必修2立几复习

合集下载

2020秋新人教版高中数学必修二第八章立体几何初步复习课题型课知识框架思维导图

2020秋新人教版高中数学必修二第八章立体几何初步复习课题型课知识框架思维导图

第八章立体几何初步复习课要点训练一空间几何体的结构特征1.紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.2.通过举反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.1.设有四个命题:①底面是矩形的平行六面体是长方体;②棱长都相等的直四棱柱是正方体;③侧棱垂直于底面两条边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是()A.1B.2C.3D.4解析:底面是矩形的直平行六面体是长方体,①错误;棱长都相等的直四棱柱是正方体,②正确;侧棱垂直于底面两条相邻边的平行六面体是直平行六面体,③错误;任意侧面上两条对角线相等的平行六面体是直平行六面体,④错误.故命题正确的个数是1.答案:A2.在四棱锥的四个侧面中,直角三角形最多可有()A.1个B.2个C.3个D.4个解析:如图所示,在长方体ABCD-A1B1C1D1中,取四棱锥A1-ABCD,则此四棱锥的四个侧面都是直角三角形.答案:D要点训练二空间几何体的表面积与体积1.空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积问题注意衔接部分的处理.(3)旋转体的表面积问题,应注意其侧面展开图的应用.2.空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体问题是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,再根据条件求解.1.已知一个六棱锥的体积为2√3 ,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为12.解析:由题意可知,该六棱锥是正六棱锥.设该六棱锥的高为h ,则13×6×√34×22×h =2√3,解得h =1.由题意,得底面正六边形的中心到其边的距离为√3,所以侧面等腰三角形底边上的高为√(√3)2+1=2,所以该六棱锥的侧面积为6×12×2×2=12. 2.如图所示,三棱锥O -ABC 为长方体的一角,其中OA ,OB ,OC 两两垂直,三个侧面OAB ,OAC ,OBC 的面积分别为1.5 cm 2,1 cm 2,3 cm 2,求三棱锥O -ABC 的体积.解:设OA ,OB ,OC 的长依次为x cm,y cm,z cm,由已知可得12xy =1.5,12xz =1,12yz =3,解得x =1,y =3,z =2. 将三棱锥O -ABC 看成以C 为顶点,以OAB 为底面,易知OC 为三棱锥C -OAB 的高.故V 三棱锥O -ABC =V C -OAB =13S △OAB ·OC =13×1.5×2=1(cm 3). 3.如图所示,已知三棱柱ABC -A'B'C',侧面B'BCC'的面积是S ,点A'到侧面B'BCC'的距离是a ,求三棱柱ABC -A'B'C'的体积.解:连接A'B ,A'C ,如图所示,这样就把三棱柱ABC -A'B'C'分割成了两个棱锥,即三棱锥A'-ABC 和四棱锥A'-BCC'B'.设所求体积为V ,显然三棱锥A'-ABC 的体积是13V. 而四棱锥A'-BCC'B'的体积为13Sa , 故有13V +13Sa =V ,所以V =12Sa. 要点训练三 与球有关的切、接问题与球相关问题的解题策略(1)作适当的截面(如轴截面等)时,对于球内接长方体、正方体,则截面一要过球心, 二要过长方体或正方体的两条体对角线,才有利于解题.(2)对于“内切”和“外接”等问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间的关系,然后把相关的元素放到这些关系中来解决.1.正四棱锥的顶点都在同一球面上,若该棱锥的高为6,底面边长为4,则该球的表面积为( )A.443πB.4849πC.814πD.16π 解析:如图所示,设PE 为正四棱锥P -ABCD 的高,则正四棱锥P -ABCD 的外接球的球心O 必在其高PE 所在的直线上,延长PE 交球面于一点F ,连接AE ,AF.由球的性质可知△PAF 为直角三角形,且AE ⊥PF.因为该棱锥的高为6,底面边长为4,所以AE =2√2,PE =6,所以侧棱长PA =√PE 2+AE 2=√62+(2√2)2=√44=2√. 设球的半径为R ,则PF =2R. 由△PAE ∽△PFA ,得PA 2=PF ·PE ,即44=2R ×6,解得R =113,所以S =4πR 2=4π×(113)2=484π9.答案:B2.一个球与一个正三棱柱的三个侧面和两个底面都相切,如果这个球的体积是323π,那么这个正三棱柱的体积是( ) A.96√3 B.16√3 C.24√3 D.48√3解析:由球的体积公式可求得球的半径R =2. 设球的外切正三棱柱的底面边长为a ,高即侧棱长,为h ,则h =2R =4. 在底面正三角形中,由正三棱柱的内切球特征,得a 2×√33=R =2,解得a =4√3. 故这个正三棱柱的体积V =12×√32×(4√3)2×4=48√3.答案:D要点训练四 空间中的平行关系1.平行问题的转化关系2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a ⊥α,a ⊥β⇒α∥β.1.如图所示,三棱柱ABC -A'B'C'中,M ,N 分别为BB',A'C'的中点.求证:MN ∥平面ABC'.证明:取B'C'的中点P ,连接MP ,NP (图略),则MP ∥BC',NP ∥A'B'. 因为A'B'∥AB ,所以NP ∥AB.因为AB ⊂平面ABC',NP ⊄平面ABC',所以NP ∥平面ABC'.同理MP∥平面ABC'.因为NP∩MP=P,所以平面MNP∥平面ABC'.因为MN⊂平面MNP,所以MN∥平面ABC'.2.两个全等的正方形ABCD和ABEF所在平面相交于AB, M∈AC,N∈FB,且AM=FN,过点M作MH⊥AB于点H.求证:平面MNH∥平面BCE.证明:因为正方形ABCD中,MH⊥AB,BC⊥AB,所以MH∥BC.因为BF=AC,AM=FN,所以FNBF =AM AC.因为MH∥BC,所以AMAC =AH AB,所以FNBF =AH AB,所以NH∥AF∥BE.因为MH⊂平面MNH,NH⊂平面MNH,MH∩NH=H, BC⊂平面BCE,BE⊂平面BCE,BC∩BE=B,所以平面MNH∥平面BCE.要点训练五空间中的垂直关系1.空间中垂直关系的相互转化2.判定线线垂直的方法(1)平面几何中证明线线垂直的方法.(2)线面垂直的性质:a⊥α,b⊂α⇒a⊥b;a⊥α,b∥α⇒a⊥b.3.判定线面垂直的常用方法(1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两平行平面中的一个,则与另一个平面也垂直”.(4)利用面面垂直的性质.4.判定面面垂直的方法(1)利用定义:两个垂直平面相交,所成的二面角是直二面角.(2)判定定理:a⊂α,a⊥β⇒α⊥β.1.如图所示,Rt△AOC可以通过Rt△AOB以直角边AO所在直线为轴旋转得到,且二面角B-AO-C是直二面角,D是AB上任意一点.求证:平面COD⊥平面AOB.证明:由题意,得CO⊥AO,BO⊥AO,所以∠BOC是二面角B-AO-C 的平面角.因为二面角B-AO-C是直二面角,所以∠BOC=90°,所以CO⊥BO.因为AO∩BO=O,所以CO⊥平面AOB.因为CO⊂平面COD,所以平面COD⊥平面AOB.2.如图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC=2, AD=CD=√7,PA=√3,∠ABC=120°,G为线段PC上的点,O为AC,BD交点.(1)证明:BD⊥平面APC;(2)若G满足PC⊥平面BGD,求PG的值.GC(1)证明:由AB=BC,AD=CD,得BD垂直平分线段AC.所以O为AC的中点,BD⊥AC.因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA⊥BD.因为AC∩PA=A,AC⊂平面APC,PA⊂平面APC,所以BD⊥平面APC.(2)解:连接OG,如图所示.因为PC⊥平面BGD,OG⊂平面BGD,所以PC⊥OG.在△ABC中,由余弦定理,得AC=√22+22-2×2×2×cos120°=2√3.在Rt△PAC中,得PC=√AC2+PA2=√12+3=√所以由△GOC∽△APC可得GC=AC·OCPC =2√155.从而PG=3√155,所以PGGC=32.要点训练六空间角的求解方法1.找异面直线所成角的三种方法(1)利用图中已有的平行线平移.(2)利用特殊点(线段的端点或中点)作平行线平移.(3)补形平移.2.线面角求斜线与平面所成的角关键是找到斜线在平面内的射影,即确定过斜线上一点向平面所作垂线的垂足.通常是解由斜线段、垂线段、斜线在平面内的射影所组成的直角三角形.3.求二面角的两种常用方法(1)定义法:在二面角的棱上找一个特殊点,在两个半平面内分别过该点作垂直于棱的射线.(2)垂面法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.1.如图所示,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°, AB≠AC,D,E分别是BC,AB的中点,AC>AD,设PC与DE所成的角为α,PD与平面ABC所成的角为β,二面角P-BC-A的平面角为γ,则α,β,γ的大小关系是α<β<γ.解析:因为D,E分别是BC,AB的中点,所以DE∥AC,所以PC与DE所成的角为∠PCA,即α.因为PA⊥平面ABC,所以PD与平面ABC所成的角为∠PDA,即β.如图所示,过点A作AH⊥BC,垂足为H,连接PH,易证BC⊥平面PAH,所以∠PHA是二面角P-BC-A的平面角,即γ.因为AB≠AC,所以AD>AH.因为AC >AD,所以AC >AD >AH,所以PAAC <PAAD<PAAH,所以tan α<tan β<tan γ,所以α<β<γ.2.如图所示,AB是☉O的一条直径,PA垂直于☉O所在的平面,C 是圆周上不同于A, B的一动点.(1)证明:△P BC是直角三角形;(2)若PA=AB=2,且当直线PC与平面ABC所成角的正切值为√2时,求直线AB与平面PBC所成角的正弦值.(1)证明:因为AB是☉O的一条直径, C是圆周上不同于A,B的一动点,所以BC⊥AC.因为PA⊥平面ABC,所以BC⊥PA.因为PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC,所以BC⊥PC,所以△BPC是直角三角形.(2)解:如图所示,过点A作AH⊥PC于点H,连接BH.因为BC⊥平面PAC,所以BC⊥AH.因为PC∩BC=C,PC⊂平面PBC,BC⊂平面PBC,所以AH⊥平面PBC,所以∠ABH是直线AB与平面PBC所成的角.因为PA⊥平面ABC,所以∠PCA即是PC与平面ABC所成的角.因为tan∠PCA=PAAC=√2,PA=2, 所以AC=√2.在Rt△PAC中,AH=√PA2+AC2=23√3,在Rt△ABH中,sin∠ABH=23√32=√33,即AB与平面PBC所成角的正弦值为√33.要点训练七转化思想转化思想是指在解决数学问题时,一个数学对象在一定条件下转化为另一种数学对象的思想.它包括从未知到已知的转化,从一般到特殊的转化等,折叠问题中体现了转化思想.解决折叠问题的关键在于认真分析折叠前后元素的位置变化情况,看看哪些元素的位置变了,哪些元素的位置没有变,基本思路是利用“不变求变”,一般步骤如下:(1)平面→空间:根据平面图形折出满足条件的空间图形,想象出空间图形,完成平面图形与空间图形在认识上的转化.(2)空间→平面:为解决空间图形问题,要回到平面上来,重点分析元素的变与不变.1.如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.若将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列结论正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析:因为在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°, ∠BAD=90°,所以BD⊥CD.因为平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,所以CD⊥平面ABD,所以CD⊥AB.因为AD⊥AB,AD∩CD=D,AD⊂平面ADC,CD⊂平面ADC,故AB⊥平面ADC.因为AB⊂平面ABC,所以平面ABC⊥平面ADC.答案:D2.如图所示,在矩形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD内过点D作DK⊥AB,垂足为K.设AK=t,则t的取值范围是(1,1).2→解析:如图所示,过点K作KM⊥AF于M点,连接DM,易得DM⊥AF,与折前的图形对比,可知在折前的图形中D,M,K三点共线,且DK⊥AF, 于是△DAK∽△FDA,所以AKAD =ADDF.所以t1=1DF.所以t=1DF.因为DF∈(1,2),所以t∈( 12,1).3.如图①所示,在等腰梯形CDEF中,DE=CD=√2,EF=2+√2,将它沿着两条高AD,CB折叠成四棱锥E-ABCD(E,F两点重合),如图②所示.①②(1)求证:BE⊥DE;(2)设M为线段AB的中点,试在线段CE上确定一点N,使得MN∥平面DAE.(1)证明:因为AD⊥EF,所以AD⊥AE,AD⊥AB.因为AB∩AE=A,AB⊂平面ABE,AE⊂平面ABE,所以AD⊥平面ABE,所以AD⊥BE.由题图①和题中所给条件知,AE=BE=1,AB=CD=√2,所以AE2+BE2=AB2,即AE⊥BE.因为AE∩AD=A,AE⊂平面ADE,AD⊂平面ADE,所以BE⊥平面ADE,所以BE⊥DE.(2)解:如图所示,取EC的中点G,BE的中点P,连接PM,PG,MG, 则MP∥AE,GP∥CB∥DA,所以MP∥平面DAE,GP∥平面DAE.因为MP∩GP=P,所以平面MPG∥平面DAE.因为MG⊂平面MPG,所以MG∥平面DAE,即存在点N与G重合满足条件,使得MN∥平面DAE.。

必修2立体几何复习2013.9.23

必修2立体几何复习2013.9.23

必修2立体几何复习一、知识点梳理1、平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题(1)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。

(2)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。

(3)证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合2、线线、线面、面面位置关系的判定和性质线线垂直面面垂直面面平行二、典型例题例1、已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN //平面PMB ;(2)证明:平面PMB ⊥平面P AD ;(3)求点A 到平面PMB 的距离.例2、设A 在平面B C D 内的射影是直角三角形BCD 的斜边BD 的中点O,1,AC BC CD ==(1)AC 与平面BCD 所成角的大小; (2)二面角A BC D --的大小;(3)异面直线AB 和CD 所成角的大小。

C A课后作业A 若l ⊥m ,m ⊂α,则l ⊥αB 若l ⊥α,l ∥m ,则m ⊥αC 若l ∥α,m ⊂α,则l ∥mD 若l ∥α,m ∥α,则l ∥m 4.(2010•江西)如图,M 是正方体ABCD ﹣A1B1C1D1的棱DD1的中点,给出下列命题 ①过M 点有且只有一条直线与直线 AB、B 1C 1都相交; ②过M 点有且只有一条直线与直线AB 、B 1C 1都垂直; ③过M 点有且只有一个平面与直线AB 、B 1C 1都相交; ④过M 点有且只有一个平面与直线AB 、B 1C 1都平行. 其中真命题是( ) 5.下列命题中,假命题的个数是( )① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与 平行A .4B .3C .2D .16.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是( )A .过A 有且只有一个平面平行于a ,bB .过A 至少有一个平面平行于a ,bC .过A 有无数个平面平行于a ,bD .过A 且平行a ,b 的平面可能不存在 7. 如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC . ⑴求证:PC ⊥AB ;⑵求二面角B-AP-C 的正切值;⑶求点C 到平面APB 的距离.AB C D P 8. 直三棱柱ABC-A 1B 1C 1中AB=AC=AA 1=3a, BC=2a ,D 是BC 的中点,F 是C 1C 上一点,且CF=2a.(1)求证:B 1F ⊥平面ADF ;(2)求三棱锥D-AB 1F 的体积;(3)试在1AA 上找一点E,使得//BE 面ADF (4)DF 与平面AB B 1 A 1所成角的正弦值9.如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点, 且CD ⊥平面PAB .(1) 求证:AB ⊥平面PCB ; (2) 求异面直线AP 与BC 所成角的大小; (3) 求二面角C-PA-B 的大小的余弦值.FC1A。

第8章 立体几何初步(复习课件)高一数学(人教A版2019必修第二册)

第8章 立体几何初步(复习课件)高一数学(人教A版2019必修第二册)

81 C. 4 π
D.16π
(1)如图,设 PE 为正四棱锥 P-ABCD 的高,则正四棱锥 P-ABCD 的 外接球的球心 O 必在其高 PE 所在的直线上,延长 PE 交球面于一点 F,连接 AE,AF.
由球的性质可知△PAF为直角三角形且AE⊥PF,
又底面边长为4, 所以AE=2 2 , PE=6, 所以侧棱长PA=
3
在Rt△CDE中,
故二面角B-AP-C的正切值为2.
tanCED CD 2 3 2, DE 3
归纳总结
(1)求异面直线所成的角常用平移转化法(转化为相交直线的 夹角). (2)求直线与平面所成的角常用射影转化法(即作垂线、找射影). (3)二面角的平面角的作法常有三种:①定义法;②三垂线法; ③垂面法.
的表面积为 16π,则 O 到平面 ABC 的距离为
A. 3
3 B.2
√C.1
3 D. 2
解析 如图所示,过球心O作OO1⊥平面ABC, 则O1为等边三角形ABC的外心. 设△ABC的边长为a, 则 43a2=943,解得 a=3, ∴O1A=23× 23×3= 3. 设球O的半径为r,则由4πr2=16π,得r=2,即OA=2. 在 Rt△OO1A 中,OO1= OA2-O1A2=1,
五、直线、平面平行的判定与性质
1.直线与平面平行
(1)判定定理:平面外一条直线与这个平面内的一条直线平行, 则该直线与此平面平行(线线平行⇒线面平行).
(2)性质定理:一条直线与一个平面平行,则过这条直线的任 一平面与此平面的交线与该直线平行(简记为“线面平行⇒线 线平行”).
2.平面与平面平行
则直线 PB 与 AD1 所成的角为( )
A.
2

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征 1。

棱柱1。

1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1。

2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1。

4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。

1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。

必修2立体几何+选修2-1空间向量专题复习学案:空间向量与立体几何(含答案,可直接打印)

必修2立体几何+选修2-1空间向量专题复习学案:空间向量与立体几何(含答案,可直接打印)

专题复习:空间向量与立体几何题型一:空间几何体的三视图、表面积和体积1.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()2.如图是某几何体的三视图,则该几何体的体积为()A.9π+42 B.36π+18C.92π+12 D.92π+183.如果圆锥的侧面展开图半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是()A.︒30 B.︒45 C.︒60 D.︒904.球的体积与其表面积的数值相等,则球的半径等于.5.如图是某几何体的三视图,其中正视图为正方形,俯视图是腰长为2的等腰直角三角形,则该几何体的体积是.6.一个水平放置的平面图形的斜二测直观图是一个底角为︒45,腰和上底均为1的等腰梯形,则这个平面图形的面积等于.题型二:空间向量的运算及坐标表示1.已知空间四边形OABC,其对角线OB、AC,M、N分别是边OA、CB的中点,点G在线段MN上,且使MG=2GN,用向量,,OA OB OC表示向量OG是()A.2233OG OA OB OC=++; B.122233OG OA OB OC=++;C.111633OG OA OB OC=++D.112633OG OA OB OC=++2、给出下列命题①已知a b⊥,则()()a b c c b a b c⋅++⋅-=⋅;②A、B、M、N为空间四点,若,,BA BM BN不构成空间的一个基底,则A、B、M、N共面;③已知a b⊥,则,a b与任何向量不构成空间的一个基底;④已知{},,a b c是空间的一个基底,则基向量,a b可以与向量m a c=+构成空间另一个基底.正确命题个数是()A.1 B.2 C.3 D.43、已知平行四边形ABCD中,A(4,1,3)、B(2,-5,1)、C(3,7,-5),则D的坐标为( )A.)1,4,27(-B.(2,3,1) C.(-3,1,5) D.(5,13,-3)4、1,2,,a b c a b===+且c a⊥,则向量a b与的夹角为()A.30︒B.60︒C.120︒D.150︒5.若A)1,2,1(-,B)3,2,4(,C)4,1,6(-,则△ABC的形状是()A.不等边锐角三角形B.直角三角形C.钝角三角形D.等边三角形6.若向量)2,1,2(),2,,1(-==baλ,且a 与b的夹角余弦为98,则λ等于()A.2B.2-C.2-或552D.2或552-7.空间四边形OABC中,OB OC=,3AOB AOCπ∠=∠=,则cos<,OA BC>的值是()A.21B.22C.-21D.08.已知,是空间二向量,若与则,7||,2||,3||=-==的夹角为 .题型三:空间向量在立体几何中的应用例1如图,在棱长为2的正方体ABCD-A1B1C1D1中,M为BC的中点,N为AB的中点,P为BB1的中点.(Ⅰ)求证:BD1⊥B1C;(Ⅱ)求证:BD1⊥平面MNP.变式1、已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=AF=1,M是线段EF的中点.(1)求证:AM//平面BDE;(2)求证:AM⊥平面BDF.例2、如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (Ⅰ)证明:AC//平面PMD ;(Ⅱ)求直线BD 与平面PCD 所成的角的大小;(Ⅲ)求平面PMD 与平面ABCD 所成的二面角(锐角)的正弦值变式2(1)如图,底面ABCD 为矩形,侧棱P A ⊥底面ABCD ,3=AB ,BC =1,P A =2,则直线AC 与PB 所成角的余弦值(2)如图,正三棱柱111ABC A B C -的所有棱长都为2, D 为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --余弦值的大小例3、如图所示,在底面是菱形的四棱锥P-ABCD 中,∠ABC=60︒,PA=AC=a,,点E 在PD 上,且PE :ED=2:1. (1)证明:PA ⊥平面ABCD ; (2)求以AC 为棱,EAC 与DAC 为面的二面角θ的大小; (3)棱PC 上是否存在一点F,使BF ∥平面AEC?证明你的结论. 例4已知斜三棱柱111ABC A B C -,90BCA ∠= ,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥。

单元复习13 立体几何初步(课件)高一数学单元复习(苏教版2019必修第二册)

单元复习13 立体几何初步(课件)高一数学单元复习(苏教版2019必修第二册)

4.空间中面面关系 两个平面之间的位置关系有且只有平行、相交两种. (1)证明面面平行的方法 ①面面平行的定义; ②面面平行的判定定理:a∥β,b∥β,a⊂α,b⊂α,a∩b= A⇒α∥β; ③线面垂直的性质定理:a⊥α,a⊥β⇒α∥β; ④基本事实4的推垂直的定义:两个平面相交所成的二面角是直二面角; ②面面垂直的判定定理:a⊥β,a⊂α⇒α⊥β.
顶点:各侧面的_公__共__顶__点___
按底面多边形的边数分:三棱锥、四棱锥……,其中三棱锥又叫 分类 __四__面__体__.底面是__正__多__边__形__,并且顶点与底面中心的连线__垂__直__于
底面的棱锥叫做正棱锥
6.棱台的结构特征:
用一个__平__行__于__棱__锥__底__面___的平面去截棱锥,底面和截面之间那部分多 定义
(1)证明直线与平面平行的方法 ①线面平行的定义; ②判定定理:a⊄α,b⊂α,a∥b⇒a∥α; ③平面与平面平行的性质:α∥β,a⊂α⇒a∥β.
(2)证明直线与平面垂直的方法 ①线面垂直的定义; ②判定定理 1: ml⊥,mn,⊂lα⊥,nm∩n=A⇒l⊥α; ③判定定理 2:a∥b,a⊥α⇒b⊥α; ④面面平行的性质定理:α∥β,a⊥α⇒a⊥β; ⑤面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.
[答案] (1)C (2)B
空间位置关系的证明 [例3] 如图,在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是 AC,B1C的中点.
(1)求证:EF∥平面AB1C1; (2)求证:平面AB1C⊥平面ABB1.
[证明] (1)因为E,F分别是AC,B1C的中点, 所以EF∥AB1. 又EF⊄平面AB1C1,AB1⊂平面AB1C1, 所以EF∥平面AB1C1. (2)因为B1C⊥平面ABC,AB⊂平面ABC, 所以B1C⊥AB. 又AB⊥AC,B1C⊂平面AB1C, AC⊂平面AB1C,B1C∩AC=C, 所以AB⊥平面AB1C. 又因为AB⊂平面ABB1, 所以平面AB1C⊥平面ABB1.

人教A版(新教材)高中数学第二册(必修2)课件:第八章 立体几何初步章末复习课

人教A版(新教材)高中数学第二册(必修2)课件:第八章 立体几何初步章末复习课

6πS 9π2 .
要点二 空间中的平行关系 在本章中,空间中的平行关系主要是指空间中线与线、线与面及面与面的平行,其 中三种关系相互渗透.在解决线面、面面平行问题时,一般遵循从“低维”到“高维” 的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而利用性质定理 时,其顺序相反,且“高维”的性质定理就是“低维”的判定定理.特别注意,转化 的方法总是由具体题目的条件决定,不能过于呆板僵化,要遵循规律而不局限于规 律.如下图所示是平行关系相互转化的示意图.
证明 (1)因为平面PAD⊥底面ABCD,PA在平面PAD内且垂直于这两个平面的交线AD, 所以PA⊥底面ABCD. (2)因为AB∥CD,CD=2AB,E为CD的中点, 所以AB∥DE,且AB=DE. 所以四边形ABED为平行四边形. 所以BE∥AD. 又因为BE⊄平面PAD,AD⊂平面PAD, 所以BE∥平面PAD.
V 圆锥=13πr2h (r 是底面半径, h 是高)
用平行于圆锥底面
圆 的平面去截圆锥,
台 底面与截面之间的

部分


半圆以它的直径所

在直线为旋转轴,
球 旋转一周形成的曲
面叫做球面,球面
所围成的旋转体
S圆台=π(r′2+r2+ r′l+rl)(r′,r分别 是上、下底面半 径,l是母线长)
V 圆台=13πh(r′2+ r′r+r2)(r′,r 分 别是上、下底面 半径,h 是高)
以矩形的一边所在
圆 直线为旋转轴,其
柱 余三边旋转形成的

面所围成的旋转体


以直角三角形的一
圆 圆 条直角边所在直线 为旋转轴,其余两
锥 边旋转一周形成的
面所围成的旋转体

新人教版高中数学必修二第八章立体几何初步精品教案

新人教版高中数学必修二第八章立体几何初步精品教案

基本立体图形【第1课时】棱柱、棱锥、棱台的结构特征教学重难点教学目标核心素养棱柱的结构特征理解棱柱的定义,知道棱柱的结构特征,并能识别直观想象棱锥、棱台的结构特征理解棱锥、棱台的定义,知道棱锥、棱台的结构特征,并能识别直观想象应用几何体的平面展开图能将棱柱、棱锥、棱台的表面展开成平面图形直观想象【教学过程】一、问题导入预习教材内容,思考以下问题:1.空间几何体的定义是什么?2.空间几何体分为哪几类?3.常见的多面体有哪些?4.棱柱、棱锥、棱台有哪些结构特征?二、新知探究棱柱的结构特征例1:下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④[规律方法]棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.棱锥、棱台的结构特征例2:下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④[规律方法]判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点空间几何体的平面展开图例3:(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[求解策略]多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.【课堂总结】1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体类别定义图示多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点旋转体一条平面曲线(包括直线)绕它所在平面内的这条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体.这条定直线叫做旋转体的轴3.棱柱、棱锥、棱台的结构特征结构特征及分类图形及记法棱柱结构特征(1)有两个面(底面)互相平行(2)其余各面都是四边形(3)相邻两个四边形的公共边都互相平行记作棱柱ABCDEF-A′B′C′D′E′F′分类按底面多边形的边数分为三棱柱、四棱柱…续表结构特征及分类图形及记法棱锥结构特征(1)有一个面(底面)是多边形(2)其余各面(侧面)都是有一个公共顶点的三角形记作棱锥S-ABCD 分类按底面多边形的边数分为三棱锥、四棱锥……棱台结构特征(1)上下底面互相平行,且是相似图形(2)各侧棱延长线相交于一点(或用一个平行于棱锥底面的平面去截棱锥,底面与截面之间那部分多面体叫做棱台)记作棱台ABCD-A′B′C′D′分类由三棱锥、四棱锥、五棱锥……截得的棱台分别为三棱台、四棱台、五棱台……[名师点拨](1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系①棱柱的分类棱柱⎩⎨⎧直棱柱⎩⎨⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系【课堂检测】1.下面的几何体中是棱柱的有( )A .3个B .4个C .5个D .6个解析:选 C.棱柱有三个特征:(1)有两个面相互平行.(2)其余各面是四边形.(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.2.下面图形中,为棱锥的是( )A .①③B .③④C .①②④D .①②解析:选 C.根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为( )A .四棱柱B .四棱锥C .三棱柱D .三棱锥解析:选D.根据棱锥的定义可知该几何体是三棱锥.4.一个棱柱有10个顶点,所有的侧棱长的和为60 cm ,则每条侧棱长为__________cm.解析:因为棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为605=12(cm ).答案:125.画一个三棱台,再把它分成: (1)一个三棱柱和另一个多面体. (2)三个三棱锥,并用字母表示. 解:画三棱台一定要利用三棱锥.(1)如图①所示,三棱柱是棱柱A ′B ′C ′­AB ″C ″,另一个多面体是B ′C ′C ″B ″BC . (2)如图②所示,三个三棱锥分别是A ′­ABC ,B ′­A ′BC ,C ′­A ′B ′C . 第2课时教学重难点教学目标核心素养圆柱、圆锥、圆台、球的概念理解圆柱、圆锥、圆台、球的定义,知道这四种几何体的结构特征,能够识别和区分这些几何体直观想象简单组合体的结构特征了解简单组合体的概念和基本形式直观想象 旋转体中的计算问题会根据旋转体的几何体特直观想象、数学运算征进行相关运算【教学过程】一、问题导入预习教材内容,思考以下问题:1.常见的旋转体有哪些?是怎样形成的?2.这些旋转体有哪些结构特征?它们之间有什么关系?3.这些旋转体的侧面展开图和轴截面分别是什么图形?二、新知探究圆柱、圆锥、圆台、球的概念例1:(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④[规律方法](1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.简单组合体的结构特征例2:如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.[求解策略]不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.旋转体中的计算问题例3:如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm,求圆台O′O的母线长.【解】设圆台的母线长为l cm,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm,4r cm.过轴SO作截面,如图所示,则△SO′A′∽△SOA,SA′=3 cm.所以SA′SA=O′A′OA,所以33+l=r4r=14.解得l=9,即圆台O′O的母线长为9 cm.[规律方法]解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.[注意]在研究与截面有关的问题时,要注意截面与物体的相对位置的变化.由于相对位置的改变,截面的形状也会随之发生变化.【课堂总结】1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征定义以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆柱的轴底面:垂直于轴的边旋转而成的圆面侧面:平行于轴的边旋转而成的曲面母线:无论旋转到什么位置,平行于轴的边柱体:圆柱和棱柱统称为柱体(2)圆锥的结构特征定义以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆锥的轴底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边锥体:圆锥和棱锥统称为锥体(3)圆台的结构特征定义用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分图示及相关概念轴:圆锥的轴底面:圆锥的底面和截面侧面:圆锥的侧面在底面和截面之间的部分母线:圆锥的母线在底面与截面之间的部分台体:圆台和棱台统称为台体(4)球的结构特征定义以半圆的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球图示及相关概念球心:半圆的圆心半径:半圆的半径直径:半圆的直径[名师点拨](1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r =R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.【课堂检测】1.如图所示的图形中有()A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球解析:选B.根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故应选B.2.用一个平面去截一个几何体,得到的截面是圆面,则这个几何体不可能是()A.圆锥B.圆柱C.球D.棱柱答案:D3.下列说法中正确的是________.①连接圆柱上、下底面圆周上两点的线段是圆柱的母线;②圆锥截去一个小圆锥后剩余部分是圆台;③通过圆台侧面上一点,有无数条母线.解析:①错误,连接圆柱上、下底面圆周上两点的线段不一定与圆柱的轴平行,所以①不正确.③错误,通过圆台侧面上一点,只有一条母线.答案:②4.一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高h为________cm.解析:h=20cos 30°=20×32=103(cm).答案:10 35.如图所示,将等腰梯形ABCD绕其底边所在直线旋转一周,可得到怎样的空间几何体?该几何体有什么特点?解:若将等腰梯形ABCD绕其下底BC所在的直线旋转一周,所得几何体可以看作是以AD为母线,BC所在的直线为轴的圆柱和两个分别以AB,CD为母线的圆锥组成的几何体,如图(1)所示.若将等腰梯形ABCD绕其上底AD所在的直线旋转一周,所得几何体可以看作是以BC为母线,AD所在的直线为轴的圆柱中两底分别挖去以AB,CD为母线的两个圆锥得到的几何体,如图(2)所示.简单几何体的表面积与体积【第一课时】【教学目标】1.了解柱体、锥体、台体的侧面展开图,掌握柱体、柱、锥、台的体积2.能利用柱体、锥体、台体的体积公式求体积,理解柱体、锥体、台体的体积之间的关系【教学重难点】1.柱、锥、台的表面积2.锥体、台体的表面积的求法【教学过程】一、问题导入预习教材内容,思考以下问题:1.棱柱、棱锥、棱台的表面积如何计算?2.圆柱、圆锥、圆台的侧面展开图分别是什么?3.圆柱、圆锥、圆台的侧面积公式是什么?4.柱体、锥体、台体的体积公式分别是什么?5.圆柱、圆锥、圆台的侧面积公式、体积公式之间分别有怎样的关系?二、新知探究柱、锥、台的表面积例1:(1)若圆锥的正视图是正三角形,则它的侧面积是底面积的()A.2倍B.3 倍C.2 倍D.5 倍(2)已知正方体的8 个顶点中,有 4 个为侧面是等边三角形的三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2B.1∶ 3C.2∶ 2D.3∶ 6(3)已知某圆台的一个底面周长是另一个底面周长的 3 倍,母线长为 3 ,圆台的侧面积为84π,则该圆台较小底面的半径为()A.7B.6C.5D.3【解析】(1)设圆锥的底面半径为r,母线长为l,则由题意可知,l=2r,于是S侧=πr·2r=2πr2,S底=πr2,可知选 C.(2)棱锥B′­ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的棱长为1,则B′C=2,S△B′AC=3 2.三棱锥的表面积S锥=4×32=23,又正方体的表面积S正=6.因此S锥∶S正=23∶6=1∶ 3.(3)设圆台较小底面的半径为r,则另一底面的半径为3r.由S侧=3π(r +3r)=84π,解得r=7.【答案】(1)C(2)B(3)A[规律方法]空间几何体表面积的求法技巧(1)多面体的表面积是各个面的面积之和.(2)组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.柱、锥、台的体积例2:如图所示,正方体ABCD-A1B1C1D1的棱长为a,过顶点B,D,A1截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥A-A1BD的体积及高.【解】(1)V三棱锥A1-ABD=13S△ABD·A1A=13×1 2·AB·AD·A1A=16a3.故剩余部分的体积V=V正方体-V三棱锥A1-ABD=a3-16a3=56a3.(2)V三棱锥A-A1BD=V三棱锥A1-ABD=16a 3.设三棱锥A-A1BD的高为h,则V三棱锥A-A1BD=13·S△A1BD·h=13×12×32(2a)2h=36a2h,故36a2h=16a3,解得h=3 3a.[规律方法]求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.[提醒]求几何体的体积时,要注意利用好几何体的轴截面(尤其为圆柱、圆锥时),准确求出几何体的高和底面积.组合体的表面积和体积例3:如图在底面半径为2,母线长为 4 的圆锥中内接一个高为3的圆柱,求圆柱的表面积.【解】设圆锥的底面半径为R,圆柱的底面半径为r,表面积为S.则R=OC=2,AC=4,AO=42-22=2 3.如图所示,易知△AEB∽△AOC,所以AEAO=EBOC,即323=r2,所以r=1,S底=2πr2=2π,S侧=2πr·h=23π.所以S=S底+S侧=2π+23π=(2+23)π.1.[变问法]本例中的条件不变,求圆柱的体积与圆锥的体积之比.解:由例题解析可知:圆柱的底面半径为r=1,高h=3,所以圆柱的体积 V 1=πr 2h =π×12×3=3π.圆锥的体积 V 2=13π×22×23=833π.所以圆柱与圆锥的体积比为 3∶8.2.[变问法]本例中的条件不变,求图中圆台的表面积与体积.解:由例题解析可知:圆台的上底面半径 r =1,下底面半径 R =2,高 h =3,母线 l =2,所以圆台的表面积 S =π(r 2+R 2+r ·l +Rl )=π(12+22+1×2+2×2)=11π.圆台的体积 V =13π(r 2+rR +R 2)h =13π(12+2+22)×3=733π. 3.[变条件、变问法]本例中的“高为3”改为“高为 h ”,试求圆柱侧面积的最大值.解:设圆锥的底面半径为 R ,圆柱的底面半径为 r , 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC ,所以AE AO =EB OC ,即23-h 23=r 2,所以 h =23-3r ,S 圆柱侧=2πrh =2πr (23-3r ) =-23πr 2+43πr ,所以当 r =1,h =3时,圆柱的侧面积最大,其最大值为 23π. [规律方法]求组合体的表面积与体积的步骤(1)分析结构特征:弄清组合体的组成形式,找准有关简单几何体的关键量.(2)设计计算方法:根据组成形式,设计计算方法,特别要注意“拼接面”面积的处理,利用“切割”“补形”的方法求体积.(3)计算求值:根据设计的计算方法求值.【课堂总结】1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.2.棱柱、棱锥、棱台的体积(1)V 棱柱=Sh ;(2)V 棱锥=13Sh ;V 棱台=13h (S ′+SS ′+S ),其中S ′,S 分别是棱台的上、下底面面积,h 为棱台的高.3.圆柱、圆锥、圆台的表面积和体积 名称图形公式圆柱底面积:S 底=πr 2侧面积:S 侧=2πrl 表面积:S =2πrl +2πr 2 体积:V =πr 2l 圆锥底面积:S 底=πr 2 侧面积:S 侧=πrl表面积:S =πrl +πr 2体积:V =13πr 2h 圆台上底面面积:S 上底=πr ′2 下底面面积:S 下底=πr 2 侧面积:S 侧=πl (r +r ′)表面积:S =π(r ′2+r 2+r ′l +rl ) 体积:V =13πh (r ′2+r ′r +r 2)[名师点拨]1.柱体、锥体、台体的体积(1)柱体:柱体的底面面积为S ,高为h ,则V =Sh .(2)锥体:锥体的底面面积为S ,高为h ,则V =13Sh .(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13()S ′+SS ′+S h .2.圆柱、圆锥、圆台的侧面积公式之间的关系S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 3.柱体、锥体、台体的体积公式之间的关系V 柱体=Sh ――→S ′=S V 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh .【课堂检测】1.已知某长方体同一顶点上的三条棱长分别为1,2,3,则该长方体的表面积为( )A .22B .20C .10D .11解析:选A.所求长方体的表面积S =2×(1×2)+2×(1×3)+2×(2×3)=22.2.正三棱锥的高为3,侧棱长为23,则这个正三棱锥的体积为( ) A.274 B.94 C.2734 D.934解析:选D.由题意可得底面正三角形的边长为3,所以V =13×34×32×3=934.故选D.3.已知圆台的上、下底面的面积之比为9∶25,那么它的中截面截得的上、下两台体的侧面积之比是________.解析:圆台的上、下底面半径之比为3∶5,设上、下底面半径为3x ,5x ,则中截面半径为4x ,设上台体的母线长为l ,则下台体的母线长也为l ,上台体侧面积S 1=π(3x +4x )l =7πxl ,下台体侧面积S 2=π(4x +5x )l =9πxl ,所以S 1∶S 2=7∶9.答案:7∶9 4.如图,三棱台ABC A 1B 1C 1中,AB ∶A 1B 1=1∶2,求三棱锥A 1ABC ,三棱锥B A 1B 1C ,三棱锥CA 1B 1C 1的体积之比.解:设棱台的高为h ,S △ABC =S ,则S △A 1B 1C 1=4S .所以VA 1ABC =13S △ABC ·h =13Sh ,VC A 1B 1C 1=13S △A 1B 1C 1·h =43Sh .又V 台=13h (S +4S +2S )=73Sh , 所以VB A 1B 1C =V 台-VA 1ABC -VC A 1B 1C 1=73Sh -Sh 3-4Sh 3=23Sh , 所以体积比为1∶2∶4.【第二课时】【教学目标】1.记准球的表面积和体积公式,会计算球的表面积和体积2.能解决与球有关的组合体的计算问题【教学重难点】1.球的表面积与体积2.与球有关的组合体【教学过程】一、问题导入预习教材内容,思考以下问题:1.球的表面积公式是什么?2.球的体积公式什么?二、新知探究球的表面积与体积例1:(1)已知球的体积是32π3,则此球的表面积是()A.12πB.16πC.16π3 D.64π3(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是()A.17π B.18πC.20π D.28π【解析】(1)设球的半径为R,则由已知得V=43πR3=32π3,解得R=2.所以球的表面积S=4πR2=16π.(2)由三视图可得此几何体为一个球切割掉18后剩下的几何体,设球的半径为r,故78×43πr3=283π,所以r=2,表面积S=78×4πr2+34πr2=17π,选A.【答案】(1)B(2)A[归纳反思]球的体积与表面积的求法及注意事项(1)要求球的体积或表面积,必须知道半径R或者通过条件能求出半径R,然后代入体积或表面积公式求解.(2)半径和球心是球的最关键要素,把握住了这两点,计算球的表面积或体积的相关题目也就易如反掌了.球的截面问题例2:如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器厚度,则球的体积为()A.500π3cm3 B.866π3cm3C.1 372π3cm3 D.2 048π3cm3【解析】如图,作出球的一个截面,则MC=8-6=2(cm),BM=12AB=12×8=4(cm).设球的半径为R cm,则R2=OM2+MB2=(R-2)2+42,所以R=5,所以V球=43π×53=5003π (cm3).【答案】A[规律方法]球的截面问题的解题技巧(1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题.(2)解题时要注意借助球半径R ,截面圆半径r ,球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.与球有关的切、接问题 角度一球的外切正方体问题例3:将棱长为 2 的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π6【解析】由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为 2,故半径为 1,其体积是43×π×13=4π3.【答案】A角度二球的内接长方体问题例4:一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为 1,2,3,则此球的表面积为________.【解析】长方体外接球直径长等于长方体体对角线长,即 2R =12+22+32=14,所以球的表面积 S =4πR 2=14π. 【答案】14π角度三球的内接正四面体问题例5:若棱长为 a 的正四面体的各个顶点都在半径为 R 的球面上,求球的表面积.【解】把正四面体放在正方体中,设正方体棱长为 x ,则 a =2x ,由题意 2R=3x =3×2a 2=62a ,所以 S 球=4πR 2=32πa 2.角度四球的内接圆锥问题例6:球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为________.【解析】①当圆锥顶点与底面在球心两侧时,如图所示,设球半径为 r ,则球心到该圆锥底面的距离是r 2,于是圆锥的底面半径为 r 2-⎝ ⎛⎭⎪⎫r 22=3r 2,高为3r 2.该圆锥的体积为 13×π×⎝⎛⎭⎪⎫3r 22×3r 2=38πr 3,球体积为43πr 3,所以该圆锥的体积和此球体积的比值为38πr 343πr 3=932.②同理,当圆锥顶点与底面在球心同侧时,该圆锥的体积和此球体积的比值为332.【答案】932或332角度五球的内接直棱柱问题例7:设三棱柱的侧棱垂直于底面,所有棱的长都为 a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2D .5πa 2【解析】由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为 a .如图,P 为三棱柱上底面的中心,O 为球心,易知 AP =23×32a =33a ,OP =12a ,所以球的半径 R = OA 满足R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫12a 2=712a 2,故 S 球=4πR 2=73πa 2. 【答案】B [规律方法](1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为 r 1=a2,过在一个平面上的四个切点作截面如图(1).(2)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,。

高中数学必修2期末复习立体几何知识点讲义(经典)

高中数学必修2期末复习立体几何知识点讲义(经典)

高中数学必修2立体几何知识点1.1柱、锥、台、球的结构特征,定义,性质棱柱:棱锥:棱台:圆柱:圆锥:圆台:球:1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下2斜二测画法的步骤:1.3 空间几何体的表面积与体积(一)空间几何体的表面积,侧面积公式扇形的面积公式213602n RS lrπ==扇形(其中l表示弧长,r表示半径)(二)空间几何体的体积公式第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系1 平面含义:平面是无限延展的,无大小,无厚薄。

2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

推论1:经过一条直线与直线外一点,有且只有一个平面。

推论2:经过两条平行直线,有且只有一个平面。

推论3:经过两条相交直线,有且只有一个平面。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等. 2.1.3 —2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点特别指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα⊄来表示2.2.直线、平面平行的判定及其性质一、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明二、判定线面平行的方法1、据定义:如果一条直线和一个平面没有公共点2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行3、两面平行,则其中一个平面内的直线必平行于另一个平面4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面五、判定线面垂直的方法1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面六、判定两线垂直的方法90角1、定义:成︒2、直线和平面垂直,则该线与平面内任一直线垂直3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直七、判定面面垂直的方法1、定义:两面成直二面角,则两面垂直2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面八、面面垂直的性质901、二面角的平面角为︒2、在一个平面内垂直于交线的直线必垂直于另一个平面3、相交平面同垂直于第三个平面,则交线垂直于第三个平面九线面角的求法1.定义法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。

北师大版必修二数学立体几何初步小结与复习(2)

北师大版必修二数学立体几何初步小结与复习(2)

安边中学 高一 年级 1学期 数学 学科导学稿 执笔人: 王广青 总第 课时备课组长签字: 包级领导签字: 学生: 上课时间: 第 周集体备课个人空间一、课题:第一章、立体几何初步小结与复习(2)二、学习目标1、知识与技能:(1)使学生掌握知识结构与联系,进一步巩固、深化所学知识;(2)通过对知识的梳理,提高学生的归纳知识和综合运用知识的能力。

2、过程与方法:利用小结对本章知识进行系统的归纳,直观、简明再现所学知识,化抽象学习为直观学习,易于理解;3、情态与价值:学生通过知识的整合、梳理,体会空间点、线面间的位置关系及其互相联系,进一步培养学生的空间想象能力和解决问题能力。

三、教学过程 【温故知新】(一)线面平行 1、判定定理2、性质定理(二)面面平行1、判定定理2、性质定理【导学释疑】1.给出三个命题:①若两条直线与第三条直线所成的角相等,则这两条直线互相平行; ②若两条直线都与第三条直线垂直,则这两条直线互相平行; ③若两条直线都与第三条直线平行,则这两条直线互相平行. 其中不.正确命题的个数为( ) A .0个 B . 1个 C .2个 D . 3个 2.已知m ,n 为异面直线,m ∥平面α,n ∥平面β,α∩β=l ,则l ( )A .与m ,n 都相交B .与m ,n 中至少一条相交符号语言图形语言 符号语言 图形语言符号语言 符号语言 图形语言图形语言C .与m ,n 都不相交D .与m ,n 中一条相交3.以下命题(其中a ,b 表示直线,α表示平面) ①若a ∥b ,b ⊂ α,则a ∥α ②若a ∥α,b ∥α,则a ∥b ③若a ∥b ,b ∥α,则a ∥α④若a ∥α,b ⊂ α,则a ∥b其中错误命题的序号是____________. 4. 下列命题中,正确的是( )A .//,,,//l m l m αβαβ⊥⊥若则B .//,//,//,//l m l m αβαβ若则C .//,//,,,//a b a a b βαααβ⊂⊂若则D .,,//a a b b αα⊥⊥若则 【巩固提升】1.下列命题中正确的命题个数是( ) ①若两个平面βα//,βα⊂⊂b a ,,则b a //; ②若两个平面βα//,βα⊂⊂b a ,,则a 与b 异面; ③若两个平面βα//,βα⊂⊂b a ,,则a 与b 一定相交; ④若两个平面βα//,βα⊂⊂b a ,,则a 与b 平行或异面. A .1 B .2 C .3 D .4 2.P 是平行四边形ABCD 所在平面外一点,Q 为P A 的中点. 求证:PC //平面BDQ 【检测反馈】1.如图1,在正方体A 1B 1C 1D 1-ABCD 中,F 、H 分别是CC 1、AA 1的中点. 求证:11//BDF B D H 平面平面.反思栏BACDABC D H F。

立体几何初步复习课

立体几何初步复习课

立体几何初步复习课一、内容和内容解析1.内容人教版普通高中教科书数学必修第二册第167页至第171页第八章立体几何初步小结及复习参考题8.重点是通过分析常见几何图形及典型问题,梳理立体几何初步的核心概念、定理等内容与思想方法.本章知识结构如下框图:2.内容解析本章包括两部分内容,第一部分是认识基本立体图形:包括从空间几何体的整体观察入手,通过认识柱、锥、台、球等基本立体图形的组成元素及其相互关系,认识这些图形的几何结构特征,以及它们在平面上的直观图表示和它们的表面积和体积的计算.第二部分是认识基本图形位置关系:主要是讨论组成立体图形的几何元素之间的位置关系.从组成立体图形的基本元素——点、直线、平面出发,研究平面基本性质,认识空间点、直线、平面的位置关系,重点研究直线、平面之间的平行和垂直这两种特殊的位置关系.因此本节课的教学重点是通过分析常见几何图形及典型问题,梳理立体几何初步的核心概念、定理等内容与思想方法,从而构建立体几何的核心体系.难点是分析组合体的结构特征以及运用有关定理推理证明一些几何元素间的位置关系.二、目标和目标解析1.目标(1)在回顾与思考本章的主要内容的基础上,引导学生梳理立体几何的核心概念、定理等内容与思想方法,构建立体几何的核心体系,体会研究空间图形的基本思路:直观感知、操作确认、推理论证、度量计算.(2)借助分析典型问题的通性通法,通过“图”(识图、画图、用图)提升学生直观想象素养,通过“写”(图形、文字、符号三种语言)培养学生逻辑推理能力,通过“悟”(直观感知、操作确认)发展学生数学抽象水平.2.目标解析(1)通过问题的形式回顾主要内容,并不是简单的重复,而是深入思考、归纳概括、建立知识结构,形成研究空间图形的基本方法.(2)借助正方体等常见几何体模型,设计一些综合性较强的问题让学生自主探究,建立一套解决复杂问题的处理模式.三、教学问题诊断分析学生虽然学完了立体几何初步的内容,但对几何图形的认识基本上停留在碎片化的就题论题的表层水平,对空间元素位置关系的研究不深入,需要在一两节复习课上以师生相互交流的方式更深入地认识立体几何.四、教学支持条件分析观察和展示现实生活中的实例与图片,“几何画板”的画图软件,投影仪等.五、教学过程设计问题1:我们是从哪些角度入手研究基本几何体的结构特征的?你能用基本几何体的结构特征解释身边物体的结构吗?请举例说明.我们从对空间几何体(实物、模型、图片等)的整体观察入手,认识多面体、旋转体以及一些基本几何体(棱柱、棱锥、棱台、圆柱、圆锥、圆台、球)的结构特征,研究这些几何体的组成元素及其相互关系.师生共同总结:(1)n棱锥:F=n+1,E=2n,V=n+1,V+F-E=2n棱柱与n棱台:F=n+2,E=3n,V=2n,V+F-E=2n棱锥的本质特征:有一个面是n边形,其余各面是有一个公共顶点的三角形.n棱柱的本质特征:有两个面(均为n边形)相互平行,其余各面是每相邻两个面的公共边互相平行的四边形面.n棱台是用一个平行于n棱锥底面的平面去截棱锥,所得的底面与截面之间的部分.当n棱柱的一个底面“均匀”缩小变为面积较小的相似底面时,变成n棱台;继续“均匀”缩小成一个点时,便变成n棱锥.(2)V+F-E=2这个规律是欧拉拓扑公式:V+F-E=2,其中V,F,E分别是简单多面体的顶点个数、面数、棱的条数.例2 中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体,它的所有顶点都在同一个正方体的表面上,半正多面体体现了数学的对称美.图2是图1“半正多面体”的直观图.(1)请你数一数该几何体的面数F,棱数E,顶点数V,是否有例1的规律?(2)请你说说是怎样数出来的?说说该半正多面体的结构特征.师生共同总结:(1)F=26,E=48,V=24,F+V-E=2(2)①该半正多面体可看成一个组合体,从上而下看,最上层与最下层是两个全等的多面体(如图3,图5),图3多面体的下底面是正八边形,上底面是正方形,且下底面与上底面平行,侧面有四个正方形,四个正三角形;中间是正八棱柱(如图4).②从上下、左右、前后三个方向看,该半正多面体都具有相同的结构,体现了数学的对称美,也展示了南北朝时期的审美观与几何文化.问题2:利用斜二测画法可以画出空间几何体的直观图.你能结合实例说出用斜二测画法画空间几何体的直观图的基本步骤吗?斜二测画法画空间几何体的直观图,是用平面图形表示空间图形的重要方法,我们能够根据直观图想象空间几何体的形状和结构.简单说,斜二测画法的规则是:横竖不变,纵减半,平行性不变.我们可以例1中的正八棱柱为例,具体展示用斜二测画法画空间几何体的直观图的基本步骤(如图6).问题3:对于空间几何体,可以有不同的分类,你能选择不同的分类标准对柱、锥、台、球等空间几何体进行分类吗?如何计算柱、锥、台、球的表面积和体积?你能说出柱、锥、台、球的体积公式之间的联系吗?空间几何体按照围成它的各个面的特征(平面还是曲面)分类,可以得到多面体、旋转体.进一步地,按照组成多面体和旋转体的面、棱、顶点等组成要素的特征及其位置关系分类,又可以得到棱柱、棱锥、棱台等基本的多面体以及圆柱、圆锥、圆台、球等基本的旋转体.棱柱、棱锥和棱台的表面积就是组成它们的各个面的面积和,圆柱、圆锥、圆台的侧面与表面积可以通过侧面展开为平面图形来处理.用运动变化的观点研究棱柱、棱锥和棱台的体积公式之间的关系:分析:考虑旋转后得到怎样的几何体.解析:图7旋转后形成的几何体是底面圆半径与高均为的圆柱挖去一个圆锥后的几何体,该圆锥的顶点为圆柱下底的圆心,底面与圆柱上底面重合(如图9中的右图所示).为什么这两个几何体的体积相等呢?课后同学们可上网查阅“祖暅原理”进行更多的了解.探究1:问以该正方体的顶点为顶点的四面体有几种(全等的算一种)?比较这些四面体的结构特征.展示同学们的作业,同时交流思路.四面体的四个顶点不可能在正方体的同一个面上,应该分布在正方体的上、下两个面上,以在下底面的顶点为标准分类考虑.归纳总结有以下四种(如图11):探究2:是否存在四个面都是直角三角形的四面体?总结:(1)求四面体的体积一般可根据四面体的结构特征,确定高与底面,转化为求三棱锥的体积;图11(4)中的四面体是正四面体(各面都是全等的正三角形),也可通过割补法求得;定义法、转化法、割补法等是求几何体体积的重要方法.(2)经计算发现,图11(4)中的正四面体的体积最大,表面积最小,这也是现实中经常要考虑的最优化问题.探究4:怎样求图11中的四个四面体的外接球与内切球的半径?四个四面体的外接球与正方体的外接球相同,其一条直径为正方体的体对角线,半径.如图12,可以类比三角形内切圆半径的面积计算思路,可计算出四个内切球的半径.问题4:刻画平面的三个基本事实是立体几何公理体系的基石,是研究空间图形、进行逻辑推理的基础.实际上,三个基本事实刻画了平面的“平”、平面的“无限延展”,你能归纳一下刻画的方法吗?平面的三个基本事实是按照从简单到复杂的顺序,刻画平面的基本性质.基本事实1是从点与平面关系的角度刻画平面的唯一存在性,基本事实2是从直线与平面关系的角度利用直线的“直”和“无限延伸”的属性刻画了平面的“平”和“无限延展”的属性,基本事实3是从平面与平面关系的角度进一步说明了平面的“平”和“无限延展”的特征:由于平面是“平的”,因而它们才可能交于一条直线,否则交线就不是“直”的,而是“曲”的了,例如圆柱的侧面和底面的交线就是一条曲线;另外,两个平面相交于一条直线,直线是“无限延伸”的,也说明平面的交点有无数个,平面是“无限延展”的.空间直线与直线,直线与平面,平面与平面之间的位置关系是从生活世界中找到模型,再根据公共点的个数、是否共面等进行逻辑分类建立起来的.例5(复习参考题8第5题)三个平面可将空间分成几部分?请分情况说明.探究1:一个平面将空间分成两个部分,两个平面有几种位置关系?它们将空间分成几部分?图13(1)中αPβ,它们将空间分成三部分;图13(2)中αIβ=a,它们将空间分成四部分.探究2:在图13中再增加一个平面,这三个平面可能产生哪些位置关系?每种位置关系可将空间分成几部分?可能出现五种不同的位置关系如图14,三个不同的平面α,β,γ,直线a,b,c,l.将12条分成三个共面组,侧棱组4条,上底面棱组4条,下底面棱组4条,若“异面直线组”含四条或以上的棱,则至少有两条棱在同一组,这样两条棱便共面,这与“异面直线组”的定义矛盾,故“异面直线组”最多有三条棱.问题5:在直线、平面的位置关系中,“平行”和“垂直”是最重要的.(1)在研究这些位置关系的判定时,我们采用了哪些思想方法?以直线与平面垂直为例,总结一下研究判定的内容、过程和方法.(2)研究这些位置关系的性质,实际上就是要研究什么问题?以两个平面相互垂直为例,总结一下研究性质的内容、过程和方法.研究“什么是空间直线、平面的垂直?”以及“空间直线、平面垂直时其要素(直线、平面)有什么确定不变关系”;确立研究空间直线、平面垂直的内容(判定与性质)与路径:“化繁为简”“以简驭繁”“空间问题平面化”是空间元素位置关系的一般思路.我们利用直线与直线的垂直研究直线与平面的垂直,利用直线与直线垂直、直线与平面垂直研究平面与平面垂直.反过来,由直线与平面垂直又可以得到直线与直线垂直,由平面与平面垂直又可以得到直线与直线、直线与平面垂直.小结:正方体(或长方体)是重要的几何体模型,我们要深入研究正方体模型,对它进行变形,构建出新的模型,探求各种空间位置关系或几何模型与正方体之间的联系,彰显正方体的“母体”地位.课后作业:5.教材第170页复习参考题8第10题.6.教材第170页复习参考题8第11题.7.教材第171页复习参考题8第13题.8.教材第171页复习参考题8第14题.六、目标检测设计(时间:90分,满分:100分)一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法错误的是().(A)一个八棱柱有10个面(B)任意n面体都可以分割成n个棱锥(C)棱台侧棱的延长线必相交于一点(D)矩形旋转一周一定形成一个圆柱2.给出下列4个命题:①平行于同一直线的两条直线平行;②平行于同一平面的两条直线平行;③平行于同一直线的两个平面平行;④平行于同一平面的两个平面平行.其中正确的命题是().(A)①②(B)③④(C)①④(D)②③3.给出下列4个命题:①垂直于同一直线的两条直线平行;②垂直于同一平面的两条直线平行;③垂直于同一直线的两个平面平行;④垂直于同一平面的两个平面平行.其中正确的命题是().(A)①②(B)③④(C)①④(D)②③4.三棱锥的三条侧棱两两互相垂直,长分别为,则这个三棱锥的体积是().二、填空题:本大题共6小题,每小题5分,共30分.请将答案填在对应题号的位置上.9.正方体相邻两个面的两条对角线所成角的大小是________.10.长方体的所有顶点都在一个球面上,长、宽、高分别为3,2,1,那么这个球面的面积是________.11.正三棱锥的底面边长为2,侧棱长为3,则它的体积为________.13.已知矩形ABCD,AB=2,AD=1,沿BD将△ABD折起成△.若点A′在平面BCD上的射影落在△BCD的内部,则四面体的体积的取值范围是________.14.空间的4个平面,最多能将空间分成________个区域.三、解答题:本大题共4小题,共38分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分8分)画图,并证明:若m//α,n⊥α,则m⊥n.16.(本题满分10分)17.(本题满分10分)如图,正四棱锥P-ABCD中,已知侧棱和底面边长都等于2,E是AB的中点.(1)求证:AB∥平面PCD.(2)求异面直线PE与BC所成角的余弦值.。

人教版数学必修2立体几何初步知识点

人教版数学必修2立体几何初步知识点

第一章 立体几何初步1.柱、锥、台、球的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

(2)棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体(3)棱台:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分(4)圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体(5)圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体(6)圆台:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分(7)球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体2. 空间几何体的表面积和体积:(1)侧面积公式:① 直棱柱S ch =(c 为底面周长,h 为高)② 正棱锥'12S ch =(c 为底面周长,'h 为斜高)③ 正棱台'121()2S c c h =+(12c c 、分别为上下底面的周长,'h 为斜高)④ 圆柱2S rh π=(r 为底面半径,h 为高)⑤ 圆锥S rl π=(r 为底面半径,l 为母线长)⑥ 圆台12()S r r l π=+(12r r 、分别为上下底面半径,l 为母线长)(2)体积公式:① 棱柱V Sh =(S 为底面积,h 为高)② 棱锥13V Sh =(S 为底面积,h 为高)③ 棱台121()3V S S h =+(12S S 、分别为上下底面积,h 为高)④ 圆柱2V Sh r h π==(S 为底面积,r 为底面半径,h 为高)⑤ 圆锥21133V Sh r h π==(S 为底面积,r 为底面半径,h 为高)⑥ 圆台121()3V S S h =+(12S S 、分别为上下底面积,h 为高)(3)球:①球的表面积公式:24S R π=②球的体积公式:343V R π= (R 表示球的半径)③球的任意截面的圆心与球心的连线垂直截面,若设球的半径为R ,截面圆的半径是r ,截面圆的圆心与球心的连线长为d ,则:222d R r =-。

高中数学必修二 第八章 立体几何初步【专项训练】下学期期中专项复习

高中数学必修二  第八章 立体几何初步【专项训练】下学期期中专项复习

2020-2021学年高一数学下学期期中专项复习(人教A版2019)第八章立体几何初步专项训练考点一基本立体图形解决空间基本立体图形结构特征问题的三个策略(1)把握几何体的结构特征,提高空间想象力.(2)构建几何模型、变换模型中的线面关系.(3)通过反例对结构特征进行辨析.一.选择题1.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括A.一个圆台、两个圆锥B.一个圆柱、两个圆锥C.两个圆台、一个圆柱D.两个圆台、一个圆锥【答案】B【解析】设等腰梯形ABCD,较长的底边为CD,则绕着底边CD旋转一周可得一个圆柱和两个圆锥,(如右轴截面图)故选B.2.某人用如图所示的纸片沿折痕折后粘成一个四棱锥形的“走马灯“,正方形做灯底,且有一个三角形面上写上了“年”字,当灯旋转时,正好看到“新年快乐”的字样,则在①、②、③处可依次写上A .乐、新、快B .快、新、乐C .新、乐、快D .乐、快、新 【答案】B【解析】根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,故选B .3.以下空间几何体是旋转体的是A .圆台B .棱台C .正方体D .三棱锥 【答案】A【解析】一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;该定直线叫做旋转体的轴;封闭的旋转面围成的几何体叫作旋转体.所以选项A 正确.故选A .4.一个圆锥的母线与其轴所成的角为60︒,则该圆锥的侧面展开图的圆心角为A .2πB .π CD【答案】D【解析】如图所示,设圆锥的母线为l ,底面圆半径为r , 因为60ABO ∠=︒,所以sin 60r l=︒,解得r =, 所以底面圆的周长为2r π,所以该圆锥的侧面展开图的圆心角为222r l l ππθ===.故选D.5.用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是A.圆锥B.圆柱C.三棱锥D.正方体【答案】B【解析】用一个平面去截一个圆锥时,轴截面的形状是一个等腰三角形,所以A满足条件;用一个平面去截一个圆柱时,截面的形状不可能是一个三角形,所以B不满足条件;用一个平面去截一个三棱锥时,截面的形状是一个三角形,所以C满足条件;用一个平面去截一个正方体时,截面的形状可以是一个三角形,所以D满足条件.故选B.6.用一个平面去截一个几何体,得到的截面是一个圆面,这个几何体可能是A.圆锥B.圆柱C.球体D.以上都有可能【答案】D【解析】用一个平面去截一个几何体,得到的截面是一个圆面,则这个几何体可能是圆锥,也可能是圆柱,也可能是球体.故选D.7.下列说法正确的是A.通过圆台侧面一点,有无数条母线B.棱柱的底面一定是平行四边形C.圆锥的轴截面是等腰三角形D.用一个平面去截棱锥,原棱锥底面和截面之间的部分是棱台【答案】C【解析】对于A,通过圆台侧面一点,有且仅有一条母线,所以选项A错误;对于B,棱柱的底面不一定是平行四边形,所以选项B错误;对于C,圆锥的轴截面是腰长等于母线的等腰三角形,所以选项C正确;对于D,用一个平行于底面的平面去截棱锥,原棱锥底面和截面之间的部分是棱台,所以选项D错误.故选C.8.下列说法正确的是A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台【答案】C【解析】对于A ,棱台的上下底面互相平行,侧面都是四边形,但棱台不是棱柱,故A 错误;对于B ,当旋转轴为直角边时,所得几何体为圆锥,当旋转轴为斜边时,所得几何体为两个圆锥的组合体,故B 错误;对于C ,由于棱锥的所有侧棱都交于一点,故棱锥的侧面都是三角形,故C 正确;对于D ,当平面与棱锥的底面不平行时,截面与棱锥底面间的几何体不是棱台,故D 错误.故选C .二.填空题9.圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ= .【答案】π【解析】圆锥底面半径为1cm ,母线长为2cm ,则它的侧面展开图扇形的圆心角所对的弧长为212()cm ππ⨯=; 所以扇形的圆心角为22πθπ==. 故答案为:π.10.一圆台的母线长为20cm ,母线与轴的夹角为30︒,上底面半径为15cm ,则下底面半径为 ,圆台的高为 .【答案】25cm ,. 【解析】如图所示,圆台的母线长为20l cm =,母线与轴的夹角为30︒,上底面的半径为15r cm =,所以圆台的高为cos3020)h l cm =︒==, 则1sin3020102R r l -=︒=⨯=, 所以底面圆的半径为151025()R cm =+=.故答案为:25cm ,.三.解答题11【解析】如图所示,在正四棱锥S ABCD -中,连结AC ,BD 交于点O ,连结OS ,OS SA在Rt SOA ∆中,2OA ,所以AB ==作OE BC ⊥于点E ,则E 为BC 的中点,连结SE ,则SE 为该正四棱锥的斜高,在Rt SOE ∆中,因为12OE AB SO ==所以SE =12.一个正四棱台的高是17cm ,上、下底面边长分别为4cm 和16cm .求这个棱台的侧棱长和斜高.【答案】侧棱长为19cm ,斜高为【解析】如图所示,设棱台的两底面的中心分别是1O 、O ,11B C 和BC 的中点分别是1E 和E ,连接1O O 、1E E 、11O B 、OB 、11O E 、OE ,则四边形11OBB O 和11OEE O 都是直角梯形.114A B =cm ,16AB =cm ,112O E ∴=cm ,8OE =cm ,11O B =,OB =,2221111()361B B O O OB O B ∴=+-=2cm ,22221111()325E E O O OE O E cm =+-=,119B B ∴=cm ,1E E =.∴这个棱台的侧棱长为19cm ,斜高为.考点三 立体图形的直观图斜二测画法的步骤:(1)在已知图形中取互相垂直的x 轴和y 轴,两轴相交于点O.画直观图时,把它们画成x 轴和y 轴,两轴相交于点O,且使∠xO y=45° (或135°),它们确定的平面表示水平面。

关于高考复习计划范文10篇

关于高考复习计划范文10篇

关于高考复习计划范文10篇高考复习方案篇1一、花时间,急躁等待收获高三全年复习是漫长而艰辛的路程,期间需要持续担当着不小的内心和外部压力。

在复习过程中,同学们很简单消失畏难心情,或者感到焦躁和厌倦。

相比于理科,语文这一学科往往存在着“投入与产出不成比例”的现象,感觉花了不少的时间精力,但却收效不大。

这导致一些同学在复习中过早地放弃语文学科,宁愿把时间留给其他科目。

殊不知,越不情愿花时间,就越没法看到成效,渐渐就会形成恶性循环,无论是哪一门功课的学习都离不开平常的积累。

因此,同学们需要建立急躁、信念,通过一两天的学习,就想看到语文成果的突飞猛进并不现实,但假如经过一个月、一个学期的积累,语文可以获得的提高肯定不比其他科目小。

建立平稳的心态,专注于学习,是成果飞跃的前提。

通常而言,对于基础不太牢靠或者学习不得其法的同学来说,摆正心态,仔细复习,并长期坚持,提高一二非常是完全有可能的。

二、建系统,串联学问内容语文学习中包含有众多的学问系统,有阅历的老师在首轮复习时,一般会引导同学有针对性地对各个系统做复习,形成不同的复习小模块,同学也可有意识地建立自己的学问系统:如相对而言较大的系统,现代文体学问系统、古今文学常识系统、写作学问系统、文言学问系统、语音学问系统、文学学问系统、词及短语系统、单复句学问系统、修辞学问系统、标点学问系统等;小学问系统,如每一个语文学问点的性质、分类、意义或用法。

学问系统的建立有肯定的固定规律,同学们在建构学问系统的时候,也可以加入一些自己的特色,如依据自己的记忆习惯,将不同的系统学问,进行再划分归类,编制顺口溜等等。

首轮复习中,同学们了解大系统和小系统学问特别重要,将学问点有意识地串联成大小的学问系统,并在复习详细学问点时,有意识地将所复习的学问点及其所属的学问系统联系起来,不断丰富和扩大学问系统,才能对语文进行更为全面、深化地复习。

三、多阅读,累学问拓思路除了课内复习外,同学们也不能遗忘必要的课外拓展。

高中历史必修第2册 第四单元资本主义制度的确立复习课 课后检测

高中历史必修第2册 第四单元资本主义制度的确立复习课 课后检测

第四单元资本主义制度的确立课后检测1.“文艺复兴”的原意是“再生”“复活”,表面上看是复兴古希腊罗马的文化,但实质却是()A.知识分子欣赏、阐释古典文化充满人性的美B.古典文学家使古希腊罗马的文化再生与复活C.复兴古典文化使之为意大利人服务D.借古代文化之名宣扬新的资产阶级思想2. 16世纪,马丁·路德领导的宗教改革将矛头指向天主教会。

马丁·路德领导的宗教改革开始于A. 德意志B. 英国C. 美国D. 法国3.1543年《天体运行论》出版,针对“日心说”,路德讥讽哥白尼是“自命不凡的占星术士”“愚蠢到公然与《圣经》相违背”,加尔文也回应道“有谁胆敢将哥白尼的依据置于圣灵之上呢?”这表明()A.自然科学仍待突破神学的束缚 B.宗教改革阻碍科学革命的推进C.宗教改革与文艺复兴背道而驰 D.新教与旧教教义主张基本一致4. 他认为劳动是财富的源泉和衡量价值的尺度,主张自由竞争,被尊为“现代经济学之父”。

他指的是()A.亚当·斯密 B.马克思 C.伏尔泰 D.孟德斯鸠5. 有学者评价说“英国光荣革命’在一个有长期专制传统的国家找到了一个摆脱革命与专制的循环,能有效地控制‘控制者’的办法”。

这里的“办法”具体是指()A.以和平方式发动政变 B.恢复王在议会的传统C.确立议会主权的原则 D.正式建立责任内阁制6.下列有关英国内阁的说法,不正确的是()A.名义上对国王负责,实际对议会负责 B.内阁的首脑是首相,其成员是各部大臣C.内阁成员集体负责,与首相共进退 D.内阁成员是由国王提名任命的7. 明治维新时期,日本为提高国民的识字率,引入了普及初等教育和中等教育体系。

这一政策是( )A.废藩置县B.“殖产兴业”C.天皇制度D.“文明开化”8.抓关键词和制作学科知识结构是学习历史的有效方法之一。

请在下图的问号处填写你概括的时代主题( )1861年俄国改革美国内战意大利统一德意志统一日本明治维新A.资本主义制度开始建立起来B.资本主义制度的扩展C.资本主义世界殖民体系建立D.社会主义制度的确立9. 材料一国王不经议会许可,不能随意废除法律,也不能停止法律的执行,不得征收捐税。

高中人教A版必修第二册逆袭之路第八章立体几何初步小结复习参考题8

高中人教A版必修第二册逆袭之路第八章立体几何初步小结复习参考题8
8.如图,在三棱锥P—ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.
(1)求证:DE∥平面PAC
(2)求证:AB⊥PB
9.如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将 分别沿DE,EF,DF折起,使A,B,C三点重合于点 .
(1)求证 ;
(2)求三棱锥 的体积.
13.如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面PAD是正三角形,侧面 底面ABCD,M是PD的中点.
(1)求证: 平面PCD;
(2)求侧面PBC与底面ABCD所成二面角的余弦值.
14.从直线a,b和平面 这三个空间元素中任取两个,若已知它们与第三个元素有平行或垂直关系,则所取的两个元素是否也有平行或垂直关系?你能得到哪些结论?写出一些你认为重要的,如果三个元素分别是直线m、平面 和 ,你能得到哪些结论?
因为 ,所以 ,同理可证 .
所以 .
【点睛】
本题主要考查了平面的基本性质和平行线的性质的应用,其中解答中熟记平面的基本性质,合理推理与论证是解答的关键,着重考查了推理与论证能力,属于基础题.
6.见解析
【分析】
根据平行投影的概念,以及线面平行的性质,结合平行四边形的性质,即可作出判定,得到答案.
【详解】
5.(1)见解析;(2) , ,见解析
【分析】
(1)根据平面的基本性质,即可证得 三线共点,得到答案;
(2)根据平面的基本性质和平行线的性质,即可证得 ,得到答案.
【详解】
(1)由题意,知 ,可得 , ,因为 ,可得 ,
又由 ,可得 ,所以 为 与 的公共点.
又 ,所以 ,所以 三线共点.
(2)由题意,因为 ,所以 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修2立体几何
1、空间几何体的结构
1)棱柱:有两个面互相 ,其余各面都是四边形,并且每相邻两个四边形的公共边都互相
2)棱台:用一个 于棱锥底面的平面去截棱锥,底面与截面之间的部分。

侧棱延长线交于 练习:(1)命题正确的有( )
A.有两个面平行,其余各个面都是四边形的几何体的几何体为棱柱
B.有两个面,其余各个面都是平行四边形的几何体为棱柱 C 、有两个面平行,其余各个面都是四边形,并且每相邻的两个四边形的公共边都互相平行的几何体为棱柱 D.有一个平面去截棱柱,底面与截面之间的部分组成的几何体为棱台 E.有两个底面平行且相似,其余各个面都是梯形的多面体为棱台 F.有两个互相平行,其余四个面都是等腰梯形的六面体为棱台
2、空间几何体的三视图和直观图
练习(1)一个底边在x 轴上的三角形,用斜二测画法做出直观图,其直观图面积是原来三角形面积的 倍
(2)一个简单空间几何体的三视图的正视图与侧视图都是边长为2的正三角形,其俯视图为一个边长为2
的正方形,则求这几何体的表面积与体积?
3、空间几何体的表面积与体积
1)圆柱侧面积;S= 2)圆锥侧面积:S=
3)圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面 4)体积公式: h S V ⋅=柱体;h S V ⋅=
3
1锥体; 5)球的表面积和体积:S =球. ; V =球
练习
(2)Rt ABC ∆中,AB=3,BC=4,AC=5,将三角形绕直角边AB 旋转一周所成的几何体的体积为
(3)将一个气球的半径扩大1倍,它的体积扩大到原来的 倍
一个正方体的顶点都在球面上,它的棱长为a cm ,球的体积为
第二章:点、直线、平面之间的位置关系
1、异面直线夹角的求法:一作(将两条异面直线平行地移到同一平面);二证;三求;
练习:如图,已知长方体D C B A ABCD ''''-中,AB=AD=32,2='A A ,
(1)哪些棱所在直线与直线A B '是异面直线?
(2)求直线A A '与C B '所成角的大小.
2、二面角的求法:一作(作公共棱的两条垂线);二证;三求;
练习:如图,四棱锥S-ABCD P 为侧棱SD 上的点。

1)求证:AC ⊥SD ;2)若SD ⊥平面PAC ,求二面角P-AC-D 的大小
9、线面平行:
⑴判定: 符号语言:
⑵性质: 符号语言:
10、面面平行:
⑴判定: 符号语言:
⑵性质:符号语言:
11、线面垂直
⑵判定: 符号语言:
⑶性质:符号语言:
12、面面垂直:
⑵判定: 符号语言:
⑶性质: 符号语言:
练习:
19.在四棱锥P―ABCD 中,PD ⊥平面ABCD ,底面是边长是1的正方形,侧棱PA 与底面成450的
角,M ,N 分别是AB ,PC 的中点;
(1)求证: BC ⊥PC (2)求证:MN ∥平面PAD ;
(1)如图,四棱锥ABCD 中,底面ABCD 是正方形,O 是正方形ABCD 的中心,PO ⊥底面ABCD ,E 是PC 的中点.求证:(1)PA ∥平面BDE ,(2)平面PAC ⊥平面BDE .
(2)如图,边长为4的正方形ABCD 中,E 、F 分别在AB 、 BC 边上,若将DCF AED ∆∆,分别没DE ,DF 折起,恰好使A ,C 两点重合于A '.(1)当点E 、F 分别为AB 、BC 的中点时,求证:EF D A ⊥';(2)当BC BF BE 41=
=时,求三棱锥EFD A -'的体积.
A B
D P N M。

相关文档
最新文档