四年高考(2016-2019)数学(理)试题分项版解析——直线与圆(解析版)

合集下载

四年高考(2016-2019)数学(文)试题分项版解析—— 三视图的辨别与应用(解析版)

四年高考(2016-2019)数学(文)试题分项版解析—— 三视图的辨别与应用(解析版)

三视图2019年高考全景展示1.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158 B.162C.182 D.324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646336162 22++⎛⎫⨯+⨯⨯=⎪⎝⎭.故选B.2.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==,1.3.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.2018年高考全景展示1.【2018年浙江卷】某几何体的三视图如图所示(单位: cm ),则该几何体的体积(单位:cm 3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.2.【2018年文北京卷】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解. 3.【2018年全国卷Ⅲ文】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是。

2019高考试题数学(理)解析汇编-直线与圆(可编辑修改word版)

2019高考试题数学(理)解析汇编-直线与圆(可编辑修改word版)
圆的位置关系,以及恒过定点的直线方程.直线与圆的位置关系利用 d 与 r 的大小为判 断.当 0 d r 时,直线与圆相交,当 d r 时,直线与圆相切,当 d r 时,直线与圆相
离.
4.解析: 32 02 4 3 3 0 ,所以点 P(3, 0) 在圆 C 内部,应选 A.
5.答案 B 【命题意图】本试题主要考查了反射原理与三角形相 似知识的运用.通过相似三角形,来确定反射后的点的 落的位置,结合图像分析反射的次数即可.
F B
E
8. 、〔2018 年高考〔上海理〕〕假设 n (2, 1) 是直线
l 的一个法向量,那么 l 的倾斜角的大小为__________(结果用反三角
函数值表示).
9. 、〔2018 年高考〔山东理〕〕如图,在平面直角坐标系 xOy 中,一单位圆的圆心的初始位置 在 (0,1) ,此时圆上一点 P 的位置在 (0, 0) ,圆在 x 轴上沿正向滚动.当圆滚动到圆心位
____.
2018 年高考真题理科数学解析汇编:直线与圆参考答案 【一】选择题 1. 【答案】D
一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.
【解析】∵直线 (m 1)x+(n 1) y 2=0 与圆 (x 1)2 +(y 1)2 =1相切,∴圆心 (1,1) 到
直线的距离为 d = |(m 1)+(n 1) 2| =1,所以 mn m n 1 ( m n )2 ,设 t=m n ,
3 AF =3 , FB=1, EF = ,那么线段 CD 的长为
2
______________. 7. 、〔2018 年高考〔浙江理〕〕定义:曲线 C 上的点到直线
A l 的距离的最小值称为曲线 C 到直线 l 的距离.曲线

四年高考(2016-2019)数学(文)真题分项版解析——专题07 导数的应用(解析版)

四年高考(2016-2019)数学(文)真题分项版解析——专题07 导数的应用(解析版)

2019年高考全景展示1.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x,则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3(a +1)x 2+ax ﹣ax ﹣b x 3(a +1)x 2﹣b , 2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增,则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增,令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如图:∴0且,解得b <0,1﹣a >0,b(a +1)3,则a >–1,b <0.故选C . 2.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.【答案】(1)见解析;(2)(],0a ∈-∞.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=. 当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫ ⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=- ⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x ….又当0,[0,π]a x ∈…时,ax ≤0,故()f x ax ….因此,a 的取值范围是(,0]-∞.3.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<, 1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=. 又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<. 又1111()1ln 10f f αααααα⎛⎫⎛⎫=---== ⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.4.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(1)若a ≤0,讨论()f x 的单调性;(2)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->.【答案】(1)()f x 在(0,)+∞内单调递增.;(2)(i )见解析;(ii )见解析.【解析】(1)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e xx x f ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(2)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且。

四年高考(2016-2019)数学(理)试题分项版解析——物线(解析版)

四年高考(2016-2019)数学(理)试题分项版解析——物线(解析版)

抛物线 2019年高考全景展示1.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB =,求|AB |. 【答案】(1)3728y x =-;(2)3. 【解析】设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫ ⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=. 由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-. (2)由3AP PB =可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=.代入C 的方程得1213,3x x ==.故||3AB =. 2.【2019年高考全国Ⅲ卷理数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 【答案】(1)见详解;(2)3或【解析】(1)设()111,,,2D t A x y ⎛⎫- ⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t +=- . 整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx xy ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E到直线AB的距离,则12d d ==因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t =±时,S =因此,四边形ADBE 的面积为3或3.【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【答案】(1)抛物线C 的方程为24x y =-,准线方程为1y =;(2)见解析.【解析】(1)由抛物线2:2C x py =-经过点(2,1)-,得2p =. 所以抛物线C 的方程为24x y =-,其准线方程为1y =.(2)抛物线C 的焦点为(0,1)F -.设直线l 的方程为1(0)y kx k =-≠. 由21,4y kx x y=-⎧⎨=-⎩得2440x kx +-=. 设()()1122,,,M x y N x y ,则124x x =-.直线OM 的方程为11y y x x =. 令1y =-,得点A 的横坐标11A x x y =-. 同理得点B 的横坐标22B x x y =-. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=---=--- ⎪ ⎪⎝⎭⎝⎭,21212(1)x x DA DB n y y ⋅=++ 2122212(1)44x x n x x =++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭21216(1)n x x =++ 24(1)n =-++.令0DA DB ⋅=,即24(1)0n -++=,则1n =或3n =-.综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)-.018年高考全景展示1.【2018年理新课标I 卷】设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则=A. 5B. 6C. 7D.8【答案】 D点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M 、N 的坐标,应用韦达定理得到结果.2.【2018年浙江卷】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B。

四年高考(2016-2019)数学(理)试题分项版解析—— 三角恒等变换与求值(解析版) (1)

四年高考(2016-2019)数学(理)试题分项版解析—— 三角恒等变换与求值(解析版) (1)

专题09三角恒等变换与求值 2019年高考全景展示1.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15 B5C.3 D.5【答案】B【解析】2sin 2cos21αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又s i n 0α>,sin α∴=,故选B . 2.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y fx =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭ A .2- B .CD .2 【答案】C 【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=;又12π()sin ,2π,122g x A x T ωω=∴==∴2ω=, 又π()4g =2A =, ∴()2sin 2f x x =,3π()8f =故选C. 3.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.【答案】π2【解析】函数()2sin 2f x x ==1cos 42x -,周期为π2. 4.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭)22222sin cos cos sin sin 2cos 2sin cos αααααααα⎫+-=+⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式22112()1()33[]=1()13⨯-+---+综上,πsin 2410α⎛⎫+= ⎪⎝⎭ 5.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[1-+.。

四年高考(2016-2019)数学(理)试题分项版解析——专题17 椭圆(解析版)

四年高考(2016-2019)数学(理)试题分项版解析——专题17 椭圆(解析版)

椭圆2019年高考全景展示1.【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y += C .22143x y +=D .22154x y += 【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .2.【2019年高考北京卷理数】已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【答案】B【解析】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.3.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍), 又点P 在椭圆上且在x轴的上方,求得32P ⎛- ⎝⎭,所以212PFk ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得3,22P ⎛⎫- ⎪ ⎪⎝⎭,所以212PF k ==.4.【2019年高考全国Ⅲ卷理数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y =,22013620x ∴+=,解得03x =(03x =-舍去), M \的坐标为(.5.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值. 【答案】(1)见解析;(2)169. 【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =.记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k ku k-+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =||PG =△PQG 的面积。

四年高考(2016-2019)数学(文)试题分项版解析——专题19 抛物线(解析版)

四年高考(2016-2019)数学(文)试题分项版解析——专题19 抛物线(解析版)

2019年高考全景展示1.【2019年高考全国Ⅱ卷文数】若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,解得8p =,故选D .2.【2019年高考天津卷文数】已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 ABC .2 D【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-, 双曲线的渐近线方程为by x a=±, 则有(1,),(1,)b b A B a a ---,∴2b AB a =,24ba=,2b a =,∴c e a a===3.【2019年高考北京卷文数】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】22(1)4x y -+=【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =−1,以F 为圆心,且与l 相切的圆的方程为(x −1)2+y 2=22,即为22(1)4x y -+= 4.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 【答案】(1)见详解;(2)22542x y ⎛⎫+-= ⎪⎝⎭或22522x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||2EM =22522x y ⎛⎫+-= ⎪⎝⎭5.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程;(2)求12S S的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为1+G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A c t t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,122122213434S m S m m m m =-=-=++++…当m =时,12S S取得最小值12+,此时G (2,0).2018年高考全景展示1.【2018年文北京卷】已知直线l 过点(1,0)且垂直于 轴,若l 被抛物线截得的线段长为4,则抛物线的焦点坐标为_________. 【答案】【解析】分析:根据题干描述画出相应图形,分析可得抛物线经过点,将点坐标代入可求参数的值,进而可求焦点坐标.。

四年高考(2016-2019)数学(理)真题分项版解析—— 导数的几何意义(解析版)

四年高考(2016-2019)数学(理)真题分项版解析—— 导数的几何意义(解析版)

导数的几何意义2019年高考全景展示1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,xy a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .2.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,xxxy x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 3.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +, 由20411x -=-得0x =0x =, ∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.4.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-, 即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =, 故点A 的坐标为()e,1.2018年高考全景展示1.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 2.【2018年全国卷Ⅲ理】曲线在点处的切线的斜率为,则________.【答案】【解析】分析:求导,利用导数的几何意义计算即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆 2019年高考全景展示
1.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于
点(2,1)A --,则m =___________,r =___________. 【答案】2-
【解析】由题意可知11
:1(2)22
AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,
此时||r AC ==
=2.【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4
(0)y x x x
=+
>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ . 【答案】4
【解析】当直线x +y =0平移到与曲线4
y x x
=+相切位置时,切点Q 即为点P ,此时到直线x +y =0的距离最小. 由24
11y x
'=-
=-
,得)x x ==
,y =
Q , 则切点Q 到直线x +y =0
4=,
故答案为4.
20188年高考全景展示
1.【2018年理北京卷】在平面直角坐标系中,记d 为点P (cosθ,sinθ)到直线的距离,当θ,m
变化时,d 的最大值为 A. 1 B. 2 C. 3 D. 4 【答案】C
点睛:与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.
2.【2018年全国卷Ⅲ理】直线分别与轴,轴交于,两点,点在圆上,则
面积的取值范围是
A. B. C. D.
【答案】A
【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可
详解:直线分别与轴,轴交于,两点,,则,点P在圆
上,圆心为(2,0),则圆心到直线距离,故点P到直线
的距离的范围为,则,故答案选A.
点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题。

3.【2018年理数天津卷】已知圆的圆心为C,直线(为参数)与该圆相交于A,B 两点,则的面积为___________.
【答案】
【解析】分析:由题意首先求得圆心到直线的距离,然后结合弦长公式求得弦长,最后求解三角形的面积即可.
详解:由题意可得圆的标准方程为:,直线的直角坐标方程为:,即
,则圆心到直线的距离:,由弦长公式可得:,
则.
点睛:处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.
4.【2018年江苏卷】在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.
【答案】3
点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.
5.【2018年理数全国卷II】设抛物线的焦点为,过且斜率为的直线与交于,两点,

(1)求的方程;
(2)求过点,且与的准线相切的圆的方程.
【答案】(1) y=x–1,(2)或.
【解析】分析:(1)根据抛物线定义得,再联立直线方程与抛物线方程,利用韦达定理代入求出斜率,即得直线的方程;(2)先求AB中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程.
(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为
,即

设所求圆的圆心坐标为(x 0,y 0),则解得

因此所求圆的方程为或

点睛:确定圆的方程方法
(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法:①若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于
的方
程组,从而求出
的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列
出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.
2017年高考全景展示
1.【2017江苏,13】在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,
PA PB ⋅≤则点P 的横坐标的取值范围是
【答案】[-
【考点】直线与圆,线性规划
【名师点睛】线性规划问题,首先明确可行域对应。

相关文档
最新文档