全国各地中考数学试卷解析版分类汇编二次函数专题
2024年中考数学真题分类汇编(全国通用)(第一期)专题15 二次函数的实际应用(21题)(原卷版)
专题15二次函数的实际应用(21题)一、单选题1.(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =-≤≤.有下列结论:①小球从抛出到落地需要6s ;②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度.其中,正确结论的个数是()A .0B .1C .2D .32.(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt ABC △中,90BAC ∠=︒,12AB =,动点E ,F 同时从点A 出发,分别沿射线AB 和射线AC 的方向匀速运动,且速度大小相同,当点E 停止运动时,点F 也随之停止运动,连接EF ,以EF 为边向下做正方形EFGH ,设点E 运动的路程为()012x x <<,正方形EFGH 和等腰Rt ABC △重合部分的面积为下列图像能反映y 与x 之间函数关系的是()A .B .C .D .3.(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,23cm EF =,60E ∠=︒,现将菱形EFGH 以1cm /s的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是()A .B .C .D .二、填空题4.(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =m .5.(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车完全停到车棚内(填“能”或“不能”).6.(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB CD ⊥于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得 6.6AE =m , 1.4OE =m ,6OB =m ,5OC =m ,3OD =m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是2cm .三、解答题7.(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索1L 与缆索2L 均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF '为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索1L 所在抛物线与缆索2L 所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离100m OC =,17m AO BC ==,缆索1L 的最低点P 到FF '的距离2m PD =(桥塔的粗细忽略不计)(1)求缆索1L 所在抛物线的函数表达式;(2)点E 在缆索2L 上,EF FF '⊥,且 2.6m EF =,FO OD <,求FO 的长.8.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m ,篱笆长80m .设垂直于墙的边AB 长为x 米,平行于墙的边BC 为y 米,围成的矩形面积为2cm S .(1)求y 与,x s 与x 的关系式.(2)围成的矩形花圃面积能否为2750cm ,若能,求出x 的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x 的值.9.(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.10.(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =-+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .11.(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.(1)求这两种粽子的进价;(2)设猪肉粽每盒售价x 元()5270x ≤≤,y 表示该商家销售猪肉粽的利润(单位:元),求y 关于x 的函数表达式并求出y 的最大值.12.(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元…1214161820…销售量y/盒…5652484440…(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.13.(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)14.(2024·四川遂宁·中考真题)某酒店有A B、两种客房、其中A种24间,B种20间.若全部入住,一天、两种客房均有10间入住,一天营业额为3200元.营业额为7200元;若A B(1)求A B、两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?15.(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A 类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)16.(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背背景◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.景1◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.17.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?18.(2024·江西·中考真题)如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.19.(2024·江苏苏州·中考真题)如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.20.(2024·青海·中考真题)在如图所示的平面直角坐标系中,有一斜坡OA ,从点O 处抛出一个小球,落到点33,2A ⎛⎫ ⎪⎝⎭处.小球在空中所经过的路线是抛物线2y x bx =-+的一部分.(1)求抛物线的解析式;(2)求抛物线最高点的坐标;(3)斜坡上点B 处有一棵树,点B 是OA 的三等分点,小球恰好越过树的顶端C ,求这棵树的高度.21.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠== .(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).。
全国各地中考数学分类:二次函数综合题汇编及答案解析
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,抛物线y=﹣(x ﹣1)2+c 与x 轴交于A ,B (A ,B 分别在y 轴的左右两侧)两点,与y 轴的正半轴交于点C ,顶点为D ,已知A (﹣1,0).(1)求点B ,C 的坐标;(2)判断△CDB 的形状并说明理由;(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】【分析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标. (2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形. (3)△COB 沿x 轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c = ∴抛物线解析式为:()214y x =--+, 令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B .(Ⅱ)CDB ∆为直角三角形.理由如下:由抛物线解析式,得顶点D 的坐标为()1,4.如答图1所示,过点D 作DM x ⊥轴于点M ,则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=. 在Rt OBC ∆中,由勾股定理得:22223332BC OB OC =+=+=;在Rt CND ∆中,由勾股定理得:2222112CD CN DN =+=+=;在Rt BMD ∆中,由勾股定理得:22222425BD BM DM =+=+=.∵222BC CD BD +=,∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+,∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩, 解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++;设直线BD 的解析式为y mx n =+,∵()()3,0,1,4B D ,∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=, ∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫ ⎪⎝⎭. 在COB ∆向右平移的过程中:(1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.设QE 与BD 的交点为F ,则:263y x y x t=-+⎧⎨=-++⎩. 解得32x t y t =-⎧⎨=⎩, ∴()3,2F t t -.111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J .∵CQ t =,∴KQ t =,3PK PB t ==-.直线BD 解析式为26y x =-+,令x t =,得62y t =-,∴(),62J t t -.1122PBJ PBK S S S PB PJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩.2.已知抛物线2(5)6y x m x m =-+-+-.(1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或【解析】【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论.【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:52m x -±=- 即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0),它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -),由题意,可得:6166m m m 或-+=-+=-56m m ∴==或【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.3.综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)233642y x x =-++;(2)3;(3)1234(8,0),(0,0),(14,0),(14,0)M M M M -. 【解析】【分析】 (1)利用待定系数法进行求解即可;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,先求出S △OAC =6,再根据S △BCD =34S △AOC ,得到S △BCD =92,然后求出BC 的解析式为362y x =-+,则可得点G 的坐标为3(,6)2m m -+,由此可得2334DG m m =-+,再根据S △BCD =S △CDG +S △BDG =12DG BO ⋅⋅,可得关于m 的方程,解方程即可求得答案; (3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图,以BD 为边时,有3种情况,由点D 的坐标可得点N 点纵坐标为±154,然后分点N 的纵坐标为154和点N 的纵坐标为154-两种情况分别求解;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,根据平行四边形的对边平行且相等可求得BM 1=N 1D=4,继而求得OM 1= 8,由此即可求得答案.【详解】(1)抛物线2y ax bx c =++经过点A(-2,0),B(4,0),∴426016460a b a b -+=⎧⎨++=⎩, 解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为233642y x x =-++; (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,∵点A 的坐标为(-2,0),∴OA=2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6,∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=, ∵S △BCD =34S △AOC , ∴S △BCD =39642⨯=, 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩, ∴直线BC 的函数表达式为362y x =-+, ∴点G 的坐标为3(,6)2m m -+, ∴2233336(6)34224DG m m m m m =-++--+=-+, ∵点B 的坐标为(4,0),∴OB=4,∵S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅, ∴S △BCD =22133346242m m m m -+⨯=-+(), ∴239622m m -+=, 解得11m =(舍),23m =,∴m 的值为3;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图, 以BD 为边时,有3种情况,∵D 点坐标为15(3,)4,∴点N 点纵坐标为±154, 当点N 的纵坐标为154时,如点N 2, 此时233156424x x -++=,解得:121,3x x =-=(舍), ∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N 3,N 4, 此时233156424x x -++=-,解得:12114,114x x ==∴315(114,)4N +-,415(114,)4N -, ∴3(14,0)M ,4(14,0)M -;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,∵115(1,)4N -,D(3,154), ∴N 1D=4,∴BM 1=N 1D=4,∴OM 1=OB+BM 1=8,∴M 1(8,0),综上,点M 的坐标为:1234(80)(00)(140)(140)M M M M -,,,,,,,.【点睛】 本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.4.如图,已知二次函数图象的顶点坐标为(1,4)A ,与坐标轴交于B 、C 、D 三点,且B 点的坐标为(1,0)-.(1)求二次函数的解析式;(2)在二次函数图象位于x 轴上方部分有两个动点M 、N ,且点N 在点M 的左侧,过M 、N 作x 轴的垂线交x 轴于点G 、H 两点,当四边形MNHG 为矩形时,求该矩形周长的最大值;(3)当矩形MNHG 的周长最大时,能否在二次函数图象上找到一点P ,使PNC ∆的面积是矩形MNHG 面积的916?若存在,求出该点的横坐标;若不存在,请说明理由.【答案】(1)2y x 2x 3=-++ (2)最大值为10(3)故点P 坐标为:315(,)24或332362+--或332362--+. 【解析】【分析】(1)二次函数表达式为:()214y a x =-+,将点B 的坐标代入上式,即可求解;(2)矩形MNHG 的周长()()2222222223282C MN GM x x x x x =+=-+-++=-++,即可求解; (3)2711sin4532822PNC S PK CD PH ∆==⨯⨯=⨯⨯︒⨯,解得:94PH HG ==,即可求解.【详解】(1)二次函数表达式为:()214y a x =-+,将点B 的坐标代入上式得:044a =+,解得:1a =-,故函数表达式为:223y x x =-++…①;(2)设点M 的坐标为()2,23x x x -++,则点()22,23N x x x --++,则222MN x x x =-+=-,223GM x x =-++,矩形MNHG 的周长()()2222222223282C MN GM x x x x x =+=-+-++=-++, ∵20-<,故当22b x a=-=,C 有最大值,最大值为10, 此时2x =,点()0,3N 与点D 重合; (3)PNC ∆的面积是矩形MNHG 面积的916, 则99272316168PNC S MN GM ∆=⨯⨯=⨯⨯=, 连接DC ,在CD 得上下方等距离处作CD 的平行线m 、n ,过点P 作y 轴的平行线交CD 、直线n 于点H 、G ,即PH GH =,过点P 作PK CD ⊥于点K ,将()3,0C 、()0,3D 坐标代入一次函数表达式并解得:直线CD 的表达式为:3y x =-+,OC OD =,∴45OCD ODC PHK ∠=∠=︒=∠,32CD =设点()2,23P x x x -++,则点(),3H x x -+, 2711sin4532822PNC S PK CD PH ∆==⨯⨯=⨯⨯︒⨯解得:94PH HG ==, 则292334PH x x x =-+++-=, 解得:32x =, 故点315,24P ⎛⎫ ⎪⎝⎭, 直线n 的表达式为:93344y x x =-+-=-+…②, 联立①②并解得:332x ±=, 即点'P 、''P 的坐标分别为332362,24⎛⎫+-- ⎪ ⎪⎝⎭、332362,24⎛⎫--+ ⎪ ⎪⎝⎭; 故点P 坐标为:315,24⎛⎫⎪⎝⎭或332362,24⎛⎫+-- ⎪ ⎪⎝⎭或332362,24⎛⎫--+ ⎪ ⎪⎝⎭. 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.5.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210+. (3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2). 【解析】 【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可. 【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0), ∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-. ∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+. (2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值. ∴当PB+PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴I 对称, ∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴2,10. ∴△PBC 的周长最小是:3210.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+) ∴()22EF m 2m 32m 6m 4m 3=--+-+=---.∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---. ②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).6.如图1,抛物线2:C y ax bx =+经过点(4,0)A -、(1,3)B -两点,G 是其顶点,将抛物线C 绕点O 旋转180,得到新的抛物线'C .(1)求抛物线C 的函数解析式及顶点G 的坐标; (2)如图2,直线12:5l y kx =-经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为m (2m <-),连接DO 并延长,交抛物线'C 于点E ,交直线l 于点M ,2DE EM =,求m 的值;(3)如图3,在(2)的条件下,连接AG 、AB ,在直线DE 下方的抛物线C 上是否存在点P ,使得DEP GAB ∠=∠?若存在,求出点P 的横坐标;若不存在,请说明理由.【答案】(1)24y x x =--,顶点为:(2,4)G -;(2)m 的值为﹣3;(3)存在,点P 的横坐标为:773+-737-. 【解析】 【分析】(1)运用待定系数法将(4,0)A -、(1,3)B -代入2y ax bx =+中,即可求得a 和b 的值和抛物线C 解析式,再利用配方法将抛物线C 解析式化为顶点式即可求得顶点G 的坐标; (2)根据抛物线C 绕点O 旋转180,可求得新抛物线'C 的解析式,再将(4,0)A -代入125y kx =-中,即可求得直线l 解析式,根据对称性可得点E 坐标,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,由2DE EM =,即可得13ME MD =,再证明MEK ∆∽MDH ∆,即可得3DH EK =,建立方程求解即可;(3)连接BG ,易证ABG ∆是Rt ∆,90ABG ∠=,可得1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE ==E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;通过建立方程组求解即可. 【详解】(1)将(4,0)A -、(1,3)B -代入2y ax bx =+中,得16403a b a b -=⎧⎨-=⎩解得14a b =-⎧⎨=-⎩∴抛物线C 解析式为:24y x x =--,配方,得:224(2)4y x x x =--=-++,∴顶点为:(2,4)G -; (2)∵抛物线C 绕点O 旋转180,得到新的抛物线'C . ∴新抛物线'C 的顶点为:'(2,4)G -,二次项系数为:'1a = ∴新抛物线'C 的解析式为:22(2)44y x x x =--=- 将(4,0)A -代入125y kx =-中,得12045k =--,解得35k =-, ∴直线l 解析式为31255y x =--, ∵2(,4)D m m m --,∴直线DO 的解析式为(4)y m x =-+,由抛物线C 与抛物线'C 关于原点对称,可得点D 、V 关于原点对称, ∴2(,4)E m m m -+如图2,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K , 则312(,)55H m m --,312(,)55K m m --, ∴2231217124()5555DH m m m m m =-----=--+,2231217124()5555EK m m m m m =+--=++,∵2DE EM = ∴13ME MD =, ∵//DH y 轴,//EK y 轴∴//DH EK∴MEK ∆∽MDH ∆ ∴13EK ME DH MD ==,即3DH EK = ∴22171217123()5555m m m m --+=++ 解得:13m =-,225m =-,∵2m <-∴m 的值为:﹣3; (3)由(2)知:3m =-,∴(3,3)D -,(3,3)E -,OE =如图3,连接BG ,在ABG ∆中,∵222(14)(30)18AB =-++-=,22BG =,220AG =∴222AB BG AG +=∴ABG ∆是直角三角形,90ABG ∠=,∴1tan 3BG GAB AB ∠===, ∵DEP GAB ∠=∠ ∴1tan tan 3DEP GAB ∠=∠=, 在x 轴下方过点O 作OH OE ⊥,在OH上截取13OH OE == 过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点; ∵(3,3)E -, ∴45EOT ∠= ∵90EOH ∠= ∴45HOT ∠=∴(1,1)H --,设直线EH 解析式为y px q =+,则331p q p q +=-⎧⎨-+=-⎩,解得1232p q ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EH 解析式为1322y x =--,解方程组213224y x y x x ⎧=--⎪⎨⎪=--⎩,得1177347358x y ⎧--=⎪⎪⎨-⎪=⎪⎩,2277347358x y ⎧-+=⎪⎪⎨+⎪=-⎪⎩, ∴点P 的横坐标为:7734+-或7374-.【点睛】本题考查了二次函数图象和性质,待定系数法求函数解析式,旋转变换,相似三角形判定和性质,直线与抛物线交点,解直角三角形等知识点;属于中考压轴题型,综合性强,难度较大.7.如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+. ①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,△PBE 的面积最大并求出最大值.③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.【答案】①265y x x =-+-;②当2t =时,△PBE 的面积最大,最大值为22③点N 的横坐标为:4或5412+或5412. 【解析】 【分析】①点B 、C 在直线为y x n =+上,则B (﹣n ,0)、C (0,n ),点A (1,0)在抛物线上,所以250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-;②先求出点P 到BC 的高h 为2sin 45(4)2BP t ︒=-,于是21122(4)2(2)222222PBE S BE h t t t ∆=⋅=⨯-⨯=-+2t =时,△PBE 的面积最大,最大值为22③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC 的距离22d =N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN为等腰直角三角形,即NQ PQ ==4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m =,Ⅱ.4NH HP +=,()25654m m m ---+-=解得152m =,252m =(舍去),Ⅲ.4NH HP -=,()265[(5)]4m m m --+----=,解得152m =(舍去),252m =. 【详解】解:①∵点B 、C 在直线为y x n =+上, ∴B (﹣n ,0)、C (0,n ), ∵点A (1,0)在抛物线上,∴250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩, ∴1a =-,6b =,∴抛物线解析式:265y x x =-+-; ②由题意,得,4PB t =-,2BE t =,由①知,45OBC ︒∠=, ∴点P 到BC 的高h为sin 45(4)2BP t ︒=-,∴211(4)2(2)2222PBE S BE h t t t ∆=⋅=⨯-⨯=-+ 当2t =时,△PBE的面积最大,最大值为 ③由①知,BC 所在直线为:5y x =-, ∴点A 到直线BC的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H . 设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -, 易证△PQN为等腰直角三角形,即NQ PQ == ∴4PN =, Ⅰ.4NH HP +=, ∴265(5)4m m m -+---= 解得11m =,24m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形, ∴4m =;Ⅱ.4NH HP +=, ∴()25654m m m ---+-= 解得1541m +=,2541m -=,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,5m >,∴541m +=, Ⅲ.4NH HP -=,∴()265[(5)]4m m m --+----=, 解得1541m +=,2541m -=,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,0m <,∴541m -=, 综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或5412+或5412-. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.8.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式; (2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×,最大值的立方根为=;(3)存在满足条件的点P,t的值为1或【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.试题解析:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.考点:二次函数综合题9.抛物线与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1)A(2,0),B(4,0),C(0,2);(2)①t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②F(3,2),(3,7).【解析】试题分析:(1)在抛物线的解析式中,令y=0,令x=0,解方程即可得到结果;(2)①由题意得:OP=2t,OE=t,通过△CDE∽△CBO得到,即,求得有最小值1,即可求得结果;②存在,求得抛物线的对称方程为x=3,设F(3,m),当△EFP为直角三角形时,①当∠EPF=90°时,②当∠EFP=90°时,③当∠PEF=90°时,根据勾股定理列方程即可求得结果.试题解析:(1)在抛物线的解析式中,令y=0,即,解得:,,∵OA<OB,∴A(2,0),B(4,0),在抛物线的解析式中,令x=0,得y=2,∴C(0,2);(2)①由题意得:OP=2t,OE=t,∵DE∥OB,∴△CDE∽△CBO,∴,即,∴DE=4﹣2t,∴===,∵0<t<2,始终为正数,且t=1时,有最大值1,∴t=1时,有最小值1,即t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②存在,∵抛物线的对称轴方程为x=3,设F(3,m),∴,=,=,当△EFP为直角三角形时,①当∠EPF=90°时,,即,解得:m=2,②当∠EFP=90°时,,即,解得;m=0或m=1,不合题意舍去,∴当∠EFP=90°时,这种情况不存在, ③当∠PEF=90°时,,即,解得:m=7, 综上所述,F (3,2),(3,7).考点:1.二次函数综合题;2.动点型;3.最值问题;4.二次函数的最值;5.分类讨论;6.压轴题.10.已知抛物线21322y x x =--的图象如图所示: (1)将该抛物线向上平移2个单位,分别交x 轴于A 、B 两点,交y 轴于点C ,则平移后的解析式为 .(2)判断△ABC 的形状,并说明理由.(3)在抛物线对称轴上是否存在一点P ,使得以A 、C 、P 为顶点的三角形是等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =--+;(2)△ABC 是直角三角形;(3)存在,302,⎛⎫- ⎪⎝⎭、311222⎛-+ ⎝⎭,、311222⎛-- ⎝⎭,. 【解析】【分析】(1)根据函数图象的平移规律,可得新的函数解析式;(2)根据自变量与函数值的对应关系,可得A ,B ,C 的坐标,根据勾股定理及逆定理,可得答案;(3)根据等腰三角形的定义,分三种情况,可得关于n 的方程,根据解方程,可得答案.【详解】(1)将该抛物线向上平移2个单位,得:y 12=-x 232-x +2.故答案为y 12=-x 232-x +2; (2)当y =0时,12-x 232-x +2=0,解得:x 1=﹣4,x 2=1,即B (﹣4,0),A (1,0). 当x =0时,y =2,即C (0,2). AB =1﹣(﹣4)=5,AB 2=25,AC 2=(1﹣0)2+(0﹣2)2=5,BC 2=(﹣4﹣0)2+(0﹣2)2=20.∵AC 2+BC 2=AB 2,∴△ABC 是直角三角形;(3)y 12=-x 232-x +2的对称轴是x 32=-,设P (32-,n ),AP 2=(132+)2+n 2254=+n 2,CP 294=+(2﹣n )2,AC 2=12+22=5.分三种情况讨论: ①当AP =AC 时,AP 2=AC 2,254+n 2=5,方程无解; ②当AP =CP 时,AP 2=CP 2,254+n 294=+(2﹣n )2,解得:n =0,即P 1(32-,0);③当AC =CP 时,AC 2=CP 2,94+(2﹣n )2=5,解得:n 1=2,n 2=2,P 2(32-,22+),P 3(32-,22-). 综上所述:在抛物线对称轴上存在一点P ,使得以A 、C 、P 为顶点的三角形是等腰三角形,点P 的坐标(32-,0),(32-,2),(32-,2). 【点睛】本题考查了二次函数综合题.解(1)的关键是二次函数图象的平移,解(2)的关键是利用勾股定理及逆定理;解(3)的关键是利用等腰三角形的定义得出关于n 的方程,要分类讨论,以防遗漏.。
全国各地中考数学试卷解析版分类汇编 二次函数专题
二次函数一、选择题1. (2014•上海,第3题4分)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2考点:二次函数图象与几何变换.专题:几何变换.分析:先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),所以所得的抛物线的表达式为y=(x﹣1)2.故选C.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.2. (2014•四川巴中,第10题3分)已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0 B.﹣3a+c<0 C.b2﹣4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c 考点:二次函数的图象和符号特征.分析:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0.B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y<0,即可判断;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0;D.把二次函数y=ax2+bx+c化为顶点式,再求出平移后的解析式即可判断.解答:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a ﹣4a+c=﹣3a+c<0,故本选项正确;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;D.y=ax2+bx+c=,∵=2,∴原式=,向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选:B.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.3. (2014•山东威海,第11题3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:抛物线与y轴交于原点,c=0,故①正确;该抛物线的对称轴是:,直线x=﹣1,故②正确;当x=1时,y=2a+b+c,∵对称轴是直线x=﹣1,∴,b=2a,又∵c=0,∴y=4a,故③错误;x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).故④正确.故选:C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.4. (2014•山东枣庄,第11题3分)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x ﹣1 0 1 2 3y 5 1 ﹣1 ﹣1 1则该二次函数图象的对称轴为()A.y轴B.直线x= C.直线x=2 D.直线x=考点:二次函数的性质分析:由于x=1、2时的函数值相等,然后根据二次函数的对称性列式计算即可得解.解答:解:∵x=1和2时的函数值都是﹣1,∴对称轴为直线x==.故选D.点评:本题考查了二次函数的性质,主要利用了二次函数的对称性,比较简单.点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数的图象与性质.解答:根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x 的增大而减小.解答:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,所以①正确;∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②错误;∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a <0,∴8a +7b +2c >0,所以③正确; ∵对称轴为直线x =2,∴当﹣1<x <2时,y 的值随x 值的增大而增大,当x >2时,y 随x 的增大而减小,所以④错误.故选B .点评:本题考查了二次函数图象与系数的关系:二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.6.(2014山东济南,第15题,3分)二次函数的图象如图,对称轴为1=x .若关于x 的一元二次方程02=-+t bx x (为实数)在41<<-x 的范围内有解,则的取值范围是A .1-≥tB .31<≤-tC .81<≤-tD .83<<t 【解析】由对称轴为1=x ,得2-=b ,再由一元二次方程022=--t x x 在41<<-x 的范围内有解,得)4()1(y t y <≤, 即81<≤-t ,故选C .7. (2014•山东聊城,第12题,3分)如图是二次函数y=ax 2+bx+c (a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b ﹣2a=0;②4a ﹣2b+c <0;③a ﹣b+c=﹣9a ;④若(﹣3,y 1),(,y 2)是抛物线上两点,则y 1>y 2,其中正确的是( )1 BOxy4A.①②③B.①③④C.①②④D.②③④考点:二次函数图象与系数的关系.分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.解答:解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,∴①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,∴②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,∴③正确;∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,∴④正确;即正确的有①③④,故选B.点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.8.(2014年贵州黔东南9.(3分))已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D. 2015考点:抛物线与x轴的交点.分析:把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.解答:解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得 m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.点评:本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.9. (2014年贵州黔东南9.(4分))如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a+b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选B.点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.10.考点:二次函数的图象;一次函数的图象.分析:本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.解答:解:A、由二次函数的图象可知a<0,此时直线y=ax+b经过二、四象限,故A可排除;B、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、四象限,故B可排除;C、二次函数的图象可知a>0,此时直线y=ax+b经过一、三,故C可排除;正确的只有D.故选:D.点评:此题主要考查了一次函数图象与二次函数图象,应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.11. (2014•江苏苏州,第8题3分)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C.2 D.5考点:二次函数图象上点的坐标特征.分析:把点(1,1)代入函数解析式求出a+b,然后代入代数式进行计算即可得解.解答:解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故选B.点评:本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键.12. (2014•年山东东营,第9题3分)若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0 B.0或2 C.2或﹣2 D.0,2或﹣2考点:抛物线与x轴的交点.分析:分为两种情况:函数是二次函数,函数是一次函数,求出即可.解答:解:分为两种情况:①当函数是二次函数时,∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴△=(m+2)2﹣4m(m+1)=0且m≠0,解得:m=±2,②当函数时一次函数时,m=0,此时函数解析式是y=2x+1,和x轴只有一个交点,故选D.点评:本题考查了抛物线与x轴的交点,根的判别式的应用,用了分类讨论思想,题目比较好,但是也比较容易出错.13. (2014•山东临沂,第14题3分)在平面直角坐标系中,函数y=x2﹣2x(x≥0)的图象为C1,C1关于原点对称的图象为C2,则直线y=a(a为常数)与C1、C2的交点共有()A.1个B.1个或2个C.1个或2个或3个D.1个或2个或3个或4个考点:二次函数图象与几何变换.分析:根据关于原点对称的关系,可得C2,根据直线y=a(a为常数)与C1、C2的交点,可得答案.解答:解:函数y=x2﹣2x(x≥0)的图象为C1,C1关于原点对称的图象为C2,C2图象是x=﹣y2﹣2y,a非常小时,直线y=a(a为常数)与C1没有交点,共有一个交点;直线y=a经过C1的顶点时,共有两个交点;直线y=a(a为常数)与C1、有两个交点时,直线y=a(a为常数)与C1、C2的交点共有3个交点;故选:C.点评:本题考查了二次函数图象与几何变换,先求出C2的图象,再求出交点个数.14. (2014•山东淄博,第8题4分)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2考点:待定系数法求二次函数解析式;反比例函数图象上点的坐标特征.专题:计算题.分析:将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.解答:解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.点评:此题考查l待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.15. (2014•山东淄博,第12题4分)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A (0,2),B(8,3),则h的值可以是()A. 6 B. 5 C. 4 D. 3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B都对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x >﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.16.(2014•四川南充,第10题,3分)二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤分析:根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣=1,得到b=﹣2a>0,即2a+b=0,由抛物线与y轴的交点位置得到c>0,所以abc<0;根据二次函数的性质得当x=1时,函数有最大值a+b+c,则当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm;根据抛物线的对称性得到抛物线与x轴的另一个交点在(﹣1,0)的右侧,则当x=﹣1时,y<0,所以a﹣b+c<0;把ax12+bx1=ax22+bx2先移项,再分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,则a(x1+x2)+b]=0,即x1+x2=﹣,然后把b=﹣2a代入计算得到x1+x2=2.解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为性质x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线对称轴为性质x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为性质x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b]=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,所以⑤正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.17.(2014•甘肃白银、临夏,第9题3分)二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)考点:二次函数图象与系数的关系.分析:此题可将b+c=0代入二次函数,变形得y=x2+b(x﹣1),若图象一定过某点,则与b无关,令b的系数为0即可.解答:解:对二次函数y=x2+bx+c,将b+c=0代入可得:y=x2+b(x﹣1),则它的图象一定过点(1,1).故选D.点评:本题考查了二次函数与系数的关系,在这里解定点问题,应把b当做变量,令其系数为0进行求解.18.(2014•甘肃兰州,第6题4分)抛物线y=(x﹣1)2﹣3的对称轴是()移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2 B.y=﹣2(x+1)2﹣2 C.y=﹣2(x﹣1)2+2 D.y=﹣2(x﹣1)2﹣2考点:二次函数图象与几何变换分析:根据图象右移减,上移加,可得答案.解答:解:把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=﹣2(x﹣1)2+2,故选:C.点评:本题考查了二次函数图象与几何变换,图象的平移规律是:左加右减,上加下减.20.(2014•甘肃兰州,第14题4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是()A.c>0 B.2a+b=0 C.b2﹣4ac>0 D.a﹣b+c>0考点:二次函数图象与系数的关系.专题:压轴题.分析:本题考查二次函数图象的相关知识与函数系数的联系.需要根据图形,逐一判断.解答:解:A、因为二次函数的图象与y轴的交点在y轴的上方,所以c>0,正确;B、由已知抛物线对称轴是直线x=1=﹣,得2a+b=0,正确;C、由图知二次函数图象与x轴有两个交点,故有b2﹣4ac>0,正确;D、直线x=﹣1与抛物线交于x轴的下方,即当x=﹣1时,y<0,即y=ax2+bx+c=a﹣b+c<0,错误.故选D.点评:在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.二、填空题1. (2014•浙江杭州,第15题,4分)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2 .考点:二次函数图象上点的坐标特征;待定系数法求二次函数解析式分析:根据点C的位置分情况确定出对称轴解析式,然后设出抛物线解析式,再把点A、B的坐标代入求解即可.解答:解:∵点C在直线x=2上,且到抛物线的对称轴的距离等于1,∴抛物线的对称轴为直线x=1或x=3,当对称轴为直线x=1时,设抛物线解析式为y=a(x﹣1)2+k,则,解得,所以,y=(x﹣1)2+=x2﹣x+2,当对称轴为直线x=3时,设抛物线解析式为y=a(x﹣3)2+k,则,解得,所以,y=﹣(x﹣3)2+=﹣x2+x+2,综上所述,抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2.故答案为:y=x2﹣x+2或y=﹣x2+x+2.点评:本题考查了二次函数图象上点的坐标特征,待定系数法求二次函数解析式,难点在于分情况确定出对称轴解析式并讨论求解.2. *( 2014年河南9.(4分))已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为 .答案:8.解析:根据点A到对称轴x=2的距离是4,又点A、点B关于x=2对称,∴AB=8.3. (2014年湖北咸宁15.(3分))科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃﹣4 ﹣2 0 1 4植物高度增长量l/mm 41 49 49 46 25科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为﹣1 ℃.考点:二次函数的应用.分析:首先利用待定系数法求二次函数解析式解析式,在利用二次函数最值公式求法得出即可.解答:解:设 y=ax2+bx+c (a≠0),选(0,49),(1,46),(4,25)代入后得方程组,解得:,所以y与x之间的二次函数解析式为:y=﹣x2﹣2x+49,当x=﹣=﹣1时,y有最大值50,即说明最适合这种植物生长的温度是﹣1℃.故答案为:﹣1.点评:此题主要考查了二次函数的应用以及待定系数法求二次函数解析式,得出二次函数解析式是解题关键.3.4.5.6.7.8.三、解答题1. (2014•上海,第24题12分)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x 轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.考点:二次函数综合题分析:(1)根据待定系数法可求抛物线的表达式,进一步得到对称轴;(2)分两种情况:当AC∥EF时;当AF∥CE时;两种情况讨论得到点F的坐标;(3)△BDP和△CDP的面积相等,可得DP∥BC,根据待定系数法得到直线BC的解析式,根据两条平行的直线k值相同可得直线DP的解析式,进一步即可得到t的值.解答:解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点C(0,﹣2),∴,解得.故抛物线的表达式为:y=x2﹣x﹣2=(x﹣1)2﹣,对称轴为直线x=1;(2)由(1)可知,点E(1,0),A(﹣1,0),C(0,﹣2),当AC∥EF时,直线AC的解析式为y=﹣2x﹣2,∴直线EF的解析式为y=﹣2x+2,当x=1时,y=0,此时点F与点E重合;当AF∥CE时,直线CE的解析式为y=2x﹣2,∴直线AF的解析式为y=2x+2,当x=1时,y=4,此时点F的坐标为(1,4).综上所述,点P的坐标为(1,4);(3)点B(3,0),点D(1,﹣),若△BDP和△CDP的面积相等,则DP∥BC,则直线BC的解析式为y=x﹣2,∴直线DP的解析式为y=x﹣,当y=0时,x=5,∴t=5.点评:考查了二次函数综合题,涉及的知识点有:待定系数法求抛物线的表达式,待定系数法求直线的解析式,两条平行的直线之间的关系,三角形面积,分类思想的运用,综合性较强,有一定的难度.2. (2014•山东威海,第25题12分)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.考点:二次函数综合题分析:(1)本题需先根据已知条件,过C点,设出该抛物线的解析式为y=ax2+bx+2,再根据过A,B两点,即可得出结果;(2)由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.由相似关系求出点E的坐标;(3)如图2,连结AC,作DE⊥x轴于点E,作BF⊥AD于点F,由BC∥AD设BC的解析式为y=kx+b,设AD的解析式为y=kx+n,由待定系数法求出一次函数的解析式,就可以求出D坐标,由勾股定理就可以求出BD的值,由勾股定理的逆定理就可以得出∠ACB=90°,由平行线的性质就可以得出∠CAD=90°,就可以得出四边形ACBF是矩形,就可以得出BF的值,由勾股定理求出DF的值,而得出DF=BF而得出结论.解答:解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y=ax2+bx+2.将A(﹣1,0),B(4,0)代入,得,解得,∴抛物线的解析式为:y=﹣x2+x+2.(2)存在.由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.在Rt△BOC中,OC=2,OB=4,∴BC==.在Rt△BOC中,设BC边上的高为h,则×h=×2×4,∴h=.∵△BEA∽△COB,设E点坐标为(x,y),∴=,∴y=±2将y=2代入抛物线y=﹣x2+x+2,得x1=0,x2=3.当y=﹣2时,不合题意舍去.∴E点坐标为(0,2),(3,2).(3)如图2,连结AC,作DE⊥x轴于点E,作BF⊥AD于点F,∴∠BED=∠BFD=∠AFB=90°.设BC的解析式为y=kx+b,由图象,得,∴,y BC=﹣x+2.由BC∥AD,设AD的解析式为y=﹣x+n,由图象,得0=﹣×(﹣1)+n∴n=﹣,y AD=﹣x﹣.∴﹣x2+x+2=﹣x﹣,解得:x1=﹣1,x2=5∴D(﹣1,0)与A重合,舍去,D(5,﹣3).∵DE⊥x轴,∴DE=3,OE=5.由勾股定理,得BD=.∵A(﹣1,0),B(4,0),C(0,2),∴OA=1,OB=4,OC=2.∴AB=5在Rt△AOC中,Rt△BOC中,由勾股定理,得AC=,BC=2,∴AC2=5,BC2=20,AB2=25,∴AC2+BC2=AB2∴△ACB是直角三角形,∴∠ACB=90°.∵BC∥AD,∴∠CAF+∠ACB=180°,∴∠CAF=90°.∴∠CAF=∠ACB=∠AFB=90°,∴四边形ACBF是矩形,∴AC=BF=,在Rt△BFD中,由勾股定理,得DF=,∴DF=BF,∴∠ADB=45°.点评:本题考查了运用待定系数法求二次函数解析式和一次函数的解析式的运用,相似三角形的性质的运用,勾股定理的运用,矩形的判定及性质的运用,等腰直角三角形的性质的运用,解答时求出函数的解析式是关键.4. (2014•山东枣庄,第25题10分)如图,在平面直角坐标系中,二次函数y=x﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;考点:二次函数综合题分析:(1)由抛物线已知,则可求三角形OBC的各个顶点,易知三角形形状及内角.(2)因为抛物线已固定,则S四边形OCDB固定,对于坐标系中的不规则图形常用分割求和、填补求差等方法求面积,本图形过顶点作x轴的垂线及可将其分为直角梯形及直角三角形,面积易得.由此可得E点坐标,进而可求ED直线方程,与抛物线解析式联立求解即得P点坐标.(3)PF的长度即为y F﹣y P.由P、F的横坐标相同,则可直接利用解析式作差.由所得函数为二次函数,则可用二次函数性质讨论最值,解法常规.解答:解:(1)∵y=x2﹣2x﹣3=(x﹣3)(x+2),∴由题意得,A(﹣1,0),B(3,0),C(0,﹣3),D(1,﹣4).在Rt△OBC中,∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=45°.(2)如图1,过点D作DH⊥x轴于H,此时S四边形OCDB=S梯形OCDH+S△HBD,∵OH=1,OC=3,HD=4,HB=2,∴S梯形OCDH=•(OC+HD)•OH=,S△HBD=•HD•HB=4,∴S四边形OCDB=.∴S△OCE=S四边形OCDB==,∴OE=5,∴E(5,0).设l DE:y=kx+b,∵D(1,﹣4),E(5,0),∴,解得,∴l DE:y=x﹣5.∵DE交抛物线于P,设P(x,y),∴x2﹣2x﹣3=x﹣5,解得 x=2 或x=1(D点,舍去),∴x P=2,代入l DE:y=x﹣5,∴P(2,﹣3).(3)如图2,设l BC:y=kx+b,∵B(3,0),C(0,﹣3),∴,解得,∴l BC:y=x﹣3.∵F在BC上,∴y F=x F﹣3,∵P在抛物线上,∴y P=x P2﹣2x P﹣3,∴线段PF长度=y F﹣y P=x F﹣3﹣(x P2﹣2x P﹣3),∵x P=x F,∴线段PF长度=﹣x P2+3x P=﹣(x P﹣)2+,(1<x P≤3),∴当x P=时,线段PF长度最大为.点评:本题考查了抛物线图象性质、已知两点求直线解析式、直角三角形性质及二次函数最值等基础知识点,题目难度适中,适合学生加强练习.4),与x轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q 为顶点的四边形是平行四边形,求点P的坐标。
全国中考数学二次函数的综合中考真题分类汇总附答案解析
一、二次函数真题与模拟题分类汇编(难题易错题)1.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.2.如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【解析】【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标; (3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=32,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=32,∴OP=OC+PC=3+32或OP=PC﹣OC=32﹣3∴P1(0,3+32),P2(0,3﹣32);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=1×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,2当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x 轴上方2个单位处或点N在对称轴上x轴下方2个单位处.3.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB ,tan ∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x 2+bx+c 经过A 、B 两点.(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=12DE . ①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.【答案】(1)y=﹣x 2﹣3x+4;(2)①P (﹣1,6),②存在,M (﹣1,11)或(﹣1,311)或(﹣1,﹣1)或(﹣1,132). 【解析】【分析】(1)先根据已知求点A 的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB 的解析式为:y=-2x+2,根据PD ⊥x 轴,设P (x ,-x 2-3x+4),则E (x ,-2x+2),根据PE=12DE ,列方程可得P 的坐标; ②先设点M 的坐标,根据两点距离公式可得AB ,AM ,BM 的长,分三种情况:△ABM 为直角三角形时,分别以A 、B 、M 为直角顶点时,利用勾股定理列方程可得点M 的坐标.【详解】解:(1)∵B (1,0),∴OB=1,∵OC=2OB=2,∴C (﹣2,0),Rt △ABC 中,tan ∠ABC=2,∴AC 2BC =, ∴AC 23=, ∴AC=6, ∴A (﹣2,6), 把A (﹣2,6)和B (1,0)代入y=﹣x 2+bx+c 得:42610b c b c --+=⎧⎨-++=⎩, 解得:34b c =-⎧⎨=⎩, ∴抛物线的解析式为:y=﹣x 2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),∴AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=12DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=12(﹣2x+2),∴x=-1或1(舍),∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∵B(1,0),A(﹣2,6)∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=311,∴M(﹣1,11)或(﹣1,311ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,∴y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,∴y=132,∴M(﹣1,132);综上所述,点M的坐标为:∴M(﹣1,11)或(﹣1,311)或(﹣1,﹣1)或(﹣1,132).【点睛】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.4.已知抛物线2(5)6y x m x m =-+-+-.(1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或【解析】【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论.【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:x = 即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0),它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -),由题意,可得:6166m m m 或-+=-+=-56m m ∴==或【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.5.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)如图2,∵PH⊥OB于H,∴∠DHB=∠AOB=90°,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE∥x轴、PD⊥x轴,∴∠DPE=90°,若△PDE为等腰直角三角形,则∠EDP=45°,∴∠EDP与∠BDH互为对顶角,即点E与点A重合,则当y=6时,﹣1 2x2+2x+6=6,解得:x=0(舍)或x=4,即点P(4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.6.在平面直角坐标系中,抛物线2y ax bx c=++过点(1,0)A-,(3,0)B,与y轴交于点C,连接AC,BC,将OBC沿BC所在的直线翻折,得到DBC△,连接OD.(1)用含a的代数式表示点C的坐标.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设OBD的面积为S1,OAC的面积为S2,若1223SS=,求a的值.【答案】(1)(0,3)C a-;(2) 抛物线的表达式为:252535y x=++;(3) 22a=-22a=【解析】【分析】(1)根据待定系数法,得到抛物线的表达式为:()2(1)(3)23y a x x a x x =+-=--,即可求解;(2)根据相似三角形的判定证明CPD DQB ∽,再根据相似三角形的性质得到CP PD CD DQ BQ BD ==,即可求解;(3)连接OD 交BC 于点H ,过点H 、D 分别作x 轴的垂线交于点N 、M ,由三角形的面积公式得到1223S S =,29m DM =,11299m HN DM OC ===,而22899m HN ON BN ⎛⎫=⨯== ⎪⎝⎭,即可求解. 【详解】(1)抛物线的表达式为:()2(1)(3)23y a x x a x x =+-=--,即3c a =-,则点(0,3)C a -;(2)过点B 作y 轴的平行线BQ ,过点D 作x 轴的平行线交y 轴于点P 、交BQ 于点Q , ∵90CDP PDC ︒∠+∠=,90PDC QDB ︒∠+∠=,∴QDB DCP ∠=∠,设:(1,)D n ,点(0,3)C a -,90CPD BQD ︒∠=∠=,∴CPD DQB ∽,∴CP PD CD DQ BQ BD==, 其中:3CP n a =+,312DQ =-=,1PD =,BQ n =,3CD a =-,3BD =, 将以上数值代入比例式并解得:5a =, ∵0a <,故55a =-, 故抛物线的表达式为:252535555y x x =++;(3)如图2,当点C 在x 轴上方时,连接OD 交BC 于点H ,则DO BC ⊥, 过点H 、D 分别作x 轴的垂线交于点N 、M ,设:3OC m a ==-,11322OBD S S OB DM DM ∆==⨯⨯=, 2112OACS S m ∆==⨯⨯,而1223S S =,则29m DM =,11299m HN DM OC ===, ∴1193BN BO ==,则18333ON =-=,则DO BC ⊥,HN OB ⊥,则BHN HON ∠=∠,则tan tan BHN HON ∠=∠,则22899m HN ON BN ⎛⎫=⨯== ⎪⎝⎭,解得:62m =±(舍去负值),|3|62CO a =-=,解得:22a =-故:22a =-C 在x 轴下方时,同理可得:22a =22a =-22a =【点睛】本题考查的是二次函数综合运用、一次函数、三角形相似、图形的面积计算,其中(3)用几何方法得出:22899m HN ON BN ⎛⎫=⨯== ⎪⎝⎭,是本题解题的关键.7.已知函数()()22,1,222x nx n x n y n nx x x n ⎧-++≥⎪=⎨-++<⎪⎩(n 为常数) (1)当5n =,①点()4,P b 在此函数图象上,求b 的值;②求此函数的最大值.(2)已知线段AB 的两个端点坐标分别为()()2,24,2A B 、,当此函数的图象与线段AB 只有一个交点时,直接写出n 的取值范围.(3)当此函数图象上有4个点到x 轴的距离等于4,求n 的取值范围.【答案】(1)①92b =②458;(2)1845n <≤,823n ≤<时,图象与线段AB 只有一个交点;(3)函数图象上有4个点到x 轴的距离等于4时,8n >或3142n ≤<. 【解析】 【分析】(1)①将()4,P b 代入2155222y x x =-++;②当5x ≥时,当5x =时有最大值为5;当5x <时,当52x =时有最大值为458;故函数的最大值为458; (2)将点()4,2代入2y x nx n =-++中,得到185n =,所以1845n <≤时,图象与线段AB 只有一个交点;将点()2,2)代入2y x nx n =-++和21222n ny x x =-++中,得到82,3n n ==, 所以823n ≤<时图象与线段AB 只有一个交点; (3)当xn =时,42n >,得到8n >;当2n x =时,1482n +≤,得到312n ≥,当x n=时,22y n n n n =-++=,4n <. 【详解】解:(1)当5n =时,()()225551555222x x x y x x x ⎧-++≥⎪=⎨-++<⎪⎩, ①将()4,P b 代入2155222y x x =-++, ∴92b =; ②当5x ≥时,当5x =时有最大值为5; 当5x <时,当52x =时有最大值为458; ∴函数的最大值为458;(2)将点()4,2代入2y x nx n =-++中, ∴185n =, ∴1845n <≤时,图象与线段AB 只有一个交点; 将点()2,2代入2y x nx n =-++中, ∴2n =, 将点()2,2代入21222n ny x x =-++中, ∴83n =, ∴823n ≤<时图象与线段AB 只有一个交点; 综上所述:1845n <≤,823n ≤<时,图象与线段AB 只有一个交点; (3)当xn =时,22112222n n y n n =-++=,42n>,∴8n >; 当2n x =时,182n y =+, 1482n +≤,∴312n ≥, 当xn =时,22y n n n n =-++=,4n <;∴函数图象上有4个点到x 轴的距离等于4时,8n >或3142n ≤<. 【点睛】考核知识点:二次函数综合.数形结合分析问题是关键.8.在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A(1,4),B(3,0). (1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由; (3)应用:如图2,P(m ,n)是抛物线在第四象限的图象上的点,且m+n =﹣1,连接PA 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +).【答案】(1)y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由见解析;(3)点N(43,﹣73). 【解析】 【分析】(1)函数表达式为:y =a(x ﹣1)2+4,将点B 坐标的坐标代入上式,即可求解; (2)利用同底等高的两个三角形的面积相等,即可求解;(3)由(2)知:点N 是PQ 的中点,根据C,P 点的坐标求出直线PC 的解析式,同理求出AC,DQ 的解析式,并联立方程求出Q 点的坐标,从而即可求N 点的坐标. 【详解】(1)函数表达式为:y =a(x ﹣1)2+4,将点B 坐标的坐标代入上式得:0=a(3﹣1)2+4, 解得:a =﹣1,故抛物线的表达式为:y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由: 如图1,∵DE ∥AO ,S △ODA =S △OEA ,S △ODA +S △AOM =S △OEA +S △AOM ,即:S 四边形OMAD =S △OBM , ∴S △OME =S △OBM , ∴S 四边形OMAD =S △OBM ;(3)设点P(m ,n),n =﹣m 2+2m+3,而m+n =﹣1, 解得:m =﹣1或4,故点P(4,﹣5);如图2,故点D 作QD ∥AC 交PC 的延长线于点Q ,由(2)知:点N是PQ的中点,设直线PC的解析式为y=kx+b,将点C(﹣1,0)、P(4,﹣5)的坐标代入得:45k bk b-+=⎧⎨+=-⎩,解得:11 kb=-⎧⎨=-⎩,所以直线PC的表达式为:y=﹣x﹣1…①,同理可得直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣43,即点Q(﹣43,13),∵点N是PQ的中点,由中点公式得:点N(43,﹣73).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N是PQ的中点,是本题解题的突破点.9.如图,已知二次函数过(﹣2,4),(﹣4,4)两点.(1)求二次函数的解析式;(2)将沿x轴翻折,再向右平移2个单位,得到抛物线,直线y=m(m>0)交于M、N两点,求线段MN的长度(用含m的代数式表示);(3)在(2)的条件下,、交于A、B两点,如果直线y=m与、的图象形成的封闭曲线交于C、D两点(C在左侧),直线y=﹣m与、的图象形成的封闭曲线交于E、F两点(E在左侧),求证:四边形CEFD是平行四边形.【答案】(1);(2);(3)证明见解析.【解析】试题分析:(1)根据待定系数法即可解决问题.(2)先求出抛物线y2的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.(3)用类似(2)的方法,分别求出CD、EF即可解决问题.试题解析:(1)∵二次函数过(﹣2,4),(﹣4,4)两点,∴,解得:,∴二次函数的解析式.(2)∵=,∴顶点坐标(﹣3,),∵将沿x轴翻折,再向右平移2个单位,得到抛物线,∴抛物线的顶点坐标(﹣1,),∴抛物线为,由,消去y整理得到,设,是它的两个根,则MN===;(3)由,消去y整理得到,设两个根为,,则CD===,由,消去y得到,设两个根为,,则EF===,∴EF=CD,EF∥CD,∴四边形CEFD是平行四边形.考点:二次函数综合题.10.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.【答案】(1)抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形.理由见解析;(3)当m≤时,平移后的抛物线总有不动点.【解析】试题分析:(1)分别写出A、B的坐标,利用待定系数法求出抛物线的解析式即可;根据OA=OM=1,AC=BC=3,分别得到∠MAC=45°,∠BAC=45°,得到∠BAM=90°,进而得到△ABM是直角三角形;(3)根据抛物线的平以后的顶点设其解析式为,∵抛物线的不动点是抛物线与直线的交点,∴,方程总有实数根,则≥0,得到m的取值范围即可试题解析:解:(1)∵点A是直线与轴的交点,∴A点为(-1,0)∵点B在直线上,且横坐标为2,∴B点为(2,3)∵过点A、B的抛物线的顶点M在轴上,故设其解析式为:∴,解得:∴抛物线的解析式为.(2)△ABM是直角三角形,且∠BAM=90°.理由如下:作BC⊥轴于点C,∵A(-1,0)、B(2,3)∴AC=BC=3,∴∠BAC=45°;点M是抛物线的顶点,∴M点为(0,-1)∴OA=OM=1,∵∠AOM=90°∴∠MAC=45°;∴∠BAM=∠BAC+∠MAC=90°∴△ABM是直角三角形.(3)将抛物线的顶点平移至点(,),则其解析式为.∵抛物线的不动点是抛物线与直线的交点,∴化简得:∴==当时,方程总有实数根,即平移后的抛物线总有不动点∴.考点:二次函数的综合应用(待定系数法;直角三角形的判定;一元二次方程根的判别式)。
人教全国中考数学二次函数的综合中考真题分类汇总含答案解析
一、二次函数 真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线2234323y x x =--+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由.【答案】(1)2323y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3);(3)E (-1,43F (023)或E (-1,43),F (-4103) 【解析】【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可【详解】(1)∵23432333y x x =--+a=233-,则抛物线的“衍生直线”的解析式为2323y=x+33-;联立两解析式求交点22343232323y=x+y x x⎧=--+⎪⎪⎨⎪-⎪⎩,解得x=-2y=23⎧⎪⎨⎪⎩或x=1y=0⎧⎨⎩,∴A(-2,23),B(1,0);(2)如图1,过A作AD⊥y轴于点D,在223432333y x x=--+中,令y=0可求得x= -3或x=1,∴C(-3,0),且A(-2,23),∴AC=22-++2133=(23)()由翻折的性质可知AN=AC=13,∵△AMN为该抛物线的“衍生三角形”,∴N在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN=22AN-AD=13-4=3,∵OD=23,∴ON=23-3或ON=23+3,∴N点的坐标为(0,23-3),(0,23+3);(3)①当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ ACK=∠ EFH,在△ ACK和△ EFH中ACK=EFHAKC=EHFAC=EF∠∠⎧⎪∠∠⎨⎪⎩∴△ ACK≌△ EFH,∴FH=CK=1,HE=AK=23,∵抛物线的对称轴为x=-1,∴ F点的横坐标为0或-2,∵点F在直线AB上,∴当F点的横坐标为0时,则F(0,23),此时点E在直线AB下方,∴E到y轴的距离为EH-OF=23-23=43,即E的纵坐标为-43,∴ E(-1,-43);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵ C(-3,0),且A(-2,23),∴线段AC的中点坐标为(-2.5,3),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=23,∴x= -4,y=23-t,23-t=-233×(-4)+233,解得t=43-3,∴E(-1,43-3),F(-4,1033);综上可知存在满足条件的点F,此时E(-1,-43)、(0,23)或E(-1,43-),F(-4,103)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题2.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x (元)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y =﹣20x +500,(x ≥6);(2)当x =15.5时,w 的最大值为1805元;(3)当x =13时,w =1680,此时,既能销售完又能获得最大利润.【解析】【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 即可求解;(2)由题意得:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,即可求解;(3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x )≥12000,解得:x ≤13,当x =13时,既能销售完又能获得最大利润.【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:2001530010k b k b =+⎧⎨=+⎩, 解得:20500k b =-⎧⎨=⎩, 即:函数的表达式为:y =﹣20x +500,(x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大,则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,当x =﹣2b a =312=15.5时,w 的最大值为1805元; (3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x 元时,既能销售完又能获得最大利润w ,由题意得:50(500﹣20x )≥12000,解得:x ≤13,w =﹣20(x ﹣25)(x ﹣6),当x =13时,w =1680,此时,既能销售完又能获得最大利润.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).3.一座拱桥的轮廓是抛物线型(如图所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图所示),其表达式是2y ax c =+的形式.请根据所给的数据求出a ,c 的值.(2)求支柱MN 的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.【答案】(1)y=-350x 2+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车. 【解析】 试题分析:(1)根据题目可知A .B ,C 的坐标,设出抛物线的解析式代入可求解. (2)设N 点的坐标为(5,y N )可求出支柱MN 的长度.(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.做GH 垂直AB 交抛物线于H 则可求解.试题解析: (1) 根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(0,6)、(10,0).将B 、C 的坐标代入2y ax c =+,得 6,0100.c a c =⎧⎨=+⎩解得3,650a c =-=. ∴抛物线的表达式是23650y x =-+. (2) 可设N (5,N y ),于是2356 4.550N y =-⨯+=. 从而支柱MN 的长度是10-4.5=5.5米.(3) 设DE 是隔离带的宽,EG 是三辆车的宽度和,则G 点坐标是(7,0)(7=2÷2+2×3).过G 点作GH 垂直AB 交抛物线于H ,则23176335050H y =-⨯+=+>. 根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.4.如图所示,已知平面直角坐标系xOy ,抛物线过点A(4,0)、B(1,3)(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.【答案】(1)y=-224(2)4y x x x =-+=--+,对称轴为:x=2,顶点坐标为:(2,4)(2)m 、n 的值分别为 5,-5【解析】(1) 将点A(4,0)、B(1,3) 的坐标分别代入y =-x 2+bx +c ,得:4b+c-16=0,b+c-1="3" ,解得:b="4" , c=0.所以抛物线的表达式为:24y x x =-+.y=-224(2)4y x x x =-+=--+,所以 抛物线的对称轴为:x=2,顶点坐标为:(2,4).(2) 由题可知,E 、F 点坐标分别为(4-m ,n ),(m-4,n ).三角形POF 的面积为:1/2×4×|n|= 2|n|,三角形AOP 的面积为:1/2×4×|n|= 2|n|,四边形OAPF 的面积= 三角形POF 的面积+三角形AOP 的面积=20,所以 4|n|=20, n=-5.(因为点P(m,n)在第四象限,所以n<0)又n=-2m +4m ,所以2m -4m-5=0,m=5.(因为点P(m,n)在第四象限,所以m>0)故所求m 、n 的值分别为 5,-5.5.在平面直角坐标系xOy 中,抛物线y =x 2﹣2x +a ﹣3,当a =0时,抛物线与y 轴交于点A ,将点A 向右平移4个单位长度,得到点B .(1)求点B 的坐标;(2)将抛物线在直线y =a 上方的部分沿直线y =a 翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M ,若图形M 与线段AB 恰有两个公共点,结合函数的图象,求a 的取值范围.【答案】(1)A (0,﹣3),B (4,﹣3);(2)﹣3<a ≤0;【解析】【分析】(1)由题意直接可求A ,根据平移点的特点求B ;(2)图形M 与线段AB 恰有两个公共点,y =a 要在AB 线段的上方,当函数经过点A 时,AB 与函数两个交点的临界点;【详解】解:(1)A (0,﹣3),B (4,﹣3);(2)当函数经过点A 时,a =0,∵图形M 与线段AB 恰有两个公共点,∴y =a 要在AB 线段的上方,∴a >﹣3∴﹣3<a ≤0;【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.6.如图1,在平面直角坐标系中,直线122y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线212y x bx c =++经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点,①连接BC 、CD 、BD ,设BD 交直线AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2.求:12S S 的最大值; ②如图2,是否存在点D ,使得∠DCA =2∠BAC ?若存在,直接写出点D 的坐标,若不存在,说明理由.【答案】(1)213222y x x =--+;(2)①当2a =-时,12S S 的最大值是45;②点D 的坐标是(2,3)-【解析】【分析】(1)根据题意得到A (-4,0),C (0,2)代入y=-12x 2+bx+c ,于是得到结论; (2)①如图,令y=0,解方程得到x 1=-4,x 2=1,求得B (1,0),过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴交于AC 于N ,根据相似三角形的性质即可得到结论;②根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,求得P (-32,0),得到PA=PC=PB=52,过D 作x 轴的平行线交y 轴于R ,交AC 的延线于G ,∠DCF=2∠BAC=∠DGC+∠CDG ,解直角三角形即可得到结论.【详解】解:(1)根据题意得A (-4,0),C (0,2), ∵抛物线y=-12x 2+bx+c 经过A .C 两点, ∴1016422b c c⎧-⨯-+⎪⎨⎪⎩==, ∴3b=-2c=2⎧⎪⎨⎪⎩, 抛物线解析式为:213222y x x =--+ ;(2)①令0y =, ∴2132022x x --+= 解得:14x =- ,21x =∴B (1,0) 过点D 作DM x ⊥轴交AC 于M ,过点B 作BN x ⊥轴交AC 于点N ,∴DM ∥BN∴DME BNE ∆∆∽∴12S DE DM S BE BN== 设:213222D a a a ⎛⎫--+ ⎪⎝⎭,∴122M a a ⎛⎫+ ⎪⎝⎭, ∵()10B , ∴51,2N ⎛⎫ ⎪⎝⎭∴()22121214225552a a S DM a S BN --===-++ ∴当2a =-时,12S S 的最大值是45; ②∵A (-4,0),B (1,0),C (0,2),∴55AB=5,∴AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P(-32,0),∴PA=PC=PB=52,∴∠CPO=2∠BAC,∴tan∠CPO=tan(2∠BAC)=43,过D作x轴的平行线交y轴于R,交AC的延长线于G,如图,∴∠DCF=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=12,即RC:DR=12,令D(a,-12a2-32a+2),∴DR=-a,RC=-12a2-32a,∴(-12a2-32a):(-a)=1:2,∴a1=0(舍去),a2=-2,∴x D=-2,∴-12a2-32a+2=3,∴点D的坐标是()2,3-【点睛】本题是二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形等知识点,正确的作出辅助线是解题的关键,难度较大.7.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题8.如图1,在平面直角坐标系中,直线1y x =-与抛物线2y x bx c =-++交于A B 、两点,其中(),0A m ,()4,B n .该抛物线与y 轴交于点C ,与x 轴交于另一点D .(1)求mn 、的值及该抛物线的解析式; (2)如图2.若点P 为线段AD 上的一动点(不与A D 、重合).分别以AP 、DP 为斜边,在直线AD 的同侧作等腰直角△APM 和等腰直角△DPN ,连接MN ,试确定△MPN 面积最大时P 点的坐标.(3)如图3.连接BD 、CD ,在线段CD 上是否存在点Q ,使得以A D Q 、、为顶点的三角形与△ABD 相似,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)265y x x =-+-;(2)当2m =,即2AP =时,MPN S ∆最大,此时3OP =,所以()3,0P ;(3)存在点Q 坐标为2-3(,)或78-33⎛⎫ ⎪⎝⎭,. 【解析】分析:(1)把A 与B 坐标代入一次函数解析式求出m 与n 的值,确定出A 与B 坐标,代入二次函数解析式求出b 与c 的值即可;(2)由等腰直角△APM 和等腰直角△DPN ,得到∠MPN 为直角,由两直角边乘积的一半表示出三角形MPN 面积,利用二次函数性质确定出三角形面积最大时P 的坐标即可; (3)存在,分两种情况,根据相似得比例,求出AQ 的长,利用两点间的距离公式求出Q 坐标即可.详解:(1)把A (m ,0),B (4,n )代入y =x ﹣1得:m =1,n =3,∴A (1,0),B (4,3).∵y =﹣x 2+bx +c 经过点A 与点B ,∴101643b c b c -++=⎧⎨-++=⎩,解得:65b c =⎧⎨=-⎩,则二次函数解析式为y =﹣x 2+6x ﹣5;(2)如图2,△APM 与△DPN 都为等腰直角三角形,∴∠APM =∠DPN =45°,∴∠MPN =90°,∴△MPN 为直角三角形,令﹣x 2+6x ﹣5=0,得到x =1或x =5,∴D (5,0),即DP =5﹣1=4,设AP =m ,则有DP =4﹣m ,∴PM 2,PN 24﹣m ),∴S △MPN =12PM •PN =12×22m ×22(4﹣m )=﹣14m 2﹣m =﹣14(m ﹣2)2+1,∴当m =2,即AP =2时,S △MPN 最大,此时OP =3,即P (3,0);(3)存在,易得直线CD 解析式为y =x ﹣5,设Q (x ,x ﹣5),由题意得:∠BAD =∠ADC =45°,分两种情况讨论: ①当△ABD ∽△DAQ 时,AB DA =BD AQ ,即32=4AQ ,解得:AQ =82,由两点间的距离公式得:(x ﹣1)2+(x ﹣5)2=1283,解得:x =73,此时Q (73,﹣83); ②当△ABD ∽△DQA 时,BDAQ=1,即AQ =10,∴(x ﹣1)2+(x ﹣5)2=10,解得:x =2,此时Q (2,﹣3).综上,点Q 的坐标为(2,﹣3)或(73,﹣83). 点睛:本题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,二次函数的图象与性质,相似三角形的判定与性质,两点间的距离公式,熟练掌握各自的性质是解答本题的关键.9.如图,已知二次函数图象的顶点坐标为(1,4)A ,与坐标轴交于B 、C 、D 三点,且B 点的坐标为(1,0)-. (1)求二次函数的解析式;(2)在二次函数图象位于x 轴上方部分有两个动点M 、N ,且点N 在点M 的左侧,过M 、N 作x 轴的垂线交x 轴于点G 、H 两点,当四边形MNHG 为矩形时,求该矩形周长的最大值;(3)当矩形MNHG 的周长最大时,能否在二次函数图象上找到一点P ,使PNC ∆的面积是矩形MNHG 面积的916?若存在,求出该点的横坐标;若不存在,请说明理由.【答案】(1)2y x 2x 3=-++ (2)最大值为10 (3)故点P 坐标为:315(,)24或33232(24+--或332362(,24--+. 【解析】 【分析】(1)二次函数表达式为:()214y a x =-+,将点B 的坐标代入上式,即可求解;(2)矩形MNHG 的周长()()2222222223282C MN GM x x x x x =+=-+-++=-++,即可求解;(3)2711sin4532822PNC S PK CD PH ∆==⨯⨯=⨯⨯︒⨯,解得:94PH HG ==,即可求解. 【详解】(1)二次函数表达式为:()214y a x =-+,将点B 的坐标代入上式得:044a =+,解得:1a =-, 故函数表达式为:223y x x =-++…①;(2)设点M 的坐标为()2,23x x x -++,则点()22,23N x x x --++, 则222MN x x x =-+=-,223GM x x =-++,矩形MNHG 的周长()()2222222223282C MN GM x x x x x =+=-+-++=-++,∵20-<,故当22bx a=-=,C 有最大值,最大值为10, 此时2x =,点()0,3N 与点D 重合; (3)PNC ∆的面积是矩形MNHG 面积的916, 则99272316168PNC S MN GM ∆=⨯⨯=⨯⨯=, 连接DC ,在CD 得上下方等距离处作CD 的平行线m 、n , 过点P 作y 轴的平行线交CD 、直线n 于点H 、G ,即PH GH =, 过点P 作PK CD ⊥于点K ,将()3,0C 、()0,3D 坐标代入一次函数表达式并解得: 直线CD 的表达式为:3y x =-+,OC OD =,∴45OCD ODC PHK ∠=∠=︒=∠,32CD =设点()2,23P x x x -++,则点(),3H x x -+,2711sin4532822PNC S PK CD PH ∆==⨯⨯=⨯⨯︒⨯解得:94PH HG ==, 则292334PH x x x =-+++-=, 解得:32x =, 故点315,24P ⎛⎫⎪⎝⎭, 直线n 的表达式为:93344y x x =-+-=-+…②, 联立①②并解得:332x ±=, 即点'P 、''P 的坐标分别为332362,24⎛⎫+-- ⎪ ⎪⎝⎭、332362,24⎛⎫--+ ⎪ ⎪⎝⎭; 故点P 坐标为:315,24⎛⎫ ⎪⎝⎭或332362,24⎛⎫+-- ⎪ ⎪⎝⎭或332362,24⎛⎫--+ ⎪ ⎪⎝⎭. 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.如图,抛物线y=ax 2+c (a≠0)经过C (2,0),D (0,﹣1)两点,并与直线y=kx 交于A 、B 两点,直线l 过点E (0,﹣2)且平行于x 轴,过A 、B 两点分别作直线l 的垂线,垂足分别为点M 、N .(1)求此抛物线的解析式; (2)求证:AO=AM ; (3)探究:①当k=0时,直线y=kx 与x 轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.【答案】解:(1)y=x2﹣1(2)详见解析(3)详见解析【解析】【分析】(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解。
中考数学真题分项汇编(四川专用)专题10 二次函数(解析版)
专题10二次函数一、选择题1.(2023·四川绵阳·统考中考真题)将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是()A .b >8B .b >﹣8C .b ≥8D .b ≥﹣8【答案】D【分析】先根据平移原则:上加下减,左加右减写出解析式,再列方程组,有公共点则△≥0,则可求出b 的取值.【详解】解:由题意得:平移后得到的二次函数的解析式为:2=(3)1y x --,则2(3)12y x y x b⎧=--⎨=+⎩,2(3)12--=+x x b ,2880-+-=x x b ,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选:D .【点睛】主要考查的是二次函数图象的平移和两函数的交点问题,二次函数与一次函数图象有公共点.2.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0,对称轴为直线=1x -,下列四个结论:①<0abc ;②420a b c -+<;③30a c +=;④当31x -<<时,20ax bx c ++<;其中正确结论的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】根据二次函数开口向上,与y 轴交于y 轴负半轴,00a c ><,,根据对称轴为直线=1x -可得20b a =>,由此即可判断①;求出二次函数与x 轴的另一个交点坐标为()3,0-,进而得到当2x =-时,0y <,由此即可判断②;根据1x =时,0y =,即可判断③;利用图象法即可判断④.A.4个B【答案】B【分析】由抛物线的开口方向、与正确;由抛物线的对称轴为判断③正确;由图知x=A .1个B .【答案】B 【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与可.【详解】解:由图可知,二次函数开口方向向下,与 图象与x 轴交于点(3,0A -10420a b c ∴-+=.5a ∴- 12b a-=-,2b a ∴=.当30a c ∴+=,3c a ∴=-,∴A .1个B .2【答案】C 【分析】开口方向,对称轴,与④即可.【详解】∵抛物线的开口向下,对称轴为直线0,0,0a b c <<<∴()11,A x y 和点()22,B x y 关于对称轴对称,∴abc B.A.<0【答案】C【分析】根据开口方向,与即可判断A;根据对称性可得当线开口向上,对称轴为直线【详解】解:∵抛物线开口向上,与A.抛物线的对称轴为直线C.A,B两点之间的距离为【答案】C【分析】待定系数法求得二次函数解析式,进而逐项分析判断即可求解.【详解】解:∵二次函数∴二次函数解析式为y故A,B选项不正确,不符合题意;a=>,抛物线开口向上,当∵10y=时,2x x+意;当0A .()55,B .246,5⎛⎫ ⎪⎝⎭C .3224,5⎛ ⎝【答案】C 【分析】如图所示,过点C 作CD AB ⊥于D ,连接CP 三角形,即90C ∠=︒,进而利用等面积法求出24CD =【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键.11.(2023·四川雅安·统考中考真题)如图,二次函数A.①②【答案】C【分析】根据抛物线开口方向可得函数的对称性可得∴-【点睛】本题考查圆的的性质,二次函数图象的性质,19.(2022·四川广元·统考中考真题)二次函数1,0),对称轴为直线x=2,下列结论:2,y1)、点B(﹣12,y2)、点C(72,为常数).其中正确的结论有()【详解】解:A 、根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),且对称轴在y 轴的左侧可知0a >,该说法正确,故该选项不符合题意;B 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3)可知03a b c c ++=⎧⎨=-⎩,解得3a b +=,该说法正确,故该选项不符合题意;C 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),对称轴在y 轴的左侧,则抛物线不经过(-1,0),该说法错误,故该选项符合题意;D 、关于x 的一元二次方程ax 2+bx +c =-1根的情况,可以转化为抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的交点情况,根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),310-<-<,结合抛物线开口向上,且对称轴在y 轴的左侧可知抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的有两个不同的交点,该说法正确,故该选项不符合题意;故选:C .【点睛】本题考查二次函数的图像与性质,涉及到开口方向的判定、二次函数系数之间的关系、方程的根与函数图像交点的关系等知识点,根据题中条件得到抛物线草图是解决问题的关键.21.(2022·四川成都·统考中考真题)如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是()A .0a >B .当1x >-时,y 的值随x 值的增大而增大C .点B 的坐标为()4,0D .420a b c ++>【答案】D 【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.【详解】解:A 、根据图像可知抛物线开口向下,即a<0,故该选项不符合题意;B 、根据图像开口向下,对称轴为1x =,当1x >,y 随x 的增大而减小;当1x <,y 随x 的增大而增大,故当11x -<<时,y 随x 的增大而增大;当1x >,y 随x 的增大而减小,故该选项不符合题意;C 、根据二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,可得对8A.4B.92∵P 与OB 、AB 均相切,∴△OBP 边OB 上的高为∵P (m ,-m +6);∴△AOP 边OA 上的高为-m +6,∵AOB AOP APB BOP S S S S =++ ,∴1168622⨯⨯=⨯⨯2y ax =过点P ,∴5a =.故选D .二、填空题①当31x -≤≤时,1y ≤;AOB 内存在唯一点P ,使得其中正确的结论是___________【答案】②③【分析】根据条件可求抛物线与∴12ABM AMF BMF S S S MF =+=⨯V V V 把()0,3B a -,()30A -,代入得:当=1x -是,2y a =-,∴(F -∵点B 是抛物线与y 轴的交点,∴当则'AOA ,'POP 为等边三角形,∴∵'AOA 为等边三角形,(A -当320,2B ⎛⎫- ⎪ ⎪⎝⎭时,∵'2A B 骣琪=琪琪桫当()0,3B -时,2'232A B 骣骣琪琪琪=+琪琪琪琪桫桫【答案】149/519【分析】根据已知得出直角坐标系,通过代入x =4代入抛物线解析式得出下降高度,即可得出答案.【详解】解:建立平面直角坐标系,设横轴通过以上条件可设顶点式y =ax 2+2,把点A 点坐标(∴920a +=,∴29a =-,∴抛物线解析式为:当水面下降,水面宽为8米时,有把4x =代入解析式,得∴水面下降149米;故答案为:149;【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题【答案】8【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高设y=ax2+bx+2.5,将(2.5,0)代入解析式得出0)代入解析式得9a+3b+4=0,联立可求出时的解析式为y=ax2+bx+h,将(4,0)代入可求出【详解】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,【答案】17【分析】根据题意可知,当直线经过点(线只有一个交点时,(x-5)2+8=kx-3,可得出【详解】解:当直线经过点(1,12)时,当直线与抛物线只有一个交点时,(x-5)∴10+k=±12,解得k=2或k=-22(舍去),∴∴k的最大值与最小值的和为15+2=17.故答案为:【答案】1【分析】根据抛物线22y x x k =++与x 轴只有一个交点可知方程22x x k ++=0根的判别式△=0,解方程求出k 值即可得答案.【详解】∵抛物线22y x x k =++与x 轴只有一个交点,∴方程22x x k ++=0根的判别式△=0,即22-4k =0,解得:k =1,故答案为:1【点睛】本题考查二次函数与x 轴的交点问题,对于二次函数2y ax bx c =++(k≠0),当判别式△>0时,抛物线与x 轴有两个交点;当k=0时,抛物线与x 轴有一个交点;当x <0时,抛物线与x 轴没有交点;熟练掌握相关知识是解题关键.三、解答题支付专利费y 元,y (元)与每日产销x (件)满足关系式 2.800.01y x =+(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润.(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价-成本)⨯产销数量-专利费】【答案】(1)()()18300500w m x x =--<≤,()220.018800300w x x x =-+-<≤(2)()15003970w m =-+最大元,1420w =2最大(3)当4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;当 5.1m =时,该工厂应该选择产销任一产品都能获得最大日利润;当5.16m <≤时,该工厂应该选择产销B 产品能获得最大日利润,理由见解析【分析】(1)根据题木所给的利润计算公式求解即可;(2)根据(1)所求利用一次函数和二次函数的性质求解即可;(3)比较(2)中所求A 、B 两种产品的最大利润即可得到答案.【详解】(1)解:由题意得,()()18300500w m x x =--<≤,()()()2222012800.010.018800300w x x x x x =--+=-+-<≤(2)解:∵46m ≤≤,∴80m ->,∴1w 随x 增大而增大,∴当500x =时,1w 最大,最大为()()8500305003970m m -⨯-=-+元;()2220.018800.014001520w x x x =-+-=--+,∵0.010-<,∴当400x <时,2w 随x 增大而增大,∴当300x =时,2w 最大,最大为()20.0130040015201420-⨯-+=元;(3)解:当50039701420m -+>,即4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点【答案】(1)223y x x =-++(2)PBC 的最大面积为278,32P ⎛ ⎝(3)存在,()4,17或()4,17-或()2,143-+,(2,143--+【分析】(1)利用待定系数法代入求解即可;(2)利用待定系数法先确定直线BC 的解析式为3y x =-+作PD x ⊥轴于点D ,交BC 于点E ,得出23PE x x =-+,然后得出三角形面积的函数即可得出结果;(3)分两种情况进行分析:若BC 为菱形的边长,利用菱形的性质求解即可.【详解】(1)解:将点()()()1,0,3,,00,3A B C -代入解析式得:0930a b c a b c -+=⎧⎪12a b =-⎧⎪∴(),3E x x -+,∴2PE x =-+∴(1122PBCS PE OB ∆=⨯⨯=⨯-∴当32x =时,PBC 的最大面积为(3)存在,()2,2N 或(4,17∵()()3,0,0,3B C ,∵抛物线的解析式为设点()()1,,M t N x y ,,若BC 则22BC CM =,即(2181t =+∵31003x t y +=+⎧⎨+=+⎩,∴4,x y t ==-【答案】(1)21262y x x =-++(2)①【分析】(1)根据抛物线对称轴为待定系数法求得c ,即可解答;(设CD a =,则()0,6D a -,求得即可求出CD 的长;②过,E F1322S S S += ,2AD EF ∴+=设21,262F h h h ⎛⎫-++ ⎪⎝⎭,则AH ,EG AB FH AB ⊥⊥ ,EG ∴∥DI EG ⊥ ,90DIE ∴∠=︒,∴112333DI AB h ∴==+,即点D(1)求抛物线的表达式.(2)若直线值时,使得AN MN +有最大值,并求出最大值.一动点,将抛物线向左平移点M ,是否能与A 、P 、Q 【答案】(1)223y x x =-++(2)①当以AM 为对角线时,22Q P A M x x x x ++∴=,即-Q 在抛物线24y x =-+上AQ(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ 、PO ,其中于点E ,设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.【答案】(1)214y x x =-(2)()6,3N (3)1【分析】(1)待定系数法求解析式即可求解;(2),过点M 作2MD x ⊥=,垂足为D 根据已知条件得出:BD CD =:3:5BM MQ =,进而列出方程,解方程,即可求解;1⎛⎫⎛设21,4M m m m ⎛⎫- ⎪⎝⎭,则212,4D m m ⎛⎫- ⎪⎝⎭,∵MD QC ∥,∴:BD CD =:3:BM MQ =∵()2,2C -,∴()2210341524m m m m ⎛⎫-- ⎪⎝⎭=---,解得:∵其中点MQ 在抛物线对称轴的左侧.∴k b ⎧+⎪(1)求该运动员从跳出到着陆垂直下降了多少(2)以A为坐标原点建立直角坐标系,求该抛物线表达式;(3)若该运动员在空中共飞行了4s【答案】(1)该运动员从跳出到着陆垂直下降了过点B 作BD y ⊥轴于点D .在Rt OBD △中,sin 37OD AB =⋅︒=答:该运动员从跳出到着陆垂直下降了(2)解:在Rt OBD △中,BD =【分析】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,根据猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元列出方程组,解出即可.(2)根据当50a =时,每天可售出100盒,每盒猪肉粽售价为a 元时,每天可售出猪肉粽()100250a --⎡⎤⎣⎦盒,列出二次函数关系式,再化成顶点式即可得解.【详解】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,由题意得:102100x y x y -=⎧⎨+=⎩解得:4030x y =⎧⎨=⎩∴每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元.(2)(40)[1002(50)]w a a =---22(70)1800a =--+.∴当70a =时,w 最大值为1800元.∴该商家每天销售猪肉粽获得的最大利润为1800元.【点睛】本题主要考查了二元一次方程组的实际应用以及二次函数的实际应用,根据题意列出相应的函数关系式是解此题的关键.47.(2022·四川广元·统考中考真题)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?【答案】(1)科技类图书的单价为38元,文学类图书的单价为26元.(2)社区至少要准备2700元购书款.【分析】(1)设科技类图书的单价为x 元,文学类图书的单价为y 元,然后根据题意可列出方程组进行求解;(2)设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)及题意可分当3040m ≤<时,当4050m ≤≤时及当5060m <≤时,进而问题可分类求解即可.【详解】(1)解:设科技类图书的单价为x 元,文学类图书的单价为y 元,由题意得:2315445282x y x y +=⎧⎨+=⎩,解得:3826x y =⎧⎨=⎩;答:科技类图书的单价为38元,文学类图书的单价为26元.(2)解:设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)可得:①当3040m ≤<时,则有:()3826100122600w m m m =+-=+,∵12>0,∴当m =30时,w 有最小值,即为36026002960w =+=;②当4050m ≤≤时,则有:()()2384026100522600w m m m m m =-++-=-++,∵-1<0,对称轴为直线26m =,∴当4050m ≤≤时,w 随m 的增大而减小,∴当m =50时,w 有最小值,即为250525026002700w =-+⨯+=;③当5060m <≤时,此时科技类图书的单价为785028-=(元),则有()282610022600w m m m =+-=+,∵2>0,∴当m =51时,w 有最小值,即为10226002702w =+=;综上所述:社区至少要准备2700元的购书款.【点睛】本题主要考查二元一次方程组的应用、一次函数与二次函数的应用,解题的关键是找准等量关系,注意分类讨论.48.(2021·四川雅安·统考中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y (瓶)与每瓶售价x (元)之间存在一次函数关系(其中1021x ≤≤,且x 为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;(1)求y 与x 之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.【答案】(1)5150y x =-+;(2)当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大为500元.(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点为t ,PAB 的面积为S ,求S 与t 的函数关系式;(3)在二次函数图象上是否存在点M 、N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点说明理由.【答案】(1)22y x x =-(2)2312S t t =-++(3)存在,(1,1)-N 或(3,3)【分析】(1)由二次函数的最小值为1-,点(1,)M m 是其对称轴上一点,得二次函数顶点为顶点式2(1)1y a x =--,将点(0,0)O 代入即可求出函数解析式;(2)连接OP ,根据AOB OAP OBP S S S S =+-△△△求出S 与t 的函数关系式;当0y =时,220x x -=,0x ∴=或 点P 在抛物线22y x x =-上,∴AOB OAP OBP S S S S ∴=+-△△△12=⨯(3)设()2,2N n n n -,当AB 为对角线时,由中点坐标公式得,当AM 为对角线时,由中点坐标公式得,当AN 为对角线时,由中点坐标公式得,综上:(1,1)-N 或(3,3)或(1,3)-.。
2022年全国中考数学真题分类汇编专题10:二次函数
3.(2022•广州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣2,下列结论正确的是( )
A.a<0
B.c>0
C.当x<﹣2时,y随x的增大而减小
D.当x>﹣2时,y随x的增大而减小
4.(2022•通辽)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )
A.2B.3C.4D.5
14.(2022•哈尔滨)抛物线y=2(x+9)2﹣3的顶点坐标是( )
A.(9,﹣3)B.(﹣9,﹣3)C.(9,3)D.(﹣9,3)
15.(2022•包头)已知实数a,b满足b﹣a=1,则代数式a2+2b﹣6a+7的最小值等于( )
A.5B.4C.3D.2
16.(2022•梧州)如图,已知抛物线y=ax2+bx﹣2的对称轴是直线x=﹣1,直线l∥x轴,且交抛物线于点P(x1,y1),Q(x2,y2),下列结论错误的是( )
A.2个B.3个C.4个D.5个
22.(2022•鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有( )
A.1B.2C.3D.4
12.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于两点(x1,0)、(2,0),其中0<x1<1.下列四个结论:①abc<0;②a+b+c>0;③2a﹣c>0;④不等式ax2+bx+c x+c的解集为0<x<x1.其中正确结论的个数是( )
初三数学09 二次函数-2024年中考数学真题分项汇编(全国通用)(解析版)
专题09 二次函数一.选择题1.(2022·陕西)已知二次函数223y x x =--的自变量123,,x x x 对应的函数值分别为1y ,2y ,3y .当110x -<<,212x <<,33x >时,1y ,2y ,3y 三者之间的大小关系是( )A .123y y y <<B .231y y y <<C .312y y y <<D .213y y y <<【答案】D【分析】先将抛物线配成顶点式,求出对称轴为1x =,再求出抛物线与x 轴的两个交点坐标为(1,0)-和(3,0),根据开口向上即可判断.【详解】解: 抛物线2223(1)4y x x x =--=--,∴对称轴1x =,顶点坐标为(1,4)-,当0y =时,2(1)40--=x ,解得1x =-或3x =,∴抛物线与x 轴的两个交点坐标为:(1,0)-,(3,0),∴当110x -<<,212x <<,33x >时,213y y y <<,故选:D .【点睛】本题考查抛物线的性质,熟练掌握抛物线的性质是解决问题的关键,记住在抛物线的左右函数的增减性不同,确定对称轴的位置是关键,属于中考常考题型.2.(2022·山东潍坊)抛物线y =x 2+x +c 与x 轴只有一个公共点,则c 的值为( )A .14-B .14C .4-D .4【答案】B【分析】根据抛物线与x 轴只有一个公共点,得到根的判别式等于0,即可求出c 的值.【详解】解:∵y =x 2+x +c 与x 轴只有一个公共点,∴x 2+x +c =0有两个相等的实数根,∴△=1-4c =0,解得:c =14.故选:B .【点睛】此题考查了抛物线与x 轴的交点,弄清根的判别式的意义是解本题的关键.3.(2022·湖南郴州)关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大【答案】D 【分析】由抛物线的表达式和函数的性质逐一求解即可.【详解】解:对于y =(x -1)2+5,∵a =1>0,故抛物线开口向上,故A 错误;顶点坐标为(1,5),故B 错误;该函数有最小值,是小值是5,故C 错误;当1x >时,y 随x 的增大而增大,故D 正确,故选:D .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.4.(2022·山东青岛)已知二次函数2y ax bx c =++的图象开口向下,对称轴为直线1x =-,且经过点(30)-,,则下列结论正确的是( )A .0b >B .0c <C .0a b c ++>D .30a c +=【答案】D【分析】图象开口向下,得a <0, 对称轴为直线12b x a=-=-,得b =2a ,则b <0,图象经过(30)-,,根据对称性可知,图象经过点(1)0,,故c >0,当x =1时,a +b +c =0,将b =2a 代入,可知3a +c =0.【详解】解:∵图象开口向下,∴a <0,∵对称轴为直线12b x a=-=-,∴b =2a ,∴b <0,故A 不符合题意;根据对称性可知,图象经过(30)-,,∴图象经过点(1)0,,∴c >0,故B 不符合题意;当x =1时,a +b +c =0,故C 不符合题意;将将b =2a 代入,可知3a +c =0,故D 符合题意.故选:D .【点睛】本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.5.(2022·黑龙江哈尔滨)抛物线22(9)3y x =+-的顶点坐标是( )A .(9,3)-B .(9,3)--C .(9,3)D .(9,3)-【答案】B【分析】根据二次函数的顶点式2()y a x h k =-+可得顶点坐标为(,)h k 即可得到结果.【详解】∵二次函数解析式为22(9)3y x =+- ,∴顶点坐标为(9,3)--;故选:B .【点睛】本题主要考查了二次函数顶点式的顶点坐标的求解,准确理解是解题的关键.6.(2022·浙江湖州)把抛物线y=x 2向上平移3个单位,平移后抛物线的表达式是( )A .y=2x -3B .y=2x +3C .y=2(3)x +D .y=2(3)x -【答案】B【分析】根据二次函数图像平移规律:上加下减,可得到平移后的函数解析式.【详解】∵抛物线y=x 2向上平移3个单位,∴平移后的抛物线的解析式为:y=x 2+3.故答案为:B.【点睛】本题考查二次函数的平移,熟记平移规律是解题的关键.7.(2022·湖北武汉)二次函数()2y x m n =++的图象如图所示,则一次函数y mx n =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】D 【分析】根据抛物线的顶点在第四象限,得出m <0,n <0,即可得出一次函数y =mx +n 的图象经过二、三、四象限.【详解】解:∵抛物线的顶点(-m ,n )在第四象限,∴-m >0,n <0,∴m <0,∴一次函数y =mx +n 的图象经过二、三、四象限,故选:D .【点睛】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n 、m 的符号.8.(2022·广西玉林)小嘉说:将二次函数2y x =的图象平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度 ②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度 ④沿x 轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有( )A .1个B .2个C .3个D .4个【答案】D【分析】根据二次函数图象的平移可依此进行求解问题.【详解】解:①将二次函数2y x =向右平移2个单位长度得到:()22y x =-,把点(2,0)代入得:()2220y =-=,所以该平移方式符合题意;②将二次函数2y x =向右平移1个单位长度,再向下平移1个单位长度得到:()211y x =--,把点(2,0)代入得:()22110y =--=,所以该平移方式符合题意;③将二次函数2y x =向下平移4个单位长度得到:24y x =-,把点(2,0)代入得:2240y =-=,所以该平移方式符合题意;④将二次函数2y x =沿x 轴翻折,再向上平移4个单位长度得到:24y x =-+,把点(2,0)代入得:2240y =-+=,所以该平移方式符合题意;综上所述:正确的个数为4个;故选D .【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.9.(2022·湖南岳阳)已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-【答案】A 【分析】先求出抛物线的对称轴及抛物线与y 轴的交点坐标,再分两种情况:0m >或0m <,根据二次函数的性质求得m 的不同取值范围便可.【详解】解:∵二次函数2243y mx m x =--,∴对称轴为2x m =,抛物线与y 轴的交点为()0,3-,∵点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,∴①当0m >时,对称轴20x m =>,此时,当4x =时,3y ≤-,即2244433m m ⋅-⋅-≤-,解得m 1≥;②当0m <时,对称轴20x m =<,当04x ≤≤时,y 随x 增大而减小,则当04p x ≤≤时,3p y ≤-恒成立;综上,m 的取值范围是:m 1≥或0m <.故选:A .【点睛】本题考查了二次函数的性质,关键是分情况讨论.10.(2022·四川宜宾)已知抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B ,若以AB 为直径的圆与在x 轴下方的抛物线有交点,则a 的取值范围是( )A .13a ≥B .13a >C .103a <<D .103a <≤【答案】A【分析】根据题意,设抛物线的解析式为()()24y a x x =+-,进而求得顶点的的坐标,结合图形可知当顶点纵坐标小于或等于-3满足题意,即可求解.【详解】解: 抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B ,设抛物线的解析式为()()24y a x x =+-()222819y ax ax a a x a ∴=--=--顶点坐标为()1,9a -,6AB = ,以AB 为直径的圆与在x 轴下方的抛物线有交点,则圆的半径为3,如图,93a ∴-≤-解得13a ≥故选:A【点睛】本题考查了圆的的性质,二次函数图象的性质,求得抛物线的顶点纵坐标的范围是解题的关键.11.(2022·山东威海)如图,二次函数y =ax 2+bx (a ≠0)的图像过点(2,0),下列结论错误的是( )A .b >0B .a +b >0C .x =2是关于x 的方程ax 2+bx =0(a ≠0)的一个根D .点(x 1,y 1),(x 2,y 2)在二次函数的图像上,当x 1>x 2>2时,y 2<y 1<0【答案】D【分析】根据二次函数的图像和性质作出判断即可.【详解】解:根据图像知,当1x =时,0y a b =+>,故B 选项结论正确,不符合题意,0a < ,0b ∴>,故A 选项结论正确,不符合题意;由题可知二次函数对称轴为12b x a=-=,2b a ∴=-,20a b a a a ∴+=-=->,故B 选项结论正确,不符合题意;根据图像可知2x =是关于x 的方程()200++=≠ax bx c a 的一个根,故C 选项结论正确,不符合题意,若点()11,x y ,()22,x y 在二次函数的图像上,当122x x >>时,120y y <<,故D 选项结论不正确,符合题意,故选:D .【点睛】本题主要考查二次函数的图像和性质,熟练掌握二次函数的图像和性质是解题的关键.12.(2022·广西)已知反比例函数(0)b y b x=≠的图象如图所示,则一次函数()0y cx a c =-≠和二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】D【分析】先由反比例函数图象得出b >0,再分当a >0,a <0时分别判定二次函数图象符合的选项,在符合的选项中,再判定一次函数图象符合的即可得出答案.【详解】解:∵反比例函数(0)b y b x =≠的图象在第一和第三象限内,∴b >0,若a <0,则-2b a >0,所以二次函数开口向下,对称轴在y 轴右侧,故A 、B 、C 、D 选项全不符合;当a >0,则-2b a<0时,所以二次函数开口向上,对称轴在y 轴左侧,故只有C 、D 两选项可能符合题意,由C 、D 两选图象知,c <0,又∵a >0,则-a <0,当c <0,a >0时,一次函数y =cx -a 图象经过第二、第三、第四象限,故只有D 选项符合题意.故选:D .【点睛】本题考查函数图象与系数的关系,熟练掌握反比例函数图象、一次函数图象、二次函数图象与系数的关系是解题的关键.13.(2022·山东潍坊)如图,在▱ABCD 中,∠A =60°,AB =2,AD =1,点E ,F 在▱ABCD 的边上,从点A 同时出发,分别沿A →B →C 和A →D →C 的方向以每秒1个单位长度的速度运动,到达点C 时停止,线段EF 扫过区域的面积记为y ,运动时间记为x ,能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .【答案】A【分析】分0≤x ≤1,1<x <2,2≤x ≤3三种情况讨论,利用三角形面积公式求解即可.【详解】解:当0≤x ≤1时,过点F 作FG ⊥AB 于点G ,∵∠A=60°,AE=AF=x,x,∴AG=12由勾股定理得FG,AE×FG2,图象是一段开口向上的抛物线;∴y=12当1<x<2时,过点D作DH⊥AB于点H,∵∠DAH=60°,AE=x,AD=1,DF= x-1,∴AH=1,2由勾股定理得DH(DF+AE)×DH∴y=12当2≤x≤3时,过点E作EI⊥CD于点I,∵∠C=∠DAB=60°,CE=CF=3-x,同理求得EI x),CF×EI x)22,图象是一段开口向下的抛物线;∴y= AB×DH -12观察四个选项,只有选项A符合题意,故选:A.【点睛】本题考查了利用分类讨论的思想求动点问题的函数图象;也考查了平行四边形的性质,含30度的直角三角形的性质,勾股定理,三角形的面积公式以及一次函数和二次函数的图象.14.(2022·辽宁)如图,在Rt ABC 中,90,24ABC AB BC ∠=︒==,动点P 从点A 出发,以每秒1个单位长度的速度沿线段AB 匀速运动,当点P 运动到点B 时,停止运动,过点P 作PQ AB ⊥交AC 于点Q ,将APQ 沿直线PQ 折叠得到A PQ ' ,设动点P 的运动时间为t 秒,A PQ ' 与ABC 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .【答案】D【分析】由题意易得AP t =,1tan 2A ∠=,则有12PQ t =,进而可分当点P 在AB 中点的左侧时和在AB 中点的右侧时,然后分类求解即可.【详解】解:∵90,24ABC AB BC ∠=︒==,∴1tan 2A ∠=,由题意知:AP t =,∴1tan 2PQ AP A t =⋅∠=,由折叠的性质可得:,90A P AP APQ A PQ ''=∠=∠=︒,当点P 与AB 中点重合时,则有2t =,当点P 在AB 中点的左侧时,即02t ≤<,∴A PQ ' 与ABC 重叠部分的面积为211112224A PQ S A P PQ t t t ''=⋅=⋅= ;当点P 在AB 中点的右侧时,即24t ≤≤,如图所示:由折叠性质可得:,90A P AP t APQ A PQ ''==∠=∠=︒,1tan tan 2A A '∠=∠=,∴4BP t =-,∴24A B t '=-,∴tan 2BD A B A t ''=⋅∠=-,∴A PQ ' 与ABC 重叠部分的面积为()()2111324442224PBDQ S BD PQ PB t t t t t ⎛⎫=+⋅=+-⋅-=-+- ⎪⎝⎭梯形;综上所述:能反映A PQ ' 与ABC 重叠部分的面积S 与t 之间函数关系的图象只有D 选项;故选D .【点睛】本题主要考查二次函数的图象及三角函数,熟练掌握二次函数的图象及三角函数是解题的关键.15.(2022·贵州铜仁)如图,若抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点C ,若OAC OCB ∠=∠.则ac 的值为( )A .1-B .2-C .12-D .13-【答案】A 【分析】观察图象,先设11(,0)(<0)A x x ,22(,0)(>0)B x x ,(0,)C c (>0)c ,根据已知条件OAC OCB ∠=∠及OC AB ⊥证明OAC OCB ∽△△,得出21212x x c x x ⋅==-⋅,利用根与系数的关系知12c x x a ⋅=,最后得出答案.【详解】设11(,0)(<0)A x x ,22(,0)(>0)B x x ,(0,)C c (>0)c ,∵二次函数2y ax bx c =++的图象过点(0,)C c ,∴OC c =,∵OAC OCB ∠=∠,OC AB ⊥,∴OAC OCB ∽△△,∴OA OC OC OB=,∴2OC OA OB =⋅,即21212x x c x x ⋅==-⋅,令20ax bx c ++=,根据根与系数的关系知12c x x a ⋅=,∴212c x x c a -=-=,故1ac =- 故选:A .【点睛】本题考查了二次函数2y ax bx c =++(0)a ≠与关于方程20ax bx c ++=(0)a ≠之间的相互转换,同时要将线段的长转化为点的坐标之间的关系,灵活运用数形结合的思想是解题关键.16.(2022·黑龙江牡丹江)若二次函数2y ax =的图象经过点P (-2,4),则该图象必经过点( )A .(2,4)B .(-2,-4)C .(-4,2)D .(4,-2)【答案】A【详解】根据点在曲线上,点的坐标满足方程的关系,将P (-2,4)代入2y ax =,得()2421a a =-⇒=,∴二次函数解析式为2y x =.∴所给四点中,只有(2,4)满足2y x =.故选A .17.(2022·内蒙古通辽)在平面直角坐标系中,将二次函数()211y x =-+的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )A .()221y x =--B .()223y x =-+ C .21y x =+ D .21y x =-【答案】D【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将二次函数()211y x =-+的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()2211121y x x =-++-=-故选D .【点睛】本题考查了抛物线的平移规律.关键是确定平移前后抛物线的顶点坐标,寻找平移规律.18.(2022·四川遂宁)如图,D 、E 、F 分别是ABC 三边上的点,其中8BC =,BC 边上的高为6,且DE //BC ,则DEF 面积的最大值为( )A .6B .8C .10D .12【答案】A 【分析】过点A 作AM ⊥BC 于M ,交DE 于点N ,则AN ⊥DE ,设AN a =,根据∥DE BC ,证明ADE ABC ,根据相似三角形对应高的比等于相似比得到43DE a =,列出DEF 面积的函数表达式,根据配方法求最值即可.【详解】如图,过点A 作AM ⊥BC 于M ,交DE 于点N ,则AN ⊥DE ,设AN a =,DE BC ∥,,ADE B AED C ∴∠=∠∠=∠,ADE ABC ∴ ,DE AN BC AM ∴=,86DE a ∴=,∴43DE a =,2211422(6)4(3)622333DEF S DE MN a a a a a ∴=⋅⋅=⨯⨯-=-+=--+ ,∴当3a =时,S 有最大值,最大值为6,故选:A .【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数求最值,熟练掌握知识点是解题的关键.19.(2022·四川自贡)已知A(−3,−2),B(1,−2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:①c≥−2;②当x>0时,一定有y随x的增大而增大;③若点D横坐标的最小值为−5,点C横坐标的最大值为3;④当四边形ABCD为平行四边形时,a=12.其中正确的是()A.①③B.②③C.①④D.①③④【答案】D【分析】根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,可判断①;根据二次函数的增减性判断②;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断④.【详解】解:∵点A,B的坐标分别为(-3,-2)和(1,-2),∴线段AB与y轴的交点坐标为(0,-2),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c) ,∴C≥-2,(顶点在y轴上时取“=”),故①正确;∵抛物线的顶点在线段AB上运动,开口向上,∴当x>1时,一定有y随x的增大而增大,故②错误;若点D的横坐标最小值为-5,则此时对称轴为直线x=-3,根据二次函数的对称性,点C的横坐标最大值为1+2=3,故③正确;令y=0,则ax2+bx+c=0,设该方程的两根为x1,x2,则x1+x2=-ba,x1x2=ca,∴CD2=( x1-x2) 2=( x1+x2) 2-4x1x22224 ()4b c b aca a a-=--⨯=,根据顶点坐标公式,2424ac ba-=-,∴248ac ba-=-,即248b aca-=,∵四边形ACDB为平行四边形,∴CD=AB=1-(-3)=4,∴8a=42=16,解得a=12,故④正确;综上所述,正确的结论有①③④.故选:D ..【点睛】本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,要注意顶点在y 轴上的情况.20.(2022·江苏泰州)已知点()()()1233,,1,,1,y y y --在下列某一函数图像上,且312y y y <<那么这个函数是( )A .3y x=B .23y x =C .3y x =D .3y x=-【答案】D【分析】先假设选取各函数,代入自变量求出y 1、y 2、y 3的值,比较大小即可得出答案.【详解】解:A .把点()()()1233,,1,,1,y y y --代入y =3x ,解得y 1=-9,y 2=-3,y 3=3,所以y 1<y 2<y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;B .把点()()()1233,,1,,1,y y y --代入y =3x 2,解得y 1=27,y 2=3,y 3=3,所以y 1>y 2=y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;C . 把点()()()1233,,1,,1,y y y --代入y =3x ,解得y 1=-1,y 2=-3,y 3=3,所以y 2<y 1<y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;D . 把点()()()1233,,1,,1,y y y --代入y =-3x ,解得y 1=1,y 2=3,y 3=-3,所以312y y y <<,这与已知条件312y y y <<相符,故选项正确,符合题意;故选:D .【点睛】此题考查了一次函数、反比例函数以及二次函数,解题的关键是掌握函数值的大小变化和函数的性质.21.(2022·广西贺州)已知二次函数y =2x 2−4x −1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为( )A .1B .2C .3D .4【答案】D【分析】先找到二次函数的对称轴和顶点坐标,求出y =15时,x 的值,再根据二次函数的性质得出答案.【详解】解:∵二次函数y =2x 2-4x -1=2(x -1)2-3,∴抛物线的对称轴为x =1,顶点(1,-3),∵1>0,开口向上,∴在对称轴x =1的右侧,y 随x 的增大而增大,∵当0≤x ≤a 时,即在对称轴右侧,y 取得最大值为15,∴当x =a 时,y =15,∴2(a -1)2-3=15,解得:a =4或a =-2(舍去),故a 的值为4.故选:D .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是二次函数的增减性,利用二次函数的性质解答.22.(2022·内蒙古包头)已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( )A .5B .4C .3D .2【答案】A【分析】由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解.【详解】解:∵b -a =1,∴b =a +1,∴a 2+2b -6a +7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .【点睛】本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键.23.(2022·黑龙江齐齐哈尔)如图,二次函数2y ax bx c =++(0)a ≠的图象与y 轴的交点在(0,1)与(0,2)之间,对称轴为1x =-,函数最大值为4,结合图象给出下列结论:①2b a =;②32a -<<-;③24<0ac b -;④若关于x 的一元二次方程24ax bx c m ++=- (0)a ≠有两个不相等的实数根,则m >4;⑤当x <0时,y 随x 的增大而减小.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B 【分析】根据二次函数图象与性质逐个结论进行分析判断即可.【详解】解:∵二次函数2y ax bx c =++(0)a ≠的对称轴为1x =-,∴1,2b x a=-=- ∴2,b a =故①正确;∵函数图象开口向下,对称轴为1x =-,函数最大值为4,∴函数的顶点坐标为(-1,4)当x =-1时,4-+=a b c∴24a a c -+=∴4c a =+,∵二次函数2y ax bx c =++(0)a ≠的图象与y 轴的交点在(0,1)与(0,2)之间,∴1<c <2∴1<4+a <2∴32a -<<-,故②正确;∵抛物线与x 轴有两个交点,∴240b ac ->∴24<0ac b -,故③正确;∵抛物线的顶点坐标为(-1,4)且方程24ax bx c m ++=-有两个不相等的实数根,∴044m <-<∴48m <<,故④错误;由图象可得,当x >-1时,y 随x 的增大而减小,故⑤错误.所以,正确的结论是①②③,共3个,故选:B【点睛】本题主要考查了二次函数图象与性质,,熟练掌握二次函数的图象与性质是解答本题的关键.24.(2022·湖北鄂州)如图,已知二次函数y =ax 2+bx +c (a 、b 、c 为常数,且a ≠0)的图像顶点为P (1,m ),经过点A (2,1);有以下结论:①a <0;②abc >0;③4a +2b+c =1;④x >1时,y 随x 的增大而减小;⑤对于任意实数t ,总有at 2+bt ≤a +b ,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C 【分析】①根据抛物线的开口方向向下即可判定;②先运用二次函数图像的性质确定a 、b 、c 的正负即可解答;③将点A 的坐标代入即可解答;④根据函数图像即可解答;⑤运用作差法判定即可.【详解】解:①由抛物线的开口方向向下,则a <0,故①正确;②∵抛物线的顶点为P (1,m )∴12b a-=,b =-2a ∵a <0∴b >0∵抛物线与y 轴的交点在正半轴∴c >0∴abc <0,故②错误;③∵抛物线经过点A (2,1)∴1=a ·22+2b +c ,即4a +2b +c =1,故③正确;④∵抛物线的顶点为P (1,m ),且开口方向向下∴x >1时,y 随x 的增大而减小,即④正确;⑤∵a <0∴at 2+bt -(a +b )= at 2-2at -a +2a = at 2-2at +a =a (t 2-2t +1)= a (t -1)2≤0∴at 2+bt ≤a +b ,则⑤正确综上,正确的共有4个.故答案为C .【点睛】本题主要考查了二次函数图像的性质,灵活运用二次函数图像的性质以及掌握数形结合思想成为解答本题的关键.25.(2022·四川雅安)抛物线的函数表达式为y =(x ﹣2)2﹣9,则下列结论中,正确的序号为( )①当x =2时,y 取得最小值﹣9;②若点(3,y 1),(4,y 2)在其图象上,则y 2>y 1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y =(x ﹣5)2﹣5;④函数图象与x 轴有两个交点,且两交点的距离为6.A .②③④B .①②④C .①③D .①②③④【答案】B【分析】由二次函数的开口向上,函数有最小值,可判断①,由二次函数的增减性可判断②,由二次函数图象的平移可判断③,由二次函数与x 轴的交点坐标可判断④,从而可得答案.【详解】解: y =(x ﹣2)2﹣9,图象的开口向上,∴当x =2时,y 取得最小值﹣9;故①符合题意;y =(x ﹣2)2﹣9的对称轴为2x =,而3242,-<- 21,y y ∴> 故②符合题意;将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y =(x +1)2﹣5,故③不符合题意;当0y =时,则()2290,x --= 解得:125,1,x x ==- 而()516,--= 故④符合题意;故选B【点睛】本题考查的是二次函数的图象与性质,二次函数与x 轴的交点问题,掌握“二次函数的图象与性质”是解本题的关键.二.填空题26.(2022·辽宁营口)如图1,在四边形ABCD 中,,90,45BC AD D A ∠=︒∠=︒∥,动点P ,Q 同时从点A 出发,点P /s 的速度沿AB 向点B 运动(运动到B 点即停止),点Q 以2cm /s 的速度沿折线AD DC →向终点C 运动,设点Q 的运动时间为(s)x ,APQ 的面积为()2cm y ,若y 与x 之间的函数关系的图像如图2所示,当7(s)2x =时,则y =____________2cm .【答案】354【分析】根据题意以及函数图像可得出AED APQ ∽,则点Q 在AD 上运动时,APQ 为等腰直角三角形,然后根据三角形面积公式得出当面积最大为9时,此时3x =,则26cm AD x ==,当34x <≤时,过点P 作PF AD ⊥于点F ,则此时APQ APF ADQ PQDF S S S S =+- 四边形,分别表示出相关线段可得y 与x 之间的函数解析式,将7(s)2x =代入解析式求解即可.【详解】解:过点D 作DE AB ⊥,垂足为E ,在Rt ADE △中,∵90AED ∠=︒,45EAD ∠=︒,∴AE AD =,∵点P /s ,点Q 的速度为2cm /s ,∴,2AP AQ x =,∴AP AQ 在APQ 和AED 中,∵AE AP AD AQ =45A ∠=︒,∴AED APQ ∽,∴点Q 在AD 上运动时,APQ 为等腰直角三角形,∴AP PQ ==,∴当点Q 在AD 上运动时,21122y AP AQ x =⋅==,由图像可知,当9y =此时面积最大,3x =或3-(负值舍去),∴26cm AD x ==,当34x <≤时,过点P 作PF AD ⊥于点F ,如图:此时APQ APF ADQ PQDF S S S S =+- 四边形,在Rt APQ 中,AP =,45A ∠=︒,∴AF PF x ==,6FD x =-,26QD x =-,∴2111(26)(6)6(26)222APQ S x x x x x =++-⋅--⨯⨯- ,即26y x x =-+,所以当7(s)2x =时,227735(6(cm )224y =-+⨯=,故答案为:354.【点睛】本题考查了动点问题的函数图像,求出各段函数的函数关系式是解答本题的关键.27.(2022·江苏无锡)把二次函数y =x 2+4x +m 的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m 应满足条件:________.【答案】m >3【分析】先求得原抛物线的顶点坐标为(-2,m -4),再求得平移后的顶点坐标为(1,m -3),根据题意得到不等式m -3>0,据此即可求解.【详解】解:∵y =x 2+4x +m =(x +2)2+m -4,此时抛物线的顶点坐标为(-2,m -4),函数的图象向上平移1个单位长度,再向右平移3个单位长度后的顶点坐标为(-2+3,m -4+1),即(1,m -3),∵平移后所得抛物线与坐标轴有且只有一个公共点,∴m -3>0,解得:m >3,故答案为:m >3.【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,属于基础题,解决本题的关键是得到新抛物线的顶点坐标.28.(2022·福建)已知抛物线22y x x n =+-与x 轴交于A ,B 两点,抛物线22y x x n =--与x 轴交于C ,D 两点,其中n >0,若AD =2BC ,则n 的值为______.【答案】8【分析】先求出抛物线22y x x n =+-与x 轴的交点,抛物线22y x x n =--与x 轴的交点,然后根据2AD BC =,得出224AD BC =,列出关于n 的方程,解方程即可。
全国中考数学二次函数的综合中考真题分类汇总及答案解析
①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);
②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,∵∠CFE=∠PME=90°,∠CEF=∠PEM,∴△EFC∽△EMP,∴ ,∴MP=3ME.
(1)将抛物线放在所给的直角坐标系中(如图所示),其表达式是 的形式.请根据所给的数据求出a,c的值.
(2)求支柱MN的长度.
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.
【答案】(1)y=- x2+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车.
5.如图1,在平面直角坐标系中,直线AB:y=kx+b(k<0,b>0),与x轴交于点A、与y轴交于点B,直线CD与x轴交于点C、与y轴交于点D.若直线CD的解析式为y=﹣ (x+b),则称直线CD为直线AB的”姊线”,经过点A、B、C的抛物线称为直线AB的“母线”.
(1)若直线AB的解析式为:y=﹣3x+6,求AB的”姊线”CD的解析式为:(直接填空);
(Ⅲ)根据抛物线经过(-1,0)得出c=b+1,再根据(Ⅱ)中顶点E的坐标得出E点关于x轴的对称点 的坐标,然后根据A、P两点坐标求出直线AP的解析式,再根据点在直线AP上,此时 值最小,从而求出b的值.
【详解】
解:(Ⅰ)把点 和 代入函数 ,
有 。解得
(Ⅱ)由 ,得
∵点E在直线 上,
当 时,点A是最高点此时,
全国各地中考数学解析版试卷分类汇编总汇:二次函数
二次函数一、选择题1. (2014•广东,第10题3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0考点:二次函数的性质.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向下,可知a<0,函数有最小值,正确,故本选项不符合题意;B、由图象可知,对称轴为x=,正确,故本选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故本选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故本选项符合题意.故选D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.2. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx +的图象过第二、三、四象限,反比例函数y =分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.3.(2014年四川资阳,第10题3分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()。
全国中考数学二次函数的综合中考真题分类汇总含答案解析
x2
3
解得:
x1 y1
03, xy22
3 2
,
所以 M2( 3 ,﹣2).
综上所述 M 的坐标为(3 3 ,6)或( 3 ,﹣2).
【点睛】
此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.
2.如图,在直角坐标系 xOy 中,二次函数 y=x2+(2k﹣1)x+k+1 的图象与 x 轴相交于 O、 A 两点.
若 x x2 3x ,解得 x="2" 或 x=0(舍去)。
当 x=2 时,x2﹣3x=﹣2。 ∴ 点 P 的坐标为(2,﹣2)。
∴ OP 22 22 2 2 。
∵
∠
POB=90°,∴
△
POB
的面积为:
1 2
PO•BO=
1 2
×4
2 ×2
2 =8。
3.如图,关于 x 的二次函数 y=x2+bx+c 的图象与 x 轴交于点 A(1,0)和点 B 与 y 轴交于 点 C(0,3),抛物线的对称轴与 x 轴交于点 D.
(1)求二次函数的表达式; (2)在 y 轴上是否存在一点 P,使△ PBC 为等腰三角形?若存在.请求出点 P 的坐标; (3)有一个点 M 从点 A 出发,以每秒 1 个单位的速度在 AB 上向点 B 运动,另一个点 N 从点 D 与点 M 同时出发,以每秒 2 个单位的速度在抛物线的对称轴上运动,当点 M 到达 点 B 时,点 M、N 同时停止运动,问点 M、N 运动到何处时,△ MNB 面积最大,试求出最 大面积.
【答案】(1)二次函数的表达式为:y=x2﹣4x+3;(2)点 P 的坐标为:(0,3+3 2 )或 (0,3﹣3 2 )或(0,-3)或(0,0);(3)当点 M 出发 1 秒到达 D 点时,△ MNB 面
2024年中考数学真题分类汇编(全国)(第一期)专题16 二次函数解答题压轴题(35题)(原卷版)
专题16二次函数解答题压轴题(35题)一、解答题1.(2024·内蒙古赤峰·中考真题)如图,是某公园的一种水上娱乐项目.数学兴趣小组对该项目中的数学问题进行了深入研究.下面是该小组绘制的水滑道截面图,如图1,人从点A处沿水滑道下滑至点B处腾空飞出后落入水池.以地面所在的水平线为x轴,过腾空点B与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.他们把水滑道和人腾空飞出后经过的路径都近似看作是抛物线的一部分.根据测量和调查得到的数据和信息,设计了以下三个问题,请你解决.(1)如图1,点B与地面的距离为2米,水滑道最低点C与地面的距离为78米,点C到点B的水平距离为3米,则水滑道ACB所在抛物线的解析式为______;(2)如图1,腾空点B与对面水池边缘的水平距离12OE 米,人腾空后的落点D与水池边缘的安全距离DE 不少于3米.若某人腾空后的路径形成的抛物线BD恰好与抛物线ACB关于点B成中心对称.①请直接写出此人腾空后的最大高度和抛物线BD的解析式;②此人腾空飞出后的落点D是否在安全范围内?请说明理由(水面与地面之间的高度差忽略不计);(3)为消除安全隐患,公园计划对水滑道进行加固.如图2,水滑道已经有两条加固钢架,一条是水滑道距地面4米的点M处竖直支撑的钢架MN,另一条是点M与点B之间连接支撑的钢架BM.现在需要在水滑道下方加固一条支撑钢架,为了美观,要求这条钢架与BM平行,且与水滑道有唯一公共点,一端固定在钢架MN上,另一端固定在地面上.请你计算出这条钢架的长度(结果保留根号).2.(2024·广东深圳·中考真题)为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x ,CD 读数为y ,抛物线的顶点为C .(1)(Ⅰ)列表:①②③④⑤⑥x023456y 01 2.254 6.259(Ⅱ)描点:请将表格中的(),x y 描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式;(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =-+的顶点为C ,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =-+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________;②将点B '坐标代入2y ax =中,解得=a ________;(用含m ,n 的式子表示)方案二:设C 点坐标为(),h k ①此时点B 的坐标为________;②将点B 坐标代入()2y a x h k =-+中解得=a ________;(用含m ,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A ,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A ,B 两点,且1C 和2C 的顶点P ,Q 距线段AB 的距离之和为10,求a 的值.3.(2024·四川广元·中考真题)在平面直角坐标系xOy 中,已知抛物线F :2y x bx c =-++经过点()3,1A --,与y 轴交于点()0,2B .(1)求抛物线的函数表达式;(2)在直线AB 上方抛物线上有一动点C ,连接OC 交AB 于点D ,求CD OD的最大值及此时点C 的坐标;(3)作抛物线F 关于直线1y =-上一点的对称图象F ',抛物线F 与F '只有一个公共点E (点E 在y 轴右侧),G 为直线AB 上一点,H 为抛物线F '对称轴上一点,若以B ,E ,G ,H 为顶点的四边形是平行四边形,求G 点坐标.4.(2024·天津·中考真题)已知抛物线()20y ax bx c a b c a =++>,,为常数,的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1m O >,为坐标原点.(1)当11a c ==-,时,求该抛物线顶点P 的坐标;(2)当132OM OP ==时,求a 的值;(3)若N 是抛物线上的点,且点N 在第四象限,90MDN DM DN ∠=︒=,,点E 在线段MN 上,点F 在线段DN 上,2NE NF +,当DE MF +15a 的值.5.(2024·内蒙古包头·中考真题)如图,在平面直角坐标系中,抛物线22y x bx c =-++与x 轴相交于()1,0A ,B 两点(点A 在点B 左侧),顶点为()2,M d ,连接AM .(1)求该抛物线的函数表达式;(2)如图1,若C 是y 轴正半轴上一点,连接,AC CM .当点C 的坐标为10,2⎛⎫ ⎪⎝⎭时,求证:ACM BAM ∠=∠;(3)如图2,连接BM ,将ABM 沿x 轴折叠,折叠后点M 落在第四象限的点M '处,过点B 的直线与线段AM '相交于点D ,与y 轴负半轴相交于点E .当87BD DE =时,3ABD S △与2M BD S '△是否相等?请说明理由.6.(2024·吉林·中考真题)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.7.(2024·四川达州·中考真题)如图1,抛物线23y ax kx =+-与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .点D 是抛物线的顶点.(1)求抛物线的解析式;(2)如图2,连接AC ,DC ,直线AC 交抛物线的对称轴于点M ,若点P 是直线AC 上方抛物线上一点,且2PMC DMC S S =△△,求点P 的坐标;(3)若点N 是抛物线对称轴上位于点D 上方的一动点,是否存在以点N ,A ,C 为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由.8.(2024·四川泸州·中考真题)如图,在平面直角坐标系xOy 中,已知抛物线23y ax bx =++经过点()3,0A ,与y 轴交于点B ,且关于直线1x =对称.(1)求该抛物线的解析式;(2)当1x t -≤≤时,y 的取值范围是021y t ≤≤-,求t 的值;(3)点C 是抛物线上位于第一象限的一个动点,过点C 作x 轴的垂线交直线AB 于点D ,在y 轴上是否存在点E ,使得以B ,C ,D ,E 为顶点的四边形是菱形?若存在,求出该菱形的边长;若不存在,说明理由.9.(2024·四川南充·中考真题)已知抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B .(1)求抛物线的解析式;(2)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD 面积为1S ,PBE △面积为2S ,求12S S 的值;(3)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线l x ∥轴,点Q 是直线l 上一动点.求QM QN +的最小值.10.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.11.(2024·四川德阳·中考真题)如图,抛物线2y x x c =-+与x 轴交于点()1,0A -和点B ,与y 轴交于点C .(1)求抛物线的解析式;(2)当02x <≤时,求2y x x c =-+的函数值的取值范围;(3)将拋物线的顶点向下平移34个单位长度得到点M ,点P 为抛物线的对称轴上一动点,求5PA +的最小值.12.(2024·山东·中考真题)在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =.(1)求m 的值;(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和;(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.13.(2024·上海·中考真题)在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.14.(2024·四川遂宁·中考真题)二次函数()20y ax bx c a =++≠的图象与x 轴分别交于点()()1,03,0A B -,,与y 轴交于点()0,3C -,P Q ,为抛物线上的两点.(1)求二次函数的表达式;(2)当P C ,两点关于抛物线对称轴对称,OPQ △是以点P 为直角顶点的直角三角形时,求点Q 的坐标;(3)设P 的横坐标为m ,Q 的横坐标为1m +,试探究:OPQ △的面积S 是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.15.(2024·四川凉山·中考真题)如图,抛物线2y x bx c =-++与直线2y x =+相交于()()20,3,A B m -,两点,与x 轴相交于另一点C .(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一个动点(不与,A B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E ,当2PE ED =时,求P 点坐标;(3)抛物线上是否存在点M 使ABM 的面积等于ABC 面积的一半?若存在,请直接写出点M 的坐标;若不存在,请说明理由.16.(2024·江苏连云港·中考真题)在平面直角坐标系xOy 中,已知抛物线21y ax bx =+-(a 、b 为常数,0a >).(1)若抛物线与x 轴交于(1,0)A -、(4,0)B 两点,求抛物线对应的函数表达式;(2)如图,当1b =时,过点(1,)C a -、(1,D a +分别作y 轴的平行线,交抛物线于点M 、N ,连接MN MD 、.求证:MD 平分CMN ∠;(3)当1a =,2b ≤-时,过直线1(13)y x x =-≤≤上一点G 作y 轴的平行线,交抛物线于点H .若GH 的最大值为4,求b 的值.17.(2024·江苏苏州·中考真题)如图①,二次函数2y x bx c =++的图象1C 与开口向下....的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.18.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,二次函数()20y ax bx c a =++≠的图像经过原点和点()4,0A .经过点A 的直线与该二次函数图象交于点()1,3B ,与y 轴交于点C .(1)求二次函数的解析式及点C 的坐标;(2)点P 是二次函数图象上的一个动点,当点P 在直线AB 上方时,过点P 作PE x ⊥轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m .①m 为何值时线段PD 的长度最大,并求出最大值;②是否存在点P ,使得BPD △与AOC 相似.若存在,请求出点P 坐标;若不存在,请说明理由.19.(2024·山东威海·中考真题)已知抛物线()20y x bx c b =++<与x 轴交点的坐标分别为()1,0x ,()2,0x ,且12x x <.(1)若抛物线()2110y x bx c b =+++<与x 轴交点的坐标分别为()3,0x ,()4,0x ,且34x x <.试判断下列每组数据的大小(填写<、=或>):①12x x +________34x x +;②13x x -________24x x -;③23x x +________14x x +.(2)若11x =,223x <<,求b 的取值范围;(3)当01x ≤≤时,()20y x bx c b =++<最大值与最小值的差为916,求b 的值.20.(2024·河北·中考真题)如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时,①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .21.(2024·四川宜宾·中考真题)如图,抛物线2y x bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点()0,4C -,其顶点为D .(1)求抛物线的表达式及顶点D 的坐标;(2)在y 轴上是否存在一点M ,使得BDM 的周长最小.若存在,求出点M 的坐标;若不存在,请说明理由;(3)若点E 在以点()3,0P 为圆心,1为半径的P 上,连接AE ,以AE 为边在AE 的下方作等边三角形AEF ,连接BF .求BF 的取值范围.22.(2024·湖南·中考真题)已知二次函数2y x c =-+的图像经过点()2,5A -,点()11,P x y ,()22,Q x y 是此二次函数的图像上的两个动点.(1)求此二次函数的表达式;(2)如图1,此二次函数的图像与x 轴的正半轴交于点B ,点P 在直线AB 的上方,过点P 作PC x ⊥轴于点C ,交AB 于点D ,连接AC DQ PQ ,,.若213x x =+,求证DCPDQ A S S △△的值为定值;(3)如图2,点P 在第二象限,212x x =-,若点M 在直线PQ 上,且横坐标为11x -,过点M 作MN x ⊥轴于点N ,求线段MN 长度的最大值.23.(2024·四川乐山·中考真题)在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线222y ax ax a =-+(a 为常数且0a >)与y 轴交于点A.(1)若1a =,求抛物线的顶点坐标;(2)若线段OA (含端点)上的“完美点”个数大于3个且小于6个,求a 的取值范围;(3)若抛物线与直线y x =交于M 、N 两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,求a 的取值范围.24.(2024·四川眉山·中考真题)如图,抛物线2y x bx c =-++与x 轴交于点()3,0A -和点B ,与y 轴交于点()0,3C ,点D 在抛物线上.(1)求该抛物线的解析式;(2)当点D 在第二象限内,且ACD 的面积为3时,求点D 的坐标;(3)在直线BC 上是否存在点P ,使OPD △是以PD 为斜边的等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.25.(2024·黑龙江绥化·中考真题)综合与探究如图,在平面直角坐标系中,已知抛物线2y x bx c =-++与直线相交于A ,B 两点,其中点()3,4A ,()0,1B .(1)求该抛物线的函数解析式.(2)过点B 作BC x ∥轴交抛物线于点C ,连接AC ,在抛物线上是否存在点P 使1tan tan 6BCP ACB ∠=∠.若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到()2111110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点D ,点E 为原抛物线对称轴上的一点,F 是平面直角坐标系内的一点,当以点B 、D 、E 、F 为顶点的四边形是菱形时,请直接写出点F 的坐标.26.(2024·黑龙江齐齐哈尔·中考真题)综合与探究:如图,在平面直角坐标系中,已知直线122y x =-与x 轴交于点A ,与y 轴交于点C ,过A ,C 两点的抛物线()20y ax bx c a =++≠与x 轴的另一个交点为点(10)B -,,点P 是抛物线位于第四象限图象上的动点,过点P 分别作x 轴和y 轴的平行线,分别交直线AC 于点E ,点F .(1)求抛物线的解析式;(2)点D 是x 轴上的任意一点,若ACD 是以AC 为腰的等腰三角形,请直接写出点D 的坐标;(3)当EF AC =时,求点P 的坐标;(4)在(3)的条件下,若点N 是y 轴上的一个动点,过点N 作抛物线对称轴的垂线,垂足为M ,连接NA MP ,,则NA MP +的最小值为______.27.(2024·重庆·中考真题)如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x ∥轴交抛物线于点D ,作PE BC ⊥于点E ,求52PD PE +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC 552PD PE +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC ∠-∠=︒,请直接写出所有符合条件的点N 的坐标.28.(2024·重庆·中考真题)如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.29.(2024·广东广州·中考真题)已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.30.(2024·四川广安·中考真题)如图,抛物线223y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)-,点B 坐标为(3,0).(1)求此抛物线的函数解析式.(2)点P 是直线BC 上方抛物线上一个动点,过点P 作x 轴的垂线交直线BC 于点D ,过点P 作y 轴的垂线,垂足为点E ,请探究2PD PE +是否有最大值?若有最大值,求出最大值及此时P 点的坐标;若没有最大值,请说明理由.(3)点M 为该抛物线上的点,当45∠=︒MCB 时,请直接写出所有满足条件的点M 的坐标.31.(2024·山东烟台·中考真题)如图,抛物线21y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,OC OA =,4AB =,对称轴为直线1:1l x =-,将抛物线1y 绕点O 旋转180︒后得到新抛物线2y ,抛物线2y 与y 轴交于点D ,顶点为E ,对称轴为直线2l .(1)分别求抛物线1y 和2y 的表达式;(2)如图1,点F 的坐标为()6,0-,动点M 在直线1l 上,过点M 作MN x ∥轴与直线2l 交于点N ,连接FM ,DN .求FM MN DN ++的最小值;(3)如图2,点H 的坐标为()0,2-,动点P 在抛物线2y 上,试探究是否存在点P ,使2PEH DHE ∠=∠?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.32.(2024·甘肃·中考真题)如图1,抛物线()2y a x h k =-+交x 轴于O ,()4,0A 两点,顶点为(2,B .点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H ,交抛物线于点E .求线段CE 的长.(3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD .①如图2,当点F 落在抛物线上时,求点F 的坐标;②如图3,连接BD ,BF ,求BD BF +的最小值.33.(2024·湖北·中考真题)如图1,二次函数23y x bx =-++交x 轴于()1,0A -和B ,交y 轴于C .(1)求b 的值.(2)M 为函数图象上一点,满足MAB ACO ∠=∠,求M 点的横坐标.(3)如图2,将二次函数沿水平方向平移,新的图象记为,L L 与y 轴交于点D ,记DC d =,记L 顶点横坐标为n .①求d 与n 的函数解析式.②记L 与x 轴围成的图象为,U U 与ABC 重合部分(不计边界)记为W ,若d 随n 增加而增加,且W 内恰有2个横坐标与纵坐标均为整数的点,直接写出n 的取值范围.34.(2024·湖北武汉·中考真题)抛物线215222y x x =+-交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.35.(2024·吉林长春·中考真题)在平面直角坐标系中,点O 是坐标原点,抛物线22y x x c =++(c 是常数)经过点()2,2--.点A 、B 是该抛物线上不重合的两点,横坐标分别为m 、m -,点C 的横坐标为5m -,点C 的纵坐标与点A 的纵坐标相同,连结AB 、AC .(1)求该抛物线对应的函数表达式;(2)求证:当m 取不为零的任意实数时,tan CAB ∠的值始终为2;(3)作AC 的垂直平分线交直线AB 于点D ,以AD 为边、AC 为对角线作菱形ADCE ,连结DE .①当DE 与此抛物线的对称轴重合时,求菱形ADCE 的面积;②当此抛物线在菱形ADCE 内部的点的纵坐标y 随x 的增大而增大时,直接写出m 的取值范围.。
全国各地中考数学分类:二次函数综合题汇编含答案解析
全国各地中考数学分类:二次函数综合题汇编含答案解析一、二次函数1.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x =+.(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(+-或317()--.【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203ba abc c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+. ∵对称轴为1x =-,且抛物线经过()1,0A , ∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩,∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得:1317t +=2317t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,2⎛+- ⎝⎭或3171,2⎛- ⎝⎭.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.2.如图,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D . (1)求抛物线的函数表达式; (2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段PQ =34AB 时,求tan ∠CED 的值; ②当以点C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.【答案】(1)抛物线的函数表达式为y =x 2-2x -3.(2)直线BC 的函数表达式为y =x -3.(3)①23.①P 1(122),P 2(16,74). 【解析】 【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式. 【详解】(1)∵抛物线的对称轴为直线x=1,∴− 221bba -⨯==1 ∴b=-2∵抛物线与y 轴交于点C (0,-3), ∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3; (2)∵抛物线与x 轴交于A 、B 两点, 当y=0时,x 2-2x-3=0. ∴x 1=-1,x 2=3. ∵A 点在B 点左侧, ∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y=kx+m , 则033k mm ==+⎧⎨-⎩,∴13k m ⎧⎨-⎩==∴直线BC的函数表达式为y=x-3;(3)①∵AB=4,PQ=34 AB,∴PQ=3∵PQ⊥y轴∴PQ∥x轴,则由抛物线的对称性可得PM=32,∵对称轴是直线x=1,∴P到y轴的距离是12,∴点P的横坐标为−12,∴P(−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P 1(,-2),P 2(-52). 设OE=a ,则GE=2-a ,当CE 为斜边时,则DG 2=CG•GE ,即1=(OC-OG )•(2-a ), ∴1=1×(2-a ), ∴a=1, ∴CE=2, ∴OF=OE+EF=2 ∴F 、P 的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x 2-2x-3得:或 ∵点P 在第三象限. ∴P1(-2), 当CD 为斜边时,DE ⊥CE , ∴OE=2,CE=1, ∴OF=2.5,∴P 和F 的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x 2-2x-3得:∵点P 在第三象限.∴P 2(1-2,-52).综上所述:满足条件为P 1(-2),P 2(-52). 【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.3.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:(1)房间每天的入住量y (间)关于x (元)的函数关系式; (2)该宾馆每天的房间收费p (元)关于x (元)的函数关系式;(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少? 【答案】(1)y=60-10x;(2)z=-110x 2+40x+12000;(3)w=-110x 2+42x+10800,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元. 【解析】试题分析:(1)根据题意可得房间每天的入住量=60个房间﹣每个房间每天的定价增加的钱数÷10;(2)已知每天定价增加为x 元,则每天要(200+x )元.则宾馆每天的房间收费=每天的实际定价×房间每天的入住量;(3)支出费用为20×(60﹣10x ),则利润w =(200+x )(60﹣10x )﹣20×(60﹣10x),利用配方法化简可求最大值. 试题解析:解:(1)由题意得:y =60﹣10x (2)p =(200+x )(60﹣10x )=﹣2110x +40x +12000 (3)w =(200+x )(60﹣10x )﹣20×(60﹣10x ) =﹣2110x +42x +10800 =﹣110(x ﹣210)2+15210 当x =210时,w 有最大值.此时,x +200=410,就是说,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元.点睛:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般.4.对于二次函数 y=ax 2+(b+1)x+(b ﹣1),若存在实数 x 0,使得当 x=x 0,函数 y=x 0,则称x 0 为该函数的“不变值”.(1)当 a=1,b=﹣2 时,求该函数的“不变值”;(2)对任意实数 b ,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;(3)在(2)的条件下,若该图象上 A 、B 两点的横坐标是该函数的“不变值”,且 A 、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值. 【答案】(1)-1,3;(2)0<a<1;(3)-98【解析】 【分析】(1)先确定二次函数解析式为y=x 2-x-3,根据x o 是函数y 的一个不动点的定义,把(x o ,x o )代入得x 02-x 0-3=x o ,然后解此一元二次方程即可;(2)根据x o 是函数y 的一个不动点的定义得到ax o 2+(b+1)x o +(b-1)=x o ,整理得ax 02+bx o +(b-1)=0,则根据判别式的意义得到△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,把b 2-4ab+4a 看作b 的二次函数,由于对任意实数b ,b 2-4ab+4a>0成立,则(4a )2-4.4a<0,然后解此不等式即可.(3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a ,b 之间的关系式,整理后在利用基本不等式求解可得. 【详解】解:(1)当a=1,b=-2时,二次函数解析式为y=x 2-x-3,把(x o ,x o )代入得x 02-x 0-3=x o ,解得x o =-1或x o =3,所以函数y 的不动点为-1和3;(2)因为y=x o ,所以ax o 2+(b+1)x o +(b-1)=x o ,即ax 02+bx o +(b-1)=0,因为函数y 恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,而对任意实数b ,b 2-4ab+4a>0成立,所以(4a )2-4.4a<0,解得0<a<1.(3)设A (x 1,x 1),B (x 2,x 2),则x 1+x 2b a=- A ,B 的中点的坐标为(1212,22x x x x ++ ),即M (,22b ba a-- ) A 、B 两点关于直线y=kx-2a+3对称, 又∵A ,B 在直线y=x 上,∴k=-1,A ,B 的中点M 在直线y=kx-2a+3上.∴b a -=ba-2a+3 得:b=2a 2-3a 所以当且仅当a=34 时,b 有最小值-98【点睛】本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.5.如图,直线y =-12x-3与x 轴,y 轴分别交于点A ,C ,经过点A ,C 的抛物线y =ax 2+bx ﹣3与x 轴的另一个交点为点B(2,0),点D 是抛物线上一点,过点D 作DE ⊥x 轴于点E ,连接AD ,DC .设点D 的横坐标为m . (1)求抛物线的解析式;(2)当点D 在第三象限,设△DAC 的面积为S ,求S 与m 的函数关系式,并求出S 的最大值及此时点D 的坐标;(3)连接BC ,若∠EAD =∠OBC ,请直接写出此时点D 的坐标.【答案】(1)y =14x 2+x ﹣3;(2)S △ADC =﹣34(m+3)2+274;△ADC 的面积最大值为274;此时D(﹣3,﹣154);(3)满足条件的点D 坐标为(﹣4,﹣3)或(8,21). 【解析】 【分析】(1)求出A 坐标,再用待定系数法求解析式;(2)设DE 与AC 的交点为点F.设点D 的坐标为:(m ,14m 2+m ﹣3),则点F 的坐标为:(m ,﹣12m ﹣3),根据S △ADC =S △ADF +S △DFC 求出解析式,再求最值;(3)①当点D 与点C 关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD =∠ABC .②作点D(﹣4,﹣3)关于x 轴的对称点D′(﹣4,3),直线AD′的解析式为y =32x+9,解方程组求出函数图像交点坐标. 【详解】解:(1)在y =﹣12x ﹣3中,当y =0时,x =﹣6, 即点A 的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y =ax 2+bx ﹣3得:366304230a b a b --=⎧⎨+-=⎩, 解得:141a b ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为:y =14x 2+x ﹣3; (2)设点D 的坐标为:(m ,14m 2+m ﹣3),则点F 的坐标为:(m ,﹣12m ﹣3), 设DE 与AC 的交点为点F. ∴DF =﹣12m ﹣3﹣(14m 2+m ﹣3)=﹣14m 2﹣32m ,∴S △ADC =S △ADF +S △DFC =12DF•AE+12•DF•OE =12DF•OA =12×(﹣14m 2﹣32m)×6 =﹣34m 2﹣92m =﹣34(m+3)2+274,∵a =﹣34<0,∴抛物线开口向下,∴当m =﹣3时,S △ADC 存在最大值274, 又∵当m =﹣3时,14m 2+m ﹣3=﹣154,∴存在点D(﹣3,﹣154),使得△ADC 的面积最大,最大值为274; (3)①当点D 与点C 关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD =∠ABC . ②作点D(﹣4,﹣3)关于x 轴的对称点D′(﹣4,3), 直线AD′的解析式为y =32x+9, 由2392134y x y x x ⎧=+⎪⎪⎨⎪=+-⎪⎩,解得60x y =-⎧⎨=⎩或821x y =⎧⎨=⎩,此时直线AD′与抛物线交于D(8,21),满足条件, 综上所述,满足条件的点D 坐标为(﹣4,﹣3)或(8,21)【点睛】本题属于二次函数综合题,考查了待定系数法,一次函数的应用,二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会构建一次函数解决实际问题,属于中考压轴题..6.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量(件)与时间(天)的关系如下表:时间(天)1361036…日销售量(件)9490847624…未来40天内,前20天每天的价格y1(元/件)与t时间(天)的函数关系式为:y1=t+25(1≤t≤20且t为整数);后20天每天的价格y2(原/件)与t时间(天)的函数关系式为:y2=—t+40(21≤t≤40且t为整数).下面我们来研究这种商品的有关问题.(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据之间的函数关系式;(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.【答案】(1)y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(3)3≤a<4.【解析】分析:(1)通过观察表格中的数据日销售量与时间t是均匀减少的,所以确定m与t是一次函数关系,利用待定系数法即可求出函数关系式;(2)根据日销售量、每天的价格及时间t可以列出销售利润W关于t的二次函数,然后利用二次函数的性质即可求出哪一天的日销售利润最大,最大日销售利润是多少;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数的性质求出a的取值范围.详解:(1)设数m=kt+b,有,解得∴m=-2t+96,经检验,其他点的坐标均适合以上析式故所求函数的解析式为m=-2t+96.(2)设日销售利润为P,由P=(-2t+96)=t2-88t+1920=(t-44)2-16,∵21≤t≤40且对称轴为t=44,∴函数P在21≤t≤40上随t的增大而减小,∴当t=21时,P有最大值为(21-44)2-16=529-16=513(元),答:来40天中后20天,第2天的日销售利润最大,最大日销售利润是513元.(3)P1=(-2t+96)=-+(14+2a)t+480-96n,∴对称轴为t=14+2a,∵1≤t≤20,∴14+2a≥20得a≥3时,P1随t的增大而增大,又∵a<4,∴3≤a<4.点睛:解答本题的关键是要分析题意根据实际意义准确的求出解析式,并会根据图示得出所需要的信息.同时注意要根据实际意义准确的找到不等关系,利用不等式组求解.7.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.8.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。
全国中考数学试卷解析分类汇编二次函数
二次函数一.选择题1.(2015•山东莱芜,第9题3分)二次函数的图象如图所示,则一次函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】试题分析:先根据二次函数的图象与系数的关系,又开口方向得a>0,由对称轴x=<0可得b>0,所以一次函数y=bx+a的图象经过第一、二、三象限,不经过第四象限.故选D考点:二次函数的图象与系数的关系,一次函数的性质2.(2015·湖南省益阳市,第8题5分)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<0考点:二次函数的性质.分析:利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.解答: 解:由y =(x ﹣m )2+(m +1)=x 2﹣2mx +(m 2+m +1),根据题意,,解不等式(1),得m >0, 解不等式(2),得m >﹣1; 所以不等式组的解集为m >0. 故选B .点评: 本题考查顶点坐标的公式和点所在象限的取值范围,同时考查了不等式组的解法,难度较大3.(2015•江苏苏州,第8题3分)若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=【难度】★★【考点分析】二次函数与一元二次方程综合,考察二次函数的图像性质及解一元二次方程。
是中考常考题型,难度不大。
【解析】由题意得:二次函数的对称轴为直线:x 2,所以由对称轴公式得:,即:b=-4;代入一元二次方程易得:。
故选D 。
4.(2015•广东梅州,第10题4分)对于二次函数y =﹣x 2+2x .有下列四个结论:①它的对称轴是直线x =1;②设y 1=﹣x 12+2x 1,y 2=﹣x 22+2x 2,则当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<x <2时,y >0.其中正确的结论的个数为()A. 1 B. 2 C. 3 D. 4考点:二次函数的性质.分析:利用配方法求出二次函数对称轴,再求出图象与x轴交点坐标,进而结合二次函数性质得出答案.解答:解:y=﹣x2+2x=﹣(x﹣1)2+1,故①它的对称轴是直线x=1,正确;②∵直线x=1两旁部分增减性不一样,∴设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1,错误;③当y=0,则x(﹣x+2)=0,解得:x1=0,x2=2,故它的图象与x轴的两个交点是(0,0)和(2,0),正确;④∵a=﹣1<0,∴抛物线开口向下,∵它的图象与x轴的两个交点是(0,0)和(2,0),∴当0<x<2时,y>0,正确.故选:C.点评:此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.5. (2015•四川乐山,第6题3分)二次函数的最大值为()A.3 B.4 C.5 D.6【答案】C.【解析】试题分析:,∵<0,∴当x=1时,y有最大值,最大值为5.故选C.考点:二次函数的最值.6.(2015湖北荆州第4题3分)将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+6考点:二次函数图象与几何变换.分析:根据函数图象向上平移加,向右平移减,可得函数解析式.解答:解:将y=x2﹣2x+3化为顶点式,得y=(x﹣1)2+2.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为y=(x﹣4)2+4,故选:B.点评:本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.7.(2015•福建泉州第7题3分)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴y=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.8. (2015•四川乐山,第9题3分)已知二次函数的图象如图所示,记,.则下列选项正确的是()A.B.C.D.m、n的大小关系不能确定【答案】A.考点:二次函数图象与系数的关系.9. (2015•浙江嘉兴,第10题4分)如图,抛物线y=-x2+2x+m+1交x轴于点A(a,0)和B(B,0),交y轴于点C,抛物线的顶点为D.下列四个判断:①当x>0时,y>0;②若a=-1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1< x2,且x1+ x2>2,则y1> y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为,其中正确判断的序号是(▲)(A)①(B)②(C)③(D)④考点:二次函数综合题..分析:①根据二次函数所过象限,判断出y的符号;②根据A、B关于对称轴对称,求出b的值;③根据>1,得到x1<1<x2,从而得到Q点距离对称轴较远,进而判断出y1>y2;④作D关于y轴的对称点D′,E关于x轴的对称点E′,连接D′E′,D′E′与DE的和即为四边形EDFG周长的最小值.求出D、E、D′、E′的坐标即可解答.解答:解:①当x>0时,函数图象过二四象限,当0<x<b时,y>0;当x>b时,y<0,故本选项错误;②二次函数对称轴为x=﹣=1,当a=﹣1时有=1,解得b=3,故本选项错误;③∵x1+x2>2,∴>1,又∵x1<1<x2,∴Q 点距离对称轴较远,∴y 1>y 2,故本选项正确;④如图,作D 关于y 轴的对称点D ′,E 关于x 轴的对称点E ′,连接D ′E ′,D ′E ′与DE 的和即为四边形EDFG 周长的最小值.当m =2时,二次函数为y =﹣x 2+2x +3,顶点纵坐标为y =﹣1+2+3=4,D 为(1,4),则D ′为(﹣1,4);C 点坐标为C (0,3);则E 为(2,3),E ′为(2,﹣3);则DE ==;D ′E ′==;∴四边形EDFG 周长的最小值为+,故本选项错误.故选C .点评:本题考查了二次函数综合题,涉及函数与不等式的关系、二次函数的对称轴、函数图象上点的坐标特征、轴对称﹣﹣最短路径问题等,值得关注.10. (2015•浙江宁波,第11题4分)二次函数)0(4)4(2≠--=a x a y 的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,则a 的值为【 】A . 1B . -1C . 2D . -2【答案】A .【考点】二次函数的性质;解一元一次不等式组;特殊元素法的应用.【分析】∵二次函数2(4)4(0)y a x a =--≠的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,∴当52x =时,二次函数2(4)4(0)y a x a =--≠的图象位于x 轴的下方;当132x =时,二次函数2(4)4(0)y a x a =--≠的图象位于x 轴的上方.∴22165<(4)4<0161692<<1316259(4)4>0>225a a a a a ⎧⎧--⎪⎪⎪⎪⇒⇒⎨⎨⎪⎪--⎪⎪⎩⎩.∴a 的值为1.故选A .11. (2015•四川凉山州,第12题4分)二次函数()的图象如图所示,下列说法:①,②当时,,③若(,)、(,)在函数图象上,当时,,④,其中正确的是( )A.①②④B.①④C.①②③D.③④【答案】B.③∵抛物线的对称轴为x=1,开口方向向上,∴若(,)、(,)在函数图象上,当时,;当时,;故③错误;④∵二次函数的图象过点(3,0),∴x=3时,y=0,即,故④正确.故选B.考点:1.二次函数图象与系数的关系;2.二次函数图象上点的坐标特征.12.(2015·贵州六盘水,第10题3分)如图5,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2[C.64m2D.66m2考点:二次函数的应用..专题:应用题.分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式,利用二次函数性质求出面积最大值即可.解答:解:设BC=xm,则AB=(16﹣x)m,矩形ABCD面积为ym2,根据题意得:y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,当x=8m时,y max=64m2,则所围成矩形ABCD的最大面积是64m2.故选C.点评:此题考查了二次函数的应用,熟练掌握二次函数性质是解本题的关键.13.(2015•山东临沂,第13题3分)要将抛物线平移后得到抛物线,下列平移方法正确的是()(A) 向左平移1个单位,再向上平移2个单位.(B) 向左平移1个单位,再向下平移2个单位.(C) 向右平移1个单位,再向上平移2个单位.(D) 向右平移1个单位,再向下平移2个单位.【答案】D考点:二次函数的平移14.(2015•山东日照,第12题4分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤考点:二次函数图象与系数的关系;抛物线与x轴的交点..专题:数形结合.分析:根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据顶点坐标对③进行判断;根据抛物线的对称性对④进行判断;根据函数图象得当1<x<4时,一次函数图象在抛物线下方,则可对⑤进行判断.解答:解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.点评:本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.15.(2015·四川甘孜、阿坝,第9题4分)二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣2考点:二次函数的性质..分析:直接利用抛物线的对称轴公式代入求出即可.解答:解:二次函数y=x2+4x﹣5的图象的对称轴为:x=﹣=﹣=﹣2.故选:D.点评:此题主要考查了二次函数的性质,正确记忆抛物线对称轴公式是解题关键.16.(2015•四川广安,第10题3分)如图,抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3考点:二次函数图象与系数的关系..分析:利用二次函数图象的开口方向和对称轴求出a>0,b<0,把x=﹣1代入求出b=a ﹣3,把x=1代入得出P=a+b+c=2a﹣6,求出2a﹣6的范围即可.解答:解:∵抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),∴0=a﹣b+c,﹣3=c,∴b=a﹣3,∵当x=1时,y=ax2+bx+c=a+b+c,∴P=a+b+c=a+a﹣3﹣3=2a﹣6,∵顶点在第四象限,a>0,∴b=a﹣3<0,∴a<3,∴0<a<3,∴﹣6<2a﹣6<0,即﹣6<P<0.故选:B.点评:此题主要考查了二次函数图象的性质,根据图象过(﹣1,0)和点(0,﹣3)得出a与b的关系,以及当x=1时a+b+c=P是解决问题的关键.17.(2015·山东潍坊第12 题3分)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A. 1 B. 2 C. 3 D. 4考点:二次函数图象与系数的关系..分析:①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4ac=0.③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=0,确定出a的取值范围即可.④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可.解答:解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,∴△=0,即b2﹣4ac=0,∴结论②正确;∵对称轴x=﹣=﹣1,∴b=2a,∵b2﹣4ac=0,∴4a2﹣4ac=0,∴a=c,∵c>0,∴a>0,∴结论③不正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:②④.故选:B.点评:此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).18.(2015·山东潍坊第11 题3分)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2 C.cm2 D.cm2考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质..分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答:解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=A C.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt △AOD ≌Rt △AOK (HL ). ∴∠OAD =∠OAK =30°.设OD =x ,则AO =2x ,由勾股定理就可以求出AD =x ,∴DE =6﹣2x ,∴纸盒侧面积=3x (6﹣2x )=﹣6x 2+18x ,=﹣6(x ﹣)2+,∴当x =时,纸盒侧面积最大为. 故选C .点评: 本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.19.(2015•安徽省,第10题,4分)如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )考点:二次函数的图象;正比例函数的图象..P Q OOO OO yyyyyxxxxxA .B .C .D .第10题图分析:由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b ﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.解答:解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,∵方程ax2+(b﹣1)x+c=0的两个不相等的根x1>0,x2>0,∴x1+x2=﹣>0,∴﹣>0,∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∵a>0,开口向上,∴A符合条件,故选A.点评:本题考查了二次函数的图象,直线和抛物线的交点,交点坐标和方程的关系以及方程和二次函数的关系等,熟练掌握二次函数的性质是解题的关键.20.(2015•山东日照,第12题4分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③B.①③④C.①③⑤D.②④⑤考点:二次函数图象与系数的关系;抛物线与x轴的交点..专题:数形结合.分析:根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据顶点坐标对③进行判断;根据抛物线的对称性对④进行判断;根据函数图象得当1<x<4时,一次函数图象在抛物线下方,则可对⑤进行判断.解答:解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.点评:本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.21.(2015·四川甘孜、阿坝,第9题4分)二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣2考点:二次函数的性质..分析:直接利用抛物线的对称轴公式代入求出即可.解答:解:二次函数y=x2+4x﹣5的图象的对称轴为:x=﹣=﹣=﹣2.故选:D.点评:此题主要考查了二次函数的性质,正确记忆抛物线对称轴公式是解题关键.22.(2015•四川广安,第10题3分)如图,抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3考点:二次函数图象与系数的关系..分析:利用二次函数图象的开口方向和对称轴求出a>0,b<0,把x=﹣1代入求出b=a ﹣3,把x=1代入得出P=a+b+c=2a﹣6,求出2a﹣6的范围即可.解答:解:∵抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),∴0=a﹣b+c,﹣3=c,∴b=a﹣3,∵当x=1时,y=ax2+bx+c=a+b+c,∴P=a+b+c=a+a﹣3﹣3=2a﹣6,∵顶点在第四象限,a>0,∴b=a﹣3<0,∴a<3,∴0<a<3,∴﹣6<2a﹣6<0,即﹣6<P<0.故选:B.点评:此题主要考查了二次函数图象的性质,根据图象过(﹣1,0)和点(0,﹣3)得出a与b的关系,以及当x=1时a+b+c=P是解决问题的关键.23.(2015·山东潍坊第12 题3分)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A. 1 B. 2 C. 3 D. 4考点:二次函数图象与系数的关系..分析:①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4ac=0.③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=0,确定出a的取值范围即可.④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可.解答:解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,∴△=0,即b2﹣4ac=0,∴结论②正确;∵对称轴x=﹣=﹣1,∴b=2a,∵b2﹣4ac=0,∴4a2﹣4ac=0,∴a=c,∵c>0,∴a>0,∴结论③不正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:②④.故选:B.点评:此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).24.(2015·山东潍坊第11 题3分)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2 C.cm2 D.cm2考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质..分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答:解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=A C.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6﹣2x,∴纸盒侧面积=3x(6﹣2x)=﹣6x2+18x,=﹣6(x﹣)2+,∴当x=时,纸盒侧面积最大为.故选C.点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.二填空题1.(2015•山东临沂,第19题3分)定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1﹤x2时,都有y1﹤y2,称该函数为增函数. 根据以上定义,可以判断下面所给的函数中,是增函数的有______________(填上所有正确答案的序号).①y = 2x;②y =x+1;③y = x2 (x>0);④.【答案】①③考点:函数的图像与性质2.(2015上海,第12题4分)如果将抛物线y=x2+2x-1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是_______________.【答案】【解析】抛物线方程配方,得:y=(x+1)2-2,向上平移,得:y=(x+1)2+c,经过点A(0,3),则:3=1+c,c=2,所以,新抛物线的表达式是:y=(x+1)2+2=x2+2x+3。
2022全国各地中考数学分类汇编二次函数(含解析)
2022全国各地中考数学分类汇编二次函数(含解析)二次函数一、选择题1.(2022·山东省滨州市·3分)抛物线y=2某2﹣2A.0B.1C.2D.3某+1与坐标轴的交点个数是()【考点】抛物线与某轴的交点.【专题】二次函数图象及其性质.【分析】对于抛物线解析式,分别令某=0与y=0求出对应y与某的值,即可确定出抛物线与坐标轴的交点个数.【解答】解:抛物线y=2某2﹣2某+1,令某=0,得到y=1,即抛物线与y轴交点为(0,1);令y=0,得到2某2﹣2解得:某1=某2=某+1=0,即(某﹣1)2=0,,0),,即抛物线与某轴交点为(则抛物线与坐标轴的交点个数是2,故选C【点评】此题考查了抛物线与坐标轴的交点,抛物线解析式中令一个未知数为0,求出另一个未知数的值,确定出抛物线与坐标轴交点.2.(2022·山东省滨州市·3分)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=某2+5某+6,则原抛物线的解析式是()A.y=﹣(某﹣)2﹣B.y=﹣(某+)2﹣C.y=﹣(某﹣)2﹣D.y=﹣(某+)2+【考点】二次函数图象与几何变换.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.【解答】解:∵抛物线的解析式为:y=某2+5某+6,∴绕原点选择180°变为,y=﹣某2+5某﹣6,即y=﹣(某﹣)2+,∴向下平移3个单位长度的解析式为y=﹣(某﹣)2+﹣3=﹣(某﹣)2﹣故选A.【点评】本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键..3.(2022广西南宁3分)二次函数y=a某2+b某+c(a≠0)和正比例函数y=某的图象如图所示,则方程a某2+(b﹣)某+c=0(a≠0)的两根之和()A.大于0B.等于0C.小于0D.不能确定【考点】抛物线与某轴的交点.【分析】设a某2+b某+c=0(a≠0)的两根为某1,某2,由二次函数的图象可知某1+某2>0,a>0,设方程a某2+(b﹣)某+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设a某2+b某+c=0(a≠0)的两根为某1,某2,∵由二次函数的图象可知某1+某2>0,a>0,∴﹣>0.设方程a某2+(b﹣)某+c=0(a≠0)的两根为a,b,则a+b=﹣∵a>0,∴>0,=﹣+,∴a+b>0.故选C.【点评】本题考查的是抛物线与某轴的交点,熟知抛物线与某轴的交点与一元二次方程根的关系是解答此题的关键.4.(2022贵州毕节3分)一次函数y=a某+b(a≠0)与二次函数y=a某2+b某+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.。
全国各地中考数学真题试卷解析分类汇编:二次函数解答题(word版)
(1) 求二次函数的解析式及顶点 P 的坐标;
(2) 过定点 Q 的直线 l: y= kx﹣ k+3 与二次函数图象相交于 M , N 两点.
① 若 S△PMN= 2,求 k 的值; ② 证明:无论 k 为何值,△ PMN 恒为直角三角形; ③ 当直线 l 绕着定点 Q 旋转时,△ PMN 外接圆圆心在一条抛物线上运动,直接写出该抛
( 2)S 四边形 AMBC= AB( yC﹣ yD),即可求解; ( 3)抛物线的表达式为: y= x2,即可求解. 【解答】 解:( 1)函数的表达式为: y= ( x+1)(x﹣ 5)= (x2﹣ 4x﹣5)= x2﹣ x
﹣, 点 M 坐标为( 2,﹣ 3); ( 2)当 x= 8 时, y= ( x+1)( x﹣ 5)= 9,即点 C(8, 9),
的坐标为( 8, 0),
∴ OA= OB= 4,
∴∠ OBA=∠ OAB= 45°,
∵将直线 AB 绕点 A 逆时针旋转 90°得到直线 AD ,
∴∠ BAD= 90°,
∴ OAD= 45°,
∴∠ ODA= 45°,
∴ OA= OD,
∴点 D 的坐标为( 4, 0),
设直线 AD 的函数解析式为 y= kx+b,
△ B C D,若点 C 恰好落在抛物线的对称轴上,求点 C 和点 D 的坐标;
(3) 设 P 是抛物线上位于对称轴右侧的一点,点 Q 在抛物线的对称轴上,当 △ CPQ 为等边 三角形时,求直线 BP 的函数表达式。
2
5. ( 2019?湖南长沙 ?10 分)已知抛物线 y=﹣ 2x +( b﹣ 2) x+(c﹣ 2020)( b, c 为常数). (1) 若抛物线的顶点坐标为( 1, 1),求 b, c 的值;
最新全国各地中考数学试题分类汇编(第二期) 专题13 二次函数(含解析)
第 3 页 共 51 页
2.(2019•江苏无锡•10 分)已知二次函数 y=ax2+bx﹣4(a>0)的图象与 x 轴交于 A、B 两 点,(A 在 B 左侧,且 OA<OB),与 y 轴交于点 C.D 为顶点,直线 AC 交对称轴于点 E, 直线 BE 交 y 轴于点 F,AC:CE=2:1. (1)求 C 点坐标,并判断 b 的正负性; (2)设这个二次函数的图象的对称轴与直线 AC 相交于点 D,已知 DC:CA=1:2,直 线 BD 与 y 轴交于点 E,连接 BC. ①若△BCE 的面积为 8,求二次函数的解析式; ②若△BCD 为锐角三角形,请直接写出 OA 的取值范围.
象与 x 轴有 M 个交点,函数 y=(ax+1)(bx+1)的图象与 x 轴有 N 个交点,则( )
A.M=N﹣1 或 M=N+1
B.M=N﹣1 或 M=N+2
C.M=N 或 M=N+1
D.M=N 或 M=N﹣1
6.(2019•浙江湖州•3 分)已知 a,b 是非零实数,|a|>|b|,在同一平面直角坐标系中,二次 函数 y1=ax2+bx 与一次函数 y2=ax+b 的大致图象不可能是( )
正确结论的个数是( )
A.0
B.1
C. 2
D.3
4.(2019•四川自贡•4 分)一次函数 y=ax+b 与反比列函数 y= 的图象如图所示,则二次函
数 y=ax2+bx+c 的大致图象是( )
第 1 页 共 51 页
A.
B.
C.
D.
5.(2019•浙江杭州•3 分)在平面直角坐标系中,已知 a≠b,设函数 y=(x+a)(x+b)的图
各地中考数学试卷精选汇编 二次函数(含解析)
,
解得,
,
,
则小球落地点距 O 点水平距离为 7 米,C 正确,不符合题意; ∵斜坡可以用一次函数 y= x 刻画, ∴斜坡的坡度为 1:2,D 正确,不符合题意; 故选:A.
【分析】直接利用二次函数图象经过的象限得出 a,b,c 的值取值范围,进而利用一次函数与反比例函数
的性质得出答案.
【解答】解:∵二次函数 y=ax2+bx+c的图象开口向上,
∴a>0,
∵该抛物线对称轴位于 y 轴的右侧,
∴a、b 异号,即 b<0.
∵当 x=1时,y<0,
∴a+b+c<0.
∴一次函数 y=bx+a的图象经过第一、二、四象限,
【分析】分 h<2、2≤h≤5 和 h>5 三种情况考虑:当 h<2 时,根据二次函数的性质可得出关于 h 的一元 二次方程,解之即可得出结论;当 2≤h≤5 时,由此时函数的最大值为 0 与题意不符,可得出该情况不存 在;当 h>5 时,根据二次函数的性质可得出关于 h 的一元二次方程,解之即可得出结论.综上即可得出结 论. 【解答】解:当 h<2 时,有﹣(2﹣h)2=﹣1, 解得:h1=1,h2=3(舍去); 当 2≤h≤5 时,y=﹣(x﹣h)2 的最大值为 0,不符合题意; 当 h>5 时,有﹣(5﹣h)2=﹣1, 解得:h3=4(舍去),h4=6. 综上所述:h 的值为 1 或 6. 故选:B.
∴2a+b<0,故 D 错误; 故选:D. 【点评】本题考查二次函数的综合问题,解题的关键是正确理解二次函数的图象与系数之间的关系,本题 属于中等题型. 5.(2018·山东潍坊·3 分)已知二次函数 y=﹣(x﹣h)2(h 为常数),当自变量 x 的值满足 2≤x≤5 时, 与其对应的函数值 y 的最大值为﹣1,则 h 的值为( ) A.3 或 6 B.1 或 6 C.1 或 3 D.4 或 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点(﹣ 1, 0),对称轴为直线 x=2,下列结论:
①4a+b=0;②9a+c> 3b;③8a+7b+2c> 0;④当 x>﹣ 1 时, y 的值随 x 值的增大而增大.
其中正确的结论有(
)
A. 1 个
B. 2 个
考点: 二次函数的图象与性质.
解答: 根据抛物线的对称轴为直线
C. 3 个
D. 4 个
抛物线与 x 轴没有交点. 6. ( 2014 山东济南,第 15 题, 3 分)二次函数的图象如图,对称轴为
x 1 .若关于 x的一
元二次方程 x2 bx t 0 (为实数)在 1 x 4 的范围内有解,则的取值范围是
y
B
1
O
4
x
A. t 1 B . 1 t 3 C . 1 t 8 D . 3 t 8 【解析】由对称轴为 x 1 ,得 b 2 ,
故选 B.
点评: 此 题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图
象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程
ax2+bx+c=0
的解的方法.同时注意特殊点的运用.
8.(2014 年贵州黔东南 9.( 3 分) ) 已知抛物线 y=x2﹣ x﹣1 与 x 轴的一个交点为( m,0),则
数 a 决定抛物线的开口方向和大小,当 a> 0 时,抛物线向上开口;当 a< 0 时,抛物线向下
开口;一次项系数 b 和二次项系数 a 共同决定对称轴的位置,当 a 与 b 同号时(即 ab> 0),
对称轴在 y 轴左; 当 a 与 b 异号时(即 ab< 0),对称轴在 y 轴右;常数项 c 决定抛物线与 y 轴交点. 抛物线与 y 轴交于( 0, c);抛物线与 x 轴交点个数由△决定,△= b2﹣ 4ac> 0 时, 抛物线与 x 轴有 2 个交点;△= b2﹣ 4ac=0 时,抛物线与 x 轴有 1 个交点;△= b2﹣ 4ac< 0 时,
∴ a﹣ b+c=a﹣ 2a﹣8a=﹣ 9a,∴③正确;
∵抛物线和 x 轴的交点坐标是( 2, 0)和(﹣ 4, 0),抛物线的对称轴是直线 x=﹣ 1,
∴点(﹣ 3, y 1)关于对称轴的对称点的坐标是( ( 1, y1),
∵(, y 2), 1<,
∴ y 1> y 2,∴④正确;
即正确的有①③④,
B.根据图知对称轴为直线 x=2,即
=2,得 b=﹣4a,再根据图象知当 x=1 时, y< 0,
即可判断; C.由抛物线与 x 轴有两个交点,可得 b2﹣ 4ac> 0; D.把二次函数 y=ax2+bx+c 化为顶点式,再求出平移后的解析式即可判断. 解答: A.由开口向下,可得 a< 0;又由抛物线与 y 轴交于负半轴,可得 c< 0,然后由 对称轴在 y 轴右侧,得到 b 与 a 异号,则可得 b> 0,故得 abc>0,故本选项错误;
a 不变,所
以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移
后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解
析式.
2. (2014?四川巴中,第 10 题 3 分)已知二次函数 y=ax2+bx+c 的图象如图,则下列叙述正
确的是(
)
A. abc< 0
正,即 a+b+c> 0,则 b< a+c,故②选项正确; 把 x=2 代入 y=ax2+bx+c 得: y=4a+2b+c,由函数图象可以看出当 x=2 时,二次函数的值为负,
即 4a+2b+c< 0,故③选项错误; 由抛物线与 x 轴有两个交点可以看出方程
ax2+bx+c=0 的根的判别式 b2﹣ 4ac> 0,故④D 选项
x=﹣ =2,则有 4a+b=0;观察函数图象得到当 x=﹣3
时,函数值小于 0,则 9a﹣3b+c< 0,即 9a+c< 3b;由于 x=﹣ 1 时, y=0,则 a﹣ b+c=0, 易得 c=﹣ 5a,所以 8a+7b+2c=8a﹣ 28a﹣ 10a=﹣ 30a,再根据抛物线开口向下得 a< 0,于 是有 8a+7b+2c>0;由于对称轴为直线 x=2,根据二次函数的性质得到当 x> 2 时, y 随 x 的增大而减小.
B.根据图知对称轴为直线 x=2,即
=2,得 b=﹣ 4a,再根据图象知当 x=1 时,y=a+b+c=a
﹣ 4a+c=﹣ 3a+c<0,故本选项正确; C.由抛物线与 x 轴有两个交点,可得 b2﹣ 4ac> 0,故本选项错误;
D.y=ax2+bx+c=
,∵
=2,∴原式 =
,
向左平移 2 个单位后所得到抛物线的解析式为
,故本选项错误; 故选:
B.
点评: 本题考查了二次函数图象与系数的关系.二次函数
y=ax2+bx+c( a≠0)系数符号
由抛物线开口方向、对称轴、抛物线与 y 轴的交点抛物线与 x 轴交点的个数确定. 3. (2014?山东威海,第 11 题 3 分)已知二次函数 y=ax2+bx+c(a≠0)的图象如图,则下列
B. ﹣ 3a+c< 0 C. b2﹣ 4ac≥0
D. 将该函数图象向左平移 2 个单位后所得到抛物线的解析式为
考点: 二次函数的图象和符号特征.
y=ax2+c
分析: A.由开口向下,可得 a< 0;又由抛物线与 y 轴交于负半轴,可得 c< 0,然后由 对称轴在 y 轴右侧,得到 b 与 a 异号,则可得 b> 0,故得 abc>0.
( a≠0)系数符号由抛物线开口方向、对称轴、抛物线与
y 轴的
交点抛物线与 x 轴交点的个数确定. 4. (2014?山东枣庄, 第 11 题 3 分)已知二次函数 y=ax 2+bx+c 的 x 、y 的部分对应值如下表:
x
﹣1
0
1
2
3
y
5
1
﹣1
﹣1
1
则该二次函数图象的对称轴为(
)
A. y 轴
B. 直 线 x=
x=﹣ 1 对应的函数值为 y=a﹣ b+c,又 x=﹣1 时函数取得最小值, ∴ a﹣b+c< am2+bm+c,即 a﹣ b< am2 +bm,
∵ b=2a, ∴ am2+bm+a> 0(m≠﹣ 1).故④正确.
点评:
故选: C. 本题考查了二次函数图象与系数的关系.二次函数
y=ax2+bx+c
根据抛物线与 x 轴交点的个数及 x=﹣ 1 时, x=2 时二次函数的值的情况进行推理,进而对所
得结论进行判断.
解答: 解:由二次函数的图象开口向上可得 a> 0,根据二次函数的图象与 y 轴交于正半轴
知: c>0,由对称轴直线 x=2,可得出 b 与 a 异号,即 b< 0,则 abc < 0,故①正确; 把 x=﹣1 代入 y=ax2+bx+c 得: y=a﹣ b+c,由函数图象可以看出当 x=﹣ 1 时,二次函数的值为
说法: ① c=0;②该抛物线的对称轴是直线
x=﹣ 1;③当 x=1 时, y=2a;④ am2+bm+a> 0( m≠﹣ 1).
其中正确的个数是( )
A. 1 考点 : 分析:
解答:
B. 2
C. 3
D. 4
二次函数图象与系数的关系.
由抛物线与 y 轴的交点判断 c 与 0 的关系, 然后根据对称轴及抛
C. 直 线 x=2
D. 直 线 x=
考点 :
二次函数的性质
分析:
由于 x=1、 2 时的函数值相等,然后根据二次函数的对称性列式
计算即可得解.
解答:
解:∵ x=1 和 2 时的函数值都是﹣ 1,
∴对称轴为直线 x= =.
故选 D.
点评:
本题考查了二次函数的性质, 主要利用了二次函数的对称性,比
较简单. 5. ( 2014?山东烟台,第 11 题 3 分)二次函数 y=ax2+bx+c( a≠0)的部分图象如图,图象过
2
∴ m﹣ m﹣1=0, 解得 m2 ﹣m=1. ∴ m2﹣ m+2014=1+2014=2015.
m, 0),
故选: D.
点评: 本题考查了抛物线与 x 轴的交点.解题时,注意“整体代入”数学思想的应用,减
少了计算量. 9. (2014 年贵州黔东南 9.( 4 分) ) 如图,已知二次函数 y=ax 2+bx+c(a≠0)的图象如图所
∵抛物线开口向下,∴ a<0,∴8a+7b+2c> 0,所以③正确;
∵对称轴为直线 x=2,
∴当﹣ 1< x< 2 时,y 的值随 x 值的增大而增大,当 x> 2 时, y 随 x 的增大而减小,所以
④错误.故选 B.
点评: 本题考查了二次函数图象与系数的关系:二次函数
y=ax2+bx+c( a≠0),二次项系
∵抛物线的对称轴是直线 x=﹣ 1,和 x 轴的一个交点是( 2, 0),
∴抛物线和 x 轴的另一个交点是(﹣ 4, 0),
∴把 x=﹣2 代入得: y=4a ﹣2b+c> 0,∴②错误;
∵图象过点( 2, 0),代入抛物线的解析式得: 4a+2b+c=0 ,
又∵ b=2a,
∴ c=﹣ 4a﹣ 2b=﹣ 8a,