西安西港花园学校数学整式的乘法与因式分解单元测试卷 (word版,含解析)

合集下载

整式的乘法与因式分解单元试卷(word版含答案)

整式的乘法与因式分解单元试卷(word版含答案)

整式的乘法与因式分解单元试卷(word 版含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.已知226a b ab +=,且a>b>0,则a b a b +-的值为( )A B C .2 D .±2 【答案】A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案.【详解】∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab ,∵a >b >0,∴∴a ba b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.3.在矩形ABCD 中,AD =3,AB =2,现将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.则S 1﹣S 2的值为( )A .-1B .b ﹣aC .-aD .﹣b【答案】D【解析】【分析】 利用面积的和差分别表示出S 1、S 2,然后利用整式的混合运算计算它们的差.【详解】∵1()()()(2)(2)(3)S AB a a CD b AD a a a b a =-+--=-+--2()()()2(3)()(2)S AB AD a a b AB a a a b a =-+--=-+--∴21S S -=(2)(2)(3)a a b a -+--2(3)()(2)a a b a -----32b b b =-+=-故选D.【点睛】本题考查了整式的混合运算,计算量比较大,注意不要出错,熟练掌握整式运算法则是解题关键.4.()()()()242212121......21n ++++=( )A .421n -B .421n +C .441n -D .441n + 【答案】A【解析】【分析】 先乘以(2-1)值不变,再利用平方差公式进行化简即可.【详解】()()()()242n 212121......21++++=(2-1)()()()()242n 212121......21++++ =24n -1.故选A.【点睛】本题考查乘法公式的应用,熟练掌握并灵活运用平方差公式是解题关键.2x的结果是()5.化简()2A.x4B.2x2C.4x2D.4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.6.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为( )A.M<N B.M>N C.M=N D.不能确定【答案】B【解析】由于M=(x-3)(x-7)=x2-10x+21,N=(x-2)(x-8)=x2-10x+16,可以通过比较M与N 的差得出结果.解:∵M=(x-3)(x-7)=x2-10x+21,N=(x-2)(x-8)=x2-10x+16,M-N=(x2-10x+21)-(x2-10x+16)=5,∴M>N.故选B.“点睛”本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.7.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.8.下列从左到右的变形,是因式分解的是( )A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+ D .228x 8x 22(2x 1)-+-=-- 【答案】D【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x 8x 22(2x 1)-+-=--.其他不是因式分解:A,C 右边不是积的形式,B 左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.9.下列由左到右的变形,属于因式分解的是( )A .2(2)(2)4x x x +-=-B .242(4)2x x x x +-=+-C .24(2)(2)x x x -=+-D .243(2)(2)3x x x x x -+=+-+ 【答案】C【解析】【分析】根据因式分解的意义,可得答案.【详解】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积的形式,故B 错误;C. 把一个多项式转化成几个整式积的形式,故C 正确;D 没把一个多项式转化成几个整式积的形式,故D 错误.故答案选:C.【点睛】本题考查的知识点是因式分解的意义,解题的关键是熟练的掌握因式分解的意义.10.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -【答案】B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ;如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.在实数范围内因式分解:22967x y xy --=__________.【答案】11933xy xy ⎛⎫+--- ⎪ ⎪⎝⎭⎝⎭【解析】【分析】将原多项式提取9,然后拆项分组为222189399x y xy ⎛⎫-+- ⎪⎝⎭,利用完全平方公式将前一组分解后,再利用平方差公式继续在实数范围内分解.【详解】解:22967x y xy -- 2227=939x y xy ⎛⎫-- ⎪⎝⎭ 222117=9+3999x y xy ⎛⎫--- ⎪⎝⎭ 218=939xy ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦11=933xy xy ⎛---+ ⎝⎭⎝⎭=9xy xy ⎛ ⎝⎭⎝⎭故答案为:11933xy xy ⎛+--- ⎝⎭⎝⎭【点睛】本题考查在实数范围内因式分解,利用分组分解法将原多项式“三一”分组后采用公式法因式分解,注意在实数范围内因式分解是指系数可以是根式.12.已知25,23a b==,求2a b +的值为________.【答案】15.【解析】【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】解:∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.13.已知x 、y 为正偶数,且2296x y xy +=,则22x y +=__________.【答案】40【解析】【分析】根据22x y xy 96+=可知xy(x+y)=96,由x 、y 是正偶数可知xy≥4,x+y≥4,进而可知96 可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x 、y 的值,根据x 、y 的值求得答案即可.【详解】∵22x y xy 96+=,∴xy(x+y)=96,∵x 、y 为正偶数,xy≥4,x+y≥4,∴96=2⨯2⨯2⨯2⨯2⨯3=6⨯16=8⨯12=4⨯24当xy(x+y)= 4⨯24时,无解,当xy(x+y)= 6⨯16时,无解,当xy(x+y)=8⨯12时,x+y=8,xy=12,解得:x=2,y=6,或x=6,y=2,∴x 2+y 2=22+62=40.故答案为:40【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.14.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了n(a b)(n +为非负整数)展开式的项数及各项系数的有关规律.例如:0(a b)1+=,它只有一项,系数为1;系数和为1; 1(a b)a b +=+,它有两项,系数分别为1,1,系数和为2;222(a b)a 2ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223(a b)a 3a b 3ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;⋯,则n (a b)+的展开式共有______项,系数和为______.【答案】n 1+ n 2【解析】【分析】本题通过阅读理解寻找规律,观察可得(a+b )n (n 为非负整数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系数等于(a+b )n-1相邻两项的系数和.因此根据项数以及各项系数的和的变化规律,得出(a+b )n 的项数以及各项系数的和即可.【详解】根据规律可得,(a+b )n 共有(n+1)项,∵1=201+1=211+2+1=221+3+3+1=23∴(a+b )n 各项系数的和等于2n故答案为n+1,2n【点睛】本题主要考查了完全平方式的应用,能根据杨辉三角得出规律是解此题的关键.在应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式.15.若4x 2+20x + a 2是一个完全平方式,则a 的值是 __ .【答案】±5【解析】225,5a a ==±16.设2m =5,82n =10,则62m n -=________.【答案】12【解析】试题分析:将62m n - 变形为228m n ÷ ,然后结合同底数幂的除法的概念和运算法则进行求解即可.本题解析: 6621222285102m n m n m n -=÷=÷=÷= 故答案为: 12. 点睛:本题主要考查了同底数幂的除法法则的逆用,同底数幂的除法法则:同底数幂相乘,底数不变,指数相减.即m n m n a a a +÷= (m,n 是正整数).17.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.18.已知2x +3y -5=0,则9x •27y 的值为______.【答案】243【解析】【分析】先将9x •27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x ⋅27y =32x ⋅33y =32x+3y =35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则.19.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.【答案】()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).20.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.【答案】a2+2ab+b2=(a+b)2【解析】试题分析:两个正方形的面积分别为a2,b2,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)2,所以a2+2ab+b2=(a+b)2.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.。

八年级上册数学 整式的乘法与因式分解单元测试卷 (word版,含解析)

八年级上册数学 整式的乘法与因式分解单元测试卷 (word版,含解析)

八年级上册数学整式的乘法与因式分解单元测试卷(word版,含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63 B.63和65 C.65和67 D.64和67【答案】B【解析】【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B.【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案2.下列四个多项式,可能是2x2+mx-3 (m是整数)的因式的是A.x-2 B.2x+3 C.x+4 D.2x2-1【答案】B【解析】【分析】将原式利用十字相乘分解因式即可得到答案.【详解】因为m是整数,∴将2x2+mx-3分解因式:2x2+mx-3=(x-1)(2x+3)或2x2+mx-3=(x+1)(2x-3),故选:B.【点睛】此题考查因式分解,根据二次项和常数项将多项式分解因式是解题的关键.3.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是( ) A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n【答案】B【解析】已知a与b互为相反数且都不为零,可得a、b的同奇次幂互为相反数,同偶次幂相等,由此可得选项A、C相等,选项B互为相反数,选项D可能相等,也可能互为相反数,故选B.4.已知a,b,c是△ABC的三边长,且满足a2+2b2+c2-2b(a+c)=0,则此三角形是( ) A.等腰三角形 B.等边三角形C.直角三角形 D.不能确定【答案】B【解析】【分析】运用因式分解,首先将所给的代数式恒等变形;借助非负数的性质得到a=b=c,即可解决问题.【详解】∵a2+2b2+c2﹣2b(a+c)=0,∴(a﹣b)2+(b﹣c)2=0;∵(a﹣b)2≥0,(b﹣c)2≥0,∴a﹣b=0,b﹣c=0,∴a=b=c,∴△ABC为等边三角形.故选B.【点睛】本题考查了因式分解及其应用问题.解题的关键是牢固掌握因式分解的方法,灵活运用因式分解来分析、判断、推理活解答.5.若x2+2(m+1)x+25是一个完全平方式,那么m的值()A.4 或-6B.4C.6 或4D.-6【答案】A【解析】【详解】解:∵x2+2(m+1)x+25是一个完全平方式,∴△=b2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m2+2m-24=0,解得m1=4,m2=-6,所以m的值为4或-6.故选A.6.已知4y2+my+9是完全平方式,则m为()A.6 B.±6 C.±12 D.12【答案】C【解析】【分析】原式利用完全平方公式的结构特征求出m的值即可.【详解】∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选:C.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.7.已知a﹣b=2,则a2﹣b2﹣4b的值为()A.2 B.4 C.6 D.8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a﹣b=2,∴原式=(a+b)(a﹣b)﹣4b=2(a+b)﹣4b=2a+2b﹣4b=2(a﹣b)=4.故选:B.【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.8.若33×9m=311,则m的值为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】根据同底数幂的乘法的性质,幂的乘方的性质,可得关于m的方程,解方程即可求得答案.【详解】∵33×9m=311,∴33×(32)m=311,∴33+2m=311,∴3+2m=11,∴2m=8,解得m=4,故选C.【点睛】本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.9.下列等式由左边向右边的变形中,属于因式分解的是 ( )A.x2+5x-1=x(x+5)-1 B.x2-4+3x=(x+2)(x-2)+3xC.(x+2)(x-2)=x2-4 D.x2-9=(x+3)(x-3)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、是整式的乘法,故C错误;D、x2-9=(x+3)(x-3),属于因式分解.故选D.【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a)(x+b)=x2-7x+12,则a,b的值可能分别是()A.3-,4-B.3-,4 C.3,4-D.3,4【答案】A【解析】【分析】根据题意可得规律为712a bab+=-⎧⎨=⎩,再逐一判断即可.【详解】根据题意得,a,b的值只要满足712a bab+=-⎧⎨=⎩即可,A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意.故答案选A.【点睛】本题考查了多项式乘多项式,解题的关键是根据题意找出规律.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nn n a a a ,则2018a =___________.【答案】4035【解析】 【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.【详解】∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.12.如果实数a ,b 满足a +b =6,ab =8,那么a 2+b 2=_____.【答案】20【解析】【分析】【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.【点睛】本题考查了完全平方公式的变形应用,熟练进行完全平方公式的变形是解题的关键.13.若a 2+a-1=0,则a 3+2a 2+2014的值是___________.【答案】2015【解析】【分析】根据a 2+a-1=0可得a 2+a=1,对a 3+2a 2+2014进行变形,整体代入即可.【详解】∵a 2+a-1=0∴a 2+a=1a 3+2a 2+2014=a (a 2+a )+a 2+2014=a+a 2+2014=2015故答案为2015【点睛】本题考查的是多项式的乘法,整体代入法是解答的关键.14.计算:=_____. 【答案】1【解析】【分析】根据平方差公式可以使本题解答比较简便.【详解】解:====1.【点睛】本题应根据数字特点,灵活运用运算定律会或运算技巧,灵活简算.15.(m+n+p+q) (m-n-p-q)=(__________) 2-(__________) 2.【答案】m n+p+q【解析】(m+n+p+q)(m-n-p-q)=[m+(n+p+q)][m-(n+p+q)]=()22m n p q -++,故答案为(1)m ,(2)n+p+q. 点睛:本题主要考查了平方差公式,平方差公式是两个数的和与这两个数的差的积,等于这两个数的平方差,多项式与多项相乘时,要注意观察能否将其中符号相同的项结合成为一项后,再运用平方差公式运算.16.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.17.已知a m =3,a n =2,则a 2m ﹣n 的值为_____.【答案】4.5【解析】分析:首先根据幂的乘方的运算方法,求出a 2m 的值;然后根据同底数幂的除法的运算方法,求出a 2m-n 的值为多少即可.详解:∵a m =3,∴a 2m =32=9,∴a 2m-n =292m n a a ==4.5. 故答案为:4.5. 点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.18.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6【解析】根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.19.若3a b +=,则226a b b -+的值为__________.【答案】9【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可. 详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.20.已知8a b +=,224a b =,则222a b ab +-=_____________. 【答案】28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.。

整式的乘法与因式分解单元测试题(Word版 含解析)

整式的乘法与因式分解单元测试题(Word版 含解析)

整式的乘法与因式分解单元测试题(Word版含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是( )A.2 B.4 C.6 D.8【答案】C【解析】【分析】【详解】试题分析:根据题意可得A=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216根据21=2;22=4;23=8;24=16;25=32;···因此可由16÷4=4,所以216的末位为6故选C点睛:此题是应用平方差公式进行计算的规律探索题,解题的关键是通过添加式子,使原式变化为平方差公式的形式;再根据2的n次幂的计算总结规律,从而可得到结果.2.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是()A.1 B.4 C.11 D.12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p、q的关系判断即可.详解:∵(x+p)(x+q)= x2+(p+q)x+pq= x2+mx-12∴p+q=m,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.3.若代数式x2+ax+64是一个完全平方式,则a的值是()A.-16 B.16 C.8 D.±16【答案】D【解析】试题分析:根据完全平方式的意义,首平方,尾平方,中间加减积的2倍,可知a=±2×8=16.点睛:此题主要考查了完全平方式的意义,解题关键是明确公式的特点,即:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方。

【精选】整式的乘法与因式分解单元测试卷(含答案解析)

【精选】整式的乘法与因式分解单元测试卷(含答案解析)

一、八年级数学整式的乘法与因式分解解答题压轴题(难)1.因式分解是多项式理论的中心内容之一,是代数中一种重要的恒等变形,它是学习数学和科学技术不可缺少的基础知识.在初中阶段,它是分式中研究约分、通分、分式的化简和计算的基础;利用因式分解的知识,有时可使某些数值计算简便.因式分解的方法很多,请根据提示完成下面的因式分解并利用这个因式分解解决提出的问题.(1)填空: ①()242221144x x x x ⎡⎤+=++-=⎢⎥⎣⎦( )22x -=( )( ) ②()()242116=644⎡⎤+++-⎢⎥⎣⎦=( )( )=( )⨯ ( ) (2)解决问题,计算:4444116844115744⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 【答案】(1)①212x +,221122x x x x ⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭,,②26,26,2211666622⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,,42.530.5,;(2)14541 【解析】【分析】(1)根据完全平方公式和平方差公式计算可得;(2)利用前面所得规律变形即可.【详解】(1)()242221144x x x x ⎡⎤+=++-⎢⎥⎣⎦ 22212x x ⎛⎫=+- ⎪⎝⎭ 221122x x x x ⎛⎫⎛⎫=++-+ ⎪⎪⎝⎭⎝⎭ ()2422211666624⎡⎤+=++-⎢⎥⎣⎦ 2211666622⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭42.530.5=⨯ 故答案为:①212x +,221122x x x x ⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭,,②26,26,2211666622⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,,42.530.5,; (2)4444116844115744⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ 2222222211116666888822221111555577772222⎛⎫⎛⎫⎛⎫⎛⎫++-+++-+ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫++-+++-+ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 42.530.372.556.530.520.556.542.5⨯⨯⨯=⨯⨯⨯ 14541= 【点睛】本题考查了因式分解的应用;熟练掌握完全平方公式和平方差公式是解题的关键.2.观察以下等式:(x+1)(x 2-x+1)=x 3+1(x+3)(x 2-3x+9)=x 3+27(x+6)(x 2-6x+36)=x 3+216...... ......(1)按以上等式的规律,填空:(a+b )(___________________)=a 3+b 3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y )(x 2-xy+y 2)-(x-y )(x 2+xy+y 2)【答案】(1)a 2-ab+b 2;(2)详见解析;(3)2y 3.【解析】【分析】(1)根据所给等式可直接得到答案(a+b )(a 2-ab+b 2)=a 3+b 3;(2)利用多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加进行计算即可得到答案;(3)结合题目本身的特征,利用(1)中的公式直接运用即可.【详解】(1)(a+b )(a 2-ab+b 2)=a 3+b 3;(2)(a+b )(a 2-ab+b 2)=a 3-a 2b+ab 2+a 2b-ab 2+b 3=a 3+b 3;(3)(x+y )(x 2-xy+y 2)-(x-y )(x 2+xy+y 2)=x 3+y 3-(x 3-y 3)=2y 3.【点睛】本题考查了多项式乘以多项式,关键是掌握多项式乘法法则,注意观察所给例题,找出其中的规律是解决本题的基本思路.3.你会对多项式(x 2+5x+2)(x 2+5x+3)﹣12分解因式吗?对结构较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),能使复杂的问题简单化、明朗化.从换元的个数看,有一元代换、二元代换等.对于(x 2+5x+2)(x 2+5x+3)﹣12.解法一:设x 2+5x =y ,则原式=(y+2)(y+3)﹣12=y 2+5y ﹣6=(y+6)(y ﹣1)=(x 2+5x+6)(x 2+5x ﹣1)=(x+2)(x+3)(x 2+5x ﹣1).解法二:设x 2+5x+2=y ,则原式=y(y+1)﹣12=y 2+y ﹣12=(y+4)(y ﹣3)=(x 2+5x+6)(x 2+5x ﹣1)=(x+2)(x+3)(x 2+5x ﹣1).解法三:设x 2+2=m ,5x =n ,则原式=(m+n)(m+n+1)﹣12=(m+n)2+(m+n)﹣12=(m+n+4)(m+n ﹣3)=(x 2+5x+6)(x 2+5x ﹣1)=(x+2)(x+3)(x 2+5x ﹣1).按照上面介绍的方法对下列多项式分解因式:(1)(x 2+x ﹣4)(x 2+x+3)+10;(2)(x+1)(x+2)(x+3)(x+6)+x 2;(3)(x+y ﹣2xy)(x+y ﹣2)+(xy ﹣1)2.【答案】(1) (x+2)(x-1) (2 x x ++1)(2)(266x x ++)2(3) (x+y-xy-1)2【解析】【分析】(1)令m=2x x +,原式=()()4m 310m -++因式分解即可;(2)()()()()21236x x x x x +++++=(276x x ++)(256x x ++)+2x ,令n=256x x ++,再将原式=(n+2)n+x 2进行因式分解即可;(3)令a=x+y,b=xy ,代入原式即可因式分解.【详解】(1)令m=2x x +,原式=()()4m 310m -++=m 2-m-2=(m-2)(m+1)= (2x x +-2)(2x x ++1)=(x+2)(x-1) (2x x ++1)(2)()()()()21236x x x x x +++++=(276x x ++)(256x x ++)+2x , 令n=256x x ++,原式=(n+2)n+x 2=n 2+2n+x 2=(n+x)2=(266x x ++)2(3) 令a=x+y,b=xy ,原式=()()()2221a b a b --+-=(a-b)2-2(a-b)+1=(a-b-1)2=(x+y-xy-1)2【点睛】此题主要考查复杂的因式分解,解题的关键是读懂材料学会材料中因式分解的方法.4.阅读下列因式分解的过程,解答下列问题:1+x +x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )2(1+x )=(1+x )3.(1)上述分解因式的方法是____________,共应用了________次;(2)若分解因式1+x +x (x +1)+x (x +1)2+…+x (x +1)2019,则需要应用上述方法________次,结果是________;(3)分解因式:1+x +x (x +1)+x (x +1)2+…+x (x +1)n (n 为正整数).【答案】(1)提取公因式法,2;(2)2019,(1+x)2020;(3) (1+x)n +1.【解析】【分析】(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.【详解】(1)提取公因式法,2(因式分解的方法是提公因式法,共应用了2次)(2)2019,(1+x)2020(分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需应用上述方法2019次,结果是(1+x)2020)(3)原式=(1+x)[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -1]=(1+x)2[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -2]=(1+x)3[1+x +x(x +1)+x(x +1)2+…+x(x +1)n -3]=(1+x)n (1+x)=(1+x)n +1.【点睛】本题考查的知识点是因式分解-提公因式法,解题的关键是熟练的掌握因式分解-提公因式法.5.阅读下列因式分解的过程,再回答所提出的问题:1+x +x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)]=(1+x )2(1+x )=(1+x )3(1)上述分解因式的方法是 ,共应用了 次.(2)若分解1+x +x (x +1)+x (x +1)2+…+ x (x +1)2004,则需应用上述方法 次,结果是 .(3)分解因式:1+x +x (x +1)+x (x +1)2+…+ x (x +1)n (n 为正整数).【答案】(1)提公因式,两次;(2)2004次,(x +1)2005;(3) (x +1)1n +【解析】【分析】(1)根据已知材料直接回答即可;(2)利用已知材料进而提取公因式(1+x ),进而得出答案;(3)利用已知材料提取公因式进而得出答案.【详解】(1)上述分解因式的方法是:提公因式法,共应用了2次.故答案为提公因式法,2次;(2)1+x+x (x+1)+x (x+1)2+…+ x (x +1)2004,=(1+x )[1+x+x (1+x )+…+ x (x +1)2003]⋯=22003(1)(1)(1)(1)(1)x x x x x +++++个=(1+x )2005,故分解1+x+x (x+1)+x (x+1)2+…+ x (x +1)2004,,则需应用上述方法2004次,结果是:(x+1)2005.(3)分解因式:1+x+x (x+1)+x (x+1)2…+x (x+1)n (n 为正整数)的结果是:(x+1)n+1.故答案为(x+1)n+1.【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.6.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值. 解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++ {n 34m 3n +=-∴=.解得:n 7=-,m 21=- ∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.【答案】()4,x + 20.【解析】【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+-- {2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.7.阅读下列材料:1637年笛卡尔在其《几何学》中,首次应用“待定系数法”将四次方程分解为两个二次方程求解,并最早给出因式分解定理.他认为:对于一个高于二次的关于x 的多项式,“x a =是该多项式值为0时的一个解”与“这个多项式一定可以分解为(x a -)与另一个整式的乘积”可互相推导成立.例如:分解因式3223x x +-.∵1x =是32230x x +-=的一个解,∴3223x x +-可以分解为()1x -与另一个整式的乘积.设()()322231x x x ax bx c +-=-++ 而()()()()2321x ax bx c ax b a x c b x c -++=+-+--,则有 1203a b a c b c =⎧⎪-=⎪⎨-=⎪⎪-=-⎩,得133a b c =⎧⎪=⎨⎪=⎩,从而()()32223133x x x x x +-=-++运用材料提供的方法,解答以下问题:(1)①运用上述方法分解因式323x x ++时,猜想出3230x x ++=的一个解为_______(只填写一个即可),则323x x ++可以分解为_______与另一个整式的乘积;②分解因式323x x ++;(2)若1x -与2x +都是多项式32x mx nx p +++的因式,求m n -的值.【答案】(1)①:x=-1;(x+1);②3223=(1)(3)x x x x x +++-+;(2)3【解析】【分析】(1)①计算当x=-1时,方程成立,则323x x ++必有一个因式为(x+1),即可作答; ②根据待定系数法原理先设另一个多项式,然后根据多项式乘多项式的计算即可求得结论;(2))设32=(1)(2)x mx mx p x x M +++-+(其中M 为二次整式),由材料可知,x=1,x=-2是方程320x mx nx p +++=的解,然后列方程组求解即可.【详解】解:(1)①323x x ++,观察知,显然x=-1时,原式=0,则3230x x ++=的一个解为x=-1;原式可分解为(x+1)与另一个整式的积.故答案为:x=-1;(x+1)②设另一个因式为(x 2+ax+b ),(x+1)(x 2+ax+b )=x 3+ax 2+bx+x 2+ax+b=x 3+(a+1)x 2+(a+b )x+b∴a+1=0 ,a=-1, b=3∴多项式的另一因式为x 2-x+3.∴3223=(1)(3)x x x x x +++-+.(2)设32=(1)(2)x mx nx p x x M +++-+(其中M 为二次整式),由材料可知,x=1,x=-2是方程320x mx nx p +++=的解, ∴可得108420m n p m n p +++=⎧⎨-+-+=⎩①②, ∴②-①,得m-n=3∴m n -的值为3.【点睛】本题考查了分解因式,正确理解题意,利用待定系数法和多项式乘多项式的计算法则求解是解题的关键.8.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b )2=a 2+2ab+b 2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=.(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)30;(3)9;(4)x3﹣x=(x+1)(x﹣1)x【解析】【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(3)依据所拼图形的面积为:xa2+yb2+zab,而(2a+b)(a+2b)=2a2+4ab+ab+2b2=2a2+5b2+2ab,即可得到x,y,z的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴225xyz=⎧⎪=⎨⎪=⎩,∴x+y+z=9,故答案为:9;(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.9.在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.【答案】(1)可以形成的数字密码是:212814、211428;(2)m的值是56,n的值是17.【解析】【分析】(1)先将多项式进行因式分解,然后再根据数字密码方法形成数字密码即可;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),当x=27时可以得到其中一个密码为242834,得到方程解出p、q、r,然后回代入原多项式即可求得m、n【详解】(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),当x=21,y=7时,x+y=28,x﹣y=14,∴可以形成的数字密码是:212814、211428;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),∵当x=27时可以得到其中一个密码为242834,∴27+p=24,27+q=28,27+r=34,解得,p=﹣3,q=1,r=7,∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,∴3517m nn-=⎧⎨-=-⎩得,5617mn=⎧⎨=⎩即m的值是56,n的值是17.【点睛】本题属于阅读理解题型,考查知识点以因式分解为主,本题第一问关键在于理解题目中给到的数字密码的运算规则,第二问的关键在于能够将原多项式设成(x+p)(x+q)(x+r),解出p、q、r10.(观察)1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,48×2=96,49×1=49.(发现)根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.(类比)观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.【答案】(1)625;(2)a+b=50; 900;证明见解析.【解析】【分析】发现:(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;类比:由于m+n=60,将n=60−m代入mn,得mn=−m2+60m=−(m−30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900.【详解】解:发现:(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;类比:由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.【点睛】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.。

整式的乘法与因式分解单元测试卷 (word版,含解析)

整式的乘法与因式分解单元测试卷 (word版,含解析)

整式的乘法与因式分解单元测试卷 (word 版,含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.下列分解因式正确的是( )A .22a 9(a 3)-=-B .()24a a a 4a -+=-+C .22a 6a 9(a 3)++=+D .()2a 2a 1a a 21-+=-+ 【答案】C【解析】【分析】根据因式分解的方法(提公因式法,运用公式法),逐个进行分析即可.【详解】A. ()2a 9a 3a 3-=-+)(,分解因式不正确;B. ()24a a a 4a -+=--,分解因式不正确; C. 22a 6a 9(a 3)++=+ ,分解因式正确;D. ()2a 2a 1a 1-+=-2,分解因式不正确.故选:C【点睛】本题考核知识点:因式分解.解题关键点:掌握因式分解的方法.2.下列运算正确的是( )A .236•a a a =B .()325a a =C .23•a ab a b -=-D .532a a ÷=【答案】C【解析】【分析】根据同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法法则即可求出答案.【详解】A .原式=a 5,故A 错误;B .原式=a 6,故B 错误;C .23•a ab a b -=-,正确;D .原式=a 2,故D 错误.故选C .【点睛】本题考查了同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法,解题的关键是熟练运用运算法则,本题属于基础题型.3.下列计算正确的是( )A .224a a a +=B .352()a a =C .527a a a ⋅=D .2222a a -= 【答案】C【解析】【详解】解:A. 222a a 2a +=,故A 错误;B. ()326a a =,故B 错误;C. 527a a a ⋅=,正确;D. 2222a a a -=,故D 错误;故选C4.下列各式中,不能运用平方差公式进行计算的是( )A .(21)(12)x x --+B .(1)(1)ab ab -+C .(2)(2)x y x y ---D .(5)(5)a a -+--【答案】A【解析】【分析】运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D 中均存在相同和相反的项,故选A.【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.5.如果x m =4,x n =8(m 、n 为自然数),那么x 3m ﹣n 等于( )A .B .4C .8D .56【答案】C【解析】【分析】根据同底数幂的除法法则可知:指数相减可以化为同底数幂的除法,故x 3m ﹣n 可化为x 3m ÷x n ,再根据幂的乘方可知:指数相乘可化为幂的乘方,故x 3m =(x m )3,再代入x m =4,x n =8,即可得到结果.【详解】解:x 3m ﹣n =x 3m ÷x n =(x m )3÷x n =43÷8=64÷8=8,故选:C.【点睛】此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.6.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为( )A.M<N B.M>N C.M=N D.不能确定【答案】B【解析】由于M=(x-3)(x-7)=x2-10x+21,N=(x-2)(x-8)=x2-10x+16,可以通过比较M与N 的差得出结果.解:∵M=(x-3)(x-7)=x2-10x+21,N=(x-2)(x-8)=x2-10x+16,M-N=(x2-10x+21)-(x2-10x+16)=5,∴M>N.故选B.“点睛”本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.7.如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()A.60 B.30 C.15 D.16【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b,ab,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a、b的长方形的周长为10,面积6,∴2(a+b)=10,ab=6,则a+b=5,故ab2+a2b=ab(b+a)=6×5=30.故选:B.【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.8.下列从左到右的变形,是因式分解的是( )A .()()23x 3x 9x -+=-B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+ D .228x 8x 22(2x 1)-+-=-- 【答案】D【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是228x 8x 22(2x 1)-+-=--.其他不是因式分解:A,C 右边不是积的形式,B 左边不是多项式.故选D.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.9.下列等式由左边向右边的变形中,属于因式分解的是 ( )A .x 2+5x -1=x(x+5)-1B .x 2-4+3x=(x+2)(x -2)+3xC .(x+2)(x -2)=x 2-4D .x 2-9=(x+3)(x -3)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A 、右边不是积的形式,故A 错误;B 、右边不是积的形式,故B 错误;C 、是整式的乘法,故C 错误;D 、x 2-9=(x+3)(x -3),属于因式分解.故选D .【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.10.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.【答案】27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.12.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.13.已知(a ﹣2016)2+(2018﹣a )2=20,则(a ﹣2017)2的值是 .【答案】9【解析】(a ﹣2016)2+(2018﹣a )2=20,(a ﹣2016)2+(a -2018)2=20,令t =a -2017,∴(t +1)2+(t -1)2=20,2t 2=18,t 2=9,∴(a ﹣2017)2=9.故答案为9.点睛:掌握用换元法解方程的方法.14.若4x 2+20x + a 2是一个完全平方式,则a 的值是 __ .【答案】±5【解析】225,5a a ==±15.已知a m =3,a n =2,则a 2m ﹣n 的值为_____.【答案】4.5【解析】分析:首先根据幂的乘方的运算方法,求出a 2m 的值;然后根据同底数幂的除法的运算方法,求出a 2m-n 的值为多少即可.详解:∵a m =3,∴a 2m =32=9,∴a 2m-n =292m n a a ==4.5. 故答案为:4.5. 点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.分解因式6xy 2-9x 2y -y 3 = _____________.【答案】-y(3x -y)2【解析】【分析】先提公因式-y ,然后再利用完全平方公式进行分解即可得.【详解】6xy 2-9x 2y -y 3=-y(9x 2-6xy+y 2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.17.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.若3a b +=,则226a b b -+的值为__________.【答案】9【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可. 详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.19.若=2m x ,=3n x ,则2m n x +的值为_____.【答案】18【解析】【分析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.20.因式分解34x x -= .【答案】()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-.。

《整式的乘法与因式分解》单元测试卷(含答案)

《整式的乘法与因式分解》单元测试卷(含答案)

《整式的乘法与因式分解》单元测试卷(时间:120分钟满分:150分)一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×10174.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±15.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 06. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 667.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=38.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3二、填空题9.若x+=3,分式(x-)2=________.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.11.已知8×2m×16m=211,则m的值为____.12.若27m÷9÷3=321,则m=_____.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.16.计算(﹣A 2B )3=__.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.18.计算:(x+3)(x-5)-x(x-2).19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?参考答案一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B[答案]B[解析]大正方形的面积=(A -B )2,还可以表示为A 2-2A B +B 2,∴(A -B )2=A 2-2A B +B 2.故选B .2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B[答案]A[解析][分析]先将式子展开,再根据展开后的式子求m和n.[详解](x-A )(x+B )=x2+mx+n故选A[点睛]此题重点考察学生对整式乘法的理解,整式乘法的法则是解题的关键.3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×1017[答案]D[解析]试题分析:根据题意得:第⑧个式子为5555555552-4444444452=(555555555+444444445)×(555555555-444444445)=1.1111111×1017.故选D .考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数.4.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±1[答案]B[解析]试题分析:根据同底数幂相乘除和幂的乘方,直接计算可得x m+1x m-1÷(x m) 2=1.故选:B点睛:此题主要考查了幂的运算性质,解题时直接应用幂的运算性质,再根据幂的混合运算的顺序计算即可.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.5.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 0[答案]B[解析][分析]先把27x×9y 进行转换再求值.[详解]故选B[点睛]此题重点考察学生对整式乘法的应用,根据规律化简是解题的关键.6. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 66[答案]B[解析]试题分析:归纳总结得到展开式中第三项系数即可.解:解:(A +B )2=A 2+2A B +B 2;(A +B )3=A 3+3A 2B +3A B 2+B 3;(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4;(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5;(A +B )6=A 6+6A 5B +15A 4B 2+20A 3B 3+15A 2B 4+6A B 5+B 6;(A +B )7=A 7+7A 6B +21A 5B 2+35A 4B 3+35A 3B 4+21A 2B 5+7A B 6+B 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(A +B )10的展开式第三项的系数为45.故选B .考点:完全平方公式.[此处有视频,请去附件查看]7.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=3 [答案]C[解析]试题解析:∵(x-5)(2x-n)=2x2+mx-15,∴2x2+(-n-10)x-5n=2x2+mx-15∴5n=-15,-n-10=m,解得:n=-3,m=7,故选C .[点睛]此题主要考查了因式分解法的应用,正确得出各项对应相等是解题关键.8.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3[答案]C[解析][分析]先用整式乘法将式子展开,再根据展开式中不含的要求求出k的值.[详解](y2-ky+2y)(-y)=要使展开式中不含的项,则故选C[点睛]此题重点考察学生对整式乘法的理解,因式分解是解题的关键.二、填空题9.若x+=3,分式(x-)2=________.[答案]5[解析]因为x+=3,(x-)2=x2-2+()2= x2-2+()2+4-4= x2+2+()2-4=(x-)2-4=9-4=5.故答案是:5.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.[答案]-32[解析][分析]先化简再把A =-2带入求值.[详解]:解:(B -A )(A +B )(A 2+B 2)-(A 4+B 4)= (B 2-A 2)(A 2+B 2)-(A 4+B 4)=(B 4-A 4) -(A 4+B 4)=-2A 4∵A =-2,∴原式=-2×(-2)4=-32.故答案为:-32.[点睛]此题重点考察学生对整式乘法的理解,会正确使用平方差公式是解题的关键.11.已知8×2m×16m=211,则m的值为____.[答案][解析][分析]先把式子左边化简成2n的形式,即可求得m的值.[详解]8×2m×16m=211故答案为[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.12.若27m÷9÷3=321,则m=_____.[答案]8[解析][分析]先把式子左边化简成3n的形式,即可求得m的值.[详解]27m÷9÷3=321故答案为8[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).[答案](A +B )2-4A B[解析][分析]根据图形先求出大正方形的面积,然后再减去四个长方形的面积.[详解]小正方形的边长为:(A -B ),∴面积为(A -B )2,小正方形的面积=大正方形的面积-4×长方形的面积=(A +B )2-4A B故答案为(A +B )2-4A B[点睛]此题重点考察学生对整式乘法中完全平方公式的理解,关键公式计算小正方形面积是解题的关键. 14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.[答案](B -2n)(A -m)[解析][分析]利用平移的方法先找出空地的长和宽,再计算面积即可.[详解]利用平移的方法可知:空地长为A -m,宽为B -2n,图中空地面积用含有A 、B 、m、n的代数式表示是(B -2n)(A -m)[点睛]解题的关键在于找到空地的长和宽,再利用长方形面积计算公式列出式子.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.[答案] (1). (1)-(x2-x);(2). (2)-(2xy2-3x2-2y2);(3). (3)-(A 3-2A 2+A -1);(4). (4)-(3x2y2+2x3-y3).[解析][分析]要使(1)(2)(3)(4)的最高次项系数变为正数,仔细观察每个最高次项系数都是负数,则直接在整个式子前加负号即可.[详解](1)-x2+x=-(x2-x);(2)3x2-2xy2+2y2=-(2xy2-3x2-2y2);(3)-A 3+2A 2-A +1=-(A 3-2A 2+A -1);(4)-3x2y2-2x3+y3=-(3x2y2+2x3-y3);故答案为(1)-(x2-x);(2)-(2xy2-3x2-2y2);(3)-(A 3-2A 2+A -1);(4)-(3x2y2+2x3-y3).[点睛]此题重点考察学生对多项式最高次数项的认识,抓住最高次项系数为正数是解题的关键.16.计算(﹣A 2B )3=__.[答案]−A 6B 3[解析][分析]根据积的乘方的运算方法:(A B )n=A n B n,求出(-A 2B )3的值是多少即可.[详解](-A 2B )3=(−)3⋅(A 2)3⋅B 3=−A 6B 3.故答案为:−A 6B 3.[点睛]本题考查了幂的乘方与积的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方的运算法则.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.[答案]224.[解析][分析]先把A =2,n=3带入x=3A n,y=-A 2n-1求出x和y,再带入A n x-A y计算即可.[详解]A n x-A y=A n×3A n-A ×(-A 2n−1)=3A 2n+A 2n=A 2n∵A =2,n=3,∴A 2n =×26=224.[点睛]此题重点考察学生对整式乘法的应用能力,熟练整式乘法法则是解题的关键.18.计算:(x+3)(x-5)-x(x-2).[答案]-15.[解析][分析]先利用整式乘法进行展开,再合并同类项进行计算.[详解]原式=x2-5x+3x-15-x2+2x=-15.[点睛]此题重点考察学生对整式乘法的应用,熟悉整式乘法是解题的关键.19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.[答案](1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)216.[解析]试题分析:(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(A +B )(A -B )=A 2-B 2;(3)从左到右依次利用平方差公式即可求解.试题解析:(1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.[点睛]运用了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?[答案]天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.[解析][分析]根据题意直接列式解答即可,注意整式乘法的运算法则.[详解]依题意得(3.4×102)×22÷(5×102)=3.4×22÷5=14.96.答:天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?[答案]至少要1.35×107mm2的铁皮.[解析][分析]求出正方体表面积即可知道需要多少铁皮.[详解]正方体的表面积为6×(1.5×103)2=6×2.25×106=1.35×107mm2.答:至少要1.35×107mm2的铁皮.[点睛]此题重点考察学生对整式乘法的实际应用能力,会计算正方体表面积是解题的关键.。

整式的乘法与因式分解检测题(Word版 含答案)

整式的乘法与因式分解检测题(Word版 含答案)
=(x-2 016+1)2+(x-2 016-1)2
=
= =34

故选D.
点睛:本题主要考查了完全平方公式的应用,把(x-2 015)2+(x-2 017)2化为(x-2 016+1)2+(x-2 016-1)2,利用完全平方公式展开,化简后即可求得(x-2 016)2的值,注意要把x-2016当作一个整体.
C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2
【答案】D
【解析】
【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.
【详解】A、原式=a9,故A选项错误,不符合题意;
B、原式=27a6,故B选项错误,不符合题意;
C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;
∴a*(﹣b)+a*b
=a(﹣b)+a -b+ab+a+b
=﹣ab+a -b+ab+a+b
=2a
故选B.
考点:整式的混合运算.
8.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是( )
A.a=2,b=3B.a=-2,b=-3
C.a=-2,b=3D.a=2恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )
A.a2-b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2
C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b2
2.如果多项式 能用公式法分解因式,那么k的值是( )

数学八年级上册 整式的乘法与因式分解单元测试题(Word版 含解析)

数学八年级上册 整式的乘法与因式分解单元测试题(Word版 含解析)

数学八年级上册 整式的乘法与因式分解单元测试题(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.把多项式2425m -分解因式正确的是( )A .(45)(45)m m +-B .(25)(25)m m +-C .(5)(5)m m -+D .(5)(5)m m m -+【答案】B【解析】利用公式法分解因式的要点,根据平方差公式:()()22a b a b a b -=+-,分解因式为:()()()222425252525m m m m -=-=+-.故选B.2.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .3【答案】D【解析】【分析】根据20192019a x =+,20192020b x =+,20192021c x =+分别求出a-b 、a-c 、b-c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】∵20192019a x =+,20192020b x =+,20192021c x =+, 20192019201920201a b x x -=+--=-20192019201920212a c x x -=+--=-20192020201920211b c x x -=+--=-∴222a b c ab ac bc ++---2221(222222)2a b c ab ac bc =++--- 2222221(222)2a ab b a ac c b bc c =-++-++-+ 222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.3.当3x =-时,多项式33ax bx x ++=.那么当3x =时,它的值是( )A .3-B .5-C .7D .17-【答案】A【解析】【分析】首先根据3x =-时,多项式33ax bx x ++=,找到a 、b 之间的关系,再代入3x =求值即可.【详解】当3x =-时,33ax bx x ++=327333ax bx x a b ++=---= 2736a b ∴+=-当3x =时,原式=2733633a b ++=-+=-故选A.【点睛】本题考查代数式求值问题,难度较大,解题关键是找到a 、b 之间的关系.4.因式分解x 2-ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)【答案】B【解析】【分析】【详解】因为(x +6)(x -1)=x 2+5x-6,所以b=-6;因为(x -2)(x +1)=x 2-x-2,所以a=1.所以x 2-ax +b=x 2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a ,说明b 是正确的,所以将看错了a 的式子展开后,可得到b 的值,同理得到a 的值,再把a ,b 的值代入到x 2+ax +b 中分解因式.5.下列各式中,不能运用平方差公式进行计算的是( )A .(21)(12)x x --+B .(1)(1)ab ab -+C .(2)(2)x y x y --- D .(5)(5)a a -+--【答案】A【解析】【分析】运用平方差公式(a+b)(a-b)=a2-b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D中均存在相同和相反的项,故选A.【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.6.如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()A.60 B.30 C.15 D.16【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b,ab,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a、b的长方形的周长为10,面积6,∴2(a+b)=10,ab=6,则a+b=5,故ab2+a2b=ab(b+a)=6×5=30.故选:B.【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.7.如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b2【答案】C【解析】【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【详解】∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选C.8.将下列多项式因式分解,结果中不含有因式(a+1)的是()A.a2-1B.a2+aC.a2+a-2D.(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a2﹣1=(a+1)(a﹣1),a2+a=a (a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C;故答案选C.考点:因式分解.9.下面四个代数式中,不能表示图中阴影部分面积的是()A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++【答案】B【解析】【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.10.下列运算中正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()()22224a b a b a b +--=【答案】D【解析】【分析】根据同底数幂的乘法,可判断A 和B ,根据合并同类项,可判断C ,根据平方差公式,可判断D .【详解】A. 底数不变指数相加,故A 错误;B. 底数不变指数相乘,故B 错误;C. 系数相加字母部分不变,故C 错误;D. 两数和乘以这两个数的差等于这两个数的平方差,故D 正确;故选D.【点睛】本题考查了平方差公式、合并同类项以及同底数幂的乘法,解题的关键是熟练的掌握平方差公式、合并同类项以及同底数幂的乘法的运算.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知a 1•a 2•a 3•…•a 2007是彼此互不相等的负数,且M=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007),N=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006),那么M 与N 的大小关系是M N .【答案】M >N【解析】解:M ﹣N=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007)﹣(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006) =(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)+(a 1+a 2+…+a 2006)a 2007﹣(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)﹣a 2007(a 2+a 3+…+a 2006)=(a 1+a 2+…+a 2006)a 2007﹣a 2007(a 2+a 3+…+a 2006)=a 1a 2007>0∴M >N【点评】本题主要考查了整式的混合运算.12.在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b ,再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是____________.【答案】a 2-b 2=(a+b)(a-b)【解析】【分析】根据正方形的面积公式和梯形的面积公式,即可求出答案.【详解】∵第一个图形的面积是a 2-b 2,第二个图形的面积是12(b +b +a +a )(a -b )=(a +b )(a -b ), ∴根据两个图形的阴影部分的面积相等得:a 2-b 2=(a+b)(a-b).故答案为a 2-b 2=(a+b)(a-b).【点睛】本题考查了平方差公式得几何背景,熟练掌握平方差公式的定义是本题解题的关键.13.多项式x 2+2mx+64是完全平方式,则m = ________ .【答案】±8【解析】根据完全平方式的特点,首平方,尾平方,中间是加减首尾积的2倍,因此可知2mx=2×(±8)x ,所以m=±8. 故答案为:±8.点睛:此题主要考查了完全平方式,解题时,要明确完全平方式的特点:首平方,尾平方,中间是加减首尾积的2倍,关键是确定两个数的平方.14.若()219x y +=,()25x y -=,则22xy +=______. 【答案】12【解析】【分析】根据完全平方公式的两个关系式间的关键解答即可.【详解】∵()219x y +=,()25x y -=,∴()()224x y x x y y +=-+,∴19=5+4xy ,∴xy=72, ∴()2227252122x x x y y y +-=+=+⨯=, 故答案为:12.【点睛】 此题考查完全平方公式,熟记公式并掌握两个公式的等量关系是解题的关键.15.(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×________.【答案】(a-b+x-y )【解析】运用公因式的概念,把多项式(a-b )2(x-y )-(b-a )(y-x )2运用提取公因式法因式分解(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×(a-b+x-y ). 故答案为:(a-b+x-y ).点睛:此题主要考查了提公因式法分解因式,关键是根据找公因式的方法,确定公因式,注意符号的变化.16.已知25,23a b==,求2a b +的值为________.【答案】15.【解析】【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】解:∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.17.已知:如图,△ACB 的面积为30,∠C 90=︒,BC a =,AC b =,正方形ADEB 的面积为169,则2()a b -的值为_____________.【答案】49【解析】首先根据三角形的面积可知12ab=30,可得ab=60,再利用勾股定理和正方形的面积公式求出a 2+b 2=169,因此可知(a-b )2= a 2+b 2-2ab=169-120=49.故答案为:49. 点睛:此题主要考查了勾股定理,关键是掌握在任何直角三角形中,两条直角边的平方和等于斜边的平方,同时考查了三角形的面积计算和完全平方公式的计算.18.若26x x k -+是一个完全平方式,那么k =_______________【答案】9【解析】因为若26x k k -+是一个完全平方式,那么()222262333x k k x k x -+=-⨯+=-,那么答案是k=9.故答案为:9.19.因式分解:3x 3﹣12x=_____.【答案】3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.20.已知x2+2x=3,则代数式(x+1)2﹣(x+2)(x﹣2)+x2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x2+2x=3代入即可得答案.【详解】原式=x2+2x+1-(x2-4)+x2=x2+2x+1-x2+4+x2=x2+2x+5.∵x2+2x=3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.。

第15章《整式的乘除与因式分解》单元测试题(含答案)[

第15章《整式的乘除与因式分解》单元测试题(含答案)[

《整式的乘除与因式分解》单元测试题一、选择题(共5小题,每小题4分,共20分)1、下列运算正确的是 ( )A 、 933842x x x ÷=B 、2323440a b a b ÷=C 、22m m aa a ÷= D 、2212()42abc ab c ÷-=- 2、计算(32)2013×1.52012×(-1)2014的结果是( ) A 、32 B 、23 C 、-32 D 、-23 3、下列多项式乘法中可以用平方差公式计算的是( ) A 、))((b a b a -+- B 、)2)(2(x x ++ C 、)31)(31(x y y x -+ D 、)1)(2(+-x x 4、 把代数式ax ²- 4ax +4a ²分解因式,下列结果中正确的是( )A 、a (x -2) 2B 、 a (x +2) 2C 、a (x -4) 2D 、a (x -2) (x +2)5、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )。

A 、a 2+b 2=(a +b )(a -b )B 、(a +b )2=a 2+2abC 、(a -b )2=a 2-2ab +b 2D 、a 2-b 2=(a -b )2二、填空题(共5小题,每小题4分,共20分)6、运用乘法公式计算:(32a -b )(32a +b )= ;(-2x -5)(2x -5)= 7、计算:534515a b c a b -÷=8、若a +b =1,a -b =2006,则a 2-b 2=9、在多项式4x 2+1中添加一个单项式,使其成为完全平方式,则添加的单项式为 (只写出一个即可)10、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 2y -2xy 2,商式必须是2xy ,则小亮报一个除式是 。

八年级数学整式的乘法与因式分解单元测试题(Word版 含解析)

八年级数学整式的乘法与因式分解单元测试题(Word版 含解析)

八年级数学整式的乘法与因式分解单元测试题(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.对二次三项式4x 2﹣6xy ﹣3y 2分解因式正确的是( )A .3213214()()x y x y +-++B .2132134()()x y x y +---C .(321)(321)x y y x y y ---+D .321213(2)(2)x y x y -+-- 【答案】D【解析】【分析】 【详解】解:4x 2﹣6xy ﹣3y 2=4[x 2﹣32xy +(34y )2]﹣3y 2﹣94y 2 =4(x ﹣34y )2﹣214y 2 =(2x ﹣32y ﹣212y )(2x ﹣32y +212y ) =(2x 321+y )(2x 321- 故选D .【点睛】本题主要是用配方法来分解因式,但本题的计算,分数,根式多,所以学生还是很容易出错的,注意计算时要细心.2.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.详解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx -12∴p+q=m ,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m 的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.3.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.【答案】A【解析】【分析】根据多项式相乘展开可计算出结果.【详解】 ()()1x m x +-=x 2+(m-1)x-m ,而计算结果不含x 项,则m-1=0,得m=1.【点睛】本题考查多项式相乘展开系数问题.4.因式分解x 2-ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)【答案】B【解析】【分析】【详解】因为(x +6)(x -1)=x 2+5x-6,所以b=-6;因为(x -2)(x +1)=x 2-x-2,所以a=1.所以x 2-ax +b=x 2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a ,说明b 是正确的,所以将看错了a 的式子展开后,可得到b 的值,同理得到a 的值,再把a ,b 的值代入到x 2+ax +b 中分解因式.5.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用x 、y (x y >)表示小长方形的长和宽,则下列关系式中错误的是( )A .22100x y +=B .2x y -=C .12x y +=D .35xy =【答案】A【解析】【分析】 由正方形的面积公式可求x +y =12,x ﹣y =2,可求x =7,y =5,即可求解.【详解】由题意可得:(x +y )2=144,(x ﹣y )2=4,∴x +y =12,x ﹣y =2,故B 、C 选项不符合题意;∴x =7,y =5,∴xy =35,故D 选项不符合题意;∴x 2+y 2=84≠100,故选项A 符合题意. 故选A .【点睛】本题考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.6.下列各式不能用公式法分解因式的是( )A .92-xB .2269a ab b -+-C .22x y --D .21x -【答案】C【解析】【分析】根据公式法有平方差公式、完全平方公式,可得答案.【详解】A 、x 2-9,可用平方差公式,故A 能用公式法分解因式;B 、-a 2+6ab-9 b 2能用完全平方公式,故B 能用公式法分解因式;C 、-x 2-y 2不能用平方差公式分解因式,故C 正确;D 、x 2-1可用平方差公式,故D 能用公式法分解因式;故选C .【点睛】本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.7.如果x m =4,x n =8(m 、n 为自然数),那么x 3m ﹣n 等于( )A .B .4C .8D .56 【答案】C【解析】【分析】根据同底数幂的除法法则可知:指数相减可以化为同底数幂的除法,故x 3m ﹣n 可化为x 3m ÷x n ,再根据幂的乘方可知:指数相乘可化为幂的乘方,故x 3m =(x m )3,再代入x m =4,x n =8,即可得到结果.【详解】解:x 3m ﹣n =x 3m ÷x n =(x m )3÷x n =43÷8=64÷8=8, 故选:C .【点睛】此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.8.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1 【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误; D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.9.不论x ,y 为何有理数,x 2+y 2﹣10x+8y+45的值均为( )A .正数B .零C .负数D .非负数【答案】A【解析】【详解】因为x 2+y 2-10x +8y +45=()()225440x y -+++>, 所以x 2+y 2-10x +8y +45的值为正数,故选A.10.下列式子从左至右的变形,是因式分解的是( )A .21234x y x xy -=B .11(1)x x x -=-C .2221(1)x x x -+=-D .22()()a b a b a b +-=-【答案】C【解析】【分析】 根据因式分解的意义进行判断即可.【详解】因式分解是指将一个多项式化为几个整式的积的形式.A .21234x y x xy -=,结果是单项式乘以单项式,不是因式分解,故选项A 错误;B .11(1)x x x-=-,结果应为整式因式,故选项B 错误;C .2221(1)x x x -+=-,正确;D .22()()a b a b a b +-=-是整式的乘法运算,不是因式分解,故选项D 错误. 故选:C .【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,涉及完全平方公式,本题属于基础题型.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.如图,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH ⊥DC ,垂足为H.将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是____.【答案】36.【解析】【分析】根据题意列出2232,8x y x y -=+=,求出x-y=4,解方程组得到x 的值即可得到答案.【详解】由题意得: 2232,8x y x y -=+= ∵22()()x y x y x y -=+-,∴x -y=4, 解方程组48x y x y -=⎧⎨+=⎩,得62x y =⎧⎨=⎩, ∴正方形ABCD 面积为236x =,故填:36.【点睛】此题考查平方差公式的运用,根据题意求得x-y=4是解题的关键,由此解方程组即可.12.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,n a 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nn n a a a ,则2018a =___________.【解析】【分析】()()22n n 1n 4a a 1a 1+=---整理得()()22n n 1a 1a 1++=-,从而可得a n+1-a n =2或a n =-a n+1,再根据题意进行取舍后即可求得a n 的表达式,继而可得a 2018.【详解】∵()()22n n 1n 4a a 1a 1+=---,∴()()22n n n 14a a 1a 1++-=-,∴()()22n n 1a 1a 1++=-,∴a n +1=a n+1-1或a n +1=-a n+1+1,∴a n+1-a n =2或a n =-a n+1,又∵123a ,a ,a ⋯⋯是一列正整数,∴a n =-a n+1不符合题意,舍去,∴a n+1-a n =2,又∵a 1=1,∴a 2=3,a 3=5,……,a n =2n-1,∴a 2018=2×2018-1=4035,故答案为4035.【点睛】本题考查了完全平方公式的应用、平方根的应用、规律型题,解题的关键是通过已知条件推导得出a n+1-a n =2.13.已知x 、y 为正偶数,且2296x y xy +=,则22x y +=__________.【答案】40【解析】【分析】根据22x y xy 96+=可知xy(x+y)=96,由x 、y 是正偶数可知xy≥4,x+y≥4,进而可知96 可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x 、y 的值,根据x 、y 的值求得答案即可.【详解】∵22x y xy 96+=,∴xy(x+y)=96,∵x 、y 为正偶数,xy≥4,x+y≥4,∴96=2⨯2⨯2⨯2⨯2⨯3=6⨯16=8⨯12=4⨯24当xy(x+y)= 4⨯24时,无解,当xy(x+y)= 6⨯16时,无解,当xy(x+y)=8⨯12时,x+y=8,xy=12,解得:x=2,y=6,或x=6,y=2,∴x 2+y 2=22+62=40.【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.14.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了n(a b)(n +为非负整数)展开式的项数及各项系数的有关规律.例如:0(a b)1+=,它只有一项,系数为1;系数和为1; 1(a b)a b +=+,它有两项,系数分别为1,1,系数和为2;222(a b)a 2ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223(a b)a 3a b 3ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;⋯,则n (a b)+的展开式共有______项,系数和为______.【答案】n 1+ n 2【解析】【分析】本题通过阅读理解寻找规律,观察可得(a+b )n (n 为非负整数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系数等于(a+b )n-1相邻两项的系数和.因此根据项数以及各项系数的和的变化规律,得出(a+b )n 的项数以及各项系数的和即可.【详解】根据规律可得,(a+b )n 共有(n+1)项,∵1=201+1=211+2+1=221+3+3+1=23∴(a+b )n 各项系数的和等于2n故答案为n+1,2n【点睛】本题主要考查了完全平方式的应用,能根据杨辉三角得出规律是解此题的关键.在应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式.15.若26x x k -+是一个完全平方式,那么k =_______________【答案】9【解析】因为若26x k k -+是一个完全平方式,那么()222262333x k k x k x -+=-⨯+=-,那么答案是k=9.故答案为:9.16.若m+1m =3,则m 2+21m=_____. 【答案】7【解析】 分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m =7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.17.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b )6= .【答案】a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.【解析】【分析】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.【详解】通过观察可以看出(a+b )6的展开式为6次7项式,a 的次数按降幂排列,b 的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.所以(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.18.分解因式:2x 2﹣8=_____________【答案】2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.19.若()2242x ax x ++=-,则a =_____.【答案】-4【解析】【分析】直接利用完全平方公式得出a 的值.【详解】解:∵()2242x ax x ++=-,∴4a =-故答案为:4-【点睛】此题主要考查了公式法分解因式,正确应用公式是解题关键.20.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解. 详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- , 故答案为:12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.。

《整式的乘法与因式分解》单元测试题带答案

《整式的乘法与因式分解》单元测试题带答案
8.已知A B2=﹣1,则﹣A B(A2B5﹣A B3﹣B)的值等于()
A.﹣1B. 0C. 1D.无法确定
[答案]C
[解析]
[分析]
原式利用单项式乘以多项式法则计算,变形后将已知等式代入计算即可求出值.
[详解]∵A B2=-1,
∴原式=-(A B2)3+(A B2)2+A B2=1+1-1=1,
故选C.
A.﹣1B. 0C. 1D.无法确定
9.已知 与一个多项式之积是 ,则这个多项式是( )
A. B. C. D.
10.已知 ,则 的值为()
A.2016B.2017C.2018D.2019
11.如图在边长为A的正方形中挖掉一个边长为B的小正方形(A>B).把余F的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是( )
(28x7y3+98x6y5-21x5y5)÷7x5y3=4x2+14xy2-3y2,
故选C.
[点睛]本题考查了单项式乘多项式,利用了整式的除法:用多项式的每一项除以单项式,把所得商相加.
10.已知 ,则 的值为()
A.2016B.2017C.2018D.2019
[答案]D
[解析]
[分析]
根据完全平方公式,即可解答.
[详解](m-n)2=38,
m2-2mn+n2=38①,
(m+n)2=4000,
m2+2mn+n2=4000②,
①+②得:2m2+2n2=4038
m2+n2=2019.
故选D.
[点睛]本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.
11.如图在边长为A的正方形中挖掉一个边长为B的小正方形(A>B).把余F的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是( )

《整式的乘法与因式分解》单元测试题(带答案)

《整式的乘法与因式分解》单元测试题(带答案)
9.下列算式能用平方差公式计算的是
A. B. C. D.
[答案]D
[解析]
[分析]
根据平方差公式(A+B)(A-B)=A2-B2对各选项分别进行判断即可.
[详解]能用平方差公式计算的是 ,
故选D.
[点睛]本题考查了平方差公式,熟练掌握平方差公式(A+B)(A-B)=A2-B2是解本题的关键.
10.下列从左到右的变形,是因式分解的是
4.下列计算正确的是()
A 3A2﹣4A2=A2B.A2•A3=A6C.A10÷A5=A2D.(A2)3=A6
5.下列各式中,运算正确的是()
A. B. C. D.
6.下列运算错误的是()
A.(m2)3=m6B.A10÷A9=AC.x3•x5=x8D.A4+A3=A7
7.化简(A2)A3所得 结果是()
(2)用两种不同的方法求图中阴影部分的面积.
11.下列运算正确的是()
A. B. C. D.
[答案]D
[解析]
[分析]
根据同底数幂的乘除法法则,幂的乘方,积的乘方一一判断即可.
[详解]解:A、错误.应该是x3•x3=x6;
B、错误.应该是x8÷x4=x4;
C、错误.(A B3)2=A2B6.
D、正确.
故选D.
[点睛]本题考查同底数幂的乘除法法则,幂的乘方,积的乘方等知识,解题的关键是熟练掌握基本知识.
∴A2﹣4A+4+B2﹣8B+16=0,
∴(A﹣2)2+(B﹣4)2=0,
又∵(A﹣2)2≥0,(B﹣4)2≥0,
∴A﹣2=0,B﹣4=0,
∴A=2,B=4,
∴△A B C的周长为A+B+C=2+4+3=9,

《整式的乘法与因式分解》单元测试(含答案)

《整式的乘法与因式分解》单元测试(含答案)
A. B.
C.x2-xy+y2=(x-y)2D.2x-2y=2(x-y)
5.若 ,那么 值是
A. B. C. D.
6.如果 ,那么 的值为
A. B. C. D.
7.计算 的结果是
A. B. C. D.
8.已知 ,则 的值等于 .
A. B. C. D.
9.下列各式中与 相等的是
A. B. C. D.
10.如果 的左边是一个关于 的完全平方式,则 的值为
【点睛】本题考查了提公因式法和运用公式法因式分解的综合运用,分解因式时,要分解到每一个因式都不能够在分解即可.
12.计算 _______________.
【答案】
【解析】
【分析】
把(-2)2014写成(-2)×(-2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.
【详解】原式=
故答案为2.
【点睛】考查有理数的乘方运算,掌握乘方运算法则是解题的关键.
13.分解因式: ____________________________.
【答案】(x-6)(x+1)
【解析】
因为-6×1=-6,-6+1=-5,所以利用十字相乘法分解因式为: =(x-6)(x+1).
故答案为(x-6)(x+1)
【解析】
【分析】
(1)先利用完全平方公式和多项式除单项式的方法计算,再合并同类项,再进一步代入求得数值即可;
(2)利用平方差公式和单项式乘以多项式进行计算,再进一步合并同类项,最后代入求得数值即可.
【详解】(1)原式=
=
当 , 时,原式=
(2) ,
当 , 时, .
【点睛】考查整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.

整式的乘法与因式分解单元综合测试(Word版 含答案)

整式的乘法与因式分解单元综合测试(Word版 含答案)

整式的乘法与因式分解单元综合测试(Word 版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.248﹣1能被60到70之间的某两个整数整除,则这两个数是( )A .61和63B .63和65C .65和67D .64和67【答案】B【解析】【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B .【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案2.()()()()242212121......21n ++++=( )A .421n -B .421n +C .441n -D .441n + 【答案】A【解析】【分析】 先乘以(2-1)值不变,再利用平方差公式进行化简即可.【详解】()()()()242n 212121......21++++=(2-1)()()()()242n 212121......21++++ =24n -1.故选A.【点睛】本题考查乘法公式的应用,熟练掌握并灵活运用平方差公式是解题关键.3.已知实数a 、b 满足a+b=2,ab=34,则a ﹣b=( ) A .1 B .﹣52 C .±1 D .±52【答案】C【解析】分析:利用完全平方公式解答即可.详解:∵a+b=2,ab=34, ∴(a+b )2=4=a 2+2ab+b 2,∴a 2+b 2=52, ∴(a-b )2=a 2-2ab+b 2=1,∴a-b=±1,故选C .点睛:本题考查了完全平方公式的运用,熟记公式结构是解题的关键.4.下列运算正确的是A .532b b b ÷=B .527()b b =C .248·b b b =D .2·22a a b a ab -=+() 【答案】A【解析】选项A , 532b b b ÷=,正确;选项B , ()25b =10b ,错误;选项C , 24·b b =6b ,错误;选项D , 2·22a a b a ab -=-,错误.故选A.5.已知a ,b ,c 是△ABC 的三条边的长度,且满足a 2-b 2=c (a -b ),则△ABC 是( )A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.6.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A.a2-b2=(a+b)(a-b) B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b2【答案】B【解析】图(4)中,∵S正方形=a2-2b(a-b)-b2=a2-2ab+b2=(a-b)2,∴(a-b)2=a2-2ab+b2.故选B7.如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b2【答案】C【解析】【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【详解】∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选C.8.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.9.下列因式分解正确的是( )A .()()2444x x x -=+- B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()22212x x x x -+=-+ 【答案】C【解析】【分析】根据因式分解的定义及方法逐项分析即可.【详解】A. ()()2422x x x -=+-,故不正确; B. 221x x +-在实数范围内不能因式分解,故不正确;C. ()()()222x 2x 2=12x 1x 1--=+-,正确; D. ()22212x x x x -+=-+的右边不是积的形式,故不正确; 故选C.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.10.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知a-b=4,ab=6,则22a b += _________.【答案】28【解析】【分析】对完全平方公式进行变形即可解答.【详解】解:∵222()216a b a ab b -=-+=∴22a b +=2()a b -+2ab=16+2×6=28故答案为28.【点睛】本题考查了完全平方公式的应用,掌握完全平方公式并能够进行灵活变形是解答本题的关键.12.如果9x 2-axy+4y 2是完全平方式,则a 的值是____.【答案】±12【解析】【分析】根据完全平方式得出-axy=±2×3x2y ,求出即可.【详解】解:9x 2-axy+4y 2=(3x±2y )2即-axy=±2×3x2y所以a=±12 【点睛】本题考查了完全平方式,能熟记完全平方公式的特点是解此题的关键,注意:完全平方式有两个a 2-2ab+b 2和a 2+2ab+62是本题的易错点.13.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.14.已知ab=a+b+1,则(a ﹣1)(b ﹣1)=_____.【答案】2【解析】【分析】将(a ﹣1)(b ﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.【详解】(a ﹣1)(b ﹣1)= ab ﹣a ﹣b+1,当ab=a+b+1时,原式=ab ﹣a ﹣b+1=a+b+1﹣a ﹣b+1=2,故答案为2.【点睛】本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.15.分解因式2242xy xy x ++=___________【答案】22(1)x y +【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.分解因式:x 3y ﹣2x 2y+xy=______.【答案】xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.若3a b +=,则226a b b -+的值为__________.【答案】9【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可. 详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.18.若a+b=4,ab=1,则a 2b+ab 2=________.【答案】4【解析】【分析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a 2b+ab 2=ab(a+b)=1×4=4.故答案为:4.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.19.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.【答案】a 2+2ab+b 2=(a+b )2【解析】试题分析:两个正方形的面积分别为a 2,b 2,两个长方形的面积都为ab ,组成的正方形的边长为a +b ,面积为(a +b )2,所以a 2+2ab +b 2=(a +b )2.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.20.已知8a b +=,224a b =,则222a b ab +-=_____________. 【答案】28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.。

西安西港花园学校八年级数学上册第十四章《整式的乘法与因式分解》经典练习题

西安西港花园学校八年级数学上册第十四章《整式的乘法与因式分解》经典练习题

一、选择题1.计算下列各式,结果为5x 的是( ) A .()32xB .102x x ÷C .23x x ⋅D .6x x -2.下列因式分解正确的是( ) A .m 2+n 2=(m+n)(m-n) B .a 3-a=a(a+1)(a-1) C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)23.若2x y +=,1xy =-,则()()1212x y --的值是( ) A .7-B .3-C .1D .94.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .12 5.若3a b +=-,10ab =-,则-a b 的值是( )A .0或7B .0或13-C .7-或7D .13-或13 6.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7B .18C .5D .97.已知: 13m m +=, 则: 331m m+的值为( ) A .15 B .18 C .21 D .9 8.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( ) A .7B .9C .-63D .129.下列各式计算正确的是( ) A .224a a a +=B .236a a a ⋅=C .()22439a a -= D .22(1)1a a +=+10.下列计算正确的是( ) A .(a 2)3=a 5B .(2a 2)2=2a 4C .a 3•a 4=a 7D .a 4÷a =a 411.下列运算正确的是( ) A .3515x x x ⋅= B .()3412x x -=C .()32628y y = D .623x x x ÷=12.长和宽分别为a ,b 的长方形的周长为16,面积为12,则22 a b ab +的值为( ) A .24B .48C .96D .19213.下列计算正确的是( )A .224x x x +=B .222()x y x y -=-C .26()x y x y =3D .235x x x14.下列运算中,正确的是( )A .()23294x y x y = B .3362x x x += C .34x x x ⋅=D .22(3)(3)3x y x y x y +-=-15.下列运算正确的是( ) A .428a a a ⋅= B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题16.已知a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,则2021a bxcd cd+-+的值为_______. 17.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 18.分解因式:32m n m -=________. 19.因式分解269x y xy y -+-=______.20.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个) A .2222()a ab b a b -+=- B .22()()a b a b a b -=+- C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.21.关于x 的一次二项式mx +n 的值随x 的变化而变化,分析下表列举的数据 x 011.52 mx +n-3 -1 01若mx +n =17,线段AB 的长为x ,点C 在直线AB 上,且BC =12AB ,则直线AB 上所有线段的和是_____________.22.对于2(34)x y --的计算,追风学习小组进行了激烈的讨论,①小杰说只能用公式()2222a b a ab b -=-+;②小聪说可以看成普通的多项式乘以多项式即(34)(34)x y x y ----;③小懿说可以用公式222()2a b a ab b +=++但要看准谁是a 谁是b ;④小王说口算就是22916x y +;⑤小亮说可以转化计算2(34)x y +,你认为谁的说法正确请写出序号____.23.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)24.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________. 25.若2x y a +=,2x y b -=,则22x y -的值为____________. 26.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________三、解答题27.先化简,再求值:2(21)(21)(23)+---a a a ,其中112a =-. 28.因式分解(1)m 3﹣36m (2)(m 2+n 2)2-4m 2n 229.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a b 、的代数式分别表示1S 、2S ; (2)若10,23a b ab +==,求12S S +的值;(3)当1229S S +=时,求出图3中阴影部分的面积3S . 30.把下列多项式因式分解:(1)2()4a b ab -+; (2)22()()a x y b y x -+-.。

八年级整式的乘法与因式分解单元测试卷 (word版,含解析)

八年级整式的乘法与因式分解单元测试卷 (word版,含解析)

八年级整式的乘法与因式分解单元测试卷 (word 版,含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.下列能用平方差公式分解因式的是( )A .21x -B .()21x x +C .21x +D .2x x - 【答案】A【解析】根据平方差公式:()()22a b a b a b -=+-,A 选项:()()2111x x x -=+-,可知能用平方差公式进行因式分解.故选:A.2.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定【答案】C【解析】【分析】 利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:22x kxy 9y -+是一个完全平方式,k 6∴-=±,解得:k 6=±,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.3.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.【答案】A【解析】【分析】根据多项式相乘展开可计算出结果.【详解】 ()()1x m x +-=x 2+(m-1)x-m ,而计算结果不含x 项,则m-1=0,得m=1.【点睛】本题考查多项式相乘展开系数问题.4.若代数式x 2+ax +64是一个完全平方式,则a 的值是( )A .-16B .16C .8D .±16【解析】试题分析:根据完全平方式的意义,首平方,尾平方,中间加减积的2倍,可知a=±2×8=16.故选:D点睛:此题主要考查了完全平方式的意义,解题关键是明确公式的特点,即:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方。

另一种是完全平方差公式,就是两个整式的差括号外的平方。

算时有一个口诀“首末两项算平方,首末项乘积的2倍中间放,符号随中央。

(人教版)西安八年级数学上册第十四章《整式的乘法与因式分解》经典测试(含答案解析)

(人教版)西安八年级数学上册第十四章《整式的乘法与因式分解》经典测试(含答案解析)

一、选择题1.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷= 2.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是( )(用含有a 、b 的代数式表示).A .a-bB .a+bC .abD .2ab 3.多项式2425a ma ++是完全平方式,那么m 的值是( ) A .10±B .20±C .10D .20 4.已知: 13m m +=, 则: 331m m +的值为( ) A .15 B .18 C .21D .9 5.下列因式分解正确的是( ) A .24414(1)1m m m m -+=-+ B .a 2+b 2=(a +b )2C .x 2-16y 2=(x +8y )(x -8y )D .-16x 2+1=(1+4x )(1-4x )6.2a =1,b 是2的相反数,则a+b 的值是( )A .1B .-3C .-1或-3D .1或-3 7.下列分解因式正确的是( )A .xy ﹣2y 2=x (y ﹣2x )B .m 3n ﹣mn =mn (m 2﹣1)C .4x 2﹣24x +36=(2x ﹣6)2D .4x 2﹣9y 2=(2x ﹣3y )(2x +3y ) 8.如图,从边长为21a +的正方形纸片中剪去一个边长为2a +的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .233a -B .233a +C .221a a -+D .2189a a ++ 9.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断:①**a b b a =;②()222**a b a b =;③()()**a b a b -=-;④()**a b c a b a c +=+*.其中所有正确推断的序号是( )A .①②③④B .①③④C .①②D .①③ 10.若53x =,52y =,则235-=x y ( )A .34B .1C .23D .98 11.如图,对一个正方形进行了分割,通过面积相等可以证明下列哪个式子( )A .22()()x y x y x y -=-+B .222()2x y x xy y +=++C .222()2x y x xy y -=-+D .22()()4x y x y xy +=-+12.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43- C .0.75 D .-0.75 13.下列各式运算正确的是( )A .235a a a +=B .1025a a a ÷=C .()32626b b =D .2421a a a -⋅= 14.下列各式中,正确的是( )A .2222x y yx x y -+=B .22445a a a +=C .()2424m m --=-+D .33a b ab +=15.下列运算中错误的是( ).A .-(-3a n b)4=-81a 4n b 4B .(a n+1+b n )4 = a 4n+4b 4nC .(-2a n )2.(3a 2)3 = -54a 2n+6D .(3x n+1-2x n )5x=15x n+2-10x n+1 二、填空题16.因式分解269x y xy y -+-=______.17.已知2m a =,5n a =,则2m n a -=___________.18.已知2m n +=,2mn =-,则(1)(1)m n --=________.19.分解因式323a a -=____.20.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______. 21.因式分解()2228ac bc abc -+=______.22.已知4222112x x +-⋅=,则x =________23.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________24.因式分解:24a b b -=______.25.若代数式23y y +-的值为0,则代数式3242020y y ++的值为___________. 26.已知22m mn -=,25mn n -=,则22325m mn n +-=________.三、解答题27.计算(1)(65x 2y -4xy 2)•13xy (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y )28.计算(1)()()()7332233532x x x x x -++⋅(2)()()()()22223x y x y x x y x y ++--++29.因式分解:(1)382a a -(2)()()24129x y x y +-+-30.计算:(1)()222--(2)()()2215105x y xy xy -÷-(3)()()()2321x x x -+--。

八年级数学整式的乘法与因式分解单元测试题(Word版 含解析)

八年级数学整式的乘法与因式分解单元测试题(Word版 含解析)
【答案】B
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.
【详解】
A、是多项式乘法,不是因式分解,错误;
B、是因式分解,正确.
C、右边不是积的形式,错误;
D、左边是单项式,不是因式分解,错误.
故选B.
【点睛】
本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.
2.下列计算正确的是( )
A.3x2·4x2=12x2B.(x-1)(x—1)=x2—1C.(x5)2=x7D.x4÷x=x3
【答案】D
【解析】试题分析:根据单项式乘以单项式的法则,可知3x2·4x2=12x4,故A不正确;
根据乘法公式(完全平方公式)可知(x-1)(x—1)=x2—2x+1,故B不正确;
C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;
D、原式=6a2,故D选项正确,符合题意,
故选D.
【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.
10.已知a=96,b=314,c=275,则a、b、c的大小关系是( )
A.a>b>cB.a>c>bC.c>b>aD.b>c>a
解:∵M=(x-3)(x-7)=x2-10x+21,
N=(x-2)(x-8)=x2-10x+16,
M-N=(x2-10x+21)-(x2-10x+16)=5,
∴M>N.
故选B.
“点睛”本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.

西安西港花园学校八年级数学上册第十四章《整式的乘法与因式分解》经典练习题

西安西港花园学校八年级数学上册第十四章《整式的乘法与因式分解》经典练习题

一、选择题1.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷= D 解析:D【分析】分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可.【详解】解:A 、a 2∙a 4=a 6,故选项A 不合题意;B 、(a 2)3=a 6,故选项不B 符合题意;C 、(ab 2)3=a 3b 6,故选项C 不符合题意;D 、a 6÷a 2=a 4,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.2.多项式2425a ma ++是完全平方式,那么m 的值是( )A .10±B .20±C .10D .20B解析:B【分析】由4a 2+ma+25是完全平方式,可知此完全平方式可能为(2a±5)2,再求得完全平方式的结果,根据多项式相等,即可求得m 的值.【详解】解:∵4a 2+ma+25是完全平方式,∴4a 2+ma+25=(2a±5)2=4a 2±20a+25,∴m=±20.故选:B .【点睛】本题考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.3.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7B解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.4.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ C 解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】解:A 、2105525x x x x x -=⋅-,不是分解因式;B 、()a x y ax ay +=+,不是分解因式;C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式; 故选:C .【点睛】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键. 5.下列运算正确的是( )A .()23636a =B .()()22356a a a a --=-+ C .842x x x ÷=D .326326x x x ⋅= B解析:B【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可.【详解】解:A. ()23633a a =,故本选项不符合题意;B .()()22356a a a a --=-+,正确,故本选项符合题意;C .844x x x ÷=,故本选项不合题意;D .325326x x x ⋅=,故本选项不合题意.故选:B .【点睛】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键.6.2a =1,b 是2的相反数,则a+b 的值是( )A .1B .-3C .-1或-3D .1或-3C 解析:C【分析】根据平方及相反数定义求出a 、b 的值,代入a+b 计算即可.【详解】∵2a =1,b 是2的相反数,∴1a =±,b=-2,当a=1时,a+b=1-2=-1,当a=-1时,a+b=-1-2=-3,故选:C .【点睛】此题考查求代数式的值,根据平方及相反数定义求出a 、b 的值是解题的关键. 7.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 2D 解析:D【分析】根据整式的乘法逐项判断即可求解.【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意;D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意.故选:D【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.8.如图,对一个正方形进行了分割,通过面积相等可以证明下列哪个式子( )A .22()()x y x y x y -=-+B .222()2x y x xy y +=++C .222()2x y x xy y -=-+D .22()()4x y x y xy +=-+ B解析:B【分析】 观察图形的面积,从整体看怎么表示,再从分部分来看怎么表示,两者相等,即可得答案.【详解】解:图中大正方形的边长为:x y +,其面积可以表示为:2()x y + 分部分来看:左下角正方形面积为2x ,右上角正方形面积为2y ,其余两个长方形的面积均为xy ,各部分面积相加得:222x xy y ++, 222()2x y x xy y ∴+=++故选:B .【点睛】本题考查了乘法公式的几何背景,明确几何图形面积的表达方式,熟练掌握相关乘法公式,是解题的关键.9.记A n =(1﹣212)(1﹣213)(1﹣214)…(1﹣21n),其中正整数n ≥2,下列说法正确的是( )A .A 5<A 6B .A 52>A 4A 6C .对任意正整数n ,恒有A n <34D .存在正整数m ,使得当n >m 时,A n <10082015D 解析:D【分析】 根据平方差公式因式分解然后约分,便可归纳出来即可.【详解】解:A 、A 5=22221111631111==2345105⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, A 6=231715612⎛⎫⨯-= ⎪⎝⎭, 37512> ∴A 5>A 6,此选项不符合题意;B 、A 4=2221115111=2348⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭, ∴A 52=925,A 4A 6=5735=81290⨯, ∵9352590<, ∴A 52<A 4A 6,此选项不符合题意;C 、∵A 2=2131=24-, 且345674681012<<<<<, ∴n ≥2时,恒有A n ≤34, 此选项不符合题意;D 、当m =2015时,A m =2015+120161008==2201540302015⨯, 当n >m 时,A n <10082015, ∴存在正整数m ,使得当n >m 时,A n <10082015, 此选项符合题意;故选择:D .【点睛】本题考查数字的变化规律,平方差公式,关键是根据题目找出规律是关键.10.下列运算正确的是( )A .428a a a ⋅=B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+ B解析:B【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断.【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误;故选:B .【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.二、填空题11.若2330x x --=,则()()()123x x x x ---的值为______.15【分析】原式利用多项式乘以多项式以及单项式乘以多项式法则化简把已知等式代入计算即可求出值【详解】∵x2−3x−3=0∴x2=3x +3则原式=(x2−x )(x2−5x +6)=(2x +3)(−2x +解析:15【分析】原式利用多项式乘以多项式,以及单项式乘以多项式法则化简,把已知等式代入计算即可求出值.【详解】∵x 2−3x−3=0,∴x 2=3x +3,则原式=(x 2−x )(x 2−5x +6)=(2x +3)(−2x +9)=−4x 2+12x +27=−4(3x +3)+12x +27=−12x−12+12x +27=15.故答案为:15【点睛】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键. 12.若231m n -=,则846m n -+=________.6【分析】将原式化为再整体代入即可【详解】解:∵∴原式==8-2×1=6故答案为:6【点睛】本题考查了求代数式的值把某一部分看成一个整体是解题的关键解析:6【分析】将原式化为82(23)m n --,再整体代入即可.【详解】解:∵231m n -=,∴原式=82(23)m n --=8-2×1=6.故答案为:6.【点睛】本题考查了求代数式的值,把某一部分看成一个整体是解题的关键.13.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可.【详解】由题意得:(a+b )(2a+b )=2223a ab b ++,故答案为:(a+b )(2a+b )=2223a ab b ++.【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键. 14.若ABC 的三边长是a 、b 、c ,且222a b c ab bc ac +=+++,则这个三角形形状是_________角形.等边【分析】先等式两边同乘以2再移项利用完全平方公式即可得到答案【详解】∵∴∴∴∵∴∴a=b=c ∴这个三角形是等边三角形故答案是:等边【点睛】本题主要考查完全平方公式偶数次幂的非负性以及等边三角形的解析:等边【分析】先等式两边同乘以2,再移项,利用完全平方公式,即可得到答案.【详解】∵222a b c ab bc ac ++=++,∴222222222a b c ab bc ac ++=++,∴2222222220a b c ab bc ac ++---=,∴222()()()0a b a c b c -+-+-=,∵222()0,()0,()0a b a c b c -≥-≥-≥,∴222()0,()0,()0a b a c b c -=-=-=,∴a=b=c ,∴这个三角形是等边三角形,故答案是:等边【点睛】本题主要考查完全平方公式,偶数次幂的非负性以及等边三角形的定义,熟练掌握完全平方公式,是解题的关键.15.已知有理数a ,b 满足0ab <,a b a b +=+,521a b b a ++=--,则()31222a b a b ⎛⎫++⋅- ⎪⎝⎭的值为______.0【分析】分情况讨论或根据绝对值的性质化简得到即可求出结果【详解】解:①时(矛盾)舍去;②时原式故答案是:0【点睛】本题考查代数式的求值解题的关键是掌握绝对值的化简利用整体代入的思想求值解析:0【分析】分情况讨论,0a >,0b <或0a <,0b >,根据绝对值的性质化简,得到312022a b ++=,即可求出结果. 【详解】解:①0a >,0b <时,()521a b b a b a b a ++=--=---=-⎡⎤⎣⎦,610a b ∴++=,0a b a b +=+≥,()61510a b a a b ∴++=+++>(矛盾),∴舍去;②0a <,0b >时,()521a b b a b a a b ++=--=--=-,4310a b ∴++=,312022a b ∴++=, ∴原式()00a b =-=.故答案是:0.【点睛】本题考查代数式的求值,解题的关键是掌握绝对值的化简,利用整体代入的思想求值.16.+1﹣1)的结果等于_____.6【分析】根据平方差公式计算【详解】(+1)(﹣1)=7-1=6故答案为:6【点睛】此题考查平方差计算公式:熟记公式是解题的关键解析:6【分析】根据平方差公式计算.【详解】﹣1)=7-1=6,故答案为:6.【点睛】此题考查平方差计算公式:22()()a b a b a b +-=-,熟记公式是解题的关键. 17.因式分解()2228ac bc abc -+=______.【分析】先利用完全平方公式把原式写成再根据完全平方公式得出结果【详解】解:原式故答案是:【点睛】本题考查因式分解解题的关键是掌握利用乘法公式进行因式分解的方法解析:()22ac bc +【分析】先利用完全平方公式把原式写成2222244a c abc b c ++,再根据完全平方公式得出结果.【详解】解:原式222222448a c abc b c abc =-++ 2222244a c abc b c =++()22ac bc =+.故答案是:()22ac bc +.【点睛】本题考查因式分解,解题的关键是掌握利用乘法公式进行因式分解的方法.18.若a - b = 1, ab = 2 ,则a + b =______. 【分析】根据完全平方公式及开方运算即可求解【详解】解:∵∴故答案为:【点睛】本题考察完全平方公式熟练掌握完全平方公式是解题的关键解析:3±【分析】根据完全平方公式及开方运算即可求解.【详解】解:∵()()22241429a b a b ab +=-+=+⨯=, ∴3a b +==±故答案为:3±.【点睛】本题考察完全平方公式,熟练掌握完全平方公式是解题的关键.19.一个长方形的两邻边分别是8x -,2x -,若()()228213x x -+-=,则这个长方形的面积是_________【分析】根据矩形的周长和面积公式以及完全平方公式即可得到结论【详解】解:设8-x=ax-2=b ∵长方形的两邻边分别是8-xx-2∴a+b=8-x+x-2=6∵(8-x)2+(x-2)2=a2+b2= 解析:232【分析】根据矩形的周长和面积公式以及完全平方公式即可得到结论.【详解】解:设8-x=a ,x-2=b ,∵长方形的两邻边分别是8-x ,x-2,∴a+b=8-x+x-2=6,∵(8-x)2+(x-2)2=a 2+b 2=(a+b)2-2ab=62-2ab=13,∴ab=232, ∴这个长方形的面积=(8-x)(x-2)=ab=232. 故答案为:232. 【点睛】 本题考查了完全平方公式的变形求值,熟练掌握完全平方公式是解题的关键.20.因式分解:24a b b -=______.【分析】直接提取公因式b 进而利用平方差公式分解因式得出即可【详解】解:4a2b-b=b (4a2-1)=b (2a-1)(2a+1)故答案为:b (2a-1)(2a+1)【点睛】本题考查了提取公因式法以及解析:()()2121b a a -+【分析】直接提取公因式b ,进而利用平方差公式分解因式得出即可.【详解】解:4a 2b-b=b (4a 2-1)=b (2a-1)(2a+1).故答案为:b (2a-1)(2a+1).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键.三、解答题21.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连结MD 和ME .设AP =a ,BP =b ,且a +b =8,ab =6,求图中阴影部分的面积.解析:36 【分析】依据AP =a ,BP =b ,点M 是AB 的中点,可得AM =BM =2a b+,再根据S 阴影=S 正方形APCD +S 正方形BEFP ﹣S △ADM ﹣S △BEM ,即可得到图中阴影部分的面积. 【详解】解:∵a +b =8,a b =6,∴S 阴影部分=S 正方形APCD +S 正方形BEFP ﹣S △AMD ﹣S △MBE ,=22112222a b a b a b a b ++⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭,=()2224a b a b ++-,=()()22+24a b a b ab +--,=64﹣12﹣644, =64﹣12﹣16, =36.【点睛】本题主要考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.22.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图(1)可以 用来解释()2222a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.如图(2),将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小长方形,且m n >.(以上长度单位: cm )(1)观察图形,可以发现代数式22252m mn n ++可以分解因式为_________(2)若每块小长方形的面积为210cm ,四个正方形的面积和为258,cm 试求图中所有裁剪线(虚线部分)长之和.解析:(1)()()22m n m n ++;(2)42cm . 【分析】(1)根据图形的面积直接可以得到;(2)根据222258m n +=,10mn =,可得2229m n +=,可求得7m n +=,根据图形可知,图中所有裁剪线(虚线部分)长之和是66m n +,据此求解即可. 【详解】(1)根据图形,依题意可得:2225222mmn n m n mn(2)依题意得222258m n +=,10mn =2229m n ∴+=2222mnm mnn2292049m n0m n +> 7m n ∴+=,根据图形可知,图中所有裁剪线(虚线部分)长之和是:6666742m nmn∴图中所有裁剪线(虚线部分)长之和为42cm .【点睛】本题考查完全平方公式和因式分解的应用,理解题意,从题目中获取信息,列出正确的代数式,再由图形的特点求解是解题的关键.23.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在m n +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值. 根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >);(2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.解析:(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论;(2)根据阅读材料介绍的方法即可得出结论; (3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论. 【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯= ∵0x >∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2(2)∵0x >时,12x ,34x均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020=当43636x x -=-时,即8433x =或(舍去)时,有最小值,∴当83x =时,代数式43201036x x ++-的最小值是2020. 【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.24.某园林公司现有A 、B 两个区,已知A 园区为长方形,长为()x y +米,宽为()x y -米;B 园区为正方形,边长为(3)x y +米.(1)请用代数式表示A 、B 两园区的面积之和并化简;(2)现根据实际需要对A 园区进行整改,长增加(11)x y -米,宽减少(2)x y -米,整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米. ①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C 、D 两种花投入的费用与收益如表:-投入)解析:(1)(x+y )(x-y )+(x+3y )2;2x 2+6xy+8y 2;(2)①x=30,y=10;②相等 【分析】(1)根据长方形的面积等于长乘以宽,正方形的面积等于边长的平方,最后再求和, (2)①根据整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米.列方程组求解即可,②计算出A 园区的净收益和B 园区的净收益,再比较大小. 【详解】解:(1)(x +y )(x -y )+(x +3y )2, =x 2-y 2+x 2+6xy +9y 2, =2x 2+6xy +8y 2;(2)①由题意得,()()()()()()()()()112350211243980x y x y x y x y x y x y x y x y x y ⎧⎡⎤⎡⎤++-----⎪⎣⎦⎣⎦⎨⎡⎤++-+---++⎪⎣⎦⎩==,整理得,12350270x y x y -=⎧⎨+=⎩,解得:x =30,y =10, 答:x =30,y =10.②A 园区整改后长为12x 米,宽为y 米, A 园区的净收益(22-12)×12xy =36000元, B 园区的净收益为(26-16)(x +3y )2=36000元, ∴B 园区的净收益等于A 园区的净收益. 【点睛】本题考查二元一次方程组、整式的加减、多项式乘以多项式的计算方法等知识,正确的列出多项式,并化简是解决问题的关键.25.已知多项式35ax bx +-,当2x =-时,该多项式的值是7,则当2x =时,该多项式的值是多少? 解析:-17 【分析】首先把x=-2代入多项式35ax bx +-,整理成关于a 、b 的等式,再把x=2代入,观察两个式子的联系,进一步求得数值即可. 【详解】解:x =-2时, 35ax bx +-=7, 即-8a -2b -5=7, 所以8a+2b =-12,当x=2时,35ax bx +-=8a+2b -5=-12-5=-17, 所以该多项式的值是-17. 【点睛】本题考查了代数式求值,注意代入数值的特点,发现前后式子的联系,整体代入解决问题. 26.阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题:①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________; ③请应用上述性质计算:201920182017(0.125)24-⨯⨯ 解析:①1,1; ②n n a b ,n n n a b c ;③-132. 【分析】①把问题分别转化为1001和100100100122⨯处理即可; ②将猜到规律推广到n 次方和三个因数情形即可;③把2019(-0.125)和20182分别变形为20172(-0.125)(-0.125)⨯和20172⨯2就可逆用上述规律计算即可. 【详解】①∵1001001212⎛⎫⨯= ⎪⎝⎭=1, ∴100122⎛⎫⨯= ⎪⎝⎭1;∵100100122⎛⎫⨯= ⎪⎝⎭1001001001212⨯=, ∴100100122⎛⎫⨯= ⎪⎝⎭1,故依次填1,1;②∵100122⎛⎫⨯= ⎪⎝⎭1,100100122⎛⎫⨯= ⎪⎝⎭1,∴100122⎛⎫⨯= ⎪⎝⎭100100122⎛⎫⨯ ⎪⎝⎭, 由此可得:()na b ⋅=n n a b ;()na b c ⋅⋅=n n n a b c ;故依次填n n a b ,n n n a b c ;③ ∵2019(-0.125)=20172(-0.125)(-0.125)⨯,201822017=2⨯2, ∴201920182017(0.125)24-⨯⨯=20172(-0.125)(-0.125)⨯20172⨯⨯2×20174 =20172(-0.12524)(-0.125)2⨯⨯⨯⨯ =1-32. 【点睛】本题考查了规律的验证,猜想和应用,熟练逆用同底数幂的乘法公式和发现的规律是解题的关键. 27.计算: (1)2a (4a 2-2a +1) (2)(2x -1)(2x +2)-(-2x )2(3)(-x -2y )(x -2y )-(2y -x )2 (4)119910022⨯(用简便方法计算) 解析:(1)8a 3-4a 2+2a ;(2)2x-2;(3)-2x 2+4xy ;(4)399994. 【分析】(1)利用单项式乘多项式法则计算即可;(2)根据多项式乘多项式和积的乘方展开,再合并同类项即可; (3)根据平方差公式和完全平方公式展开,再合并同类项即可; (4)原式先变形,再利用平方差公式计算即可. 【详解】(1)2a(4a 2-2a+1)= 2a ⋅4a 2-2a ⋅2a +2a ⋅1=8a 3-4a 2+2a ; (2)(2x -1)(2x+2)-(-2x)2=4x 2+4x-2x-2-4x 2=2x-2;(3)(-x-2y)(x-2y)-(2y-x)2= (-2y-x)( -2y+x) -(2y-x)2=4y 2-x 2-4y 2-x 2+4xy=-2x 2+4xy ;(4)119910022⨯=2211113(100)(100)100()10000999922244-⨯+=-=-=. 【点睛】此题考查了整式的混合运算,熟练掌握相应的运算法则是解答此题的关键. 28.先化简,再求值:()()()()()32333b a b a a b a b b a a ---+---÷-⎡⎤⎣⎦,其中212025a b ⎛⎫-+-= ⎪⎝⎭. 解析:4a b -,85【分析】先算乘法,再合并同类项,最后算除法,代入求出即可. 【详解】解:()()()()()32333b a b a a b a b b a a ---+---÷-⎡⎤⎣⎦()()22223293ab b a ab b a a =--++-÷- ()()23123ab a a =-÷-4a b =-∵212025a b ⎛⎫-+-= ⎪⎝⎭ ∴1=02a -,2=05b - 解得:12a =,25b =∴原式128=⨯-=4255【点睛】本题考查了整式的混合运算和求值的应用,主要考查学生的化简能力和计算能力,注意运算顺序.。

《整式的乘法与因式分解》单元检测题带答案

《整式的乘法与因式分解》单元检测题带答案

《整式的乘法与因式分解》单元测试卷(时间:120分钟满分:150分)一、选择题(每小题3分,共30分)1.下列计算正确的是()A . A 3·A 4=A 12B . (A 3)4=A 7C . (A 2B )3=A 6B 3D . A 3÷A 4=A (A ≠0)2.下列各式计算正确的是( )A . (x+2)(x﹣5)=x2﹣2x﹣3B . (x+3)(x﹣)=x2+x﹣1C . (x﹣)(x+)=x2﹣x﹣D . (x﹣2)(﹣x﹣2)=x2﹣43.化简(-2A ) A -(-2A )2的结果是( )A . 0B .C .D .4.在算式(x+m)(x-n)的积中不含x的一次项,则m,n一定满足()A . 互为倒数B . 互为相反数C . 相等D . mn=05.下列多项式:①x2+y2;②-x2-4y2;③-1+A 2;④0.081A 2-B 2,其中能用平方差公式分解因式的多项式有()A . 1个B . 2个C . 3个D . 4个6.化简(A -1)(A +1)(A 2+1)-(A 4-1)的结果为()A . 0B . 2C . -2D . 2A 47.如果单项式-2x A -2B y2A +B 与x3y8B 是同类项,那么这两个单项式的积是()A . -2x6y16B . -2x6y32C . -2x3y8D . -4x6y168.化简(-2)2n+1+2(-2)2n的结果是()A . 0B . -22n+1C . 22n+1D . 22n9.如图,设k=(A >B >0),则有()A . k>2B . 1<k<2C . <k<1D . 0<k<10.因式分解x2-A x+B ,甲看错了A 的值,分解的结果是(x+6)(x-1),乙看错了B 的值,分解的结果为(x-2)(x+1),那么x2+A x+B 分解因式正确的结果为()A . (x-2)(x+3)B . (x+2)(x-3)C . (x-2)(x-3)D . (x+2)(x+3)二、填空题(每小题3分,共18分)11.计算:+(π-2)0=________.12.一个长方形的面积为A 3-2A 2+A ,宽为A ,则长方形的长为___________.13.若A 2-B 2=4,则(A -B )2(A +B )2=__________.14.如果代数式2A 2+3A +1的值等于6,那么代数式6A 2+9A -5=________.15.比邻星是除太阳外距地球最近的恒星,它距地球约3.99×1016米,若用速度是3×107米/秒的宇航器向这颗恒星进发,一个20岁的小伙子到达比邻星时的年龄是____________岁(结果保留整数).16.设A =192×918,B =8882-302,C =1 0532-7472,则数A ,B ,C 按从小到大的顺序排列,结果是________________.三、解答题(共52分)17.计算:(1)(3A +2B -1)(3A -2B +1);(2)(A +B )2-(A -B )2;(3)(2x+y-3)2;(4)100×99.18.分解因式:(1)A 2x2y-A xy2;(2)-14A B C -7A B +49A B 2C ;(3)9(A -B )2-16(A +B )2;(4)3x3-12x2y+12xy2.19.如图所示,有一位狡猾的地主,把一块边长为A 米的正方形土地租给李老汉种植.今年,他对李老汉说:“我把你这块地一边减少4米,另一边增加4米,继续租给你,你也没有吃亏,你看如何?”李老汉一听,觉得好像没有吃亏,就答应.同学们,你们觉得李老汉有没有吃亏?20.已知A ,B ,C 是△A B C 三边的长,且A 2+2B 2+C 2-2B (A +C )=0.你能判断△A B C 的形状吗?请说明理由.21.(12分)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)28是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)根据上面的提示,判断2 012是否为“神秘数”?如果是,请写出两个连续偶数平方差的形式;如果不是,说明理由;(4)两个连续奇数的平方差(取正数)是神秘数吗?为什么?参考答案一、选择题(每小题3分,共30分)1.下列计算正确的是()A . A 3·A 4=A 12B . (A 3)4=A 7C . (A 2B )3=A 6B 3D . A 3÷A 4=A (A ≠0)[答案]C[解析]试题分析:A 、根据同底数幂的乘法,应为A 3`·A 4=A 7,故本选项错误;B 、根据幂的乘方的性质,应为(A 3)4=A 12,故本选项错误;C 、根据积的乘方的性质,可知每个因式都分别乘方,正确;D 、根据同底数幂的除法和负整指数幂的性质,应为A 3÷A 4=(A ≠0),故本选项错误.故选C .考点:1、同底数幂的乘法,2、积的乘方和幂的乘方2.下列各式计算正确的是()A . (x+2)(x﹣5)=x2﹣2x﹣3B . (x+3)(x﹣)=x2+x﹣1C . (x﹣)(x+)=x2﹣x﹣D . (x﹣2)(﹣x﹣2)=x2﹣4[答案]C[解析]A . (x+2)(x-5)=x2-3x-10,原计算错误;B . (x+3)(x-)=x2+x-1,原计算错误;C . (x-)(x+)=x2-x-,正确;D . (x-2)(-x-2)=-x2+4,原计算错误.故选C .3.化简(-2A ) A -(-2A )2的结果是( )A . 0B .C .D .[答案]C[解析]试题分析:==,故选C .考点:1.单项式乘单项式;2.合并同类项.4.在算式(x+m)(x-n)的积中不含x的一次项,则m,n一定满足()A . 互为倒数B . 互为相反数C . 相等D . mn=0[答案]C[解析]因为(x+m)(x-n)=x2+(m-n)x-mn,所以m-n=0,则m=n.故选C .5.下列多项式:①x2+y2;②-x2-4y2;③-1+A 2;④0.081A 2-B 2,其中能用平方差公式分解因式的多项式有()A . 1个B . 2个C . 3个D . 4个[答案]B[解析]能用平方差公式分解因式的多项式的特征是两个数的平方差,所以①②不能,③④能.故选B .6.化简(A -1)(A +1)(A 2+1)-(A 4-1)的结果为()A . 0B . 2C . -2D . 2A 4[答案]A[解析](A -1)(A +1)(A 2+1)-(A 4-1)=(A 2-1)(A 2+1)-(A 4-1)=A 4-1-A 4+1=0.故选A .7.如果单项式-2x A -2B y2A +B 与x3y8B 是同类项,那么这两个单项式的积是()A . -2x6y16B . -2x6y32C . -2x3y8D . -4x6y16[答案]B[解析]由同类项的定义得,A -2B =3,2A +B =8B ,联立这两个方程解得A =7,B =2,所以-2x3y16·x3y16=-2x6y32.故选B .8.化简(-2)2n+1+2(-2)2n的结果是()A . 0B . -22n+1C . 22n+1D . 22n[答案]A[解析](-2)2n+1+2(-2)2n=(-2)2n(-2+2)=0.故选A .9.如图,设k=(A >B >0),则有()A . k>2B . 1<k<2C . <k<1D . 0<k<[答案]B[解析]由题意可得:,∴,又∵,∴,∴,即.10.因式分解x2-A x+B ,甲看错了A 的值,分解的结果是(x+6)(x-1),乙看错了B 的值,分解的结果为(x-2)(x+1),那么x2+A x+B 分解因式正确的结果为()A . (x-2)(x+3)B . (x+2)(x-3)C . (x-2)(x-3)D . (x+2)(x+3)[答案]B[解析][详解]因为(x+6)(x-1)=x2+5x-6,所以B =-6;因为(x-2)(x+1)=x2-x-2,所以A =1.所以x2-A x+B =x2-x-6=(x-3)(x+2).故选B .点睛:本题主要考查了多项式的乘法和因式分解,看错了A ,说明B 是正确的,所以将看错了A 的式子展开后,可得到B 的值,同理得到A 的值,再把A ,B 的值代入到x2+A x+B 中分解因式.二、填空题(每小题3分,共18分)11.计算:+(π-2)0=________.[答案]3[解析]=2+1=3.故答案为3.12.一个长方形的面积为A 3-2A 2+A ,宽为A ,则长方形的长为___________.[答案](A -1)2[解析]根据题意得,(A 3-2A 2+A )÷A =A 2-2A +1=(A -1)2.故答案为(A -1)2.13.若A 2-B 2=4,则(A -B )2(A +B )2=__________.[答案]16[解析](A -B )2(A +B )2=[(A -B )(A +B )]2=(A 2-B 2)2=42=16.故答案为16.14.如果代数式2A 2+3A +1的值等于6,那么代数式6A 2+9A -5=________.[解析]由题意列出关系式,求出2A 2+3A 的值,将所求式子变形后,把2A 2+3A 的值代入计算即可求出值.解:∵2A 2+3A +1=6,即2A 2+3A =5,∴6A 2+9A +5=3(2A 2+3A )+5=20.故答案为:20.15.比邻星是除太阳外距地球最近的恒星,它距地球约3.99×1016米,若用速度是3×107米/秒的宇航器向这颗恒星进发,一个20岁的小伙子到达比邻星时的年龄是____________岁(结果保留整数).[答案]62[解析]20+3.99×1016÷(3×107×60×60×24×365)≈62.故答案为62.点睛:本题主要考查了实数的混合运算,解题的关键是要注意时间单位之间的进率,1年=365天,1天=24小时,1小时=60分,1分=60秒,根据路程=速度×时间计算出宇航器1年所走的路程.16.设A =192×918,B =8882-302,C =1 0532-7472,则数A ,B ,C 按从小到大的顺序排列,结果是________________.[答案]A <C <B[解析]A =192×918=361×918,B =8882-302=(888−30)×(888+30)=858×918,C =10532-7472=(1053+747)×(1053−747)=1800×306=600×918,所以A <C <B .故答案为:A <C <B .[此处有视频,请去附件查看]三、解答题(共52分)17.计算:(1)(3A +2B -1)(3A -2B +1);(2)(A +B )2-(A -B )2;(3)(2x+y-3)2;(4)100×99.[答案](1) 9A 2-4B 2+4B -1.(2)4A B .(3)4x2+4xy+y2-12x-6y+9.(4)9999[解析]试题分析:(1)将两个因式中相同的项作为一个整体,先用平方差公式,再用完全平方公式计算;(2)先用完全平方公式展开,再合并同类项;(3)用完全平方公式计算;(4)把每一个因式把化为100与的和或差,再用平方差公式计算.试题解析:(1)(3A +2B -1)(3A -2B +1);原式=9A 2-4B 2+4B -1.(2)(A +B )2-(A -B )2;原式=4A B .(3)(2x+y-3)2;原式=4x2+4xy+y2-12x-6y+9.(4)100×99.原式=(100+)(100-)=1002-()2=10000-=9 999.18.分解因式:(1)A 2x2y-A xy2;(2)-14A B C -7A B +49A B 2C ;(3)9(A -B )2-16(A +B )2;(4)3x3-12x2y+12xy2.[答案](1)A xy(A x-y).(2)7A B (7B C -2C -1).(3)-(A +7B )(7A +B ).(4)3x(x-2y)2. [解析]试题分析:(1)提取公因式A xy;(2)提公因式7A B ;(3)用平方差公式分解因式;(4)先提取公因式3x,再用完全平方公式分解因式.试题解析:(1)A 2x2y-A xy2;原式=A xy(A x-y).(2)-14A B C -7A B +49A B 2C ;原式=7A B (7B C -2C -1).(3)9(A -B )2-16(A +B )2;原式=-(A +7B )(7A +B ).(4)3x3-12x2y+12xy2.原式=3x(x-2y)2.19.如图所示,有一位狡猾的地主,把一块边长为A 米的正方形土地租给李老汉种植.今年,他对李老汉说:“我把你这块地一边减少4米,另一边增加4米,继续租给你,你也没有吃亏,你看如何?”李老汉一听,觉得好像没有吃亏,就答应.同学们,你们觉得李老汉有没有吃亏?[答案]李老汉吃亏了.[解析]试题分析:根据赵老汉土地划分前后土地的长宽,分别表示面积,再作差.试题解析:赵老汉吃亏了.∵A 2-(A +5)(A -5)=A 2-(A 2-25)=25,∴与原来相比,赵老汉的土地面积减少了25米2,即赵老汉吃亏了.[点睛]本题主要考查了平方差公式的几何表示,表示出图形阴影部分面积是解题的关键.20.已知A ,B ,C 是△A B C 三边的长,且A 2+2B 2+C 2-2B (A +C )=0.你能判断△A B C 的形状吗?请说明理由.[答案]△A B C 为等边三角形.理由见解析.[解析]试题分析:首先分组因式分解,进一步分析探讨三边关系得出结论即可.试题解析:由A 2+2B 2+C 2-2B (A +C )=0,得:A 2-2A B +B 2+B 2-2B C +C 2=0,即(A -B )2+(B -C )2=0,∴A -B =0,B -C =0,∴A =B ,B =C ,∴A =B =C ,∴△A B C 是等边三角形.考点:因式分解的应用.21.(12分)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)28是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)根据上面的提示,判断2 012是否为“神秘数”?如果是,请写出两个连续偶数平方差的形式;如果不是,说明理由;(4)两个连续奇数的平方差(取正数)是神秘数吗?为什么?[答案](1)是.(2)是.(3)是.(4)不是.[解析]试题分析:(1)解方程28=(2n+2)2-(2n)2,看n是不是整数;(2)计算(2k+2)2-(2k)2的结果是不是4的倍数;(3)根据(3)中的规律求解;(4)比较两个连续偶数平方差与两个连续奇数的平方差(取正数)的形式.(1)是.∵28=82-62,∴28是神秘数.(2)是.∵(2k+2)2-(2k)2=8k+4=4(2k+1),故两个连续偶数构造的神秘数是4的倍数.(3)是,∵2 012=4×503,故2k+1=503,k=251.∴这两个数为2k+2=504,2k=502,即2 012=5042-5022.(4)不是.∵两个连续奇数的平方差可表示为(2k+1)2-(2k-1)2=8k=4·2k(k为正整数),∴两个连续奇数的平方差是4的偶数倍.点睛:本题主要考查了整式的混合运算和阅读理解的能力,一般偶数表示为2k(k为整数),奇数表示为2k+1(k 为整数),两个连续偶数表示为2k,2k+2(k为偶数),解题的关键是理解“神秘数”的构成.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安西港花园学校数学整式的乘法与因式分解单元测试卷 (word版,含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.因式分解x 2-ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)【答案】B【解析】【分析】【详解】因为(x +6)(x -1)=x 2+5x-6,所以b=-6;因为(x -2)(x +1)=x 2-x-2,所以a=1.所以x 2-ax +b=x 2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a ,说明b 是正确的,所以将看错了a 的式子展开后,可得到b 的值,同理得到a 的值,再把a ,b 的值代入到x 2+ax +b 中分解因式.2.已知x 2+4y 2=13,xy=3,求x+2y 的值,这个问题我们可以用边长分别为x 和y 的两种正方形组成一个图形来解决,其中x>y ,能较为简单地解决这个问题的图形是( )A .B .C .D .【答案】A【解析】 ∵222(2)44x y x y xy +=++,∴若用边长分别为x 和y 的两种正方形组成一个图形来解决(其中x y >), 则这个图形应选A ,其中图形A 中,中间的正方形的边长是x ,四个角上的小正方形边长是y ,四周带虚线的每个矩形的面积是xy .故选A.3.下列计算正确的是( )A .224a a a +=B .352()a a =C .527a a a ⋅=D .2222a a -=【答案】C【解析】【详解】解:A. 222a a 2a +=,故A 错误;B. ()326a a =,故B 错误;C. 527a a a ⋅=,正确;D. 2222a a a -=,故D 错误;故选C4.下列各式中,不能运用平方差公式进行计算的是( )A .(21)(12)x x --+B .(1)(1)ab ab -+C .(2)(2)x y x y ---D .(5)(5)a a -+--【答案】A【解析】【分析】运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D 中均存在相同和相反的项,故选A.【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.5.已知a ,b ,c 是△ABC 的三条边的长度,且满足a 2-b 2=c (a -b ),则△ABC 是( )A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.6.下面计算正确的是( )A .33645x x x +=B .236a a a ⋅=C .()4312216x x -=D .()()22222x y x y x y +-=- 【答案】C【解析】【分析】A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断.【详解】A.原式=35x ,错误;B.原式=5a ,错误;C.原式=1216x ,正确;D.原式=224x y -,错误.故选C.【点睛】本题主要考查同底数幂的乘法,合并同类项,幂的乘方与积的乘方,平方差公式运算,熟知其运算法则是解题的关键.7.若33×9m =311 ,则m 的值为 ( )A .2B .3C .4D .5【答案】C【解析】【分析】根据同底数幂的乘法的性质,幂的乘方的性质,可得关于m 的方程,解方程即可求得答案.【详解】∵33×9m =311 ,∴33×(32)m =311,∴33+2m =311,∴3+2m=11,∴2m=8,解得m=4,故选C .【点睛】本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.8.下列变形,是因式分解的是( )A .2(1)x x x x -=-B .21(1)1x x x x -+=-+C .2(1)x x x x -=-D .2()22a b c ab ac +=+【答案】C【解析】 分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 详解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、是符合因式分解的定义,故本选项正确;D 、右边不是整式积的形式,不是因式分解,故本选项错误;故选:C .点睛:本题考查了因式分解的知识,理解因式分解的定义是解题关键.9.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.10.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【答案】D【解析】【分析】 根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b <0,∴b <0,∴a 2+2ac+c 2=4b 2,即22224a ac c b ++= ∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥, 故选:D.【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b >,再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是____________.【答案】a 2-b 2=(a+b)(a-b)【解析】【分析】根据正方形的面积公式和梯形的面积公式,即可求出答案.【详解】∵第一个图形的面积是a 2-b 2,第二个图形的面积是12(b +b +a +a )(a -b )=(a +b )(a -b ), ∴根据两个图形的阴影部分的面积相等得:a 2-b 2=(a+b)(a-b).故答案为a 2-b 2=(a+b)(a-b).【点睛】 本题考查了平方差公式得几何背景,熟练掌握平方差公式的定义是本题解题的关键.12.x+1x=3,则x 2+21x =_____. 【答案】7【解析】【分析】直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x +1x =3, ∴(x +1x )2=9, ∴x 2+21x +2=9, ∴x 2+21x =7. 故答案为7.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.13.若()219x y +=,()25x y -=,则22xy +=______. 【答案】12【解析】【分析】根据完全平方公式的两个关系式间的关键解答即可.【详解】∵()219x y +=,()25x y -=,∴()()224x y x x y y +=-+,∴19=5+4xy ,∴xy=72, ∴()2227252122x x x y y y +-=+=+⨯=, 故答案为:12.【点睛】 此题考查完全平方公式,熟记公式并掌握两个公式的等量关系是解题的关键.14.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m 应是3或-5;若用完全平方公式分解,m应是4,若用提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.15.如果9x 2-axy+4y 2是完全平方式,则a 的值是____.【答案】±12【解析】【分析】根据完全平方式得出-axy=±2×3x2y ,求出即可.【详解】解:9x 2-axy+4y 2=(3x±2y )2即-axy=±2×3x2y所以a=±12 【点睛】本题考查了完全平方式,能熟记完全平方公式的特点是解此题的关键,注意:完全平方式有两个a 2-2ab+b 2和a 2+2ab+62是本题的易错点.16.已知:如图,△ACB 的面积为30,∠C 90=︒,BC a =,AC b =,正方形ADEB 的面积为169,则2()a b -的值为_____________.【答案】49【解析】首先根据三角形的面积可知12ab=30,可得ab=60,再利用勾股定理和正方形的面积公式求出a 2+b 2=169,因此可知(a-b )2= a 2+b 2-2ab=169-120=49.故答案为:49. 点睛:此题主要考查了勾股定理,关键是掌握在任何直角三角形中,两条直角边的平方和等于斜边的平方,同时考查了三角形的面积计算和完全平方公式的计算.17.222---x xy y =__________【答案】()2x y -+【解析】根据因式分解的方法,先提公因式“﹣”,再根据完全平方公式分解因式为:()()2222222x xy y x xy y x y ---=-++=-+. 故答案为()2x y -+.点睛:此题主要考查了因式分解,因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),注意符号的变化.18.已知a m =3,a n =2,则a 2m ﹣n 的值为_____.【答案】4.5【解析】分析:首先根据幂的乘方的运算方法,求出a 2m 的值;然后根据同底数幂的除法的运算方法,求出a 2m-n 的值为多少即可.详解:∵a m =3,∴a 2m =32=9,∴a 2m-n =292m n a a ==4.5. 故答案为:4.5. 点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.19.已知x 2+2x =3,则代数式(x +1)2﹣(x +2)(x ﹣2)+x 2的值为_____.【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把x 2+2x =3代入即可得答案.【详解】原式=x 2+2x+1-(x 2-4)+x 2=x 2+2x+1-x 2+4+x 2=x 2+2x+5.∵x 2+2x =3,∴原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.因式分解34x x -= .【答案】()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-.。

相关文档
最新文档