ADF .∴)0,0,2(-=AB 为平面DAF 的法向量.∵NE·DB=()1,22,22--·)0,2,2(-=0, ∴NE·NF=()1,22,22--·)0,2,2(=0得 NE ⊥DB ,NE ⊥NF ,∴为平面BDF 的法向量. ∴cos<AB,NE>=21 ∴与的夹角是60º.即所求二面角A —DF —B 的大小是60º.(Ⅲ)设P(t,t,0)(0≤t≤2)得),1,2,2(t t PF --=∴CD=(2,0,0) 又∵PF 和CD 所成的角是60º. ∴21)2()2(2)2(60cos 22⋅+-+-⋅-=︒t t t解得22=t 或223=t (舍去), 即点P 是AC 的中点.(20)(满分12分)解:(Ⅰ)因为,)()(x xe e xf ---='='x-故切线l 的方程为).(t x e e y t t --=---即0)1(=+-+--t e y x e t t .(Ⅱ)令y=0得x=t+1,又令x=0得)1(+=-t e y t 所以S (t )=)1()1(21+⋅+-t e t t =t e t -+2)1(21 从而).1)(1(21)(t t e t S t +-='- ∵当∈t (0,1)时,)(t S '>0,当∈t (1,+∞)时,)(t S '<0,所以S(t)的最大值为S(1)=e 2 (21) (满分12分)解: (Ⅰ)由条件得直线AP 的方程),1(-=x k y即.0=--k y kx因为点M 到直线AP 的距离为1,∵,112=+-k kmk即221111k k k m +=+=-. ∵],3,33[∈k ∴,21332≤-≤m 解得332+1≤m ≤3或--1≤m ≤1--332. ∴m 的取值范围是].3,3321[]3321,1[+--Y (Ⅱ)可设双曲线方程为),0(1222≠=-b by x 由),0,1(),0,12(A M + 得2=AM .又因为M 是ΔAPQ 的内心,M 到AP 的距离为1,所以∠MAP=45º,直线AM 是∠PAQ 的角平分线,且M 到AQ 、PQ 的距离均为1.因此,1,1-==AQ AP k k (不妨设P 在第一象限)直线PQ 方程为22+=x .直线AP 的方程y=x-1, ∴解得P 的坐标是(2+2,1+2),将P 点坐标代入1222=-b y x 得, 32122++=b所以所求双曲线方程为,112)32(22=++-y x即.1)122(22=--y x (22)(满分14分)解:(Ⅰ)因为43,21,153421=====y y y y y , 所以2321===a a a ,又由题意可知213+++=n n n y y y ∴321121++++++=n n n n y y y a =221121++++++n n n n y y y y =,2121n n n n a y y y =++++ ∴{}n a 为常数列.∴.,21*∈==N n a a n (Ⅱ)将等式22121=++++n n n y y y 两边除以2,得 ,124121=++++n n n y y y 又∵2214++++=n n n y y y ∴.414n n y y -=+(Ⅲ)∵)41()41(44444841n n n n n y y y y b ---=-=+++- )(41444n n y y --=+ ,41n b -= 又∵,041431≠-=-=y y b ∴{}n b 是公比为41-的等比数列.。
2004高考数学试题(全国1理)及答案
2004年高考试题全国卷Ⅰ理参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60 1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于 ( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线;②两条互相垂直的直线;③同一条直线; ④一条直线及其外一点;在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间. 20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小. 21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a 2)内为增函数,在区间(-a2,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分. (I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA BC GA θ 所以所求二面角的大小为772arccos-π .解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k , 所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k =2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2004年高考理科数学全国卷(word版含答案)
2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。
1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)=I B 7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。
04本科成人高考数学试题答案
本科成人高考数学参考答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题不给中间分.一、选择题1—5 DADAB 6—10 ACBCC 11—12 BB二、填空题13.22(2)10x y -+=14.0.25415.—116.(,2ln 22]-∞-三、解答题17.解:(I )由正弦定理得,22sin sin cos A B A A +=,即22sin (sin cos )B A A A +=故sin ,b B A a ==所以………………6分(II )由余弦定理和222,cos c b B =+=得由(I )知222,b a =故22(2.c a =可得21cos ,cos 0,cos 452B B B B =>==又故所以 …………12分 18.解:(I )由条件知PDAQ 为直角梯形因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD.又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC.在直角梯形PDAQ 中可得DQ=PQ=2PD ,则PQ ⊥QD 所以PQ ⊥平面DCQ. ………………6分(II )设AB=a .由题设知AQ 为棱锥Q —ABCD 的高,所以棱锥Q —ABCD 的体积311.3V a =由(I )知PQ 为棱锥P —DCQ 的高,而,△DCQ2, 所以棱锥P —DCQ 的体积为321.3V a = 故棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值为1.…………12分19.解:(I )设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A=“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个;(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).而事件A 包含1个基本事件:(1,2). 所以1().6P A = ………………6分 (II )品种甲的每公顷产量的样本平均数和样本方差分别为:222222221(403397390404388400412406)400,81(3(3)(10)4(12)0126)57.25.8x S =+++++++==+-+-++-+++=甲甲 ………………8分品种乙的每公顷产量的样本平均数和样本方差分别为:2222222221(419403412418408423400413)412,81(7(9)06(4)11(12)1)56.8x S =+++++++==+-+++-++-+=乙乙 ………………10分由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.20.解:(I )()12.b f x ax x'=++ …………2分 由已知条件得(1)0,10,(1) 2.12 2.f a f a b =+=⎧⎧⎨⎨'=++=⎩⎩即 解得1, 3.a b =-= ………………5分(II )()(0,)f x +∞的定义域为,由(I )知2()3ln .f x x x x =-+设2()()(22)23ln ,g x f x x x x x =--=--+则 3(1)(23)()12.x x g x x x x-+'=--+=-01,()0;1,()0.()(0,1),(1,).x g x x g x g x ''<<>><+∞当时当时所以在单调增加在单调减少而(1)0,0,()0,()2 2.g x g x f x x =>≤≤-故当时即 ………………12分21.解:(I )因为C 1,C 2的离心率相同,故依题意可设22222122242:1,:1,(0)x y b y x C C a b a b a a+=+=>> 设直线:(||)l x t t a =<,分别与C 1,C 2的方程联立,求得((A t B t ………………4分当1,,,22A B e b a y y ==时分别用表示A ,B 的纵坐标,可知 222||3||:||.2||4B A y b BC AD y a === ………………6分 (II )t=0时的l 不符合题意.0t ≠时,BO//AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN 相等,即a b t t a=- 解得222221.ab e t a a b e-=-=-⋅-因为221||,01,1, 1.e t a e e e-<<<<<<又所以所以当02e <≤时,不存在直线l ,使得BO//AN ;当12e <<时,存在直线l 使得BO//AN. ………………12分 22.解:(I )因为EC=ED ,所以∠EDC=∠ECD.因为A ,B ,C ,D 四点在同一圆上,所以∠EDC=∠EBA.故∠ECD=∠EBA ,所以CD//AB. …………5分(II )由(I )知,AE=BE ,因为EF=FG ,故∠EFD=∠EGC从而∠FED=∠GEC.连结AF ,BG ,则△EFA ≌△EGB ,故∠FAE=∠GBE ,又CD//AB ,∠EDC=∠ECD ,所以∠FAB=∠GBA.所以∠AFG+∠GBA=180°.故A ,B ,G ,F 四点共圆 …………10分23.解:(I )C 1是圆,C 2是椭圆.当0α=时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a ,0),因为这两点间的距离为2,所以a =3.当2πα=时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(II )C 1,C 2的普通方程分别为22221 1.9x x y y +=+=和 当4πα=时,射线l 与C 1交点A 1的横坐标为2x =,与C 2交点B 1的横坐标为x '= 当4πα=-时,射线l 与C 1,C 2的两个交点A 2,B 2分别与A 1,B 1关于x 轴对称,因此, 四边形A 1A 2B 2B 1为梯形.故四边形A 1A 2B 2B 1的面积为(22)()2.25x x x x ''+-= …………10分 24.解: (I )3,2,()|2||5|27,25,3, 5.x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩当25,327 3.x x <<-<-<时所以3() 3.f x -≤≤ ………………5分(II )由(I )可知,当22,()815x f x x x ≤≥-+时的解集为空集;当225,()815{|55}x f x x x x x <<≥-+≤<时的解集为; 当25,()815{|56}x f x x x x x ≥≥-+≤≤时的解集为.综上,不等式2()815{|56}.f x x x x x ≥-+≤≤的解集为 …………10分。
2004年普通高等学校招生全国统一考试(天津卷)数 学(理工类)
2004年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分第一卷(选择题)和第二卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么)()()(B P A P B A P +=+ 如果事件A 、B 相互独立,那么)()()(B P A P B A P ⋅=⋅ 柱体(棱柱、圆柱)的体积公式Sh V =柱体 其中S 表示柱体的底面积,h 表示柱体的高一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. i 是虚数单位,3)2)(1(ii i ++-=( )A. i +1B. i --1C. i 31+D. i 31-- 2. 不等式21≥-xx 的解集为( ) A. )0,1[- B. ),1[∞+-C. ]1,(--∞D. ),0(]1,(∞+--∞3.若平面向量与向量)2,1(-=的夹角是︒180,且53||=,则= ( )A. )6,3(-B. )6,3(-C. )3,6(-D. )3,6(-4. 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF ( ) A. 1或5B. 6C. 7D. 95.若函数log )(=x x f aA.42中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于( )A. 510B. 515C.54 D.32 7. 若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是 ( )A. 03=--y xB. 032=-+y xC. 01=-+y xD. 052=--y x8. 已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a为等差数列”的( )A. 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要条件9. 函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是( )A. ]3,0[πB. ]127,12[ππC. ]65,3[ππD. ],65[ππ10. 如图,在长方体1111D C B A ABCD -中,AB =6,AD =4,31=AA 。
2004年普通高等学校招生全国统一考试数学试卷(全国卷.理)
读一切好书,就是和许多高尚的人谈话。
——笛卡尔web试卷生成系统谢谢使用一、填空题(每空?分,共?分)1、已知函数的最小正周期为3,则A= .2、设满足约束条件:则的最大值是.二、选择题(每空?分,共?分)3、在△ABC中,AB=3,BC=,AC=4,则边AC上的高为A. B. C.D.4、设集合U={1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M∩(U N)=(A){5} (B){0,3} (C){0,2,3,5}(D) {0,1,3,4,5}5、函数的反函数为(A)(B)(C)(D)6、正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为(A)(B)(C)(D)7、函数在处的导数等于(A)1 (B)2 (C)3 (D)48、为了得到函数的图像,可以把函数的图像(A)向左平移3个单位长度(B)向右平移3个单位长度(C)向左平移1个单位长度(D)向右平移1个单位长度9、等差数列中,,则此数列前20项和等于(A)160 (B)180 (C)200(D)22010、已知函数的图象有公共点A,且点A的横坐标为2,则(A)(B)(C)(D)11、已知圆C的半径为2,圆心在轴的正半轴上,直线与圆C相切,则圆C的方程为(A )(B )(C )(D )12、从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有(A)210种(B)420种(C)630种(D)840种13、函数的最小值等于(A)-3 (B)-2 (C)-1 (D)-14、已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平面ABC的距离为(A)1 (B)(C ) (D)215、△ABC中,a、b、c分别为∠A、∠B、∠C的对边.如果a、b、c成等差数列,∠B=30°,△ABC 的面积为,那么b=A.B. C.D.16、已知函数(A)(B)-(C)2 (D)-217、函数的反函数是A. B.C. D.18、的展开式中常数项是(A)14 (B)-14 (C)42 (D)-4219、设若则=A. B. C. D.420、设抛物线的准线与轴交于点Q,若过点Q的直线与抛物线有公共点,则直线的斜率的取值范围是A. B.[-2,2] C.[-1,1] D.[-4,4]21、已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H,设四面体EFGH的表面积为T ,则等于A. B. C. D.22、从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是A. B. C.D.三、计算题(每空?分,共?分)23、已知数列{}为等比数列,(Ⅰ)求数列{}的通项公式;(Ⅱ)设是数列{}的前项和,证明24、已知直线为曲线在点(1,0)处的切线,为该曲线的另一条切线,且(Ⅰ)求直线的方程;(Ⅱ)求由直线、和轴所围成的三角形的面积.25、双曲线的焦距为2c ,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e的取值范围.参考答案一、填空题1、3/22、2二、选择题3、B4、B5、C6、A7、D8、D9、B10、A11、D12、B13、C14、A15、B16、B17、B18、A19、B20、C21、A22、C三、计算题23、解:(I)设等比数列{a n}的公比为q,则a2=a1q, a5=a1q4.a1q=6,依题意,得方程组a1q4=162.解此方程组,得a1=2, q=3.故数列{a n}的通项公式为a n=2・3n-1.(II)24、解:(Ⅰ)y′=2x+1.直线l1的方程为y=3x-3.设直线l2过曲线y=x2+x-2上的点B(b, b2+b-2),则l2的方程为y=(2b+1)x-b2-2 因为l1⊥l2,则有2b +1=所以直线l2的方程为(II)解方程组得所以直线l1和l2的交点的坐标为l1、l2与x轴交点的坐标分别为(1,0)、.所以所求三角形的面积25、解:直线的方程为,即由点到直线的距离公式,且,得到点(1,0)到直线的距离,同理得到点(-1,0)到直线的距离由即于是得解不等式,得由于所以的取值范围是读一切好书,就是和许多高尚的人谈话。
2004年成人高考数学试题及答案(高起点理工类)
2004年成人高考数学试题及答案(高起点理工类)1.医院最适宜的音响(35_45dB)2.最大安全的氧浓度(40%)3.溃疡性结肠炎患者不宜干嘛(不宜多吃粗纤维的食物)5.亚行心内膜炎采血(10—15ml)6.链霉素中毒易出现什么症状(耳聋-肾衰)7.肌力能抬离床面,但不能对抗阻力是几级(3级)8.当环境温度大于人体温度,主要以什么散热方式(蒸发)9.低胆固醇是少于多少(300mg)10.空气栓塞的摆放体位(左侧头低脚高位)11.异位妊娠最主要的好发部位(输卵管妊娠)13.左心衰最早出现的症状(呼吸困难)14.嗪氯噻嗪类的利尿剂易出现什么(低钾)15.最常见的异位节律(室性期前收缩)16.高血压危象首选什么药物(硝普钠)18.肾盂肾炎经什么感染(上行感染)19.缩窄性心包炎中最常见的是(结核性心包炎)22.肝硬化最严重的并发症(肝性脑病)23.蛋白尿是指尿蛋白超过多少(150mg)24.肾病综合征最常见的症状(水肿)25.医院性获得肺炎除什么菌(l绿脓杆菌)27.再生障碍性贫血的主要死因(颅内出血)28.小儿白血病以什么多见(急淋29.DKA首要干嘛(输液)30.SLE治疗首选什么药(糖皮质激素)31.术后切口裂开时间与啥时(A.3天B.5天C.7天,不知道答案是什么。
书上也没确定的)32.一侧的喉返神经损伤将出现什么症状(声音嘶哑)34.腹膜炎最主要的体征(腹膜刺激征)36.颅内压增高高于多少(200mmHg)40.导尿管几天换一次(7天)41.最严重的输血反应(溶血反应)42.败血症属于什么热型(驰张热)二.判断题(15分)1.右侧支气管粗短,易入异物。
(对)2.肝癌难以确诊,不治疗在半年内死亡。
(对)3.袖带缠着的紧,袖带宽,血压低。
(对)4.伤寒属于肠道传播的疾病。
(对)5.贫血的定义。
(错,应该是单位容积的血液中)6.对痉挛发作患者进行按摩。
(错)7.肝性昏迷的患者长期处于昏睡和精神错乱是在昏迷前期。
2004年全国高考理科数学试题及答案-安徽
2004年高考试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。
1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( ) A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-426.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径C .A ∩(I C B)=φD .(I C A)∪(I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 为P ,则||2PF =( )A .23B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH的表面积为T ,则ST等于( )A .91B .94C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513B .12516C .12518D .1251912.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线,已知某一时刻A 、B 占线的概率均为0.5,C 、D 占线的概率均为0.4,各部是否占线相互之间没有影响.假设该时刻有ξ部占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小. 21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到:,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=于是有所以θ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FGBC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+=Y Θ的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得Θ 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3.a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k , 所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k =2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1.{a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2004高考数学全国卷及答案理
2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共601.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 为P ,则||2PF =( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH的表面积为T ,则ST等于( )A .91B .94C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间. 20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=BC PB 于是有所以θ的夹角,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772cos -==θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2004年普通高等学校招生全国统一考试(天津卷)数 学(理工类)
2004年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分第一卷(选择题)和第二卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么)()()(B P A P B A P +=+ 如果事件A 、B 相互独立,那么)()()(B P A P B A P ⋅=⋅ 柱体(棱柱、圆柱)的体积公式Sh V =柱体 其中S 表示柱体的底面积,h 表示柱体的高一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. i 是虚数单位,3)2)(1(ii i ++-=( )A . i +1B . i --1C . i 31+D . i 31-- 2. 不等式21≥-xx 的解集为( ) A . )0,1[- B . ),1[∞+-C . ]1,(--∞D . ),0(]1,(∞+--∞Y3.若平面向量与向量)2,1(-=的夹角是︒180,且53||=,则= ( )A . )6,3(-B . )6,3(-C . )3,6(-D . )3,6(-4. 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF ( )A . 1或5B . 6C . 7D . 95.若函数log )(=x f aA .42ABCD 的中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于 ( ) A . 510 B .515C .54 D . 32 7. 若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是 ( )A . 03=--y xB . 032=-+y xC . 01=-+y xD . 052=--y x8. 已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a为等差数列”的( )A . 必要而不充分条件B . 充分而不必要条件C . 充要条件D . 既不充分也不必要条件9. 函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是( )A . ]3,0[πB . ]127,12[ππC . ]65,3[ππD . ],65[ππ10. 如图,在长方体1111D C B A ABCD -中,AB=6,AD=4,31=AA 。
2004年高考试题全国卷1理科数学及答案(必修+选修Ⅱ河南河北山东山西安徽江西)
2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共601.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )球的表面积公式S=42R π其中R 表示球的半径,球的体积公式V=334R π, 其中R 表示球的半径A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91 B .94C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数ax e x x f 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212si n 41)c o s si n 1(21)c o s si n 1(2c o s si n 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23.21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分.解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以 双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a aa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2004年高考数学理试题(全国1卷)及答案
2004年高考试题全国卷Ⅰ理参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B )如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n(k )=C P k (1-P )n -k一、选择题:本大题共12小题,每小题6分,共601.(1-i )2·i =()A .2-2iB .2+2iC .-2D .22.已知函数()A .bB .-bC .D .-3.已知、均为单位向量,它们的夹角为60°,那么|+3|=()A .B .C .D .44.函数的反函数是()A .y =x 2-2x +2(x <1)B .y =x 2-2x +2(x ≥1)C .y =x 2-2x (x <1)D .y =x 2-2x (x ≥1)5.的展开式中常数项是()A .14B .-14C .42D .-426.设A 、B 、I 均为非空集合,且满足A B I ,则下列各式中错误的是()A .(A )∪B =I B .(A )∪(B )=IC .A ∩(B )=D .(A )(B )=B7.椭圆的两个焦点为F 1、F 2,过F 1作垂直于x轴的直线与椭圆相交,一个交点为P ,则=A .B .C .D .4球的表面积公式S =4其中R 表示球的半径,球的体积公式V =,其中R 表示球的半径8.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l 的斜率的取值范围是A.[-,]B.[-2,2]C.[-1,1]D.[-4,4]9.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度10.已知正四面体A B C D的表面积为S,其四个面的中心分别为E、F、G、H.设四面体E F G H 的表面积为T,则等于()A.B.C.D.11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为()A.B.C.D.12.的最小值为()A.-B.-C.--D.+二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.不等式|x+2|≥|x|的解集是.14.由动点P向圆x2+y2=1引两条切线P A、P B,切点分别为A、B,∠A P B=60°,则动点P 的轨迹方程为.15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是.①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点;在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数的最小正周期、最大值和最小值. 18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知求函数的单调区间.20.(本小题满分12分)如图,已知四棱锥P—A B C D,P B⊥A D侧面P A D为边长等于2的正三角形,底面A B C D 为菱形,侧面P A D与底面A B C D所成的二面角为120°.(I)求点P到平面A B C D的距离,(I I)求面A P B与面C P B所成二面角的大小.4 21.(本小题满分12分)设双曲线C:相交于两个不同的点A、B.(I)求双曲线C的离心率e的取值范围:(I I)设直线l与y轴的交点为P,且求a的值.22.(本小题满分14分)已知数列,且a2k=a2k-1+(-1)K,a2k+1=a2k+3k,其中k=1,2,3,…….(I)求a3,a5;(I I)求{a n}的通项公式.2004年高考试题全国卷1理科数学(必修+选修Ⅱ)参考答案一、选择题D B C B A B C C B A D B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x|x≥-1}14.x2+y2=415.16.①②④三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:所以函数f(x)的最小正周期是π,最大值是,最小值是.18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=×0.52×0.62+×0.52×0.4×0.6=0.3P(ξ=2)=×0.52×0.62+×0.52×0.4×0.6+×0.52×0.42=0.37.P(ξ=3)=×0.52×0.4×0.6+×0.52×0.42=0.2P(ξ=4)=0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:ξ01234P0.090.30.370.20.04所以Eξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f(x)的导数:(I)当a=0时,若x<0,则<0,若x>0,则>0.所以当a=0时,函数f(x)在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数.(I I)当由所以,当a>0时,函数f(x)在区间(-∞,-)内为增函数,在区间(-,0)内为减函数,在区间(0,+∞)内为增函数;(I I I)当a<0时,由2x+a x2>0,解得0<x<-,由2x+a x2<0,解得x<0或x>-.所以当a<0时,函数f(x)在区间(-∞,0)内为减函数,在区间(0,-)内为增函数,在区间(-,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I)解:如图,作P O⊥平面A B C D,垂足为点O.连结O B、O A、O D、O B与A D交于点E,连结P E.∵A D⊥P B,∴A D⊥O B,∵P A=P D,∴O A=O D,于是O B平分A D,点E为A D的中点,所以P E⊥A D.由此知∠P E B为面P A D与面A B C D所成二面角的平面角,∴∠P E B=120°,∠P E O=60°由已知可求得P E=∴P O=P E·s i n60°=,即点P到平面A B C D的距离为.(I I)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于D A..连结A G.又知由此得到:所以等于所求二面角的平面角,于是所以所求二面角的大小为.解法二:如图,取P B的中点G,P C的中点F,连结E G、A G、G F,则A G⊥P B,F G//B C,F G=B C.∵A D⊥P B,∴B C⊥P B,F G⊥P B,∴∠A G F是所求二面角的平面角.∵A D⊥面P O B,∴A D⊥E G.又∵P E=B E,∴E G⊥P B,且∠P E G=60°.在R t△P E G中,E G=P E·c o s60°=.在R t△P E G中,E G=A D=1.于是t a n∠G A E==,又∠A G F=π-∠G A E.所以所求二面角的大小为π-a r c t a n.21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分.解:(I)由C与t相交于两个不同的点,故知方程组有两个不同的实数解.消去y并整理得(1-a2)x2+2a2x-2a2=0.①双曲线的离心率(I I)设由于x1+x2都是方程①的根,且1-a2≠0,22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I)a2=a1+(-1)1=0,a3=a2+31=3.a4=a3+(-1)2=4,a5=a4+32=13,所以,a3=3,a5=13.(I I)a2k+1=a2k+3k=a2k-1+(-1)k+3k,所以a2k+1-a2k-1=3k+(-1)k,同理a2k-1-a2k-3=3k-1+(-1)k-1,……a3-a1=3+(-1).所以(a2k+1-a2k-1)+(a2k-1-a2k-3)+…+(a3-a1)=(3k+3k-1+…+3)+[(-1)k+(-1)k-1+…+(-1)],由此得a2k+1-a1=(3k-1)+[(-1)k-1],于是a2k+1=a2k=a2k-1+(-1)k=(-1)k-1-1+(-1)k=(-1)k=1. {a n}的通项公式为:当n为奇数时,a n¬=当n为偶数时,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
☆☆☆☆☆☆☆☆宝克振ISO9001:2008体系文件☆☆☆☆☆☆☆☆1、认真贯彻执行国家有关劳动人事部门的有关方针、政策、法令和指示,组织制定计划,经公司领导批准后实施;2、全面负责人事部工作,掌握业务范围,拟订本部门的工作计划,定期召开例会,布置、检查、总结工作,重大事项及时向有关领导汇报并共同研究、讨论决定;3、组织本部门人员的业务学习,提高人事管理水平和业务能力,加强对本部门员工的思想教育,团结本部门员工,调动每个人的工作积极性,保证完成各项工作任务;4、对分配给本部门的工作,定期进行检查考核,表扬先进,带动后进,搞好本部门员工队伍的建设;5、组织制定、修改、充实各项规章制度,做到管理规范化、科学化;6、根据用工计划组织招聘工作,负责调入、招聘、辞退、辞职、调出员工的审核,负责员工内部调配的审核;7、协助总经理制定工作计划,起草文件、报告、总结规划、决定、及以公司名义发出的行政公文;8、协助总经理做好公司各部门的考核、监督及协调工作,督促检查各部门工作计划的落实情况与规章制度的执行情况;9、协助总经理做好日常工作,组织、安排公司会议,做好记录,检查决议落实情况,及时汇总向公司领导汇报;10、负责公司的机要管理与保密工作;档案管理工作(各类档案资料的内部收集、整理和归档);11、负责各种公文、函电、报表等文字资料的签收、拆封、登记、呈报,传阅、催办,并做好整理归档工作;12、负责来客来访的接待工作(包括信访接待与处理);13、协助总经理组织处理公司内部各种突发性事件;14、做好员工交通、车辆管理工作;15、做好办公用品管理工作;16、做好公司印章管理工作;17、负责公司安全生产与安全保卫工作;18、完成总经理交给的其他各项工作。
☆☆☆☆☆☆☆☆宝克振ISO9001:2008体系文件☆☆☆☆☆☆☆☆1、负责本部的行政管理和日常事务,协助总经理搞好各部门之间的综合协调,落实公司规章制度,沟通内外联系,保证上情下达和下情上报,负责对会议文件决定的事项进行催办,查办和落实,负责全公司组织系统及工作职责研讨和修订;2、负责贯彻公司领导指示。
做好联络沟通工作,及时向领导反映情况、反馈信息;综合协调各部门的工作;检查和督办有关工作;3、负责公司各项规章制度的修订,制定及检查监督;4、按工作程序做好与相关部门的横向联系,并及时对部门间争议提出界定要求;5、及时准确传达上级指示;受理下级上报的合理化建议,按照程序处理;6、负责组织策划公司的重大公关和庆典活动;7、组织、安排公司会议,或会同有关部门筹备有关重要活动,做好会议记录,整理各项会议记要,并将有关的会议任务传达到有关部门,并跟踪落实到位;8、负责公司来往文件和信函的收发、登记、传阅、拟办,做好公文的拟订、审核、印刷、传递、催办和检查及文书档案资料的归档管理的工作;9、负责公司办公用品的管理,包括公司办公用品采购联审、发放、使用登记、保管、维护管理工作,负责传真机、复印机、长途电话、计算机、空调的管理和使用,控制审核公司办公费用;10、负责公司车辆调度、管理、维修、保养工作,监督各部门有计划的安排用车,满足公司业务用车的合理要求;11、协调公司各部门之间的关系,组织公司各部门的信息传递工作,保证各部门信息沟通顺畅,协调各部门的工作行为,使工作流程顺畅,实现共同的战略目标;12、负责公司对外形象宣传,公共关系和公司企业文化建设,提炼和宣传企业理念,举办各种活动,促进员工凝聚力,保持与政府部门及相关企业的良好合作关系;13、负责内部组织管理,将部门工作计划分解到个人,并监督工作计划完成情况;14、负责公司劳动年审,社保的年审及每月人员增减月报表的办理;15、负责公司内部治安管理工作,预防犯罪和安全事故的发生;16、负责公司的水电管理工作及公司基础设施、设备维修保养管理工作;17、负责公司人力资源工作的规划、建立、执行招聘、培训、考勤、劳动纪律等人事程序或规章制度;18、其他突发事件的管理和总经理交办的工作。
☆☆☆☆☆☆☆☆宝克振ISO9001:2008体系文件☆☆☆☆☆☆☆☆1.负责日常考勤工作:包括打卡、早退、迟到、旷工、请假、出差等考勤、异常情况处理,录入请假、出差单、调休单等;2.负责考勤公报:每月8号之前必须将上月考勤公布。
负责工龄统计。
负责统计工衣领用名单并做好记录;3.负责员工入职和离职手续办理,劳动合同的签订,和试用期员工转正通知等;负责公司人员花名册的统计录入,办理厂牌等;4.打印及发放通知,公告、联络单等行政文件;5.负责收集报告和会议通知,按时将各部门工作总结和工作计划收集后上交并提供未交者名单给总经理;6.负责工资核算。
每月20号前将上月工资表核算好后交财务部审核;7、工资核算、员工考勤必须做到按时准确无误完成;8、完成上级交办的其他工作。
☆☆☆☆☆☆☆☆宝克振ISO9001:2008体系文件☆☆☆☆☆☆☆☆1 负责前台服务接听电话转接,重要事项认真记录并传达给相关人员,不遗漏、延误;拨出外线电话需在每日拔出电话明细表上登记清楚;2.负责来访人员的接待、基本咨询和引见,严格执行公司的接待服务规范,保持良好的礼节礼貌;协助公司办公室门禁管理,外来人员事务须联系相关办公室人员到一楼洽谈(与董事长或总经理联系好的客人、参观样品客户、财务交钱等除外)。
重要客人来访,要及时知会被访人员,并引领客人到二楼接待室就座;3.负责公司前台接待处的卫生清洁、桌椅摆放和花草剪修;监督鱼池水位,按时申购和投放鱼食;4.负责新员工面试接待,组织填写员工履历表并审查资料证件的真实性,将新员工资料证件进行收集、整理并办理入职手续;5.负责公司协助财务办理员工离职手续(如回收厂证,员工手册,及审查放行条等。
)办理办公室门禁权限;6.协助车辆管理:负责用车申请单录入电脑,核对公里数是否有误,私用单需单独整理好。
备份电子档和文字档;7.负责外来文件接收转交,妥善移交到部门或个人;8.负责办公用品管理:每月28号前完成办公用品的申购统计、呈报审批:每月10号处理办公用品的领用.协助食堂和宿舍做好各项统计与费用开支的管理工作;9.完成上级交办的其他工作 .☆☆☆☆☆☆☆☆宝克振ISO9001:2008体系文件☆☆☆☆1、早上7:10将各车间、办公室大门打开,晚上等所有车间及人员下班后锁门,确保厂区下班后各大门为关闭状态。
如有节假日公司安排加班按以上执行;2.安排新员工住宿以及离职员工手续办理。
床位调整,钥匙分配以及登记备案,并介绍生活安排事项;同时兼顾公寓楼相关事项;3.负责维修保养宿舍洗浴等相关水电设施(如门锁/花洒/软管/冲水阀等相关维护);4.申购宿舍日常所需物品,以及娱乐用品的发放回收与保管,并按公司规定进行发放;5.每天22:30关闭宿舍大灯及食堂电视机;6.宿舍员工休息纪律的宣导、监督和管理。
对宿舍人员破坏设备进行处罚与扣款;7.每月抄记全厂水电表的用量(佳宝公司水电表,小店水电表)核算后报于行政部、财务部,并催促外租店面及时交租;8.负责太阳能的合理使用及维护,每周配合电工检查太阳能一次;9.每天不定时查房并检查各宿舍相关情况,如有异常报于行政部;10.闭路电视器材的管理与安装,雷雨天视情况将其关闭;11.负责前台大厅与董事长办公室、住宿、鱼缸的维护,负责老板的猫、狗、鸟的喂养工作;12.负责协助食堂卫生管理及公司绿化,为树木除虫.打药;13.负责公司宿舍网络登记查检以及安装与撤消;14.完成上级交办的其它事项。
☆☆☆☆☆☆☆☆宝克振ISO9001:2008体系文件☆☆☆☆☆☆☆1.严格遵守公司员工守则和各项规章制度,服从领导安排,执行本岗位的安全操作规程,对本岗位的安全生产负责;2.负责发电机、配电房、空压机、太阳能热水等电气设备的日常维护、保养、巡回检查工作,并做好相关记录;保证电气设备正常运作;3.负责公司水电安装、维修工作,对水电、通道设施熟练掌握,保证公司用电,用水正常;4.努力学习技术,熟练掌握公司电气设备的原理及实际操作与维修;5.熟悉设备的结构性能,技术规范和有关操作规程;6.掌握设备的运行的情况,技术状况的缺陷情况;有异常时及时报告;7.按时准确地做好各种记录报表,核算电量;8.保管好备用品、工具、表计、做好所负责工作区的6S工作;9.拒绝违章作业指令,对他人违章行为要加以劝告和制止;10.不论任何时间,要做到随叫随到,对各部门需求耐心细致,完成事务,讲究轻重缓急;11.完成上级临时交办的其它工作任务。
☆☆☆☆☆☆☆☆宝克振ISO9001:2008体系文件☆☆☆☆☆☆☆☆1.维护厂区秩序、人员及财务的安全,制止各种违纪或暴力行为,应对各类灾害事故的发生;2.对来访人员,经核实,有礼貌的进行接待,并为来宾进行登记;3.对到厂的送货车辆,进厂时进行检查和登记,出厂时凭出门条再次进行检查和登记,并告知车辆要停放在允许停车位置,车辆不能开进生产车间;4.上班时间或员工离职时应检查其是否带出门条。
对下班员工过安全门打卡进行核查和监督;5.定期检查厂区消防设施及安全预防,维护工作;此项由王忠进负责(每月23-25日进行检查);6.带头执行公司各种管理制度,并监督员工遵守安全守则及其他管理制度,实行交接班制度,以确保公司的各项安全;7.不定期对厂区进行巡逻,并作好相关记录;8.公司信件及报刊的签收工作;9.对重要客人来访或老板车辆进出要敬礼;10.夜班保安员要定时开启(早6:30)、关闭(晚12:00)公司外租小店铁栏门;11.完成上级临时交办的其它任务。
☆☆☆☆☆☆☆☆宝克振ISO9001:2008体系文件☆☆☆☆☆☆☆☆1.汽车的安全(油、水、电)保养与维护工作;2.配合保安或宿舍管理员,对突发事件的用车做到及时到位;3.负责车辆的维修事宜;更换零配件需经董事长、总经理核实后方可进行;4.根据派车单进行用车,尽量估到一车多用,不得为个人谋方便。
未经批准,不可搭乘无关人员;5.每日填写行车日志;认认真真写维修、加油记录;6.负责车辆的清洁工作,(包括车内、车外和引擎等的清洁);不定期,但车辆如有脏污,要及时清理清洁;7.报销车辆所过之路桥费收据、发票要保持完整,必要时需补充说明;8.出车过程中,有违反交通规则导致罚款行为,由本人承担。
9.未经允许,车辆不能交与其他无关人员驾驶,如发生事故等,由驾驶员本人承担;☆☆☆☆☆☆☆☆宝克振ISO9001:2008体系文件☆☆☆☆☆☆☆☆。