咸宁中考数学试题及答案
2020湖北省咸宁市中考数学试卷
2020年湖北省咸宁市中考数学试卷一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中 只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1. (3分)(2020•咸宁)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生 活中,比西方早一千多年.下列各式计算结果为负数的是( )A. 3+ ( -2) B ・ 3- ( - 2) C. 3X ( -2) D.(-3)彳(-2)2. (3分)(2020•咸宁)中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就 业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计 2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为 ( )A. O.3O5X1O 11B. 3.05X108C. 3.05X106D. 305X1083. (3分)(2020•咸宁)下列计算正确的是( )A. 3a - a=2B. a 9a 2=a 3C. a 6^a 2=a 3D. (3a 2) 2 = 6n 44. (3分)(2020•咸宁)如图是由5个完全相同的小正方体组成的几何体,则该几何体的左 视图是( )计图,下列判断正确的是( )5. (3分)(2020•咸宁)如图是甲、 乙两名射击运动员某行训练课的5次射击成绩的折线统 ’主视方向A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定6 . (3分)(2020•咸宁)如图,在。
中,04=2, NC=45° ,则图中阴影部分的面积为7 .(3分)(2020•咸宁)在平而直角坐标系xQv 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是( )8 .(3分)(2020•咸宁)如图,在矩形X3CQ 中,/铝=2, BC=2如,E 是8C 的中点,将 ZU5E 沿直线,位翻折,点8落在点F 处,连结CF ,则cos/ECF 的值为( )Vio B. 4 二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卷相应题 号的横线上)9 .(3分)(2020•咸宁)点乂在数轴上的位置如图所示,则点,4表示的数的相反数是A 1 ; 1 ; 1 1-3 -2 -1 0 1 2 3 10. (3 分)(2020•咸宁)因式分解:nix 2 - 2?nx+nt=.D. n-2A. y= -xB. y=x+2 D. y=^ - 2xC 2遮 D.—— SA."311.(3分)(2020•咸宁)如图,请填写一个条件,使结论成立:•/. :.a//b.12.(3分)(2020•咸宁)若关于x的一元二次方程G+2) 2="有实数根,则〃的取值范围是.13.(3分)(2020•咸宁)某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.14.(3分)(2020•咸宁)如图,海上有一灯塔R位于小岛X北偏东60°方向上,一艘轮船从小岛,4出发,由西向东航行24〃加淞到达3处,这时测得灯塔尸在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔尸的正南方,此时轮船与灯塔尸的距离是淞.(结果保留一位小数,N/3^1,73)15.(3分)(2020•咸宁)按一定规律排列的一列数:3, 32, 31,33, 3 4, 37, 3 11, 3%…,若。
2019年湖北省咸宁市中考数学试卷(word版,含答案解析)
2019年湖北省咸宁市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.下列关于0的说法正确的是()A. 0是正数B. 0是负数C. 0是有理数D. 0是无理数2.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A. B. C. D.3.下列计算正确的是()A. √5−√3=√2B. √(−2)2=−2C. a5÷a2=a3D. (ab2)3=ab64.若正多边形的内角和是540°,则该正多边形的一个外角为()A. 45°B. 60°C. 72°D. 90°5.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A. 主视图会发生改变B. 俯视图会发生改变C. 左视图会发生改变D. 三种视图都会发生改变6.若关于x的一元二次方程x2−2x+m=0有实数根,则实数m的取值范围是()A. m<1B. m≤1C. m>1D. m≥17.已知点A(−1,m),B(1,m),C(2,m−n)(n>0)在同一个函数的图象上,这个函数可能是()A. y=xB. y=−2xC. y=x2D. y=−x28.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=−1x(x<0),y=4x(x>0)的图象上,则sin∠ABO的值为()A. 13B. √33C. √54D. √55二、填空题(本大题共8小题,共24.0分)9.计算:(√2)0−1=______.10.一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是______.11.若整式x2+my2(m为常数,且m≠0)能在有理数范围内分解因式,则m的值可以是______(写一个即可).12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为______.13.如图所示,九(1)班数学课外活动小组在河边测量河宽AB(这段河流的两岸平行),他们在点C测得∠ACB=30°,点D处测得∠ADB=60°,CD=80m,则河宽AB约为______m(结果保留整数,√3≈1.73).14.如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为______(结果保留π).15.有一列数,按一定规律排列成1,−2,4,−8,16,−32,…,其中某三个相邻数的积是412,则这三个数的和是______.16.如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2√5;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是______(把正确结论的序号都填上).三、解答题(本大题共8小题,共72.0分)17.(1)化简:2m2−m ÷1m−1;(2)解不等式组:{x+3>15x≤6+3x18.在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).19.小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿着原路匀速跑步6min返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y与时间x的函数图象;(3)根据图象回答,小慧从家出发后多少分钟离家距离为720m?20.某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七、八年级学生一分钟跳绳成绩分析表年级平均数中位数众数七116a115八119126117七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100, (180)x<200)在100≤x<120这一组的是:100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119根据以上信息,回答下列问题:(1)表中a=______;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是______(填“甲”或“乙”),理由是______.(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?21.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.22.某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=−2x+120.(1)第40天,该厂生产该产品的利润是_____元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?23.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.x+2与x轴交于点A,与y轴交于点B,24.如图,在平面直角坐标系中,直线y=−12x2+bx+c经过A,B两点且与x轴的负半轴交于点C.抛物线y=−12(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.答案和解析1.【答案】C【解析】解:0既不是正数也不是负数,0是有理数.故选:C.直接利用有理数、无理数、正负数的定义分析得出答案.此题主要考查了实数,正确把握实数有关定义是解题关键.2.【答案】B【解析】解:“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选:B.“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.3.【答案】C【解析】解:A、√5−√3,无法计算,故此选项错误;B、√(−2)2=2,故此选项错误;C、a5÷a2=a3,正确;D、(ab2)3=a3b6,故此选项错误.故选:C.直接利用合并同类项法则以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了合并同类项以及二次根式的加减运算、积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.4.【答案】C【解析】【分析】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.根据多边形的内角和公式(n−2)⋅180°求出多边形的边数,再根据多边形的外角和是固定的360°,依此可以求出多边形的一个外角.【解答】解:∵正多边形的内角和是540°,∴多边形的边数为540°÷180°+2=5,∵多边形的外角和都是360°,∴多边形的每个外角=360÷5=72°.故选:C.5.【答案】A【解析】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:A.根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.6.【答案】B【解析】【分析】本题考查了根的判别式,牢记“当Δ≥0时,方程有实数根”是解题的关键,属于基础题.根据方程的系数结合根的判别式Δ≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵关于x的一元二次方程x2−2x+m=0有实数根,∴Δ=(−2)2−4m≥0,解得:m≤1.故选:B.7.【答案】D【解析】解:∵A(−1,m),B(1,m),∴点A与点B关于y轴对称;由于y=x,y=−2x的图象关于原点对称,因此选项A、B错误;∵n>0,∴m−n<m;由B(1,m),C(2,m−n)可知在x≥1时,y随x的增大而减小,对于二次函数只有a<0时,在对称轴的右侧,y随x的增大而减小,∴D选项正确故选:D.由点A(−1,m),B(1,m)的坐标特点,可知函数图象关于y轴对称,于是排除选项A、B;再根据B(1,m),C(2,m−n)的特点和二次函数的性质,可知抛物线的开口向下,即a<0,故D选项正确.本题考查正比例函数、反比例函数、二次函数的图象和性质,可以采用排除法得出答案.8.【答案】D【解析】解:过点A、B分别作AD⊥x轴,BE⊥x轴,垂足为D、E,∵点A在反比例函数y=−1x (x<0)上,点B在y=4x(x>0)上,∴S△AOD=1,S△BOE=4,又∵∠AOB=90°∴∠AOD=∠OBE,∴△AOD∽△OBE,∴(AOOB )2=S△AODS△OBE=14,∴AOOB=12设OA=m,则OB=2m,AB=√m2+(2m)2=√5m,在RtAOB 中,sin∠ABO =OA AB=√5m=√55故选:D .点A ,B 落在函数y =−1x (x <0),y =4x (x >0)的图象上,根据反比例函数的几何意义,可得直角三角形的面积;根据题意又可知这两个直角三角形相似,而相似比恰好是直角三角形AOB 的两条直角边的比,再利用勾股定理,可得直角边与斜边的比,从而得出答案.考查反比例函数的几何意义、相似三角形的性质,将面积比转化为相似比,利用勾股定理可得直角边与斜边的比,求出sin∠ABO 的值. 9.【答案】0【解析】解:原式=1−1=0. 故答案为:0.直接利用零指数幂的性质化简得出答案.此题主要考查了实数运算,正确掌握运算法则是解题关键.10.【答案】23【解析】解:∵一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:46=23. 故答案为:23.直接利用概率求法进而得出答案.此题主要考查了概率公式,正确掌握概率公式是解题关键. 11.【答案】−1【解析】解:令m =−1,整式为x 2−y 2=(x +y)(x −y). 故答案为:−1(答案不唯一).令m =−1,使其能利用平方差公式分解即可.此题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.12.【答案】{x +4.5=yx −1=12y【解析】解:设木条长x 尺,绳子长y 尺,依题意,得:{x +4.5=yx −1=12y . 故答案为:{x +4.5=yx −1=12y. 设木条长x 尺,绳子长y 尺,根据绳子和木条长度间的关系,可得出关于x ,y 的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键. 13.【答案】69【解析】解:在Rt△ABC中,∠ACB=30°,∠ADB=60°,∴∠DAC=30°,∴DA=DC=80,在Rt△ABD中,AB AD =sin∠ADB=sin60°=√32,∴AB=√32AD=√32×80=40√3≈69(米),故答案为69.在Rt△ABC中,∠ACB=30°,∠ADB=60°,则∠DAC=30°,所以DA=DC=80,在Rt△ABD中,通过三角函数关系求得AB的长.本题考查了解直角三角形,熟练应用锐角三角函数关系是解题关键.14.【答案】3π−94√3【解析】解:连接OC、BC,作CD⊥AB于点D,∵直径AB=6,点C在半圆上,∠BAC=30°,∴∠ACB=90°,∠COB=60°,∴AC=3√3,∵∠CDA=90°,∴CD=3√32,∴阴影部分的面积是:π⋅322−3×3√322−60×π×32360=3π−9√34,故答案为:3π−9√34.根据题意,作出合适的辅助线,即可求得CD和∠COB的度数,即可得到阴影部分的面积是半圆的面积减去△AOC和扇形BOC的面积.本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】−384【解析】解:∵一列数为1,−2,4,−8,16,−32,…,∴这列数的第n个数可以表示为(−2)n−1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(−2)n−1、(−2)n、(−2)n+1,则(−2)n−1⋅(−2)n⋅(−2)n+1=412,即(−2)3n=(22)12,∴(−2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(−2)7+(−2)8+(−2)9=(−2)7×(1−2+4)=(−128)×3=−384,故答案为:−384.根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.16.【答案】②③【解析】解:如图1,∵PM//CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP//CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CP=CP,若CQ=CD,则Rt△CMQ≌△CMD,∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;点P与点A重合时,如图2,设BN=x,则AN=NC=8−x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8−x)2,解得x=3,∴CN=8−3=5,AC=√AB2+BC2=4√5,AC=2√5,∴CQ=12∴QN=√CN2−CQ2=√5,∴MN=2QN=2√5.故③正确;当MN 过点D 时,如图3,此时,CN 最短,四边形CMPN 的面积最小,则S 最小为S =14S 菱形CMPN =14×4×4=4,当P 点与A 点重合时,CN 最长,四边形CMPN 的面积最大,则S 最大为S =14×5×4=5,∴4≤S ≤5,故④错误.故答案为:②③.先判断出四边形CFHE 是平行四边形,再根据翻折的性质可得CN =NP ,然后根据邻边相等的平行四边形是菱形证明,判断出②正确;假设CQ =CD ,得Rt △CMQ≌△CMD ,进而得∠DCM =∠QCM =∠BCP =30°,这个不一定成立,判断①错误;点P 与点A 重合时,设BN =x ,表示出AN =NC =8−x ,利用勾股定理列出方程求解得x 的值,进而用勾股定理求得MN ,判断出③正确;当MN 过D 点时,求得四边形CMPN 的最小面积,进而得S 的最小值,当P 与A 重合时,S 的值最大,求得最大值便可.此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、勾股定理的综合应用,熟练掌握菱形的判定定理和性质定理、勾股定理是解本题的关键. 17.【答案】解:(1)原式=2m(m−1)×(m −1)=2m ;(2){x +3>1 ①5x ≤6+3x ②, 解①得:x >−2,解②得:x ≤3,所以这个不等式组的解集为:−2<x ≤3.【解析】(1)直接利用分式的乘除运算法则计算得出答案;(2)分别解不等式进而得出不等式组的解.此题主要考查了分式的乘除运算以及不等式组的解,正确掌握解题方法是解题关键. 18.【答案】(1)证明:∵D ,E ,F 分别是AC ,AB ,BC 的中点,∴DE//FC ,EF//CD ,∴四边形DEFC 是平行四边形,∵∠DCF =90°,∴四边形DEFC 是矩形.(2)连接EC ,DF 交于点O ,作射线BO ,射线BO 即为所求.【解析】(1)首先证明四边形DEFC是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断.(2)连接EC,DF交于点O,作射线BO即可.本题考查三角形中位线定理,矩形的判定和性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:(1)由题意可得,9606−96012=80(m/min)答:小慧返回家中的速度比去文具店的速度快80m/min;(2)如图所示:(3)根据图象可得,小慧从家出发后9分钟或16.5分钟分钟离家距离为720m;【解析】(1)根据速度=路程/时间的关系,列出等式9606−96012=80即可求解;(2)根据题中已知,描点画出函数图象;(3)根据图象可得小慧从家出发后9分钟或16.5分钟分钟离家距离为720m;本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.20.【答案】118 甲甲的成绩122超过中位数118,乙的成绩125低于其中位数126【解析】解:(1)∵七年级50名学生成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别是117、119,∴中位数a=117+1192=118,故答案为:118;(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲,理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)估计一分钟跳绳不低于116次的有500×3+11+7+4+250=270(人).(1)根据中位数,结合条形统计图及所给数据求解可得;(2)将甲、乙成绩与对应的中位数对比,从俄日得出答案;(3)利用样本估计总体思想求解可得.本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.21.【答案】解:(1)FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC =∠DCB ,∵OF =OC ,∴∠OFC =∠OCF ,∴∠OFC =∠DBC ,∴OF//DB ,∴∠OFG +∠DGF =180°,∵FG ⊥AB ,∴∠DGF =90°,∴∠OFG =90°,∴FG 与⊙O 相切;(2)连接DF ,∵CD =2.5,∴AB =2CD =5,∴BC =√AB 2−AC 2=4,∵CD 为⊙O 的直径,∴∠DFC =90°,∴FD ⊥BC ,∵DB =DC ,∴BF =12BC =2,∵sin∠ABC =AC AB =FG FB ,即35=FG 2,∴FG =65.【解析】(1)如图,连接OF ,根据直角三角形的性质得到CD =BD ,得到∠DBC =∠DCB ,根据等腰三角形的性质得到∠OFC =∠OCF ,得到∠OFC =∠DBC ,推出∠OFG =90°,于是得到结论;(2)连接DF ,根据勾股定理得到BC =√AB 2−AC 2=4,根据圆周角定理得到∠DFC =90°,根据三角函数的定义即可得到结论.本题考查了直线与圆的位置关系,平行线的判定和性质,勾股定理,解直角三角形,正确的作出辅助线是解题的关键.22.【答案】(1)1600.(2)解①设直线AB 的解析式为y =kx +b(k ≠0),把(0,70)(30,40)代入得{b =7030k +b =40,解得{b =70k =−1∴直线AB 的解析式为y =−x +70(Ⅰ)当0<x ≤30时w =[80−(−x +70)](−2x +120)=−2x 2+100x +1200=−2(x −25)2+2450∴当x =25时,w 最大值=2450(Ⅱ)当30<x ≤50时,w =(80−40)×(−2x +120)=−80x +4800,∵w 随x 的增大而减小,∴当x =31时,w 最大值=2320,∴w ={−2x 2+100x +1200,(0<x ≤30)−80x +4800,(30<x ≤50)第25天的利润最大,最大利润为2450元.②(Ⅰ)当0<x ≤30时,令−2(x −25)2+2450=2400元,解得x 1=20,x 2=30.∵抛物线w =−2(x −25)2+2450开口向下,由其图象可知,当20≤x ≤30时,w ≥2400此时,当天利润不低于2400元的天数为:30−20+1=11天(Ⅱ)当30<x ≤50时,由①可知当天利润均低于2400元,综上所述,当天利润不低于2400元的共有11天.【解析】【分析】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.(1)由图象可知,第40天时的成本为40元,此时的产量为z =−2×40+120=40,则可求得第40天的利润.(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【解答】解:(1)由图象可知,第40天时的成本为40元,此时的产量为z =−2×40+120=40, 则第40天的利润为:(80−40)×40=1600元,故答案为1600.(2)见答案.23.【答案】解:(1)证明:∵四边形ABCD 为圆内接四边形,∴∠A +∠C =180°,∠ABC +∠ADC =180°,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∴AD⏜=CD ⏜, ∴AD =CD ,∴四边形ABCD 是等补四边形;(2)AD 平分∠BCD ,理由如下:如图2,过点A 分别作AE ⊥BC 于点E ,AF 垂直CD 的延长线于点F , 则∠AEB =∠AFD =90°, ∵四边形ABCD 是等补四边形, ∴∠B +∠ADC =180°,又∠ADC +∠ADF =180°,∴∠B =∠ADF , ∵AB =AD , ∴△ABE≌△ADF(AAS), ∴AE =AF , ∴AC 是∠BCF 的平分线,即AC 平分∠BCD ;(3)如图3,连接AC , ∵四边形ABCD 是等补四边形,∴∠BAD +∠BCD =180°,又∠BAD +∠EAD =180°,∴∠EAD=∠BCD,∵AF平分∠EAD,∴∠FAD=12∠EAD,由(2)知,AC平分∠BCD,∴∠FCA=12∠BCD,∴∠FCA=∠FAD,又∠AFC=∠DFA,∴△ACF∽△DAF,∴AFDF =CFAF,即5DF =DF+105,∴DF=5√2−5.【解析】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD,即可根据等补四边形的定义得出结论;(2)过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,证△ABE≌△ADF,得到AE=AF,根据角平分线的判定可得出结论;(3)连接AC,先证∠EAD=∠BCD,推出∠FCA=∠FAD,再证△ACF∽△DAF,利用相似三角形对应边的比相等可求出DF的长.本题考查了新定义等补四边形,圆的有关性质,全等三角形的判定与性质,角平分线的判定,相似三角形的判定与性质等,解题关键是要能够通过自主学习来进行探究,运用等.24.【答案】解:(1)在y=−12x+2中,令y=0,得x=4,令x=0,得y=2∴A(4,0),B(0,2)把A(4,0),B(0,2),代入y=−12x2+bx+c,得{c=2−12×16+4b+c=0,解得{b=32c=2∴抛物线得解析式为y=−12x2+32x+2(2)如图,过点B作x轴得平行线交抛物线于点E,过点D作BE得垂线,垂足为F∵BE//x轴,∴∠BAC=∠ABE∵∠ABD=2∠BAC,∴∠ABD=2∠ABE即∠DBE+∠ABE=2∠ABE∴∠DBE=∠ABE ∴∠DBE=∠BAC设D点的坐标为(x,−12x2+32x+2),则BF=x,DF=−12x2+32x∵tan∠DBE=DFBF ,tan∠BAC=BOAO∴DFBF =BOAO,即−12x2+32xx=24解得x1=0(舍去),x2=2当x=2时,−12x2+32x+2=3∴点D的坐标为(2,3)(3)当BO为边时,OB//EF,OB=EF设E(m,−12m+2),F(m,−12m2+32m+2)EF=|(−12m+2)−(−12m2+32m+2)|=2解得m1=2,m2=2−2√2,m3=2+2√2当BO为对角线时,OB与EF互相平分过点O作OF//AB,直线OFy=−12x交抛物线于点F(2+2√2,−1−√2)和(2−2√2,−1+√2)求得直线EF解析式为y=−√22x+1或y=√22x+1直线EF与AB的交点为E,点E的横坐标为−2√2−2或2√2−2∴E点的坐标为(2,1)或(2−2√2,1+√2)或(2+2√2,1−√2)或(−2−2√2,3+√2)或(−2+2√2,3−√2)【解析】(1)求得A、B两点坐标,代入抛物线解析式,获得b、c的值,获得抛物线的解析式.(2)通过平行线分割2倍角条件,得到相等的角关系,利用等角的三角函数值相等,得到点坐标.(3)B、O、E、F四点作平行四边形,以已知线段OB为边和对角线分类讨论,当OB为边时,以EF=OB的关系建立方程求解,当OB为对角线时,OB与EF互相平分,利用直线相交获得点E坐标.本题考查了待定系数法,2倍角关系和平行四边形点存在类问题,将2倍角关系转化为等角关系是(2)问题的解题关键,根据平行四边形的性质,以OB为边和对角线是(3)问题的解题关键,本题综合难度不大,是一道很好的压轴问题.。
2020年湖北省咸宁市中考数学试卷(解析版)
探究:
(3)如图 2,在对余四边形 ABCD 中, AB BC , ABC 60 ,探究线段 AD , CD 和 BD 之间有怎
样的数量关系?写出猜想,并说明理由.
24.如图,在平面直角坐标系中,直线 y 1 x 2 与 x 轴交于点 A,与 y 轴交于点 B,抛物线 2
y
2 3
x2
bx
c
在点 F 处,连结 CF ,则 cosECF 的值为( )
2
A.
3
B. 10 4
C. 5 3
D. 2 5 5
二、细心填一填(本大题共 8 小题,每小题 3 分,满分 24 分.请把答案填在答题卷相应题号
的横线上)
9.点 A 在数轴上的位置如图所示,则点 A 表示的数的相反数是________.
10.因式分解: mx2 2mx m __________.
14.如图,海上有一灯塔 P,位于小岛 A 北偏东 60°方向上,一艘轮船从北小岛 A 出发,由西向东航行 24nmile
到达 B 处,这时测得灯塔 P 在北偏东 30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔 P
的正南方,此时轮船与灯塔 P 的距离是________ n mile .(结果保留一位小数, 3 1.73 )
(1)这次被调查的同学共有______人, a ______, m _____;
(2)求扇形统计图中扇形 D 的圆心角的度数;
(3)若该校有 950 名学生,请估计全校有多少学生平均每天的在线阅读时间不少于 50 min ? 21.如图,在 Rt△ABC 中, C 90 ,点 O 在 AC 上,以 OA 为半径的半圆 O 交 AB 于点 D,交 AC 于 点 E,过点 D 作半圆 O 的切线 DF ,交 BC 于点 F.
2020年湖北省咸宁市中考数学试卷和答案解析
2020年湖北省咸宁市中考数学试卷和答案解析一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.(3分)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)解析:分别按照有理数的加减法、有理数的乘除法法则计算即可.参考答案:解:A.3+(﹣2)=1,故A不符合题意;B.3﹣(﹣2)=3+2=5,故B不符合题意;C.3×(﹣2)=﹣6,故C符合题意;D.(﹣3)÷(﹣2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.点拨:本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.(3分)中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×108解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:305000000=3.05×108,故选:B.点拨:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列计算正确的是()A.3a﹣a=2B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a4解析:分别根据合并同类项的法则、同底数幂的除法法则、积的乘方与同底数幂的乘法法则计算各项,进而可得答案.参考答案:解:3a﹣a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.点拨:本题考查了合并同类项、同底数幂的除法和乘法以及积的乘方等运算法则,属于基本题型,熟练掌握上述基础知识是关键.4.(3分)如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.解析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.参考答案:解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.点拨:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.(3分)如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定解析:利用折线统计图可得甲、乙两名射击运动员5次射击的成绩,把他们的最好成绩进行比较,即可判断A;利用平均数、中位数、方差的意义分别求出他们的平均数、中位数、方差,即可判断B、C、D.参考答案:解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵=(6+7+10+8+9)=8,=(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,=[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,2>0.4,∴乙的成绩比甲稳定,故选项D正确,符合题意.故选:D.点拨:本题考查了折线统计图,平均数、中位数与方差.从折线图中得到必要的信息是解决问题的关键.6.(3分)如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2D.π﹣2解析:由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB﹣S△AOB可得出结论.参考答案:解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB=﹣=π﹣2.故选:D.点拨:本题考查的是扇形面积的计算,根据题意求得三角形与扇形的面积是解答此题的关键.7.(3分)在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2C.y=D.y=x2﹣2x 解析:根据横、纵坐标相等的点称为“好点”,即当x=y时,函数解析式变为方程后,方程有解即可判断.参考答案:解:∵横、纵坐标相等的点称为“好点”,∴当x=y时,A.x=﹣x,解得x=0;不符合题意;B.x=x+2,此方程无解,符合题意;C.x2=2,解得x=±,不符合题意;D.x=x2﹣2x,解得x1=0,x2=3,不符合题意.故选:B.点拨:本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解决本题的关键是掌握每个函数的性质.8.(3分)如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A.B.C.D.解析:由矩形的性质得出∠B=90°,由勾股定理求出AE,由翻折变换的性质得出△AFE≌△ABE,得出∠AEF=∠AEB,EF=BE=,因此EF=CE,由等腰三角形的性质得出∠EFC=∠ECF,由三角形的外角性质得出∠AEB=∠ECF,cos∠ECF=cos∠AEB=,即可得出结果.参考答案:解:如图,∵四边形ABCD是矩形,∴∠B=90°,∵E是BC的中点,BC=2,∴BE=CE=BC=,∴AE===3,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB==.故选:C.点拨:本题考查了矩形的性质,勾股定理,翻折变换的性质,等腰三角形的判定与性质,三角形的外角性质,三角函数;熟练掌握矩形的性质和翻折变换的性质,证出∠AEB=∠ECF是解决问题的关键.二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卷相应题号的横线上)9.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是﹣3.解析:A在数轴上表示的数是3,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.参考答案:解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是﹣3.故答案为:﹣3.点拨:此题主要考查了在数轴上表示数的方法,相反数的定义.解题的关键是熟练掌握在数轴上表示数的方法,以及相反数的含义和求法.10.(3分)因式分解:mx2﹣2mx+m=m(x﹣1)2.解析:先提公因式,再利用完全平方公式进行因式分解即可.参考答案:解:mx2﹣2mx+m=m(x2﹣2x+1)=m(x﹣1)2,点拨:本题考查提公因式法、公式法因式分解,确定多项式的公因式是提公因式的关键,掌握公式的结构特征是正确使用公式的前提.11.(3分)如图,请填写一个条件,使结论成立:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.解析:要使得a∥b,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可求解.参考答案:解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.点拨:考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.12.(3分)若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是n≥0.解析:将原方程变形为一般式,根据方程的系数结合根的判别式△≥0,即可得出关于n的一元一次不等式,解之即可得出n的取值范围(利用偶次方的非负性也可以找出n的取值范围).参考答案:解:原方程可变形为x2+4x+4﹣n=0.∵该方程有实数根,∴△=42﹣4×1×(4﹣n)≥0,解得:n≥0.故答案为:n≥0.点拨:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.13.(3分)某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.解析:用列表法表示所有可能出现的结果,进而求出相应的概率.参考答案:解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P(小聪和小慧)=,故答案为:.点拨:本题考查列表法求随机事件发生的概率,列举出所有可能出现的结果,是正确解答的关键.14.(3分)如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是20.8nmile.(结果保留一位小数,≈1.73)解析:过P作PD⊥AB于D,易证△ABP是等腰三角形,得到BP =AB=24nmile.然后在直角△PBD中,利用三角函数的定义求得PD的长即可.参考答案:解:过P作PD⊥AB于D.∵∠PAB=30°,∠PBD=60°,∴∠PAB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×=12≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.点拨:本题考查了解直角三角形的应用﹣方向角问题,等腰三角形的判定与性质等知识,正确作出高线,转化为直角三角形的计算是解决本题的关键.15.(3分)按一定规律排列的一列数:3,32,3﹣1,33,34,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是a﹣b=c.解析:首项判断出这列数中,3的指数各项依次为1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,每个数的指数都是前两数指数之差;可得这列数中的连续三个数,满足a﹣b=c,据此解答即可.参考答案:解:∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,1﹣2=﹣1,2﹣(﹣1)=3,﹣1﹣3=﹣4,3﹣(﹣4)=7,﹣4﹣7=﹣11,7﹣(﹣11)=18,…,∴a,b,c满足的关系式是a﹣b=c.故答案为:a﹣b=c.点拨:此题主要考查了规律型:数字的变化类,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出a、b、c的指数的特征.16.(3分)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是①②③.(把正确结论的序号都填上)解析:①由∠AEB+∠CEG=∠AEB+∠BAE得∠BAE=∠CEG,再结合两直角相等得△ABE∽△ECG;②在BA上截取BM=BE,易得△BEM为等腰直角三角形,则∠BME=45°,所以∠AME=135°,再利用等角的余角相等得到∠BAE =∠FEC,于是根据“ASA”可判断△AME≌△ECF,则根据全等三角形的性质可对②进行判断;③由∠MAE+∠DAF=45°,∠CEF+∠CFE=45°,可得出∠DAF与∠CFE的大小关系,便可对③判断;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,利用三角形面积公式得到S△AME=•x•(2﹣x),则根据二次函数的性质可得S△AME 的最大值,便可对④进行判断.参考答案:解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF,∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,S△ECF=S△AME=•x•(2﹣x)=﹣(x﹣1)2+,当x=1时,S△ECF有最大值,故④错误.故答案为:①②③.点拨:本题考查了四边形的综合题:熟练掌握正方形的性质和二次函数的性质;能灵活运用全等三角形的知识解决线段线段的问题.构建△AME与△EFC全等是关键.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2020)0;(2)解不等式组:解析:(1)先去绝对值符号、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.参考答案:解:(1)原式=﹣1﹣2×+1=﹣1﹣+1=0;(2)解不等式﹣(x﹣1)>3,得:x<﹣2,解不等式2x+9>3,得:x>﹣3,则不等式组的解集为﹣3<x<﹣2.点拨:本题考查的是解一元一次不等式组和实数的运算,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)解析:(1)根据平行四边形的性质和判定,菱形的判定即可证明;(2)连结AE,BF,根据菱形的性质可得AE和BF的交点即为点P.参考答案:(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:点拨:本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是作出图形,属于中考常考题型.19.(8分)如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A(6,1),B(a,﹣3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为8;(3)直接写出y1>y2时x的取值范围.解析:(1)首先把A(6,1)代入反比例函数解析式中确定m,然后把B(a,﹣3)代入反比例函数的解析式确定a,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)求得一次函数与x轴的交点,根据S△AOB=S△AOC+S△BOC即可求解;(3)根据图象,写出直线y1=kx+b落在双曲线y2=上方的部分对应的自变量的取值范围即可.参考答案:解:(1)把A(6,1)代入y2=中,解得:m=6,故反比例函数的解析式为y2=;把B(a,﹣3)代入y2=,解得a=﹣2,故B(﹣2,﹣3),把A(6,1),B(﹣2,﹣3)代入y1=kx+b,得,解得:,故一次函数解析式为y1=x﹣2;(2)如图,设一次函数y1=x﹣2与x轴交于点C,令y=0,得x=4.∴点C的坐标是(4,0),∴S△AOB=S△AOC+S△BOC=×4×1+×4×3=8.故答案为8;(3)由图象可知,当﹣2<x<0或x>6时,直线y1=kx+b落在双曲线y2=上方,即y1>y2,所以y1>y2时x的取值范围是﹣2<x<0或x>6.点拨:此题考查了一次函数与反比例函数的交点问题,待定系数法求一次函数与反比例函数的解析式,三角形的面积,待定系数法求函数解析式是中学阶段求函数解析式常用的方法,一定要熟练掌握并灵活运用.利用了数形结合思想.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间人数tA10≤t<304B30≤t<508C50≤t<70aD70≤t<9016E90≤t<1102根据以上图表,解答下列问题:(1)这次被调查的同学共有50人,a=20,m=8;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?解析:(1)根据B组的频数和所占的百分比,可以求得这次被调查的同学总数,用被调查的同学总数乘以C组所占百分比得到a的值,用A组人数除以被调查的同学总数,即可得到m;(2)用360°乘以D组所占百分比得到D组圆心角的度数;(3)利用样本估计总体,用该校学生数乘以样本中平均每天的在线阅读时间不少于50min的人数所占的百分比即可.参考答案:解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%==8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×=115.2°;(3)950×=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min 的有722人.点拨:本题考查了频数分布表,扇形统计图,读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.也考查了利用样本估计总体.21.(9分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA 为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O 的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.解析:(1)连接OD,由切线性质得∠ODF=90°,进而证明∠BDF+∠A=∠A+∠B=90°,得∠B=∠BDF,便可得BF=DF;(2)设半径为r,连接OD,OF,则OC=4﹣r,求得DF,再由勾股定理,利用OF为中间变量列出r的方程便可求得结果.参考答案:解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4﹣r,DF=BF=3﹣1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4﹣r)2+12,∴.故圆的半径为.点拨:本题主要考查了切线的性质,等腰三角形的性质与判定,勾股定理,已知切线,往往连接半径为辅助线,第(2)题关键是由勾股定理列出方程.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?解析:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意列出分式方程即可;(2)根据配套问题,设购买水银体温计y盒能和口罩刚好配套,根据口罩的数量等于水银体温计数量的2倍列出方程即可用含m 的代数式表示;(3)根据题意列出不等式:200m+50×5m≤1800,可得m≤4时,w=450m;当m>4时,w=1800+(450m﹣1800)×0.8=360m+360,进而可得w关于m的函数关系式.参考答案:解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意,得=,解得x=200,经检验,x=200是原方程的解,∴x﹣150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;(3)若200m+50×5m≤1800,∴450m≤1800,∴m≤4,即m≤4时,w=450m;若m>4,则w=1800+(450m﹣1800)×0.8=360m+360,综上所述:w=.若该校九年级有900名学生,需要购买口罩:900×2=1800(支),水银体温计:900×1=900(支),此时m=1800÷100=18(盒),y=5×18=90(盒),则w=360×18+360=6840(元).答:购买口罩和水银体温计各18盒、90盒,所需总费用为6840元.点拨:本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.23.(10分)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为90°或270°;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.解析:(1)对余四边形的定义即可得出结果;(2)由圆周角定理得出∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,即可得出结论;(3)对余四边形的定义得出∠ADC=30°,将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,则△BCD≌△BAF,∠FBD=60°,得出BF=BD,AF=CD,∠BDC=∠BFA,则△BFD是等边三角形,得出BF=BD=DF,易证∠BFA+∠ADB=30°,由∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,得出∠AFD+∠ADF=90°,则∠FAD=90°,由勾股定理即可得出结果.参考答案:(1)解:∵四边形ABCD是对余四边形,∴∠A+∠C=90°或∠A+∠C=360°﹣90°=270°,故答案为:90°或270°;(2)证明:∵MN是⊙O的直径,点A,B,C在⊙O上,∴∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,∴四边形ABCD是对余四边形;(3)解:线段AD,CD和BD之间数量关系为:AD2+CD2=BD2,理由如下:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图3所示:∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BFA,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BFA+∠ADB=30°,∵∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠FAD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2.点拨:本题是圆的综合题,主要考查了对余四边形的定义、圆周角定理、旋转的性质、等边三角形的判定与性质、三角形内角和定理、勾股定理等知识;熟练掌握对余四边形的定义和旋转的性质是解题的关键.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c过点B且与直线相交于另一点C(,).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?解析:(1)用待定系数法即可求解;(2)如图1,作点B关于x轴的对称点B′(0,﹣2),连接AB′交抛物线于点P(P′),则∠PAO=∠BAO,即可求解;(3)①证明tan∠MNO=tan∠NCH,即,即,即可求解;②m=﹣n2+n,当n=时,m的最大值为,即可求解.参考答案:解:(1)直线y=﹣x+2与x轴交于点A,与y轴交于点B,则点A、B的坐标分别为(4,0)、(0,2),将点B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+2①;(2)如图1,作点B关于x轴的对称点B′(0,﹣2),连接AB′交抛物线于点P(P′),则∠PAO=∠BAO,由点A、B′的坐标得,直线AB′的表达式为:y=x﹣2②,联立①②并解得:x=3或﹣2,故点P的坐标为(3,﹣)或(﹣2,﹣3);(3)①过点C作CH⊥x轴于点H,∵∠MNC=90°,∴∠MNO+∠CNH=90°,∠CNH+∠NCH=90°,∴∠MNO=∠NCH,∴tan∠MNO=tan∠NCH ,即,即,解得:m =﹣n2+n;②m =﹣n2+n,∵<0,故m有最大值,当n =时,m 的最大值为,而m>0,故0<m <时,符合条件的N点的个数有2个.点拨:本题考查的是二次函数综合运用,涉及到一次函数的性质、解直角三角形等,综合性强,难度适中.第31页(共31页)。
湖北省咸宁市初中毕业生学业考试数学试卷及答案
湖北省咸宁市初中毕业生学业考试数 学 试 卷考生注意: 1.本试卷分试题卷(共 4 页)和答题卷;全卷 24 小题,满分 120 分;考试时间 120 分钟.2.考生答题前,请将自己的学校、姓名、准考据考号填写在试题卷和答题卷指定的地点,同时仔细阅读答题卷上的注意事项.考生答题时,请按题号次序在答题卷上各题目的答题区 域内作答,写在试题卷上无效.试题卷一、精心选一选 (本大题共 8 小题,每题3 分,满分 24 分.每题给出的 4 个选项中只有一个切合题意,请在答题卷大将正确答案的代号涂黑) 1. 3 的绝对值是A .3B . 311C .D .332.以下运算正确的选项是A .236B . 4 2C . a 2 a 3a 5D . 3a 2a 5a 23.一家鞋店对上周某一品牌女鞋的销售量统计以下:尺码 /厘米 22 22.5 23 23.5 24 24.5 25销售量 /双125 117 31该鞋店决定本周进该品牌女鞋时多进一些尺码为 23.5 厘米的鞋,影响鞋店决议的统计量是A .均匀数B .众数C .中位数D .方差4.分式方程x x1的解为 x 3 x 1A . x 1B . x 1C . x 3D . x35.平面直角坐标系中,点 A 的坐标为( 4,3),将线段 OA 绕原点 O 顺时针旋转 90 获取 坐标是 A A .( 4,3) B .( 3 ,4) C .(3, 4) D .(4, 3) CO6.如图,两圆订交于 A ,B 两点,小圆经过大圆的圆心 O ,点 C ,D 分别在两圆上,若 ADB 100 ,则 ACB 的度数为B A . 35B . 40C . 50D . 80ax 2(第 6 题) 7.已知抛物线y bx c ( a <0)过 A ( 2, 0)、 O ( 0, 0)、B ( 3 , y 1 )、C ( 3, y 2 )四点,则 y 1 与 y 2 的大小关系是DA . y 1 > y 2B . y 1 y 2C . y 1 < y 2D .不可以确立OA ,则点 A 的DC8.如图,菱形 ABCD 由 6 个腰长为2,且全等的等腰梯形镶嵌而成,AB则线段 AC 的长为A .3B .6C .3 3(第 8 题)D .6 3二、仔细填一填(本大题共 8 小题,每题 3 分,满分 24 分.请人数 将答案4035 填写在答题卷相应题号的地点)30252015 105球类跳绳踢毽子其余喜爱项目(第 12 题)9.函数 y 2 x 的自变量 x 的取值范围是 .10.一个几何体的三视图完整同样,该几何体能够是.(写出一个即可 )11.上海世博会估计约有69 000 000 人次观光, 69 000 000用科学记数法表示为.12.某学校为认识学生大课间体育活动状况,随机抽取本校y100 名学生进行检查.整理采集到的数据,绘制成如图l 1所示的统计图.若该校共有 800 名学生,估计喜爱“踢2Px毽子”的学生有 人.O al 2 13.如图,直线 l 1 : yx 1 与直线 l 2 : y mx n 订交于点(第 13 题)P ( a ,2),则对于 x 的不等式 x 1 ≥ mx n 的解集为.Al 1 α 14.如图,已知直线 l 1 ∥ l 2 ∥ l 3 ∥ l 4 ,相邻两条平行直线间的BADl 2 距离都是 1,假如正方形 ABCD 的四个极点分别在四条直Cl 3l 4(第 14 题) 线上,则 sin.15.惠民新村分给小慧家一套价钱为12 万元的住宅.按要求,需首期(第一年)付房款3 万元,从第二 年起,每年对付房款 0.5 万元与上一年节余房款的利息的和.假定节余房款年利率为0.4% ,小慧列表计算以下:第一年第二年 第三年应还款(万元) 3 0.5 90.4%0.5 8.5 0.4%节余房款(万元)98.58若第 n 年小慧家仍需还款,则第 n 年应还款万元( n > 1).16.如图,一次函数y ax b 的图象与 x 轴, y 轴交于 A , B 两点, y DkB与反比率函数的图象订交于 C ,D 两点,分别过 C , D 两yxA O点作 y 轴, x 轴的垂线,垂足为 E ,F ,连结 CF ,DE .E Fx有以下四个结论:C①△ CEF 与△ DEF 的面积相等;②△ AOB ∽△ FOE ;③△ DCE ≌△ CDF ; ④ ACBD .(第 16 题)此中正确的结论是.(把你以为正确结论的序号都填上 )三、专心解一解 (本大题共 8 小题,满分 72 分.请仔细读题,沉着思虑.解答题应写出文字说明、证明过程或演算步骤,请将答案写在答题卷相应题号的地点)17.( 此题满分 6 分)先化简,再求值: (11 ) a,此中 a 3 . a 2 1 a 118.( 此题满分 8 分)跟着人们节能意识的加强,节能产品的销售量逐年增添.某商场高效节能灯的年销售量 2008 年为 5 万只,估计 2010 年将达到 7.2 万只.求该商场 2008 年到 2010 年高效节能灯年销售量的均匀增添率.19.( 此题满分 8 分)已知二次函数 y x 2 bx c 的图象与 x 轴两交点的坐标分别为( m , 0),( 3m , 0)( m 0 ).( 1)证明 4c 3b 2 ;( 2)若该函数图象的对称轴为直线x 1,试求二次函数的最小值.F20.( 此题满分 9 分)C如图,在⊙ O 中,直径 AB 垂直于弦 CD ,垂足为 E ,连结 AC ,OEBGA将 △ ACE 沿 AC 翻折获取 △ ACF ,直线 FC 与直线 AB 订交于点 G .( 1)直线 FC 与⊙ O 有何地点关系?并说明原因; D( 2)若 OB BG 2 ,求 CD 的长.(第 20 题)21.( 此题满分 9 分)某联欢会上有一个有奖游戏,规则以下:有5 张纸牌,反面都是喜羊羊头像,正面有 2 张是笑容,其余 3 张是哭脸.现将 5 张纸牌洗匀后反面向上摆放到桌上,若翻到的纸牌中有笑容就有奖,没有笑容就没有奖.( 1)小芳获取一次翻牌时机,她从中随机打开一张纸牌.小芳得奖的概率是 .( 2)小明获取两次翻牌时机,他同时打开两张纸牌.小明以为这样得奖的概率是小芳的两倍,你赞成他的看法吗?请用树形图或列表法进行剖析说明.22.( 此题满分 10 分)问题背景( 1)如图 1,△ ABC 中, DE ∥BC 分别交 AB , AC 于 D ,E 两点, ADS2E过点 E 作 EF ∥AB 交 BC 于点 F .请按图示数据填空:四边形 DBFE 的面积 S ,SS 3 △ EFC 的面积 S 1F, B1C△ ADE 的面积 S 2 .26 图 1研究发现( 2)在( 1)中,若 BF a , FC b ,DE 与 BC 间的距离为 h .请证明 S 24S 1 S 2 .拓展迁徙A( 3)如图 2,□DEFG 的四个极点在 △ABC 的三边上,若DG△ADG 、△ DBE 、△ GFC 的面积分别为 2、 5、3,试利用 ( 2).. .中的结论 求△ ABC 的面积.....BEF C图 223.( 此题满分 10 分)在一条直线上挨次有 A 、 B 、 C 三个港口,甲、乙两船同时分别从 A 、 B 港口出发,沿直线匀速驶向 C 港,最后达到 C 港.设甲、乙两船行驶 x ( h )后,与 B 港的距离 分别为 y 1 、 y 2 ( km ), y 1 、 y 2 与 x 的函. .....数关系以下图.( 1)填空: A 、 C 两港口间的距离为km , a;( 2)求图中点 P 的坐标,并解说该点坐标所表示的实质意义;( 3)若两船的距离不超出 10 km 时能够互相看见,求甲、乙两船能够互相看见时x 的取值范围.y/km90甲乙30 P24.( 此题满分 12 分)如图,直角梯形 ABCD 中, AB ∥ DC ,DAB 90 , AD 2DC 4 , AB 6 .动点 M 以每秒 1 个单位长的速度,从点A 沿线段 AB 向点 B 运动;同时点 P 以同样的速度,从点C 沿折线 C-D -A 向点 A 运动.当点 M 抵达点 B 时,两点同时停止运动.过点 M 作直线 l ∥ AD ,与线段 CD 的交点为 E ,与折线A-C-B 的交点为 Q .点 M 运动的时间为 t (秒).( 1)当 t 0.5 时,求线段 QM 的长;( 2)当 0< t < 2 时,假如以 C 、P 、Q 为极点的三角形为直角三角形,求 t 的值;( 3)当 t > 2 时,连结 PQ 交线段 AC 于点 R .请研究CQ能否为定值, 假如,试求这个定值; 若不是,RQ请说明原因.DEPCDCDCQAl MBA(备用图 BAB(第 24 题)1)(备用图 2)数学试题参照答案及评分说明说明:1.假如考生的解答与本参照答案不一样,可参照本评分说明拟订相应的评分细则评分.2.每题都要评阅究竟,不要由于考生的解答中出现错误而中止对该题的评阅.当考生的解答在某一 步出现错误,影响了后继部分时,假如该步此后的解答未改变这道题的内容和难度,则可视影响的程度决定后边部分的给分,但不得超事后边部分应给分数的一半;假如这一步此后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的计算步骤写得较为详尽,但同意考生在解答过程中,合理地省略非重点性的步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 5.每题评分时只给整数分数.一.精心选一选 (每题 3 分,本大题满分24 分)题号 1 2 3 4 5 6 7 8答案ACBDCBAD二.仔细填一填 (每题 3 分,本大题满分 24 分)9. x ≤ 210.球、正方体等( 写一个即可 ) 11. 6.9 10712. 200 13. x ≥ 15 15. 0.540.002n (填 0.5 9 (n2) 0.5 0.4% 或其余正确而未化简的式子也给满分)14.516.①②④( 多填、少填或错填均不给分)三.专心解一解 (本大题满分 72 分)a 2a 117.解:原式2分(a 1)(a 1)aa. 4分a 1 当 a3 时,原式33. 6分3 1 2(未化几乎接代入求值,答案正确给 2 分)18.解:设年销售量的均匀增添率为x ,依题意得:5(1 x) 2 7.2 . 4分解这个方程,得 x 1 0.2 , x 22.2 . 6分由于 x 为正数,所以 x0.2 20% . 7 分答:该商场 2008 年到 2010 年高效节能灯年销售量的均匀增添率为20% . 8 分191m , 3m是一元二次方程 x 2bx c 0的两根..( )证明:依题意,依据一元二次方程根与系数的关系,得 m ( 3m) b , m ( 3m) c . 2分∴ b 2m , c3m 2 . ∴ 4c 3b 212m 2 . 4分( 2)解:依题意, b 1 ,∴ b 2. 5 分2由( 1)得 c3 b 2 3 ( 2) 2 3 . 6分4 4 ∴ y x 22 x3 ( x 1)24 .∴二次函数的最小值为4. 8分20.解:( 1)直线 FC 与⊙ O 相切. 1分原因以下:连结 OC .FC∵OA OC , ∴ 12 2分由翻折得, 1 3 , F AEC90 .3 2∴ 23 . ∴OC ∥AF .1AOE BGD(第 20 题)∴ OCGF 90.∴直线 FC 与⊙ O 相切. 4 分( 2)在 Rt △ OCG 中, cos OC OC 1 COG 2OB,∴ COG 60 . 6分 OG2在 Rt △ OCE 中, CE OCsin60 23 . 8分32∵直径 AB 垂直于弦 CD ,∴ CD 2CE 2 3 . 9分 21.( 1)2(或填 0.4). 2分5( 2)解:不赞成他的看法. 3分用 A 1 、 A 2 分别代表两张笑容, B 1 、 B 2 、 B 3 分别代表三张哭脸,依据题意列表以下:第一张第二张A 1A 2B 1 B 2 B 3A 1A 1, A 2A 1,B 1 A 1, B 2 A 1, B 3 A 2 A 2, A 1 A 2,B 1A 2,B 2 A 2, B 3 B 1 B 1, A 1 B 1, A 2B 1, B 2B 1, B 3 B 2 B 2, A 1 B 2, A 2 B 2,B 1B 2, B 3B 3B 3,A 1B 3, A 2B 3,B 1B 3,B 2(也可画树形图表示 ) 6分由表格能够看出,可能的结果有20 种,此中得奖的结果有14 种,所以小明得奖的概率14 7. 8分P1020由于 7 <22 ,所以小明得奖的概率不是小芳的两倍. 9分10 522.( 1) S 6, S 1 9, S 21 . 3 分( 2)证明:∵ DE ∥BC ,EF ∥AB ,∴四边形 DBFE 为平行四边形, AEDC , ACEF .∴ △ ADE ∽△ EFC . 4分2∴ S 2( DE ) 2 a 2 .S 1FC b∵ S 11bh ,∴ S 2a 2S 1a 2 h. 5分2a 2 h b22b∴ 4S 1S 2 4 1bh (ah)2 .2 2b而 S ah ,∴ S 2 4S 1S 2 6 分( 3)解:过点 G 作 GH ∥AB 交 BC 于 H ,则四边形 DBHG 为平行四边形.∴ GHC B ,BD HG ,DG BH .A∵四边形 DEFG 为平行四边形,∴DGEF .∴BHEF .DG∴ BE HF .∴△DBE ≌△GHF .∴△ GHC 的面积为 5 3 8 . 8 分B HE F C图 2由( 2)得, □DBHG 的面积为 2 2 8 8 . 9分∴△ ABC 的面积为 2 8 8 18 . 10 分(说明:未利用( 2)中的结论,但正确地求出了△ ABC 的面积,给 2 分)23.解:( 1) 120, a 2; 2 分( 2)由点( 3,90)求得, y 2 30x .当 x > 0.5 时,由点( 0.5, 0),( 2, 90)求得, y 1 60x 30. 3分当 y 1 y 2 时, 60x 30 30x ,解得, x1 .此时 y 1y 230 .所以点 P 的坐标为( 1, 30). 5分该点坐标的意义为:两船出发 1 h 后,甲船追上乙船,此时两船离 B 港的距离为 30 km . 6分 求点 P 的坐标的另一种方法:由图可得,甲的速度为3090 30 ( km/h ).60 ( km/h ),乙的速度为0.53则甲追上乙所用的时间为 30 1( h ).此时乙船行驶的行程为 30 1 30 ( km ).60 30所以点 P 的坐标为( 1,30).(3)①当 x ≤0.5 时,由点( 0, 30),(0.5, 0)求得, y 1 60x 30 .依题意, ( 60 x30) 30 x ≤10. 解得, x ≥ 2.不合题意. 7 分3②当 0.5< x ≤1 时,依题意, 30x (60 x 30) ≤10.解得, x ≥ 2 .所以 2≤ x ≤1. 8分33③当 x >1 时,依题意, (60 x 30)30x ≤10.解得, x ≤ 4 .所以 1< x ≤ 4. 9分33综上所述,当 2≤ x ≤ 4时,甲、乙两船能够互相看见.10分3324.解:( 1)过点 C 作 CF AB 于 F ,则四边形 AFCD 为矩形.∴CF 4, AF 2 .此时, Rt △AQM ∽ Rt △ACF . 2分DEPC∴QM CF .AM AF即 QM4 ,∴ QM 1 . 3分 0.52( 2)∵ DCA 为锐角,故有两种状况: ①当 CPQ 90 时,点 P 与点 E 重合. 此时 DECP CD ,即 t t 2 ,∴ t 1. 5分②当 PQC 90 时,如备用图 1,此时 Rt △ PEQ ∽ Rt △QMA ,∴EQMA .PEQM由( 1)知, EQ EM QM 4 2t ,QAM FBl (第 24 题)lD PE CQ而 PE PC CE PC( DC DE ) t (2 t ) 2t 2 , ∴42t 1 . ∴ t5 . 2t 2 23综上所述, t1或 5. 8 分(说明:未综述,不扣分)3( 3)CQ为定值. 9分AMB(备用图 1)RQ当 t > 2 时,如备用图 2,PA DA DP4 (t2) 6 t .由( 1)得, BF AB AF 4 .∴ CF BF .∴ CBF 45. ∴ QMMB 6t .∴ QMPA .∴四边形 AMQP 为矩形. ∴PQ ∥ AB .11分∴ △CRQ ∽△ CAB .∴CQ BC CF 2 BF 24 2 2 2 RQABAB6.12分3DCPRQAF MB (备用图 2)。
2020年湖北省咸宁市中考数学试题及参考答案(word解析版)
湖北省咸宁市2020年初中毕业生学业考试数学试卷(满分120分,考试时间120分钟)一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×1083.下列计算正确的是()A.3a﹣a=2 B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a44.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2 D.π﹣27.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2 C.y=D.y=x2﹣2x8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A.B.C.D.二、细心填一填(本大题共8小题,每小题3分,满分24分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是.10.因式分解:mx2﹣2mx+m=.11.如图,请填写一个条件,使结论成立:∵,∴a∥b.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,≈1.73)15.按一定规律排列的一列数:3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2020)0;(2)解不等式组:18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)19.(8分)如图,已知一次函数y 1=kx+b 与反比例函数y 2=的图象在第一、三象限分别交于A (6,1),B (a ,﹣3)两点,连接OA ,OB .(1)求一次函数和反比例函数的解析式;(2)△AOB 的面积为 ;(3)直接写出y 1>y 2时x 的取值范围.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t (单位:min ),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表根据以上图表,解答下列问题:(1)这次被调查的同学共有 人,a = ,m = ;(2)求扇形统计图中扇形D 的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min ?21.(9分)如图,在Rt △ABC 中,∠C =90°,点O 在AC 上,以OA 为半径的半圆O 交AB 于点D ,交AC 于点E ,过点D 作半圆O 的切线DF ,交BC 于点F .(1)求证:BF =DF ;(2)若AC =4,BC =3,CF =1,求半圆O 的半径长.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w 元,求w 关于m 的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?组别 在线阅读时间t 人数 A 10≤t <30 4 B 30≤t <50 8 C 50≤t <70 a D 70≤t <90 16 E 90≤t <110 223.(10分)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c过点B且与直线相交于另一点C(,).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?答案与解析一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)【知识考点】有理数的混合运算.【思路分析】分别按照有理数的加减法、有理数的乘除法法则计算即可.【解答过程】解:A.3+(﹣2)=1,故A不符合题意;B.3﹣(﹣2)=3+2=5,故B不符合题意;C.3×(﹣2)=﹣6,故C符合题意;D.(﹣3)÷(﹣2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.【总结归纳】本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:305000000=3.05×108,故选:B.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.3a﹣a=2 B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a4【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】分别根据合并同类项的法则、同底数幂的除法法则、积的乘方与同底数幂的乘法法则计算各项,进而可得答案.【解答过程】解:3a﹣a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.【总结归纳】本题考查了合并同类项、同底数幂的除法和乘法以及积的乘方等运算法则,属于基本题型,熟练掌握上述基础知识是关键.4.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答过程】解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.【总结归纳】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定【知识考点】折线统计图;加权平均数;中位数;方差.【思路分析】利用折线统计图可得甲、乙两名射击运动员5次射击的成绩,把他们的最好成绩进行比较,即可判断A;利用平均数、中位数、方差的意义分别求出他们的平均数、中位数、方差,即可判断B、C、D.【解答过程】解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵=(6+7+10+8+9)=8,=(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,=[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,2>0.4,∴乙的成绩比甲稳定,故选项D正确,符合题意.故选:D.【总结归纳】本题考查了折线统计图,平均数、中位数与方差.从折线图中得到必要的信息是解决问题的关键.6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2 D.π﹣2【知识考点】扇形面积的计算.【思路分析】由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB﹣S△AOB可得出结论.【解答过程】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB=﹣=π﹣2.故选:D.【总结归纳】本题考查的是扇形面积的计算,根据题意求得三角形与扇形的面积是解答此题的关键.7.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2 C.y=D.y=x2﹣2x【知识考点】一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征;二次函数图象上点的坐标特征.【思路分析】根据横、纵坐标相等的点称为“好点”,即当x=y时,函数解析式变为方程后,方程有解即可判断.【解答过程】解:∵横、纵坐标相等的点称为“好点”,∴当x=y时,A.x=﹣x,解得x=0;不符合题意;B.x=x+2,此方程无解,符合题意;C.x2=2,解得x=±,不符合题意;D.x=x2﹣2x,解得x1=0,x2=3,不符合题意.故选:B.【总结归纳】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解决本题的关键是掌握每个函数的性质.8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE 沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A.B.C.D.【知识考点】矩形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由矩形的性质得出∠B=90°,由勾股定理求出AE,由翻折变换的性质得出△AFE ≌△ABE,得出∠AEF=∠AEB,EF=BE=,因此EF=CE,由等腰三角形的性质得出∠EFC =∠ECF,由三角形的外角性质得出∠AEB=∠ECF,cos∠ECF=cos∠AEB=,即可得出结果.【解答过程】解:如图,∵四边形ABCD是矩形,∴∠B=90°,∵E是BC的中点,BC=2,∴BE=CE=BC=,∴AE===3,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB==.故选:C.【总结归纳】本题考查了矩形的性质,勾股定理,翻折变换的性质,等腰三角形的判定与性质,三角形的外角性质,三角函数;熟练掌握矩形的性质和翻折变换的性质,证出∠AEB=∠ECF是解决问题的关键.二、细心填一填(本大题共8小题,每小题3分,满分24分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是.【知识考点】数轴;相反数.【思路分析】A在数轴上表示的数是3,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【解答过程】解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是﹣3.故答案为:﹣3.【总结归纳】此题主要考查了在数轴上表示数的方法,相反数的定义.解题的关键是熟练掌握在数轴上表示数的方法,以及相反数的含义和求法.10.因式分解:mx2﹣2mx+m=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提公因式,再利用完全平方公式进行因式分解即可.【解答过程】解:mx2﹣2mx+m=m(x2﹣2x+1)=m(x﹣1)2,【总结归纳】本题考查提公因式法、公式法因式分解,确定多项式的公因式是提公因式的关键,掌握公式的结构特征是正确使用公式的前提.11.如图,请填写一个条件,使结论成立:∵,∴a∥b.【知识考点】平行线的判定.【思路分析】要使得a∥b,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可求解.【解答过程】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.【总结归纳】考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.【知识考点】根的判别式.【思路分析】将原方程变形为一般式,根据方程的系数结合根的判别式△≥0,即可得出关于n 的一元一次不等式,解之即可得出n的取值范围(利用偶次方的非负性也可以找出n的取值范围).【解答过程】解:原方程可变形为x2+4x+4﹣n=0.∵该方程有实数根,∴△=42﹣4×1×(4﹣n)≥0,解得:n≥0.故答案为:n≥0.【总结归纳】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.【知识考点】列表法与树状图法.【思路分析】用列表法表示所有可能出现的结果,进而求出相应的概率.【解答过程】解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P(小聪和小慧)=,故答案为:.【总结归纳】本题考查列表法求随机事件发生的概率,列举出所有可能出现的结果,是正确解答的关键.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,≈1.73)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】过P作PD⊥AB于D,易证△ABP是等腰三角形,得到BP=AB=24nmile.然后在直角△PBD中,利用三角函数的定义求得PD的长即可.【解答过程】解:过P作PD⊥AB于D.∵∠PAB=30°,∠PBD=60°,∴∠PAB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×=12≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.【总结归纳】本题考查了解直角三角形的应用﹣方向角问题,等腰三角形的判定与性质等知识,正确作出高线,转化为直角三角形的计算是解决本题的关键.15.按一定规律排列的一列数:3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.【知识考点】规律型:数字的变化类.【思路分析】首项判断出这列数中,3的指数各项依次为1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,每个数的指数都是前两数指数之差;可得这列数中的连续三个数,满足a÷b=c,据此解答即可.【解答过程】解:∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,1﹣2=﹣1,2﹣(﹣1)=3,﹣1﹣3=﹣4,3﹣(﹣4)=7,﹣4﹣7=﹣11,7﹣(﹣11)=18,…,∴a,b,c满足的关系式是a÷b=c.故答案为:a÷b=c.【总结归纳】此题主要考查了规律型:数字的变化类,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出a、b、c的指数的特征.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)【知识考点】二次函数的最值;全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.【思路分析】①由∠AEB+∠CEG=∠AEB+∠BAE得∠BAE=∠CEG,再结合两直角相等得△ABE∽△ECG;②在BA上截取BM=BE,易得△BEM为等腰直角三角形,则∠BME=45°,所以∠AME=135°,再利用等角的余角相等得到∠BAE=∠FEC,于是根据“ASA”可判断△AME≌△ECF,则根据全等三角形的性质可对②进行判断;③由∠MAE+∠DAF=45°,∠CEF+∠CFE=45°,可得出∠DAF与∠CFE的大小关系,便可对③判断;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,利用三角形面积公式得到S△AME=•x•(2﹣x),则根据二次函数的性质可得S△AME的最大值,便可对④进行判断.【解答过程】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF,∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,S△ECF=S△AME=•x•(2﹣x)=﹣(x﹣1)2+,当x=1时,S△ECF有最大值,故④错误.故答案为:①②③.【总结归纳】本题考查了四边形的综合题:熟练掌握正方形的性质和二次函数的性质;能灵活运用全等三角形的知识解决线段线段的问题.构建△AME与△EFC全等是关键.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2020)0;(2)解不等式组:【知识考点】实数的运算;零指数幂;解一元一次不等式组;特殊角的三角函数值.【思路分析】(1)先去绝对值符号、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:(1)原式=﹣1﹣2×+1=﹣1﹣+1=0;(2)解不等式﹣(x﹣1)>3,得:x<﹣2,解不等式2x+9>3,得:x>﹣3,则不等式组的解集为﹣3<x<﹣2.【总结归纳】本题考查的是解一元一次不等式组和实数的运算,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)【知识考点】平行四边形的性质;菱形的判定与性质;圆周角定理;作图—复杂作图.【思路分析】(1)根据平行四边形的性质和判定,菱形的判定即可证明;(2)连结AE,BF,根据菱形的性质可得AE和BF的交点即为点P.【解答过程】(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:【总结归纳】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是作出图形,属于中考常考题型.19.(8分)如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A (6,1),B(a,﹣3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为;(3)直接写出y1>y2时x的取值范围.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)首先把A(6,1)代入反比例函数解析式中确定m,然后把B(a,﹣3)代入反比例函数的解析式确定a,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)求得一次函数与x轴的交点,根据S△AOB=S△AOC+S△BOC即可求解;(3)根据图象,写出直线y1=kx+b落在双曲线y2=上方的部分对应的自变量的取值范围即可.【解答过程】解:(1)把A(6,1)代入y2=中,解得:m=6,故反比例函数的解析式为y2=;把B(a,﹣3)代入y2=,解得a=﹣2,故B(﹣2,﹣3),把A(6,1),B(﹣2,﹣3)代入y1=kx+b,得,解得:,故一次函数解析式为y1=x﹣2;(2)如图,设一次函数y1=x﹣2与x轴交于点C,令y =0,得x =4. ∴点C 的坐标是(4,0), ∴S △AOB =S △AOC +S △BOC =×4×1+×4×3=8.故答案为8;(3)由图象可知,当﹣2<x <0或x >6时,直线y 1=kx+b 落在双曲线y 2=上方,即y 1>y 2,所以y 1>y 2时x 的取值范围是﹣2<x <0或x >6.【总结归纳】此题考查了一次函数与反比例函数的交点问题,待定系数法求一次函数与反比例函数的解析式,三角形的面积,待定系数法求函数解析式是中学阶段求函数解析式常用的方法,一定要熟练掌握并灵活运用.利用了数形结合思想.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t (单位:min ),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表根据以上图表,解答下列问题:(1)这次被调查的同学共有 人,a = ,m = ; (2)求扇形统计图中扇形D 的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min ? 【知识考点】用样本估计总体;频数(率)分布表;扇形统计图.【思路分析】(1)根据B 组的频数和所占的百分比,可以求得这次被调查的同学总数,用被调查的同学总数乘以C 组所占百分比得到a 的值,用A 组人数除以被调查的同学总数,即可得到m ; (2)用360°乘以D 组所占百分比得到D 组圆心角的度数;(3)利用样本估计总体,用该校学生数乘以样本中平均每天的在线阅读时间不少于50min 的人组别 在线阅读时间t 人数 A 10≤t <30 4 B 30≤t <50 8 C 50≤t <70 a D 70≤t <90 16 E90≤t <1102数所占的百分比即可.【解答过程】解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%==8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×=115.2°;(3)950×=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min的有722人.【总结归纳】本题考查了频数分布表,扇形统计图,读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.也考查了利用样本估计总体.21.(9分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.【知识考点】圆周角定理;切线的性质;相似三角形的判定与性质.(1)连接OD,由切线性质得∠ODF=90°,进而证明∠BDF+∠A=∠A+∠B=90°,【思路分析】得∠B=∠BDF,便可得BF=DF;(2)设半径为r,连接OD,OF,则OC=4﹣r,求得DF,再由勾股定理,利用OF为中间变量列出r的方程便可求得结果.【解答过程】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4﹣r,DF=BF=3﹣1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4﹣r)2+12,∴.故圆的半径为.【总结归纳】本题主要考查了切线的性质,等腰三角形的性质与判定,勾股定理,已知切线,往往连接半径为辅助线,第(2)题关键是由勾股定理列出方程.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?【知识考点】分式方程的应用;一次函数的应用.【思路分析】(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意列出分式方程即可;(2)根据配套问题,设购买水银体温计y盒能和口罩刚好配套,根据口罩的数量等于水银体温计数量的2倍列出方程即可用含m的代数式表示;(3)根据题意列出不等式:200m+50×5m≤1800,可得m≤4时,w=450m;当m>4时,w=1800+(450m﹣1800)×0.8=360m+360,进而可得w关于m的函数关系式.【解答过程】解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意,得=,解得x=200,经检验,x=200是原方程的解,∴x﹣150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;。
2022年湖北省咸宁市中考数学试卷(解析版)
2022年湖北省咸宁市中考数学试卷参考答案与试题解析一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卡上把正确答案的代号涂黑)1.(3分)5-的绝对值是()A .5B .5-C .15-D .15【分析】5-的绝对值就是数轴上表示5-的点与原点的距离.【解答】解:5-的绝对值是5,故选:A .2.(3分)某几何体的三视图如图所示,则该几何体是()A .圆锥B .三棱锥C .三棱柱D .四棱柱【分析】从三视图的俯视图看是一个三角形,而主视图是一个矩形,左视图为矩形,可知这是一个三棱柱.【解答】解:由三视图可知,这个几何体是直三棱柱.故选:C .3.(3分)北京冬奥会开幕式的冰雪五环由我国航天科技建造,该五环由21000个LED 灯珠组成,夜色中就像闪闪发光的星星,把北京妆扮成了奥运之城.将数据21000用科学记数法表示为()A .32110⨯B .42.110⨯C .52.110⨯D .60.2110⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:421000 2.110=⨯;故选:B .4.(3分)下列图形中,对称轴条数最多的是()A .等边三角形B .矩形C .正方形D .圆【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:等边三角形有三条对称轴,矩形有两条对称轴,正方形有四条对称轴,圆有无数条对称轴,所以对称轴条数最多的图形是圆.故选:D .5.(3分)下列计算正确的是()A .248a a a ⋅=B .236(2)6a a -=-C .43a a a ÷=D .2235a a a +=【分析】根据同底数的幂的乘除、幂的乘方与积的乘方、合并同类项法则逐项判断.【解答】解:246a a a ⋅=,故A 错误,不符合题意;236(2)8a a -=-,故B 错误,不符合题意;43a a a ÷=,故C 正确,符合题意;235a a a +=,故D 错误,不符合题意;故选:C .6.(3分)下列调查中,适宜采用全面调查方式的是()A .检测“神舟十四号”载人飞船零件的质量B .检测一批LED 灯的使用寿命C .检测黄冈、孝感、咸宁三市的空气质量D .检测一批家用汽车的抗撞击能力【分析】根据全面调查与抽样调查的特点,逐一判断即可解答.【解答】解:A 、检测“神舟十四号”载人飞船零件的质量,适宜采用全面调查的方式,故A 符合题意;B 、检测一批LED 灯的使用寿命,适宜采用抽样调查的方式,故B 不符合题意;C 、检测黄冈、孝感、咸宁三市的空气质量,适宜采用抽样调查的方式,故C 不符合题意;D 、检测一批家用汽车的抗撞击能力,适宜采用抽样调查的方式,故D 不符合题意;故选:A .7.(3分)如图,在Rt ABC ∆中,90C ∠=︒,30B ∠=︒,8AB =,以点C 为圆心,CA 的长为半径画弧,交AB 于点D ,则 AD 的长为()A .πB .43πC .53πD .2π【分析】连接CD ,根据90ACB ∠=︒,30B ∠=︒可以得到A ∠的度数,再根据AC CD =以及A ∠的度数即可得到ACD ∠的度数,最后根据弧长公式求解即可.【解答】解:连接CD ,如图所示:90ACB =︒ ,30B ∠=︒,8AB =,903060A ∴∠=︒-︒=︒,142AC AB ==,由题意得:AC CD =,ACD ∴∆为等边三角形,60ACD ∴∠=︒,∴ AD 的长为:60441803ππ⨯=,故选:B .8.(3分)如图,在矩形ABCD 中,AB BC <,连接AC ,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧交于点M ,N ,直线MN 分别交AD ,BC 于点E ,F .下列结论:①四边形AECF 是菱形;②2AFB ACB ∠=∠;③AC EF CF CD ⋅=⋅;④若AF 平分BAC ∠,则2CF BF =.其中正确结论的个数是()A .4B .3C .2D .1【分析】根据题意分别证明各个结论来判断即可.【解答】解:根据题意知,BF 垂直平分AC,在AOE ∆和COF ∆中,90EAO FCO AOE COF AO CO ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()AOE COF AAS ∴∆≅∆,OE OF ∴=,AE AF CF CE ∴===,即四边形AECF 是菱形,故①结论正确;AFB FAO ACB ∠=∠+∠ ,AF FC =,FAO ACB ∴∠=∠,2AFB ACB ∴∠=∠,故②结论正确;11222AECF S CF CD AC OE AC EF =⋅=⋅⨯=⋅ 四边形,故③结论不正确;若AF 平分BAC ∠,则190303BAF FAC CAD ∠=∠=∠=⨯︒=︒,2AF BF ∴=,CF AF = ,2CF BF ∴=,故④结论正确;故选:B .二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号的横线上)9.(3分)若分式21x -有意义,则x 的取值范围是1x ≠.【分析】根据分式有意义的条件可知10x -≠,再解不等式即可.【解答】解:由题意得:10x -≠,解得:1x ≠,故答案为:1x ≠.10.(3分)如图,直线//a b ,直线c 与直线a ,b 相交,若154∠=︒,则3∠=126度.【分析】根据两直线平行,同位角相等和邻补角的定义解答即可.【解答】解://a b ,4154∴∠=∠=︒,3180418054126∴∠=︒-∠=︒-︒=︒,故答案为:126.11.(3分)若一元二次方程2430x x -+=的两个根是1x ,2x ,则12x x ⋅的值是3.【分析】根据根与系数的关系直接可得答案.【解答】解:1x ,2x 是一元二次方程2430x x -+=的两个根,123x x ∴⋅=,故答案为:3.12.(3分)如图,已知//AB DE ,AB DE =,请你添加一个条件A D ∠=∠,使ABC DEF ∆≅∆.【分析】添加条件:A D ∠=∠,根据ASA 即可证明ABC DEF ∆≅∆.【解答】解:添加条件:A D ∠=∠.//AB DE ,B DEC ∴∠=∠,在ABC ∆和DEF ∆中,A D AB DEB DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABC DEF ASA ∴∆≅∆,故答案为:A D ∠=∠.(答案不唯一)13.(3分)小聪和小明两个同学玩“石头,剪刀、布”的游戏,随机出手一次是平局的概率是13.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两人平局的情况,再利用概率公式即可求得答案.【解答】解:小聪和小明玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小聪平局的概率为:3193=.故答案为:13.14.(3分)如图,有甲乙两座建筑物,从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离.已知乙建筑物的高度CD 为6m ,则甲建筑物的高度AB 为16m .(sin 580.85︒≈,cos 580.53︒≈,tan 58 1.60︒≈,结果保留整数).【分析】过点D 作DE AB ⊥于点E ,则6BE CD m ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE ∆中,45ADE ∠=︒,设AE x =m ,则DE x =m ,BC x =m ,(6)AB AE BE x m =+=+,在Rt ABC ∆中,6tan tan 58 1.60AB xACB BC x+∠=︒==≈,解得10x =,进而可得出答案.【解答】解:过点D 作DE AB ⊥于点E ,如图.则6BE CD m ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE ∆中,45ADE ∠=︒,设AE x =m ,则DE x =m ,BC x ∴=m ,(6)AB AE BE x m =+=+,在Rt ABC ∆中,6tan tan 58 1.60AB xACB BC x+∠=︒==≈,解得10x =,16AB m ∴=.故答案为:16.15.(3分)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;⋯,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;⋯,若此类勾股数的勾为2(3m m ,m 为正整数),则其弦是21m -(结果用含m 的式子表示).【分析】根据题意得2m 为偶数,设其股是a ,则弦为2a +,根据勾股定理列方程即可得到结论.【解答】解:m 为正整数,2m ∴为偶数,设其股是a ,则弦为2a +,根据勾股定理得,222(2)(2)m a a +=+,解得21a m =-,综上所述,其弦是21m -,故答案为:21m -.16.(3分)如图1,在ABC ∆中,36B ∠=︒,动点P 从点A 出发,沿折线A B C →→匀速运动至点C 停止.若点P 的运动速度为1/cm s ,设点P 的运动时间为()t s ,AP 的长度为()y cm ,y 与t 的函数图象如图2所示.当AP 恰好平分BAC ∠时t 的值为2.【分析】由图象可得4AB BC cm ==,通过证明APC BAC ∆∆∽,可求AP 的长,即可求解.【解答】解:如图,连接AP ,由图2可得4AB BC cm ==,36B ∠=︒ ,AB BC =,72BAC C ∴∠=∠=︒,AP 平分BAC ∠,36BAP PAC B ∴∠=∠=∠=︒,AP BP ∴=,72APC C ∠=︒=∠,AP AC BP ∴==,PAC B ∠=∠ ,C C ∠=∠,APC BAC ∴∆∆∽,∴AP PCAB AC=,24(4)AP AB PC AP ∴=⋅=-,2AP BP ∴=-=,(负值舍去),2t ∴=,故答案为:2+.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置)17.(6分)先化简,再求值:42(3)xy xy xy ---,其中2x =,1y =-.【分析】先去括号,再合并同类项,然后把x ,y 的值代入化简后的式子进行计算即可解答.【解答】解:42(3)xy xy xy ---423xy xy xy =-+5xy =,当2x =,1y =-时,原式52(1)10=⨯⨯-=-.18.(8分)某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.(1)买一份甲种快餐和一份乙种快餐各需多少元?(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?【分析】(1)设购买一份甲种快餐需要x 元,购买一份乙种快餐需要y 元,根据“买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元”,即可列出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买乙种快餐m 份,则购买甲种快餐(55)m -份,利用总价=单价⨯数量,结合总价不超过1280元,即可列出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设购买一份甲种快餐需要x 元,购买一份乙种快餐需要y 元,依题意得:27023120x y x y +=⎧⎨+=⎩,解得:3020x y =⎧⎨=⎩.答:购买一份甲种快餐需要30元,购买一份乙种快餐需要20元.(2)设购买乙种快餐m 份,则购买甲种快餐(55)m -份,依题意得:30(55)201280m m -+,解得:37m .答:至少买乙种快餐37份.19.(8分)为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t (单位:分钟).按照完成时间分成五组:A 组“45t ”,B 组“4560t <”,C 组“6075t <”,D 组“7590t <”,E 组“90t >”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是100,请补全条形统计图;(2)在扇形统计图中,B 组的圆心角是度,本次调查数据的中位数落在组内;(3)若该校有1800名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.【分析】(1)根据C 组的人数和所占的百分比,可以计算出本次调查的人数,然后即可计算出D 组的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以计算出B 组的圆心角的度数,以及中位数落在哪一组;(3)根据题意和统计图中的数据,可以计算出该校每天完成书面作业不超过90分钟的学生人数.【解答】解:(1)这次调查的样本容量是:2525%100÷=,D 组的人数为:100102025540----=,补全的条形统计图如右图所示:故答案为:100;(2)在扇形统计图中,B 组的圆心角是:2036072100︒⨯=︒, 本次调查了100个数据,第50个数据和51个数据都在C 组,∴中位数落在C 组,故答案为:72,C ;(3)100518001710100-⨯=(人),答:估计该校每天完成书面作业不超过90分钟的学生有1710人.20.(9分)如图,已知一次函数1y kx b =+的图象与函数2(0)m y x x =>的图象交于1(6,2A -,1(2B ,)n 两点,与y 轴交于点C .将直线AB 沿y 轴向上平移t 个单位长度得到直线DE ,DE 与y 轴交于点F .(1)求1y 与2y 的解析式;(2)观察图象,直接写出12y y <时x 的取值范围;(3)连接AD ,CD ,若ACD ∆的面积为6,则t 的值为2.【分析】(1)将点1(6,)2A -代入2m y x=中,求反比例函数的解析式;通过解析式求出B 点坐标,然后将点A 、B 代入1y kx b =+,即可求出一次函数的解析式;(2)通过观察图象即可求解;(3)由题意先求出直线DE 的解析式为132y x t =-+,过点F 作GF AB ⊥交于点G ,连接AF ,由45OCA ∠=︒,求出22FG =,再求出AC =,由平行线的性质可知ACD ACF S S ∆∆=,则12622t ⨯=,即可求t .【解答】解:(1)将点1(6,)2A -代入2m y x=中,3m ∴=-,23y x-∴=,1(2B ,)n 在23y x-=中,可得6n =-,1(2B ∴,6)-,将点A 、B 代入1y kx b =+,∴162162k b k b ⎧+=-⎪⎪⎨⎪+=-⎪⎩,解得1132k b =⎧⎪⎨=-⎪⎩,1132y x ∴=-;(2) 一次函数与反比例函数交点为1(6,)2A -,1(2B ,6)-,∴162x <<时,12y y <;(3)在1132y x =-中,令0x =,则132y =-,13(0,)2C ∴-, 直线AB 沿y 轴向上平移t 个单位长度,∴直线DE 的解析式为132y x t =-+,F ∴点坐标为13(0,)2t -+,过点F 作GF AB ⊥交于点G ,连接AF ,直线AB 与x 轴交点为13(2,0),与y 轴交点13(0,)2C -,45OCA ∴∠=︒,FG CG ∴=,FC t = ,22FG ∴=,1(6,)2A - ,13(0,)2C -,AC ∴=,//AB DF ,ACD ACF S S ∆∆∴=,∴162⨯=,2t ∴=,故答案为:2.21.(9分)如图,O 是ABC ∆的外接圆,AD 是O 的直径,BC 与过点A 的切线EF 平行,BC ,AD 相交于点G .(1)求证:AB AC =;(2)若16DG BC ==,求AB 的长.【分析】(1)根据垂径定理,圆周角定理,等腰三角形的判定定理解答即可;(2)根据相似三角形的判定定理,勾股定理解答即可.【解答】(1)证明:EF 是O 的切线,DA EF ∴⊥,//BC EF ,DA BC ∴⊥,DA 是直径,∴AB AC =,ACB ABC ∴∠=∠,AB AC ∴=.(2)解:连接DB ,BG AD ⊥ ,BGD BGA ∴∠=∠,90ABG DBG ∠+∠=︒ ,90DBG BDG ∠+∠=︒,ABG BDG ∴∠=∠,ABG BDG ∴∆∆∽,∴AG BG BG DG=,即2BG AG DG =⨯,16BC = ,BG GC =,8BG ∴=,2816AG ∴=⨯,解得:4AG =,在Rt ABG ∆中,8BG =,4AG =,AB ∴=.故答案为:.22.(10分)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在2360m 的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y (元2/)m 与种植面积2()x m 之间的函数关系如图所示,乙种花卉种植费用为15元2/m .(1)当100x 时,求y 与x 的函数关系式,并写出x 的取值范围;(2)当甲种花卉种植面积不少于230m ,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w (元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x 的取值范围.【分析】(1)分段利用图象的特点,利用待定系数法,即可求出答案;(2)先求出x 的范围;①分两段建立w 与x 的函数关系,即可求出各自的w 的最小值,最后比较,即可求出答案案;②分两段利用6000w ,建立不等式求解,即可求出答案.【解答】解:(1)当040x <时,30y =;当40100x <时,设函数关系式为y kx b =+,线段过点(40,30),(100,15),∴403010015k b k b +=⎧⎨+=⎩,∴1440k b ⎧=-⎪⎨⎪=⎩,1404y x ∴=-+,即30(040)140(40100)4x y x x <⎧⎪=⎨-+<⎪⎩;(2) 甲种花卉种植面积不少于230m ,30x ∴,乙种花卉种植面积不低于甲种花卉种植面积的3倍,3603x x ∴-,90x ∴,即3090x ;①当3040x 时,由(1)知,30y =,乙种花卉种植费用为15元2/m .15(360)3015(360)155400w yx x x x x ∴=+-=+-=+,当30x =时,5850min w =;当4090x <时,由(1)知,1404y x =-+,2115(360)(50)60254w yx x x ∴=+-=--+,∴当90x =时,21(9050)602556254min w =--+=,58505625> ,∴种植甲种花卉290m ,乙种花卉2270m 时,种植的总费用最少,最少为5625元;②当3040x 时,由①知,155400w x =+,种植总费用不超过6000元,1554006000x ∴+,40x ∴,即满足条件的x 的范围为3040x ,当4090x <时,由①知,21(50)60254w x =--+, 种植总费用不超过6000元,21(50)602560004x ∴--+,40x ∴(不符合题意,舍去)或60x ,即满足条件的x 的范围为6090x ,综上,满足条件的x 的范围为3040x 或6090x .23.(10分)问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC ∆的角平分线,可证AB BD AC CD=.小慧的证明思路是:如图2,过点C 作//CE AB ,交AD 的延长线于点E ,构造相似三角形来证明AB BD AC CD =.尝试证明:(1)请参照小慧提供的思路,利用图2证明:AB BD AC CD=;应用拓展:(2)如图3,在Rt ABC ∆中,90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD ∆沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.①若1AC =,2AB =,求DE 的长;②若BC m =,AED α∠=,求DE 的长(用含m ,α的式子表示).【分析】(1)证明CED BAD ∆∆∽,由相似三角形的性质得出CE CD AB BD=,证出CE CA =,则可得出结论;(2)①由折叠的性质可得出CAD BAD ∠=∠,CD DE =,由(1)可知,AB BD AC CD =,由勾股定理求出BC =,则可求出答案;②由折叠的性质得出C AED α∠=∠=,则tan tan AB C ACα∠==,方法同①可求出1tan m CD α=+,则可得出答案.【解答】(1)证明://CE AB ,E EAB ∴∠=∠,B ECB ∠=∠,CED BAD ∴∆∆∽,∴CE CD AB BD=,E EAB ∠=∠ ,EAB CAD ∠=∠,E CAD ∴∠=∠,CE CA ∴=,∴AB BD AC CD=.(2)解:① 将ACD ∆沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处,CAD BAD ∴∠=∠,CD DE =,由(1)可知,AB BD AC CD=,又1AC = ,2AB =,∴21BD CD=,2BD CD ∴=,90BAC ∠=︒ ,BC ∴===,BD CD ∴+=,3CD ∴=,CD ∴=;53DE ∴=;② 将ACD ∆沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处,CAD BAD ∴∠=∠,CD DE =,C AED α∠=∠=,tan tan AB C ACα∴∠==,由(1)可知,AB BD AC CD=,tan BD CD α∴=,tan BD CD α∴=⋅,又BC BD CD m =+= ,tan CD CD m α∴⋅+=,1tan m CD α∴=+,1tan m DE α∴=+.24.(12分)抛物线24y x x =-与直线y x =交于原点O 和点B ,与x 轴交于另一点A ,顶点为D .(1)直接写出点B 和点D 的坐标;(2)如图1,连接OD ,P 为x 轴上的动点,当1tan 2PDO ∠=时,求点P 的坐标;(3)如图2,M 是点B 关于抛物线对称轴的对称点,Q 是抛物线上的动点,它的横坐标为(05)m m <<,连接MQ ,BQ ,MQ 与直线OB 交于点E .设BEQ ∆和BEM ∆的面积分别为1S 和2S ,求12S S的最大值.【分析】(1)令24y x x x =-=,求出x 的值即可得出点B 的坐标,将函数24y x x =-化作顶点式可得出点D 的坐标;(2)过点D 作DE y ⊥轴于点E ,易得1tan 2DOE ∠=,因为1tan 2PDO ∠=,所以ODG DOE =∠,分两种情况进行讨论,当点P 在线段OD 的右侧时,//DP y 轴,当点P 在线段OD 左侧时,设直线DO 与y 轴交于点G ,则ODG ∆是等腰三角形,分别求出点P 的坐标即可.(3)分别过点M ,Q 作y 轴的平行线,交直线OB 于点N ,K ,则11()2B E S QK x x =-,21()2B E S MN x x =-,由点Q 的横坐标为m ,可表达12S S ,再利用二次函数的性质可得出结论.【解答】解:(1)令24y x x x =-=,解得0x =或5x =,(5,5)B ∴;224(2)4y x x x =-=-- ,∴顶点(2,4)D -.(2)如图,过点D 作DE y ⊥轴于点E ,2DE ∴=,4OE =,1tan 2DOE ∴∠=,1tan 2PDO ∠= ,ODG DOE ∴=∠,①当点P 在线段OD 的右侧时,//DP y 轴,如图,(2,0)P ∴;②当点P 在线段OD 左侧时,设直线DO 与y 轴交于点G ,则ODG ∆是等腰三角形,OG DG ∴=,设OG t =,则DG t =,4GE t =-,在Rt DGE ∆中,2222(4)t t =+-,解得52t =,5(0,)2G ∴-,∴直线DG 的解析式为:3542y x =--,令0y =,则35042x --=,解得103x =-,10(3P ∴-,0).综上,点P 的坐标为(2,0)或10(3-,0).(3) 点(5,5)B 与点M 关于对称轴2x =对称,(1,5)M ∴-.如图,分别过点M ,Q 作y 轴的平行线,交直线OB 于点N ,K ,(1,1)N ∴--,6MN =, 点Q 横坐标为m ,2(,4)Q m m m ∴-,(,)K m m ,22(4)5KQ m m m m m ∴=--=-+.11()2B E S QK x x =- ,21()2B E S MN x x =-,∴221211525(5)()66224S QK m m m S MN ==--=--+,106-< ,∴当52m =时,12S S 的最大值为2524.。
咸宁市重点中学2024届中考联考数学试卷含解析
咸宁市重点中学2024年中考联考数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图所示几何体的主视图是( )A .B .C .D .2.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为( ) A .1k < B .1k C .1k > D .1k <3.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( )A .5sin αB .5sin αC .5cosαD .5cos α4.下列分式中,最简分式是( )A .2211x x -+ B .211x x +- C .2222x xy y x xy -+- D .236212x x -+ 5.若代数式11x x +-有意义,则实数x 的取值范围是( ) A .x≠1 B .x≥0 C .x≠0 D .x≥0且x≠16.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .7.四组数中:①1和1;②﹣1和1;③0和0;④﹣23和﹣112,互为倒数的是()A.①②B.①③C.①④D.①③④8.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.1(1)282x x-=B.1(1)282x x+=C.(1)28x x-=D.(1)28x x+=9.关于反比例函数y=2x,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上10.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( ) A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.点 C 在射线AB上,若AB=3,BC=2,则AC为_____.12.如图,在△OAB中,C是AB的中点,反比例函数y=kx(k>0)在第一象限的图象经过A,C两点,若△OAB面积为6,则k的值为_____.13.若m、n 是方程x2+2018x﹣1=0 的两个根,则m2n+mn2﹣mn=_________.14.正六边形的每个内角等于______________°.15.比较大小:4 17“>”或“<”号)161x-有意义,则x的取值范围是_____17.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.三、解答题(共7小题,满分69分)18.(10分)在△ABC 中,90︒∠=C ,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,分别交AB ,AC 于点E ,F 如图①,连接AD ,若25CAD ︒∠=,求∠B 的大小;如图②,若点F 为AD 的中点,O 的半径为2,求AB 的长.19.(5分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.20.(8分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只?21.(10分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.22.(10分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.23.(12分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.24.(14分)如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】从正面看几何体,确定出主视图即可.【题目详解】解:几何体的主视图为故选C.【题目点拨】本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.2、B【解题分析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.【题目详解】解:解不等式组29611x xx k+>+⎧⎨-<⎩,得21xx k<⎧⎨<+⎩.∵不等式组29611x xx k+>+⎧⎨-<⎩的解集为x<2,∴k+1≥2,解得k≥1.故选:B.【题目点拨】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.3、D【解题分析】利用所给的角的余弦值求解即可.【题目详解】∵BC=5米,∠CBA=∠α,∴AB=BCcosα=5cosα.故选D.【题目点拨】本题主要考查学生对坡度、坡角的理解及运用.4、A【解题分析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.5、D【解题分析】试题分析:∵代数式11x x+-∴10 {xx-≠≥,解得x≥0且x≠1.故选D.考点:二次根式,分式有意义的条件.6、B【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选B.【题目点拨】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【解题分析】根据倒数的定义,分别进行判断即可得出答案.【题目详解】∵①1和1;1×1=1,故此选项正确;②-1和1;-1×1=-1,故此选项错误;③0和0;0×0=0,故此选项错误;④−23和−112,-23×(-112)=1,故此选项正确;∴互为倒数的是:①④,故选C.【题目点拨】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.8、A【解题分析】根据应用题的题目条件建立方程即可.【题目详解】解:由题可得:1(1)47 2x x-=⨯即:1(1)28 2x x-=故答案是:A.【题目点拨】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.9、C【解题分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【题目详解】A.反比例函数2yx的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【题目点拨】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.10、A【解题分析】根据轴对称图形的概念求解.解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A.“点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(共7小题,每小题3分,满分21分)11、2或2.【解题分析】解:本题有两种情形:(2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.故答案为2或2.点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.12、4【解题分析】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,根据C 是AB 的中点得到CN 为AMB 的中位线,然后设MN NB a ==,CN b =,2AM b =,根据OM AM ON CN ⋅=⋅,得到OM a =,最后根据面积32236a b ab =⋅÷==求得2ab =,从而求得224k a b ab =⋅==.【题目详解】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,如图点C 为AB 的中点,∴CN 为AMB 的中位线,∴MN NB a ==,CN b =,2AM b =,OM AM ON CN ⋅=⋅,∴()2OM b OM a b ⋅=+⋅,∴OM a =,∴32236AOB S a b ab =⋅÷==,∴2ab =,∴224k a b ab =⋅==.故答案为:4.【题目点拨】本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,关键是正确作出辅助线,掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是2k ,且保持不变.13、1【解题分析】根据根与系数的关系得到 m+n=﹣2018,mn=﹣1,把 m 2n+mm 2﹣mn 分解因式得到 mn (m+n ﹣1),然后利用整体代入的方法计算.【题目详解】解:∵m、n 是方程x2+2018x﹣1=0 的两个根,则原式=mn(m+n﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案为:1.【题目点拨】本题考查了根与系数的关系,如果一元二次方程ax2+bx+c=0 的两根分别为与,则解题时要注意这两个关系的合理应用.14、120【解题分析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.15、>【解题分析】1617∴417考点:实数的大小比较.【题目详解】请在此输入详解!16、x≤1且x≠﹣1.【解题分析】根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.17、132.【解题分析】试题分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D为AB的中点,∴CD=AD=BD=AB=2.5,过D′作D′E⊥BC,∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为.考点:旋转的性质.三、解答题(共7小题,满分69分)18、(1)∠B=40°;(2)AB= 6.【解题分析】(1)连接OD,由在△ABC中, ∠C=90°,BC是切线,易得AC∥OD ,即可求得∠CAD=∠ADO ,继而求得答案;(2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD ,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案. 【题目详解】解:(1)如解图①,连接OD,∵BC切⊙O于点D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°, ∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°; (2)如解图②,连接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵点F为弧AD的中点,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF为等边三角形,∴∠FAO=60°,则∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO +OB=2+4=6.【题目点拨】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF 为等边三角形是解(2)的关键.19、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解题分析】解:(1)设每台电脑x 万元,每台电子白板y 万元,根据题意得:x 2y 3.5{2x y 2.5+=+=,解得:x 0.5{y 1.5==。
2022咸宁中考数学
2022咸宁中考数学【一】:湖北省咸宁市2022年中考数学试题(图片版,含答案)【三】:湖北省咸宁市2022年中考数学试卷试题解析湖北省咸宁市2022年中考数学试卷一、精心选一选(本大题共8小题,每小题3分,共24分。
在每小题给出的四个选项中只有一项是符合题目要求的。
请在答题卷上把正确答案的代号涂黑)1、冰箱冷藏室的温度零上5°C,记着+5°C,保鲜室的温度零下7°C,记着()A。
7°CB。
-7°CC。
2°CD。
-12°C【考点】正负数表示的意义及应用.【解析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意可得:温度零上的记为+,所以温度零下的记为:﹣,因此,保鲜室的温度零下7°C,记着-7°C.故选B。
【点评】本题考查了正负数表示的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2、如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A。
50°B。
45°C。
40°D。
30°(第2题)【考点】平行线的性质,垂直的性质,三角形的内角和定理.【解析】由直线l1∥l2,根据两直线平行,内错角相等,可得∠ABC=50°;由CD⊥AB,可知∠CDB=90°,由三角形的内角和定理,可求得∠BCD的度数。
【解答】解:∵l1∥l2,∴∠ABC=∠1=50°;又∵CD⊥AB,∴∠CDB=90°;在△BCD中,∠BCD=180°-∠CDB-∠ABC=180°-90°-50°=40°故选C.【点评】本题考查了平行线的性质,垂直的性质,三角形的内角和定理.解题的关键是要注意掌握两质一个定理的应用:①两直线平行,内错角相等;②垂直的性质:如果两直线互相垂直,则它们相交所组成的角为直角;③三角形的内角和定理:三角形三个内角的和为180°。
湖北省咸宁市2022年中考数学真题试题(含解析)
湖北省咸宁市 2022年中考数学真题试题第一卷〔共24分〕一、选择题:本大题共8个小题,每题3分,共24分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1. 下表是我市四个景区今年2月份某天6时气温,其中气温最低的景区是( ) 景区 潜山公园陆水湖隐水洞三湖连江气温C 1- C 0 C 2- C 2A .潜山公园B .陆水湖C .隐水洞D .三湖连江 【答案】C.试题分析:观察表格可得﹣2<﹣1<0<2,即可得隐水洞的气温最低,应选C . 考点:有理数的大小比拟.2. 在绿满鄂南行动中,咸宁市方案2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学计数法表示为〔〕A .410121⨯B .5101.12⨯C .51021.1⨯D .61021.1⨯ 【答案】D .试题分析:用科学记数法表示较大的数时,一般形式为a ×10n,其中1≤|a|<10,n 为整数, 所以1210000=1.21×106.应选D . 考点:科学记数法.3.以下算式中,结果等于5a 的是〔〕A .32a a +B .32a a ⋅C .a a ÷5D . 32)(a【答案】B .考点:整式的运算.4. 如图是某个几何体的三视图,该几何体是〔 〕A .三棱柱B .三棱锥 C.圆柱 D .圆锥 【答案】A .试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,应选A .考点:由三视图判定几何体.5. 由于受97N H 禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降%a ,3月份比2月份下降%b ,1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,那么〔〕A .%)%1(24b a m --=B .%%)1(24b a m -= C. %%24b a m --= D .%)1%)(1(24b a m --= 【答案】D .考点:列代数式.6. c b a ,,为常数,点),(c a P 在第二象限,那么关于x 的方程02=++c bx ax 根的情况是〔〕A .有两个相等的实数根B .有两个不相等的实数根 C.没有实数根 D .无法判断 【答案】B .试题分析:点P 〔a ,c 〕在第二象限,可得a <0,c >0,所以ac <0,即可判定△=b 2﹣4ac >0,所以方程有两个不相等的实数根.应选B . 考点:根的判别式;点的坐标.7. 如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OD OB ,,假设BCD BOD ∠=∠,那么⋂BD 的长为〔〕A .πB .π23C. π2 D .π3 【答案】C .考点:弧长的计算;圆内接四边形的性质.8. 在平面直接坐标系xOy 中,将一块含义45角的直角三角板如图放置,直角顶点C 的坐标为)0,1(,顶点A 的坐标为)2,0(,顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,那么此点C 的对应点C '的坐标为〔〕A .)0,23(B .)0,2( C. )0,25( D .)0,3( 【答案】C.试题分析:过点B 作BD ⊥x 轴于点D , ∵∠ACO+∠BCD=90°, ∠OAC+ACO=90°, ∴∠OAC=∠BCD , 在△ACO 与△BCD 中,OAC BCD AOC BDC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO ≌△BCD 〔AAS 〕 ∴OC=BD ,OA=CD , ∵A 〔0,2〕,C 〔1,0〕 ∴OD=3,BD=1, ∴B 〔3,1〕,∴设反比例函数的解析式为y=k x,应选C.考点:反比例函数图象上点的坐标特征;坐标与图形变化﹣平移.第二卷〔共96分〕二、填空题〔每题8分,总分值24分,将答案填在答题纸上〕 9. 8的立方根是 . 【答案】2.试题分析:利用立方根的定义可得8的立方根为2. 考点:立方根.10. 化简:xx x x 112++- .【答案】x+1.试题分析:原式=2211(1)1x x x x x x x x x x-++++===+. 考点:分式的乘除法.11. 分解因式:=+-2422a a . 【答案】2〔a ﹣1〕2.试题分析:先提取2,再利用完全平方公式分解即可,即原式=2〔a 2﹣2a+1〕=2〔a ﹣1〕2. 考点:提公因式法与公式法的综合运用.12. 如图,直线n mx y +=与抛物线c bx ax y ++=2交于),4(),,1(q B p A -两点,那么关于x 的不等式c bx ax n mx ++>+2的解集是 .【答案】x <﹣1或x >4.考点:二次函数与不等式〔组〕.13. 小明的爸爸是个“健步走〞运动爱好者,他用 软件记录了某个月〔30天〕每天健步走的步数,并将记录结果绘制成了如下统计表: 步数〔万步〕 1.1 2.1 3.1 4.1 5.1 天数 3 75123在每天所走的步数这组数据中,众数和中位数分别是 . 【答案】1.4;1.35.试题分析:把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数是〔1.3+1.4〕÷2=1.35,,在这组数据中出现次数最多的是1.4,得到这组数据的众数是1.4. 考点:众数;中位数.14. 如图,点O 的矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合,假设3=BE ,那么折痕AE 的长为 .【答案】6.试题分析:由题意得:AB=AO=CO ,即AC=2AB ,且OE 垂直平分AC ,那么AE=6考点:矩形的性质;翻折变换〔折叠问题〕.15. 如图,边长为4的正六边形ABCDEF 的中心与坐标原点O 重合,x AF //轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60,当2017=n 时,顶点A 的坐标为 .【答案】〔2,3〕试题分析: 2022×60°÷360°=336…1,即与正六边形ABCDEF 绕原点O 顺时针旋转1次时点A 的坐标是一样的.当点A 按顺时针旋转60°时,与原F 点重合.连接OF ,过点F 作FH ⊥x 轴,垂足为H ;由EF=4,∠FOE=60°〔正六边形的性质〕,∴△OEF 是等边三角形,∴OF=EF=4, ∴F 〔2,3〕,即旋转 2022后点A 的坐标是〔2,3〕.考点:坐标与图形变化﹣旋转;规律型:点的坐标.16. 如图,在ACB Rt ∆中,30,2=∠=BAC BC ,斜边AB 的两个端点分别在相互垂直的射线ON OM ,上滑动,以下结论:①假设O C 、两点关于AB 对称,那么32=OA ; ②O C 、两点距离的最大值为4;③假设AB 平分CO ,那么CO AB ⊥; ④斜边AB 的中点D 运动路径的长为2π. 其中正确的选项是 .【答案】①②③.∵∠AOB=∠ACB=90°, ∴OE=CE=12AB=2, 当OC 经过点E 时,OC 最大,那么C 、O 两点距离的最大值为4;综上所述,此题正确的有:①②③;考点:三角形综合题.三、解答题 〔本大题共8小题,共72分.解容许写出文字说明、证明过程或演算步骤.〕17. ⑴计算:0201748|3|+--;⑵解方程:3121-=x x . 【答案】〔1〕1﹣3〔2〕x=﹣1.试题分析:〔1〕根据实数的运算法那么,零指数幂的性质计算即可;〔2〕根据分式方程的解法即可得到结论. 试题解析:〔1〕原式33+1=1﹣3〔2〕方程两边通乘以2x 〔x ﹣3〕得,x ﹣3=4x , 解得:x=﹣1,检验:当x=﹣1时,2x 〔x ﹣3〕≠0,∴原方程的根是x=﹣1. 考点:实数的运算;解分式方程.18. 如图,点F C E B ,,,在一条直线上,FC BE DE AC DF AB ===,,.⑴求证:DFE ABC ∆≅∆;⑵连接BD AF ,,求证:四边形ABDF 是平行四边形. 【答案】详见解析.试题分析:〔1〕由SSS 证明△ABC ≌△DFE 即可;〔2〕连接AF 、BD ,由全等三角形的性质得出∠ABC=∠DFE ,∵AB=DF ,∴四边形ABDF 是平行四边形.考点:全等三角形的判定与性质;平行四边形的判定.19. 咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了局部学生进行问卷调查,根据调查结果绘制了如以下图所示的两幅不完整统计图,请你根据图中信息解答以下问题:⑴补全条形统计图,“体育〞对应扇形的圆心角是度;⑵根据以上统计分析,估计该校2000名学生中喜爱“娱乐〞的有人;⑶在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,假设从这4人中随机抽取2人去参加“新闻小记者〞培训,请用列表法或者画树状图的方法求所抽取的2人来自不同班级的概率【答案】〔1〕72;〔2〕700;〔3〕23.补全条形图如下:“体育〞对应扇形的圆心角是360°×40200=72°;考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体.20. 小慧根据学习函数的经验,对函数|1|-=x y 的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:⑴函数|1|-=x y 的自变量x 的取值范围是 ; ⑵列表,找出y 与x 的几组对应值.x1- 0 1 2 3yb1 01 2其中,=b ;⑶在平面直角坐标系xOy 中,描出以上表中各队对应值为坐标的点,并画出该函数的图象; ⑷写出该函数的一条性质: .【答案】〔1〕任意实数;〔2〕2;〔3〕详见解析;〔4〕函数的最小值为0〔答案不唯一〕.〔3〕如下图;〔4〕由函数图象可知,函数的最小值为0. 故答案为:函数的最小值为0〔答案不唯一〕. 考点:一次函数的性质;一次函数的图象.21. 如图,在ABC ∆中,AC AB =,以AB 为直径的⊙O 与边AC BC ,分别交于E D ,两点,过点D 作AC DF ⊥,垂足为点F .⑴求证:DF 是⊙O 的切线; ⑵假设52cos ,4==A AE ,求DF 的长 【答案】〔1〕详见解析;〔2〕21.∵OB=OD,∴∠ODB=∠B,∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD为矩形,∴21考点:圆的综合题.22. 某公司开发出一款新的节能产品,该产品的本钱价位6元/件,该产品在正式投放市场前通过代销点进行了为期一个月〔30天〕的试销售,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ODE表示日销售量y〔件〕与销售时间x〔天〕之间的函数关系,线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.⑴第24天的日销售量是件,日销售利润是元;⑵求y与x之间的函数关系式,并写出x的取值范围;⑶日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【答案】〔1〕330,660;〔2〕y=20(018)5450(1830)y x xy x x=≤≤⎧⎨=-+≤⎩;〔3〕720元.试题分析:〔1〕根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;〔2〕根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;〔3〕分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于640元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润.试题解析:根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5〔x﹣22〕=﹣5x+450.联立两线段所表示的函数关系式成方程组,得205450y x y x =⎧⎨=-+⎩,解得18360x y =⎧⎨=⎩,∴交点D 的坐标为〔18,360〕, ∴y 与x 之间的函数关系式为y=20(018)5450(1830)y x x y x x =≤≤⎧⎨=-+≤⎩.〔3〕当0≤x ≤18时,根据题意得:〔8﹣6〕×20x ≥640, 解得:x ≥16;考点:一次函数的应用. 23.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形〞.理解:⑴如图1,B A ,是⊙O 上两点,请在圆上找出满足条件的点C ,使ABC ∆为“智慧三角形〞〔画出点C 的位置,保存作图痕迹〕;⑵如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CD CF 41=,试判断AEF ∆是否为“智慧三角形〞,并说明理由; 运用:⑶如图3,在平面直角坐标系xOy 中,⊙O 的半径为1,点Q 是直线3=y 上的一点,假设在⊙O 上存在一点P ,使得OPQ ∆为“智慧三角形〞,当其面积取得最小值时,直接写出此时点P 的坐标.【答案】〔1〕详见解析;〔2〕详见解析;〔3〕P 的坐标〔﹣223,13〕,〔223,13〕. 试题分析:〔1〕连结AO 并且延长交圆于C1,连结BO 并且延长交圆于C2,即可求解;〔2〕设正方形的边长为4a ,表示出DF=CF 以及EC 、BE 的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF 是直角三角形,由直角三角形的性质可得△AEF 为“智慧三角形〞;〔3〕根据“智慧三角形〞的定义可得△OPQ 为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,那么面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P 的横坐标,再根据勾股定理可求点P 的纵坐标,从而求解.∵E 是DC 的中点, ∴DE=CE=2a , ∵BC :FC=4:1, ∴FC=a ,BF=4a ﹣a=3a ,在Rt △ADE 中,AE 2=〔4a 〕2+〔2a 〕2=20a 2, 在Rt △ECF 中,EF 2=〔2a 〕2+a 2=5a 2,在Rt △ABF 中,AF 2=〔4a 〕2+〔3a 〕2=25a 2, ∴AE 2+EF 2=AF 2,∴△AEF 是直角三角形,∵斜边AF 上的中线等于AF 的一半, ∴△AEF 为“智慧三角形〞; 〔3〕如图3所示:故点P 的坐标〔﹣223,13〕,〔223,13〕.考点:圆的综合题. 24.如图,抛物线c bx x y ++=221与x 轴交于B A 、两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,6==OC OB .⑴求抛物线的解析式及点D 的坐标;⑵连接F BD ,为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标;⑶平行于x 轴的直线交抛物线于N M ,两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且MN PQ 21=时,求菱形对角线MN 的长. 【答案】〔1〕y=12x 2﹣2x ﹣6,D 〔2,﹣8〕;〔2〕F 点的坐标为〔7,92〕或〔5,﹣72〕;〔3〕菱形对角线MN 的长为65+1或65﹣1.试题分析:〔1〕由条件可求得B 、C 坐标,利用待定系数法可求得抛物线解析式,进一步可求得D 点坐标;〔2〕过F 作FG ⊥x 轴于点G ,可设出F 点坐标,利用△FAG ∽△BDE ,由相似三角形的性质可得到关于F 点坐标的方程,可求得F 点的坐标;〔3〕可求得P 点坐标,设T 为菱形对角线的交点,设出PT 的长为n ,从而可表示出M 点的坐标,代入抛物线解析式可得到n 的方程,可求得n 的值,从而可求得MN 的长. 试题解析:〔2〕如图1,过F 作FG ⊥x 轴于点G ,设F〔x,12x2﹣2x﹣6〕,那么FG=|12x2﹣2x﹣6|,在y=12x2﹣2x﹣6中,令y=0可得12x2﹣2x﹣6=0,解得x=﹣2或x=6,∴A〔﹣2,0〕,∴OA=2,那么AG=x+2,综上可知F点的坐标为〔7,92〕或〔5,﹣72〕;〔3〕∵点P在x轴上,∴由菱形的对称性可知P〔2,0〕,如图2,当MN在x轴上方时,设T为菱形对角线的交点,∵PQ=12 MN,考点:二次函数综合题.21。
2020年湖北省咸宁市中考数学试卷
2020年湖北省咸宁市中考数学试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A. 3+(-2)B. 3-(-2)C. 3×(-2)D. (-3)÷(-2)2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A. 0.305×1011B. 3.05×108C. 3.05×106D. 305×1083.下列计算正确的是()A. 3a-a=2B. a•a2=a3C. a6÷a2=a3D. (3a2)2=6a44.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A. 乙的最好成绩比甲高B. 乙的成绩的平均数比甲小C. 乙的成绩的中位数比甲小D. 乙的成绩比甲稳定6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A. -B. π-C. -2D. π-27.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A. y=-xB. y=x+2C. y=D. y=x2-2x8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A. B. C. D.二、填空题(本大题共8小题,共24.0分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是______.10.因式分解:mx2-2mx+m=______.11.如图,请填写一个条件,使结论成立:∵______,∴a∥b.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是______.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是______.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是______nmile.(结果保留一位小数,≈1.73)15.按一定规律排列的一列数:3,32,3-1,33,34,37,3-11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是______.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是______.(把正确结论的序号都填上)三、解答题(本大题共8小题,共72.0分)17.(1)计算:|1-|-2sin45°+(-2020)0;(2)解不等式组:18.如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)19.如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A(6,1),B(a,-3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为______;(3)直接写出y1>y2时x的取值范围.20.随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t(单位:min),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表组别在线阅读时间t人数A10≤t<304B30≤t<508C50≤t<70aD70≤t<9016E90≤t<1102根据以上图表,解答下列问题:(1)这次被调查的同学共有______人,a=______,m=______;(2)求扇形统计图中扇形D的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min?21.如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.22.5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?23.定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为______;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.24.如图,在平面直角坐标系中,直线y=-x+2与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c过点B且与直线相交于另一点C(,).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?答案和解析1.【答案】C【解析】解:A.3+(-2)=1,故A不符合题意;B.3-(-2)=3+2=5,故B不符合题意;C.3×(-2)=-6,故C符合题意;D.(-3)÷(-2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.分别按照有理数的加减法、有理数的乘除法法则计算即可.本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.【答案】B【解析】解:305000000=3.05×108,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:3a-a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.分别根据合并同类项的法则、同底数幂的除法法则、积的乘方与同底数幂的乘法法则计算各项,进而可得答案.本题考查了合并同类项、同底数幂的除法和乘法以及积的乘方等运算法则,属于基本题型,熟练掌握上述基础知识是关键.4.【答案】A【解析】解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.【答案】D【解析】解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵=(6+7+10+8+9)=8,=(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵=[(6-8)2+(7-8)2+(8-8)2+(9-8)2+(10-8)2]=2,=[(7-8)2+3×(8-8)2+(9-8)2]=0.4,2>0.4,∴乙的成绩比甲稳定,故选项D正确,符合题意.故选:D.利用折线统计图可得甲、乙两名射击运动员5次射击的成绩,把他们的最好成绩进行比较,即可判断A;利用平均数、中位数、方差的意义分别求出他们的平均数、中位数、方差,即可判断B、C、D.本题考查了折线统计图,平均数、中位数与方差.从折线图中得到必要的信息是解决问题的关键.6.【答案】D【解析】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB-S△AOB=-=π-2.故选:D.由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB-S△AOB可得出结论.本题考查的是扇形面积的计算,根据题意求得三角形与扇形的面积是解答此题的关键.7.【答案】B【解析】解:∵横、纵坐标相等的点称为“好点”,∴当x=y时,A.x=-x,解得x=0;不符合题意;B.x=x+2,此方程无解,符合题意;C.x2=2,解得x=±,不符合题意;D.x=x2-2x,解得x1=0,x2=3,不符合题意.故选:B.根据横、纵坐标相等的点称为“好点”,即当x=y时,函数解析式变为方程后,方程有解即可判断.本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解决本题的关键是掌握每个函数的性质.8.【答案】C【解析】解:如图,∵四边形ABCD是矩形,∴∠B=90°,∵E是BC的中点,BC=2,∴BE=CE=BC=,∴AE===3,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB==.故选:C.由矩形的性质得出∠B=90°,由勾股定理求出AE,由翻折变换的性质得出△AFE≌△ABE,得出∠AEF=∠AEB,EF=BE=,因此EF=CE,由等腰三角形的性质得出∠EFC=∠ECF,由三角形的外角性质得出∠AEB=∠ECF,cos∠ECF=cos∠AEB=,即可得出结果.本题考查了矩形的性质,勾股定理,翻折变换的性质,等腰三角形的判定与性质,三角形的外角性质,三角函数;熟练掌握矩形的性质和翻折变换的性质,证出∠AEB=∠ECF 是解决问题的关键.9.【答案】-3【解析】解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是-3.故答案为:-3.A在数轴上表示的数是3,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.此题主要考查了在数轴上表示数的方法,相反数的定义.解题的关键是熟练掌握在数轴上表示数的方法,以及相反数的含义和求法.10.【答案】m(x-1)2【解析】解:mx2-2mx+m=m(x2-2x+1)=m(x-1)2,先提公因式,再利用完全平方公式进行因式分解即可.本题考查提公因式法、公式法因式分解,确定多项式的公因式是提公因式的关键,掌握公式的结构特征是正确使用公式的前提.11.【答案】∠1=∠4或∠2=∠4或∠3+∠4=180°【解析】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.要使得a∥b,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可求解.考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.12.【答案】n≥0【解析】解:原方程可变形为x2+4x+4-n=0.∵该方程有实数根,∴△=42-4×1×(4-n)≥0,解得:n≥0.故答案为:n≥0.将原方程变形为一般式,根据方程的系数结合根的判别式△≥0,即可得出关于n的一元一次不等式,解之即可得出n的取值范围(利用偶次方的非负性也可以找出n的取值范围).本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.13.【答案】【解析】解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P(小聪和小慧)=,故答案为:.用列表法表示所有可能出现的结果,进而求出相应的概率.本题考查列表法求随机事件发生的概率,列举出所有可能出现的结果,是正确解答的关键.14.【答案】20.8【解析】解:过P作PD⊥AB于D.∵∠PAB=30°,∠PBD=60°,∴∠PAB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×=12≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.过P作PD⊥AB于D,易证△ABP是等腰三角形,得到BP=AB=24nmile.然后在直角△PBD 中,利用三角函数的定义求得PD的长即可.本题考查了解直角三角形的应用-方向角问题,等腰三角形的判定与性质等知识,正确作出高线,转化为直角三角形的计算是解决本题的关键.15.【答案】a-b=c【解析】解:∵3,32,3-1,33,3-4,37,3-11,318,…,1-2=-1,2-(-1)=3,-1-3=-4,3-(-4)=7,-4-7=-11,7-(-11)=18,…,∴a,b,c满足的关系式是a-b=c.故答案为:a-b=c.首项判断出这列数中,3的指数各项依次为1,2,-1,3,-4,7,-11,18…,从第三个数起,每个数的指数都是前两数指数之差;可得这列数中的连续三个数,满足a-b=c,据此解答即可.此题主要考查了规律型:数字的变化类,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出a、b、c的指数的特征.16.【答案】①②③【解析】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA-BM=BC-BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF,∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB-BM=4-x,S△ECF=S△AME=•x•(2-x)=-(x-1)2+,故④错误.故答案为:①②③.①由∠AEB+∠CEG=∠AEB+∠BAE得∠BAE=∠CEG,再结合两直角相等得△ABE∽△ECG;②在BA上截取BM=BE,易得△BEM为等腰直角三角形,则∠BME=45°,所以∠AME=135°,再利用等角的余角相等得到∠BAE=∠FEC,于是根据“ASA”可判断△AME≌△ECF,则根据全等三角形的性质可对②进行判断;③由∠MAE+∠DAF=45°,∠CEF+∠CFE=45°,可得出∠DAF与∠CFE的大小关系,便可对③判断;④设BE=x,则BM=x,AM=AB-BM=4-x,利用三角形面积公式得到S△AME=•x•(2-x),则根据二次函数的性质可得S△AME的最大值,便可对④进行判断.本题考查了四边形的综合题:熟练掌握正方形的性质和二次函数的性质;能灵活运用全等三角形的知识解决线段线段的问题.构建△AME与△EFC全等是关键.17.【答案】解:(1)原式=-1-2×+1=-1-+1=0;(2)解不等式-(x-1)>3,得:x<-2,解不等式2x+9>3,得:x>-3,则不等式组的解集为-3<x<-2.【解析】(1)先去绝对值符号、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组和实数的运算,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:【解析】(1)根据平行四边形的性质和判定,菱形的判定即可证明;(2)连结AE,BF,根据菱形的性质可得AE和BF的交点即为点P.本题考查菱形的判定和性质、平行四边形的性质、作图-基本作图等知识,解题的关键是作出图形,属于中考常考题型.19.【答案】8【解析】解:(1)把A(6,1)代入y2=中,解得:m=6,故反比例函数的解析式为y2=;把B(a,-3)代入y2=,解得a=-2,故B(-2,-3),把A(6,1),B(-2,-3)代入y1=kx+b,得,解得:,故一次函数解析式为y1=x-2;(2)如图,设一次函数y1=x-2与x轴交于点C,令y=0,得x=4.∴点C的坐标是(4,0),∴S△AOB=S△AOC+S△BOC=×4×1+×4×3=8.故答案为8;(3)由图象可知,当-2<x<0或x>6时,直线y1=kx+b落在双曲线y2=上方,即y1>y2,所以y1>y2时x的取值范围是-2<x<0或x>6.(1)首先把A(6,1)代入反比例函数解析式中确定m,然后把B(a,-3)代入反比例函数的解析式确定a,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)求得一次函数与x轴的交点,根据S△AOB=S△AOC+S△BOC即可求解;(3)根据图象,写出直线y1=kx+b落在双曲线y2=上方的部分对应的自变量的取值范围即可.此题考查了一次函数与反比例函数的交点问题,待定系数法求一次函数与反比例函数的解析式,三角形的面积,待定系数法求函数解析式是中学阶段求函数解析式常用的方法,一定要熟练掌握并灵活运用.利用了数形结合思想.20.【答案】50 20 8【解析】解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%==8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×=115.2°;(3)950×=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min的有722人.(1)根据B组的频数和所占的百分比,可以求得这次被调查的同学总数,用被调查的同学总数乘以C组所占百分比得到a的值,用A组人数除以被调查的同学总数,即可得到m;(2)用360°乘以D组所占百分比得到D组圆心角的度数;(3)利用样本估计总体,用该校学生数乘以样本中平均每天的在线阅读时间不少于50min的人数所占的百分比即可.本题考查了频数分布表,扇形统计图,读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.也考查了利用样本估计总体.21.【答案】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4-r,DF=BF=3-1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4-r)2+12,∴.故圆的半径为.【解析】(1)连接OD,由切线性质得∠ODF=90°,进而证明∠BDF+∠A=∠A+∠B=90°,得∠B=∠BDF,便可得BF=DF;(2)设半径为r,连接OD,OF,则OC=4-r,求得DF,再由勾股定理,利用OF为中间变量列出r的方程便可求得结果.本题主要考查了切线的性质,等腰三角形的性质与判定,勾股定理,已知切线,往往连接半径为辅助线,第(2)题关键是由勾股定理列出方程.22.【答案】解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x-150)元,根据题意,得=,解得x=200,经检验,x=200是原方程的解,∴x-150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;(3)若200m+50×5m≤1800,∴450m≤1800,∴m≤4,即m≤4时,w=450m;若m>4,则w=1800+(450m-1800)×0.8=360m+360,综上所述:w=.若该校九年级有900名学生,需要购买口罩:900×2=1800(支),水银体温计:900×1=900(支),此时m=1800÷100=18(盒),y=5×18=90(盒),则w=360×18+360=6840(元).答:购买口罩和水银体温计各18盒、90盒,所需总费用为6840元.【解析】(1)设每盒口罩和每盒水银体温计的价格各是x元,(x-150)元,根据题意列出分式方程即可;(2)根据配套问题,设购买水银体温计y盒能和口罩刚好配套,根据口罩的数量等于水银体温计数量的2倍列出方程即可用含m的代数式表示;(3)根据题意列出不等式:200m+50×5m≤1800,可得m≤4时,w=450m;当m>4时,w=1800+(450m-1800)×0.8=360m+360,进而可得w关于m的函数关系式.本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.23.【答案】90°或270°【解析】(1)解:∵四边形ABCD是对余四边形,故答案为:90°或270°;(2)证明:∵MN是⊙O的直径,点A,B,C在⊙O上,∴∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,∴四边形ABCD是对余四边形;(3)解:线段AD,CD和BD之间数量关系为:AD2+CD2=BD2,理由如下:∵对余四边形ABCD中,∠ABC=60°,∴∠ADC=30°,∵AB=BC,∴将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,如图3所示:∴△BCD≌△BAF,∠FBD=60°∴BF=BD,AF=CD,∠BDC=∠BFA,∴△BFD是等边三角形,∴BF=BD=DF,∵∠ADC=30°,∴∠ADB+∠BDC=30°,∴∠BFA+∠ADB=30°,∵∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,∴60°+30°+∠AFD+∠ADF=180°,∴∠AFD+∠ADF=90°,∴∠FAD=90°,∴AD2+AF2=DF2,∴AD2+CD2=BD2.(1)对余四边形的定义即可得出结果;(2)由圆周角定理得出∠BAM+∠BCN=90°,即∠BAD+∠BCD=90°,即可得出结论;(3)对余四边形的定义得出∠ADC=30°,将△BCD绕点B逆时针旋转60°,得到△BAF,连接FD,则△BCD≌△BAF,∠FBD=60°,得出BF=BD,AF=CD,∠BDC=∠BFA,则△BFD 是等边三角形,得出BF=BD=DF,易证∠BFA+∠ADB=30°,由∠FBD+∠BFA+∠ADB+∠AFD+∠ADF=180°,得出∠AFD+∠ADF=90°,则∠FAD=90°,由勾股定理即可得出结果.本题是圆的综合题,主要考查了对余四边形的定义、圆周角定理、旋转的性质、等边三角形的判定与性质、三角形内角和定理、勾股定理等知识;熟练掌握对余四边形的定义和旋转的性质是解题的关键.24.【答案】解:(1)直线y=-x+2与x轴交于点A,与y轴交于点B,则点A、B的坐标分别为(4,0)、(0,2),将点B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=-x2+x+2①;(2)如图1,作点B关于x轴的对称点B′(0,-2),连接AB′交抛物线于点P(P′),则∠PAO=∠BAO,由点A、B′的坐标得,直线AB′的表达式为:y=x-2②,联立①②并解得:x=3或-2,故点P的坐标为(3,-)或(-2,-3);(3)①过点C作CH⊥x轴于点H,∵∠MNC=90°,∴∠MNO+∠CNH=90°,∠CNH+∠NCH=90°,∴∠MNO=∠NCH,∴tan∠MNO=tan∠NCH,即,即,解得:m=-n2+n;②m=-n2+n,∵<0,故m有最大值,当n=时,m的最大值为,而m>0,故0<m<时,符合条件的N点的个数有2个.【解析】(1)用待定系数法即可求解;则∠PAO=∠BAO,即可求解;(3)①证明tan∠MNO=tan∠NCH,即,即,即可求解;②m=-n2+n,当n=时,m的最大值为,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、解直角三角形等,综合性强,难度适中.。
湖北咸宁市中考数学考试(解析版)
7.如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:
① = ;② = ;③ = ;④ =
其中正确的个数有( )
A.1个ﻩB.2个ﻩC.3个D.4个
8.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4 ,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()
(1)求k的值.
(2)求平移后的直线的函数解析式.
21.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若BD=2 ,BF=2,求阴影部分的面积(结果保留π).
14.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为______.
15.用m根火柴棒恰好可拼成如图1所示的a个等边三角形或如图2所示的b个正六边形,则 =______.
16.如图,边长为4的正方形ABCD内接于点O,点E是 上的一动点(不与A、B重合),点F是 上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:
A.20.1×107B.2.01×108C.2.01×109ﻩD.0.201×1010
4.下面四个几何体中,其主视图不是中心对称图形的是()
A. ﻩB. C. D.
5.下列运算正确的是()
A. ﹣ = ﻩB. =﹣3ﻩC.a•a2=a2ﻩD.(2a3)2=4a6
6.某班七个兴趣小组人数分别为4,4,5,5,x,6,7,已知这组数据的平均数是5,则这组数据的众数和中位数分别是()
湖北省咸宁市2019年中考数学真题试题(含解析)
湖北省咸宁市2019年中考数学真题试题一、选择题(每题只有一个正确选项,本题共8小题,每题3分,共24分)1. 咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()A. 1℃B. ﹣1℃C. 5℃D. ﹣5℃【答案】C【解析】【分析】根据题意列出算式,再利用减法法则计算即可得.【详解】由题意知这一天的最高气温是2℃,最低气温是﹣3℃,3所以这一天的温差是2﹣(﹣3)=2+3=5(℃),故选C.【点睛】本题考查了有理数减法的应用,根据题意列出算式,熟练应用减法法则是解题的关键.2. 如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A. 120°B. 110°C. 100°D. 70°【答案】B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.3. 2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP约123500000000元,增速在全省17个市州中排名第三,将123500000000用科学记数法表示为()A. 123.5×109B. 12.35×1010C. 1.235×108D. 1.235×1011【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】123500000000的小数点向左移动11位得到1.235,所以 123500000000用科学记数法表示为1.235×1011,故选D.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 用4个完全相同的小正方体搭成如图所示的几何体,该几何体的()A. 主视图和左视图相同B. 主视图和俯视图相同C. 左视图和俯视图相同D. 三种视图都相同【答案】A【解析】【分析】分别画出该几何体的三视图进而得出答案.【详解】如图所示:,故该几何体的主视图和左视图相同,故选A.【点睛】本题考查了三视图,解题的关键是得出该几何体的三视图.5. 下列计算正确的是()A. a3•a3=2a3B. a2+a2=a4C. a6÷a2=a3D. (﹣2a2)3=﹣8a6【答案】D【解析】【分析】根据同底数幂的乘法、合并同类项法则及同底数幂的除法、积的乘方与幂的乘方的运算法则逐一计算可得.【详解】A、a3•a3=a6,故A选项错误;B、a2+a2=2a2,故B选项错误;C、a6÷a2=a4,故C选项错误;D、(﹣2a2)3=﹣8a6,故D选项正确,故选D.【点睛】本题考查了同底数幂的乘除法、合并同类项、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.6. 已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是()A. x1+x2=1B. x1•x2=﹣1C. |x1|<|x2|D. x12+x1=【答案】D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,故C选项错误;∵x1为一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D选项正确,故选D.【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.7. 如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A. 6B. 8C. 5D. 5【答案】B【解析】【分析】延长AO交⊙O于点E,连接BE,由∠AOB+∠BOE=∠AOB+∠COD知∠BOE=∠COD,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【详解】如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB==8,故选B.【点睛】本题考查了弧、弦、圆心角的关系,圆周角定理等,正确添加辅助线以及熟练应用相关的性质与定理是解题的关键.8. 甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.二、细心填一填(本大题共8小题,每小题3分,满分24分)9. 如果分式有意义,那么实数x的取值范围是_____.【答案】x≠2【解析】分析:根据分式有意义,分母不等于0列式计算即可得解.详解:由题意得,x−2≠0,解得x≠2.故答案为:x≠2.点睛:此题考查了分式有意义的条件:分式有意义的条件是分母不等于0,分式无意义的条件是分母等于0.10. 因式分解:ab2﹣a=_____.【答案】a(b+1)(b﹣1)【解析】分析:首先提取公因式,再用公式法分解因式即可.详解:原式故答案为:点睛:考查因式分解,本题是提取公因式法和公式法相结合.注意分解一定要彻底.11. 写出一个比2大比3小的无理数(用含根号的式子表示)_____.【答案】【解析】【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.【详解】∵4<5<9,∴2<<3,即为比2大比3小的无理数.故答案为:.【点睛】本题考查了估算无理数的大小,熟练掌握利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是_________。
咸宁市中考数学试题及答案
咸宁市中考数学试题及答案第一部分选择题1. 已知函数 f(x) 的定义域为实数集,f(x) = x^2 - 3x + 2,下列选项中哪个等式成立?A. f(-1) = 0B. f(1) = 0C. f(0) = 1D. f(2) = 0答案:B2. 在平面直角坐标系中,点A(x,y)关于x轴对称点是A'(-x,y'),且A'在第三象限,若y = -1,则点A的坐标为:A. (-1, 1)B. (-1, -1)C. (1, -1)D. (1, 1)答案:C3. 若正方体的一个棱长为a,则它的表面积为多少?A. 4a^2B. 8a^2C. 6a^2D. 12a^2答案:C4. 一辆汽车以每小时60公里的速度行驶,要经过长为540米的隧道,它需多长时间才能完全通过?A. 6秒B. 9秒C. 12秒D. 15秒答案:B5. 若a,b,c是互不相等的非零实数,下列等式中正确的是:A. (a+b+c)^2 = a^2 + b^2 + c^2B. (a+b+c)^2 = a^2 + 2ab + c^2C. (a+b+c)^2 = a^2 + b^2 + 2abD. (a+b+c)^2 = a^2 - b^2 + c^2答案:B第二部分填空题1. 设四个正数成等差数列,已知它们的和为20,差为2,则最小的一个数为____。
答案:22. 若a+b=10,a-b=6,则a的值为____。
答案:83. 若把一个菱形的周长扩大8倍,它的面积将扩大____倍。
答案:64第三部分解答题1. 计算:2.5 ÷ (1 - 0.5) × 3解答:2.5 ÷ (1 - 0.5) × 3 = 2.5 ÷ 0.5 × 3 = 5 × 3 = 152. 有一个三角形的三个内角的度数分别为60°、70°和50°,这个三角形是什么三角形?解答:因为三个内角的度数之和为180°,所以60° + 70° + 50° = 180°。
2021年湖北省咸宁市中考数学试题(含答案)
湖北省咸宁市2021年初中毕业生学业考试数 学 试 卷考生注意:1.本试卷分试题卷(共4页)和答题卷;全卷24小题,满分120分;考试时间120分钟. 2.考生答题前,请将自己的学校、姓名、准考证号填写在试题卷和答题卷指定的位置,同时认真阅读答题卷上的注意事项.考生答题时,请按题号顺序在答题卷上各题目的答题区域内作答,写在试题卷上无效.试 题 卷一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.下列实数中,属于无理数的是( ) A .3- B .3.14C .13D2.若代数式x +4的值是2,则x 等于( ) A .2 B .2- C .6 D .6-3.下列运算正确的是( )A= B .222()a b a b -=- C .0(2)1π-= D .3226(2)2ab a b =4.6月15日“父亲节”,小明送给父亲一个礼盒(如左图所示),该礼盒的主视图是( )5.如图,l ∥m ,等边△ABC 的顶点B 在直线m 上,∠1= 20°,则∠2的度数为() A .60° B .45°C .40°D .30° 6.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选( ) A .甲 B .乙 C .丙 D .丁 7.用一条长为40 cm 的绳子围成一个面积为a cm 2的长 方形,a 的值不可能...为( ) A .20 B .40 C .100 D .120 8.如图,双曲线my x=与直线y kx b =+相交于点M ,N ,且 点M 的坐标为(1,3),点N 的纵坐标为1-.根据图象甲 乙 丙丁 平均数 80 85 85 80 方 差 42 42 54 59(第8题)(第5题) BA C21 l m A B C D 正面信息可得关于x 的方程mkx b x=+的解为( ) A .3-,1 B .3-,3 C .1-,1 D .1-,3二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卷相应题号的横线上)9.点P (1,2-)关于 y 轴对称的点的坐标为 .10.体育委员小金带了500元钱去买体育用品,已知一个足球x 元,一个篮球y 元.则代数式50032x y --表示的实际意义是 .11.不等式组{43131x x -+>,≤的解集是 . 12.小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是 . 13.如图,在扇形OAB 中,∠AOB =90°,点C 是⌒AB 上的一个动点(不与A ,B 重合),OD ⊥BC ,OE ⊥AC ,垂足分别 为D ,E .若DE =1,则扇形OAB 的面积为 .14.观察分析下列数据: 0,6,3-,列的规律得到第16个数据应是 (结果需化简) . 15.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长此可以推测最适合这种植物生长的温度为 ℃.16.如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点 (不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E ,且4cos 5α=.下列结论:①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8或252;④0< 6.4CE ≤.其中正确的结论是 .(把你认为正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置) 17.(本题满分8分,每小题4分) (1)计算:824)2(12--⨯+--; (2)化简:ba b a a +--1222.B CBOACED(第13题)18.(本题满分7分)随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2011年销售烟花爆竹20万箱,到2013年烟花爆竹销售量为9.8万箱.求咸宁市2011年到2013年烟花爆竹年销售量的平均下降率. 19.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90º,∠B=30º,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△DEC ,点D 刚好落在AB 边上. (1)求n 的值;(2)若F 是DE 的中点,判断四边形ACFD 的形状,并说明理由.20.(本题满分8分)我市民营经济持续发展,2013年城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工2013年月平均收入随机抽样调查,将抽样的数据按 “2000元以内”、“2000元~4000元”、“4000元~6000元”和“6000元以上” 分为四组,进行整理,分别用A ,B ,C ,D 表示,得到下列两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有_ __人,在扇形统计图中x 的值为_ __,表示“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是_ __;(2)将不完整的条形图补充完整,并估计我市2013年城镇民营企业20万员工中,每月的收入在“2000元~4000元”的约多少人?A C (第19题)(3)统计局根据抽样数据计算得到,2013年我市城镇民营企业员工月平均收入为4872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?21.(本题满分9分)如图,已知AB 是⊙O 的直径,直线CD 与⊙O 相切于点C ,AD ⊥CD 于点D . (1) 求证: AC 平分∠DAB ; (2) 若点E 为⌒AB 的中点, 325AD =,AC =8,求AB 和CE 的长.22.(本题满分10分)在“黄袍山国家油茶产业示范园”建设中,某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同. (1)求甲、乙两种油茶树苗每株的价格;(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少? 23.(本题满分10分)如图1,P (m ,n )是抛物线214x y =-上任意一点, l 是过点(0,2-)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为H . 【探究】 (1)填空:当m =0时,OP = ,PH = ;当m =4时,OP = ,PH = ; 【证明】(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想. 【应用】(3)如图2,已知线段AB =6,端点A ,B 在抛物线214x y =-上滑动,求A ,B 两点到直线l 的距离之和的最小值.(第23题图1)(第23题图2)AE (第21题)24.(本题满分12分),4).点P从点A 如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(4出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P 点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).Array(1)∠PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,△PBE 为等腰三角形?(3)探索△POE周长是否随时间t的变化而变化,若变化,说明理由;若不变,试求这个定值.数学试题参考答案及评分说明说明:1.如果考生的解答正确,思路与本参考答案不同,可参照本评分说明制定相应的评分细则评分,不得放弃评阅,简单判错.2.每题都要评阅完毕,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这道题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,解答题的解题步骤写得较为详细,但允许考生在解答过程中,合理地省略非关键性的步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 5.每题评分时只给整数分数.9.(1-,2-) 10.体育委员买了3个足球,2个篮球后剩余的经费 11.2x -≤12.19 13.2π14.- 15.1- 16.①②③④(少填不给分)三.专心解一解(本大题满分72分)17.(1)解:原式=428+- --------------------------------------------------3分=2-. ----------------------------------------------4分(2)解:原式=22222a a b a b a b ----=22a ba b +- -------------------------------------------2分 =1a b-. -------------------------------4分 18.解:设年销售量的平均下降率为x ,依题意得:220(1)9.8x -=. ---------------------3分解这个方程,得10.3x =,2 1.7x =.------------------------5分因为2 1.7x =不符合题意,所以0.330%x ==. ----------------6分答:咸宁市2011年到2013年烟花爆竹年销售量的平均下降率为30%.---------------7分 19.解:(1)由旋转可知,CA =CD . ∵∠ACB =90º,∠B=30º,∴∠A=60º.∴△ACD 为等边三角形.∴∠ACD =60º,即n =60. ----------------------------3分 (2)四边形ACFD 是菱形. -------------------------------------------------------------4分理由:∵F 是DE 的中点, ∴12CF DE DF ==. ∵∠EDC=∠A=60º, ∴△FCD 为等边三角形, ∴CF DF CD ==. ∵△ACD 为等边三角形. ∴AC AD CD ==.∴AC AD DF CF ===. ∴四边形ACFD 是菱形. ------------------8分 (说明:此题说理方法较多,如可以先说明是平行四边形再说明邻边,等)20.(1)本次抽样调查的员工有 500 人, ---------------------1分在扇形统计图中x 的值为 14 ,扇形圆心角的度数是 21.6 º ; ----------------------------------3分(2)补充完整的条形图(如图) -------------------------------------5分 20×60%=12(万人) 答:估计该市2013年城镇民营企业20万员工每月的收入在“2000元~4000元” 的有12万人 ---------------------------6分(3)用平均数反映月收入情况不合理.由数据可以看出500名被调查者中有330人的月收入不超过4000元,月收入的平均数受高收入者和低收入者收入变化的影响较大,050100150200250300350A B C D 人数月收入(元)月收入的中位数几乎不受高低两端收入变化的影响,因此,用月收入的中位数反映月收入水平更合理. ------------------------------8分 (本题答案不惟一,上述解法供参考.) 21.(1)证明:连结OC .∵直线CD 与⊙O 相切于点C , ∴OC ⊥CD .∵AD ⊥CD , ∴OC ∥AD . ∴∠DAC =∠ACO . ∵OA =OC ∴∠OAC =∠ACO .∴∠DAC =∠CAO .即AC 平分∠DAB . ---------------3分 (2)解:连接BC ,∵AB 是⊙O 的直径,∴∠ACB =90°=∠ADC . ∵∠DAC =∠CAO ,∴△ADC ∽△ACB .∴ABACAC AD =. ∵325AD =,AC =8, ∴AB =10. ----------------------------------------6分 ∵点E 为⌒AB 的中点,∴∠ACE =45°. 过点A 作CE 的垂线,垂足为F , ∴CF =AE =AC sin45°=8.在Rt △ACB中,6BC ==, ∴84tan tan =63E B ==.在Rt △AEF 中,4tan =3AF E EF = ,∴3=EF ⨯=∴CE ------------------------------9分22.(1) 设甲种树苗每株x 元,则乙种树苗每株(x +3)元.根据题意得:1001603x x =+. --------------------------1分 解得5x =. ------------------------------2分 检验: 5x =是原分式方程的解.答:甲、乙两种油茶树苗每株的价格分别为5元和8元. -------------3分 (2)设购买甲种树苗x 棵,购买乙种树苗为y 棵,由题意得:1000,585600.x y x y +=⎧⎨+=⎩--------------------------4分 解得: 800,200.x y =⎧⎨=⎩-----------------------------5分答:购买甲种树苗800棵,乙种树苗200棵. ----------------6分 (3)设购买甲种树苗x 棵时,购买两种树苗的费用之和为w 元.AE则w 与x 的函数关系式为:w =5x +8(1000-x )=8000-3x ----------7分由题意得:90%x +95%(1000-x )≥1000×92%,解得x ≤600. ------------8分在w =8000-3x 中,w 随x 的增大而减小,所以当x =600时,w 取得最小值,其最小值为8000-30×600=6200.-------9分 答:购买甲种树苗600棵,乙种树苗400棵费用最低,最低费用是6200元. -----10分 23.(1)填空:当m =0时,OP = 1 ,PH = 1 ;----------------------1分当m =4时,OP = 5 ,PH = 5 ;-----------------3分(2)OP = PH ---------------------------------------------------4分证明:∵P (m ,n )是抛物线214x y =-上任意一点,∴214m n =-.∵24222222(1)14162m m m OP m n m =+=+-=++,24222(12)14162m m m PH =-+=++,∴22OP PH =, ∴OP PH =. ---------------------7分(3)分别A ,B 过点作直线l 的垂线,垂足为M ,N .①当AB 不过O 点时,连接OA ,OB , 在△OAB 中OA +OB >AB =6,由上述结论得:AM=OA ,BN=OB . ∴AM + BN >6.②当AB 过O 点时,AM + BN= OA +OB =AB =6. 所以AM + BN 的最小值为6.即A ,B 两点到直线l 的距离之和的最小值为6.-------------10分24.(1)∠PBD =45º -------------------------------------1分 点D 的坐标为(t ,t ) -------------------------------3分 (2)解:由△PAB ≌△DQP 得PB =PD ,显然P B ≠PE .--------------------------------------4分 分两种情况:(ⅰ)若EB=EP ,则∠EP B =∠EBP=45 º,此时点P 与O 点重合,t =4. ------------------5分(ⅱ)若BE=BP ,则△PAB ≌△ECB .∴CE=PA= t . 过D 点作DF ⊥OC 于点F ,则DF=OF= t , 42EF t =-.∵△BCE ∽△DFE ,∴BC DF CE EF=.∴442tt t=-.解得4t=-±.∴4t=.---------------------------------7分综上,当4t=或4时,△PBE 为等腰三角形.--------------8分(3)△POE周长不随时间t的变化而变化.----------------------9分将△BCE绕点B按顺时针方向旋转90 º,得到△BAH.∴BE=BH,CE=AH,∠EBH =90º,∴∠EBP=45º=∠PBH,∵BP=BP,∴△PBE≌△PBH .∴EP= PH=AH+AP= CE+AP.∴△POE周长=OP+OE+PE= OP+OE+ CE+AP=OA+OC=4+4=8.--------------------------12分。
2019年湖北省咸宁市中考数学试题(原卷+解析)
2019年湖北省咸宁市中考数学试卷参考答案与试题解析一、精心选一选(本大题共8小题,每小题3分,满分24分。
)1.(3分)下列关于0的说法正确的是()A.0是正数B.0是负数C.0是有理数D.0是无理数【分析】直接利用有理数、无理数、正负数的定义分析得出答案.【解答】解:0既不是正数也不是负数,0是有理数.故选:C.2.(3分)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A.B.C.D.【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【解答】解:“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选:B.3.(3分)下列计算正确的是()A.﹣=B.C.a5÷a2=a3D.(ab2)3=ab6【分析】直接利用合并同类项法则以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、﹣,无法计算,故此选项错误;B、=2,故此选项错误;C、a5÷a2=a3,正确;D、(ab2)3=a3b6,故此选项错误.故选:C.4.(3分)若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°【分析】根据多边形的内角和公式(n﹣2)•180°求出多边形的边数,再根据多边形的外角和是固定的360°,依此可以求出多边形的一个外角.【解答】解:∵正多边形的内角和是540°,∴多边形的边数为540°÷180°+2=5,∵多边形的外角和都是360°,∴多边形的每个外角=360÷5=72°.故选:C.5.(3分)如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:A.6.(3分)若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是()A.m<1B.m≤1C.m>1D.m≥1【分析】根据方程的系数结合根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有实数根,∴△=(﹣2)2﹣4m≥0,解得:m≤1.故选:B.7.(3分)已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣C.y=x2D.y=﹣x2【解答】解:∵A(﹣1,m),B(1,m),∴点A与点B关于y轴对称;由于y=x,y=的图象关于原点对称,因此选项A、B错误;∵n>0,∴m﹣n<m;由B(1,m),C(2,m﹣n)可知,在对称轴的右侧,y随x的增大而减小,对于二次函数只有a<0时,在对称轴的右侧,y随x的增大而减小,∴D选项正确故选:D.8.(3分)在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin∠ABO的值为()A.B.C.D.【分析】点A,B落在函数y=﹣(x<0),y=(x>0)的图象上,根据反比例函数的几何意义,可得直角三角形的面积;根据题意又可知这两个直角三角形相似,而相似比恰好是直角三角形AOB的两条直角边的比,再利用勾股定理,可得直角边与斜边的比,从而得出答案.【解答】解:过点A、B分别作AD⊥x轴,BE⊥x轴,垂足为D、E,∵点A在反比例函数y=﹣(x<0)上,点B在y=(x>0)上,∴S△AOD=1,S△BOE=4,又∵∠AOB=90°∴∠AOD=∠OBE,∴△AOD∽△OBE,∴()2=,∴设OA=m,则OB=2m,AB=,在RtAOB中,sin∠ABO=故选:D.二、细心填一填(本大题共8小题,每小题3分,共24分)9.(3分)计算:()0﹣1=0.【分析】直接利用零指数幂的性质化简得出答案.【解答】解:原式=1﹣1=0.故答案为:0.10.(3分)一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是.【分析】直接利用概率求法进而得出答案.【解答】解:∵一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:=.故答案为:.11.(3分)若整式x2+my2(m为常数,且m≠0)能在有理数范围内分解因式,则m的值可以是﹣1(写一个即可).【分析】令m=﹣1,使其能利用平方差公式分解即可.【解答】解:令m=﹣1,整式为x2﹣y2=(x+y)(x﹣y).故答案为:﹣1(答案不唯一).12.(3分)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.【分析】设木条长x尺,绳子长y尺,根据绳子和木条长度间的关系,可得出关于x,y 的二元一次方程组,此题得解.【解答】解:设木条长x尺,绳子长y尺,依题意,得:.故答案为:.13.(3分)如图所示,九(1)班数学课外活动小组在河边测量河宽AB(这段河流的两岸平行),他们在点C测得∠ACB=30°,点D处测得∠ADB=60°,CD=80m,则河宽AB约为69m(结果保留整数,≈1.73).【分析】在Rt△ABC中,∠ACB=30°,∠ADB=60°,则∠DAC=30°,所以DA=DC=80,在Rt△ABD中,通过三角函数关系求得AB的长.【解答】解:在Rt△ABC中,∠ACB=30°,∠ADB=60°,∴∠DAC=30°,∴DA=DC=80,在Rt△ABD中,,∴==40≈69(米),故答案为69.14.(3分)如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为3(结果保留π).【分析】根据题意,作出合适的辅助线,即可求得CD和∠COB的度数,即可得到阴影部分的面积是半圆的面积减去△AOC和扇形BOC的面积.【解答】解:连接OC、BC,作CD⊥AB于点D,∵直径AB=6,点C在半圆上,∠BAC=30°,∴∠ACB=90°,∠COB=60°,∴AC=3,∵∠CDA=90°,∴CD=,∴阴影部分的面积是:=3π﹣,故答案为:3π﹣.15.(3分)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是﹣384.【分析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.【解答】解:∵一列数为1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(﹣2)n﹣1、(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384,故答案为:﹣384.16.(3分)如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是②③(把正确结论的序号都填上).【分析】先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CN=NP,然后根据邻边相等的平行四边形是菱形证明,判断出②正确;假设CQ=CD,得Rt△CMQ ≌△CMD,进而得∠DCM=∠QCM=∠BCP=30°,这个不一定成立,判断①错误;点P与点A重合时,设BN=x,表示出AN=NC=8﹣x,利用勾股定理列出方程求解得x 的值,进而用勾股定理求得MN,判断出③正确;当MN过D点时,求得四边形CMPN 的最小面积,进而得S的最小值,当P与A重合时,S的值最大,求得最大值便可.【解答】解:如图1,∵PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP∥CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CP=CP,若CQ=CD,则Rt△CMQ≌△CMD,∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;点P与点A重合时,如图2,设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8﹣x)2,解得x=3,∴CN=8﹣3=5,AC=,∴,∴,∴MN=2QN=2.故③正确;当MN过点D时,如图3,此时,CN最短,四边形CMPN的面积最小,则S最小为S=,当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=,∴4≤S≤5,故④错误.故答案为:②③.三、专心解一解(本大题共8小题,满分72分)17.(8分)(1)化简:÷;(2)解不等式组:【分析】(1)直接利用分式的乘除运算法则计算得出答案;(2)分别解不等式进而得出不等式组的解.【解答】解:(1)原式=×(m﹣1)=;(2),解①得:x>﹣2,解②得:x≤3,所以这个不等式组的解集为:﹣2<x≤3.18.(7分)在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).【分析】(1)首先证明四边形DEFC是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断.(2)连接EC,DF交于点O,作射线BO即可.【解答】(1)证明:∵D,E,F分别是AC,AB,BC的中点,∴DE∥FC,EF∥CD,∴四边形DEFC是平行四边形,∵∠DCF=90°,∴四边形DEFC是矩形.(2)连接EC,DF交于点O,作射线BO,射线BO即为所求.19.(8分)小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿着原路匀速跑步6min返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y与时间x的函数图象;(3)根据图象回答,小慧从家出发后多少分钟离家距离为720m?【分析】(1)根据速度=路程/时间的关系,列出等式即可求解;(2)根据题中已知,描点画出函数图象;(3)根据图象可得小慧从家出发后9分钟或16.5分钟分钟离家距离为720m;【解答】解:(1)由题意可得,(m/min)答:小慧返回家中的速度比去文具店的速度快80m/min;(2)如图所示:(3)根据图象可得,小慧从家出发后9分钟或16.5分钟分钟离家距离为720m;20.(8分)某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七、八年级学生一分钟跳绳成绩分析表年级平均数中位数众数七116a115八119126117七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100,…,180≤x<200)在100≤x<120这一组的是:100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119根据以上信息,回答下列问题:(1)表中a=118;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是甲(填“甲”或“乙”),理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?【分析】(1)根据中位数,结合条形统计图及所给数据求解可得;(2)将甲、乙成绩与对应的中位数对比,从俄日得出答案;(3)利用样本估计总体思想求解可得.【解答】解:(1)∵七年级50名学生成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别是117、119,∴中位数a==118,故答案为:118;(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲,理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)估计一分钟跳绳不低于116次的有500×=270(人).21.(9分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.【分析】(1)如图,连接OF,根据直角三角形的性质得到CD=BD,得到∠DBC=∠DCB,根据等腰三角形的性质得到∠OFC=∠OCF,得到∠OFC=∠DBC,推出∠OFG =90°,于是得到结论;(2)连接DF,根据勾股定理得到BC==4,根据圆周角定理得到∠DFC=90°,根据三角函数的定义即可得到结论.【解答】解:(1)FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC=∠DCB,∵OF=OC,∴∠OFC=∠OCF,∴∠OFC=∠DBC,∴OF∥DB,∴∠OFG+∠DGF=180°,∵FG⊥AB,∴∠DGF=90°,∴∠OFG=90°,∴FG与⊙O相切;(2)连接DF,∵CD=2.5,∴AB=2CD=5,∴BC==4,∵CD为⊙O的直径,∴∠DFC=90°,∴FD⊥BC,∵DB=DC,∴BF=BC=2,∵sin∠ABC=,即=,∴FG=.22.(10分)某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.(1)第40天,该厂生产该产品的利润是1600元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?【分析】(1)由图象可知,第40天时的成本为40元,此时的产量为z=﹣2×40+120=40,则可求得第40天的利润.(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【解答】解:(1)由图象可知,第40天时的成本为40元,此时的产量为z=﹣2×40+120=40则第40天的利润为:(80﹣40)×40=1600元故答案为1600(2)①设直线AB的解析式为y=kx+b(k≠0),把(0,70)(30,40)代入得,解得∴直线AB的解析式为y=﹣x+70(Ⅰ)当0<x≤30时w=[80﹣(﹣x+70)](﹣2x+120)=﹣2x2+100x+1200=﹣2(x﹣25)2+2450∴当x=25时,w最大值=2450(Ⅱ)当30<x≤50时,w=(80﹣40)×(﹣2x+120)=﹣80x+4800∵w随x的增大而减小∴当x=31时,w最大值=2320∴第25天的利润最大,最大利润为2450元②(Ⅰ)当0<x≤30时,令﹣2(x﹣25)2+2450=2400元解得x1=20,x2=30∵抛物线w=﹣2(x﹣25)2+2450开口向下由其图象可知,当20≤x≤30时,w≥2400此时,当天利润不低于2400元的天数为:30﹣20+1=11天(Ⅱ)当30<x≤50时,由①可知当天利润均低于2400元综上所述,当天利润不低于2400元的共有11天.23.(10分)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.【分析】(1)由圆内接四边形互补可知∠A+∠C=180°,∠ABC+∠ADC=180°,再证AD=CD,即可根据等补四边形的定义得出结论;(2)过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,证△ABE≌△ADF,得到AE=AF,根据角平分线的判定可得出结论;(3)连接AC,先证∠EAD=∠BCD,推出∠FCA=∠F AD,再证△ACF∽△DAF,利用相似三角形对应边的比相等可求出DF的长.【解答】解:(1)证明:∵四边形ABCD为圆内接四边形,∴∠A+∠C=180°,∠ABC+∠ADC=180°,∵BD平分∠ABC,∴∠ABD=∠CBD,∴,∴AD=CD,∴四边形ABCD是等补四边形;(2)AD平分∠BCD,理由如下:如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,则∠AEB=∠AFD=90°,∵四边形ABCD是等补四边形,∴∠B+∠ADC=180°,又∠ADC+∠ADF=180°,∴∠B=∠ADF,∵AB=AD,∴△ABE≌△ADF(AAS),∴AE=AF,∴AC是∠BCF的平分线,即AC平分∠BCD;(3)如图3,连接AC,∵四边形ABCD是等补四边形,∴∠BAD+∠BCD=180°,又∠BAD+∠EAD=180°,∴∠EAD=∠BCD,∵AF平分∠EAD,∴∠F AD=∠EAD,由(2)知,AC平分∠BCD,∴∠FCA=∠BCD,∴∠FCA=∠F AD,又∠AFC=∠DF A,∴△ACF∽△DAF,∴,即,∴DF=5﹣5.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点且与x轴的负半轴交于点C.(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.【分析】(1)求得A、B两点坐标,代入抛物线解析式,获得b、c的值,获得抛物线的解析式.(2)通过平行线分割2倍角条件,得到相等的角关系,利用等角的三角函数值相等,得到点坐标.(3)B、O、E、F四点作平行四边形,以已知线段OB为边和对角线分类讨论,当OB 为边时,以EF=OB的关系建立方程求解,当OB为对角线时,OB与EF互相平分,利用直线相交获得点E坐标.【解答】解:(1)在中,令y=0,得x=4,令x=0,得y=2∴A(4,0),B(0,2)把A(4,0),B(0,2),代入,得,解得∴抛物线得解析式为(2)如图,过点B作x轴得平行线交抛物线于点E,过点D作BE得垂线,垂足为F∵BE∥x轴,∴∠BAC=∠ABE∵∠ABD=2∠BAC,∴∠ABD=2∠ABE即∠DBE+∠ABE=2∠ABE∴∠DBE=∠ABE∴∠DBE=∠BAC设D点的坐标为(x,),则BF=x,DF=∵tan∠DBE=,tan∠BAC=∴=,即解得x1=0(舍去),x2=2当x=2时,=3∴点D的坐标为(2,3)(3)当BO为边时,OB∥EF,OB=EF设E(m,),F(m,)EF=|()﹣()|=2解得m 1=2,,当BO为对角线时,OB与EF互相平分过点O作OF∥AB,直线OF交抛物线于点F()和()求得直线EF解析式为或直线EF与AB的交点为E,点E的横坐标为或∴E点的坐标为(2,1)或(,)或()或()或()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年咸宁中考数学试题及答案考生注意:1.本试卷分试题卷(共4页)和答题卷;全卷24小题,满分120分;考试时间120分钟.2.考生答题前,请将自己的学校、姓名、准考证考号填写在试题卷和答题卷指定的位置,同时认真阅读答题卷上的注意事项.考生答题时,请按题号顺序在答题卷上各题目的答题区域内作答,写在试题卷上无效.试 题 卷一、精心选一选(本大题共8小题,每小题3分,满分24分.每小题给出的4个选项中只有一个符合题意,请在答题卷上将正确答案的代号涂黑) 1.3-的绝对值是 A .3B .3-C .13D .13-2.下列运算正确的是A .263-=- B .24±= C .532a a a =⋅ D .3252a a a += 3该鞋店决定本周进该品牌女鞋时多进一些尺码为23.5厘米的鞋,影响鞋店决策的统计量是A .平均数B .众数C .中位数D .方差4.分式方程131x x x x +=--的解为 A .1x = B .1x =- C .3x = D .3x =- 5.平面直角坐标系中,点A 的坐标为(4,3),将线段OA 绕原点O 顺时针旋转90︒得到OA ',则点A '的坐标是A .(4-,3)B .(3-,4)C .(3,4-)D .(4,3-) 6.如图,两圆相交于A ,B 两点,小圆经过大圆的圆心O ,点C ,D 分 别在两圆上,若100ADB ∠=︒,则ACB ∠的度数为A .35︒B .40︒C .50︒D .80︒7.已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是A .1y >2y B .1y 2y = C .1y <2y D .不能确定 8.如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成,则线段AC 的长为A .3B .6C .D . D (第6题)A B C D (第8题)二、细心填一填(本大题共8小题,每小题3分,满分24分.请将答案填写在答题卷相应题号的位置)9.函数y =x 的取值范围是 . 10.一个几何体的三视图完全相同,该几何体可以是 .(写出一个即可)11.上海世博会预计约有69 000 000人次参观,69 000 000用科学记数法表示为 .12.某学校为了解学生大课间体育活动情况,随机抽取本校100名学生进行调查.整理收集到的数据,绘制成如图 所示的统计图.若该校共有800名学生,估计喜欢“踢毽子”的学生有 人.13.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点P (a ,2),则关于x 的不等式1x +≥mx n +的解集为 . 14.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .15.惠民新村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小慧列表推算如下:16.如图,一次函数y ax b =+的图象与轴,y 轴交于A ,B 两点,与反比例函数ky x=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE . 有下列四个结论:①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ; ③△DCE ≌△CDF ; ④AC BD =.其中正确的结论是 .(把你认为正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出文字说明、证明过程或演算步骤,请将答案写在答题卷相应题号的位置) 17.(本题满分6分)先化简,再求值:21(1)11aa a +÷--,其中3a =-. (第13题)ABCD αA (第14题) 1l 3l 2l4l(第12题)18.(本题满分8分)随着人们节能意识的增强,节能产品的销售量逐年增加.某商场高效节能灯的年销售量2008年为5万只,预计2010年将达到7.2万只.求该商场2008年到2010年高效节能灯年销售量的平均增长率.19.(本题满分8分)已知二次函数2y x bx c =+-的图象与x 轴两交点的坐标分别为(m ,0),(3m -,0)(0m ≠). (1)证明243c b =;(2)若该函数图象的对称轴为直线1x =,试求二次函数的最小值.20.(本题满分9分)如图,在⊙O 中,直径AB 垂直于弦CD ,垂足为E ,连接AC , 将△ACE 沿AC 翻折得到△ACF ,直线FC 与直线AB 相交于点G .(1)直线FC 与⊙O 有何位置关系?并说明理由; (2)若2OB BG ==,求CD 的长.21.(本题满分9分)某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上,若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖.(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.小芳得奖的概率是 .(2)小明获得两次翻牌机会,他同时翻开两张纸牌.小明认为这样得奖的概率是小芳的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.22.(本题满分10分)问题背景(1)如图1,△ABC 中,DE ∥BC 分别交AB ,AC 于D ,E过点E 作EF ∥AB 交BC 于点F .请按图示数据填空:四边形DBFE 的面积S = , △EFC 的面积1S = , △ADE 的面积2S = .探究发现(2)在(1)中,若BF a =,FC b =,DE 与BC 间的距离为h .请证明2124S S S =. 拓展迁移(3)如图2,□DEFG 的四个顶点在△ABC 的三边上,若 △ADG 、△DBE 、△GFC 的面积分别为2、5、3,试利用..(2.) 中的结论....求△ABC 的面积. 23.(本题满分10分)在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速(第20题)BCDGFE 图2A 图1驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km ,=a ;(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.24.(本题满分12分)如图,直角梯形ABCD 中,AB ∥DC ,90DAB ∠=︒,24AD DC ==,6AB =.动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C -D -A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 的交点为E ,与折线A -C -B 的交点为Q .点M 运动的时间为t (秒).(1)当0.5t =时,求线段QM 的长;(2)当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值;(3)当t >2时,连接PQ 交线段AC 于点R .请探究CQRQ 是否为定值,若是,试求这个定值;若不是,请说明理由.湖北省咸宁市2010年初中毕业生学业考试数学试题参考答案及评分说明说明:(第23题)ABCD(备用图1)ABCD(备用图2)QA B C DlM P (第24题)E1.如果考生的解答与本参考答案不同,可参照本评分说明制定相应的评分细则评分. 2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这道题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理地省略非关键性的步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 5.每题评分时只给整数分数.一.精心选一选(每小题3分,本大题满分24分)二.细心填一填(每小题3分,本大题满分24分)9.x ≤2 10.球、正方体等(写一个即可) 11.76.910⨯ 12.200 13.x ≥114 15.0.540.002n -(填[]0.59(2)0.50.4%n +--⨯⨯或其它正确而未化简的式子也给满分) 16.①②④(多填、少填或错填均不给分) 三.专心解一解(本大题满分72分)17.解:原式21(1)(1)a a a a a-=⨯+-……2分1aa =+.……4分 当3a =-时,原式33312-==-+. ……6分(未化简直接代入求值,答案正确给2分)18.解:设年销售量的平均增长率为x ,依题意得:25(1)7.2x +=.……4分解这个方程,得10.2x =,2 2.2x =-.……6分 因为x 为正数,所以0.220%x ==.……7分答:该商场2008年到2010年高效节能灯年销售量的平均增长率为20%.……8分 19.(1)证明:依题意,m ,3m -是一元二次方程20x bx c +-=的两根.根据一元二次方程根与系数的关系,得(3)m m b +-=-,(3)m m c ⨯-=-.……2分∴2b m =,23c m =. ∴224312c b m ==.……4分(2)解:依题意,12b-=,∴2b =-.……5分 由(1)得2233(2)344c b ==⨯-=.……6分∴2223(1)4y x x x =--=--. ∴二次函数的最小值为4-.……8分 20.解:(1)直线FC 与⊙O 相切.……1分理由如下:连接OC .∵OA OC =, ∴12∠=∠……2分由翻折得,13∠=∠,90F AEC ∠=∠=︒.∴23∠=∠. ∴OC ∥AF . ∴90OCG F ∠=∠=︒.∴直线FC 与⊙O 相切.……4分(2)在Rt △OCG 中,1cos 22OC OC COG OG OB ∠===,∴60COG ∠=︒.……6分在Rt △OCE中,sin 602CE OC =⋅︒==……8分∵直径AB 垂直于弦CD ,∴2CD CE ==.……9分21.(1)25(或填0.4).……2分(2)解:不赞同他的观点.……3分用1A 、2A 分别代表两张笑脸,1B 、2B 、3B 分别代表三张哭脸,根据题意列表如下:(也可画树形图表示)……6分由表格可以看出,可能的结果有20种,其中得奖的结果有14种,因此小明得奖的概率1472010P ==.……8分 因为710<225⨯,所以小明得奖的概率不是小芳的两倍.……9分22.(1)6S =,19S =,21S =.……3分(2)证明:∵DE ∥BC ,EF ∥AB ,∴四边形DBFE 为平行四边形,AED C ∠=∠,A CEF ∠=∠. ∴△ADE ∽△EFC .……4分(第20题)∴22221()S DE a S FC b==. ∵112S bh =, ∴222122a a h S S b b =⨯=.……5分∴2212144()22a hS S bh ah b=⨯⨯=.而S ah =, ∴2124S S S =……6分(3)解:过点G 作GH ∥AB 交BC 于H ,则四边形DBHG 为平行四边形. ∴GHC B ∠=∠,BD HG =,DG BH =. ∵四边形DEFG 为平行四边形, ∴DG EF =. ∴BH EF =. ∴BE HF =. ∴△DBE ≌△GHF . ∴△GHC 的面积为538+=.……8分由(2)得,□DBHG的面积为8=.……9分 ∴△ABC 的面积为28818++=.……10分(说明:未利用(2)中的结论,但正确地求出了△ABC 的面积,给2分) 23.解:(1)120,2a =;……2分(2)由点(3,90)求得,230y x =.当x >0.5时,由点(0.5,0),(2,90)求得,16030y x =-.……3分 当12y y =时,603030x x -=,解得,1x =.此时1230y y ==.所以点P 的坐标为(1,30).……5分该点坐标的意义为:两船出发1 h 后,甲船追上乙船,此时两船离B 港的距离为30 km .…6分 求点P 的坐标的另一种方法:由图可得,甲的速度为30600.5=(km/h ),乙的速度为90303=(km/h ). 则甲追上乙所用的时间为3016030=-(h ).此时乙船行驶的路程为30130⨯=(km ). 所以点P 的坐标为(1,30).(3)①当x ≤0.5时,由点(0,30),(0.5,0)求得,16030y x =-+.依题意,(6030)30x x -++≤10. 解得,x ≥23.不合题意.……7分②当0.5<x ≤1时,依题意,30(6030)x x --≤10.解得,x ≥23.所以23≤x ≤1.……8分③当x >1时,依题意,(6030)30x x --≤10.解得,x ≤43.所以1<x ≤43.……9分综上所述,当23≤x ≤43时,甲、乙两船可以相互望见.……10分24.解:(1)过点C 作CF AB ⊥于F ,则四边形AFCD 为矩形.∴4CF =,2AF =.此时,Rt △AQM ∽Rt △ACF .……2分 ∴QM CF AM AF=. BCDGFE 图2A H Q ABCDl M P (第24题)E F即40.52QM =,∴1QM =.……3分 (2)∵DCA ∠为锐角,故有两种情况: ①当90CPQ ∠=︒时,点P 与点E 重合.此时DE CP CD +=,即2t t +=,∴1t =.……5分 ②当90PQC ∠=︒时,如备用图1,此时Rt △PEQ ∽Rt △QMA ,∴EQ MAPE QM=. 由(1)知,42EQ EM QM t =-=-,而()(2)22PE PC CE PC DC DE t t t =-=--=--=-, ∴421222t t -=-. ∴53t =. 综上所述,1t =或53.……8分(说明:未综述,不扣分)(3)CQ RQ为定值.……9分当t >2时,如备用图2,4(2)6PA DA DP t t =-=--=-.由(1)得,4BF AB AF =-=. ∴CF BF =. ∴45CBF ∠=︒. ∴6QM MB t ==-. ∴QM PA =.∴四边形AMQP 为矩形. ∴PQ ∥AB .……11分 ∴△CRQ ∽△CAB .∴CQ BC RQ AB ==……12分AB CD (备用图1)QP E lM ABC D (备用图2)M QRF P。