教案格式(因式分解二3)
因式分解教案5篇
因式分解教案5篇2023因式分解教案(篇1)一、教学目标【学问与技能】了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。
【过程与方法】通过对平方差特点的辨析,培育观看、分析力量,训练对平方差公式的应用力量。
【情感态度价值观】在逆用乘法公式的过程中,培育逆向思维力量,在分解因式时了解换元的思想方法。
二、教学重难点【教学重点】运用平方差公式分解因式。
【教学难点】敏捷运用公式法或已经学过的提公因式法分解因式;正确推断因式分解的彻底性。
三、教学过程(一)引入新课我们学习了因式分解的定义,还学习了提公因式法分解因式。
假如一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?大家先观看下列式子:(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=他们有什么共同的特点?你可以得出什么结论?(二)探究新知同学独立思索或者与同桌争论。
引导同学得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。
提问1:能否用语言以及数学公式将其特征表述出来? 2023因式分解教案(篇2)【教学目标】1、了解因式分解的概念和意义;2、熟悉因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
【教学重点、难点】重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
【教学过程】㈠、情境导入看谁算得快:(抢答)(1)若a=101,b=99,则a2-b2=___________;(2)若a=99,b=-1,则a2-2ab+b2=____________;(3)若x=-3,则20x2+60x=____________。
㈡、探究新知1、请每题答得最快的同学谈思路,得出最佳解题方法。
七年级数学下册 9.6因式分解(二)(第3课时)教案 苏科版
9.6乘法公式的再认识教案——因式分解(二)第3课时综合运用法班级____________姓名____________学号___________备课时间: 主备人:一、教学目标1. 进一步熟悉提公因式法、平方差公式、完全平方公式分解因式.2. 学生能根据不同题目的特点选择较合理的分解因式的方法.3. 知道因式分解的方法步骤:有公因式先提公因式,以及因式分解最终结果的要求:必须分解到多项式的每个因式不能再分解为止.4. 通过综合运用提公因式法、运用公式法分解因式,使学生具有基本的因式分解能力.5. 综合运用所学的因式分解的知识和技能,感悟整体代换等数学思想.6. 进一步体会整式乘法和因式分解的对立统一的关系,体会“两分法”看问题的世界观.说明以前这部分内容是渗透到用平方差公式和完全平方公式因式分解的两节中,现在是作为独立的一课时,也就是综合运用提公因式法,运用公式法进行多项式的因式分解,对这部分内容的教学,要根据不同的题目,进行具体分析,灵活地运用各种方法来分解因式.教学时,让学生在观察、练习的过程中,主动归纳因式分解的方法步骤,探求并发现因式分解的最终结果的形式,使学生在主动探索的情境中,学会具体问题具体分析的方法,体会到成功的喜悦.二、教学重点、难点知道因式分解的步骤和因式分解的结果的要求,能综合运用提公因式法,运用公式法分解因式.三、教具、学具投影仪,条件较好的用实物投影仪或多媒体演示四、教学过程(一)设置情境情境1 比一比,看谁算得快(投影)(1)65.52-34.52 (2)1012-2×101×1+1(3)482+48×24+122 (4)5×552-5×452说明学生已学过平方差公式、完全平方差公式及提公因式法分解因式.要求学生利用因式分解进行计算,其目的是复习提公因式法及公式法.思考 (1)在计算过程中,你用到了哪些因式分解的方法?(2)能用平方差公式、完全平方公式分解因式的多项式有什么特征?(3)计算中(3)和(4)能直接用公式吗?((3)需变形为482+2×48×12+122,(4)需先提公因式,再用平方差公式)情境2 分解因式①4a4-100(两名学生板演,也可以投影部分学生的答案)②a4-2a2b2+b4说明由于已学过平方差公式和完全平方公式的分解因式,学生不难想到用公式法分解因式,但很可有会出现分解不完全的情况.如:4a4-100=(2a2+100)(2a2-100),a4-2a2b2+b4=(a2-b2)2,教师正好借此引入本节课课题.思考 (1)在解答这两题的过程中,你用到了哪些公式?(2)你认为(2a2+10)(2a2-10)和(a2-b2)2这两个结果是因式分解的最终结果吗?如果不是,你认为还可以怎样分解?(3)怎样避免出现上述分解不完全的情况呢?(学生可交流)情境3 把下列各式分解因式(练习)(1)ab2-2a2b-ab (2)a2-1 (3)a2b2-4ab+4 (4)a3-a说明练习的目的是回顾因式分解的方法,第(4)题学生在解答时可能有困难,教师可给予适当点拨.思考 (1)你是怎样确定一个多项式的公因式的?具体方法由学生简述,教师补充说明.(2)请写出平方差公式和完全平方公式.(3)对于(4)a3-a提公因式a后,你认为a(a2-1)分解完全了吗?情境4 (1)师生共同回顾前面所学过的因式分解的方法.提取公因式法、运用公式法,并说明公因式的确定方法及公式的特征.(2)整理知识结构图提公因式法:关键是确定公因式因式分解运用公式法平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2±2ab+b2=(a±b)2说明公式中a、b可以是具体的数,也可以是任意的单项式和多项式.结论多项式的因式分解,要根据多项式的特点,选择使用恰当的方法去分解,对于有些多项式,有时需同时用到几种不同的方法,才有分解完全.(二)探索综合使用提公因式法、运用公式法分解因式的方法步骤:1. 先提取公因式后利用公式例1 把下列各式分解因式(课本P93例5)(1)18a2-50 (2)2x2y-8xy+8y (3)a2(x-y)-b2(x-y)分析①先观察18a2-50,发现含有公因式2,因此可以先提公因式,再继续观察另一个因式9a2-25,能否再继续分解.②注意(3)的公因式是(x-y)解:(1)18a2-50=2(9a2-25) (2) 2x2y-8xy+8y=2(3a+5)(3a-5) =2y(x2-4x+4)=2y(x-2)2(3) a2(x-y)-b2(x-y)=(x-y)(a2-b2)=(x-y)(a+b)(a-b) (2) (3)可由学生口述,教师板书说明 (1)本题要先给学生时间观察,教师不要先说有没有公因式可提,而让学生通过观察,然后说明所采用的方法,公因式提出后,仍然由学生继续观察另一个因式,能否继续分解.(2)当学生尝试将上述多项式分解因式后,教师再引导学生对解题过程进行回顾和总结,培养学生良好的学习惯.(3)归纳:将一个多项式分解因式时,首先要观察被分解的多项式是否有公因式,若有,就要先提公因式,再观察另一个因式特点,进而发现其能否用公式法继续分解.2. 两个公式先后套用例2 (课本P94例6)把下列各式分解因式(1)a4-16 (2)81x4-72x2y2+16y4解:(1)a4-16=(a2+4)(a2-4)=(a2+4)(a+2)(a-2)(2)81x4-72x2y2+16y4=(9x2)2-2·9x2·4y2+(4y2)2先化成完全平方的形式,认准谁是公式的a,谁是b=(9x2-4y2)2=[(3x+2y)2(3x-2y)]2←注意这不是结果=(3x+2y)2(3x-2y)2说明:(1)本题还是由学生口述分解因式,在第一次用公式法因式分解后,得到的一个因式还可以用平方差公式,这一点在教学中,要让学生自己观察出来,而不是老师直接说,这样在因式分解中,学生才能更深刻地感悟出:分解因式必须分解到每个多项式的因式都不能再分解为止.例3 (供选择)分解因式(1)(a2+b2)-4a2b2(2)(x2-2x)2+2(x2-2x)+1解:(1)(a2+b2)-4a2b2 (2)(x2-2x)2+2(x2-2x)+1 =(a2+b2)2-(2ab)2 =[(x2-2x)+1]=[(a2+b2)+2ab][(a2+b2)-2ab] =(x2-2x+1)2=(a2+b2+2ab)(a2+b2-2ab) =[(x-1)2]2=(a+b)2(a-b)2 =(x-1)4说明 (1)本题(1)中把a2+b2,2ab看作一个整体,先用平方差,再用完全平方公式.(2)把x2-2x看作一个整体,先用完全平方公式,再用完全平方公式,从本题的解题过程,让学生体会数学中“换元”的思想.(3)本例还可以适当增加:(x2-6)(x2-2)+4这种先变形后用公式的题型,体会数学中的化归思想.(三)因式分解的应用例4 阅读下列材料,然后回答文后问题已知2x+y=b,x-3y=1 求14y(x-3y)2-4(3y-x)3的值.分析:先将14y(x-3y)2-4(3y-x)3进行因式分解,再将2x+y=6和x-3y=1整体代入.解:14y(x-3y)2-4(3y-x)3=14y(x-3y)2+4(x-3y)3=2(x-3y)2[7y+2(x-3y)]=2(x-3y)2(2x+y)当2x+y=6.x-3y=1时,原式=2×12×6=12,回答下列问题:(1)上述问题体现了思想,这种思想在求值问题中经常用到.(2)已知a+b=5,ab=3,求代数式a3b+2a2b2+ab3的值.(由学生完成).说明:本题目的是让学生通过阅读体会整体代换思想和因式分解在求值问题中的应用.例5 已知,如图,4个圆的半径都为a,用代数式表示其中阴影部分的面积,并求当a=10,π取3.14时,阴影部分的面积.解:用代数式表示阴影部分的面积为:(2a)2-πa2 即4a2-πa2当a=10, π取3.14时,4a2-πa2=a2(4-π)=102×(4-3.14)=100×0.86=86(四)练习1、辨析分解因式 a4-8a2+16a4-8a2+16=(a2-4)2=(a+2)2(a-2)2=(a2+2a+4)(a2-2a+4)这种解法对吗?如果不对,指出错误原因.说明:本题考查学生因式分解与整式乘法的意义,错因是混淆了二者的区别,走了“回头路”2. 选择题:多项式①16x5-x ②(x-1)2-4(x-1)+4 ③(x+1)4-4x(x+1)2+4x2 ④-4x2-1+4x分解因式后,结果含有相同因式的是( )A、①②B、③④C、①④D、②③3.填空:请写出一个三项式,使它能先提公因式,再运用公式法来分解因式,你编的三项式是,分解因式的结果是 .本题设计说明:学生不仅要学会课本上的例题和习题,而且要懂得借助课本内容的思想方法去编拟习题,这是创新教育的一种表现形式.4. 把下列各式分解因式(1)3ax2-3ay4 (2)-2xy-x2-y2 (3)3ax2+6axy+3ay2(4)x4-81 (5)(x2-2y)2-(1-2y)2(6)x4-2x2+1 (7)x4-8x2y2+16y4分两组板演:(1)~(3)一组,(4)~(7)为另一组,也可以投影部分学生的解答过程进行点评.五、小结学生通过例题的学习及练习自己总结在综合运用提公因式法和运用公式法分解因式时要注意的问题和解题步骤,可由1个或几个学生回答,互相补充,教师归纳(投影)(1)如果多项式各项有公因式,应先提公因式,再进一步分解.(2)分解因式必须分解到每个多项式的因式都不能再分解为止.(3)因式分解的结果必须是几个整式的积的形式.即:“一提”、“二套”、“三查”特别强调“三查”,检查多项式的每一个因式是否还能继续分解因式,还可以用整式乘法检查因式分解的结果是否正确.六、作业:必做:课本P95习题9.6 5、6选做:1. 分解因式(1)80a2(a+b)-45b2(a+b) (2)(x2-2xy)+2y2(x2-2xy)+y4 (3)(x+y)2-4(x2-y2)+4(x-y)22. 已知x+y=4 xy=2 求2x3y+4x2y2+2xy3的值3. 利用图形面积因式分解①a2+3ab+2b2②a2+b2+c2+2ab+2bc+2ac。
因式分解教案【优秀5篇】
因式分解教案【优秀5篇】在教学工作者开展教学活动前,时常会需要准备好教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
那么问题来了,教案应该怎么写?下面是小编辛苦为大家带来的因式分解教案【优秀5篇】,在大家参照的同时,也可以分享一下给您最好的朋友。
因式分解教案篇一15.1.1 整式教学目标1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示ⅠABC的周长需要什么条件?要表示它的面积呢?2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示ⅠABC的周长,需要知道它的各边边长.要表示ⅠABC的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么ⅠABC的周长可以表示为a+b+c;ⅠABC的面积可以表示为?c?h.2.小王的平均速度是.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c、ch、是不是代数式?(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅰ.明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x.(2)汽车走过的路程:vt.(3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.(4)n的相反数是-n.分析这四个数的特征.它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、ch是单项式.它们的系数分别是4、1、6、1、-1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z.(3)三角尺的面积应是直角三角形的面积减去圆的面积,即ab-3.12r2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.我们可以观察下列代数式:a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c的项分别是a、b、c.t-5的项分别是t、-5,其中-5是常数项.3x+5y+2z的项分别是3x、5y、2z.ab-3.12r2的项分别是ab、-3.12r2.x2+2x+18的项分别是x2、2x、18.找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式.Ⅰ.随堂练习1.课本P162练习Ⅰ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.Ⅰ.课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》15.1.2 整式的加减(1)教学目的:1、解字母表示数量关系的过程,发展符号感。
21.2.3因式分解法(教案)-2023-2024学年九年级上册数学(教案)人教版
-熟练运用平方差和完全平方公式。学生需要通过大量练习来记忆和掌握这两个公式,并能够迅速应用到具体的因式分解问题中;
-因式分解过程中的细节处理。例如,分解到哪一步可以停止,如何处理余下的多项式,以及如何验证分解的正确性。
举例:难点在于如何指导学生在面对如2x^2 + 5xy + 2y^2这样的多项式时,能够正确识别出公因式2x和2y,进而分解为2x(x + \frac{5}{2}y) + 2y^2,再进一步分解为2(x + y)(x + \frac{1}{2}y)。同时,需要强调在运用平方差和完全平方公式时的注意事项,如符号的处理和中间步骤的计算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“因式分解在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调提公因式法和平方差、完全平方公式这两个重点。对于难点部分,如公因式的识别和正确运用公式,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与因式分解相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际操作,学生可以直观地理解因式分解的基本原理。
五、教学反思
在今天的因式分解法教学中,我发现学生们对于提取公因式这一部分掌握得相对较好,他们能够较快地识别出多项式中的公因式。然而,当涉及到平方差和完全平方公式的运用时,明显感到有些学生还不够熟练。这让我意识到,在接下来的教学中,需要加强对这些公式的训练和解释。
因式分解教案五篇
因式分解教案五篇因式分解教案五篇作为一位优秀的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
怎样写教案才更能起到其作用呢?下面是小编为大家整理的因式分解教案五篇,欢迎阅读与收藏。
因式分解教案五篇1教学目标:1、知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。
2、过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。
3、情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。
教学重、难点:用提公因式法和公式法分解因式。
教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。
什么叫因式分解?知识详解知识点1 因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
【说明】(1)因式分解与整式乘法是相反方向的变形。
例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。
怎样把一个多项式分解因式?知识点2 提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。
ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。
例如:x2—x=x(x—1),8a2b—4ab+2a=2a(4ab—2b+1)。
探究交流下列变形是否是因式分解?为什么?(1)3x2y—xy+y=y(3x2—x);(2)x2—2x+3=(x—1)2+2;(3)x2y2+2xy—1=(xy+1)(xy—1);(4)xn(x2—x+1)=xn+2—xn+1+xn。
陈锦星八年级数学教案3因式分解(二)
旭博教育一对一个性化辅导教案讲义:课题—分解因式(二)学生:陈锦星学科:数学教师:麦明秀日期: 2012-8-20 ★考点分析:1、掌握分解配方法、公式法、十字相乘法的灵活运用:2、培养学生分析式子,总结规律的能力3、培养学生归纳总结的能力,拓展学生的视野。
★重难点重点:配方法、公式法的灵活运用难点:配方法★教学过程:一、复习导入1、因式分解(1)x2+3x-10 (2)5x2-8x-13(3)4x2+15x+9 (4)15x2+x-2二、新知识讲解:(一)预备知识例1、配方:填上适当的数,使下列等式成立:(1)x2+12x+ =(x+6)2(2)x2―12x+ =(x―)2(3)x2+8x+ =(x+ )2从上可知:常数项配上一次项系数的一半的平方。
例2、用配方法解方程x2+2x-1=0时分析:先把它变成(x+m)2=n (n≥0)的形式再用直接开平方法求解。
解:①移项得__________________②配方得__________________(两边同时加上一次项系数一半的平方)即(x+_____)2=__________③x+__________=__________或x+__________=__________④x1=__________,x2=__________配方法:通过配成的方法得到了一元二次方程的根,这种解一元二闪方程的方法称为配方法。
3、解方程(1)x2-4x+3=0 (2)x2+6x+9=8同步练习1、将下列各方程写成(x+m) 2=n的形式(1)x2-2x+1=0 (2)x2+8x+4=02、解下列方程(1) x2一l0x十25=7;(2) x2十6x=1.(二)中考应用(必做题)解方程:在一块长35m、宽26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?(一)知识点1:配方法例3、分解因式1.x 2-2xy-35y 2 2.x 2-12x-15 3.x 2-9xy+4y 2同步练习 1、x 2-10x+5 2.x 2-12x+6 3.x 2+7xy-28y 2例4、因式分解1. 3x 2-12x-15 2.2x 2-4xy-35y 2 3.2x 2-9xy+4y 2同步练习1. 4x 2-12x-18 2.3x 2-9xy-35y 2 3.4x 2-9xy+4y 2例3、分解因式1、52+-bx x2、c bx x +-23、c bx ax +-2小结:对于任意的c 、、b a )0(≠a ,c bx ax +-2=))((21x x x x --其中a ac b a b x 24221-+-=,aac b a b x 24222---=,另ac b 42-=∆ 以上就是分解因式的公式法,(解方程也可以应用),但前提是0>∆例4、用公式法分解因式1.2552--x x 2.7622--x x 3.5432--x x同步练习1.2852--x x 2.7922--x x 3.2432+-x x三、巩固练习1、20x 2+( )+14y 2=(4x-7y)(5x-2y). 2.x 2-3xy-( )=(x-7y)(x+4y).3.x 2+( )-28y 2=(x+7y)(x-4y). 4.x 2+( )-21y 2=(x-7y)(x+3y).5.kx 2+5x-6=(3x-2)( ),k=______.6.6x 2+5x-k=(3x-2)( ),k=______.7.6x 2+kx-6=(3x-2)( ),k=______.8.18x 2-19x+5=(9x+m)(2x+n),则m=_____,n=_____.9.18x 2+19x+m=(9x+5)(2x+n),则m=_____,n=_____.10.已知()223f x x x =++,⑴求()f x 的最值;⑵若[]3,2x ∈--,求()f x 的最值。
因式分解教案教学设计3篇
因式分解教案教学设计精选3篇因式分解教案(一):因式分解教材分析因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。
由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。
由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点.教学目标认知目标:(1)理解因式分解的概念和好处[由整理] (2)认识因式分解与整式乘法的相互关系――相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。
情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
目标制定的思想1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。
2.课堂教学体现潜力立意。
3.寓德育教育于教学之中。
教学方法1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。
2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑――感知――概括――运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。
3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。
2023年实用的因式分解教案4篇
2023年实用的因式分解教案4篇因式分解教案篇1教学设计思想:本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。
第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探究,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理实力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、说明、相互点评,达到能较好的运用平方差公式进行因式分解的目的。
其次课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在推断一个多项式是否为完全平方式上,实行启发式的教学方法,引导学生主动思索问题,从中培育学生的.思维品质。
教学目标学问与技能:会用平方差公式对多项式进行因式分解;会用完全平方公式对多项式进行因式分解;能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;提高全面地视察问题、分析问题和逆向思维的实力。
过程与方法:经验用公式法分解因式的探究过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的相识,体会从正逆两方面相识和探讨事物的方法。
情感看法价值观:通过学习进一步理解数学学问间有着亲密的联系。
教学重点和难点重点:①运用平方差公式分解因式;②运用完全平方式分解因式。
难点:①敏捷运用平方差公式分解因式,正确推断因式分解的彻底性;②敏捷运用完全平方公式分解因式关键:把握住因式分解的基本思路,视察多项式的特征,敏捷地运用换元和划归思想。
因式分解教案篇2教学目标:1、理解运用平方差公式分解因式的方法。
2、驾驭提公因式法和平方差公式分解因式的综合运用。
3、进一步培育学生综合、分析数学问题的实力。
教学重点:运用平方差公式分解因式。
教学难点:高次指数的转化,提公因式法,平方差公式的敏捷运用。
《因式分解》优秀教案(精选5篇)
《因式分解》优秀教案《因式分解》优秀教案(精选5篇)作为一名教师,通常需要用到教案来辅助教学,教案有利于教学水平的提高,有助于教研活动的开展。
教案应该怎么写呢?以下是小编收集整理的《因式分解》优秀教案(精选5篇),欢迎大家分享。
《因式分解》优秀教案1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法(3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解(5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解(7).2πR+2πr=2π(R+r) 因式分解2、.规律总结(教师讲解): 分解因式与整式乘法是互逆过程.分解因式要注意以下几点: (1).分解的对象必须是多项式.(2).分解的结果一定是几个整式的乘积的形式. (3).要分解到不能分解为止.3、因式分解的方法提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)24、强化训练试一试把下列各式因式分解:(1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2(3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)三、例题讲解例1、分解因式(1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)(3) (4)y2+y+例2、分解因式1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b) 2+2(a+b)-15=4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=例3、分解因式1、72-2(13x-7) 22、8a2b2-2a4b-8b3三、知识应用1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)24、.若x=-3,求20x2-60x的值.5、1993-199能被200整除吗?还能被哪些整数整除?四、拓展应用1.计算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)2、20042+2004被2005整除吗?3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.五、课堂小结:今天你对因式分解又有哪些新的认识?《因式分解》优秀教案2教学目标:1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
因式分解教案模板范文
一、教学目标【知识与技能】1. 理解因式分解的概念,掌握因式分解的基本方法。
2. 掌握提公因式法、平方差公式、完全平方公式等因式分解方法。
3. 能运用因式分解解决实际问题。
【过程与方法】1. 通过观察、分析、归纳等方法,培养学生发现和总结规律的能力。
2. 通过小组合作、探究活动,提高学生的合作意识和团队协作能力。
【情感态度价值观】1. 培养学生对数学学习的兴趣,激发学生探索数学知识的欲望。
2. 培养学生的逻辑思维能力和逆向思维能力。
3. 培养学生严谨、求实的科学态度。
二、教学重难点【教学重点】1. 理解因式分解的概念,掌握因式分解的基本方法。
2. 能运用提公因式法、平方差公式、完全平方公式等因式分解方法进行因式分解。
【教学难点】1. 灵活运用因式分解方法解决实际问题。
2. 理解因式分解与整式乘法的相互关系,并能运用这种关系进行因式分解。
三、教学过程(一)导入新课1. 复习整式乘法,引导学生回顾乘法公式。
2. 引入因式分解的概念,让学生举例说明。
(二)新课讲解1. 讲解提公因式法:a. 引导学生回顾提取公因式的概念。
b. 举例说明提公因式法的应用。
c. 练习提公因式法的应用。
2. 讲解平方差公式:a. 介绍平方差公式的形式和特点。
b. 举例说明平方差公式的应用。
c. 练习平方差公式的应用。
3. 讲解完全平方公式:a. 介绍完全平方公式的形式和特点。
b. 举例说明完全平方公式的应用。
c. 练习完全平方公式的应用。
(三)巩固练习1. 练习提公因式法、平方差公式、完全平方公式的应用。
2. 练习运用因式分解解决实际问题。
(四)课堂小结1. 总结本节课所学内容,强调因式分解的概念和基本方法。
2. 强调因式分解与整式乘法的相互关系。
(五)布置作业1. 完成课后练习题,巩固所学知识。
2. 选择一道实际问题,运用因式分解方法解决。
四、教学反思1. 课堂教学中,关注学生的参与度和互动性,提高学生的兴趣。
2. 针对不同学生的学习情况,进行分层教学,确保每个学生都能掌握因式分解的基本方法。
因式分解教案模板5篇
因式分解教案模板5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!因式分解教案模板5篇下面是本店铺分享的因式分解教案模板5篇(因式分解优秀教案),以供参考。
二次三项式的因式分解(用公式法)教学案(一)
二次三项式的因式分解(用公式法)教学案(一)一、素质教育目标(一)知识教学点:1.使学生理解二次三项式的意义;了解二次三项式的因式分解与解一元二次方程的关系.2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式.(二)能力训练点:通过本节课的教学,提高学生研究问题的能力.(三)德育渗透点:结合教材对学生进行辩证唯物主义观点的教育,进一步渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般.二、教学重点、难点、疑点及解决办法1.教学重点:用公式法将二次三项式因式分解.2.教学难点:一元二次方程的根与二次三项式因式分解的关系.3.教学疑点:一个二次三项式在实数范围内因式分解的条件.三、教学步骤(一)明确目标二次三项式的因式分解常用的方法是公式法、十字相乘法等.但对有些二次三项式,用这两种方法比较困难,如将二次三项式4x2+8x-1因式分解.在学习了一元二次方程的解法后,我们知道,任何一个有实根的一元二次方程,用求根公式都可以求出.那么一元二次方程ax2+bx+c=0(a≠0)的两个根与二次三项式ax2+bx+c的因式分解有无关系呢?这就是我们本节课研究的问题,也就是研究和探索二次三项式因式分解的又一种方法——用公式法.(二)整体感知一元二次方程的一般形式是ax2+bx+c=0(a≠0),观察方程的特点:左边是一个二次三项式,曾经借助于将左边二次三项式因式分解来解一元二次方程.反之,我们还可以利用方程的根,来将二次三项式因式分解.即在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成ax2+bx+c=a (x-x1)(x-x2).通过知识之间的相互联系、相互作用和相互促进,对学生进行辩证唯物主义思想教育.公式ax2+bx+c=a(x-x1)(x-x2)的得出的依据是根与系数的关系.一元二次方程根与系数的关系为公式ax2+bx+c=a(x-x1)(x-x2)的得出奠定了基础.通过因式分解新方法的导出,不仅使学生学习了一个新方法,还能进一步启发学生学习的兴趣,提高他们研究问题的能力.(三)重点、难点的学习与目标完成过程1.复习提问(1)写出关于x的二次三项式?(2)将下列二次三项式在实数范围因式分解.①x2-2x+1;②x2-5x+6;③6x2+x-2;④4x2+8x-1.由④感觉比较困难,引出本节课所要解决的问题.2.①引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系.①x2-2x+1=0;解:原式变形为(x-1)(x-1)=0.∴ x1=x2=1,②x2-5x+6=0;解原方程可变为(x-2)(x-3)=0∴ x1=2,x2=3.③6x2+x-2=0解:原方程可变为(2x-1)(3x+2)=0.观察以上各例,可以看出,1,2是方程x2-3x+2=0的两个根,而x2-3x+2=(x-1)(x-2),……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式.②推导出公式=a(x-x1)(x-x2).这就是说,在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成ax2+bx+c=a(x-x1)(x-x2).教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊.③公式的应用例1 把4x2+8x-1分解因式解:∵方程4x2+8x-1=0的根是教师板书,学生回答.由①到②是把4分解成2×2分别与两个因式相乘所得到的.目的是化简①.练习:将下列各式在实数范围因式分解.(1)x2+20x+96;(2)x2-5x+3学生板书、笔答,评价.解2 用两种方程把4x2-5分解因式.方法二,解:∵ 4x2-5=0,方法一比方法二简单,要求学生灵活选择,择其简单的方法.练习:将下列各式因式分解.(1)4x2-8x+1;(2)27x2-4x-8;(3)25x2+20x+1;(4)2x2-6x+4;(5)2x2-5x-3.学生练习,板书,选择恰当的方法,教师引导,注意以下两点:(1)要注意一元二次方程与二次三项式的区别与联系,例如方程2x2-6x-4=0,可变形为x2-3x-2=0;但将二次三项式分解因式时,就不能将3x2-6x-12变形为x2-2x-4.(2)还要注意符号方面的错误,比如上面的例子如果写成2x2-5x-(3)一元二次方程ax2+bx+c=0(a≠0)当△≥0时,方程有两个实根.当△<0时,方程无实根.这就决定了:当b2-4ac≥0时,二次三项式ax1+bx+c在实数范围内可以分解;当b2-4ac<0时,二次三项式ax2+bx+c在实数范围内不可以分解.(四)总结与扩展(1)用公式法将二次三项式ax2+bx+c因式分解的步骤是先求出方程ax2+bx+c=0(a≠0)的两个根,再将ax2+bx+c写成a(x-x1)(x-x2)形式.(2)二次三项式ax2+bx+c因式分解的条件是:当b2-4ac≥0,二次三项式ax2+bx+c在实数范围内可以分解;b2-4ac<0时,二次三项式ax2+bx+c在实数范围内不可以分解.(3)通过本节课结论的探索、发现、推导、产生的过程,培养学生的探索精神,激发学生的求知欲望,对学生进行辩证唯物主义思想教育,渗透认识事物的一般规律.四、布置作业教材 P.39中 A1.2(1)——(7).五、板书设计12.5 二次三项式的因式分解(一)结论:在分解二次三项式例1.把4x2+8x-1分解因式ax2+bx+c的因式时解:………可先用公式求出方程:……ax2+bx+c=0的两个根x1,x2,然后写成练习:………ax2+bx+c=a(x-x1)(x-x2)六、作业参考答案教材 P.38中A1(1)(5x+6)(x+1);(2)(2y-3)(3y-2);(3)-(2x-6)(2x+5);(4)(5p-3)(2p+1);(5)(a+16)(a+24);(6)(3xy-7)(xy-1);(7)3(x+2)(2x-7);(8)(3x+5y)(5x-3y);A2关于网通联系我们用户注册协议隐私条款免责条款京ICP证020038。
数学教案:二次三项式的因式分解
数学教案:二次三项式的因式分解1. 教学目标通过本节课的学习,学生应该能够:1.熟练掌握二次三项式的基本概念和性质;2.掌握二次三项式的因式分解方法;3.能够独立解决二次三项式的因式分解问题。
2. 教学重点和难点2.1 教学重点1.二次三项式的基本概念和性质;2.二次三项式的因式分解方法。
2.2 教学难点1.二次三项式的因式分解方法的应用。
3. 教学过程3.1 二次三项式的基本概念和性质介绍二次三项式的基本概念和性质,包括:1.二次三项式的定义:ax2+bx+c;2.二次三项式的次数、系数、项数等基本概念;3.二次三项式的对称轴、顶点、零点等基本性质。
3.2 二次三项式的因式分解方法3.2.1 公式法介绍二次三项式的公式法因式分解方法。
对于形如ax2+bx+c的二次三项式,其因式分解公式为:ax2+bx+c=a(x−x1)(x−x2),其中x1和x2是二次三项式的两个零点,可以通过求根公式求出。
3.2.2 分解法介绍二次三项式的分解法因式分解方法。
对于形如ax2+bx+c的二次三项式,可以通过将其分解成两个一次三项式的乘积的形式进行因式分解,即:ax2+bx+c=a(x−m)(x−n),其中m和n是二次三项式的两个零点。
3.3 例题演练在课堂上,老师可以通过多个例题进行演示,以帮助学生更好的掌握二次三项式的因式分解方法。
例如,在演示中,老师可以先给出一个二次三项式,要求学生独立使用公式法或分解法进行因式分解。
如果有部分学生解答正确,则可以在黑板上进行演示,帮助学生更好的理解笔者的解题过程。
3.4 练习和作业通过课堂练习和作业,检验学生对二次三项式的因式分解方法是否掌握。
老师可以布置一些针对不同难度的练习题目,以帮助学生不断巩固所学知识。
4. 教学评价通过本节课的教育教学,老师可以对学生进行综合评价:1.学生是否能熟练掌握二次三项式的基本概念和性质;2.学生是否能灵活运用二次三项式的因式分解方法;3.学生是否能独立解决二次三项式的因式分解问题;4.学生的课堂学习态度和表现等。
有关因式分解教案3篇
有关因式分解教案3篇有关因式分解教案3篇作为一位优秀的人民教师,通常会被要求编写教案,教案是实施教学的主要依据,有着至关重要的作用。
教案应该怎么写呢?下面是小编帮大家整理的因式分解教案3篇,仅供参考,大家一起来看看吧。
因式分解教案篇1课型复习课教法讲练结合教学目标(知识、能力、教育)1.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).2.通过乘法公式,的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力教学重点掌握用提取公因式法、公式法分解因式教学难点根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。
教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1.分解因式:把一个多项式化成的形式,这种变形叫做把这个多项式分解因式.2.分解困式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:平方差公式: ;完全平方公式: ;3.分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4.分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项1易漏掉.分解不彻底,如保留中括号形式,还能继续分解等(二):【课前练习】1.下列各组多项式中没有公因式的是( )A.3x-2与 6x2-4xB.3(a-b)2与11(b-a)3C.mxmy与 nynxD.aba c与 abbc2. 下列各题中,分解因式错误的是( )3. 列多项式能用平方差公式分解因式的是()4. 分解因式:x2+2xy+y2-4 =_____5. 分解因式:(1) ;(2) ;(3) ;(4) ;(5)以上三题用了公式二:【经典考题剖析】1. 分解因式:(1) ;(2) ;(3) ;(4)分析:①因式分解时,无论有几项,首先考虑提取公因式。
高中数学因式分解教案模板
高中数学因式分解教案模板
教学目标:
1. 理解因式分解的概念和意义;
2. 掌握因式分解的基本方法;
3. 能够运用因式分解解决实际问题。
教学内容:
1. 因式分解的概念和分类;
2. 因式分解的基本方法:公式法、公因式法、提取公因子法、分组法等;
3. 因式分解的应用:解方程、求最大公因数等。
教学步骤:
一、导入(5分钟)
教师介绍因式分解的概念和意义,引导学生思考因式分解的应用场景。
二、讲解(20分钟)
1. 因式分解的基本方法:公式法、公因式法、提取公因子法、分组法等;
2. 案例分析:通过实例演示不同方法的应用。
三、练习(15分钟)
1. 老师布置练习题,学生独立完成;
2. 学生归纳总结各种方法的适用情况和注意事项。
四、拓展(10分钟)
1. 学生结合现实生活中的问题,尝试运用因式分解解决;
2. 学生分享解题思路和方法。
五、总结(5分钟)
教师总结本节课的重点内容,并强调因式分解在数学中的重要性和应用价值。
教学素材:
1. 教科书相关内容;
2. 讲解PPT;
3. 练习题目;
4. 实际应用案例。
教学评价:
1. 学生在练习中的表现;
2. 学生对因式分解的理解和应用能力。
备注:
教案中可以根据实际情况适量增减内容,保证教学流程顺畅。
在教学过程中,要注重引导学生思考和独立解决问题,培养他们的数学思维能力和解决实际问题的能力。
数学教案-二次三项式的因式分解(用公式法)
数学教案-二次三项式的因式分解(用公式法)一、教学目标1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系;2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式;3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力;4.通过二次三项式因式分解方法的推导,进一步向学生渗透认识问题和解决问题的一般规律,即由一般到特殊,再由特殊到一般;二、重点·难点·疑点及解决办法1.教学重点:用公式法将二次三项式因式分解。
2.教学难点:一元二次方程的根与二次三项式因式分解的关系。
3.教学疑点:一个二次三项式在实数范围内因式分解的条件。
4.解决办法:二次三项式能分解因式二次三项式不能分解二次三项式分解成完全平方式三、教学步骤1.复习提问(1)写出关于某的二次三项式?(2)将下列二次三项式在实数范围因式分解。
①;②;③。
由③感觉比较困难,引出本节课所要解决的问题。
2.新知讲解(1)引入:观察上式①,②,③方程的两个根与方程左边的二次三项式的因式分解之关系。
①;解:原式变形为。
∴,②;解原方程可变为观察以上各例,可以看出1,2是方程的两个根,而,……所以我们可以利用一元二次方程的两个根来分解相应左边的二次三项式。
(2)推导出公式设方程的两个根为,那么,∴这就是说,在分解二次三项式的因式时,可先用公式求出方程的两个根,然后写成教师引导学生从具体的数字系数的例子,观察、探索结论,再从一般的字母系数的例子得出一般性的推导,由此可知认识事物的一般规律是由特殊到一般,再由一般到特殊。
(3)公式的应用例1 把分解因式解:∵方程的根是教师板书,学生回答。
由①到②是把4分解成2某2分别与两个因式相乘所得到的,目的是化简①。
练习:将下列各式在实数范围因式分解。
(1);(2)学生板书、笔答,评价。
例2 用两种方程把分解因式。
方法一,解:方法二,解:,方法一比方法二简单,要求学生灵活选择,择其简单的方法。
因式分解教案设计模板
一、教学目标1. 知识与技能:(1)理解因式分解的概念,掌握因式分解的基本方法。
(2)能够运用提取公因式法、公式法、分组分解法等对多项式进行因式分解。
(3)能够运用因式分解解决实际问题。
2. 过程与方法:(1)通过观察、比较、分析等活动,培养学生逆向思维能力和观察能力。
(2)通过小组合作、探究等活动,培养学生合作意识和探究能力。
(3)通过实际应用,培养学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观:(1)激发学生学习数学的兴趣,培养学生对数学知识的热爱。
(2)培养学生严谨、认真、细致的学习态度。
(3)培养学生团队合作精神和创新精神。
二、教学重点与难点1. 教学重点:(1)掌握因式分解的概念。
(2)掌握提取公因式法、公式法、分组分解法等因式分解方法。
(3)能够运用因式分解解决实际问题。
2. 教学难点:(1)灵活运用恰当的因式分解方法进行因式分解。
(2)解决实际问题时,能够准确选择合适的因式分解方法。
三、教学过程1. 导入新课(1)回顾整式乘法的基本知识,引导学生思考因式分解与整式乘法的关系。
(2)提出问题:如何将一个多项式分解成几个整式的积的形式?2. 新课讲解(1)讲解因式分解的概念,引导学生理解因式分解的意义。
(2)讲解提取公因式法、公式法、分组分解法等因式分解方法,并结合实例进行演示。
(3)引导学生分析不同因式分解方法的适用范围,提高学生的灵活运用能力。
3. 练习巩固(1)布置课后练习题,让学生巩固所学知识。
(2)教师巡视指导,解答学生疑问。
4. 实际应用(1)选取实际应用题目,让学生运用因式分解解决实际问题。
(2)教师点评学生的解题过程,总结解题技巧。
5. 总结反思(1)引导学生回顾本节课所学内容,总结因式分解的基本方法和解题技巧。
(2)鼓励学生提出自己的疑问,共同探讨。
四、教学评价1. 课堂表现:观察学生在课堂上的参与度、合作意识、探究能力等。
2. 课后作业:检查学生对因式分解方法的掌握程度和运用能力。
初三数学教案-初三数学二次三项式的因式分解
初三数学二次三项式的因式分解教学优化设计【概念与规律】1.若方程ax2+bx+c=0(aM0)的两实根为xl,x2,则二次三项式ax2+bx+c在实数范围内可因式分解成ax2+bx+c=a(x—x1)(x—x2).2.用公式法分解二次三项式时要注意:(1)右边不能遗漏二次项系数a.(2)若xl,x2的分母的积恰好是a的约数时,则将a分解成两个适当的数的积,分别乘入两个括号中,约去分母;若xl,x2的分母的积不是a的约数时,则a仍保留在括号外.(3)当4V0时,则二次三项式在实数范围内不能分解因式.【讲解设计】•重点与难点例1在实数范围内分解因式:分析直接运用公式可进行因式分解.例2在实数范围内分解因式:(1)2x2-8xy+5y2;(2)3x2y2-5xy-1.分析(1)将它看成关于x的二次三项式,运用公式法分解因式;(2)将它看成关于(xy)的二次三项式,运用公式法分解因式.例3在实数范围内分解因式:(1)4x2+8xy-y2;(2)x4-2x2-3.分析(1)将它看成关于x的二次三项式运用公式法分解因式;(2)先用十字相乘法,再在实数范围内运用平方差公式进行因式分解.例4在实数范围内分解因式:(2)(x2+1)(x2+2)-73.分析(1)将它看成关于x的二次三项式,但要注意根式运算的准确性;(2)展开后转化为双二次型的因式分解.(2)(x2+1)(x2+2)-73=x4+3x2-70=(x2+10)(x2-7)=(x2+【讲解设计】•思路与方法例5若2x2—3x+m+1可以在实数范围内分解因式,求m的取值范围.提示二次三项式在实数范围内能分解因式的条件是对应的二次方程根的判别式△三0.例6分别在有理数范围内和实数范围内分解因式:(x2—5x+4)(x2+9x+18)+180.提示原式=(x—1)(x—4)(x+3)(x+6)+180=(x2+2x—3)(x2+2x—24)+180,转化为(x2+2x)的二次三项式.但要注意两种不同的分解范围.【练习设计】•识记与理解1.填空题:(1)若x1,x2是ax2+bx+c=0(aM0)的两个根,则二次三项式ax2+bx+c分解因式的结果为.(2)分解因式x2—2xy—3y2=.(3)在实数范围内分解因式x2—x—1=.(4)若2x2—3x+m—1是一个完全平方式,则m=;若它能在实数范围内分解因式,则m的取值范围是.2.选择题:(1)在实数范围内分解x4—16为[]A.(x2+4)(x2-4)B.(x2+4)(x+2)(x—2)(2)二次三项式2x2—5x+1在实数范围内分解因式,其结果为[]3.在有理数范围内分解因式:(1)x+2—x2;(2)—12z2—xyz+x2y2;(3)(x2+xy+y2)(x2+xy+2y2)—12y4;(4)(x2+x)2—2(7x2—12+7x).4.在实数范围内分解因式:(1)4x—4x2+1;(3)(x+1)(x+3)(x+5)(x+7)+15;(4)(x2—7x+6)(x2—x—6)+56.【练习设计】•巩固与掌握在实数范围内因式分解的结果是什么?6.设x2—2kx+k=0有相等的两正根,试将二次三项式x2—(k+3)x+k在实数范围内分解因式.7.将x4—4在实数范围内分解因式,其结果共有几个含有x的代数式的因式(因式1除外)?这几个因式中,对任何实数x,哪个的值最小?8.若二次三项式x2+mx+n(nM0)可因式分解成(x—m)(x—n),求m与n的值.9.已知:a,b分别是等腰三角形的一腰和底边的长.求证:关于x的二次三项式x2—4ax+b2一定能在实数范围内分解因式.10.在实数范围内分解因式:x2—px+q=(x—2)(x—3),请写11.若多项式xmyn+x2y2+xy—1是一个五次四项式(m,n都是大于1的正整数),试将二次三项式x2+(m+n)x+(—mn)分解因式.12.求证:对任何有理数a,x2+2ax+a2—2在有理数范围内总不能因式分解,而在实数范围内总能因式分解.13.已知a2+b2—2a—2b+2=0,m,n是方程y2—3y+2=0的两个根(m>n),试将xa+b+mx+n 在实数范围内分解因式.【练习设计】•拓展与迁移14.已知在RtAABC中,ZC=90°,ZB=60°,a、b、c分别是ZA、ZB、ZC的对边.试判断二次三项式ax2+bx+c能否在实数范围内分解因式,如果能,请写出分解的结果;如果不能,请说明理由.15.设m为正整数,x2—4x+m能在有理数范围内分解因式,(1)求出m的值;(2)对于所有可能的m值,写出这些多项式;(3)将写出的所有多项式相加,试问:相加后得到的多项式还能在有理数范围内分解吗?答案2.(1)B(2)D3.(1)—(x—2)(x+1)(2)(xy+3z)(xy—4z)(3)(x2+xy+5y2)(x—y)(x+2y)(4)(x-1)(x+2)(x-3)(x+4)6.提示:先求k值,kl=l,k2=0(舍去),再分解,x2—(k+8.m=l,n=—29.△=4(2a+b)(2a—b),而2a+b,2a—b均大于011.(x+6)(x—1)12.(1)A=8不是完全平方数(2)A=8>013.a=b=1,m=2,n=1,xa+b+mx+n=(x+1)215.(1)m=3,m=4(2)x2—4x+3,x2—4x+4(3)2x2—8x+7,不能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007
的值。 (提示:将 5 拆成
“1+4”,将等式左边分成两组完全平方式,再分解)
4
讨论 1.在解答这道题的过程中,你用到了那些因式分解的方法?
2 2 2.你认为 2a 10 2a 10 和 a b
2
2 2
这两个结果是因式分解的最
终结果吗?如果 不是还可以怎么分。 整理知识:
提公因式法:关键是确 定公因式 2 因式分解 a2 平方差公式: b a b a b 运用公式法 完全平方公式: a 2 2ab b 2 a b 2
2
2
2
三、拓展延伸 1. 204 54 204 108
2 2
2.已知 a ma
2
1 2 a n , 则 m ______, n _______ ; 16
3.若 9 x kxy 25 y
2
2
是完全平方式,则 k __________ ;
4.已知 a 2a b 4b 5 0 ,求 a b
总编号:029 主备人:崔思娟 主备时间:3.19 上课时间:3.26 审核人:金广敏 课 题:9.6 乘法公式的再认识——因式分解(二) (3) 学习目标: (1)进一步熟悉提公因式法,平方差公式,完全平方公式分解因式。 能根据不同题目选择合理的分解因式方法。知道因式分解方法 的步骤及因式分解最终结果要求; (2)通过综合运用提公因式法,运用公式法分解因式,使学生具有 基本的因式分解能力; (3)进一步体会整式乘法和因式分解的对立统一关系。 学习重点:能综合运用提公因式法,运用公式法分解因式。 学习难点:知道因式分解的步骤及因式分解最终结果要求,能综合运用提公因 式法,运用公式法分解因式。 学习过程: 一、自学纲要 探索:如何将 4a 100 分解因式;
注意:因题 例 1.先提公因式在运用公式分解因式 (1) 4a 100
2
(2) ab 2a b ab
2 2
(3) a a
3
(4) ax y ax y
(3) x y 14 x y 49 (4) a b 2 a 2 b 2 a b