(北师大版)九年级下数学期中试题_4份
北师大版九年级中考数学模拟考试试题(含答案)
九年级中考数学模拟试卷(满分150分 时间120分钟)一.单选题。
(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×1074.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx-1的图象向上平移2个单位长度后经过点(2,3),则k的值是()A.1B.﹣1C.﹣2D.29.如图,在△ABC中,AB=AC=2BC=4,以点B为圆心,BC长为半径画弧,与AC交于点D,则线段CD的长为()A.12B.1 C.43D.210.二次函数y=﹣x2+2x+8的图像与x轴交于B,C两点,点D平分BC,若在x轴上侧的A点为抛物线的动点,且∠BAC为锐角,则AD的取值范围是()A.3<AD≤9B.3≤AD≤9C.4<AD≤10D.3≤AD≤8二.填空题。
(共24分)11.因式分解:m2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是.(第12题图)(第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为.14.已知m是关于x的方程x2-2x-3=0的一个根,则m2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x表示餐桌的张数,y表示椅子的把数,请你写出椅子数y(把)与餐桌数x(张)之间的函数关系式.(第15题图)(第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。
【北师大新版】2022-2023学年九年级下册数学期中调研试卷(含解析)
【北师大新版】2022-2023学年九年级下册数学期中调研试卷一.选择题(共12小题,满分36分,每小题3分)1.已知x+2y与x+4互为相反数,则x+y的值为()A.﹣4B.﹣1C.﹣2D.22.手机已逐渐成为人们日常通讯的主要工具,其背后离不开通讯运营商的市场支持,如图展现的是我国四大通讯运营商的企业图标,其中是轴对称图形的是()A.B.C.D.3.五边形ABCDE中,∠A、∠B、∠C、∠D对应的邻补角和等于215°,则∠E的度数为()A.30°B.35°C.40°D.45°4.2019年10月1日,天安门广场迎来新中国成立以来的第15次国庆阅兵.据统计,截止至当天下午6点,央视新闻置顶的“国庆阅兵”阅读数已超过34亿.数据34亿用科学记数法表示为()A.0.34×1010B.3.4×109C.3.4×108D.34×1085.下列计算正确的是()A.x3•x2=x6B.﹣(x2)4=x6C.x6÷x5=x D.x2+x3=x56.若二次根式有意义,则下列各数符合要求的是()A.8B.9C.10D.47.点A(2,﹣1)关于y轴对称的点的坐标是()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣2,1)8.若t是方程ax2+2x+c=0(a≠0)的一个根,设P=1﹣ac,Q=(at+1)2,则P与Q的大小关系正确的是()A.P<Q B.P=Q C.P>Q D.不确定9.已知完成某项工程甲组需要12天,乙组需要若干天,甲组单独工作半天后,乙组加入,两组合作2天后,甲组又单独工作了3天半,工程完工,则乙组单独完成此项工程需要的天数比甲组()A.少6天B.少8天C.多3天D.多6天10.如图是由4个全等的直角三角形与1个小正方形拼成的正方形图案.已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(a>b),则下列说法:①a2+b2=25,②a﹣b=1,③ab=12,④a+b=7.正确的是()A.①②B.①②③C.①②④D.①②③④11.在台风来临之前,有关部门用钢管加固树木(如图),固定点A离地面的高度AC=m,钢管与地面所成角∠ABC=∠α,那么钢管AB的长为()A.B.m•sinαC.m•cosαD.12.如图,在△ABC中,D是BC边上的中点,连接AD,把△ACD沿AD翻折,得到△ADC′,DC′与AB交于点E,连接BC′,若BD=BC′=2,AD=3,则△ADE的面积为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)13.南昌是国家历史文化名城,其名源于“昌大南疆,南方昌盛”之意,市内的滕王阁、八一起义纪念馆、海昏侯遗址、绳金塔、八大山人纪念馆等都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学,人数分别为:12,5,11,5,7(单位:人).这组数据的中位数是.14.若(2a+6)2+=0,求(a+b)2021的值=.15.一个不透明的袋子中装有6个红球和若干个黑球,这些球除了颜色外都相同,从袋子中随机摸出一个球是红球的概率为,则袋子中有个黑球.16.若一个正数的两个平方根为2x﹣3与x+9,则这个正数是.17.已知实数a,b,在数轴上的对应点位置如图所示,则a+b﹣20(填“>”“<”或“=”).18.如图所示的几何体都是由棱长为1个单位的正方体摆成的,经计算可得第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位,…,依次规律,则第(10)个几何体的表面积是个平方单位.三.解答题(共2小题,满分16分,每小题8分)19.计算:(﹣)﹣1﹣4cos30°﹣(π+2013)0+.20.如图,已知线段AB,用尺规作出它的垂直平分线CD,并标出线段AB的中点O.四.解答题(共2小题,满分20分,每小题10分)21.计算(1);(2)已知a、b是实数,且+=0.求a、b的值;(3)已知abc=1,求的值.22.某工程队计划招聘从事甲、乙两种工作的工人共150名,设从事甲工作的人数为x人.(1)若招聘经理说:“招聘从事乙工作的人数是从事甲工作人数的2倍.”若设从事乙工作的人数为y人,请列方程组解答从事甲、乙工作的人数各有多少人?(2)根据招聘工作人员透露:从事乙工作的人数比从事甲工作人数至少多25人,试通过列不等式的方法说明从事甲工作人数最多有多少人?五.解答题(共2小题,满分24分,每小题12分)23.已知:⊙O为Rt△ABC的外接圆,点D在边AC上,AD=AO;(1)如图1,若弦BE∥OD,求证:OD=BE;(2)如图2,点F在边BC上,BF=BO,若OD=2,OF=3,求⊙O的直径.24.已知抛物线y=ax2+bx+c(a≠0)经过点A(2,0),对称轴为y轴,直线y=kx+2k+2与抛物线交于B,C两点(B在C的左边).(1)用含a的式子表示c;(2)当BC∥x轴时,tan∠BCO=,求抛物线解析式;(3)在(2)的条件下,设△ABC的外心为点P,求证:点P不可能落在x轴下方.答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:∵x+2y与x+4互为相反数,∴x+2y+x+4=0,则2x+2y=﹣4,故x+y=﹣2.故选:C.2.解:A、不是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:B.3.解:∵∠A、∠B、∠C、∠D对应的邻补角和等于215°,即∠A、∠B、∠C、∠D各自相邻的五边形外角和等于215°,∵五边形的外角和是360°,∴∠E相邻的五边形的外角度数为:360°﹣215°=145°,∴∠E=180°﹣145°=35°.故选:B.4.解:34亿=3400000000=3.4×109.故选:B.5.解:A.x3•x2=x5,故本选项不符合题意;B.﹣(x2)4=﹣x8,故本选项不符合题意;C.x6÷x5=x,符合题意;D.x2与x3不是同类项,所以不能合并,故本选项不符合题意.故选:C.6.解:∵7﹣x≥0,∴x≤7,故选:D.7.解:A(2,﹣1)关于y轴对称的点的坐标是(﹣2,﹣1),故选:B.8.解:∵t是方程ax2+2x+c=0(a≠0)的一个根,∴at2+2t+c=0,∴c=﹣at2﹣2t,∵P=1﹣ac=1﹣a(﹣at2﹣2t)=a2t2+2at+1=(at+1)2,而Q=(at+1)2,∴P=Q.故选:B.9.解:设乙组单独完成此顶工程需要x天,依题意,得:+=1,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴12﹣x=8.故选:B.10.解:由题意可得小正方形的边长=1,大正方形的边长=5,∴a2+b2=斜边2=大正方形的面积=25,故①正确;∵小正方形的边长为1,∴a﹣b=1,故②正确;∵小正方形的面积+四个直角三角形的面积等于大正方形的面积,∴1+2ab=25,∴ab=12,故③正确;根据③可得2ab=24,∴(a+b)2=a2+b2+24=25+24=49,∴a+b=7,故④正确.综上可得①②③④正确.故选:D.11.解:由题意知树垂直于地面,所以AC⊥BC.在Rt△ABC中,∵sinα=,∴AB==.故选:D.12.解:如图,过点A作AG⊥BC于点G,过点E作EH⊥BC于点H,∵D是BC边上的中点,∴BD=CD,∵BD=BC′=2,∴BD=CD=BC′=2,由翻折可知:C′D=CD,∴BD=CD=BC′=C′D,∴△BC′D是等边三角形,∴∠C′BD=∠C′DB=60°,∴∠C′DC=120°,由翻折可知:∠C′DA=∠CDA,∴∠C ′DA =∠CDA =60°,∵AD =3,AG ⊥DC ,∴AG =AD =,∴DG =AD =,∴BG =BD +DG =2+=,∵EH ⊥BC ,∠C ′DB =60°,设DH =x ,∴EH =DH =x ,∴BH =BD ﹣DH =2﹣x ,∵EH ⊥BC ,AG ⊥BC ,∴EG ∥AG ,∴△BEH ∽△BAG ,∴=,∴=,解得x =,∴EH =x =,∵S △ABD =BD •AG =2×=3,S △BDE =BD •EH =2×=,∴S △ADE =S △ABD ﹣S △BDE =3﹣=.∴△ADE 的面积为.故选:B .二.填空题(共6小题,满分24分,每小题4分)13.解:把这组数据从小到大排列为:5,5,7,11,12,最中间的数是7,则这组数据的中位数是7.故7.14.解:∵(2a+6)2+=0,而(2a+6)2≥0,≥0,∴2a+6=0,b﹣4=0,解得a=﹣3,b=4,∴(a+b)2021=12021=1.故1.15.解:设有x个黑球,根据题意得:=,解得:x=9,经检验x=9是原方程的解,故9.16.解:由正数的两个平方根互为相反数可得:(2x﹣3)+(x+9)=0,解得x=﹣2,所以x+9=﹣2+9=7,所以这个正数是49.故49.17.解:∵a在原点左边,b在原点右边,∴﹣1<a<0,1<b<2,∴0<a+b<1,∴a+b﹣2<0.故<.18.解:第(1)个表面积=6=6×1,第(2)个表面积=18=6×3=6×(1+2),第(3)个表面积=36=6×6=6×(1+2+3),因此得出:第(10)个表面积=6×(1+2+3+4+5+6+7+8+9+10)=330,故330.三.解答题(共2小题,满分16分,每小题8分)19.解:原式=﹣2﹣4×﹣1+2=﹣3.20.解:如图,CD为所作.四.解答题(共2小题,满分20分,每小题10分)21.解:(1)=a﹣﹣a﹣=﹣﹣==;(2)由题意得:2a+6=0,b﹣=0,∴a=﹣3,b=;(3)=++∵abc=1,∴原式=++==1.22.解:(1)由题意得:,解得:,答:从事甲工作的人数为50人,从事乙工作的人数为100人;(2)从事乙工作的人数为(150﹣x)人,由题意得:150﹣x﹣x≥25,解得:x≤62.5,答:从事甲工作的人数最多有62人.五.解答题(共2小题,满分24分,每小题12分)23.(1)证明:连接AE交OD于点F,∵AB为直径,∴AE⊥BE,∵BE∥OD,∴AE⊥OD,∵AD=AO,∴AE平分∠CAB,∴OD=2OF,∵BE=2OF,∴BE=OD;(2)分别作弦BE∥OD,AH∥OF,连接AE,BH,AE与BH交于点P,由(1)得:E为的中点,同理H为的中点,∴∠HAE=∠HBE=45°,∵AB为直径,∴∠H=∠E=90°,∴AP=AH,PE=BE,∵点O为AB的中点,BE∥OD,∴EB=OD=2,∴PE=BE=2,同理AH=OF=3,∴AP=3,在Rt△ABE中,AE=5,BE=2,根据勾股定理得:AB=,则圆的直径为.24.解:(1)∵抛物线对称轴为y轴,∴b=0,∵抛物线y=ax2+bx+c(a≠0)经过点A(2,0),∴4a+c=0,∴c=﹣4a;(2)如图1,∵BC∥x轴,∴直线y=kx+2k+2与x轴平行,∴k=0,∴y=2,∵y=ax2﹣4a与直线y=2交于B、C两点,∴ax2﹣4a=2,∵tan∠BCO=,∴B(﹣2,2),C(2,2),∴8a﹣4a=2,∴a=,∴y=x2﹣2;(3)证明:将y=kx+2k+2代入y=x2﹣2,得x2﹣2kx﹣4k﹣8=0,Δ=4k2+16k+32=4(k+2)2+16>0,∴x=k±,设B(x1,y1),C(x2,y2),其中x1<x2,则x1+x2=2k,x1•x2=﹣4k﹣8,解法一:如图2,分别过点B,C作x轴的垂线,垂足为F,E,∴∠BFA=∠CEA=90°,在Rt△ABF和Rt△ACE中,tan∠BAF=||,tan∠ACE=||,∴tan∠BAF÷tan∠ACE=||÷||=||=||=||=||=||=1,∴tan∠BAF=tan∠ACE,∴∠BAF=∠ACE,又∵∠ACE+∠CAE=90°,∴∠BAF+∠CAE=90°,∴∠BAC=90°,∵点P为△ABC的外心,∴点P为BC的中点,∴点P的横坐标为==k,将x=k代入y=kx+2k+2,得点P的坐标是(k,k2+2k+2),而k2+2k+2=(k+1)2+1>0,∴点P不可能落在x轴下方.解法二:根据勾股定理得AB2=(x1﹣2)2+y12,AC2=(x2﹣2)2+y22,BC2=(x1﹣x2)2+(y1﹣y2)2,AB2+AC2=+++﹣4(x1+x2)+8=+++﹣8k+8,BC2=+++﹣2x1x2﹣2y1y2=++++8k+16﹣2(kx1+2k+2)(kx2+2k+2)=+++﹣8k+8,∴AB2+AC2=BC2,即△ABC是直角三角形,∠BAC=90°,∵点P为△ABC的外心,∴点P为BC的中点,∴点P的横坐标为==k,将x=k代入y=kx+2k+2,得点P的坐标是(k,k2+2k+2),而k2+2k+2=(k+1)2+1>0,∴点P不可能落在x轴下方.。
北师大版九年级中考数学模拟考试试题(含答案)(山东地区)
九年级中考数学模拟考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图是由8个完全相同的小正方体组成的几何体,从正面看到的形状图是()3.我国自主研发的北斗系统技术世界领先,在西昌卫星发射中心成功发射最后一颗北斗三号卫星,该卫星发射升空的速度约7100米/秒,其中“7100”用科学记数法表示为()A.7100B.0.71×104C.7.1×103D.71×1024.将一副三角板按如图所示的方式放置,则∠AOB=()A.75°B.45°C.30°D.80°(第4题图)(第6题图)(第9题图)5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,下列既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图数轴上A,B两点表示的数分别为a,b,下列结论中,错误的是()A.a+b <0B.a -b <0C.ab <0D.ab <07.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立夏和秋分的概率是( )A.12 B.16 C.13 D.34 8.函数y=ax 与y=ax -a 在同一坐标系中的大致图象是( )9.如图,在△ABC 中,∠C=90°,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知CE=3,BE=5,则AC 的长为( )A.8B.7C.6D.510.已知函数y=x 2-2ax+5,当x ≤2时,函数值随x 增大而减小,且对任意的1≤x 1≤a+1和1≤x 2≤a+1,x 1,x 2相对应的函数值为y 1,y 2,总满足|y 1-y 2|≤4,则实数a 的取值范围是( ) A.﹣1≤a ≤3 B.﹣1≤a ≤2 C.2≤a ≤3 D.2≤a ≤4 二.填空题。
【北师大版】初三数学下期中一模试题带答案(4)
一、选择题1.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )A .49B .112C .13D .162.在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同.乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是( )A .20B .15C .10D .53.在四张完全相同的卡片上.分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是( )A .14B .12C .34D .14.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是( )A .18B .38C .58D .125.设a ,b 是方程220220x x +-=的两个实数根,则22a a b ++的值为( ) A .2019 B .2020 C .2021 D .20226.学校准备举办“和谐校园”摄影作品展黛,现要在一幅长30cm ,宽20cm 的矩形作品四周外围上宽度相等的彩纸,并使彩纸的面积恰好与原作品面积相等,设彩纸的宽度为cm x ,则x 满足的方程是( )A .()()3022023020=++⨯x xB .()()30203020++=⨯x xC .()()30220223020--=⨯⨯x xD .()()30220223020++=⨯⨯x x 7.解方程2630x x -+=,可用配方法将其变形为( )A .2(3)3x +=B .2(3)6x -=C .2(3)3x -=D .2(6)3x -= 8.下列说法不正确的是( )A .打开电视剧,电视里播放《小猪佩奇》是偶然事件B .了解一批灯泡的使用寿命,适合抽样调查C .一元二次方程2210x x -+=只有一个根D .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36S =甲,20.54S =乙,甲的射击成绩稳定 9.下列说法中正确的是( )A .对角线互相垂直的四边形是菱形B .有一个角是直角的平行四边形是正方形C .有两个角相等的四边形是平行四边形D .平移和旋转都不改变图形的形状和大小10.如图,正方形ABCD ,对角线,AC BD 相交于点O ,过点D 作ODC ∠的角平分线交OC 于点G ,过点C 作CF DG ⊥,垂足为F ,交BD 于点E ,则:ADG BCE S S 的比为( )A .(21):1+B .(221):1-C .2∶1D .5∶2 11.如图所示,△ABC 是等边三角形,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则四个结论正确的是( )①点 P 在∠A 的平分线上; ②AS=AR ; ③QP //AR ; ④△BRP ≌△QSP .A .全部正确B .①②正确C .①②③正确D .①③正确 12.如图,在长方形ABCD 中,AE 平分∠BAD 交BC 于点E ,连接ED ,若ED =5,EC =3,则长方形的周长为( )A .20B .22C .24D .26二、填空题13.某次考试中,每道单项选择题有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全部做对的概率是_______.14.小丽在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加.重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到.猜猜看,小丽在4张纸片上各写下的数是__________.15.关于x 的一元二次方程2(21)0kx k x k -++=总有两个实数根,则常数k 的取值范围是________.16.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1+x 2-x 1⋅x 2=_________. 17.如果一元二次方程()()636x x x -=-的两个根是等腰三角形的两条边的长,那么这个等腰三角形的周长为__________.18.有两个全等矩形纸条,长与宽分别为11和7,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH 的周长为_______________.19.如图,在矩形ABCD 中,4cm AB =,3cm BC =,点P 为AD 上一点,将ABP 沿着BP 翻折至EBP ,PE 与CD 交于点O ,且OE OD ,则DP 的长度为______cm .20.如图,四边形ABCD 中,30,120B D ∠=︒∠=︒,且,6AB AC AD CD ⊥+=,则四边形ABCD 周长的最小值是_______________________.三、解答题21.某中学为了解九年级学生对足球、篮球、排球这三种球类运动的喜爱情况,从九年级学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制了如下两幅尚不完整的统计图.请根据两幅统计图中的信息解答下列问题:(1)求此次调查的学生总人数,并补全条形统计图.(2)若该中学九年级共有500名学生,请你估计该中学九年级学生中喜爱篮球运动的学生有多少人?(3)若从喜爱足球运动的2名男生和2名女生中随机抽取两名学生,确定为该校足球运动员的重点培养对象,请用列表或画树状图的方法求抽取的两名学生恰好为1名男生和1名女生的概率.22.某校七年级积极实施拓展性课程,计划开设“羽毛球”、“电影鉴赏”、“篮球”和“美食文化”等多个拓展性课程供学生选择,要求每位学生都自主选择其中一门拓展性课程,为此,随机调查了本校部分学生选择拓展性课程的意向,并将调查结果绘制成如下统计图表(不完整):选择意向羽毛球电影鉴赏篮球美食文化其他所占百分比a35%b20%5%根据统计图表的信息,解答下列问题:(1)求本次抽样调查的学生总人数及a,b的值;(2)将条形统计图补充完整;(3)若该校七年级共有480名学生,请估算全校选择“篮球”拓展性课程的学生人数是多少?(4)现有甲、乙两位同学选拓展性课程,他们各自从羽毛球,电影鉴赏,篮球和美食文化四个拓展性课程中任意选择一门,请画出树状图或表格,并求出他们其中一位选择了电影鉴赏,另一位选择了美食文化的概率是多少?23.(1)解方程:2450x x --=(2)已知点(2,1)P x y +与点(7,)Q x y --关于原点对称,求x ,y 的值.24.解方程:(1)2210x x +-=; (2)3(1)2(1)x x x -=-.25.如图,在四边形ABCD 中,E 、F 分别是AD ,BC 的中点,G ,H 分别是BD 、AC 的中点,依次连接E ,G ,F ,H .(1)求证:四边形EGFH 是平行四边形;(2)当AB=CD 时,EF 与GH 有怎样的位置关系?请说明理由;(3)若AB=CD ,∠ABD=20°,∠BDC=70°,则∠GEF= °.26.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:2163.故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.2.B解析:B【分析】由频率得到红色球和黑色球的概率,用总数乘以白色球的概率即可得到个数.【详解】白色球的个数是50(127%43%)15个,故选:B.【点睛】此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键. 3.C解析:C【分析】在等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,直接利用概率公式求解即可求得答案.【详解】∵等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,∴现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是:34.故选:C.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.也考查了中心对称图形的定义.4.B解析:B 【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案.【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种, 则遇到两次红灯的概率是38, 故选:B .【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.5.C解析:C【分析】由一元二次方程根与系数的关系,得到1a b +=-,然后求出22022a a +=,然后代入计算,即可得到答案.【详解】解:∵a ,b 是方程220220x x +-=的两个实数根,∴1a b +=-,22022a a +=,∴222()()a a b a a a b ++=+++2022(1)=+-2021=.故选:C .【点睛】本题考查了一元二次方程的解,根与系数的关系,解题的关键是熟练掌握运算法则,正确的进行解题.6.D解析:D【分析】由彩纸的面积恰好与原画面面积相等,即可得出关于x 的一元二次方程,此题得解.【详解】解:依题意,得()()30220223020++=⨯⨯x x .故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.B解析:B【分析】方程两边同时加6即可配方变形,由此得到答案.【详解】解:方程两边同时加上6,得2696x x -+=,∴2(3)6x -=,故选:B .【点睛】此题考查一元二次方程的配方,掌握配方法的解题方法是解题的关键.8.C解析:C【分析】根据必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差依次判断即可.【详解】解:A. 打开电视剧,电视里播放《小猪佩奇》是偶然事件,正确,不符合题意;B. 了解一批灯泡的使用寿命,适合抽样调查,正确,不符合题意;C. 一元二次方程2210x x -+=中,24440b ac ∆=-=-=,有两个相等的实数根,故原说法错误,符合题意;D. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36S =甲,20.54S =乙,甲的射击成绩稳定,正确,不符合题意; 故选:C .【点睛】本题考查必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差,注意当0∆=时,一元二次方程有两个相等的实数根.9.D解析:D【分析】根据平行四边形,菱形,正方形的判定,依据平移旋转的性质一一判断即可.【详解】解:A 、对角线互相垂直的四边形是菱形,错误.应该是对角线互相垂直平分的四边形是菱形,本选项不符合题意.B 、有一个角是直角的平行四边形是正方形,错误.应该是有一个角是直角且邻边相等的平行四边形是正方形,本选项不符合题意.C 、有两个角相等的四边形是平行四边形,错误,可能是等腰梯形.本选项不符合题意.D 、平移和旋转都不改变图形的形状和大小,正确,故选:D .【点睛】本题考查平行四边形的判定,菱形的判定,正方形的判定,平移变换,旋转变换的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.A解析:A【分析】由题意先证得DE DC =和()DOG COE ASA ∆≅∆,设2AD DC a ==,进而可用含a 的式子表示出线段AG 和BE 的长,要求:ADG BCE S S ∆∆的比值即求AG 和BE 的比值,代入即可求解.【详解】 解:正方形ABCD ,AD DC ∴=,45ODC OCD OAD ∠=∠=∠=︒,90DOC BOC ∠=∠=︒,OD OC =, DF 平分ODC ∠,22.5EDF CDF ∴∠=∠=︒,CF DG ⊥,67.5DEF DCF ∴∠=∠=︒,67.54522.5OCE ∴∠=︒-︒=︒,DE DC =,OCE ODG ∴∠=,又OD OC =,90DOC BOC ∠=∠=︒,()DOG COE ASA ∴∆≅∆,OG OE ∴=,设2AD DC a ==,则有OA OB =,2DE a =,BD =,2)BE BD DE a ∴=-=,2AG AO OG a =+=, 12ADG S AG OD ∆=,12BCE S BE OC ∆=,OD OC =,::2:2)1):1ADG BCE S S AG BE a a ∆∆∴===,故选:A .【点睛】本题主要考查了正方形的性质,角平分线的定义以及全等三角形的判定与性质,解题的关键是将两个三角形的面积比转化成两条线段的比,综合性较强.11.A解析:A【分析】因为△ABC 为等边三角形,根据已知条件可推出Rt △ARP ≌Rt △ASP ,则AR =AS ,故②正确,∠BAP=∠CAP,所以AP是等边三角形的顶角的平分线,故①正确,根据等腰三角形的三线合一的性质知,AP也是BC边上的高和中线,即点P是BC的中点,因为AQ=PQ,所以点Q是AC的中点,所以PQ是边AB对的中位线,有PQ∥AB,故③正确,又可推出△BRP≌△QSP,故④正确.【详解】解:∵PR⊥AB于R,PS⊥AC于S∴∠ARP=∠ASP=90°∵PR=PS,AP=AP∴Rt△ARP≌Rt△ASP∴AR=AS,故②正确,∠BAP=∠CAP∴AP是等边三角形的顶角的平分线,故①正确∴AP是BC边上的高和中线,即点P是BC的中点∵AQ=PQ∴点Q是AC的中点∴PQ是边AB对的中位线∴PQ∥AB,故③正确∵Q是AC的中点,∴QC=QP,∵∠C=60°,∴△QPC是等边三角形,∴PB=PC=PQ,∵PR=PS,∠BRP=∠QSP=90°,∴△BRP≌△QSP,故④正确∴全部正确.故选:A.【点睛】本题利用了等边三角形的性质:三线合一,全等三角形的判定和性质,中位线的性质,熟练掌握上述性质和判定方法是解题的关键.12.B解析:B【分析】直接利用勾股定理得出DC的长,再利用角平分线的定义以及等腰三角形的性质得出BE的长,进而得出答案.【详解】解:∵四边形ABCD是长方形,∴∠B=∠C=90°,AB=DC,∵ED=5,EC=3,∴DC==,4则AB=4,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠BEA,∴AB=BE=4,∴长方形的周长为:2×(4+4+3)=22.故选:B.【点睛】本题考查了矩形的性质、等腰三角形的判定、勾股定理等,解题关键是把握已知,整合已知得出等腰三角形,依据勾股定理求出线段长.二、填空题13.【分析】根据题意列出树状图解答即可【详解】设每道题的四个选项分别为:ABCD且这两道题都只有A选项是正确的列树状图如下:共有16种等可能的情况其中这两道题全部做对的有1种∴该同学的这两道题全部做对的解析:1 16【分析】根据题意,列出树状图解答即可.【详解】设每道题的四个选项分别为:A、B、C、D,且这两道题都只有A选项是正确的,列树状图如下:共有16种等可能的情况,其中这两道题全部做对的有1种,∴该同学的这两道题全部做对的概率是116,故答案为:1 16.【点睛】此题考查用列表法或树状图法求概率,正确理解题意列出树状图是解题的关键.14.2335或2344【分析】首先假设这四个数字分别为:ABCD且A≤B≤C≤D进而得出符合题意的答案【详解】解:四个数只能是2335或2344理由:设这四个数字分别为:ABCD且A≤B≤C≤D故A+B解析:2,3,3,5或2,3,4,4【分析】首先假设这四个数字分别为:A ,B ,C ,D 且A≤B≤C≤D ,进而得出符合题意的答案. 【详解】解:四个数只能是2,3,3,5或2,3,4,4理由:设这四个数字分别为:A ,B ,C ,D 且A≤B≤C≤D , 故A+B=5,C+D=8, (1)当A=1时,得B=4, ∵A≤B≤C≤D ,∴B=C=D=4,不合题意舍去,所以A≠1, (2)当A=2时,得B=3, (I )当C=B=3时,D=5, (II )当C >B 时,∵A≤B≤C≤D , ∴C=D=4,故综上所述:这四个数只能是:2,3,3,5或2,3,4,4. 故答案为:2,3,3,5或2,3,4,4. 【点睛】此题主要考查了应用类问题,利用分类讨论得出是解题关键.15.且【分析】根据一元二次方程根与判别式的关系及一元二次方程的定义即可得答案【详解】解:∵关于x 的一元二次方程有两个实数根∴△=-(2k+1)2-4k k≥0且k≠0解得:且k≠0故答案为:且k≠0【点解析:14k ≥-且0k ≠ 【分析】根据一元二次方程根与判别式的关系及一元二次方程的定义即可得答案. 【详解】解:∵关于x 的一元二次方程2(21)0kx k x k -++=有两个实数根,∴△=[-(2k+1)]2-4k ⨯k≥0,且k≠0, 解得:14k ≥-且k≠0. 故答案为:14k ≥-且k≠0. 【点睛】本题考查一元二次方程根的判别式和一元二次方程的定义.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;注意一元二次方程的二次项系数不为0的隐含条件,避免漏解.16.3【分析】先根据根与系数的根据求得x1+x2和x1x2的值然后代入计算即可【详解】解:∵一元二次方程x2-4x +1=0的两根是x1x2∴x1+x2=4x1x2=1∴x1+x2-x1x2=4-1解析:3 【分析】先根据根与系数的根据求得x 1+x 2和x 1⋅x 2的值,然后代入计算即可. 【详解】解:∵一元二次方程x 2-4x +1=0的两根是x 1,x 2 ∴x 1+x 2=4,x 1⋅x 2=1 ∴x 1+x 2-x 1⋅x 2=4-1=3. 故答案为3. 【点睛】本题主要考查了一元二次方程根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的两根是x 1、x 2,则x 1+x 2=b a -、x 1⋅x 2=c a. 17.15【分析】先解一元二次方程根据根的情况可知有两种方式用三角形三边关系排除一组后即可得出三角形周长【详解】解:即∵336不能构成三角形∴这个等腰三角形的三边成为663周长为15故答案为:15【点睛】解析:15 【分析】先解一元二次方程,根据根的情况可知有两种方式,用三角形三边关系排除一组后即可得出三角形周长. 【详解】解:()()636x x x -=-()(3)60x x --=,即123,6x x ==,∵3,3,6不能构成三角形,∴这个等腰三角形的三边成为6,6,3,周长为15. 故答案为:15. 【点睛】本题考查等腰三角形的定义,解一元二次方程,三角形三边关系.不要忽略了用三角形三边关系判断能否构成三角形.18.【分析】先证四边形BGDH 为平行四边形再证BG=BH 然后由勾股定理求B G四边形BGDH 的周长=4BH 即可【详解】由题意得矩形矩形∴四边形是平行四边形∴平行四边形的面积∴四边形是菱形设则在中由勾股定理 解析:34011【分析】先证四边形BGDH 为平行四边形,再证BG=BH ,然后由勾股定理求B G,四边形BGDH 的周长=4BH 即可. 【详解】由题意得矩形ABCD ≌矩形BEDF ,90,7,//,//,11A AB BE AD BC BF DE AD ︒∴∠====,∴四边形BGDH 是平行四边形,∴平行四边形BGDH 的面积BG AB BH BE =⋅=⋅,BG BH ∴=,∴四边形BGDH 是菱形, BH DH DG BG ∴===.设BH DH x ==,则11AH x =-.在Rt ABH △中,由勾股定理得2227(11)x x +-=, 解得85,11x =8511BG ∴=, ∴四边形BGDH 的周长340411BG ==. 【点睛】本题考查四边形的周长问题,关键是证四边形BGDH 为菱形,用勾股定理求BH ,掌握矩形的性质,菱形的性质与判定,会用勾股定理解决问题.19.【分析】设CD 与BE 交于点GAP =x 证明△ODP ≌△OEG (ASA )根据全等三角形的性质得到OP =OGPD =GE 根据翻折变换的性质用x 表示出PDOP 根据勾股定理列出方程解方程即可【详解】解:设CD 与解析:35. 【分析】设CD 与BE 交于点G ,AP =x ,证明△ODP ≌△OEG (ASA ),根据全等三角形的性质得到OP =OG ,PD =GE ,根据翻折变换的性质用x 表示出PD 、OP ,根据勾股定理列出方程,解方程即可. 【详解】解:设CD 与BE 交于点G ,∵四边形ABCD 是矩形,∴∠D =∠A =∠C =90°,AD =BC =3cm ,CD =AB =4cm , 由折叠的性质可知△ABP ≌△EBP ,∴EP =AP ,∠E =∠A =90°,BE =AB =4cm , 在△ODP 和△OEG 中,DOP EOG OD OED E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODP ≌△OEG (ASA ), ∴OP =OG ,PD =GE , ∴DG =EP ,设AP =EP =x ,则PD =GE =3﹣x ,DG =x , ∴CG =4﹣x ,BG =4﹣(3﹣x )=1+x , 根据勾股定理得:BC 2+CG 2=BG 2, 即32+(4﹣x )2=(x +1)2, 解得:x 125=, ∴AP 125=(cm ), ∴DP 35=(cm ). 故答案为:35. 【点睛】本题考查的是翻折变换的性质,矩形的性质,全等三角形的判定与性质和勾股定理的应用,熟练掌握翻折变换的性质是解题的关键.20.【分析】延长AD 至点E 使得连接CE 过点C 作证明△CDE 为等边三角形分别求出四边形ABCD 的边长判断即可;【详解】如图所示延长AD 至点E 使得连接CE 过点C 作∵∴又∵∴△CDE 为等边三角形∴设则∵∴则∴解析:15+【分析】延长AD 至点E ,使得DE CD =,连接CE ,过点C 作CH AE ⊥,证明△CDE 为等边三角形,分别求出四边形ABCD 的边长判断即可; 【详解】如图所示,延长AD 至点E ,使得DE CD =,连接CE ,过点C 作CH AE ⊥,∵120ADC =∠︒,∴180********EDC ADC ∠=︒-∠=︒-︒=︒, 又∵DE CD =, ∴△CDE 为等边三角形, ∴CD DE CE ==,60E ∠=︒, 设CE x =,则CD DE x ==, ∵CH DE ⊥,∴9030ECH E ∠=︒-∠=︒, 则1122EH CE x ==, ∴=+-=+-=-11622AH AD DE EH AD CD x x , 22221342CH CE EH x x x =-=-=, ∴()⎛⎫=+=-+=-+≥ ⎪⎝⎭222221363273324AC AH CH x x x ,∴当3x =时,AC 取得最小值为33此时,3AD CD x ===,∵AB AC ⊥, ∴90BAC =︒, 又30B ∠=︒,∴12AC BC =,即2BC AC =, 222243AB BC AC AC AC AC =-=-=,∴四边形ABCD 周长AD CD AB BC=+++,()32AD CD AC AC =+++,()()632632331563AC =++≥++⨯=+;∴四边形ABCD 的最小值为1563+. 故答案是1563+. 【点睛】本题主要考查了四边形综合,等边三角形的判定和性质,含30度角的直角三角形的性质,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.三、解答题21.(1)60人,画图见解析;(2)225人;(3)23【分析】(1)根据喜爱足球的人数和所占的百分比求出总人数,由总人数减去喜爱足球和篮球人数,即可求出喜爱排球的人数,并补全条形图即可; (2)由总人数乘以喜爱篮球运动的学生的百分数即可得解;(3)画树状图展示12种等可能的结果数,再找出抽取的两人恰好是一名男生和一名女生结果数,然后根据概率公式求解. 【详解】解:(1)此次调查的学生总人数为1220%60÷=(人). 喜爱排球运动的学生人数为60-12-27=21(人), 补全条形统计图如下:(2)500(135%20%)225⨯--=(人),估计该中学九年级学生中喜爱篮球运动的学生有225人.(3)画树状图如下:由图可知,所有可能出现的结果共有12种,且这些结果出现的可能性相等,其中抽取的两人恰好是1名男生和1名女生的结果有8种,P∴(抽取的两名学生恰好为1名男生和1名女生)82 123 ==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了条形统计图和扇形统计图.22.(1)300人,a=15%,b=25%;(2)见解析;(3)120人;(4)1 8【分析】(1)用“美食文化”对应的人数除以对应的百分比可得总人数,分别用“羽毛球”和“篮球”的人数除以总人数可得a和b的值;(2)计算出“电影鉴赏”的人数,可补全统计图;(3)用全校七年级的总人数乘以样本中“篮球”对应的百分比即可;(4)画出树状图,利用概率公式计算.【详解】解:(1)总人数为:60÷20%=300人,∴a=45÷300=15%,b=75÷300=25%;(2)35%×300=105,补全统计图入如下:(3)480×25%=120人,∴估计全校选择“篮球”拓展性课程的学生人数是120人;(4)设“羽毛球”、“电影鉴赏”、“篮球”和“美食文化”分别为A、B、C、D,画树状图如下:可知:共有16种等可能的情况,其中一位选择了电影鉴赏,另一位选择了美食文化的有2种,∴其中一位选择了电影鉴赏,另一位选择了美食文化的概率为21168=. 【点睛】本题考查的是条形统计图的综合运用,树状图法求概率,样本估计总体,从统计图中得到必要的信息是解决问题的关键. 23.(1)15=x ,21x =-;(2)23x y =⎧⎨=⎩【分析】(1)利用十字相乘法进行进行因式分解,继而求解;(2)直接利用关于原点对称点的性质得出方程组进而得出答案; 【详解】(1)解:2450x x --=,(5)(1)0x x -+=,解得:15=x ,21x =-;(2)∵点P(2x+y ,1)与点Q(-7,x-y)关于原点对称,∴27010x y x y +-=⎧⎨-+=⎩,解得23x y =⎧⎨=⎩,【点睛】本题考查了解一元二次方程和解一元二次方程组,正确掌握运算方法是解题的关键; 24.(1)112x =-212x =-;(2)11x =,223x = 【分析】(1)配方法求解可得; (2)因式分解法求解可得; 【详解】(1)解:2212x x ++=2(1)2x +=12x +=±11x ∴=-+21x =-.(2)解:3(1)2(1)0x x x ---=(1)(32)0x x --=10x -=;或320x -=11x ∴=,223x =.【点睛】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键. 25.(1)见解析;(2)GH ⊥EF ,见解析;(3)25 【分析】(1)首先运用三角形中位线定理可得到EG ∥AB ,EG=12AB ,HF ∥AB ,EG=12AB ,即可得到四边形EGFH 是平行四边形;(2)再运用三角形中位线定理证明邻边相等,从而证明平行四边形EGFH 是菱形,即可证明GH ⊥EF ;(3)由EH ∥CD ,得到∠BDC=∠BPH=70°,由EG ∥AB ,得到∠EGD=∠ABD=20°,再利用三角形的外角性质和菱形的性质即可求解. 【详解】证明:(1)∵E 、G 分别是AD 、BD 的中点, ∴EG ∥AB ,且12GE AB =, 同理可证:HF ∥AB ,且12HF AB =, ∴EG ∥HF ,且EG=HF ,∴四边形EGFH 是平行四边形; (2)GH ⊥EF ,理由如下: ∵G 、F 分别是BD 、BC 的中点 , ∴12GF CD =, 由(1)知12GE AB =, 又∵AB=CD , ∴GE=GF ,又∵四边形EGFH 是平行四边形, ∴四边形EGFH 是菱形, ∴GH ⊥EF ;(3)∵E 、H 分别是AD 、AC 的中点 , ∴EH ∥CD , ∴∠BDC=∠BPH=70°,∵EG ∥AB ,∴∠EGD=∠ABD=20°,∴∠GEP=∠BPH-∠EGD=50°,∵四边形EGFH 是菱形,∴∠GEF=∠HEF=12∠GEP =25°. 故答案为:25.【点睛】本题考查了中点四边形,菱形的判定和性质,三角形中位线的性质,熟练掌握三角形中位线的判定和性质是解题的关键.26.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中, BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴ AD=AE=DE,即△ADE为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD≌△ACE,然后再利用三边相等证明此三角形是等边三角形.。
北师大版九年级下册数学单元测试题全套及答案
北师大版九年级下册数学单元测试题全套及答案(含期中期末试题)第一章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如图,在Rt △ABC 中,CD 是斜边AB 上的高线,∠ACD 的正弦值是23,则ACAB 的值是( B )A.255B.23C.355D.522.在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,则BC 的长度为( C )A .6 cmB .7 cmC .8 cmD .9 cm3.在△ABC 中,sin B =cos(90°-∠C )=12,那么△ABC 是( A )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.如图,过点C (-2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB =( B ) A.25B.23C.52D.325.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,点C 在BD 上,有四位同学分别测量出以下四组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( C )A .1组B .2组C .3组D .4组6.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为线段AB 上一点,且AE ∶EB =4∶1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( C )A.33B.233C.533D .53二、填空题(本大题共6小题,每小题3分,共18分) 7.在Rt △ABC 中 ,∠C =90°,BC =5,AB =12,则tan A =512. 8.(2019·赤峰)如图,一根竖直的木杆在离地面3.1 m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__8.1__m __.(参考数据:sin 38°≈0.62,cos 38°≈0.79,tan 38°≈0.78)9.(2019·咸宁) 如图,某校九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得∠ACB =30°,点D 处测得∠ADB =60°,CD =80 m ,则河宽AB 约为 __69__ m .(结果保留整数,3≈1.73)10.(2019·柳州)在△ABC 中,sin B =13,tan C =22,AB =3,则AC 的长为 3 .11.如图,小明将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB ∶BC =4∶5,则sin ∠DCF 的值为 35.12.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则tan ∠AOD = 2 .三、(本大题共5小题,每小题6分,共30分)13.计算:sin 30°-(cos 45°-1)0+32tan 2 30°.解:原式=12-1+32×⎝⎛⎭⎫332=12-1+12=0.14.已知Rt △ABC 中,∠C =90°,∠B =60°,a =4,解这个直角三角形.解:∠A =90°-∠B =90°-60°=30°.由tan B =ba,得b =a tan B =4tan 60°=4 3.由cos B=a c ,得c =a cos B =4cos 60°=8.所以∠A =30°,b =43,c =8. 15.已知α为锐角,且tan α是方程x 2+2x -3=0的一个根,求2sin 2α+cos 2α- 3 tan (α+15°)的值.解:解方程x 2+2x -3=0, 得x 1=1,x 2=-3.∵tan α>0,∴tan α=1,∴α=45°,∴2sin 2α+cos 2α-3tan (α+15°)=2sin 245°+cos 245°-3tan 60°=2×⎝⎛⎭⎫222+⎝⎛⎭⎫222-3×3=1+12-3=-32.16.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°角的三角板的斜边与含30°角的三角板的长直角边相等.于是,小路同学提出一个问题:如图,将一副三角板直角顶点重合后拼放在一起,点B ,C ,E 在同一直线上.若BC =2,求AF 的长.(请你运用所学的数学知识解决这个问题)解:在Rt △ABC 中,BC =2,∠A =30°, ∴AC =BC tan A =2tan 30°=2 3. 由题意,得EF =AC =2 3. 在Rt △EFC 中,∠E =45°, ∴CF =EF·sin 45°=23×22=6, ∴AF =AC -CF =23- 6.17.(2019·通辽)两栋居民楼之间的距离CD =30 m ,楼AC 和BD 均为10层,每层楼高为3 m .上午某时刻,太阳光线GB 与水平面的夹角为30°,此刻楼BD 的影子会遮挡到AC 的第几层?(参考数据:3≈1.7,2≈1.4)解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于H ,AC =BD =3×10=30 m ,FH =CD =30 m ,∠BFH =∠α=30°,在RtBFH 中,tan ∠BFH =BH FH =BH 30=33,∴BH =30×33=103≈10×1.7=17,∴FC =HD =BD -BH ≈30-17=13,∵133≈4.3,所以在四层的上面,即第五层.答:此刻楼BD 的影子会遮挡到楼AC 的5层.四、(本大题共3小题,每小题8分,共24分)18.(2019·深圳)如图所示,某施工队要测量隧道长度BC ,AD =600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角为45°,再由D 走到E 处测量,DE ∥AC ,ED =500米,测得仰角为53°,求隧道BC 的长.(sin 53°≈45,cos 53°≈ 35,tan 53°≈43)解:在RtABD 中,AB =AD =600(米),作EM ⊥AC 于M ,则AM =DE =500(米),∴BM =100米,在Rt △CEM 中,tan 53°=CM EM =CM 600=43,∴CM =800(米),∴BC =CM -BM =800-100=700(米).答:隧道BC 长为700米.19.(2019·广元)如图,某海监船以60海里/小时的速度从A 处出发沿正西方向巡逻,一可疑船只在A 的西北方向的C 处,海监船航行1.5小时到达B 处时接到报警,需巡查此可疑船只,此时可疑船只仍在B 的北偏西30°方向的C 处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/小时的速度追击,在D 处海监船追到可疑船只,D 在B 的北偏西60°方向.(以下结果保留根号)(1)求B ,C 两处之间的距离;(2)求海监船追到可疑船只所用的时间.解:(1)过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,∵∠BCE =30°,∴BE =BC ×sin ∠BCE =12BC ,CE =BC ×cos ∠BCE =32BC ,在Rt △ACE 中, ∵∠A =45°.∴AE =CE =32BC ,∵AB =60×1.5=90,∴AE -BE =32BC -12BC =90,解得BC =90(3+1).故B ,C 相距(903+90)海里.(2)过点D 作DF ⊥AB 于F ,由(1),得DF =CE =32BC ,∴DF =135+453,在Rt △BDF 中,∠DBF =30°,∴BD =2DF =270+903,∴海监船追到可疑船只所用的时间为(270+903)÷90=(3+3)h.20.已知:如图,在四边形ABCD 中,∠ABC =∠ADC =90°,DE ⊥BC 于E ,连接BD.若tan C =2,BE =3,CE =2,求点B 到CD 的距离.解:过点B 作BF ⊥CD ,垂足为F ,则∠BFC =90°.∵DE ⊥BC ,∴∠DEC =∠DEB =90°,在Rt △DEC 中,∵tan C =2,EC =2,∴DE =4.在Rt △BFC 中,∵tan C =2,∴BF =2FC ,设BF =x ,则FC =12x ,∵BF 2+FC 2=BC 2,∴x 2+(12x)2=(3+2)2,解得x =25,即BF =2 5.答:点B 到CD 的距离是2 5.五、(本大题共2小题,每小题9分,共18分)21.如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上. (1)求证:△ABF ∽△DFE ;(2)若sin ∠DFE =13,求tan ∠EBC 的值.(1)证明:∵∠A =∠D =90°,∠ABF 与∠DFE 都与∠AFB 互余,∴∠ABF =∠DFE ,∴△ABF ∽△DFE ;(2)解:∵sin ∠DFE =DE EF =13,∴设DE =k .则EF =CE =3k ,AB =CD =4k ,∴DF =EF 2-DE 2=22k ,由△ABF ∽△DFE ,得AF DE =AB DF ,即AF k =4k22k ,∴AF =2k ,∴BC =AD =2k +22k =32k ,∴tan ∠EBC =CE BC =3k 32k =22. 22.小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长332米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.解:如图,延长OA 交直线BC 于点D ,∵AO 的倾斜角是60°,∴∠ODB =60°.∵∠ACD =30°,∴∠CAD =180°-∠ODB -∠ACD =90°.在Rt △ACD 中,AD =AC·tan ∠ACD =332·33=32(米).∴CD =2AD =3(米). 又∵∠O =60°,∴△BOD 为等边三角形.∴BD=OD=OA+AD=3+32=4.5(米).∴BC=BD-CD=4.5-3=1.5米.答:浮漂B与河堤下端C之间的距离为1.5米.六、(本大题共12分)23.在一次科技活动中,小明进行了模拟雷达扫描实验.表盘是△ABC,其中AB=AC,∠BAC =120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB 处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(203-20) cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2 030秒,交点又在什么位置?请说明理由.解:(1)如图①,过A点作AD⊥BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2t cm.在Rt△ABD中,AD=12AB=t,BD=32AB=3t.在Rt AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD-MD.即3t-t=203-20.解得t=20.∴AB=2×20=40 cm.答:AB的长为40 cm.(2)如图②,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt△ABN中,BN=ABcos 30°=4032=8033cm.∴光线AP旋转6秒,与BC的交点N距点B8033cm处.如图③,设光线AP旋转2 030秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2 030=126×16+14,即AP旋转2 030秒与旋转14秒时和BC的交点是同一个点Q.旋转14s的过程是B→C:8s,C→Q:6s,因此CQ=BN=8033cm,∵AB=AC,∠BAC=120°,∴BC=2ABcos 30°=2×40×32=40 3 cm,∴BQ=BC-CQ=403-8033=4033cm.答:光线AP旋转2 030秒后,与BC的交点Q在距点B的4033cm处.第二章检测题(BSD)(考试时间:120分钟满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知抛物线y=x2+ax+b与x轴的交点坐标为(-1,0)和(-3,0),则方程x2+ax+b=0的解是( B )A.x1=1,x2=-3 B.x1=-1,x2=-3C.x=-3 D.x=32.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=6 cm,动点P从点C开始沿CA以1 cm/s 的速度向A点运动,同时动点Q从点C开始沿CB以2 cm/s的速度向B点运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是( C )3.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t +1.则下列说法中正确的是( D )A.点火后9 s和点火后13 s的升空高度相同B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m4.若二次函数y=ax2+bx+c(a≠0)经过原点和第一、二、三象限,则(A)A.a>0,b>0,c=0 B.a>0,b<0,c=0C.a<0,b>0,c=0 D.a<0,b<0,c=05.(2019·烟台)已知二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如下表,下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2; ③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(B)A.2 B.36.(2019·巴中)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b -c >0,④a +b +c <0.其中正确的是( A )A .①④B .②④C .②③D .①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.已知一条抛物线的开口大小与y =x 2相同但方向相反,且顶点坐标是(2,3),则该抛物线的表达式是 y =-x 2+4x -1 .8.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数表达式是y =60t -32t 2,在飞机着陆滑行中,最后4 s 滑行的距离是 24 m.9.若二次函数y =2x 2-4x -1的图象与x 轴交于A (x 1,0),B (x 2,0)两点,则1x 1+1x 2的值为 -4 .10.如图,已知△OBC 是等腰直角三角形,∠OCB =90°,若点B 的坐标为(4,0),点C 在第一象限,则经过O ,B ,C 三点的抛物线的表达式是 y =-12x 2+2x .11.已知二次函数y =ax 2+2ax +3a 2+3(a ≠0)(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值是__1__.12.如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx(a>0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a>0)交于点B.若四边形ABOC 是正方形,则b 的值是 -2 .三、(本大题共5小题,每小题6分,共30分)13.已知当x =2时,抛物线y =a(x -h)2有最大值,此抛物线过点(1,-3),求抛物线的表达式,并指出当x 为何值时,y 随x 的增大而减小.解:当x =2时,有最大值,所以h =2.此抛物线过(1,-3),所以-3=a(1-2)2,解得a =-3.此抛物线的表达式为y =-3(x -2)2.当x >2时,y 随x 的增大而减小.14.已知抛物线y =-3x 2经过平移经过点(0,0)和(1,9),求出平移后抛物线的表达式,并写出它的对称轴和顶点坐标.解:设平移后抛物线的表达式为y =-3x 2+bx +c ,将点(0,0)和(1,9)的坐标代入,得⎩⎨⎧c =0,-3+b +c =9,解得⎩⎪⎨⎪⎧b =12,c =0.∴平移后抛物线的表达式为y =-3x 2+12x.∵y =-3x 2+12x =-3(x -2)2+12,∴对称轴为直线x=2,顶点坐标为(2,12).15.已知抛物线y =-a(x -2)2+3经过点(1,2).(1)求a 的值;(2)若点A(m ,y 1),B(n ,y 2)(m >n >2)都在该抛物线上,试比较y 1与y 2的大小. 解:(1)把(1,2)代入y =-a(x -2)2+3,得2=-a(1-2)2+3,解得a =1;(2)由(1)知原抛物线的表达式为y =-(x -2)2+3,其开口向下,对称轴为直线x =2, ∴当x >2时,y 随x 的增大而减小. ∵m >n >2,∴y 1<y 2.16.如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A ,C 分别在x 轴、y 轴的正半轴上,二次函数y =-23x 2+bx +c 的图象经过B ,C 两点.(1)求该二次函数的表达式;(2)结合函数的图象探索,当y >0时,x 的取值范围.解:(1)由题意可得B(2,2),C(0,2),将B ,C 坐标代入y =-23x 2+bx +c ,解得c =2,b =43,所以二次函数的表达式是y =-23x 2+43x +2.(2)令y =0,解-23x 2+43x +2=0,得x 1=3,x 2=-1,由图象可知:y >0时,x 的取值范围是-1<x <3.17.如图,抛物线y =ax 2+bx -5(a ≠0)与x 轴交于点A(-5,0)和点B(3,0),与y 轴交于点C.(1)求该抛物线的表达式;(2)若点E 为x 轴下方抛物线上的一动点,当S △ABE =S △ABC 时,求点E 的坐标.解:(1)∵抛物线经过A ,B 两点,∴把A(-5,0),B(3,0)代入y =ax 2+bx -5,得⎩⎨⎧25a -5b -5=0,9a +3b -5=0,解得⎩⎨⎧a =13,b =23,∴该抛物线的表达式为y =13x 2+23x -5.(2)∵y =13x 2+23x -5,∴令x =0,则y =-5.∴C 点的坐标为(0,-5),∵S △ABE =S △ABC ,∴点E的纵坐标与点C 的纵坐标相等,即点E 的纵坐标为-5,令13x 2+23x -5=-5,解得x 1=-2,x 2=0(舍去),∴点E 的坐标为(-2,-5).四、(本大题共3小题,每小题8分,共24分) 18.已知二次函数y =x 2-(2m -1)x +m 2-m.(1)求证:此二次函数图象与x 轴必有两个不同的交点;(2)若此二次函数图象与直线y =x -3m +4的一个交点在y 轴上,求m 的值.(1)证明:令y =0,有x 2-(2m -1)x +m 2-m =0,Δ=b 2-4ac =(2m -1)2-4(m 2-m)=1>0,∴结论成立;(2)解:令x =0,代入y =x 2-(2m -1)x +m 2-m 与y =x -3m +4,得m 2-m =-3m +4,∴m =-1+5或-1- 5.19.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看作一点)的路线是抛物线y =-35x 2+3x +1的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4 m ,在一次表演中人梯到起点A 的水平距离为4 m ,问这次表演是否成功?请说明理由.解:(1)∵y =-35x 2+3x +1=-35⎝⎛⎭⎫x -522+194,∴该演员弹跳高度的最大值为194m ; (2)当x =4时,y =-35×42+3×4+1=3.4,∴这次表演是成功的.20.如图,已知抛物线y =ax 2-4x +c 经过点A(0,-6)和B(3,-9).(1)求出抛物线的表达式;(2)写出抛物线的对称轴及顶点坐标;(3)点P(m ,m)(其中m >0)与点Q 均在抛物线上,且这两点关于抛物线的对称轴对称,求m 的值及点Q 的坐标.解:(1)依题意有⎩⎨⎧a ×02-4×0+c =-6,a ×32-4×3+c =-9,即⎩⎨⎧c =-6,9a -12+c =-3,∴⎩⎪⎨⎪⎧a =1,c =-6.∴抛物线的表达式为y =x 2-4x -6.(2)把y =x 2-4x -6配方得y =(x -2)2-10,∴对称轴为直线x =2,顶点坐标(2,-10).(3)由点P(m ,m)在抛物线上,有m =m 2-4m -6,即m 2-5m -6=0.∴m 1=6或m 2=-1(舍去),∴m =6,∴P 点的坐标为(6,6).∵点P ,Q 均在抛物线上,且关于对称轴x =2对称,∴Q 点的坐标为(-2,6). 五、(本大题共2小题,每小题9分,共18分)21.把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q.(1)求顶点P 的坐标; (2)写出平移过程;(3)求图中阴影部分的面积.解:(1)设抛物线m 的表达式为y =12x 2+bx +c ,把点A(-6,0),原点O(0,0)代入,得b =3,c=0,∴抛物线m 的表达式为y =12x 2+3x =12(x +3)2-92,所以顶点P 的坐标为⎝⎛⎭⎫-3,-92. (2)把抛物线y =12x 2先向左平移3个单位长度,再向下平移92个单位长度即可得到抛物线y =12(x +3)2-92.(3)Q 点横坐标为-3,代入y =12x 2,可得Q ⎝⎛⎭⎫-3,92,图中阴影部分的面积=S △OPQ =12×3×9=272. 22.(2019·南充)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔、一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?解:(1)设钢笔、笔记本的单价分别为x ,y 元,根据题意得,⎩⎨⎧2x +3y =38,4x +5y =70,解得:⎩⎪⎨⎪⎧x =10,y =6.答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a 元,购买数量为b 支,支付钢笔和笔记本的总金额为w 元, ①当30≤b ≤50时,a =10-0.1(b -30)=-0.1b +13,w =b(-0.1b +13)+6(100-b)=-0.1b 2+7b +600=-0.1(b -35)2+722.5,∵当b =30时,w =720,当b =50时,w =700, ∴当30≤b ≤50时,700≤w ≤722.5;②当50<b ≤60时,a =8,w =8b +6(100-b)=2b +600,700<w ≤720,∴当30≤b ≤60时,w 的最小值为700元.答:这次奖励一等奖学生50人时,购买的奖品总金额最少,最少为700元.六、(本大题共12分)23.(2019·新疆)如图,抛物线y =ax 2+bx +c 经过A (-1,0),B (4,0),C (0,4)三点. (1)求抛物线的表达式及顶点D 的坐标; (2)将(1)中的抛物线向下平移154个单位长度,再向左平移h (h >0)个单位长度,得到新抛物线.若新抛物线的顶点D ′在△ABC 内,求h 的取值范围;(3)点P 为线段BC 上一动点(点P 不与点B ,C 重合),过点P 作x 轴的垂线交(1)中的抛物线于点Q ,当△PQC 与△ABC 相似时,求△PQC 的面积.题图 答图解:(1)函数表达式为y =a(x +1)(x -4)=a(x 2-3x -4),即-4a =4,解得a =-1,故抛物线的表达式为y =-x 2+3x +4,顶点D(32,254);(2)抛物线向下平移154个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D' (32-h ,52),将点A ,C 的坐标代入一次函数表达式并解得直线AC 的表达式为y =4x +4,将点D' 坐标代入直线AC 的表达式得:52=4(32-h)+4,解得h =158,故0<h<158;(3)过点P 作y 轴的平行线交抛物线和x 轴于点Q ,H ,∵OB =OC =4,∴∠PBA =∠OCB =45°=∠QPC ,直线BC 的表达式为y =-x +4,则AB =5,BC =42,AC =17,S ABC =12×5×4=10,设点Q(m ,-m 2+3m +4),点P(m ,-m +4),CP =2m ,PQ =-m 2+3m +4+m -4=-m 2+4m ,①当△CPQ ∽△CBA ,PC BC =PQ AB ,即2m42=-m 2+4m 5,解得m =114,相似比为PC BC =1116,②当△CPQ ∽△ACB ,同理可得相似比为PC AB =12225,利用面积比等于相似比的平方可得S PQC=10×(1116)2=605128或SPQC =10×(12225)2=576125. 第三章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知⊙P 的半径为4,圆心P 的坐标为(1,2),点Q 的坐标为(0,5),则点Q 与⊙P 位置关系是( C )A .点Q 在⊙P 外B .点Q 在⊙P 上C .点Q 在⊙P 内D .不能确定2.如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD 等于( D ) A .20° B .40° C .50° D.80°3.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD =∠BCD ,则BD ︵的长为( C )A .πB.32πC .2πD .3π4.同一个圆的内接正六边形和外切正六边形的周长之比为( B )A .3∶4B .3∶2C .2∶ 3D .1∶25.如图,AC 是⊙O 的直径,弦BD ⊥AO 于点E ,连接BC ,过点O 作OF ⊥BC 于点F ,若BD =8 cm ,AE =2 cm ,则OF 的长度是( D )A .3 cmB . 6 cmC .2.5 cmD . 5 cm 6.如图,将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =3,则四边形AB 1ED 的内切圆半径为( B )A .3+12B .3-32C .3+13D .3-33二、填空题(本大题共6小题,每小题3分,共18分)7.如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于69° . 8.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得AD =10 cm ,点D 在量角器上的读数为60°,则该直尺的宽度为533 cm . 9.如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与BA 的延长线交于点D ,点E 在BC ︵上(不与点B ,C 重合),连接BE ,CE.若∠D =40°,则∠BEC =115度.10.(2019·内江)如图,在平行四边形ABCD 中,AB<AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为2π3+ 3 . 11.如图,P 是反比例函数y =4x (x >0)的图象上一点,以点P 为圆心、1个单位长度为半径作⊙P ,当⊙P 与直线y =3相切时,点P 的坐标为 (1,4)或(2,2) .12.(2019·包头)如图,BD 是⊙O 的直径,A 是⊙O 外一点,点C 在⊙O 上,AC 与⊙O 相切于点C ,∠CAB =90°,若BD =6,AB =4,∠ABC =∠CBD ,则弦BC 的长为.三、(本大题共5小题,每小题6分,共30分)13.如图,⊙O 是△ABC 的外接圆,∠A =45°,BD 是直径,BD =2,连接CD ,求BC 的长.解:在⊙O 中,∵∠A =45°,∴∠D =45°. ∵BD 为⊙O 的直径, ∴∠BCD =90°, ∴BC =BD·sin 45°=2×22= 2. 14.如图,已知CD 平分∠ACB ,DE ∥AC.求证:DE =BC.证明:∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴BD ︵=AD ︵,∵DE ∥AC ,∴∠ACD =∠CDE ,∴AD ︵=CE ︵,∴BD ︵=CE ︵,∴DE ︵=BC ︵,∴DE =BC.15.如图,两个同心圆中,大圆的弦AB ,AC 分别切小圆于点D ,E ,△ABC 的周长为12 cm ,求△ADE 的周长.解:连接OD ,OE.∵AB ,AC 分别切小圆于点D ,E , ∴OD ⊥AB ,OE ⊥AC , ∴AD =DB ,AE =EC , ∴DE 是△ABC 的中位线,∴DE =12BC ,∴C △ADE =12C △ABC =12×12=6 cm .16.如图所示,⊙O 的直径AB 长为6,弦AC 的长为2,∠ACB 的平分线交⊙O 于点D ,求四边形ADBC 的面积.解:∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°.在Rt △ABC 中,由勾股定理,得 BC =AB 2-AC 2=62-22=4 2. 又∵CD 平分∠ACB , ∴AD ︵=BD ︵,∴AD =BD.在Rt △ABD 中,由勾股定理,得AD =BD =22AB =22×6=3 2. ∴S 四边形ADBC =S △ABC +S △ABD =42+9,∴四边形ADBC 的面积为42+9.17.如图,点I 是△ABC 的内心,AI 的延长线交BC 于点D ,交△ABC 的外接圆于点E.求证:IE 2=AE·DE.证明:连接BE ,BI.∵I 为△ABC 的内心,∴∠1=∠2,∠3=∠4. 又∵∠6=∠1+∠3,∠IBE =∠4+∠5, ∠5=∠2=∠1,∴∠IBE =∠6,∴IE =BE. ∵∠5=∠1,∠E =∠E ,∴△BED∽△AEB,∴BEDE=AEBE,∴BE2=AE·DE,∴IE2=AE·DE.四、(本大题共3小题,每小题8分,共24分)18.如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,B,C 两点的坐标分别为(0,b),(1,0).(1)当b=3时,求经过B,C两点的直线的表达式;(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求出每种位置关系时b的取值范围.解:(1)直线BC表达式为y=-3x+3.(2)当BC切⊙O′于第二象限时,记切点为点D.易得DC= 5.∵BO=BD=b,∴BC=5-b.12+b2=(5-b)2,得b=25 5.同理当BC切⊙O′于第三象限D1点时,可求得b=-25 5.故当b>255或b<-255时,直线BC与⊙O′相离;当b=255或-255时,直线BC与⊙O′相切;当-255<b<255时,直线BC与⊙O′相交.19.(2018·南充)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.(1)证明:连接OC,BC,∵⊙O的半径为3,PB=2,∴OC=OB=3,OP=OB+PB=5.∵PC=4,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线.(2)解:∵AB是直径,∴∠ACB=90° ,∴∠ACO+∠OCB=90°,∵OC⊥PC,∴∠BCP+∠OCB =90°,∴∠BCP=∠ACO.∵OA=OC,∴∠A=∠ACO,∴∠A=∠BCP,在△PBC和△PCA中,∠BCP=∠A,∠P=∠P,∴△PBC∽△PCA,∴BCAC=PBPC=24=12,∴tan∠CAB=BC AC=12.20.(齐齐哈尔中考)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.又∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∴∠DBC+∠ABD=90°,即∠ABC=90°∴BC是⊙O的切线.(2)解:∵BF=BC=2且∠ADB=90°,∴∠CBD=∠FBD,又∵OE∥BD,∴∠FBD=∠OEB.∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠DBE=∠OBE=13∠ABC=13×90°=30°,∴∠C=60°,∴AB=3BC=23,∴⊙O的半径为3,连接OD,∴阴影部分面积为S扇形OBD-S△OBD=16π×3-34×3=π2-334.五、(本大题共2小题,每小题9分,共18分)21.(2019·安顺)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E 两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:点H为CE的中点;(3)若BC=10,cos C=55,求AE的长.(1)解:DH与⊙O相切.理由:连接OD,AD,∵AB为直径,∴∠ADB=90°,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH为⊙O的切线.(2)证明:连接DE,∵A,B,D,E四点共圆,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴CD=ED,∵DH⊥CE,∴点H为CE的中点.(3)解:CD=12BC=5,∵cos C=CDAC=55,∴AC=55,∵cos C=CHCD=55,∴CH=5,∴CE=2CH =25,∴AE =AC -CE =3 5.22.如图,在Rt △ABC 与Rt △OCD 中,∠ACB =∠DCO =90°,点O 为AB 的中点.(1)求证:∠B =∠ACD ;(2)已知点E 在AB 上,且BC 2=AB ·BE . ①若tan ∠ACD =34,BC =10,求CE 的长;②试判断CD 与以A 为圆心,AE 为半径的⊙A 的位置关系,并请说明理由.(1)证明:∵∠ACB =∠DCO =90°,∴∠ACB -∠ACO =∠DCO -∠ACO ,即∠ACD =∠OCB ; 又∵点O 是AB 的中点,∴OC =OB , ∴∠OCB =∠B , ∴∠B =∠ACD .(2)解:①∵BC 2=AB ·BE ,∴BC AB =BEBC.∵∠B =∠B ,∴△ABC ∽△CBE ,∴∠ACB =∠CEB =90°. ∵∠ACD =∠B ,∴tan ∠ACD =tan B =34,设BE =4x ,则CE =3x .由勾股定理,可知BE 2+CE 2=BC 2, ∴(4x )2+(3x )2=100,∴解得x =2,∴CE =6.②CD 与⊙A 相切.理由如下: 过点A 作AF ⊥CD 于点F .∵∠CEB =90°,∴∠B +∠ECB =90°. ∵∠ACE +∠ECB =90°,∴∠B =∠ACE .∵∠ACD =∠B ,∴∠ACD =∠ACE ,∴CA 平分∠DCE .∵AF ⊥CD ,AE ⊥CE ,∴AF =AE ,∴直线CD 与⊙A 相切.六、(本大题共12分)23.(2019·荆州)如图AB 是⊙O 的直径,点C 为⊙O 上一点,点P 是半径OB 上一动点(不与O ,B 重合),过点P 作射线l ⊥AB ,分别交弦BC ,BC ︵于D ,E 两点,在射线l 上取点F ,使FC =FD .(1)求证:FC 是⊙O 的切线; (2)当点E 是BC ︵的中点时,①若∠BAC =60°,判断O ,B ,E ,C 为顶点的四边形是什么特殊四边形,并说明理由; ②若tan ∠ABC =34,且AB =20,求DE 的长.(1)证明:连接OC ,∵OB =OC ,∴∠OBC =∠OCB ,∵PF ⊥AB ,∴∠BPD =90°,∴∠OBC +∠BDP =90°,∵FC =FD, ∴∠FCD =∠FDC ,∵∠FDC =∠BDP ,∴∠FCD =∠BDP ,∴∠OCB +∠FCD =90°,∴OC ⊥FC ,FC 是⊙O 的切线.(2)解:连接OC ,OE ,BE ,CE ,OE 与BC 交于H. ①以O ,B ,E ,C 为顶点的四边形是菱形.理由:∵AB 是直径,∴∠ACB =90°,∵∠BAC =60°,∴∠BOC =120°,∵点E 是BC ︵的中点,∴∠BOE =∠COE =60°,∵OB =OE =OC ,∴△BOE ,△COE 均为等边三角形,∴OB =BE =CE =OC ,∴四边形BOCE 是菱形.②∵AC BC =tan ∠ABC =34,设AC =3k ,BC =4k ,k>0.由AC 2+BC 2=AB 2,即(3k)2+(4k)2=202,解得k =4,∴AC =12,BC =16,∵点E 是BC ︵的中心,∴OE ⊥BC ,BH =CH =8,∵S △BOE =12OE·BH =12OB·PE ,即12×10×8=12×10×PE ,∴PE =8,又OP =OE 2-PE 2=6,∴BP =OB -OP =4,∵DP BP =tan ∠ABC =34,∴DP =34BP =3,∴DE =PE -DP =8-3=5.期中检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.对于函数y =-2(x -m)2的图象,下列说法不正确的是( D ) A .开口向下 B .对称轴是x =m C .最大值为0 D .与y 轴不相交 2.在Rt △ABC 中,∠C =90°,AB =6,tan B =33,则Rt △ABC 的面积为( B ) A .9 3B .923C .9D .183.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为( D )A .40海里B .60海里C .203海里D .403海里4.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点 ( B )A .(-3,-6)B .(-3,0)C .(-3,-5)D .(-3,-1)5.如图,在Rt △ABC 中,∠ACB =90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tan A 的值为( A )A .33B . 3C .12D .136.已知抛物线y =ax 2+bx +c 的图象如图所示,则|a -b +c|+|2a +b|等于( D ) A .a +b B .a -2b C .a -b D .3a 二、填空题(本大题共6小题,每小题3分,共18分)7.某种型号的迫击炮发射炮弹时的飞行高度h(m )与飞行时间t(s )的关系满足h =-13t 2+10t ,则经过 30 s ,发射的炮弹落地爆炸.8.在△ABC 中,∠A ,∠B 都是锐角,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫cos B -122=0,则∠C = 90° . 9.若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为 0,2或-2 .10.(2019·盐城)在△ABC 中,BC =6+2,∠C =45°,AB =2AC ,则AC 的长为__2__. 11.(2019·宿迁)若∠MAN =60°,△ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当△ABC 是锐角三角形时,BC12.已知抛物线y =23x 2+43x -2与x 轴交于A ,B 两点,与y 轴交于点C .点P 在对称轴上,当△PBC的周长最小时,点P 的坐标是⎝⎛⎭⎫-1,-43. 三、(本大题共5小题,每小题6分,共30分)13.计算:cos 60°-sin 45°+14tan 230°+cos 30°-sin 30°.解:原式=12-22+14×⎝⎛⎭⎫332+32-12=32-22+112. 14.由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中,∠A =30°,tan B =,AC =43,求AB 的长”.这时小明去翻看了标准答案,显示AB =10.你能否帮助小明通过计算说明污渍部分的内容是什么?解:过点C 作CH ⊥AB 于点H ,在Rt △ACH 中,CH =AC ·sin A =43×sin 30°=23,AH =AC ·cos A =43×cos 30°=6, ∴BH =AB -AH =4, ∴tan B =CH BH =32,∴污渍部分的内容是32. 15.(2019·凉山州)已知二次函数y =x 2+x +a 的图象与x 轴交于A (x 1,0),B (x 2,0)两点,且1x 21+1x 22=1,求a 的值.解:函数y =x 2+x +a 的图象与x 轴交于A(x 1,0),B(x 2,0)两点,∴x 1+x 2=-1,x 1·x 2 =a ,∵1x 21+1x 22=x 21+x 22x 21x 22=(x 1+x 2)2-2x 1x 2(x 1x 2)2=1-2a a 2=1,∴a =-1+ 2 或a =-1- 2. 16.在同一平面直角坐标系中,一次函数y =x -4与二次函数y =-x 2+2x +c 图象交于点A (-1,m ).(1)求m ,c 的值;(2)求二次函数图象的对称轴和顶点坐标. 解:(1)∵A 点在一次函数的图象上,∴m =-1-4=-5.∴点A 的坐标为(-1,-5),∵A 点在二次函数图象上,∴-5=-1-2+c ,解得c =-2. (2)由①可知二次函数表达式为y =-x 2+2x -2=-(x -1)2-1,∴二次函数的图象的对称轴为直线x =1,顶点坐标为(1,-1).17.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者,在消防车上点A 处测得点B 和点C 的仰角分别为45°和65°,点A 距地面2.5米,点B 距地面10.5米,为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数,参考数据:tan 65°≈2.1,sin 65°≈0.9,cos 65°≈0.4,2≈1.4)解:作AH ⊥CN 于点H .在Rt △ABH 中,∵∠BAH =45°,BH =10.5-2.5=8(m), ∴AH =BH =8(m), 在Rt △AHC 中,tan 65°=CH AH, ∴CH =8×2.1≈17(m),∴BC =CH -BH =17-8=9(m).四、(本大题共3小题,每小题8分,共24分)18.如图,直线y =x +2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x 轴上,若抛物线y =ax 2+bx +c 以C 为顶点,且经过点B ,求这条抛物线对应的函数表达式.解:∵直线y =x +2与x 轴交于点A ,与y 轴交于点B , ∴A (-2,0),B (0,2),∴△ABO 为等腰直角三角形.又∵AB ⊥BC ,∴△BCO 也为等腰直角三角形, ∴OC =OB =OA .∴C (2,0),设抛物线对应的函数表达式为y =a (x -2)2, 将点B (0,2)的坐标代入得2=a (0-2)2,解得a =12,∴此抛物线对应的函数表达式为y =12(x -2)2,即y =12x 2-2x +2.19.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC.(1)求sin B 的值;(2)现需要加装支架DE ,EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.解:(1)∵BD =DC =9,AD =6, ∴AB =92+62=313.∴sin B =AD AB =6313=21313.(2)∵EF ∥AD ,BE =2AE ,∴△BEF ∽△BAD. ∴EF AD =BF BD =BE BA =23,∴EF 6=BF 9=23, ∴EF =4,BF =6,∴DF =3,∴在Rt △DEF 中,DE =42+32=5米.20.为美化校园,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(只围AB ,BC 两边),设AB =x m .(1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.解:(1)∵AB =x m ,则BC =(28-x)m ,∴x(28-x)=192,解得x 1=12,x 2=16,∴当花园的面积为192 m 2时,x 的值为12 m 或16 m .(2)由题意可得S=x(28-x)=-x2+28x=-(x-14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,28-15=13,∴6≤x≤13,∴当x=13时,S最大=-(13-14)2+196=195,∴花园面积S的最大值为195 m2.五、(本大题共2小题,每小题9分,共18分)21.如图,小河上有一拱桥,拱桥及河道的截面轮廓由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的表达式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=-1128(t-19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?解:(1)抛物线的表达式为y=-364x2+11(-8≤x≤8).(2)令-1128(t-19)2+8=11-5.解得t1=35,t2=3.∴当3≤t≤35时,水面到顶点C的距离不大于5米,需禁止船只通行,禁止船只通行时间为35-3=32小时.答:禁止船只通行时间为32小时.22.(2019·岳阳)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D,B,F在同一水平线上,参考数据:sin 62.3°≈0.89,cos 62.3°≈0.46,tan 62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.解:(1)四边形CDBG,HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt AHE中,tan∠AEH=AHHE,则AH=HE·tan∠AEH≈1.9a,∴AG=AH-GH=1.9a-0.2,在Rt ACG中,∠ACG=45°,∴CG=AG=1.9a-0.2,∴BD=1.9a-0.2,答:小亮与塔底中心。
北师大版2022~2023学年九年级数学第一学期期中质量检测题【含答案】
北师大版2022~2023学年九年级数学第一学期期中质量检测题( 分值:150分)本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置.考试结束后,只交答题卡.第Ⅰ卷 (选择题 共60分)一、选择题(本题共15个小题,每题只有一个正确答案,每小题4分,共60分)1. 菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形2. 已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC =BD D .AB⊥BC3.解一元二次方程x2﹣8x﹣5=0,用配方法可变形为( )A .(x+4)2=11B .(x﹣4)2=11C .(x+4)2=21D .(x﹣4)2=214.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M 与N 的大小关系正确的为( )A .M >NB .M=NC .M <ND .不确定5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A .21B .41C .61D .1216.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( )A .12B .9C .4D .37.如图,在△ABC 中,DE ∥BC ,AD =6,BD =3,AE =4,则EC 的长为( )A.1 B .2 C.3 D. 4第7题 图 第8题 图 第9题图 第10题图8.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD =∠ACB B .∠ADB =∠ABC B .AB 2=AD •AC D .AD AB AB BC=9.如图,点D 、E 分别为△ABC 的边AB 、AC 上的中点,则△ADE 的面积与四边形BCED 的面积的比为( )A .1:2B .1:3C .1:4D .1:110.如图,在直角坐标系中,有两点A (6,3)、B (6,0).以原点O 为位似中心,相似比为31,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)11.已知点A (-2,y 1),B (-3,y 2)是反比例函y=x 6-图象上的两点,则有( )A .y 1>y 2B .y 1<y 2C .y 1= y 2 D.不能确定12.函数xa y =(0≠a )与a ax y -=(0≠a )在同一平面直角坐标系中的大致图象是( )13.某村耕地总面积为 50 公顷,且该村人均耕地面积 y (单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是( )A .该村人均耕地面积随总人口的增多而增多B .该村人均耕地面积 y 与总人口 x 成正比例C .若该村人均耕地面积为 2 公顷,则总人口有 100 人A CBD .当该村总人口为 50 人时,人均耕地面积为 1 公顷14. 如图,菱形ABCD 的边AD⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数()0,0y >≠=x k x k 的图象同时经过顶点C.D ,若点C 的横坐标为5,BE=3DE.则k 的值为( ) A.25B.3C.415D.515.如图,在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE 2+PF 2=PO 2;④△POF∽△BNF;⑤当△PMN∽△AMP 时,点P 是AB 的中点.其中正确的结论有( )A .5个B .4个C .3个D .2个第Ⅱ卷(非选择题 共90分)二、填空题(本题共7个小题,每题4分,共28分)16.若3x=5y ,则y x = ;已知0,2≠++===f d b f e d c b a 且,则fd be c a ++++= .17. 一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 .18.把长度为20cm 的线段进行黄金分割,则较长线段的长是________cm .(结果保留根号)19.如图所示,一个底面为等边三角形的三棱柱,底面边长为2,高为4,如图放置,则其左视图的面积是 .主视图 俯视图 左视图20.如下图,为了测量校园内一棵不可攀的树的高度,实验学校“玩转数学”社团做了如下的探索:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把镜子放在离树(AB )9米的点E 处,然后沿着直线BE 后退到点D ,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.8米,则树(AB)的高度为____________米.第20题图第21题图21.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.22.如图,在RT△A BC中,∠C=90°,BC=8,AC=6,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时点P从A点开始在线段AC上以每秒1个单位长度的速度向点C移动.当一点停止运动,另一点也随之停止运动.设点Q,P移动的时间为t秒.当t= 秒时△APQ与△ABC相似.三.解答题23.(8分)同一时刻,物体的高与影子的长成比例,某一时刻,高1.6m的人影长1.2m,一电线杆影长为9m,则电线杆的高为多少米?24.(8分)在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.25.(8分)如图,在△ABC 中, 点D,E 分别是AB,AC 边上的两点,且AB=8,AC=6,AD=3,AE=4,DE=6,求BC 的长.26.(12分)如图,△ABC 为锐角三角形,AD 是BC 边上的高,正方形EFGH 的一边FG 在BC 上,顶点E 、H 分别在AB 、AC 上,已知BC=40cm ,AD=30cm .(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.27.(12分)如图,已知反比例函数x k y =与一次函数b x y +=的图象在第一象限相交于点A (1,4+-k ).(1)试确定这两个函数的表达式;(2)求出这两个函数的另一个交点B的坐标,并求出△AOB的面积.(3)直接写出当反比例函数值大于一次函数值时,x的取值范围.28(14分)已知:如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.数学试题答案一选择题1—5BB DB C 6~10 ABDBA 11~15 AADCB二填空题16. 35 217. 用A 和a 分别表示第一个有盖茶杯的杯盖和茶杯;12用B 和b 分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa 、Ab 、Ba 、Bb .所以颜色搭配正确的概率是.1218. (105—10) 注:无括号也不再扣分19. 4320. 621. 622. 13501130或三解答题23.解设电线杆高x 米,由题意得:x 1.6=91.2 ---------------------------------------------------5分 X=12 ---------------------------------------------------7分答:电线高为12米 --------------------------------------------------8分24.解:(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,刚好是男生的概率=433 =73;---------------------------------------------2分(2)画树状图为:---------------5分共有12种等可能的结果数,------------------------6分其中刚好是一男生一女生的结果数为6,----------------------------7分所以刚好是一男生一女生的概率==.----------------------8分25解:∵,-------------------------------1分, -----------------------------------2分∴AC AD =AB AE-------------------------------------3分∵∠A=∠A ,---------------------------------4分∴△ADE ∽△ACB.----------------------------------5分∴21==AC AD BC DE 即216=BC --------------------------------------7分∴BC=12---------------------------------------------8分26解:(1)证明:∵四边形EFGH 是正方形,∴EH ∥BC ,-----------------------1分∴∠AEH=∠B ,----------------------2分∠AHE=∠C ,-----------------------3分∴△AEH ∽△ABC .-------------------4分(2)解:如图设AD 与EH 交于点M .-----------------------5分∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM 是矩形,∴EF=DM ,设正方形EFGH 的边长为x ,-------------------6分∵△AEH ∽△ABC ,∴=,-------------------------------------------8分∴=,-------------------------------------10分∴x=,-----------------------------------------11分∴正方形EFGH 的边长为cm ,面积为cm 2.------------------------12分27题(1)∵点A (1,4k -+)在反比例函数k y x =的图象上∴=4k k -+解得=2k ----------------------------------------------------1分∴A (1,2)∵点A (1,2)在一次函数y x b =+的图象上∴12b +=解得1b =-----------------------------------------2分反比例函数的解析式为2y x =,一次函数的解析式为1y x =+-------4分(2)解方程组12y x y x =+⎧⎪⎨=⎪⎩得21x y =-⎧⎨=-⎩或12x y =⎧⎨=⎩∵点B 在第三象限 ∴点B 坐标为2-1------------------6分∵1y x =+,当0y =时1x =-∴点C 坐标为1-0------------7分∴S △A O B =23-----------------------------10分(3)x<- 2或0<x<1----------------------------------12分注:写出一种情况给1分28题已知:如图,在Rt △ACB 中,∠C=90°,AC=3cm ,BC=3cm ,点P 由B 点出发沿BA 方向向点A 匀速运动,速度为2cm/s ;点Q 由A 点出发沿AC 方向向点C 匀速运动,速度为cm/s ;若设运动的时间为t (s )(0<t <3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.【考点】相似形综合题.【分析】(1)先根据勾股定理求出AB,再用△APC∽△ACB,得出,即:,求出时间;(2)先用垂直平分线的性质得出QM=CM=CQ=(3﹣t),然后用平行线分线段成比例建立方程求出结论;(3)先由平行四边形的性质建立方程求出时间t,即求出PQ,PB,即可得到PQ≠PB判断出四边形PQGB不可能是菱形.解:(1)在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,∴AB=6,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,∵△APC∽△ACB,∴,∴,∴t=;(2)存在,理由:如图②,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,CQ=3﹣t,∵点P是CQ的垂直平分线上,∴QM=CM=CQ=(3﹣t),∴AM=AQ+QM=t﹣(3﹣t)=(t﹣1)过点P作PM⊥AC,∵∠ACB=90°,∴PM∥BC,∴,∴,∴t=或t=(舍),∴t=.(3)不存在,理由:由运动知,BP=2t,AQ=t,∴AP=6﹣2t,假设线段BC上是存在一点G,使得四边形PQGB为平行四边形,∴PQ∥BG,PQ=BG,∴△APQ∽△ABC,∴,∴,∴t=,PQ=,∴BP=2t=3,∴PQ≠BP,∴平行四边形PQGB不可能是菱形.即:线段BC上不存在一点G,使得四边形PQGB为菱形.【点评】此题是相似形综合题,主要考查了勾股定理,线段的垂直平分线的性质,相似三角形的判定和性质,平行四边形的性质,菱形的判定,解本题的关键是用方程的思想解决问题.。
(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)
(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)(满分150分 时间:120分钟)一.单选题。
(共40分) 1.16的算术平方根是( )A.±2B.2C.4D.±4 2.下面四个几何体中,左视图为圆的是( )A. B. C. D.3.据5月17日消息,全国各地约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为( )A.0.426×105B.4.26×105C.42.6×104D.4.26×1044.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A.50°B.70°C.80°D.110°(第4题图) (第9题图) (第10题图) 5.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.6.化简a 2a -1-1-2a 1-a的结果为( )A.a+1a -1B.a ﹣1C.aD.17.从甲、乙、丙、丁四人中抽调两人参加“寸草心”志愿服务队,恰好抽到甲和乙的概率是( )A.112 B.18 C.16 D.128.在同一直角坐标系中,函数y=kx 和y=kx ﹣3的图象大致是( )A. B. C. D.9.在直角坐标系中,等腰直角三角形AOB 在如图所示的位置,点B 的横坐标为2,将△AOB 绕点O 按逆时针方向旋转90°,得到△A’OB’,则点A’的坐标为( ) A.(1,1) B.(√2,√2) C.(﹣1,1) D.(﹣√2,√2)10.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线y =12x+12上,若抛物线y =ax 2﹣x+1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( ) A.a ≤﹣2 B.a <98 C.1≤a <98或a ≤﹣2 D.﹣2≤a <98 二.填空题。
2023-2024学年北师大新版九年级上册数学期中复习试卷(含答案)
2023-2024学年北师大新版九年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.若一元二次方程x2+px+2p=0的一个根为2,则p的值为( )A.1B.2C.﹣1D.﹣22.如图,在离某围墙AB的6米处有一棵树CD,在某时刻2米长的竹竿垂直地面,太阳光下的影长为3米,此时,树的影子有一部分映在地面上,还有一部分影子映在墙上AE处,墙上的影高为4米,那么这棵树高约为( )米.A.6B.8C.9D.103.两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是( )A.抛一枚硬币,正面朝上的概率B.掷一枚正六面体的骰子,出现1点的概率C.转动如图所示的转盘,转到数字为奇数的概率D.从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率4.如图是某几何体的三视图,该几何体是( )A.正方体B.圆锥C.四棱柱D.圆柱5.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为( )A.4B.C.4D.286.如图,矩形ABCD中,BD=2,AB在x轴上.且点A的横坐标为﹣1,若以点A为圆心,对角线AC的长为半径作弧交x轴的正半轴于M,则点M的坐标为( )A.(2+,0)B.(2+1,0)C.(2﹣1,0)D.(2,0)7.下列一元二次方程中,无实数根的是( )A.x2﹣2x﹣3=0B.x2+3x+2=0C.x2﹣2x+1=0D.x2+2x+3=0 8.已知一元二次方程x2﹣8x+c=0有一个根为2,则另一个根为( )A.10B.6C.8D.﹣29.如图,EB为驾驶员的盲区,驾驶员的眼睛点P处与地面BE的距离为1.6米,车头FACD 近似看成一个矩形,且满足3FD=2FA,若盲区EB的长度是6米,则车宽FA的长度为( )米.A.2B.C.D.10.如图,四边形ABCD是正方形,以CD为边作等边△CDE,BE与AC相交于点M,则下列结论中:①BM=DM;②∠BEC=∠MDC=15°;③∠AMD的度数是75°;④△AMB≌△AMD≌△EMD.正确的有( )个.A.1B.2C.3D.4二.填空题(共5小题,满分15分,每小题3分)11.在△ABC中,点D,E分别在边AB和AC上,且DE∥BC,如果AD=2,DB=4,AE=3,那么AC= .12.今年五月上旬我市空气质量指数如下表,省外某单位组织了一次退休职工到我市旅游3天,则他们在我市旅游3天时,空气质量都是优良(空气质量指数不大于100表示空气质量优良)的概率是 .日期12345678910空气质量指数304236588095701155610113.如图,小芸用灯泡O(看作一个点)照射一个矩形相框ABCD,在墙上形成矩形影子A'B'C'D'.现测得OA=20cm,OA'=50cm,相框ABCD的周长为36cm,则影子A'B'C'D'的周长为 cm.14.如图,某同学拿着一把12cm长的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60cm,则电线杆的高度是 m.15.如图,已知四边形ABCD为矩形,且AB=3,AD=4,将矩形ABCD绕点C顺时针旋转一定角度得到矩形A'B'CD',B'C与AD交于点O,且DO=B'O,则AO的长为 .三.解答题(共7小题,满分75分)16.用适当的方法解一元二次方程:(1)2x2﹣3x=2;(2)x2+6x﹣111=0.17.为推进社会主义新农村建设,东胜区某社区决定组建社区文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全社区范围内随机抽取部分居民进行问卷调查,并将调查结果绘制如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)扇形统计图中“纸牌”所在扇形的圆心角的度数为 ;并补全条形统计图;(2)若在“纸牌、象棋、跳棋、军棋”这四个项目中任选两项组队参加元旦节庆典活动,请用列表法或画树状图的方法,求恰好选中“象棋、军棋”这两个项目的概率.18.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣3,2),B(1,5),C(3,4),画出△ABC,并画出以原点O为位似中心,将△ABC三条边放大为原来的2倍后的△A1B1C1.19.操作作图如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8.点D在边AC上,请用圆规和直尺作菱形DEFG,使点E、F在边AB上,点G在边BC上(不写作法,但要保留作图痕迹).阅读理解我们把图①中的菱形DEFG称为△ABC的有一边平行于AB的内接菱形,简称AB类内接菱形.类似的可得到AB类内接矩形.若公共顶点为D的AB类内接菱形DEFG恰好以BC类内接矩形DFMC的一边为对角线,求CD的长.深入探究(1)当CD长度满足什么条件时,可作2个AB类内接菱形DEFG?说明理由;(2)直接写出AB类内接菱形DEFG面积的最大值.20.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA,OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)直接写出:OA= ,OB= ;(2)若点E为x轴上的点,且△AOE∽△DAO.求此时点E的坐标.21.小琴的父母承包了一块荒山地种植一批香梨树,今年收获一批香梨,小琴的父母打算以m元/斤的零售价销售5000斤香梨;剩余的5000(m+1)斤香梨以比零售价低1元的批发价批给外地客商,总共的销售额为55000元.(1)小琴的父母今年共收获这种香梨多少斤?(2)批发商买回这批香梨后,零售平均每天可售出200斤,每斤盈利2元.为了加快销售和获得较好的利润,采取了降价措施,发现销售单价每降低0.1元,平均每天可多售出40斤,应降价多少元使得每天销售利润为600元?22.综合与实践问题情境:在Rt△ABC中,∠ACB=90°,点D为斜边AB上的动点(不与点A,B重合).操作发现:(1)如图①,当AC=BC时,把线段CD绕点C逆时针旋转90°得到线段CE,连接DE,BE.①∠CBE的度数为 ;②探究发现AD和BE有什么数量关系,请写出你的探究过程;探究证明:(2)如图2,当BC=2AC时,把线段CD绕点C逆时针旋转90°后并延长为原来的两倍,记为线段CE.①在点D的运动过程中,请判断AD与BE有什么数量关系?并证明;②若AC=2,在点D的运动过程中,当△CBE的形状为等腰三角形时,直接写出此时△CBE的面积.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵一元二次方程x2+px+2p=0的一个根为2,∴22+2p+2p=0.∴4p=﹣4.∴p=﹣1.故选:C.2.解:过点A作AF∥DE交CD于点F,则DF=AE=4m,△CAF∽△C′CD′.∴D′C′:C′C=CF:CA,即2:3=CF:6.∴CF=4.∴DC=4+4=8(m).即:这棵树高8m.故选:B.3.解:A、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;C、转动如图所示的转盘,转到数字为奇数的概率为,故此选项不符合题意;D、从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率,故此选项符合题意;故选:D.4.解:该几何体的视图为一个圆形和两个矩形.则该几何体可能为圆柱.故选:D.5.解:∵E,F分别是AB,BC边上的中点,EF=,∴AC=2EF=2,∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=,OB=BD=2,∴AB==,∴菱形ABCD的周长为4.故选:C.6.解:∵四边形ABCD是矩形,∴BD=AC=2,由题意可知:AM=AC=2,∵OA=|﹣1|=1,∴OM=AM﹣OA=2﹣1,∴点M的坐标为(2﹣1,0),故选:C.7.解:在x2﹣2x﹣3=0中,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣3)=16>0,即该方程有两个不等实数根,故选项A不符合题意;在x2+3x+2=0中,Δ=b2﹣4ac=32﹣4×1×2=1>0,即该方程有两个不等实数根,故选项B不符合题意;在x2﹣2x+1=0中,Δ=b2﹣4ac=(﹣2)2﹣4×1×1=0,即该方程有两个相等实数根,故选项C不符合题意;在x2+2x+3=0中,Δ=b2﹣4ac=22﹣4×1×3=﹣8<0,即该方程无实数根,故选项D 符合题意;故选:D.8.解:设方程的另一个根为t,根据题意得2+t=8,解得t=6,即方程的另一个根是6.故选:B.9.解:如图,过点P作PM⊥BE,垂足为M,交AF于点N,则PM=1.6,设FA=x米,由3FD=2FA得,FD=x=MN,∵四边形ACDF是矩形,∴AF∥CD,∴△PAF∽△PBE,∴=,即=,∴PN=x,∵PN+MN=PM,∴x+x=1.6,解得,x=,故选:D.10.解:∵四边形ABCD为正方形,AC为对角线,∴BC=DC,∠BCA=∠DCA=45°,BC=DC,∠BCD=90°,在△BCM和△DCM中,,∴△BCM≌△DCM(SAS),∴BM=DM,故结论①正确;∵△CDE为等边三角形,∴∠DCE=60°,DC=CE,∴BC=CE,∴∠BEC=∠EBC,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴°,∵△BCM≌△DCM,∴∠MBC=∠MDC,即:∠BEC=∠MDC=15°;故结论②正确;∵∠MDC=15°,∠DCA=45°,∴∠AMD=∠MDC+∠DCA=60°,故结论③不正确;在△AMB和△AMD中,,∴△AMB≌△AMD(SAS),∵四边形ABCD为正方形,△CDE为等边三角形,∴AD=ED,∠ADC=90°,∠EDC=60°,∵∠MDC=15°,∴∠ADM=∠ADC﹣∠MDC=75°,∠EDM=∠MDC+∠EDC=75°,∴∠ADM=∠EDM=75°,在△AMD和△EMD中,,∴△AMD≌△EMD(SAS),∴△AMB≌△AMD≌△EMD,故结论④正确,综上所述:正确的结论是①②④,共有3个.故选:C.二.填空题(共5小题,满分15分,每小题3分)11.解:∵DE∥BC,∴AD:AB=AE:AC,∵AD=2,DB=4,AE=3,∴2:6=3:AC,∴AC=9,故答案为:9.12.解:由表格可得,所有的可能性是:(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),其中旅游3天,空气质量都是优良的有5种结果,所以空气质量都是优良的概率是,故答案为:.13.解:∵OA=20cm,OA'=50cm,∴OA:OA′=20:50=2:5,∵AB∥A′B′,∵∠AOB=∠A′OB′,∴△AOB∽△A′OB′,∴AB:A′B′=OA:OA′=2:5,∴矩形ABCD的周长:矩形A′B′C′D′的周长为2:5,又矩形ABCD的周长为36cm,则矩形A′B′C′D′的周长为90cm.故答案为:90.14.解:如图,作AN⊥EF于N,交BC于M,∵BC∥EF,∴AM⊥BC于M,∴△ABC∽△AEF,∴,∵AM=0.6,AN=30,BC=0.12,∴EF===6(m).答:电线杆的高度是6m.故答案为:6.15.解:∵将矩形ABCD绕点C顺时针旋转一定角度得到矩形A'B'CD',∴AB=CD=3,B′C=BC=AD=4,∠D=90°.设OD=x,则B'O=x,OC=4﹣x.在Rt△COD中,∵∠D=90°,∴OC2=OD2+CD2,即(4﹣x)2=x2+32,解得x=,∴AO=AD﹣OD=4﹣=.故答案为:.三.解答题(共7小题,满分75分)16.解:(1)2x2﹣3x=2,2x2﹣3x﹣2=0,(2x+1)(x﹣2)=0,∴2x+1=0或x﹣2=0,∴x1=﹣,x2=2;(2)x2+6x﹣111=0,x2+6x+9=111+9,即(x+3)2=120,∴x+3=,∴x1=﹣3+2,x2=﹣3﹣2.17.解:(1)这次参与调查的居民人数为:24÷20%=120(人);∴喜欢“纸牌”的人数为:120﹣24﹣15﹣30﹣9=42(人),∴扇形统计图中“纸牌”所在扇形的圆心角的度数为360°×=126°,故答案为:126°,补全条形图如图所示:(2)设:纸牌为A,象棋为B,跳棋为C,军棋为D,根据题意画树状图:由树状图可知:一共有12种等可能的情况,其中恰好选中“象棋、军棋”这两个项目的有2种,∴恰好选中“象棋、军棋”这两个项目的的概率是同时选中B、D的概率为=.18.解:如图,△ABC和△A1B1C1为所作.19.解:操作作图:如图所示中的四边形DEFG为符合条件的其中一个菱形.阅读理解:符合条件的图形如图所示:∵公共顶点为D的AB类内接菱形DEFG恰好以BC类内接矩形DFMC的一边为对角线,∴DG=GF,DC=FM,∠C=∠FMC=90°=∠FMB.∴Rt△DCG≌Rt△FMG(HL).∴CG=MG.∵DG∥AB,∴∠DGC=∠B.∴△DCG≌△DMB(AAS).∴CG=BM.∴.∵△DCG∽△ACB,∴.即,∴DC=2.深入探究:(1)如图所示,当点E与点A重合时,此时存在符合条件的两个菱形.在Rt△ABC中,.∵四边形DEFG为菱形,∵DG∥AB,∴,即.解得DC=.如图,当DE⊥AB时,过点C作CH⊥AB,交DG于点Q,交AB于点H.在Rt△ABC中,.∵DG∥AB,∴△ABC∽△DGC.∴.即,∴.∴.即,∴.∴当<CD≤时,可作2个AB类内接菱形DEFG.(2)如图,过点C作CH⊥AB于点H,交DG于点Q.∵四边形DEFG为菱形,设DG=x,∵DG∥AB,∴△ABC∽△DGC.∴.即,∴CQ=.则QH=.∴S菱形DEFG=DG×CH=.配方得.当点F与点B重合时,可求得DG=,由(1)可知:.在此范围内S菱形DEFG随x的增大而增大,∴当x=时,S菱形DEFG最大,最大值为.∴AB类内接菱形DEFG面积的最大值为.20.解:(1)方程x2﹣7x+12=0,分解因式得:(x﹣3)(x﹣4)=0,可得:x﹣3=0,x﹣4=0,解得:x1=3,x2=4,∵OA>OB,∴OA=4,OB=3;故答案为4,3;(2)设点E的坐标为(m,0),则OE=|m|,∵△AOE∽△DAO,∴=,∴=,∴|m|=,∴m=±,∴点E的坐标为:(,0)或(﹣,0).21.解:(1)依题意,得5000m+(m﹣1)×5000(m+1)=55000,整理,得m2+m﹣12=0,解得:m1=3,m2=﹣4(不合题意,舍去),∴5000+5000(m+1)=25000.答:小琴的父母今年共收获这种香梨25000斤.(2)设降价x元,则每斤的利润为(2﹣x)元,每天的销售量为200+=(200+400x)斤,依题意,得(2﹣x)(200+400x)=600,整理,得2x2﹣3x+1=0,解得:x1=0.5,x2=1,又∵为了加快销售,∴x=1.答:应降价1元使得每天销售利润为600元.22.解:(1)①∵线段CD绕点C逆时针旋转90°得到线段CE,∴∠DCE=90°,DC=CE,∵∠ACB=90°,∴∠ACD=∠BCE,∵AC=BC,∴△ACD≌△BCE(SAS),∴∠CBE=∠CAD=45°,故答案为:45°;②AD=BE,理由如下:由①知△ACD≌△BCE,∴AD=BE;(2)①,理由如下:∵BC=2AC,CE=2CD,∴,∵∠ACB=∠DCE=90°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴,∴;②过C作CF⊥AB于F,CG⊥BE于G,如图:∵AC=2,BC=2AC,∴BC=4,AB==2,∴sin∠ABC====,cos∠ABC===,∴=,=,∴CF=,BF=,∵四边形CGBF是矩形,∴CG=BF=,BG=CF=,(Ⅰ)当CB=CE时,如图:∴BE=2BG=,∴△CBE的面积为××=;(Ⅱ)当BC=BE时,如图:此时BE=BC=4,∵CG=BF=,∴△CBE的面积为×BE•CG=×4×=(Ⅲ)当CE=BE时,如图:设BE=CE=t,则EG=t﹣,在Rt△CEG中,t2=()2+(t﹣)2,解得t=2,∴BE=2,∴△CBE的面积为CG•BE=××2=8,综上所述,△CBE的面积为或或8.。
北师大版九年级下册数学《期中》测试卷及答案【完整】
北师大版九年级下册数学《期中》测试卷及答案【完整】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100 B.被抽取的100名学生家长C.被抽取的100名学生家长的意见 D.全校学生家长的意见3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.74.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小6.正十边形的外角和为()A.180°B.360°C.720°D.1440°7.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A .50°B .60°C .80°D .100°8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1368______________.2.分解因式:2x 3﹣6x 2+4x =__________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =+.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、B7、D8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、2x(x﹣1)(x﹣2).3、24、12 5.5、40°6、2.5×10-6三、解答题(本大题共6小题,共72分)1、x=32.3、(1)相切,略;(2).4、(1)略;(2)4.95、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)3。
北师大版九年级上册数学期中考试试卷含答案
北师大版九年级上册数学期中考试试题一、单选题(共36分)1.(本题3分)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不相同的几何体是()A.①②B.②③C.②④D.③④2.(本题3分)将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.3.(本题3分)在如图所示的图形中,形状相同的是()A.图①与图②B.图②与图③C.图②与图④D.图①与图④4.(本题3分)如图所示,在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q,若以A、P、Q为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ的长为()A .3B .3或43C .3或34D .435.(本题3分)如图,DE 是△ABC 的中位线,延长DE 至F 使EF=DE ,连接CF ,则CEF BCED S S 四边形:的值为()A .1:3B .2:3C .1:4D .2:56.(本题3分)如图,菱形ABCD 中,点M ,N 在AC 上,ME ⊥AD ,NF ⊥AB .若NF =NM=2,ME =3,则AN =A .3B .4C .5D .67.(本题3分)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图()A .主视图改变,俯视图改变B .主视图不变,俯视图不变C .主视图不变,俯视图改变D .主视图改变,俯视图不变8.(本题3分)如图所示,在长为8cm ,宽为4cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是()A .2cm 2B .4cm 2C .8cm 2D .16cm 29.(本题3分)如图,等腰ABC 中,腰AB a =,A 36∠= ,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E .设51k 2=,则DE =()A .k 2aB .k 3aC .2ak D .3ak 10.(本题3分)某几何组合体的主视图和左视图为同一个视图,如图所示,则该几何组合体的俯视图不可能是()A .B .C .D .11.(本题3分)已知a 、b 为一元二次方程2290x x +-=的两个根,那么2a a b +-的值为()A .11B .0C .7D .-712.(本题3分)四边形ABCD 是面积为1的正方形;点P 为正方形内一点,且△PBC 为正三角形,那么△PBD 的面积是()A .3+1B .3−1C .3−2D .3+2二、填空题(共15分)13.(本题3分)如图,在梯形ABCD 中,AD//BC ,对角线AC 、BD 相交于点O ,若AD =1,BC =3,△AOD 的面积为3,则△BOC 的面积为__________.14.(本题3分)如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为_______cm2.(结果可保留根号)15.(本题3分)如图,点D、E分别在AB、AC上,且∠ABC=∠AED.若DE=4,AE=5,BC =8,则AB的长为________16.(本题3分)如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是____.17.(本题3分)△ABC中,D、E分别是边AB与AC的中点,BC=4,下面四个结论:①DE=2;②△ADE∽△ABC;③△ADE的面积与△ABC的面积之比为1:4;④△ADE的周长与△ABC 的周长之比为1:4;其中正确的有_____.(只填序号)三、解答题(共69分)18.(本题7分)如图,PN BC ∥;AD BC ⊥,交PN 于点E ,交BC 于点D .(1)若12AP PB =,218cm ABC S =△,求APN S △的值.(2)若1=2APN PBCN S S 四边形△,求AE AD的值.(3)若15BC =cm ,10AD =cm ,且PN ED x ==cm ,求x 的值.19.(本题7分)四张形状相同的卡片如图,将卡片洗匀后背面朝上放置在桌面上,小明先随机抽取一张卡片,记下数字为x ;小亮再随机抽一张卡片,记下数字为y.两人在此基础上共同协商一个游戏规则:当x y >时小明获胜,否则小亮获胜.(1)若小明抽出的卡片不放回,求小明获胜的概率.(2)若小明抽出的卡片放回后小亮再随机抽取,问他们制定的游戏规则公平吗?请说明理由.20.(本题7分)用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置小立方体的个数,请解答下列问题:(1)求,,a b c 的值;(2)这个几何体最少有几个小立方体搭成,最多有几个小立方体搭成;(3)当2,1,2d e f ===时画出这个几何体的左视图.21.(本题8分)如图,现有一物体CD 在路灯AB 的灯泡(图上点A 处)的照射下,影子顶端正好落在墙脚的点Q 处.已知路灯AB 距物体CD 7.5m ,物体CD 的高为3m ,其影子长为5m.假如另有一高6m 的物体EF 在路灯AB 与物体CD 之间,EF 距路灯AB 2.9m ,问物体EF 的影子是否会落在墙PQ 上.22.(本题8分)(2013衡阳)如图,P 为正方形ABCD 的边AD 上的一个动点,AE ⊥BP ,CF ⊥BP ,垂足分别为点E 、F ,已知AD =4.证明:AE 2+CF 2的值是一个常数.23.(本题8分)如图,在ABC 中,90B ∠=︒,6AB =cm ,3BC =cm ,点P 从点A 开始沿着AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.如果点P 、点Q 分别从点A 、点B 同时出发,只要点P 、点Q 有一点到达△ABC 的顶点便同时停止运动,经过多长时间,点P 、点Q 之间的距离等于?24.(本题8分)如图,四边形ABCD 中,AC ⊥BD 交BD 于点E ,点F ,M 分别是AB ,BC 的中点,BN 平分∠ABE 交AM 于点N ,AB =AC =BD .连接MF ,NF .(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.25.(本题8分)如图,一天早上,小张正向着教学楼AB走去,他发现教学楼后面有一水塔DC,可过了一会抬头一看,水塔不见了.他心里很是纳闷.经过了解,教学楼、水塔的高分别是20m和30m,它们之间的距离为30m,小张身高为1.6.m.小张要想看到水塔;他与教学楼之间的距离至少应有多少米?26.(本题8分)如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.参考答案1.B2.D3.D4.B5.A6.B7.C8.C9.B10.C11.A12.B13.27.14.(+360).15.1016.1617.①②③18.(1)22cm APN S =△(2)3AE AD =;(3)6.19.(1)12;(2)不公平.20.(1)a=3,b=1,c=1.(2)9个,11个.(3)详见解析21.物体EF 的影子会落在墙PQ 上.22.见解析23.0.4s24.(1)见解析;(2)见解析.25.小张与教学楼的距离至少应有55.2米.26.(1)根据旋转的性质得到∠DCE=90°,CD=CE ,利用等角的余角相等得∠BCD=∠ACE ,然后根据“SAS”可判断△BCD ≌△ACE ,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论.(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.。
北师大版2022~2023学年九年级数学第一学期期中学业质量调查试题【含答案】
北师大版2022~2023学年九年级数学第一学期期中学业质量调查试题(分值:120分)一、选择题(本题满分24分,共有8道小题,每小题3分)1.下列各点在反比例函数y=图象上的是()A(2,-3) B(2,4) C(-2,3) D(2,3)2.右图所示的几何体的俯视图是( )A B C D3.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )4.连续两次掷一枚质地均匀的硬币,两次都是正面朝上的概率是 ( )A. B. C. D.5.如图在△ABC中,DE∥FG∥BC,AD:AF:AB=1:3:6,则S△ADE:S四边形DEGF:S四边形FGCB=()A.1:8:27 B.1:4:9C.1:8:36 D.1:9:366.如图,在菱形ABCD中,AB=13,对角线AC=10,若过点A作AE⊥BC,垂足为E,则AE的长为()x661411213A.8 B.C. D.7.如图,ABCD是正方形,E是边CD上(除端点外)任意一点,AM⊥BE于点M,CN ⊥BE于点N,下列结论一定成立的有()个.①△ABM≌△BCN;②△BCN≌△CEN;③AM﹣CN=MN;④M有可能是线段BE的中点.A.1 B.2 C.3 D.48.在研究相似问题时,甲、乙同学的观点如下:甲:将邻边边长为5和8的矩形按图①的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形相似.乙:将边长5、12、13的三角形按图②的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.对于两人的观点,下列说法正确的是()A.两人都对 B.两人都不对C.甲对、乙不对 D.甲不对,乙对二、填空题(本题满分18分,共有6道小题,每小题3分)9.若===,(a+c+e≠0),则=.10.已知直角三角形的三边恰好是三个连续整数,则这个直角三角形的斜边长是.11.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3,绿色卡片两张,标号分别为1,2,若从五张卡片中任取两张,则两张卡片的标号之和小于4的概率为.12.方程ax2+x+1=0有两个不等的实数根,则a的取值范围是.13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,),则点E的坐标是.14.如图,在长方形ABCD中,AB=3,BC=6,对角线AC的垂直平分线分别交AD、AC 于点M,N,连接CM,则CM的长为.三、作图题(本题满分10分,第一小题4分,第二小题6分)15.(10分)已知△ABC,作△DEF,使之与△ABC相似,且=4.要求:(1)尺规作图,保留作图痕迹,不写作法.(2)简要叙述作图依据.四、解答题(本题共5小题,满分68分)16.(16分)计算(1)用两种不同方法解方程:x2﹣3﹣2x=0(2)解方程:x2=2x;(3)解方程:3+2x2﹣x=0.17.(12分)某中学调查了某班全部35名同学参加音乐社团和美术社团的情况,数据如表(单位:人):(1)从该班任选1名同学,该同学至少参加上述一个社团的概率;(2)在既参加音乐社团,又参加美术社团的6名同学中,有4名男同学A1、A2、A3、A4,两名女同学B1、B2,现从这4名男同学和两名女同学中个随机选取1人,求A1未被选中但B1被选中的概率.18.(12分)已知:如图,在矩形ABCD中,M、N分别是AB、DC的中点,P、Q分别是DM、BN的中点.(1)求证:DM=BN;(2)四边形MPNQ是怎样的特殊四边形,请说明理由;(3)矩形ABCD的边长AB与AD满足什么长度关系时四边形MPNQ为正方形,请说明理由.19.(12分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.20.(16分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.D2.B3.A4.B5.A 6.C 7.B 8.D二、填空题(本题满分18分,共有6道小题,每小题3分)9.若===,(a+c+e≠0),则=2.【考点】比例的性质.【分析】根据等比性质,反比性质,可得答案.解:由===,得=,由反比性质,得=2,故2.【点评】本题考查了比例的性质,利用等比性质,反比性质是解题关键.10.已知直角三角形的三边恰好是三个连续整数,则这个直角三角形的斜边长是5.【考点】一元二次方程的应用;勾股定理.【分析】首先设中间的数为x,表示出其余2个数,利用勾股定理求解即可.解:设较小的边长为x.则最小的边长为(x﹣1),斜边长为(x+1),(x﹣1)2+x2=(x+1)2,解得x1=0,(不合题意,舍去)x2=4,故斜边长为x+1=5.故5.【点评】本题考查了利用勾股定理解直角三角形以及一元二次方程的应用,利用勾股定理得到三边的关系是解决本题的关键.11.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3,绿色卡片两张,标号分别为1,2,若从五张卡片中任取两张,则两张卡片的标号之和小于4的概率为.【考点】列表法与树状图法.【分析】从五张卡片中任取两张的所有可能情况,用列举法求得有10种情况,其中两张卡片的颜色不同且标号之和小于4的有3种情况,从而求得所求事件的概率.解:从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1绿1,红1绿2,红2红3,红2绿1,红2绿2,红3绿1,红3绿2,绿1绿2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,红1绿1,红1绿2,红2绿1,故所求的概率为P=;故.【点评】本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.12.方程ax2+x+1=0有两个不等的实数根,则a的取值范围是a<且a≠0.【考点】根的判别式.【分析】根据方程有两个不相等的实数根结合二次项系数不为0,即可得出关于a的一元一次不等式组,解不等式组即可得出结论.解:∵方程ax2+x+1=0有两个不等的实数根,∴,解得:a<且a≠0.【点评】本题考查了根的判别式,根据方程有两个不相等的实数根找出关于a的一元一次不等式组是解题的关键.13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,),则点E的坐标是(3,3).【考点】位似变换;坐标与图形性质;正方形的性质.【分析】由题意可得OA:OD=1:,又由点A的坐标为(0,),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为(0,),即OA=,∴OD=3,∵四边形ODEF是正方形,∴DE=OD=3.∴E点的坐标为:(3,3).故(3,3).【点评】此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.14.如图,在长方形ABCD中,AB=3,BC=6,对角线AC的垂直平分线分别交AD、AC 于点M,N,连接CM,则CM的长为.【考点】矩形的性质;线段垂直平分线的性质.【分析】由线段垂直平分线的性质求出AM=CM,在Rt△DMC中,由勾股定理得出DM2+DC2=CM2,得出方程(6﹣CM)2+32=CM2,求出CM即可.解:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC=6,AB=DC=3,∵MN是AC的垂直平分线,∴AM=CM,∴DM=AD﹣AM=AD﹣CM=4﹣CM,在Rt△DMC中,由勾股定理得:DM2+DC2=CM2,(6﹣CM)2+32=CM2,CE=,故.【点评】本题考查了矩形性质,勾股定理,线段垂直平分线性质的应用,关键是能得出关于CM的方程.三、作图题(本题满分10分,第一小题4分,第二小题6分)15.(10分)已知△ABC,作△DEF,使之与△ABC相似,且=4.要求:(1)尺规作图,保留作图痕迹,不写作法.(2)简要叙述作图依据.【考点】作图—相似变换.【分析】(1)利用相似三角形的性质得出:△DEF的边长与△ABC边长的关系进而得出答案;(2)利用相似三角形的性质结合作三角形的方法得出答案.解:(1)如图所示:△DEF即为所求;(2)∵△DEF∽△ABC,且=4,∴===,∴作AB,AC的垂直平分线,进而得出AB,AC的中点,即可得出ED,EF,DF的长.【点评】此题主要考查了相似变换以及三角形的做法,正确得出△DEF边长变化规律是解题关键.四、解答题(本题共5小题,满分68分)16.(16分)计算(1)用两种不同方法解方程:x2﹣3﹣2x=0(2)解方程:x2=2x;(3)解方程:3+2x2﹣x=0.【考点】解一元二次方程-因式分解法.【分析】(1)因式分解法和配方法求解可得;(2)因式分解法求解可得;(3)由根的判别式小于0可得答案.解:(1)因式分解法:(x+1)(x﹣3)=0,∴x+1=0或x﹣3=0,解得:x=﹣1或x=3;配方法:x2﹣2x=3,x2﹣2x+1=3+1,即(x﹣1)2=4,∴x﹣1=±2,解得:x=﹣1或x=3;(2)x2﹣2x=0,x(x﹣2)=0,∴x=0或x=2;(3)∵a=2,b=﹣,c=3,∴△=﹣4×2×3<0,∴原方程无实数根.【点评】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键.17.(12分)某中学调查了某班全部35名同学参加音乐社团和美术社团的情况,数据如表(单位:人):(1)从该班任选1名同学,该同学至少参加上述一个社团的概率;(2)在既参加音乐社团,又参加美术社团的6名同学中,有4名男同学A1、A2、A3、A4,两名女同学B1、B2,现从这4名男同学和两名女同学中个随机选取1人,求A1未被选中但B1被选中的概率.【考点】列表法与树状图法.【分析】(1)先判断出这是一个古典概型,所以求出基本事件总数,“至少参加一个社团”事件包含的基本事件个数,从而根据古典概型的概率计算公式计算即可;(2)先求基本事件总数,即从这4名男同学和2名女同学中各随机选1人,有多少中选法,这个可利用分步计数原理求解,再求出“A1不被选中,而B1被选中”事件包含的基本事件个数,这个容易求解,然后根据古典概型的概率公式计算即可.解:(1)设“至少参加一个社团”为事件A;从45名同学中任选一名有45种选法,∴基本事件数为45;通过列表可知事件A的基本事件数为6+4+5=15;这是一个古典概型,∴P(A)==;(2)从4名男同学中任选一个有4种选法,从2名女同学中任选一名有2种选法;从这4名男同学和2名女同学中各随机选1人的选法有4×2=8,即基本事件总数为8;设“A1未被选中,而B1被选中”为事件B,显然事件B包含的基本事件数为3;这是一个古典概型,则P(B)=.【点评】主要考查了事件的分类和概率的求法.用到的知识点为:可能发生,也可能不发生的事件叫做随机事件;概率=所求情况数与总情况数之比.18.(12分)已知:如图,在矩形ABCD中,M、N分别是AB、DC的中点,P、Q分别是DM、BN的中点.(1)求证:DM=BN;(2)四边形MPNQ是怎样的特殊四边形,请说明理由;(3)矩形ABCD的边长AB与AD满足什么长度关系时四边形MPNQ为正方形,请说明理由.【考点】四边形综合题.【分析】(1)根据矩形的性质和中点的定义,利用SAS判定△MBA≌△NDC;(2)四边形MPNQ是菱形,连接AN,有(1)可得到BM=DN,再有中点得到PM=NQ,再通过证明△MQD≌△NPB得到MQ=PN,从而证明四边形MPNQ是平行四边形,利用三角形中位线的性质可得:MP=MQ,进而证明四边形MQNP是菱形;(3)利用对角线相等的菱形是正方形即可.证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD、BC的中点,∴AM=AD,CN=BC,∴AM=CN,在△MAB和△NDC中,∴△MBA≌△NDC(SAS);(2)四边形MPNQ是菱形.理由如下:连接AP,MN,则四边形ABNM是矩形,∵AN和BM互相平分,则A,P,N在同一条直线上,易证:△ABN≌△BAM,∴AN=BM,∵△MAB≌△NDC,∴BM=DN,∵P、Q分别是BM、DN的中点,∴PM=NQ,在△MQD和△NPB中,,∴△MQD≌△NPB(SAS).∴四边形MPNQ是平行四边形,∵M是AD中点,Q是DN中点,∴MQ=AN,∴MQ=BM,∵MP=BM,∴MP=MQ,∴平行四边形MQNP是菱形;(3)当AD=2AB时,四边形MQNP是正方形;如图1,连接PQ,∵PQ⊥MN.AD⊥MN,∴PQ∥AD,∵点P是BM的中点,∴AD=2PQ,∵AD=2AB,∴PQ=AB,∵MN=AB,∴MN=PQ,由(2)知,四边形MQNP是菱形;∴菱形MQNP是正方形.【点评】此题是四边形综合题,主要考查了矩形的性质、正方形的性质,全等三角形的判定和全等三角形的性质、三角形中位线定理以及平行四边形的判定和菱形的判定方法,判断出四边形MQNP是菱形是解本题的关键,属于基础题目.19.(12分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.【考点】一元二次方程的应用;一次函数的应用.【分析】(1)设函数解析式为y=kx+b,将(90,100),(100,80)代入y=kx+b即可;(2)每千克利润乘以销售量即为总利润;根据某月获得的利润等于1350元,求出x的值即可.解:(1)设一次函数解析式为y=kx+b,把(90,100),(100,80)代入y=kx+b得,,解得,,y与销售单价x之间的函数关系式为y=﹣2x+280.(2)根据题意得:w=(x﹣80)(﹣2x+280)=﹣2x2+440x﹣22400=1350;解得(x﹣110)2=225,解得x1=95,x2=125.答:销售单价为95元或125元.【点评】本题一元二次方程及一次函数的应用,解题的关键是从实际问题中整理出函数和方程模型,难度不大.20.(16分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【考点】平均增长(降低)率问题(一元二次方程).【分析】(1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)的平方”,即可得出关于x的一元二次方程,解方程即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”,即可得出关于m的一元一次不等式,解不等式即可得出结论.解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100﹣m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量关系得出关于x的一元二次方程;(2)根据数量关系得出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.。
2020-2021学年北师大版九年级(下)期中数学复习试卷(有答案)
2020-2021学年北师大新版九年级(下)期中数学复习试卷一.选择题(共10小题,满分30分,每小题3分)1.﹣4的倒数是()A.B.﹣C.4D.﹣42.如图所示正三棱柱的主视图是()A.B.C.D.3.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补4.若正比例函数y=kx(k≠0)的图象经过A(m,4),B(m﹣3,10)两点,则k的值为()A.﹣B.﹣C.﹣2D.25.下列计算正确的是()A.(a2)3=a6B.a2•a3=a6C.a8÷a2=a4D.2x+3y=5xy 6.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2017=()A.B.C.D.7.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A.B.C.D.8.如图,AC是矩形ABCD的对角线,AB=1,BC=,点E,F分别是线段AB,AD上的点,连接CE,CF.若∠BCE=∠ACF,且CE=CF,则AE+AF=()A.1.2B.C.D.9.如图,AB是⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC的大小是()A.60°B.45°C.30°D.15°10.如图,抛物线y=﹣2x2+4x与x轴的另一个交点为A,现将抛物线向右平移m(m>2)个单位长度,所得抛物线与x轴交于C,D,与原抛物线交于点P,设△PCD的面积为S,则用m表示S正确的是()A.(m2﹣4)B.m2﹣2C.(4﹣m2)D.2﹣m2。
2022-2023学年北师大版九年级数学上册期中测试卷(含答案)
2022-2023学年北师大版九年级数学上学期期中测试调研卷【满分:120分】一、选择题:(本大题共12小题,每小题3分,共36分,给出的四个选项中,只有一项是符合题目要求的)1.已知x m =是一元二次方程2310x x -=-的一个根,则代数式232022m m --的值为( )A.-2021B.-2023C.2021D.20232.下列各组中的四条线段成比例的是( ) A.2,3,2,3a b c d ==== B.4,6,5,10a b c d ==== C.2,5,23,15a b c d ==== D.2,3,4,1a b c d ====3.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( ) A.14 B.13 C.12 D.344.如图,已知////a b c ,直线m 分别交直线,,a b c 于点,,A B C ,直线n 分别交直线,,a b c 于点,,D E F .若12AB BC =,则DE EF=( )A.13B.12C.23D.15.一元二次方程2210x mx --=的根的情况是( )A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.无法确定 6.如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )A.13B.23C.12D.17.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE AD =,连接EB ,EC ,DB .添加一个条件,不能使四边形DBCE 成为矩形的是( )A.AB BE =B.BE DC ⊥C.90ADB ∠=︒D.CE DE ⊥8.一个不透明的盒子里有9个黄球和若干个红球,红球和黄球除颜色外其他完全相同,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中红球的个数为( )A.11B.15C.19D.219.如图,菱形ABCD 的边长为2,点P 是对角线AC 上的一个动点,点E 、F 分别为边AD 、DC 的中点,则PE PF +的最小值是( )A.2 3 C.1.5 510.已知实数x 满足()()2222122130x x x x -++-+-=,那么221x x -+的值为( ) A.-1或3 B.-3或1 C.3 D.111.如图,在方形ABCD 中,4AB =,E 是CD 的中点,将BCE 沿BE 翻折,得到BFE ,连接DF ,则DF 的长度是( )A.55B.55C.355D.5512.如图是清代李演撰写的《九章算术细草图说》中的“勾股圆方图”.四边形ABCD ,四边形EBGF ,四边形HNQD 均为正方形,,,BG NQ BC 是某个直角三角形的三边,其中BC 是斜边,若:8:9HM EM =,2HD =,则AB 的长为( )A.114B.2910C.3D.22二、填空题:(每小题3分,共18分)13.如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,若5AB =,4AC =cm ,则BD 的长为________cm.14.如图,在正方形ABCD 中,以AB 为边在正方形内作等边ABE ,连接DE ,CE ,则CED ∠的度数为__________.15.如图,两个相同的可以自由转动的转盘A 和B ,转盘A 被三等分,分别标有数字2,0,-1;转盘B 被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A ,B ,转盘停止时,两个指针指向转盘A ,B 上的对应数字分别为x ,y (当指针指在两个扇形的交线时,需重新转动转盘),那么点(,)x y 落在直角坐标系第二象限的概率是________.16.如图,在平面直角坐标系中,ACE △是以菱形ABCD 的对角线AC 为边的等边三角形, 2AC =,点C 与点E 关于x 轴对称,则点D 的坐标是____________.17.如图,在Rt ABC 中,90ABC ∠=︒,2AB BC ==,点E 是AB 的中点,矩形BCDE 的边DE 与AC 交于点F ,连接BD .点G 是AF 的中点,点H 是BD 的中点,连接GH ,则线段GH 的长为______________.18.关于x 的一元二次方程2240x mx m ++=有两个不同的实数根1x ,2x ,且2212316x x +=,则m =__________. 三、解答题(本大题共8小题,共计66分,解答题应写出演算步骤或证明过程)19.(6分)已知,在一个盒子里有红球和白球共10个,它们除颜色外都相同,将它们充分摇匀后,从中随机抽出一个,记下颜色后放回.在摸球活动中得到如下数据: 摸球总次数50 100 150 200 250 300 350 400 450500摸到红球的频数17 32 44 64 78 _____ 103 122 136 148 摸到红球的频率0.34 0.32 0.293 0.32 0.312 0.32 0.294 _____ 0.302 _____ .(2)根据上表,完成折线统计图.(3)请你估计,当摸球次数很大时,摸到红球的频率将会接近_________(精确到0.1).20.(6分)如图,在矩形ABCD 中,E 为AB 的中点,连接CE 并延长,交DA 的延长线于点F .(1)求证:AEF BEC ≅△△;(2)若4CD =,30F ∠=︒,求CF 的长.21.(8分)“玫瑰香”葡萄品种是农科院研制的优质新品种,在被广泛种植,某葡萄种植基地2019年种植64亩,到2021年的种植面积达到100亩.(1)求该基地这两年“玫瑰香”种植面积的平均增长率.(2)某超市调查发现,当“玫瑰香”的售价为8元/千克时,每周能售出400千克,售价每上涨1元,每周销售量减少20千克,已知该超市“玫瑰香”的进价为6元/千克,为了维护消费者利益,物价部门规定,该水果售价不能超过15元.若使销售“玫瑰香”每周获利2240元,则售价应上涨多少元?22.(8分)某班甲、乙两名同学被推在到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲,要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.游戏规则如下;在一个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a .在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片,卡片上的数字记为b .然后计算这两个数的和,即a b +.若a b +为奇数,则演奏《月光下的凤尾竹》,否则,演奏《彩云之南》.(1)用列表法或画树状图法中的一种方法,求(,)a b 所有可能出现的结果总数;(2)你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?23.(8分)如图,在四边形ABCD 中,//AD BC ,AB AD =,BAD ∠的平分线AE 交BC 于点E ,连结DE .(1)求证:四边形ABED 是菱形.(2)连结BD .若2CE BE =,4AE =,6BD =,则CDE △的面积是_________.24.(8分)阅读材料,解答问题:材料1:为了解方程222()13360x x -+=,如果我们把2x 看作一个整体,然后设2y x =,则原方程可化为213360y y -+=,经过运算,原方程的解为12x =,22x =-,33x =,43x =-.我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数m ,n 满足210m m --=,210n n --=,且m n ≠,显然m ,n 是方程210x x --=的两个不相等的实数根,由根与系数的关系可知1m n +=,1mn =-. 根据上述材料,解决以下问题:(1)解方程22211120()()x x +--=-;(2)已知实数a ,b 满足22630a a +=-,22630b b +=-且a b ≠,求11a b+的值. 25.(10分)将正方形ABCD 和菱形EFGH 按照如图所示摆放,顶点D 与顶点H 重合,菱形EFGH 的对角线HF 经过点B ,点E ,G 分别在AB ,BC 上.(1)求证:ADE CDG ≅△△;(2)若2AE BE ==,求BF 的长.26.(12分)有公共顶点A 的正方形ABCD 与正方形AEGF 按如图1所示放置,点E ,F 分别在边AB 和AD 上,连接BF ,DE ,M 是BF 的中点,连接AM 交DE 于点N .【观察猜想】(1)线段DE 与AM 之间的数量关系是____________,位置关系是_________;【探究证明】(2)将图1中的正方形AEGF 绕点A 顺时针旋转45°,点G 恰好落在边AB 上,如图2,其他条件不变,线段DE 与AM 之间的关系是否仍然成立?并说明理由.答案以及解析1.答案:A 解析:m 是一元二次方程2310x x --=的一个根,231m m ∴-=,232022*********m m --=-=-∴,故选:A.2.答案:C解析:把各选项中的数值分别按照从小到大的顺序排列,若最小乘最大等于中间两项之积,则成比例;反之,则不成比例选项A,B,D 中不成比例,选项C 中,215523=,符合题意.3.答案:A解析:根据题意列表如下:红 绿 红 (红,红) (红,绿) 绿 (绿,红) (绿,绿)有1种,故所求概率为14. 4.答案:B解析:////a b c ,直线m 分别交直线,,a b c 于点,,A B C ,直线n 分别交直线,,a b c 于点,,D E F ,12DE AB EF BC ∴==,选B. 5.答案:B解析:22()42(1)8m m --⨯⨯-=∆=+,又20m ≥,280m ∴+>,即0∆>,∴一元二次方程2210x mx --=有两个不相等的实数根,故选:B.6.答案:B解析:把1S 、2S 、3S 分别记为A 、B 、C ,画树状图如下:共有6种等可能的结果,其中同时闭合两个开关能形成闭合电路的结果有4种,即AB 、AC 、BA 、CA ,∴同时闭合两个开关能形成闭合电路的概率为4263=,故选:B. 7.答案:B 解析:四边形ABCD 为平行四边形, //AD BC ∴,AD BC =,又AD DE =,//DE BC ∴,且DE BC =,∴四边形BCED 为平行四边形,A.AB BE =,DE AD =,BD AE ∴⊥,DBCE ∴为矩形,故本选项不符合题意; B.对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项符合题意;C.90ADB ∠=︒,90EDB ∴∠=︒,DBCE ∴为矩形,故本选项不符合题意;D.CE DE ⊥,90CED ∴∠=︒,DBCE ∴为矩形,故本选项不符合题意,故选:B.8.答案:D解析:设盒子中红球的个数为m ,利用频率估计概率得到摸到黄球的概率为30%,则930%9m=+,解得21m =.所以估计这个不透明的盒子中红球的个数为21. 9.答案:A解析:如图,取AB 是中点T ,连接PT ,FT .四边形ABCD 是菱形,//CD AB ∴,CD AB =, DF CF =,AT TB =, DF AT ∴=,//DF AT ,∴四边形ADFT 是平行四边形,2AD FT ∴==,四边形ABCD 是菱形,AE DE =,AT T =,∴E ,T 关于AC 对称,PE PT ∴=,PE PF PT PF ∴+=+, 2PF PT FT +≥=, 2PE PF ∴+≥, PE PF ∴+的最小值为2.故选:A. 10.答案:D解析:设221x x a -+=.(()22221)22130xx x x -++-+-=,2230a a ∴+-=,解得3a =-或1.当3a =-时,2213x x -+=-,即2(1)3x -=-,此方程无解;当1a =时,2211x x -+=,此时方程有解.故选D. 11.答案:D解析:如图,连接CF ,交BE 于H ,在正方形ABCD 中,4AB =,E 是CD 的中点,4,2,90BC CD CE DE BCD ∠∴=====,2216425BE BC CE ∴=+=+= 将BCE 沿BE 翻折,得到BFE ,2,,CE EF BE CF FH CH ∴==⊥=,1122BCESBE CH BC CE =⋅=⋅, 45CH ∴=, 22165455EH CE CH ∴=-=-= ,CE DE FH CH ==,452DF EH ∴==, 故选D. 12.答案:B解析::8:9,HM EM =∴设8, 9HM x EM x ==.∵四边形ABCD ,四边形EBGF ,四边形HNQD 均为正方形,2,HD NQ BG BE ∴===,BC AD AB ==.由题意得,9AH EM x ==, 8AE HM x ==,92AB BC AD x ∴===+,9282BG BE AB AE x x x ∴==-=+-=+.,,BG NQ BC 是某个直角三角形的三边,其中BC 是斜边,222BG NQ BC ∴+=,222(2)2(92)x x ∴++=+,解得1211,102x x ==-(舍去),129921010AB ∴=⨯+=,故选B.13.答案:8解析:四边形ABCD 是菱形,4AC =cm ,AC BD ∴⊥,BO DO =,2AO CO ==cm ,25AB =,224BO AB AO =-=cm ,4DO BO ∴==cm ,8BD ∴=cm ,故答案为:8. 14.答案:150°解析:四边形ABCD 是正方形,90,BAD ABC ADC BCD AB BC CD DA ∠∠∠∠∴=======.ABE 是等边三角形,,60AB AE BE BAE ABE ∠∠∴====,,30AE AD BE BC DAE CBE ∠∠∴=====,()118030752ADE BCE ∠∠∴==⨯-=,15,1801515150EDC ECD CED ∠∠∠∴==∴=--=.15.答案:16解析:列表如下:213 (2,3)(0,3)(1,3)-2 (2,2) (0,2) (1,2)- -2 (2,2)- (0,2)- (1,2)-- -3(2,3)-(0,3)-(1,3)--点(,)x y 落在直角坐标系第二象限的概率是21126=,故答案为:16. 16.答案:3⎫⎪⎪⎝⎭解析:如图,设CE 与x 轴交于点 .H ACE △是以菱形ABCD 的对角线AC 为边的等边三角形,2,1, 3.AC CH AH =∴==330,ABO DCH DH AO ∠=∠=∴==3333333OD ∴=-=∴点D 的坐标为3⎫⎪⎪⎝⎭.17.5解析:连接EC ,EG .点H 是BD 的中点,四边形BCDE 是矩形,∴EC 与BD 的交点为点H ,且点H 是EC 的中点.=AB BC ,90ABC ∠=︒,45A ∴∠=︒,又90FEA ∠=︒,点G 为AF 的中点,GE AF ∴⊥,CGE ∴是直角三角形,又点H 是EC 的中点,2222125EC BE BC =++=,1522GH EC ∴==. 18.答案:18-解析:解:根据题意得122x x m +=-,122mx x =,2212316x x +=,()212123216x x x x ∴+-=,23416m m ∴-=,118m ∴=-,238m =,21680m m ∆=->,12m ∴>或0m <时,38m ∴=不合题意,故答案为:18-. 19.答案:解:(1)3000.3296⨯=,1220.305400=,1480.296500=,故答案分别为96,0.305,0.296. (2)折线统计图如图所示.(3)当摸球次数很大时,摸到红球的频率将会接近0.3. 故答案为0.3.20.答案:(1)证明见解析 (2)CF 的长为8解析:(1)证明:四边形ABCD 是矩形,//AD BC ∴,F BCE ∴∠=∠, E 是AB 中点,AE EB ∴=,AEF BEC ∠=∠,(AAS)AEF BEC ∴≅△△;(2)解:四边形ABCD 是矩形,90D ∴∠=︒,4CD =,30F ∠=︒,2248CF CD ∴==⨯=, 即CF 的长为8.21.答案:(1)该基地这两年“玫瑰香”种植面积的平均增长率为25% (2)售价应上涨6元解析:(1)设该基地这两年“玫瑰香”种植面积的平均增长率为x , 依题意,得()2641100x +=,解得:10.2525%x ==,2 2.25x =-(不合题意,舍去). 答:该基地这两年“玫瑰香”种植面积的平均增长率为25%. (2)设售价应上涨y 元,则每天可售出()40020y -千克, 依题意,得(86)(40020)2240y y -+-=, 整理,得218720y y +=-, 解得112y =,26y =,该水果售价不能超过15元,8122015+=>,681415+=<,12y ∴=不符合题意舍去,6y =符合题意.答:售价应上涨6元. 22.答案:(1)见解析(2)这个游戏公平,理由见解析 解析:(1)方法一:列表如下.1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)由上表可知(,)a b所有可能出现的结果共有8种.方法二:画树状图如图所示.开始由树状图可知(,)a b所有可能出现的结果共有8种.(2)这个游戏公平.理由:由树状图或表格可知,共有8种等可能的结果,其中a b+为奇数的结果有4种:(1,2),(2,1),(3,2),(4,1),故P(演奏(月光下的凤尾竹)=4182==,P(演奏《彩云之南》)11122=-=.故这个游戏公平.23.答案:(1)证明见解析(2)12解析:(1)//AD BC,DAE AEB∴∠=∠AE平分BAD∠,BAE DAE∴∠=∠.BAE AEB∴∠=∠AB BE∴=,AB AD=,AD BE∴=,//AD BC,即//AD BE,∴四边形ABED是平行四边形,又AB AD=,ABED∴是菱形.(2)如图,连接BD,四边形ABED 是菱形,AE BD ∴⊥,2AO OE ==, 1162622BDE S BD OE ∴=⨯⨯=⨯⨯=△,2CE BE =,CDE ∴△的面积212BDE S ==△, 故答案为12.24.答案:(1)12x =,22x =- (2)2解析:(1)设21y x =-,则原方程可化为2120y y +-=, 解得13y =,24y =-,当3y =时,213x -=,2x =±, 当4y =-时,214x -=-,方程无解, 所以原方程的解为12x =,22x =-;(2)根据题意可知,a ,b 是方程22630x x -+=的两个不相等的实数根, 由根与系数的关系可知3a b +=,32ab =, 故112a ba b ab++==. 25.答案:(1)证明见解析 (2)22BF =解析:(1)证明:正方形ABCD 和菱形EFGH ,AD CD ∴=,90A D ∠=∠=︒,DE DG =, 在Rt ADE △与Rt CDG △中AD CDDE DG=⎧⎨=⎩Rt Rt (HL)ADE CDG ∴≅△△(2)如图,连接EG 交DF 于点O ,2AE BE ==,2CG AE ∴==,2BG CB CG =-=, 在Rt EBG △中,2222EG EB BG ∴+=, 2EO ∴=在Rt ADE △中,24AD AE ==,2AE =,2225EF DE AE AD ∴=+=在Rt OEF △中,2220232OF EF OE -=-=262DF OF ∴==242DB == 22BF DF DB ∴=-=.26.答案:(1)四边形ABCD 和四边形AEGF 都是正方形,AD AB ∴=,AF AE =,90DAE BAF ∠=∠=︒,()SAS DAE BAF ∴≌, DE BF ∴=,ADE ABF ∠=∠,90ABF AFB ∠+∠=︒, 90ADE AFB ∴∠+∠=︒,在Rt BAF 中,M 是BF 的中点,12AM FM BM BF ∴===, 2DE AM ∴=. AM FM =, AFB MAF ∴∠=∠,又90ADE AFB ∠+∠=︒,90ADE MAF ∴∠+∠=︒,1809()0AND ADE MAF ∴∠=︒-∠+∠=︒,即AN DN ⊥;故答案为2DE AM =,DE AM ⊥. (2)仍然成立,证明如下:延长AM 至点H ,使得AM MH =,连接FH ,M 是BF 的中点,BM FM ∴=,又AMB HMF ∠=∠,()SAS AMB HMF ∴≌,AB HF ∴=,ABM HFM ∠=∠,//AB HF ∴, HFG AGF ∴∠=∠,四边形ABCD 和四边形AEGF 是正方形,90DAB AFG ∴∠=∠=︒,AE AF =,AD AB FH ==,EAG AGF ∠=∠, EAD EAG DAB AFG AGF AFG HFG AFH ∴∠=∠+∠=∠+∠=∠+∠=∠, ()SAS EAD AFH ∴≌, DE AH ∴=, 又AM MH =,2DE AM MH AM ∴=+=,EAD AFH ≌,ADE FHA ∴∠=∠,AMB HMF ≌,FHA BAM ∴∠=∠, ADE BAM ∴∠=∠,又90BAM DAM DAB ∠+∠=∠=︒,90ADE DAM ∴∠+∠=︒,1809()0AND ADE DAM ∴∠=︒-∠+∠=︒,即AN DN ⊥.故线段DE 与AM 之间的数量关系是2DE AM =.线段DE 与AM 之间的位置关系是DE AM ⊥.。
期中综合素质评价2022-2023学年度北师大版数学九年级下册
期中综合素质评价一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)1.2tan 45°的值为()A.22 B. 2 C.1 D.22.如图,河堤横断面的坡比是13,AC=12 3m.则坡高BC的长度是() A.12 m B.24 3m C.8 3m D.24m(第2题)(第5题)(第6题)(第7题)3.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x …-3-2-101…y …-3-2-3-6-11…则该函数图象的顶点坐标为()A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)4.顶点为(-2,1),且开口方向、形状与函数y=-2x2的图象相同的抛物线是()A.y=-2(x-2)2-1 B.y=2(x+2)2+1C.y=-2(x+2)2-1 D.y=-2(x+2)2+15.如图,点A、B、C都在边长为1的正方形格点上,连接AB、BC,则cos∠ABC 的值为()A.1 B.32 C.22 D.126.一人乘雪橇沿如图所示的斜坡笔直下滑,下滑的距离s(m)与时间t(s)之间的表达式为s=10t+t2,若从坡顶滑到坡底的时间为2 s,则此人下滑的高度为()A.24 m B.6 m C.12 3 m D.12 m7.二次函数y=a(x+m)2+n的图象如图所示,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限8.某学校数学探究小组利用无人机在操场上开展测量教学楼高度的活动,如图,此时无人机在离地面30米的点D处,操控者站在点A处,无人机测得点A 的俯角为30°,测得教学楼楼顶点C处的俯角为45°,操控者和教学楼BC的距离为60米,则教学楼BC的高度是()A.(60-30 3)米B.30 3米C.(30 3-30)米D.(30 3-15)米(第8题)(第9题)9.如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2-4ac>0;③a-b+c>0;④ 8a+c<0,正确的有()A.4个B.3个C.2个D.1个10.已知抛物线y=-x2-2x+3与x轴交于A,B两点,将这条抛物线的顶点记为C,连接AC,BC,则sin∠ABC的值为()A.55 B.2 55 C.35 D.45二、填空题(本题共6小题,每小题4分,共24分)11.将抛物线y=3x2向右平移5个单位,可得到抛物线________.12.在Rt△ABC中,∠C=90°,AC=1,AB=2,则∠B=________.13.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,与x轴的一个交点为A(3,0),则由图象可知,不等式ax 2+bx+c<0的解集是______________.(第13题)(第14题)(第15题)(第16题)14.如图,B港在观测站A的正北方向,B港离观测站A 10 3 n mile,一艘船从B港出发向正东方向匀速航行,第一次测得该船在观测站A的北偏东30°方向的M处,0.5h后又测得该船在观测站A的北偏东60°方向的N处,则该船的速度为________n mile/h.15.如图,将矩形ABCD沿CE折叠,使得点B落在AD边上的点F处,若CB CD=43,则tan∠AFE=________.16.如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x<0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是-12或22.其中正确的是________.三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:|3-1|-2sin 30°+(-1)2+2tan 45°.18.(8分)如图,∠C=90°,点D在BC上,BD=6,AD=BC,cos∠ADC=3 5,求CD的长.19.(8分)如图,已知∠P AB=30°,线段AB=4.(1)尺规作图:作菱形ABCD,使线段AB是菱形的边,顶点C在射线AP上;(保留作图痕迹,不写作法)(2)求(1)中菱形对角线AC的长度.20.(8分)某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度y(单位:m)与行进的水平距离x(单位:m)之间关系的图象如图所示.已知篮球出手位置A与篮筐的水平距离为4.5 m,篮筐距地面的高度为3.05 m;当篮球行进的水平距离为3 m时,篮球距地面的高度达到最大为3.3 m.(1)图中点B表示篮筐,其坐标为________,篮球行进的最高点C的坐标为________;(2)求篮球出手时距地面的高度.21.(8分)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A,C分别在x轴、y轴的正半轴上,抛物线y=-12x2+bx+c经过B,C两点,点D为抛物线的顶点,连接AC,BD,CD.求:(1)此抛物线的函数表达式;(2)此抛物线顶点D的坐标和四边形ABDC的面积.22.(10分)为提倡健康生活,某人买回一台跑步机.图①、②分别是某种型号跑步机的实物图与示意图.已知踏板CD长为1.6 m,踏板CD的坡比=13,支架AC长为0.8 m,跑步机手柄为AB,地面为ED,且AB∥ED,A到地面的高度为h.支架与踏板的夹角(∠ACD)可以根据用户的舒适度需求在0°~90°调节.(1)求C到地面DE的距离;(2)该人身高为1.8m,通过尝试h是身高的0.8倍时运动起来最舒适,求此时点C到手柄AB的垂直距离.23.(10分)宁德市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)这种干果每千克降价多少元时,该商贸公司获得最大利润?最大利润是多少元?24. (12分)某海湾有一座抛物线形拱桥,正常水位时桥下的水面宽为100 m(如图所示).由于潮汐变化,该海湾涨潮5 h后达到最高潮位,此最高潮位维持1 h,之后开始退潮.如:某日16时开始涨潮,21时达到最高潮位,22时开始退潮.该桥的桥下水位相对于正常水位上涨的高度h随涨潮时间t变化的情况大致如表一所示:(在涨潮的5 h内,该变化关系近似于一次函数)表一涨潮时间t(单位:h)12345 6桥下水位上涨的高度h(单位:m)45851251654 4(1)求桥下水位上涨的高度h(单位:m)关于涨潮时间t(0≤t≤6,单位:h)的函数表达式;(2)某日涨潮期间,某船务公司对该桥下水面宽度进行了三次测量,数据如表二所示:表二涨潮时间t(单位:h)5452154桥下水面宽(单位:m)20 2420 2320 22现有一艘满载集装箱的货轮,水面以上部分高15 m,宽20 m,该货轮在涨潮期间能否安全从该桥下驶过?请说明理由.25.(14分)已知抛物线y=ax2+bx+c(a<0)经过A(-1,t),B(3,t)两点.(1)当a=-1时,求b的值;(2)当t=0,且-1≤x≤0时,y的最大值为3.①求抛物线的表达式;②抛物线与y轴交于点C,直线y=kx(k≠-1)与抛物线交于点D,与直线BC交于点F,连接CD,当S△COF S△CDF=32时,求k的值.答案一、1.D 2.A 3.B 4.D 5.C 6.D 7.C 8.C 9.B 10.B二、11.y =3(x -5)2 12.45° 13.-1<x <3 14.40 15.73 16.③④三、17.解:原式=3-1-2×12+1+2×1=3-1-1+1+2=3+1.18.解:∵在Rt △ACD 中,cos ∠ADC =CD AD =35,∴设CD =3k ,则AD =5k .∵BC =AD ,∴BC =5k . 又∵BD =BC -CD ,∴6=5k -3k ,解得k =3. ∴CD =3×3=9.19.解:(1)如图,菱形ABCD 即为所求作.(2)连接BD 交AC 于点O ,如图,∵四边形ABCD 为菱形,∴∠AOB =90°,AO =CO , ∵∠P AB =30°,∴OB =12AB =2, ∴AO =OB tan 30°=2 3,∴AC =4 3. 20.解:(1)(4.5,3.05);(3,3.3)(2)设抛物线的表达式为y =a (x -3)2+3.3, 把(4.5,3.05)代入得,3.05=a (4.5-3)2+3.3,解得a =-19,∴抛物线的表达式为y =-19(x -3)2+3.3,当x =0时,y =2.3.答:篮球出手时距地面的高度为2.3米. 21.(1)由题意得C (0,4),B (4,4),把B 与C 的坐标分别代入y =-12x 2+bx +c , 得⎩⎪⎨⎪⎧-12×16+4b +c =4,c =4,解得⎩⎨⎧b =2,c =4.∴此抛物线的函数表达式为y =-12x 2+2x +4.(2)∵y =-12x 2+2x +4=-12(x -2)2+6,∴抛物线顶点D 的坐标为(2,6).∴S 四边形ABDC =S △ABC +S △BCD =12×4×4+12×4×(6-4)=8+4=12.22.解:(1)如图,过点C 作CG ⊥DE 交DE 所在直线于点G ,∵踏板CD 的坡比=13,∴tan ∠CDG =13=33, ∴∠CDG =30°,∴CG =12CD =0.8(m),即C 到地面DE 的距离为0.8 m.(2)如图,延长GC 交AB 所在直线于点F ,则CF ⊥AB .∵该人身高为1.8 m ,通过尝试h 是身高的0.8倍时运动起来最舒适,∴此时h =FG =1.8×0.8=1.44(m),由(1)得:CG =0.8 m ,∴CF =FG -CG =1.44-0.8=0.64(m),即此时点C 到手柄AB 的垂直距离为0.64 m.23.解:(1)设y 与x 之间的函数表达式为y =kx +b ,把(2,120)和(4,140)分别代入,得⎩⎨⎧2k +b =120,4k +b =140,解得⎩⎨⎧k =10,b =100,∴y 与x 之间的函数表达式为y =10x +100(0<x <20).(2)设该商贸公司获得的利润是w 元,根据题意,得w =(60-40-x )(10x +100)=-10x 2+100x +2 000=-10(x -5)2+2 250,∵0<x <20,∴当x =5时,w 最大=2 250.答:这种干果每千克降价5元时,该商贸公司获得最大利润,最大利润是2 250元.24.解:(1)当0≤t ≤5时,由题意可设桥下水位上涨的高度h 关于涨潮时间t 的函数表达式为h =mt +n ,当t =1时,h =45;当t =2时,h =85;可得⎩⎪⎨⎪⎧m +n =45,2m +n =85,解得⎩⎪⎨⎪⎧m =45,n =0. ∴当0≤t ≤5时,h =45t ,当5<t ≤6时,h =4.(2)以抛物线的对称轴为y 轴,以正常水位时桥下的水面与抛物线的交线为x 轴建立直角坐标系,如图.设抛物线表达式为:y =ax 2+k (a <0),由(1)可得:当t =0时,h =0,此时桥下水面宽100 m ,当t =54时,h =1,此时桥下水面宽为20 24m ,∴抛物线过点(50,0),(10 24,1),可得⎩⎨⎧2 500a +k =0,2 400a +k =1,解得⎩⎪⎨⎪⎧a =-1100,k =25.∴y =-1100x 2+25(-50≤x ≤50),当x =20÷2=10时,y =24,在最高潮时,4+15=19(m),19m<24m.答:该货轮在涨潮期间能安全从该桥下驶过.25.解:(1)由题意知:抛物线的对称轴为直线x =-1+32=1,∴当a =-1时,由-b 2a =1,得b =2.(2)①当t =0时,抛物线y =ax 2+bx +c 经过A (-1,0),B (3,0)两点.∵a <0,-1≤x ≤0,在对称轴直线x =1的左侧,y 值随x 值的增大而增大. ∴当x =0时,y =3.∴抛物线y =ax 2+bx +c 经过(0,3),则c =3.依题意,得⎩⎨⎧a -b +3=0,9a +3b +3=0,解得⎩⎨⎧a =-1,b =2.∴抛物线的表达式为y =-x 2+2x +3.②∵S △COF S △CDF =32,∴OF DF =32,∴OF >DF .由题意可知,点D 与点F 只能在同一象限内.∵B (3,0),C (0,3),∴直线BC 的表达式为y =-x +3.如图①和②,过点D 作直线DH ∥y 轴交直线BC 于点H ,交x 轴于点G .设D (m ,-m 2+2m +3),则H (m ,-m +3).∴DH =|(-m +3)-(-m 2+2m +3)|=|m 2-3m |.∵DH ∥ OC ,∴∠OCF =∠DHF ,∠COF =∠HDF ,∴△OFC ∽△DFH .∴OC DH =OF DF =32.∴DH =23OC =2.∴|m 2-3m |=2,∴m 2-3m =-2或m 2-3m =2,解得m 1=1,m 2=2,m 3=3-172,m 4=3+172,∴D 的坐标为(1,4)或(2,3)或(3-172,-1+172)或⎝ ⎛⎭⎪⎫3+172,-1-172 . ∴k 的值为4或32或-7-174或-7+174.。
新北师大版九年级数学期中试卷(1~5章)
2014~2015学年九年级数学期中试卷说明:全卷共8页,24题,总分120分,考试时间为120分钟。
一、精心选一选:(本大题共10小题,每小题3分,共30分。
每小题给出四个答案,其中只有一个是正确的,请把正确的答案代号填入相应空格内。
)A .相等B .互相平分C . 互相垂直D .互相垂直且相等 2、如果一元二次方程()012=+++m x m x 的两个根是互为相反数,那么有( ) (A )m =0 (B )m =-1 (C )m =1 (D )以上结论都不对 3、下列方程是关于x 的一元二次方程的是( )A 、0432=-+y x B 、05323=--x xC 、0212=-+xx D 、012=+x 4、如图,在边长为2a 的正方形中央剪去一边长为(a+2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )5.如上右图,△ABC 中,AB=4,AC=3,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD6.如图,在△ABC 中,AC =BC ,点D 、E 分别是边AB 、AC 的中点.将△ADE 绕点E 旋转180°得△CFE ,则四边形ADCF 一定是 (A )矩形 (B )菱形 (C )正方形 (D )梯形第(6)题B7、.如图,小正方形的边长均为1,则图中三角形(阴影部分)与ABC相似的是()8、右图是一个由3个相同的正方体组成的立体图形,它的三视图是( )(A)(B)(C)(D)9、某小组作“用频率估计概率的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是()A 、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球。
D、掷一个质地均匀的正六面体骰子,向上的面点数是4.10、在研究相似问题时,甲、乙两同学的观点如下:甲:将边长为3,4,5的三角形按图中的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似。
北师大版九年级数学期中试题(有答案)
九年级数学试题一.选择题(每题3分,共30分)1. 如图,正三棱柱的主视图为( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角相等 3.用配方法解方程0542=--x x 时,原方程应变形为( )A .6)1(2=+xB .6)1(2=-xC .9)2(2=-xD .6)2(2=+x4. 如图,在菱形纸片ABCD 中,∠A=60°,P 为AB 中点,折叠该纸片使点C 落在点C′处,且点P 在DC′上,折痕为DE ,则∠CDE 的大小为( )A .30° B.40° C.45° D.60°5. 如图,已知直线a b c ∥∥,直线m ,n 与a ,b ,c 分别交于点A,C,E,B,D,F 。
若4AC =,10AE =,3BD =,则DF 的值是( )A .4B .4.5C .5D .5.56.已知反比例函数xy 1=,下列结论中不正确的是( ) A.图象经过点(-1,-1) B.图象在第一、三象限C.当1>x 时,0<y<1D.当0<x 时,y 随着x 的增大而增大7. 已知关于x 的一元二次方程(k+1)2x +2x-1=0有两个不相等的实数根,则k 的取值范围是( )。
A .k<-2 B .k ≥-2且k ≠-1 C .. k >-2 D .k >-2且k ≠-18.函数m x y +=与)0(≠=m xmy 在同一平面直角坐标系内的图象可以是( )(第4题)m n cb aFDB E CA (第5题)DCBA主视方向9.如图,将边长为2cm 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A ′B ′C ′,若两个三角形重叠部分的面积是1cm 2,则它移动的距离AA ′等于( )A .1cmB .0.5cmC .2cmD .cm 210. 如图,正方形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE,延长EF 交边BC 于点G ,连接AG ,CF ,下列结论:①点G 是BC 的中点;②FG=FC ;③S △FGC =910.其中正确的是( )A .①②B .①③C .②③D .①②③ 二.填空题(每题3分,共18分) 11.方程x x 32=的根是 .12.为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有 个白球.13. .已知点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在双曲线y = x1-上,且3210x x x <<<,则321,,y y y 的大小关系为 。
【北师大版】初三数学下期中第一次模拟试题(及答案)
一、选择题1.如图,在四边形ABCD 中,//AD BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是( )A .∠BAC =∠ADCB .∠B =∠ACDC .AC 2=AD •BC D .DC AB AC BC = 2.如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD 和BC 交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使3OA OD =,3OB OC =),然后张开两脚,使A 、B 两个尖端分别在线段I 的两个端点上.若12AB cm =,则CD 的长是( )A .3cmB .4cmC .6cmD .8cm 3.如图,在ABC ∆中,E 为BC 边上的一点,F 为AC 边上的一点,连接BF ,AE ,交于点D ,若D 为BF 的中点,CF 2AF =,则:BE CE 的值为( )A .1:2B .1:3C .1:4D .2:34.△ABC 与△DBC 如图放置,已知,∠ABC =∠BDC =90°,∠A =60°,BD =CD =22,将△ABC 沿BC 方向平移至△A'B'C'位置,使得A'C 边恰好经过点D ,则平移的距离是( )A .1B .2﹣2C .3 2D .6﹣4 5.如图,直线l 1//l 2//l 3,分别交直线m 、n 于点A 、B 、C 、D 、E 、F .若AB ∶BC =5∶3,DE =15,则EF 的长为( )A .6B .9C .10D .256.如图,在矩形OABC 中,点A 和点C 分别在y 轴和x 轴上.AC 与BO 交于点D ,过点C 作CE BD ⊥于点E ,2DE BE =.若5CE =,反比例函数(0,0)k y k x x=>>经过点D ,则k =( )A .2B .352C .36D .30 7.如图,正方形ABCD 的顶点A 的坐标为()1,0-,点D 在反比例函数m y x =的图象上,B 点在反比例函数3y x=的图像上,AB 的中点E 在y 轴上,则m 的值为( )A .-2B .-3C .-6D .-88.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)k y x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则12k k -的值为( )A .2B .3C .4D .59.对于反比例函数21k y x +=,下列说法错误的是( ) A .函数图象位于第一、三象限B .函数值y 随x 的增大而减小C .若A (-1,y 1)、B (1,y 2)、C (2,y 3)是图象上三个点,则y 1<y 3<y 2D .P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,则△OPQ 的面积是定值10.如图,直线1122y x =+与双曲线26y x=交于()2A m ,、()6B n -,两点,则当12y y <时,x 的取值范围是()A .6x <-或2x >B .60x -<<或2x >C .6x <-或02x <<D .62x -<<11.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 12.如图,双曲线k y x=经过Rt BOC ∆斜边上的中点A ,且与BC 交于点D ,若BOD 6S ∆=,则k 的值为( )A .2B .4C .6D .8二、填空题13.如图,在矩形ABCD 中,6,AD AE BD =⊥,垂足为,3E ED BE =,动点,P Q 分别在,BD AD 上,则AE 的值为__________,AP PQ +的最小值为_____________.14.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折 叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG = 1.5 S △FGH ;④AG+DF=FG ;其中正确的是______________.(填写正确结论的序号)15.如图,已知Rt ABC 中,AC=b ,BC=a ,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点D 4,D 5,…,D n ,分别记BD 1E 1,BD 2E 2,BD 3E 3,…,BD n E n 的面积为S 1,S 2,S 3,…S n .则(1)1E C =__________,(2)S n =__________.16.如图是用卡钳测量容器内径的示意图,现量得卡钳上A ,D 两个端点之间的距离为10cm ,23AO DO BO CO ==,则容器的内径是______.17.如图,在平面直角坐标系xOy中,直线y=ax,y=1ax与反比例函数y=6x(x>0)分别交于点A,B两点,由线段OA,OB和函数y=6x(x>0)在A,B之间的部分围成的区域(不含边界)为W.(1)当A点的坐标为(2,3)时,区域W内的整点为_____个;(2)若区域W内恰有8个整点,则a的取值范围为_____.18.如图,边长为1的正方形OABC中顶点B在一双曲线上,请在图中画出一条过点B的直线,使之与双曲线的另一支交于点D,且满足线段BD最短,则BD=________.19.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=kx(k≠0)的图象经过其中两点,则m的值为_____.20.如图,点A在反比例函数kyx=的图象上,AB垂直x轴于B,若AOBS∆=2,则这个反比例函数的解析式为_______________.三、解答题21.如图,在平面直角坐标系xoy 中,直线2y x b =+经过点()2,0A -,与y 轴交于点B ,与反比例函数()0k y x x =>的图象交于点C(m ,6),过B 作BD y ⊥轴,交反比例函数()0k y x x=>的图象于点D ,连接AD ,CD . (1)求b ,k 的值;(2)求△ACD 的面积;(3)在坐标轴上是否存在点E(除点O 外),使得△ABE 与△AOB 相似,若存在,请求出点E 的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系xOy 中,OAB 如图放置,点P 是AB 边上的一点,过点P 的反比例函数(0,0)k y k x x=>>与OA 边交于点E ,连接OP .(1)如图1,若点A 的坐标为(3,4),点B 的坐标为(5,0),且OPB △的面积为5,求直线AB 和反比例函数的解析式;(2)如图2,若60AOB ︒∠=,过P 作//PC OA ,与OB 交于点C ,若12PC OE =,并且OPC 33,求OE 的长. (3)在(2)的条件下,过点P 作//PQ OB ,交OA 于点Q ,点M 是直线PQ 上的一个动点,若OEM △是以OE 为直角边的直角三角形,则点M 的坐标为______. 23.已知,反比例函数k y x=(k 是常数,且0k ≠)的图象经过点(,3)A b .(1)若4b =,求y 关于x 的函数表达式.(2)若点(3,3)B b b 也在该反比例函数图象上,求b 的值.24.如图,直线y kx b =+y kx b =+与反比例函数12y x =相交于A(2,)-m 、B(n,3).(1)连接OA 、OB ,求AOB 的面积;(2)根据(1)中的图象信息,请直接写出不等式12kx b x>+的解集. 25.如图,一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x (x >0)的图象上,顶点B 在函数y 2=2k x (x >0)的图象上,∠ABO=30°,求12k k 的值.26.如图,在ABC 中,D 为BC 上一点,BAD C ∠=∠.(1)求证:C ABD BA ∽△△.(2)若6,3AB BD ==,求CD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用相似三角形的判定定理,在AD ∥BC ,得∠DAC =∠BCA 的前提下,需添加一角或夹这角的两边对应成比例进行排查即可.【详解】解:A .∵AD ∥BC ,∴∠DAC =∠BCA ,当∠BAC =∠ADC 时,则△ABC ∽△DCA ;B .∵AD ∥BC ,∴∠DAC =∠BCA ,当∠B =∠ACD 时,则△ABC ∽△DCA ;C .∵AD ∥BC ,∴∠DAC =∠BCA ,由AC 2=AD •BC 变形为AC AD BC AC =,则△ABC ∽△DCA ; D .∵AD ∥BC ,∴∠DAC =∠BCA ,当DC AB AC BC=时,不能判断△ABC ∽△DCA . 故选择:D .【第讲】本题考查三角形相似问题,掌握相似三角形的判定定理,会根据判定定理进行添加条件使三角形相似解题关键. 2.B解析:B【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【详解】∵OA =3OD ,OB =3OC , ∴3OA OB OD OC==, ∵AD 与BC 相交于点O ,∴∠AOB =∠DOC ,∴△AOB ∽△DOC , ∴3AB OA DC OD==, ∵12AB cm =∴CD=12433AB ==cm, 故选B.【点睛】 本题考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题,属于中考常考题型.3.B解析:B【分析】过点F 作FG//BC 交AE 于点G ,证明DFG DBE ∆∆可得FG BE =,再由//FG BC 可证得13BE GF AF CE CE AC ===,故可得结论. 【详解】解:过点F 作FG//BC 交AE 于点G∵D 是BF 的中点,∴DB DF =∵//FG BC∴DFG DBE ∆∆∴1FG DF BE DB== ∴FG BE =又∵//FG BC∴F CEC G AF A = ∵CF 2AF =∴3AC AF =∴13BE GF AF CE CE AC === 故选:B .【点睛】此题主要考查了相似三角形的判定与性质以及平行线分线段成比例定理,熟练掌握相关定理与性质是解答此题的关键.4.C解析:C【分析】过点D 作DJ ⊥BC 于J ,根据勾股定理求出BC ,利用等腰直角三角形的性质求出DJ 、BJ 、JC ,利用平行线分线段成比例定理求出JC′即可解决问题.【详解】解:过点D 作DJ ⊥BC 于J .∵DB =DC =2,∠BDC =90°,∴BC ()()222222+4,DJ =BJ =JC =2,∵∠ABC =90°,∠A =60°,∴∠ACB =30°,∴AC=2AB ,∵AB 2+42=(2AB)2,∴A′B′=AB 43, ∵DJ//A′B′,∴DJ A B ''=C J C B''', ∴434C J ', ∴C′J =3∴JB′=4﹣3∴BB′=2﹣(4﹣3=3﹣2.故选:C .【点睛】本题考查了平移的性质,直角三角形的性质,等腰三角形的性质,勾股定理,以及平行线分线段成比例定理. 5.B解析:B【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵l 1∥l 2∥l 3,DE=15, ∴53DE AB EF BC ==,即1553EF =, 解得,EF=9,故选:B .【点睛】本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 6.B解析:B【分析】作DF ⊥OC 于F ,根据矩形的性质和相似三角形的性质求得OD=3,OE=5,根据勾股定理求得30OC =,然后通过三角形相似求得DF 和OF ,从而求得D 的坐标,代入解析式即可求得k 的值.【详解】解:作DF ⊥OC 于F ,在矩形OABC 中,∠OCB=90°,OD=BD ,90,OCE BCE ∴∠+∠=︒∵CE ⊥OB ,90,CEO BEC ∴∠=∠=︒90,OCE COE ∴∠+∠=︒,COE BCE ∴∠=∠,COE BCE ∴∽,CE OE BE CE∴= ∴2,CE BE OE =∵2DE BE =,5,CE = 设,BE x =则DE=2x ,3,OD BD x ==∴OE=5x ,∴255,x x =解得,x=1(负根舍去),∴OD=3,OE=5,∴()22225530,OC OE CE =+=+= ∵∠OFD=∠OEC=90°,∠DOF=∠EOC ,∴△DOF ∽△COE ,∴,DF OF OD CE OE OC==即,5530OF == ∴306,,OF DF == ∴D 的坐标为306,⎛⎫ ⎪⎪⎝⎭, ∵反比例函数k y x =(k >0,x >0)经过点D , ∴30635,k =⨯= 故选:B .【点睛】本题考查了矩形的性质,勾股定理,三角形相似的判定和性质,反比例函数图象上点的坐标特征,求得D 的坐标是解题的关键.7.D解析:D【分析】作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,先根据题意求得AN=2,然后证明△ADM ≌△BAN 得到DM=AN=2,AM=BN=3,则D (-4,2),根据待定系数法即可求得m 的值.【详解】解:作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,∵点A 的坐标为(-1,0),∴OA=1,∵AE=BE ,BN ∥y 轴,∴OA=ON=1,∴AN=2,B 的横坐标为1,把x=1代入3y x=,得y=3, ∴B (1,3),∴BN=3,∵四边形ABCD 为正方形,∴AD=AB ,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM ,在△ADM 和△BAN 中90AND ANB ADM BAN AD AB ∠∠︒⎧⎪∠∠⎨⎪⎩==== ∴△ADM ≌△BAN (AAS ),∴DM=AN=2,AM=BN=3,∴134OM OA AM =+=+= ,∴D 42-(,), ∵点D 在反比例函数m y x=,的图象上, ∴428m =-⨯=- ,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,正方形的性质,三角形全等的判定和性质等知识,求得D 的坐标是解题的关键. 8.C解析:C【分析】据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k ,由题意可知△AOB 的面积为12k −22k . 【详解】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k , ∴△AOB 的面积为12k −22k , ∴12k −22k =2, ∴k 1-k 2=4,故选:C .【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于中等题型,9.B【分析】先判断出k 2 +1的符号,再根据反比例函数的性质即可得出结论.【详解】A 、∵k 2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B 、∵它的图象分布在第一、三象限,∴在每一象限内y 随x 的增大而减小,故本选项错误;C 、∵它的图象分布在第一、三象限,在每一象限内y 随x 的增大而减小,∵x 1=-1<0,∴y 1<0,∵x 2=1>0,x 3=2>0,∴y 2>y 3,∴y 1<y 3<y 2故本选项正确;D 、∵P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,∴△OPQ 的面积=12(k 2+1)是定值,故本选项正确.故选B .【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=k x(k≠0)中,当k >0时函数图象的两个分支分别位于一三象限是解答此题的关键. 10.C解析:C【解析】试题根据图象可得当12y y <时,x 的取值范围是:x <−6或0<x <2.故选C.11.A解析:A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.12.B解析:B【分析】 设,k A x x ⎛⎫ ⎪⎝⎭,根据A 是OB 的中点,可得22,k B x x ⎛⎫ ⎪⎝⎭,再根据BC OC ⊥,点D 在双曲线k y x =上,可得2,2k D x x ⎛⎫ ⎪⎝⎭,根据三角形面积公式列式求出k 的值即可. 【详解】 设,k A x x ⎛⎫ ⎪⎝⎭ ∵A 是OB 的中点 ∴22,k B x x ⎛⎫ ⎪⎝⎭∵BC OC ⊥,点D 在双曲线k y x =上 ∴2,2k D x x ⎛⎫ ⎪⎝⎭∴BOD 112322222k k S BD OC x k x x ∆⎛⎫=⨯⨯=⨯-⨯= ⎪⎝⎭ ∵BOD 6S ∆= ∴3642k =÷= 故答案为:B .【点睛】 本题考查了反比例函数的几何问题,掌握反比例函数的性质、中点的性质、三角形面积公式是解题的关键.二、填空题13.3【分析】在Rt △ABE 中利用三角形相似可求得AEDE 的长设A 点关于BD 的对称点A′连接A′D 可证明△ADA′为等边三角形当PQ ⊥AD 时则PQ 最小所以当A′Q ⊥AD 时AP +PQ 最小从而可求得AP +P解析:3【分析】在Rt △ABE 中,利用三角形相似可求得AE 、DE 的长,设A 点关于BD 的对称点A′,连接A′D ,可证明△ADA′为等边三角形,当PQ ⊥AD 时,则PQ 最小,所以当A′Q ⊥AD 时AP +PQ 最小,从而可求得AP +PQ 的最小值等于DE 的长.【详解】设BE x =,则3DE x =,∵四边形ABCD 为矩形,且AE BD ⊥,90BAE ABE ︒∴∠+∠=,90BAE DAE ︒∠+∠=,ABE DAE ∴∠=∠,又AEB DEA ∠=∠,ABE DAE ∴∽,2AE BE DE ∴=⋅,即223AE x =, 3AE x ∴=,在Rt ADE △中,由勾股定理可得222AD AE DE =+,即2226(3)(3)x x =+,解得:3x =,3,33AE DE ∴==,如图,设A 点关于BD 的对称点为A ',连接,A D PA '', 则26,6A A AE AD AD A D ''=====,AA D '∴是等边三角形,PA PA '=,∴当A '、P Q 、三点在一条线上时,A P PQ '+最小,由垂线段最短可知当PQ AD ⊥时,A P PQ '+最小,33AP PQ A P PQ A Q DE ''∴+=+===.故答案是:3;33.【点睛】本题主要考查轴对称的应用,利用最小值的常规解法确定出A 的对称点,从而确定出AP +PQ 的最小值的位置是解题的关键,利用条件证明△A′DA 是等边三角形,借助几何图形的性质可以减少复杂的计算.14.①③④【分析】根据矩形的性质和折叠的性质可知DF 的长度利用勾股定理可求出AGGFGHHF 的长度结合题意逐个判断即可【详解】①:根据题意可知∴即故①正确;②:∴∴∴∵∴设AG=x 则GH=xGF=8-x解析:①③④【分析】根据矩形的性质和折叠的性质,可知45EBF GBH ∠+∠=︒,DF 的长度.利用勾股定理可求出AG 、GF 、GH 、HF 的长度,结合题意逐个判断即可.【详解】①:根据题意可知EBC EBF ∠=∠,GBA GBH ∠=∠,90EBC EBF GBA GBH ∠+∠+∠+∠=︒,∴45EBF GBH ∠+∠=︒,即45EBG ∠=︒.故①正确;②:90EFD AFB ∠+∠=︒,90ABF AFB ∠+∠=︒,∴EFD ABF ∠=∠,∴ABF DFE , ∴AB AF DF DE=,∵8AF ===, ∴8463DE AF DF AB ===. 设AG =x ,则GH =x ,GF =8-x ,HF =BF -BH =10-6=4.又∵在Rt GHF 中,222GH HF GF +=,∴2224(8)x x +=-解得x =3,即AG =3, ∴623AB AG ==. ∴AB DE AG DF≠ 故DEF 和△ABG 不相似.故②错误;③:由②得GH =3,1163922ABG S AB AG ==⨯⨯=,1134622GFH S GH HF ==⨯⨯=. ∴:9:6 1.5ABG GFH S S ==.故③正确.④:DF =10-8=2,由②可知AG +DF =3+2=5,GF =8-3=5.∴AG +DF =GF .故④正确.故答案为①③④.【点睛】本题考查折叠的性质、矩形的性质、三角形相似的判定和性质结合勾股定理来解题.本题利用勾股定理计算出AG 的长度是解题的关键.15.b 【分析】根据直角三角形的性质以及相似三角形的性质利用在△ACB 中D2为其重心可得D2E1=BE1然后从中找出规律即可解答【详解】解:∵D1E1⊥ACBC ⊥AC ∴D1E1∥BC ∴∵D1是斜边AB 的中 解析:12b 22(1)ab n + 【分析】根据直角三角形的性质以及相似三角形的性质,利用在△ACB 中,D 2为其重心可得D 2E 1=13BE 1,然后从中找出规律即可解答. 【详解】解:∵D 1E 1⊥AC ,BC ⊥AC ,∴D 1E 1∥BC , ∴1111AE AD CE BD =, ∵D 1是斜边AB 的中点,∴AD 1=BD 1, ∴11111AE AD CE BD ==, ∵AC =b ,∴AE 1=E 1C =12b , ∵D 1E 1∥BC , ∴BD 1E 1与CD 1E 1同底同高,面积相等,以此类推;根据直角三角形的性质以及相似三角形的性质可知:D 1E 1=12BC ,CE 1=12AC ,S 1=212S △ABC ; ∴在ACB 中,D 2为其重心,∴D 2E 1=13BE 1, ∴D 2E 2=13BC ,CE 2=13AC ,S 2=213S △ABC , ∵D 2E 2:D 1E 1=2:3,D 1E 1:BC =1:2,∴BC :D 2E 2=2D 1E 1:23D 1E 1=3, ∴CD 3:CD 2=D 3E 3:D 2E 2=CE 3:CE 2=3:4,∴D3E3=14D2E2=14×13BC=14BC,CE3=34CE2=14×13AC=14AC,S3=214S△ABC…;∴S n=21(1)n+S△ABC=21(1)n+×12ab=22(1)abn+.故答案为:12b,22(1)abn+.【点睛】此题主要考查相似三角形的判定与性质和三角形的重心等知识,解决本题的关键是根据直角三角形的性质以及相似三角形的性质得到第一个三角形的面积与原三角形的面积的规律.也考查了重心的性质即三角形三边中线的交点到顶点的距离等于它到对边中点距离的两倍.16.【分析】连接ADBC后可知△AOD∽△BOC再由相似三角形的性质和已知条件可以得到问题解答【详解】解:如图连接ADBC则在△AOD和△BOC中∴△AOD∽△BOC(cm)故答案为15cm【点睛】本题解析:15cm【分析】连接AD、BC后可知△AOD ∽△BOC,再由相似三角形的性质和已知条件可以得到问题解答.【详解】解:如图,连接AD、BC,则在△AOD 和△BOC中,AO DOBO CODOA BOC⎧=⎪⎨⎪∠=∠⎩,∴△AOD ∽△BOC,233,1015322AD AO BC AD BC BO ====⨯=(cm ), 故答案为15cm .【点睛】本题考查相似三角形的应用,熟练掌握相似三角形的判定及性质并灵活运用是解题关键. 17.24<a≤5或≤a <【分析】(1)把A 点坐标代入y =ax 得出直线直线y =ax 和的解析式作出函数图象再根据定义求出区域W 的整点个数便可;(2)直线y =ax 关于y =x 对称当区域W 内恰有8个整点则在直线y解析:2 4<a ≤5或15≤a <14 【分析】(1)把A 点坐标代入y =ax ,得出直线直线y =ax 和1y x a=的解析式,作出函数图象,再根据定义求出区域W 的整点个数便可; (2)直线y =ax ,1y x a=关于y =x 对称,当区域W 内恰有8个整点,则在直线y =x 上方与下方各有3个整点,进而求解.【详解】解:(1)如图,∵A (2,3),∴3=2a ,∴a =32, ∴直线OA :y =32x , 直线OB :y =23x , ∴当23x =6x时, 解得:x =3,或x =﹣3(负值舍去),∴B (3,2),∴故区域W内的整点个数有(1,1),(2,2)共2个,故答案为:2;(2)∵直线y=ax,1y xa=关于y=x对称,∵y=6x与y=x66),∴在W区域内有点(1,1),(2,2),∴区域W内恰有8个整点,∴在直线y=x上方与下方各有3个整点即可,∵(2,3),(3,2)在y=6x上,∴整点为(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),当点(1,4)在y=ax上时,a=4,当点(1,5)在y=ax上时,a=5,∴4<a≤5;当点(1,4)在1y xa=上时,a=14,当点(1,5)在1y xa=上时,a=15,∴15≤a<14;故答案为:4<a≤5或15≤a<14.【点睛】本题主要考查了一次函数与反比例函数图象的交点,主要考查了待定系数法求函数解析式,函数图象与性质,新定义,最后一问关键是读懂新定义,找到关键点求出a的值.18.2【分析】作直线OB交双曲线另一支于点D根据双曲线对称性得到BD最短根据勾股定理和双曲线对称性即可求解【详解】解:如图作直线OB交双曲线另一支于点D∵双曲线关于直线y=x及直线y=−x对称∵四边形O解析:22 【分析】 作直线OB ,交双曲线另一支于点D ,根据双曲线对称性得到BD 最短,根据勾股定理和双曲线对称性即可求解.【详解】解:如图,作直线OB ,交双曲线另一支于点D ,∵双曲线关于直线y=x 及直线y=−x 对称,∵四边形OABC 是正方形,∴线段BD 在直线y=x 上,∴易得∠BDD'>90∘∴BD 最短.在Rt △OBC 中,OB=222OC BC +=,∴BD=22 .故答案为:22【点睛】本题主要考查了反比例函数图象的中心对称性,勾股定理等知识,熟知反比例函数图形的对称性是解题关键.19.-1【分析】根据已知条件得到点在第二象限求得点一定在第三象限由于反比例函数的图象经过其中两点于是得到反比例函数的图象经过于是得到结论【详解】解:点分别在三个不同的象限点在第二象限点一定在第三象限在第 解析:-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.【详解】解:点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限, ∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)k y k x =≠的图象经过其中两点, ∴反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -, 326m ∴⨯=-, 1m ∴=-,故答案为:1-.【点睛】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键. 20.【分析】因为过双曲线上任意一点引x 轴y 轴垂线所得矩形面积S 是个定值|k|△AOB 的面积为矩形面积的一半即|k|【详解】由于点A 在反比例函数的图象上则S △AOB=|k|=2∴k=±4;又由于函数的图象 解析:4y x=- 【分析】因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积S 是个定值|k|,△AOB 的面积为矩形面积的一半,即12|k|. 【详解】由于点A 在反比例函数k y x =的图象上, 则S △AOB =12|k|=2, ∴k=±4;又由于函数的图象在第二象限,k <0,∴k=-4,∴反比例函数的解析式为4y x =-; 故答案为:4y x =-. 【点睛】 此题主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.三、解答题21.(1)4,6;(2)4.5;(3)存在,理由见解析.【分析】(1)把A(-2,0),代入y =2x +b 得到b 的值,再把C(m ,6)代入y =2x +b ,求出m 的值,进而即可得到答案;(2)先求出B 的坐标,再求出点 D 的纵坐标,根据S △ACD =S △ABD +S △BCD ,进而即可求解;(3)分两种情况①△AOB ∽△EAB ,②△AOB ∽△ABE ,分别列出比例式,进而即可求解【详解】(1)∵直线y =2x +b 经过点A(-2,0),∴-4+b =0,∴b =4,∴直线y =2x +4.把C(m ,6)代入y =2x +4中,得6=2m +4,解得m =1,∴C(1,6).把C(1,6)代入反比例函数()0k y x x=>中,得k =6. (2)令x =0,得y =2x +4=4,∴B(0,4).∵BD ⊥y 轴于B ,∴D 点的纵坐标为4,把y =4代入反比例函数y =6x 中,得x =32, ∴D (32,4), ∴BD =32, ∴S △ACD =S △ABD +S △BCD =4.5;(3)存在.当∠BAE =90°时,如图①,∵∠BAE =∠BOA =90°,∠ABE =∠OBA ,∴△AOB ∽△EAB , ∴AB BO EB BA=,∵=∴BE =5,∴OE =1,∴E(0,-1);当∠ABE =90°时,如图②,∵∠ABE =∠AOB =90°,∠OAB =∠BAE ,∴△AOB ∽△ABE ,∴AB AO AE BA = ∴AE =2AB AO=10, ∴OE =AE -AO =10-2=8,∴E(8,0).∴存在点E(除点O 外),使得△ABE 与△AOB 相似,其坐标为(8,0)或(0,-1).① ②【点睛】本题主要考查一次函数与反比例函数的综合以及相似三角形的判定和性质,掌握待定系数法以及相似三角形的性质,是解题的关键.22.(1)210y x =-+,8y x =;(2)4OE =;(3)(3-或(53,. 【分析】(1)过点P 作PD ⊥OB 于点D ,根据点B 的坐标为(5,0),且OPB △的面积为5求出PD 的长,求出直线AB 的解析式,故可得出P 点坐标,利用待定系数法求出反比例函数的解析式即可; (2)作EF ⊥OB 于F ,PD ⊥OB 于D ,则//EF PD ,先证明OEF CPD ∽,设OE=m ,根据相似三角形对应边成比例求得1133,,22OF OE m EF ====13,,4CD m PD ==进而求得P 的坐标,求得OC 的长,然后根据OPC 33m 的方程,解方程求得即可. (3)先求得,E P 的坐标,再根据//,PQ OB 设(3,M x 分两种情况讨论,当90MOE ∠=︒,90OEM ∠=︒, 再利用勾股定理列方程,解方程可得答案. 【详解】解:(1)如图1,过点P 作PD ⊥OB 于点D ,∵点B 的坐标为(5,0), OPB △的面积为 5,∴152OB PD =, 552PD ∴=, 解得:PD=2, 设直线AB 的解析式为 y=ax+b (a≠0),∵A (3,4),B (5,0),∴ 3450a b a b +=⎧⎨+=⎩, 解得:210a b =-⎧⎨=⎩, ∴直线AB 的解析式为210y x =-+,当y=2时,-2x+10=2,解得x=4,∴P ( 4,2),∵点P 的反比例函数k y x =(x >0)上, ∴2=4k ,解得:k=8, ∴反比例函数的解析式为:8y x =; (2)如图2,作EF ⊥OB 于F ,PD ⊥OB 于D ,则//EF PD ,∵//PC OA , 12PC OE =∴OEF CPD ∽, ∴2OF EF OE CD PD CP===, 设OE=m , ∵∠AOB=60°,∴1133,,2222OF OE m EF OE m ==== ∴13,,4CD m PD m == ∴13,2E m m ⎛⎫ ⎪ ⎪⎝⎭,P 的纵坐标为34m , ∵E 、P 都是反比例函数k y x =(k >0,x >0)上的点, ∴设P 的横坐标为x ,则 133224m m mx =, x m ∴=,∴OD=m ,∴1344OC OD CD m m m =-=-=, ∵OPC 的面积为332, ∴13322OC PD =,即 13333,2442m m ⨯⨯= 解得:m=4,(负根舍去)∴OE=4.(3)∵()223E ,, ()43,P , //,PQ OB 如图3,当∠EOM=90°时,设(),3,M x由222,OM OE ME += (()222222323233,x x ∴+++=-+ 412,x ∴-=3,x ∴=-()33,M ∴-,如图4,当∠OEM=90°时,由222,OE EM OM += (()222222232333,x x ∴++-+=+ 420,x ∴-=-5,x ∴=(53.M ∴,∴M 的坐标为(3-或(53,.故答案为:(3-或(53,. 【点睛】本题考查的是反比例函数综合题,涉及到用待定系数法求一次函数及反比例函数的解析式,相似三角形的判定与性质,勾股定理的应用,掌握以上知识是解题的关键. 23.(1)12y x =;(2)13b = 【分析】(1)把A 点代入反比例函数即可求解;(2)把A 、B 两点代入反比例函数列出方程组即可求解;【详解】解:(1)∵4b =,∴A (4,3),把A 点代入反比例函数得:34k =, 即k=12,∴函数解析式为:12y x=; (2)把A 、B 代入反比例函数得:333k b k bb ⎧=⎪⎪⎨⎪=⎪⎩①② 解得:13b =. 【点睛】本题主要考查的是反比例函数的性质,熟练掌握反比例函数的性质是解答本题的关键. 24.(1)AOB 的面积是9;(2)2x <-或04x <<.【分析】(1)把()2,A m -、(,3)B n 代入解析式,求出m ,n 的值,可求得直线解析式,分别过点A .B 向y 轴引垂线,垂足分别是E 、D ,即可得到BD ,AE ,即可得到结果;(2)观察函数图象即可得到结果;【详解】(1)()2,A m -、(,3)B n 分别代入反比例函数12y x=中得6m =-,4n =, ∴将(2,6)A --、(4,3)B 分别代入直线y kx b =+中得,∴2643k b k b -+=-⎧⎨+=⎩,解得323k b ⎧=⎪⎨⎪=-⎩, ∴直线解析式为332y x =-,令0x =得3y =-, ∴(0,3)C -∴3OC =,分别过点A .B 向y 轴引垂线,垂足分别是E 、D ,∴4BD =,2AE =,∴11S S S922AOB OBC OAC OC BD OC AE =+=⋅+⋅=. 答:AOB 的面积是9.(2)由题可知,反比例函数在一次函数上方时满足,∵(2,6)A --、(4,3)B , ∴2x <-或04x <<.【点睛】本题主要考查了反比例函数与一次函数的交点问题,准确计算是解题的关键.25.1 3【分析】设AC=a,则OA=2a,OC=3a,根据直角三角形30°角的性质和勾股定理分别计算点A和B的坐标,写出A和B两点的坐标,代入解析式求出k1和k2的值,即可求12kk的值.【详解】设AB与x轴交点为点CRt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,设AC=a,则OA=2a,22OA AC-3,∴3,a),∵A在函数y1=1kx(x>0)的图象上,∴k1332,Rt△BOC中,3,∴22OB OC-,∴B3a,-3a),∵B在函数y2=2kx(x>0)的图象上,∴k2332,∴12kk223a33a-=-13,故答案为:-13.【点睛】本题考查了反比例函数图象上点的坐标特征.直角三角形30°的性质,熟练掌握直角三角形30°角所对的直角边是斜边的一半,正确写出A .B 两点的坐标是本题的关键. 26.(1)证明见解析.(2)9.【分析】(1)根据两组角对应相等的两个三角形相似即可得到结论;(2)根据C ABD BA ∽△△求得BC=12,根据DC=BC-BD 即可求出答案.【详解】(1)如图所示:,BAD C B B ∠=∠∠=∠,∴C ABD BA ∽△△.(2)ABD CBA ∽,AB BD BC AB ∴=,即636BC =, 解得:12BC =,1239DC BC BD ∴=-=-=.【点睛】 此题考查相似三角形的判定及性质,熟记三角形的判定定理是解题的关键.。
24-25学年九年级数学期中测试卷(北师大版)(解析版)【测试范围:第一章~第四章】A4版
2024-2025学年九年级数学上学期期中测试卷(北师大版)(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第四章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)用配方法解一元二次方程2x2﹣2x﹣1=0,下列配方正确的是( )A.(x―14)2=34B.(x―14)2=32C.(x―12)2=34D.(x―12)2=32【分析】方程整理后,利用完全平方公式配方得到结果,即可作出判断.【解答】解:方程2x2﹣2x﹣1=0,整理得:x2﹣x=1 2,配方得:x2﹣x+14=34,即(x―12)2=34.故选:C.2.(3分)如图,AB∥CD∥EF,AF交BE于点G,若AC=CG,AG=FG,则下列结论错误的是( )A .DG BG =12B .CD EF =12C .DG BE =13D .CG CF =13【分析】根据平行线分线段成比例定理进行逐项判断即可.【解答】解:∵AB ∥CD ,∴DG BG =CG AG ,∵AC =CG ,∴DG BG =CG AG =12,故A 正确,不符合题意;∵CD ∥EF ,∴CD EF =CG FG ,∵AC =CG ,AG =FG ,∴FG =2CG ,∴EG =2DG ,∴CD EF =CG FG =12,故B 正确,不符合题意;∵AB ∥CD ∥EF ,∴BG EG =AG FG ,∵AG =FG ,∴BG =EG ,∴BE =2BG ,∵DG BG =CG AG =12,∴BG =2DG ,∵BE =4DG ,∴DGBE=14,故C错误,符合题意;∵CD∥EF,∴CGCF=DGDE∵BG=2DG,BE=4DG,∴DE=3DG,∴CGCF=DGDE=13,故D正确,不符合题意;故选:C.3.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AE⊥BC于点E,连接OE.若OB=6,菱形ABCD的面积为54,则OE的长为( )A.4B.4.5C.5D.5.5【分析】由菱形的性质得出BD=12,由菱形的面积得出AC=9,再由直角三角形斜边上的中线性质即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD=12BD,BD⊥AC,∴BD=2OB=12,∵S菱形ABCD =12AC•BD=54,∴AC=9,∵AE⊥BC,∴∠AEC=90°,∴OE=12AC=4.5,故选:B.4.(3分)已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是( )A .m ≥23B .m <23C .m >23且m ≠1D .m ≥23且m ≠1【分析】利用一元二次方程有实数根的条件得到关于m 的不等式组,解不等式组即可得出结论.【解答】解:∵关于x 的一元二次方程(m ﹣1)x 2+2x ﹣3=0有实数根,∴Δ=22―4(m ―1)×(―3)≥0m ―1≠0,解得:m ≥23且m ≠1.故选:D .5.(3分)下列说法正确的是( )A .邻边相等的平行四边形是矩形B .矩形的对角线互相平分C .对角线互相垂直的四边形是菱形D .一组对边相等,另一组对边平行的四边形是平行四边形【分析】由菱形的判定、矩形的判定与性质、平行四边形的判定与性质分别对各个选项进行判断即可.【解答】解:A 、邻边相等的平行四边形是菱形,故选项A 不符合题意;B 、矩形的对角线互相平分,故选项B 符合题意;C 、对角线互相垂直的平行四边形是菱形,故选项C 不符合题意;D 、一组对边相等,另一组对边平行的四边形不一定是平行四边形,故选项D 不符合题意;故选:B .6.(3分)在第十九届亚运会中国国家象棋队选拔赛的第一阶段中,采用分组单循环(每两人之间都只进行一场比赛)制,每组x 人.若每组共需进行15场比赛,则根据题意可列方程为( )A .12x (x ﹣1)=15B .12x (x +1)=15C .x (x ﹣1)=15D .x (x +1)=15【分析】设一共邀请了x 支球队参加比赛,赛制为单循环形式(每两支球队之间都进行一场比赛),则每个队参加(x ﹣1)场比赛,则共有x(x―1)2场比赛,可以列出一元二次方程.【解答】解:由题意得,x(x―1)2=15.故选:A .7.(3分)掷一个骰子,向上一面的点数大于2且小于5的概率为p 1,抛两枚硬币,正面均朝上的概率为p 2,则( )A .p 1<p 2B .p 1>p 2C .p 1=p 2D .不能确定【分析】计算出各种情况的概率,然后比较即可.【解答】解:大于2小于5的数有2个数,∴p1=26=13;投掷一次正面朝上的概率为12,两次正面朝上的概率为p2=12×12=14,∵13>14,∴p1>p2.故选:B.8.(3分)顶角为36°的等腰三角形我们把这种三角形称为“黄金三角形”,它的底与腰的比值为黄金比.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC交AC于点D,若CD=1,则AC的长为( )A B C D【分析】根据等腰三角形的性质得到∠ABC=∠ACB,根据角平分线的性质得到∠ABD=∠DBC,证明△CBD∽△CAB,根据相似三角形的性质列出比例式,解方程得到答案.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠DBC=∠A,∠ABD=∠A,∠BDC=36°+36°=72°=∠C,∴AD=BD=BC,∵∠C=∠C,∴△CBD∽△CAB,∴BCAC=CDBC,即AD1+AD=1AD,整理得:AD2﹣AD﹣1=0,解得:AD1=AD2=则AC=AD+CD=+1=故选:D .9.(3分)如图,在平面直角坐标系中,四边形OABC 为矩形,且A (0,2),C (4,0).点E 为OC 上一点,连接AE ,射线AF ⊥AE .以点A 为圆心,适当长为半径作弧,分别交AE ,AF 于点N ,M ,再分别以点M ,N 为圆心,大于12MN 的长为半径作弧,两弧交于点P ,作射线AP ,交BC 于点G .若OE =1,则点G 的坐标为( )A .(4,23)B .(4,1)C .(4D .(4【分析】延长CB 交射线AF 于点Q ,过点G 作GH ⊥AF 于点H ,求出CG ,可得结论.【解答】解:延长CB 交射线AF 于点Q ,过点G 作GH ⊥AF 于点H ,如解图所示.∵AE ⊥AF ,四边形ABCO 是矩形,∴∠EAF =∠OAB =90°,∴∠OAE =∠BAF ,∵GH ⊥AF ,∴∠GHF =∠ABQ =∠AOE =90°,∵∠AQB =∠CQH ,∴△GHQ ∽△ABQ ∽△AOE ,∴GH HQ =AB BQ =AO OE =21,∴GH =2HQ ,BQ =12AB =2.∴AQ ==AP 平分∠EAF ,∴∠HAG =45°.又∵GH⊥AF,∴AH=HG.设HQ=x,则AH=HG=2x.∴AQ=AH+HQ=3x,即3x=∴x=∴HG=∴GQ===10 3.∴CG=BC+BQ―GQ=2+2―103=23.∴点G的坐标为(4,23 ),故选:A.10.(3分)如图,在正方形ABCD中,点E是CD上一点,延长CB至点F,使BF=DE,连结AE,AF,EF,EF交AB于点K,过点A作AG⊥EF,垂足为点H,交CF于点G,连结HD,HC.下列四个结论:①AH=HC;②HD=CD;③∠FAB=∠DHE;④AK•HD=2.其中正确结论的个数为( )A.1个B.2个C.3个D.4个【分析】①证明△EAF是等腰直角三角形,根据直角三角形斜边中线可得AH=12EF=CH,可得①正确;②证明∠DAH与∠AHD不一定相等,则AD与DH不一定相等,可知②不正确;③证明△ADH≌△CDH(SSS),则∠ADH=∠CDH=45°,再由等腰直角三角形的性质可得结论正确;④证明△AKF∽△HED,列比例式可得结论正确.【解答】解:①∵四边形ABCD是正方形,∴AD=AB,∠ADE=∠ABC=90°,∴∠ADE=∠ABF=90°,∵DE=BF,∴△ADE≌△ABF(SAS),∴AE=AF,∠DAE=∠BAF,∵∠DAE+∠EAB=90°,∴∠BAF+∠EAB=90°,即∠EAF=90°,∵AG⊥EF,∴EH=FH,∴AH=12 EF,Rt△ECF中,∵EH=FH,∴CH=12 EF,∴AH=CH;故①正确;③∵AH=CH,AD=CD,DH=DH,∴△ADH≌△CDH(SSS),∴∠ADH=∠CDH=45°,∵△AEF为等腰直角三角形,∴∠AFE=45°,∴∠AFK=∠EDH=45°,∵四边形ABCD为正方形,∴AB∥CD,∴∠BKF=∠CEH,∴∠AKF=∠DEH,∴∠FAB=∠DHE,故③正确;②∵∠ADH=∠AEF,∴∠DAE=∠DHE,∵∠BAD=∠AHE=90°,∴∠BAE=∠AHD,∵∠DAE与∠BAG不一定相等,∴∠DAH与∠AHD不一定相等,则AD与DH不一定相等,即DH与CD不一定相等,故②不正确;④∵∠FAB=∠DHE,∠AFK=∠EDH,∴△AKF∽△HED,∴AKEH=AFDH,∴AK•DH=AF•EH,在等腰直角三角形AFH中,AF==,∴AK•HD=2.故④正确;∴本题正确的结论有①③④,共3个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.(3分)若xy=23,则代数式x―yx+2y的值是 .【分析】利用x与y的比可x=2t,y=3t,然后把它们代入代数式中进行分式的运算.【解答】解:∵xy=23,∴设x=2t,y=3t,∴x―yx+2y=2t―3t2t+6t=―t8t=―18.故答案为―1 8.12.(3分)在一个不透明的袋子中,有除颜色外完全相同的6个白球和若干个红球.通过大量重复摸球试验后,发现摸到红球的频率稳定在0.4,由此可估计袋中红球的个数为 .【分析】根据摸到红球的频率,可以得到摸到白球的概率,从而可以求得总的球数,从而可以得到红球的个数.【解答】解:由题意可得:摸到白球的频率之和为:1﹣0.4=0.6,∴总的球数为:6÷0.6=10,∴红球有:10﹣6=4(个),故答案为:4.13.(3分)设α,β是x2+x﹣18=0的两个实数根,则α2+3α+2β的值是 .【分析】先根据一元二次方程根的定义得到α2+α=18,则α2+3α+2β化为(α2+α)+2(α+β),再根据根与系数的关系得到x1+x2=﹣1,然后利用整体代入的方法计算.【解答】解:∵α,β是x2+x﹣18=0的两个实数根,∴α2+α﹣18=0,α+β=﹣1,∴α2+α=18,∴α2+3α+2β=(α2+α)+2(α+β)=18﹣2=16.故答案为:16.14.(3分)菱形有一个内角为120°,较长的对角线长为 .【分析】由菱形ABCD中,对角线AC和BD相交于点O,∠BAD=120°,BD=BAC的度数,利用菱形的性质可求出∠ABO的度数,进而得到AO的长,根据菱形的面积等于对角线乘积的一半则可求得答案.【解答】解:∵菱形ABCD中,∠BAD=120°,∴∠BAC=12∠BAD=60°,AC⊥BD,∴∠ABO=30°,∵BD=∴BO=设AO=x,则AB=2x,故x2+(2=(2x)2,解得:x=3,∴AO=3,∴AC=6,∴菱形的面积=×6÷2=故答案为:15.(3分)如图,在△ABC中,E是BC上一点,EC=2BE,点F是AC的中点,若S△ABC=12,求S△ADF ﹣S△BED= .【分析】过F 作FH ∥AE 交BC 于H ,由EC =2BE ,得到S △AEC =23S △ABC =23×12=8,根据点F 是AC 的中点,得到S △BCF =S △ABF =12S △ABC =12×12=6,根据平行线等分线段定理得到CH =EH ,求得BD =DF ,得到S △BFH =23S △BCF =23×6=4,S △ADF =12S △ABF =3,根据相似三角形的性质得到S △BDE =14×4=1,于是得到结论.【解答】解:过F 作FH ∥AE 交BC 于H ,∵EC =2BE ,∴S △AEC =23S △ABC =23×12=8,∵点F 是AC 的中点,∴S △BCF =S △ABF =12S △ABC =12×12=6,∵FH ∥AE ,点F 是AC 的中点,∴CH =EH ,∵EC =2BE ,∴BE =EH ,∵DE ∥FH ,∴BD =DF ,∴S △BFH =23S △BCF =23×6=4,S △ADF =12S △ABF =3,∵DE ∥FH ,∴△BDE ∽△BFH ,∴S △BDE S △BFH =14,∴S △BDE =14×4=1,∴S △ADF +S △BED 的值为1+3=4,故答案为:4.16.(3分)如图,在边长为4的菱形ABCD 中,∠ABC =120°,将△ADC 沿射线AC 的方向平移得到△A 'D 'C ',分别连接A 'B ,D ′B ,则A 'B +D ′B 的最小值为 .【分析】根据菱形的性质得到AB =4,∠ABC =120°,得出∠BAC =30°,根据平移的性质得到A ′D ′=AD =4,A ′D ′∥AD ,推出四边形A ′BCD ′是平行四边形,得到A ′B =D ′C ,于是得到A 'B +BD '的最小值=CD ′+BD ′的最小值,根据平移的性质得到点D ′在过点D 且平行于AC 的定直线上,作点C 关于定直线的对称点E ,连接BE 交定直线于D ′,则BE 的长度即为BA '+BD '的最小值,求得CE =CB ,得到∠E =∠CBE =30°,于是得到结论.【解答】解:∵在边长为4的菱形ABCD 中,∠ABC =120°,∴AB =CD =4,∠BAC =∠DAC =30°,∵将△ADC 沿射线AC 的方向平移得到△A 'D 'C ',∴A ′D ′=AD =4,A ′D ′∥AD ,∵四边形ABCD 是菱形,∴AD=CB,AD∥CB,∴∠ADC=120°,∴A′D′=CB,A′D′∥CB,∴四边形A′BCD′是平行四边形,∴A′B=D′C,∴A'B+BD'的最小值=BD′+CD′的最小值,∵点D′在过点D且平行于AC的定直线上,∴作点C关于定直线的对称点E,连接BE交定直线于D′,则BE的长度即为BD'+BA'的最小值,在Rt△CHD中,∵∠D′DC=∠ACD=30°,AD=4,∴CH=EH=12AD=2,∴CE=4,∴CE=CB,∵∠ECB=∠ECA′+∠ACB=90°+30°=120°,∴∠E=∠BCE=30°,∴BE=2×=故答案为:三.解答题(共8小题,满分72分)17.(6分)解方程:(1)x2﹣4x+2=0;(2)3(x﹣5)2+2(x﹣5)=0.【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【解答】解:(1)∵x2﹣4x+2=0,∴x2﹣4x=﹣2,∴x2﹣4x+4=﹣2+4,即(x﹣2)2=2,∴x―2=±∴x1=2+x2=2―(2)3(x﹣5)2+2(x﹣5)=0,(x﹣5)[3(x﹣5)+2]=0,x﹣5=0或3x﹣13=0,∴x1=5,x2=13 3.18.(6分)小华和小林想用标杆来测量如图1所示的古塔的高,如图2,小林在F处竖立了一根标杆EF,小华走到C处时,站立在C处恰好看到标杆顶端E和塔的顶端B在一条直线上,此时测得小华的眼睛到地面的距离DC=1.5米,EF=2.4米,CF=1.8米,FA=71.2米,点C、F、A在一条直线上,CD⊥AC,EF⊥AC,AB⊥AC,根据以上测量数据,请你求出该塔的高AB.【分析】过D作DP⊥AB于P,交EF于N,根据相似三角形的判定和性质即可得到结论.【解答】解:过D作DP⊥AB于P,交EF于N,则DN=CF=1.8米,AP=DC=1.5米,DP=AC=CF+AF=1.8+71.2=73(米),EN=EF﹣CD=2.4﹣1.5=0.9(米),由题意得,∠EDN=∠BDP,∠BPD=∠END=90°,∴△DEN∽△DBP,∴BPEN=DPDN,∴AB―1.50.9=731.8,∴AB=38(米),答:树AB的高度为38米.19.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,(1)将△ABC向上平移4个单位长度,得到△A1B1C1;(点A、B、C分别对应A1、B1、C1)(2)以原点O为位似中心,在第二象限将△ABC放大得到△A2B2C2,使得△ABC与△A2B2C2的位似比为12,并直接写出C2的坐标.【分析】(1)先根据平移的性质在坐标系中描点,再顺次连接即可得;(2)先根据位似图形的性质在坐标系中描点并顺次连接即可得.【解答】解:(1)如图1,△A1B1C1即为所作.;(2)如图2,△A2B2C2即为所作.C2(﹣6,6).20.(8分)如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的边长.【分析】(1)先证四边形BEDF是平行四边形,再证BE=DE,即可证四边形BEDF为菱形;(2)过点D作DH⊥BC于H,由含30°角的直角三角形的性质可求解.【解答】(1)证明:∵DE∥BC DF∥AB,∴四边形BEDF是平行四边形,∵DE∥BC,∴∠EDB=∠DBF,∵BD平分∠ABC,∴∠ABD=∠DBF,∴∠ABD=∠EDB,∴DE=BE,∴平行四边形BEDF是菱形;(2)解:如图,过点D作DH⊥BC于H,∵∠A=90o,∠C=30o,∴∠ABC=60°,由(1)得:四边形BEDF是菱形,∴BE=DE=BF=DF,∵DF∥AB,∴∠ABC=∠DFC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∵BD=12,∴DH=12BD=6,∵∠FDH=90°﹣∠DFC=30°,∴FH==∴DF=2DH=即菱形BEDF的边长为21.(10分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了 名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α= 度;(2)若该校有1600名学生,估计该校参加D 组(阅读)的学生人数;(3)学校计划从E 组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.【分析】(1)①由B 组的人数除以所占百分比即可;②求出A 组、C 组的人数,补全条形统计图即可;③由360°乘以C 组所占的比例即可;(2)由该校共有学生人数乘以参加D 组(阅读)的学生人数所占的比例即可;(3)画树状图,共有12种等可能的结果,其中恰好抽中甲、乙两人的结果有2种,再由概率公式求解即可.【解答】(1)①此次调查一共随机抽取学生人数为:100÷25%=400(名),故答案为:400;②A 组的人数:400×15%=60(名),C 组的人数:400﹣100﹣140﹣40﹣60=60(名),补全条形统计图如下:③扇形统计图中圆心角α=360°×60400=54°,故答案为:54;(2)1600×140400=560(名),答:参加D 组(阅读)的学生人数为560名;(3)画树状图如下:共有12种等可能的结果,其中恰好抽中甲、乙两人的结果有2种,∴恰好抽中甲、乙两人的概率为212=16.22.(10分)根据以下销售情况,解决销售任务.任务2:,由盈利=每件盈利×销售量,分别列式计算即可;任务3,设每件衬衫下降m元时,两家分店一天的盈利和为2244元,列出一元二次方程,解方程即可.【解答】解:任务1,甲店每天的销售量为(20+2a)件,乙店每天的销售量为(32+2b)件,故答案为:(20+2a)件,(32+2b)件;任务2,当a=5时,甲店每天的盈利为(40﹣5)×(20+2×5)=1050(元);当b=4时,乙店每天的盈利为(30﹣4)×(32+2×4)=1040(元);任务3,设每件衬衫下降m元时,两家分店一天的盈利和为2244元,由题意得:(40﹣m)(20+2m)+(30﹣m)(32+2m)=2244,整理得:m2﹣22m+121=0,解得:m1=m2=11,即每件衬衫下降11元时,两家分店一天的盈利和为2244元.23.(12分)阅读下面材料:小元遇到这样一个问题:如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,∠EAF =45°,连结EF,设DE=a,EF=b,FB=c,则把关于x的一元二次方程ax2﹣bx+c=0叫做正方形ABCD的关联方程,正方形ABCD叫做方程ax2﹣bx+c=0的关联四边形.探究方程ax2﹣bx+c=0是否存在常数根t.小元是这样思考的:要想解决这个问题,首先应想办法把这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是把△ADE绕点A顺时针旋转90°得到△ABG(如图2),此时GF即是DE+BF.请回答:t= .参考小元得到的结论和思考问题的方法,解决下列问题:(1)如图1,若AD=10,DE=4,则正方形ABCD的关联方程为 ;(2)正方形ABCD的关联方程是2x2﹣bx+3=0,则正方形ABCD的面积= .【分析】阅读下面材料:由四边形ABCD是正方形,把△ADE绕点A顺时针旋转90°得到△ABG,可证明△GAF≌△EAF (SAS),从而GF=EF,即BG+BF=EF,有a+c=b,即a﹣b+c=0,故关于x的一元二次方程ax2﹣bx+c=0有一个根是x=1,即t=1;(1)在Rt△CEF中,CF2+CE2=EF2,可得(10﹣c)2+62=(c+4)2,从而可解得正方形ABCD的关联方程为4x2―587x+307=0;(2)由阅读材料知,正方形ABCD的关联方程2x2﹣bx+3=0存在常数根x=1,可得b=5,即得DE=2,BF=3,EF=5,设正方形ABCD的边长为m,有(m﹣2)2+(m﹣3)2=52,解得正方形ABCD的边长为6,正方形ABCD的面积为36.【解答】解:阅读下面材料:如图:∵四边形ABCD是正方形,∴∠D=∠ABC=∠BAD=90°,∵把△ADE绕点A顺时针旋转90°得到△ABG,∴AE=AG,∠ABG=∠D=90°,∠GAB=∠EAD,DE=BG=a,∴∠AGB+∠ABC=180°,∠EAD+∠BAE=90°=∠GAB+∠BAE,∴G,B,F共线,∠GAE=90°,∵∠EAF=45°,∴∠GAF=∠EAF=45°,在△GAF和△EAF中,AG=AE∠GAF=∠EAF AF=AF,∴△GAF≌△EAF(SAS),∴GF=EF,即BG+BF=EF,∵BG=a,EF=b,FB=c,∴a+c=b,即a﹣b+c=0,∴关于x的一元二次方程ax2﹣bx+c=0有一个根是x=1,∴t=1,故答案为:1;(1)如图:∵四边形ABCD是正方形,∴BC=CD=AD=10,∵DE=4=a,∴CE=CD﹣DE=6,由阅读材料知DE+BF=EF=b,FB=c,∴EF=4+c,CF=BC﹣BF=10﹣c,在Rt△CEF中,CF2+CE2=EF2,∴(10﹣c)2+62=(c+4)2,解得c=30 7,∴b=EF=4+c=58 7,而a=4,∴正方形ABCD的关联方程为4x2―587x+307=0,化简整理得14x2﹣29x+15=0,故答案为:14x2﹣29x+15=0;(2)如图:由阅读材料知,正方形ABCD的关联方程2x2﹣bx+3=0存在常数根x=1,∴2×12﹣b+3=0,解得b=5,∴正方形ABCD的关联方程是2x2﹣5x+3=0,∴DE=2,BF=3,EF=5,设正方形ABCD 的边长为m ,在Rt △CEF 中,CF 2+CE 2=EF 2,∴(m ﹣2)2+(m ﹣3)2=52,解得m =6,∴正方形ABCD 的边长为6,∴正方形ABCD 的面积为36,故答案为:36.24.(12分)教材再现:(1)如图1,在矩形ABCD 中,AB =3,AD =4,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足分别为E ,F ,则PE +PF 的值为 125 .知识应用:(2)如图2,在矩形ABCD 中,点M ,N 分别在边AD ,BC 上,将矩形ABCD 沿直线MN 折叠,使点D 恰好与点B 重合,点C 落在点C 1处,点P 为线段MN 上一动点(不与点M ,N 重合),过点P 分别作直线BM ,BC 的垂线,垂足分别为E 和F ,以PE ,PF 为邻边作平行四边形PEQF ,若DM =13,CN =5,▱PEQF 的周长是否为定值?若是,请求出▱PEQF 的周长;若不是,请说明理由.(3)如图3,当点P 是等边△ABC 外一点时,过点P 分别作直线AB 、AC 、BC 的垂线、垂足分别为点E 、D 、F .若PE +PF ﹣PD =3,请直接写出△ABC 的面积.【分析】(1)由矩形的性质得出S 矩形ABCD =12,OA =OC =OB =OD ,S △ABD =S △BCD ,∠ABC =90°,BC =AD =4,再由勾股定理得AC =5,则S △AOD =3,OA =OD =52,然后由三角形面积即可得出结论;(2)先求DM =BM =BN =13,则AD =BC =18,再由勾股定理得AB =12,然后由三角形面积求出PE +PF =12,即可解决问题;(3)由S △ABC =S △ABP +S △BCP ﹣S △ACP ,可求AB 的长,从而求出S △ABC .【解答】解:(1)如图1,设AC 与BD 的交点为O ,连接PO ,∵四边形ABCD 是矩形,∴S 矩形ABCD =AB •BC =3×4=12,OA =OC =OB =OD ,S △ABD =S △BCD ,∠ABC =90°,BC =AD =4,∴AC ==5,S △AOD =S △ABO =S △BOC =S △COD ,∴S △AOD =14S 矩形ABCD =14×12=3,OA =OD =12AC =52,∴S △AOD =S △AOP +S △DOP =12OA •PE +12OD •PF =12OA (PE +PF )=12×52×(PE +PF )=3,解得:PE +PF =125,故答案为:125;(2)▱PEQF 的周长是定值,理由如下:∵四边形ABCD 是矩形,∴AD =BC ,∠A =∠ABC =90°,AD ∥BC ,∴∠DMN =∠BNM ,连接BP ,过点M 作MH ⊥BC 于H ,如图2所示:则四边形ABHM 是矩形,∴MH =AB ,由折叠的性质得:DM =BM ,∠DMN =∠BMN ,∴∠BNM =∠BMN ,∴DM =BM =BN =13,∴AD =BC =BN +CN =13+5=18,∴AM =AD ﹣DM =18﹣13=5,在Rt △ABM 中,由勾股定理得:AB ===12,∴MH =12,∵S △BMN =S △PBM +S △PBN ,PE ⊥BM ,PF ⊥BN ,∴12BN •MH =12BM •PE +12BN •PF ,∵BM =BN ,∴PE +PF =MH =12,∴▱PEGF 的周长=2(PE +PF )=2×12=24;(3)如图3,连接AP ,BP ,CP ,∵S △ABC =S △ABP +S △BCP ﹣S △ACP ,2=12AB •PE +12BC •PF ―12AC •PD=PE +PF ﹣PD ,∵PE +PF ﹣PD =3,∴AB =∴S △ABC =2=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校 班级 考号 姓名__________________________
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
九年级下数学期中考试试卷(北师大版)
1、在ABC ∆中,C ∠=90︒,∠A =45°,则sin B 的值是 ( )
3A 、
2B、
1C、 22
D、
2、关于二次函数()2
23y x =-+-,下列说法正确的是 ( ) A .当x =2时,有最大值-3 B. 当x =-2时,有最大值-3 C .当x =2时,有最小值-3 D. 当x =-2时,有最小值-3 3、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦值( ) (A )都扩大2倍 (B )都扩大4倍 (C )没有变化 (D )都缩小一半 4.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后, 所得图象的函数表达式是( )
A.2)1(2+-=x y B.2)1(2++=x y C.2)1(2--=x y D.2)1(2-+=x y
5、如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点, 则线段的OM 的长的取值范围是( )
A 、3≤OM ≤5;
B 、4≤OM ≤5;
C 、3<OM <5;
D 、4<OM <5 6、如图,在⊙O 中,∠A =35°,∠
E =40°,则∠BOD 的度数( ) A 、75° B 、80° C 、 135° D 、 150° 7、在ABC ∆中,AB =AC =3,BC =2,则6cos B 等于 ( ) 3A 、 2B、 33C、 23D、 8、二次函数c bx ax y ++=2的图象,如图,
则下列关系式不正确的是( ) A 、a <0 B 、abc >0 C 、c b a ++>0 D 、ac b 42->0
9、如图,⊙O 是等边△ABC 的外接圆,⊙O 的半径为2, 则等边△ABC 的边长为( ) A .3
B .5
C .23
D .25
一填空题、选择题(每题3分,共30分)
评分人 得 分
M
O B
A
D
E
O
C B
A
10.如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,
AD 是⊙O 的直径,则∠BEC 的度数为( )
A .15°
B .30°
C .45°
D .60°
11、若α是锐角,且1cos 2
α=,则α=_____________︒
12.已知二次函数32++=bx x y 的图象的顶点的横坐标是1,则b = . 13.如图,半圆中,A D 是直径,且3AD =,2A C =, 则sin B 的值是 .
14、如图,在△ABC 中,∠A=90°,AB =AC =2cm ,⊙A 与BC 相切于点D , 则⊙A 的半径长为 cm.
15、已知△ABC 中,AB =AC ,∠A =450,AC 的垂直平分线
交AB 、AC 于D 、E 两点,连接CD ,AD =1,那么tan ∠BCD =
(第13题) (第14题) (第15题)
16、(本题6分) 计算 tan45°+12-4sin60°-(-3)
17、(本题8分)如图,A B 是⊙O 的一条弦,O D A B ⊥,垂足为C ,交⊙O 于点D , 点E 在⊙O 上.
(1)若52AOD ∠=
,求D E B ∠的度数; (2)若3OC =,5OA =,求A B 的长.
二、填空题(每题3分,共15分)
评分人 得 分
三、解答题(共55分)
评分人 得 分
D
C
B A
D
E
B
C
A
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ 18.(本题7分)如图,某货船以24海里/时的速度将一批重要物资从A 处运往正东方向的
M 处,在点A 处测得某岛C 在北偏东60 的方向上.该货船航行30分钟后到达B 处,此时再测得该岛在北偏东30 的方向上,已知在C 岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.
19、(本题8分)某水果批发商销售每箱进价为40元的苹果,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱. (1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式. (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
20、(本题8分).如图1,已知O 为坐标原点,点A 的坐标为(2,3),⊙A 的半径为1,过A 作直线l 平行于x 轴,设l 与y 轴交点为C ,点P 在l 上运动.
(1)当点P 运动到圆上时,求此时点P 的坐标
(2)如图2,当点P 的坐标为(4,3)时,连结OP ,作AM ⊥OP 于M , 求OP 的长和AM 的长
(3)在(2)条件下,试判断直线OP 与⊙A 的位置关系,并说明理由.
图1 图2
学校 班级 考号 姓名__________________________
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
21.(本题9分)已知:直线y =-2x +2分别与x 轴、y 轴相交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC =90°,过C 作CD ⊥x 轴于D 求(1)点A 、B 的坐标 (2)AD 的长
(3)过A 、B 、C 三点的抛物线的解析式
(4)在x 轴上是否存在点P ,使△BCP 为等腰三角形?若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.
22、(本题9分)如图,在平面直角坐标系中,以点(11)C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在⊙C 上. (1)求ACB 的大小; (2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐
标;若不存在,请说明理由.
O
x
y
C
B
A
D。