2016-2017学年第一学期上海市桃李园实验学校八年级数学第二次月考模拟试卷(附答案)

合集下载

上海民办桃李园实验学校数学全等三角形达标检测卷(Word版 含解析)

上海民办桃李园实验学校数学全等三角形达标检测卷(Word版 含解析)

上海民办桃李园实验学校数学全等三角形达标检测卷(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD ⊥BC 于点D ,AD =12BC , ∴AD =BD =CD , ∴∠B =∠BAD ,∠C =∠CAD ,∴∠BAD +∠CAD =12×180°=90°, ∴顶角∠BAC =90°, 综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n个等腰三角形的底角∠A n= 11()802n-︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键.3.如图,A,B,C三点在同一直线上,分别以AB,BC(AB>BC)为边,在直线AC的同侧作等边ΔABD和等边ΔBCE,连接AE交BD于点M,连接CD交BE于点N,连接MN. 以下结论:①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等边三角形.其中正确的是__________(把所有正确的序号都填上).【答案】①②④⑤【解析】【分析】①由三角形ABD与三角形BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到三角形ABE与三角形DBC全等即可得结论;②由①中三角形ABE与三角形DBC全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA 可得出三角形EMB与三角形CNB全等,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出三角形BMN为等边三角形;可得∠BMN=60°,进行可得∠BMN=∠ABD,故MN//AB,从而可判断②,⑤正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,根据三角形内角和和外角的性质可证得结论.【详解】①∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,∵AB DBABE DBCBE BC⎪∠⎪⎩∠⎧⎨===,∴△ABE≌△DBC(SAS),∴AE=DC,故①正确;∵△ABE≌△DBC,∴∠AEB=∠DCB,又∠ABD=∠EBC=60°,∴∠MBE=180°-60°-60°=60°,即∠MBE=∠NBC=60°,在△MBE和△NBC中,∵AEB DCB EB CBMBE NBC ∠∠∠⎧⎪⎪⎩∠⎨===,∴△MBE≌△NBC(ASA),∴BM=BN,∠MBE=60°,则△BMN为等边三角形,故⑤正确;∵△BMN为等边三角形,∴∠BMN=60°,∵∠ABD=60°,∴∠BMN=∠ABD,∴MN//AB,故②正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,∠APC+∠PAC+∠PCA=180°,∴∠PAC+∠PCA=∠PDB+∠PCB=∠DBA=60°,∵∠DPM =∠PAC+∠PCA∴∠DPM =60°,故④正确,故答案为:①②④⑤.【点睛】此题考查了等边三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.4.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD=12AD,再由三角形的面积公式即可得出结论.【详解】①连接NP,MP.在△ANP与△AMP中,∵AN AMNP MPAP AP=⎧⎪=⎨⎪=⎩,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④∵在Rt△ACD中,∠2=30°,∴CD=12AD,∴BC=BD+CD=AD+12AD=32AD,S△DAC=12AC•CD=14AC•AD,∴S △ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=1:3,故此选项正确.故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.5.如图,在Rt ABC △中,AC BC =,D 是线段AB 上一个动点,把ACD 沿直线CD 折叠,点A 落在同一平面内的A '处,当A D '平行于Rt ABC △的直角边时,ADC ∠的大小为________.【答案】112.5︒或67.5︒【解析】【分析】当A D '平行于Rt ABC △的直角边时,有两种情况,一是当A D BC '时,二是当A D AC '时,两种情况根据折叠的性质及等腰三角形的性质进行角度的计算即可.【详解】 如图1,当点D 在线段AB 上,且A DBC '时,45A DB B '∠=∠=︒, 45180ADC A DC '∴∠+∠-=︒︒,解得112.5A DC ADC '∠=∠=︒.图1如图2,当A D AC '时,45A DB A '∠=∠=︒,45180ADC A DC '∴∠+∠+=︒︒,解得67.5A DC ADC '∠=∠=︒.图2【点睛】本题考查了翻折变换的性质,等腰直角三角形的性质,掌握折叠的性质是解题关键.6.如图,Rt△ABC 中,AB=AC,∠BAC=90°,AD 是 BC 边上的高,E 是 AD 上的一点。

第一学期八年级数学第二次月考试卷(含解析)

第一学期八年级数学第二次月考试卷(含解析)

第一学期八年级数学第二次月考试卷(含解析)一、选择题1.若a满足3a a =,则a 的值为( )A .1B .0C .0或1D .0或1或1-2.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-,3.下列等式从左到右的变形,属于因式分解的是( )A .()a x y ax ay -=-B .()()311x x x x x -=+- C .()()21343x x x x ++=++D .()22121x x x x ++=++4.下列各式从左到右变形正确的是( ) A .0.220.22a b a ba b a b++=++B .231843214332x yx y x y x y ++=-- C .n n a m m a-=-D .221a b a b a b+=++5.下列图案中,不是轴对称图形的是( ) A .B .C .D .6.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A 36B 33C .6D .37.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 8.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y(km)与行驶时间x(h)的完整的函数图像(其中点B、C、D在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100km;②前半个小时,货车的平均速度是40km/h;③8∶00时,货车已行驶的路程是60km;④最后40 km货车行驶的平均速度是100km/h;⑤货车到达乙地的时间是8∶24,其中,正确的结论是()A.①②③④B.①③⑤C.①③④D.①③④⑤9.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>010.如图,在平面直角坐标系xOy中,直线y=﹣43x+4与x轴、y轴分别交于点A、B,M是y轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为()A .(0,﹣4 )B .(0,﹣5 )C .(0,﹣6 )D .(0,﹣7 )二、填空题11.关于x 的分式方程211x ax +=+的解为负数,则a 的取值范围是_________. 12.49的平方根为_______ 13.某厂现在的年产值是15万元,计划今后每年增加2万元,年产值y 与年数x 之间的函数关系为________.14.写出一个比4大且比5小的无理数:__________.15.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 16.若关于x 的多项式322ax bx +-的一个因式是231+-x x ,则+a b 的值为__________.17. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.18.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.19.已知直角三角形的两边长分别为3、4.则第三边长为________.20.如图,在平面直角坐标系中,函数y=﹣2x 与y=kx+b 的图象交于点P (m ,2),则不等式kx+b >﹣2x 的解集为_____.三、解答题21.春节前小明花1200元从市场购进批发价分别为每箱30元与50元的A 、B 两种水果进行销售,分别以每箱35元与60元的价格出售,设购进A 水果x 箱,B 水果y 箱.(1)求y 关于x 的函数表达式;(2)若要求购进A 水果的数量不少于B 水果的数量,则应该如何分配购进A 、B 水果的数量并全部售出才能获得最大利润,此时最大利润是多少?22.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表: x/元 … 15 20 25 … y/件…252015…已知日销售量y 是销售价x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式; (2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?23.小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中,30角所对的直角边等于斜边的一半。

2016-2017学年八年级12月月考数学试题含答案(北师大版)

2016-2017学年八年级12月月考数学试题含答案(北师大版)
______________ 校 学
--------------------------------------------------------封 ---------------------密
2016--2017 学年度 12 月阶段性检测 -- 八年级数学试题
一、选择题(每小题 3 分,共 36 分)
①甲、乙两班学生的平均水平相同;
②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达 ③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大
150 个以上为优秀) ; .
上述结论正确的是 ___________ (填序号) .
18.某射击小组有 20 人,教练根据他们某次射击的数据绘制成如 图
所示的统计图,则这组数据的众数是
( 2)求直线 l1 与 y 轴交点 A 的坐标 ; 求直线 l 2 与 X轴的交点 B 的坐标 ;
( 3)求由三点 P、A、 B 围成的三角形的面积 .
24、( 12 分)某校八年级学生开展踢毽子比赛活动, 每班派 5 名学生参加,按团体总分多少排列 名次,在规定时间内每人踢 100 个以上(含 100)为优秀 .下表是成绩最好的甲班和乙班 5 名学 生的比赛数据(单位:个) :
是二元一次方程组
的解,那么 a , b 的值是( )
y2
bx ay 2
a1 A.
b0
a1
a0
a0
B.
C.
D.
b0
b1
b1
5、如图,过 A点的一次函数的图象与正比例函数 y= 2x 的图象相交于点 B,
第 5题
能表示这个一次函数图象的方程是(
).
A、 2x- y+3= 0 B、 x- y-3= 0 C 、2y- x+ 3= 0

最新沪科版八年级数学上册第二次月考质量检测试卷1(含答案)

最新沪科版八年级数学上册第二次月考质量检测试卷1(含答案)

最新沪科版八年级数学上册第二次月考质量检测试卷1(含答案)时间:90分钟满分:100分学校: ________姓名:________班级:________考号:________一.选择题(每题4分,共40分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A. B. C. D.2.如图,△ACB≌△A CB'',∠ACA′=30°,则∠BCB′的度数为( )A. 20°B. 30°C. 35°D. 40°3.平面直角坐标系中,点P先向左平移1个单位,再向上平移2个单位,所得的点为Q(-2,1),则P的坐标为()A. (-3,-1)B. (-3,3)C. (-1,-1)D. (-1,3)4.在函数1xy--=中,自变量x的取值范围是()A. 1x<- B. 1x≤- C. 0x≠ D. 10x x≤-≠且5.只给定三角形的两个元素,画出的三角形的形状和大小是不确定的,在下列给定的两个条件上增加一个“AB=5cm”的条件后,所画出的三角形的形状和大小仍不能完全确定的是()A. ∠A=30°,BC=3cmB. ∠A=30°,AC=3cmC. ∠A=30°,∠C=50°D. BC=3cm, AC=6cm6.将一副三角板按图中方式叠放,则角α等于()A.30°B. 45°C. 60°D. 75°7.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 作射线OC ,由做法得△MOC ≌△NOC 的依据是( )A. AASB. SASC. ASAD. SSS8.如图,△ABC ,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =25°,则∠EDC 等于( )A. 70°B. 65°C. 50°D. 40°9.如图,把△ABC 纸片沿DE 折叠,当点A 在四边形BCDE 的外部时,记∠AEB 为∠1,∠ADC 为∠2,则∠A 、∠1与∠2的数量关系,结论正确的是( )A. ∠1=∠2+∠AB. ∠1=2∠A +∠2C. ∠1=2∠2+2∠AD. 2∠1=∠2+∠A 10.如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补,若∠MPN 在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:(1)PM=PN 恒成立;(2)OM+ON 的值不变;(3)四边形PMON 的面积不变;(4)MN 的长不变,其中正确的个数为( )A. 4B. 3C. 2D. 1二.填空题(共4小题)11.点P (﹣3,5)关于x 轴对称点P 1的坐标为__________.12.如图,DE 是AB 的垂直平分线,AB=8,△ABC 的周长是18,则△ADC 的周长是_____.13.如图,P 点坐标为(3,3),l 1⊥l 2,l 1、l 2分别交x 轴和y 轴于A 点和B 点,则四边形OAPB 的面积为_________________.14.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.三.解答题(15--18每题8分,19,20每题10分,21,22每题12分,23题14分) 15.如图,在平面直角坐标系中,A (-3,2),B (-4,-3),C (-1,-1).(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)写出点△A 1,B 1,C 1的坐标(直接写答案):A 1_________;B 1________;C 1________; (3)求△A 1B 1C 1的面积; 16.如图,点A ,C ,B ,D同一条直线上,BE ∥DF ,∠A=∠F ,AB=FD ,求证:AE=FC.17.如图,已知AB AD =,AC AE =,BAD CAE ∠=∠,证明:BC DE =.18.如图,在△ABC 中,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于点F ,且BE=CF . 求证:(1)△BED ≌△CFD ; (2)AD 平分∠BAC .19.如图,已知在△ABC 中,∠BAC 的平分线与线段BC 的垂直平分线PQ 相交于点P,过点P 分别作PN 垂直于AB 于点N,PM 垂直于AC 于点M,BN 和CM 有什么数量关系?请说明理由.20.已知直线26x y k -=-+ 和341x y k +=+,如果它们的交点在第三象限,求实数k 的取值范围.21.有甲、乙两个蓄水池,现将甲池中的水匀速注入乙池.甲、乙两个蓄水池中水的深度y (米)与注水时间x (小时)之间的关系如图5所示,根据图像提供的信息,回答下列问题:(1)注水前甲池中水的深度是_____________米.(直接写出答案).(2)求甲池中水深度y (米)与注水时间x (小时)之间的函数关系式; (3)求注水多长时间时,甲、乙两个蓄水池中水的深度相同.22.某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)10 6 4每吨土特产利润(万元)0.7 0.8 0.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.(1)求y与x之间的函数关系式;(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.23.如图1,平面直角坐标系中,直线y=kx+b与x轴交于点A(6,0),与y轴交于点B,与直线y=2x交于点C(a,4).(1)求点C的坐标及直线AB的表达式;(2)如图2,在(1)的条件下,过点E作直线l⊥x轴于点E,交直线y=2x于点F,交直线y=kx+b于点G,若点E的坐标是(4,0).①求△CGF的面积;②直线l上是否存在点P,使OP+BP的值最小?若存在,直接写出点P的坐标;若不存在,说明理由;(3)若(2)中的点E是x轴上的一个动点,点E的横坐标为m(m>0),当点E在x轴上运动时,探究下列问题:当m取何值时,直线l上存在点Q,使得以A,C,Q为顶点的三角形与△AOC全等?请直接写出相应的m的值.参考答案一.选择题(每题4分,共40分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()B. C. D.【答案】B结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.'',∠ACA′=30°,则∠BCB′的度数为( )2.如图,△ACB≌△A CBA. 20°B. 30°C. 35°D. 40°【答案】B根据全等三角形的性质得到∠ACB=∠A′C′B′,根据角的和差计算得到答案.【详解】∵△ACB≌△A′CB′,∴∠ACB=∠A′C′B′,∴∠ACB-∠A′CB=∠A′C′B′-∠A′CB,即∠BCB′=∠ACA′,又∠ACA′=30°,∴∠BCB′=30°,故选B .【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.3.平面直角坐标系中,点P 先向左平移1个单位,再向上平移2个单位,所得的点为Q (-2,1),则P 的坐标为( ) A. (-3,-1) B. (-3,3) C. (-1,-1) D. (-1,3)【答案】C逆向思考,即把点Q (-2,1)先向右平移1个单位长度,再向下平移2个单位得到点P ,然后根据平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减)求解.【详解】解:点Q (-2,1)先向右平移1个单位长度,再向下平移2个单位长度后得到的点P 的坐标是(-1,-1). 故选: C .【点睛】本题考查坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.4.在函数y x=中,自变量x 的取值范围是( ) A. 1x <- B. 1x ≤-C. 0x ≠D. 10x x ≤-≠且【答案】B根据被开方数是非负数且分母不等于零,可得答案. 【详解】解:由题意,得 -1-x≥0且x≠0, 解得x≤-1, 故选B .【点睛】本题考查函数自变量的取值范围,利用被开方数是非负数且分母不等于零得出不等式是解题关键. 5.只给定三角形两个元素,画出的三角形的形状和大小是不确定的,在下列给定的两个条件上增加一个“AB=5cm”的条件后,所画出的三角形的形状和大小仍不能完全确定的是( ) A. ∠A=30°,BC=3cm B. ∠A=30°,AC=3cm C. ∠A=30°,∠C=50° D. BC=3cm, AC=6cm【答案】A根据三角形全等的判定方法即可解答.【详解】A. ∠A=30°,BC=3cm,增加“AB=5cm”后,类似SSA,不能判定两三角形全等,所以所画出的三角形的形状和大小仍不能完全确定,故选项A符合题意.B. ∠A=30°,AC=3cm,增加“AB=5cm”后,属于用SAS 来判定三角形全等,所以所画出的三角形的形状和大小确定,故选项B不符合题意.C. ∠A=30°,∠C=50°,增加“AB=5cm”后,属于用AAS 来判定三角形全等,所以所画出的三角形的形状和大小确定,故选项C不符合题意.D. BC=3cm, AC=6cm,增加“AB=5cm”后,属于用SSS 来判定三角形全等,所以所画出的三角形的形状和大小确定,故选项D不符合题意.故选A【点睛】本题考查三角形全等的判定方法,解题关键是SSA不能用来判定三角形全等.6.将一副三角板按图中方式叠放,则角α等于()A. 30°B. 45°C. 60°D. 75°【答案】D利用两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和计算.【详解】如图,根据两直线平行,内错角相等,∴∠1=45°,根据三角形的一个外角等于与它不相邻的两个内角的和,∴∠α=∠1+30°=75°.故选D.7.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C作射线OC,由做法得△MOC ≌△NOC的依据是()A. AASB. SASC. ASAD. SSS【答案】D由三边相等得△MOC≌△NOC,即由SSS判定三角全等,即可得答案.【详解】∵角尺两边相同的刻度分别与M,N重合,∴CM=CN,又∵OM=ON,OC为公共边,∴△MOC≌△NOC(SSS),∴∠AOC=∠BOC,即OC即是∠AOB的平分线.故选D.【点睛】本题考查了全等三角形的判定及性质.熟练掌握全等三角形的判定方法是解题关键.8.如图,△ABC,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=25°,则∠EDC 等于()A. 70°B. 65°C. 50°D. 40°【答案】A根据三角形内角和定理求出∠B的度数,根据翻折变换的性质求出∠BCD的度数,根据三角形内角和定理求出∠BDC可得答案.【详解】在△ABC中,∠ACB=90°,∠A=25°,∴∠B=90°-∠A=65°.由折叠的性质可得:∠BCD=12∠ACB=45°,∴∠EDC=∠BDC=180°-∠BCD-∠B=70°.故选A.【点睛】本题考查的是翻折变换和三角形内角和定理,理解翻折变换的性质、熟记三角形内角和等于180°是解题的关键.9.如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()A. ∠1=∠2+∠AB. ∠1=2∠A+∠2C. ∠1=2∠2+2∠AD. 2∠1=∠2+∠A【答案】B试题分析:如图在∆ABC中,∠A+∠B+∠C=180°,折叠之后在∆ADF中,∠A+∠2+∠3=180°,∴∠B+∠C=∠2+∠3,∠3=180°-∠A-∠2,又在四边形BCFE中∠B+∠C+∠1+∠3=360°,∴∠2+∠3+∠1+∠3=360°∴∠2+∠1+2∠3=∠2+∠1+2(180°-∠A-∠2)=360°,∴∠2+∠1-2∠A-2∠2=0,∴∠1=2∠A+∠2.故选B点睛:本题主要考查考生对三角形内角和,四边形内角和以及三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角和的理解及掌握.在求∠A、∠1与∠2的数量关系时,,用到了等量代换的思想,进行角与角之间的转换.10.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON 的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 1【答案】B【解析】如图,过点P作PC垂直AO于点C,PD垂直BO于点D,根据角平分线的性质可得PC=PD,因∠AOB与∠MPN互补,可得∠MPN=∠CPD,即可得∠MPC=∠DPN,即可判定△CMP≌△NDP,所以PM=PN,(1)正确;由△CMP≌△NDP可得CM=CN,所以OM+ON=2OC,(2)正确;四边形PMON的面积等于四边形PCOD的面积,(3)正确;连结CD,因PC=PD,PM=PN,∠MPN=∠CPD,PM>PC,可得CD≠MN,B.所以(4)错误,故选11.点P(﹣3,5)关于x轴对称点P1坐标为__________.【答案】(-3,-5)直接利用关于x轴对称点的性质得出P1点坐标即可.【详解】∵点P(-3,5)关于x轴的对称点为P1,∴P1的坐标为:(-3,-5).故答案是:(-3,-5).【点睛】考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.12.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是_____.【答案】10依据线段垂直平分线的性质可得到AD=BD ,则△ADC 的周长=BC+AC .【详解】∵DE 是AB 的垂直平分线,∴AD=BD.∴△ADC 的周长=AD+DC+AC=BD+DC+AC=BC+AC=18−8=10.故答案为10.【点睛】本题考查的是三角形的边长,熟练掌握垂直平分线的性质是解题的关键.13.如图,P 点坐标为(3,3),l 1⊥l 2,l 1、l 2分别交x 轴和y 轴于A 点和B 点,则四边形OAPB 的面积为_________________.【答案】9【解析】过P 分别作x 轴和y 轴的垂线,交x 轴和y 轴于点C 和D .∵P 点坐标为(3,3),∴PC=PD ;又∵l 1⊥l 2,∴∠BPA =90°;又∵∠DPC=90°,∴∠DPB=∠PCA ,△PDB ≌△PCA (ASA ),∴S △DPB =S △PCA , S 四边形OAPB =S 正方形ODPC +S △PCA ﹣S △DPB ,即S 四边形OAPB =S 正方形ODPC =3×3=9.14.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【详解】把点C向下平移1个单位得到点D(4,2),这时△ABD与△ABC全等,分别作点C,D关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD与△ABC全等.故答案为(-4,2)或(-4,3).三.解答题(15--18每题8分,19,20每题10分,21,22每题12分,23题14分)15.如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点△A1,B1,C1的坐标(直接写答案):A1_________;B1________;C1________;(3)求△A1B1C1的面积;【答案】(1)作图见解析; (2)(3,2);(4,-3);(1,-1);(3)6.5.(1)根据关于y轴对称点的性质得出各对应点位置进而得出答案;(2)利用(1)中作画图形,进而得出各点坐标;(3)利用△ABC所在矩形面积减去△ABC周围三角形面积进而求出即可;【详解】解:(1)如图所示:△A1B1C1,即为所求;(2)A1(3,2);B1(4,-3);C1(1,-1);故答案为(3,2);(4,-3);(1,-1);(3)△A 1B 1C 1的面积为:3×5-12×2×3-12×1×5-12×2×3=6.5. 【点睛】此题主要考查了轴对称变换以及三角形面积求法等知识,正确利用轴对称图形的性质得出是解题关键.16.如图,点A ,C ,B ,D 在同一条直线上,BE ∥DF ,∠A=∠F ,AB=FD ,求证:AE=FC.【答案】证明见解析.由已知条件BE∥DF ,可得出∠ABE=∠D ,再利用ASA 证明△ABE ≌△FDC 即可.证明:∵BE∥DF ,∴∠ABE=∠D ,在△ABE 和△FDC 中,∠ABE=∠D ,AB=FD ,∠A=∠F∴△ABE ≌△FDC (ASA ),∴AE=FC .“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC 和△FDC 全等.17.如图,已知AB AD =,AC AE =,BAD CAE ∠=∠,证明:BC DE =.【答案】证明见解析.试题解析:利用公共角,得到BAC DAE ∠=∠,可以证明BAC ≌DAE ,对应边相等就可以证明. 证明:BAD CAE ∠=∠,∴BAD DAC CAE DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,在BAC 和DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴BAC ≌()DAE SAS ,∴BC DE =.点睛:证明三角形全等的方法:(1)三组对应边分别相等的两个三角形全等(简称SSS).(2)有两边及其夹角对应相等的两个三角形全等(SAS).(3)有两角及其夹边对应相等的两个三角形全等(ASA) .(4)有两角及一角的对边对应相等的两个三角形全等(AAS).(5)直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL) .注:S 是边的英文缩写,A 是角的英文缩写 ,其中证明直角三角形所有5种方法都可以用;一般三角形SSA 不能证明三角形的全等.18.如图,在△ABC 中,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于点F ,且BE=CF .求证:(1)△BED ≌△CFD ;(2)AD 平分∠BAC .【答案】见解析(1)可由HL 得到Rt △BED ≌Rt △CFD ,得出AB=AC ,(2)由三线合一的性质即可得到AD 平分∠BAC .【详解】(1)∵D 是BC 的中点,∴BD=CD ,∵DE ⊥AB ,DF ⊥AC ,在Rt △BED 和Rt △CFD 中,BD CD BE CF =⎧⎨=⎩, ∴Rt △BED ≌Rt △CFD (HL ),(2)∵Rt△BED≌Rt△CFD,∴∠B=∠C,∴AB=AC,又∵D为BC的中点,∴AD平分∠BAC.(三线合一).【点睛】本题主要考查了全等三角形的判定及性质以及三角形的三线合一的性质问题,能够掌握并熟练运用.19.如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.【答案】BN=CM,理由见解析.连接PB,PC,根据角平分线性质求出PM=PN,根据线段垂直平分线求出PB=PC,根据HL证Rt△PMC ≌Rt△PNB,即可得出答案.【详解】解:BN=CM,理由如下:如图,连接PB,PC,∵AP是∠B AC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,PC PB PM PN=⎧⎨=⎩,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.【点睛】本题考查了全等三角形的性质和判定,线段垂直平分线性质,角平分线性质等知识点,能正确地添加辅助线是解题的关键.20.已知直线26x y k -=-+ 和341x y k +=+,如果它们的交点在第三象限,求实数k 的取值范围.【答案】k <﹣4根据已知直线x-2y=-k+6和直线x+3y=4k+1,解出交点坐标,根据交点在第三象限即可解出k 的范围.【详解】由题可得:26341x y k x y k -=-+⎧⎨+=+⎩, 解得:41x k y k =+⎧⎨=-⎩, ∴两直线的交点坐标为(k+4,k-1),∵交点在第三象限,∴4010k k +<⎧⎨-<⎩, 解得:k<-4.【点睛】本题考查了一次函数与一元一次不等式及解二元一次方程,先用k 表示出交点坐标并列出不等式组是解题关键.21.有甲、乙两个蓄水池,现将甲池中的水匀速注入乙池.甲、乙两个蓄水池中水的深度y (米)与注水时间x (小时)之间的关系如图5所示,根据图像提供的信息,回答下列问题:(1)注水前甲池中水的深度是_____________米.(直接写出答案).(2)求甲池中水的深度y (米)与注水时间x (小时)之间的函数关系式;(3)求注水多长时间时,甲、乙两个蓄水池中水的深度相同.【答案】(1)2;(2)y=x+2,(3)0.6小时【解析】 (1)从图中可以看出,甲池中水的初始深度为2,所以注水前甲池中水的深度是2米;(2)从图可以看到,甲池中水的深度y (米)与注水时间x (小时)之间满足一元函数关系,可以设y=kx+b ,根据图中的数值求出k ,b 就可以得到深度y (米)与注水时间x (小时)之间的函数关系式;(3)根据图中的信息求出乙池中水的深度y (米)与注水时间x (小时)之间的函数关系式,当甲池中水的深度y 与乙池中水的深度y 相等时,可以求出时间t .22.某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃 花椒 甘蓝 每辆汽车运载量(吨)10 6 4 每吨土特产利润(万元) 0.70.8 0.5若装运核桃的汽车为x 辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y 万元.(1)求y 与x 之间的函数关系式; (2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值. 【答案】(1)y=﹣3.4x+141.2;(2)当装运核桃的汽车为9辆、装运甘蓝的汽车为19辆、装运花椒的汽车为2辆时,总利润最大,最大利润为117.4万元. 【解析】 (1)根据题意可以得装运甘蓝的汽车为(2x+1)辆,装运花椒的汽车为30﹣x ﹣(2x+1)=(29﹣3x )辆,从而可以得到y 与x 的函数关系式; (2)根据装花椒的汽车不超过8辆,可以求得x 的取值范围,从而可以得到y 的最大值,从而可以得到总利润最大时,装运各种产品的车辆数. 【详解】(1)若装运核桃的汽车为x 辆,则装运甘蓝的汽车为(2x+1)辆,装运花椒的汽车为30﹣x ﹣(2x+1)=(29﹣3x )辆, 根据题意得:y=10×0.7x+4×0.5(2x+1)+6×0.8(29﹣3x )=﹣3.4x+141.2. (2)根据题意得:()29382130x x x -≤⎧⎨++≤⎩,解得:7≤x≤293, ∵x 为整数,∴7≤x≤9.∵10.6>0,∴y 随x 增大而减小,∴当x=7时,y 取最大值,最大值=﹣3.4×7+141.2=117.4,此时:2x+1=19,29﹣3x=2.答:当装运核桃的汽车为9辆、装运甘蓝的汽车为19辆、装运花椒的汽车为2辆时,总利润最大,最大利润为117.4万元.【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.23.如图1,平面直角坐标系中,直线y=kx+b 与x 轴交于点A (6,0),与y 轴交于点B ,与直线y=2x 交于点C (a ,4).(1)求点C 的坐标及直线AB 的表达式;(2)如图2,在(1)的条件下,过点E 作直线l ⊥x 轴于点E ,交直线y=2x 于点F ,交直线y=kx+b 于点G ,若点E 的坐标是(4,0).①求△CGF 的面积;②直线l 上是否存在点P ,使OP+BP 的值最小?若存在,直接写出点P 的坐标;若不存在,说明理由;(3)若(2)中的点E 是x 轴上的一个动点,点E 的横坐标为m (m >0),当点E 在x 轴上运动时,探究下列问题:当m 取何值时,直线l 上存在点Q ,使得以A ,C ,Q 为顶点的三角形与△AOC 全等?请直接写出相应的m 的值.【答案】(1)y=﹣x+6;(2)①6;②P (4,3);(3)m 的值为2或6或8【解析】(1)将C (2,4)和A (6,0)代入y=kx+b ,即可得到直线AB 的解析式;(2)①设点F (4,y 1),G (4,y 2),分别代入y=2x 和y=-x+6,可得FE=8,GE=2,FG=6,过点C 作CH ⊥FG 于H ,依据S △FCG =12FG×CH ,进行计算即可;②设点O 关于直线l 的对称点为D (8,0),设直线BD 的解析式为y=mx+n ,将B (0,6),D (8,0)代入y=mx+n ,可得直线BD 的解析式为y=-34x+6,令x=4,则y=3,即可得出P (4,3); (3)需要分数轴情况进行讨论,画出图形,依据全等三角形的对应顶点的位置,即可得到m 的值.【详解】(1)将点C (a ,4)代入y=2x ,可得a=2,∴C (2,4),将C (2,4)和A (6,0)代入y=kx+b ,可得2460k b k b +=⎧⎨+=⎩,解得16k b =-⎧⎨=⎩, ∴直线AB 的解析式为y=﹣x+6;(2)①如图1,∵l ⊥x 轴,点E ,F ,G 都在直线l 上,且点E 的坐标为(4,0),∴点F ,G 的横坐标均为4,设点F (4,y 1),G (4,y 2),分别代入y=2x 和y=﹣x+6,可得y 1=8,y 2=2,∴F (4,8),G (4,2),∴FE=8,GE=2,FG=6,如图2,过点C 作CH ⊥FG 于H ,∵C (2,4),∴CH=4﹣2=2,∴S △FCG =12FG×CH=12×6×2=6; ②存在点P (4,3),使得BP+OP 的值最小.理由:设点O 关于直线l 的对称点为D (8,0),设直线BD 的解析式为y=mx+n ,将B (0,6),D (8,0)代入y=mx+n ,可得680n m n =⎧⎨+=⎩,解得346m n ⎧=-⎪⎨⎪=⎩, ∴直线BD 的解析式为y=﹣34x+6, 点P 在直线l :x=4上,令x=4,则y=3,∴P (4,3);(3)m 的值为2或6或8.理由:分三种情况讨论:①当△OAC ≌△QCA ,点Q 在第四象限时,∠ECA=∠EAC ,∴AE=CE=4,OE=6﹣4=2,∴m=2;②当△ACO ≌△ACQ ,Q 在第一象限时,OE=AO=6,∴m=6;③当△ACO ≌△CAQ ,点Q 在第四象限时,四边形AOCQ 是平行四边形,CQ=AO=6,AE=2,∴OE=8,∴m=8;综上所述,m的值为2或6或8时,以A,C,Q为顶点的三角形与△AOC全等.【点睛】本题属于一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,轴对称的性质,全等三角形的判定与性质以及等腰三角形的性质的综合运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.解决等腰三角形问题的关键是运用分类思想,画出图形,利用等腰三角形的腰长相等列方程求解.。

上海八年级上学期数学第二次月考试卷

上海八年级上学期数学第二次月考试卷

上海八年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是()A . CB . LC . XD . Z2. (2分)在﹣1.732,,π,3.14,2+,3.212212221…,3.14这些数中,无理数的个数为()A . 1B . 2C . 3D . 43. (2分)已知(-1,y1),(1.8,y2),(- ,y3)是直线 y = -3x + m (m 为常数)上的三个点,则 y1 ,y2 , y3的大小关系是()A . y3>y1>y2B . y1>y3>y2C . y1>y2>y3D . y3>y2>y14. (2分) (2017七下·三台期中) 以二元一次方程组的解为坐标的点(x,y)在平面直角坐标系的()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分) (2017八上·宁化期中) 不在函数y=3x-1的图象上的点是()A . (-2,-7)B . (0,-1)C . (1,-2)D . (2,5)6. (2分)已知平面直角坐标系内某图形各点的横坐标不变,纵坐标都乘以-1,则所得到的图形于原图形的关系是()A . 关于x轴对称B . 关于y轴对称C . 关于直线x=-1对称D . 关于直线y=-1对称7. (2分)一次函数y=kx+b的图象经过(m,1)、(-1,m),其中m>1,则k、b ()A . k>0且b<0B . k>0且b>0C . k<0且b<0D . k<0且b>08. (2分)如图,已知:在▱ABCD中,E、F分别是AD、BC边的中点,G、H是对角线BD上的两点,且BG=DH,则下列结论中不正确的是()A . GF⊥FHB . GF=EHC . EF与AC互相平分D . EG=FH二、填空题 (共7题;共7分)9. (1分) (2019七下·营口月考) 算术平方根是本身的数是________,平方根是本身的数是________,立方根是本身的数是________.10. (1分) (2019八上·泰州月考) 近似数5.08×104精确到 ________位.11. (1分) (2019七下·红塔期中) 点P(2a,1-3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为6,则点P的坐标是________.12. (1分)绝对值不大于的非负整数是________.13. (1分)(2017·黔东南) 在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位,再向下平移2个单位,则平移后点A的坐标为________.14. (1分) (2012·南通) 无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于________.15. (1分) (2019九上·路北期中) 如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点,若点M的坐标是(﹣4,﹣2),则弦MN的长为________.三、解答题 (共11题;共102分)16. (1分) (2018九下·市中区模拟) 已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为________.17. (10分) (2019九上·清江浦月考) 解方程(1)(2)(3)(4)18. (5分)如图,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.19. (10分) (2016八上·靖江期末) 已知:y﹣3与x成正比例,且当x=﹣2时,y的值为7.(1)求y与x之间的函数关系式;(2)若点(﹣2,m)、点(4,n)是该函数图象上的两点,试比较m、n的大小,并说明理由.20. (15分)(2020·重庆模拟) 根据学习函数的经验,探究函数y=x2+ax﹣4|x+b|+4(b<0)的图象和性质:(1)下表给出了部分x,y的取值;x L﹣3﹣2﹣1012345L y L30﹣1030﹣103L 由上表可知,a=________,b=________;(2)用你喜欢的方式在坐标系中画出函数y=x2+ax﹣4|x+b|+4的图象;(3)结合你所画的函数图象,写出该函数的一条性质;(4)若方程x2+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,请直接写出m的取值范围.21. (10分)(2018·天水) 某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号A B成本(万元/台)200240售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)22. (10分)(2019·霞山模拟) 如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF =PO(点F在第一象限),连结FD、BE、BF,设OP=t.(1)直接写出点E的坐标(用含t的代数式表示):________;(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.23. (10分)(2017·邳州模拟) 甲、乙两家超市进行促销活动,甲超市采用“买100减50”的促销方式,即购买商品的总金额满100元但不足200元,少付50元;满200元但不足300元,少付100元;….乙超市采用“打6折”的促销方式,即顾客购买商品的总金额打6折.(1)若顾客在甲商场购买商品的总金额为x(100≤x<200)元,优惠后得到商家的优惠率为p(p= ),写出p与x之间的函数关系式,并说明p随x的变化情况;(2)王强同学认为:如果顾客购买商品的总金额超过100元,实际上甲超市采用“打5折”、乙超市采用“打6折”,那么当然选择甲超市购物.请你举例反驳;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(300≤x<400)元,认为选择哪家商场购买商品花钱较少?请说明理由.24. (10分)如图,在平面直角坐标系中,梯形ABCD的坐标为A(0,0),B(0,8),C(8,8),D(12,0),点P,Q分别从B,D出发以1个单位/秒和2个单位/秒的速度向C,O运动,设运动时间为t(s)(﹣点到达,另一点也停止运动).(1)写出线段CD的中点坐标________,梯形面积为________;(2)当t为何值时,四边形PQDC为平行四边形?(3)当t为何值时,四边形PQDC为等腰梯形?25. (15分)(2020·松江模拟) 已知:如图,点D、F在△ABC边AC上,点E在边BC上,且DE∥AB ,.(1)求证:EF∥B D;(2)如果,求证: .26. (6分) (2019八上·玄武期末)(1)【初步探究】如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连接AE、DE.判断△AED的形状,并说明理由.(2)【解决问题】如图2,在长方形ABCD中,点P是边CD上一点,在边BC、AD上分别作出点E、F,使得点F、E、P是一个等腰直角三角形的三个顶点,且PE=PF,∠FPE=90°.要求:仅用圆规作图,保留作图痕迹,不写作法.(3)【拓展应用】如图3,在平面直角坐标系xOy中,已知点A(2,0),点B(4,1),点C在第一象限内,若△ABC是等腰直角三角形,则点C的坐标是________.(4)如图4,在平面直角坐标系xOy中,已知点A(1,0),点C是y轴上的动点,线段CA绕着点C按逆时针方向旋转90°至线段CB,CA=CB,连接BO、BA,则BO+BA的最小值是________.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共7题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共11题;共102分)16-1、17-1、17-2、17-3、17-4、18-1、19-1、19-2、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、26-4、。

2016-2017学年度上学期八年级第二次月考数学试题

2016-2017学年度上学期八年级第二次月考数学试题

2016-2017学年度上学期八年级第二次月考数学试题姓名▁▁▁▁▁▁班级▁▁▁▁▁▁考号▁▁▁▁▁▁得分:一、选择题(每小题5分,共40分)1.平面直角坐标系中,在第四象限的点是()A.(1,2)B.(1,-2)C.(-1,2)D.(-1,-2)2.剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A. B. C. D.3.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C∠BAD=∠ABCB.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABCD.AD=BC,BD=AC4.下列各式运算正确的是()A.3mn-3n=mB.y3÷y3=yC.(x3)2=x6D.a2•a3=a65.等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°6.一个正多边形的每个外角都是36,这个正多边形的边数是()A.9B.10C.11D.127.如图,AD是△ABC的角平分线,若AB=10,AC=8,则S△ABD:S△ADC=()8.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是()A.a2-b2=(a+b)(a-b)B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-b2=(a-b)2二、填空题(每小空4分,共32分)9.点A(-3,2)关于y轴的对称点坐标是______ .10.当x _____ 时,分式1x−5有意义;当x ____ 时,分式x2−1x+1的值为零.11.如图,AB=AC,要使△ABE≌△ACD应添加的条件是______ (添加一个条件即可).12.将多项式x2+4加上一个整式,使它成为完全平方式,试写出满足上述条件的一个整式:______ .13.已知a+b=5,a2+b2=19,则(a-b)2= ______ .14.观察下列图形:它们是按一定规律排列的,依照此规律,第5个图形共有______ 个★,第n个图形共有______ 个★.三、计算题(每小题5分,共10分)15.分解因式:(1)(2x+y)2-(x+2y)2(2)-8a2b+2a3+8ab2.四、解答题(本大题共4小题,共32.0分)16(9分).如图,在平面直角坐标系x O y中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.17(9分).已知:如图,点D、E在BC上,且BD=CE,AD=AE,求证:AB=AC.18.(10分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形.(2)若AB=AC=12,△CBD的周长为20,求线段BC的长.19.(10分)在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:R t△ABE≌R t△CBF;(2)若∠CAE=30°,求∠ACF的度数.。

八年级上学期第二次月考质量自测数学试题

八年级上学期第二次月考质量自测数学试题

八年级上学期第二次月考质量自测数学试题一、选择题1.下列运算正确的是( )A .236a a a ⋅=B .235()a a -=-C .109(0)a a a a ÷=≠D .4222()()bc bc b c -÷-=-2.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B 2C .2D 63.某种产品的原料提价,因而厂家决定对产品提价,现有三种方案:方案(一):第一次提价%p ,第二次提价%q ;方案(二):第一次提价%q ,第二次提价%p ;方案(三):第一、二次提价均为2%p q +; 其中p ,q 是不相等的正数.有以下说法:①方案(一)、方案(二)提价一样;②方案(一)的提价也有可能高于方案(二)的提价;③三种方案中,以方案(三)的提价最多;④方案(三)的提价也有可能会低于方案(一)或方案(二)的提价.其中正确的有( )A .②③B .①③C .①④D .②④ 4.下列条件中,不能判断△ABC 是直角三角形的是( ) A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:235.在直角坐标系中,将点(-2, -3)向左平移2个单位长度得到的点的坐标是( )A .(-2,-5)B .(-4,-3)C .(0,-3)D .(-2,1) 6.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =--7.如图,在平面直角坐标系中,A (0,3),B (5,3),C (5,0),点D 在线段OA 上,将△ABD 沿着直线BD 折叠,点A 的对应点为E ,当点E 在线段OC 上时,则AD 的长是( )A .1B .43C .53D .2 8.下列分式中,x 取任意实数总有意义的是( ) A .21x x + B .221(2)x x -+ C .211x x -+ D .2x x + 9.下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查10.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .15B .13C .58D .38二、填空题11.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么CD =_____.12.点(−1,3)关于x 轴对称的点的坐标为____.13.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.14.如图,△ABC中,AD平分∠BAC,AB=4,AC=2,且△ABD的面积为2,则△ABC的面积为_________.15.点A(2,-3)关于x轴对称的点的坐标是______.16.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)和(3,0),点C是y 轴上的一个动点,连接AC、BC,则△ABC周长的最小值是_____.17.4的平方根是.18.若函数y=kx+3的图象经过点(3,6),则k=_____.19.教材上“阅读与思考”曾介绍“杨辉三角”(如图),利用“杨辉三角”展开(1﹣2x)4=a0+a1x+a2x2+a3x3+a4x4,那么a1+a2+a3+a4=_____.20.16_______.三、解答题21.计算:(1)()03420121+---; (2)138332+-+. 22.甲、乙两同学的家与学校的距离均为3200米.甲同学先步行200米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的13,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?23.阅读下面的情景对话,然后解答问题:老师:我们定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形! 小明:那直角三角形中是否存在奇异三角形呢?问题(1):根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?___________填“是”或“否”)问题(2):已知Rt ABC 中,两边长分别是5,52第三边长是_____________;问题(3):如图,以AB 为斜边分别在AB 的两侧作直角三角形,且AD BD =,若四边形ADBC 内存在点E ,使得AE AD =,CB CE =.试说明:ACE △是奇异三角形.24.(12216-(3)(3)8+-(2)化简:22x 9x 31-69x 4x x -+÷-++ 25.已知:如图,ABC △和ADE △均为等腰直角三角形,90BAC DAE ∠=∠=︒,连结AC ,BD ,且D 、E 、C 三点在一直线上,2AD =2DE EC =.(1)求证:ADB AEC △≌△;(2)求线段BC 的长.四、压轴题26.阅读并填空: 如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________) 在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =27.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫ ⎪⎝⎭都是“白马有理数对”. (1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________; (2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)28.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.29.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy中,已知(3,1),(1,3),(1,3)S P Q---,(2,4)M-.①在点P,点Q中,___________是点S关于原点O的“正矩点”;②在S,P,Q,M这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可;(2)在平面直角坐标系xOy中,直线3(0)y kx k=+<与x轴交于点A,与y轴交于点B,点A关于点B的“正矩点”记为点C,坐标为(,)C CC x y.①当点A在x轴的正半轴上且OA小于3时,求点C的横坐标Cx的值;②若点C的纵坐标C y满足12Cy-<≤,直接写出相应的k的取值范围.30.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①.(1)求证:∠ACN=∠AMC;(2)记△ANC得面积为5,记△ABC得面积为5.求证:12S ACS AB=;(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【详解】A. a 2 a 3=a 5,故A 错误;B. (−a 2)3=−a 6,故B 错误;C. a 10÷a 9=a(a≠0),故C 正确;D. (−bc)4÷(−bc)2=b 2c 2,故D 错误;故答案选C.【点睛】本题考查了同底数幂的相关知识点,解题的关键是熟练的掌握同底数幂的乘法与除法的运算.2.B解析:B【解析】【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC 上截取AE=AN ,连接BE ,∵∠BAC 的平分线交BC 于点D ,∴∠EAM=∠NAM ,在△AME 与△AMN 中,===AE ANEAM NAM AM AM∴△AME ≌△AMN (SAS ),∴ME=MN .∴BM+MN=BM+ME≥BE ,当BE 是点B 到直线AC 的距离时,BE ⊥AC ,此时BM+MN 有最小值,∵2AB =,∠BAC=45°,此时△ABE 为等腰直角三角形,∴,即BE ,∴BM+MN .故选:B .【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN 进行转化,是解题的关键.3.B解析:B【解析】【分析】根据提价方案求出提价后三种方案的价格,得到方案(一)、方案(二)、方案(三)提价情况,进行对比即可得解.【详解】∵方案(一):(1%)(1%)1%%%%p q p q p q ++=+++方案(二):(1%)(1%)1%%%%q p q p q p ++=+++∴方案(一)、方案(二)提价一样∴①对,②错; ∵方案(三):2(1%)(1%)1%%(%)222p q p q p q p q +++++=+++ ∴可知: 21%%(%)(1%%%%)2p q p q p q p q ++++-+++2(%)%%2p q p q +=-2(%)2p q -= ∵p ,q 是不相等的正数 ∴2(%)02p q -> ∴方案(三)提价最多∴③对,④错∴①③对故选:B.【点睛】本题主要考查了销售问题中的增长率问题,熟练掌握增长率的相关知识及整式的乘法化简是解决本题的关键.4.B解析:B【解析】【分析】A、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠C的值;D、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A、因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形,故A选项不符合题意;B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;D、因为a:b:c=1:2,所以设a=x,b=2x,x,则x2+x)2=(2x)2,故为直角三角形,故D选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.5.B解析:B【解析】【分析】直接利用平移的性质得出答案.【详解】(−2,−3)向左平移2个单位长度得到的点的坐标是:(−4,−3).故选B.【点睛】考查点的平移,掌握上下改变纵坐标,左右横左标变化是解题的关键.6.D解析:D【解析】【分析】求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.上下平移时只需让b的值加减即可.【详解】y=-3x+4的k=-3,b=4,沿x轴向左平移2个单位后,新直线解析式为:y=-3(x+2)+4=-3x-2.【点睛】本题考查了一次函数的平移变换,属于基础题,关键掌握将直线上下平移时k的值不变,只有b发生变化.7.C解析:C【解析】【分析】先根据勾股定理求出EC的长,进而可得出OE的长,在Rt△DOE中,由DE=AD及勾股定理可求出AD的长.【详解】解:根据各点坐标可得AB=OC=BE=5,AO=BC=3,设AD=x,则DE=x,DO=3-x∴=4,∴OE=1,在Rt△DOE中,DO2+OE2=DE2,解得x=53,∴AD=53,故选C.【点睛】本题考查了勾股定理的应用,找准直角三角形,设出未知数列出方程即可解答. 8.C解析:C【解析】【分析】根据分式有意义的条件是分母不等于零即可判断.【详解】A.x=0时,x2=0,A选项不符合题意;B.x=﹣2时,分母为0,B选项不符合题意;C.x取任意实数总有意义,C选项符号题意;D.x=﹣2时,分母为0.D选项不符合题意.故选:C.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.9.C解析:C【分析】根据普查和抽样调查的特点解答即可.【详解】解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.C解析:C【解析】【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球,故摸到红球的概率为58,故选:C.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= mn,难度适中.二、填空题11.3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解析:3cm.【解析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB10cm,由翻折变换的性质得,BC′=BC=6cm,C′D=CD,∴AC′=AB﹣BC′=10﹣6=4cm,设CD=x,则C′D=x,AD=8﹣x,在Rt△AC′D中,由勾股定理得,AC′2+C′D2=AD2,即42+x2=(8﹣x)2,解得x=3,即CD=3cm.故答案为:3cm.【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.12.(-1,-3).【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),故答案是:(-1,解析:(-1,-3).【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标变化规律.13.11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222345,CD CE DE=+=+=∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.14.3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,解析:3;【解析】【分析】过D作DE⊥AB于E,DF⊥AC于F,由面积可求得DE,根据角平分线的性质可求得DF,可求得△ACD的面积,进而求△ABC的面积.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F,∵S△ABD=2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.15.(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.16.【解析】【分析】作AD⊥OB于D,则∠ADB=90°,OD=1,AD=3,OB=3,得出BD=2,由勾股定理求出AB即可;由题意得出AC+BC最小,作A关于y轴的对称点,连接交y轴于点C,点C解析:513+【解析】【分析】作AD⊥OB于D,则∠ADB=90°,OD=1,AD=3,OB=3,得出BD=2,由勾股定理求出AB即可;由题意得出AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点'⊥轴于E,由勾股定理求出A B',即可得出结C,点C即为使AC+BC最小的点,作A E x果.【详解】解:作AD⊥OB于D,如图所示:则∠ADB=90°,OD=1,AD=3,OB=3,∴BD=3﹣1=2,∴AB222+3=13要使△ABC的周长最小,AB一定,则AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点C,点C 即为使AC +BC 最小的点,作A E x '⊥轴于E ,由对称的性质得:AC =A C ',则AC +BC =A B ',A E '=3,OE =1,∴BE =4,由勾股定理得:A B '5=,∴△ABC ..【点睛】本题主要考查最短路径问题,关键是根据轴对称的性质找到对称点,然后利用勾股定理进行求解即可.17.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.18.1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.解析:1【解析】∵函数y=kx+3的图象经过点(3,6),∴336k +=,解得:k=1.故答案为:1.19.0【解析】【分析】令求出的值,再令即可求出所求式子的值.【详解】解:令,得:,令,得:,则,故答案为:0.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.解析:0【解析】【分析】令0x =求出0a 的值,再令1x =即可求出所求式子的值.【详解】解:令0x =,得:01a =,令1x =,得:012341a a a a a ++++=,则12340a a a a +++=,故答案为:0.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.20.4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式==4.故答案为4.【点睛】此题主解析:4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式.故答案为4.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.三、解答题21.(1)4;(2.【解析】【分析】(1)先进行开平方,0次幂以及开立方运算,再进行加减运算即可;(2)先化简各个含根号的式子,再合并即可得出结果【详解】解:(1)原式=2+1+1=4;(2)原式.【点睛】本题考查实数的相关运算,掌握基本运算法则是解题的关键.22.(1)乙骑自行车的速度为200m/min;(2)乙同学离学校还有1600m 【解析】【分析】(1)设乙骑自行车的速度为x m/min,则甲步行速度是13x m/min,公交车的速度是3xm/min,根据题意列方程即可得到结论;(2)200×8=1600米即可得到结果.【详解】解:(1)设乙骑自行车的速度为xm/min,则公交车的速度是3x m/min,甲步行速度是13x m/min.由题意得:320020032002008133x xx--=+,解得x=200,经检验x=200原方程的解答:乙骑自行车的速度为200m/min.(2)当甲到达学校时,乙同学还要继续骑行8分钟200×8=1600m,答:乙同学离学校还有1600m.【点睛】此题主要考查了分式方程的应用,根据题意列出方程是解题关键.23.(1)是;(2);(3)见解析【解析】【分析】问题(1)根据题中所给的奇异三角形的定义直接进行判断即可. 问题(2)分c 是斜边和b 是斜边两种情况,再根据勾股定理判断出所给的三角形是否符合奇异三角形的定义.问题(3)利用勾股定理得AC 2+BC 2=AB 2,AD 2+BD 2=AB 2,由AD=BD ,则AD=BD ,所以2AD 2=AB 2,加上AE=AD ,CB=CE ,所以AC 2+CE 2=2AE 2,然后根据新定义即可判断△ACE 是奇异三角形.【详解】(1)解:设等边三角形的一边为a ,则a 2+a 2=2a 2,∴符合奇异三角形”的定义.∴“等边三角形一定是奇异三角形”是真命题;故答案为:是;(2)解:①当52为斜边时,另一条直角边225255, ∵22255252(或22255225)∴Rt △ABC 不是奇异三角形,②当5,52是直角边时,斜边2252553 ∵22553=100,2252100 ∴222553=252,∴Rt △ABC 是奇异三角形,故答案为53;(3)证明∵∠ACB=∠ADB=90°,∴AC 2+BC 2=AB 2,AD 2+BD 2=AB 2,∵AD=BD ,∴2AD 2=AB 2,∵AE=AD ,CB=CE ,∴AC 2+CE 2=2AE 2,∴△ACE 是奇异三角形.【点睛】本题属于四边形综合题,考查了解直角三角形,勾股定理,奇异三角形的定义等知识,解题的关键是理解题意,灵活运用.24.(1) 2 ; (2) 73x -- 【解析】【分析】(1)首先计算平方根和立方根,然后进行加减运算即可;(2)根据分式的除法和减法进行计算.【详解】解:(1)原式=4332-+-=2;(2)原式=()()()2334133x x x x x +-+-⨯+- =413x x +-- =343x x x ---- =73x -- 【点睛】 本题考查分式的混合运算和二次根式的混合运算,解题的关键是明确它们各自的计算方法.25.(1)详见解析;(2)BC =【解析】【分析】(1)根据等式的基本性质可得∠DAB =∠EAC ,然后根据等腰直角三角形的性质可得DA =EA ,BA =CA ,再利用SAS 即可证出结论;(2)根据等腰直角三角形的性质和勾股定理即可求出DE ,从而求出EC 和DC ,再根据全等三角形的性质即可求出DB ,∠ADB=∠AEC ,从而求出∠BDC=90°,最后根据勾股定理即可求出结论.【详解】证明:(1)∵90BAC DAE ∠=∠=︒∴∠DAE -∠BAE =∠BAC -∠BAE∴∠DAB =∠EAC∵ABC ∆和ADE ∆均为等腰直角三角形∴DA =EA ,BA =CA在△ADB 和△AEC 中DA EADAB EACBA CA=⎧⎪∠=∠⎨⎪=⎩∴△ADB≌△AEC(2)∵ADE△是等腰直角三角形,2AD AE==∴DE=222AD AE+=,∵2DE EC=∴EC=112DE=,∴DC=DE+EC=3∵△ADB≌△AEC∴DB=EC=3,∠ADB=∠AEC∵∠ADB=∠ADE+∠BDC,∠AEC=∠ADE+∠DAE=∠ADE+90°∴∠BDC=90°在Rt△BDC中,2210BC DB DC=+=【点睛】此题考查的是等腰直角三角形的性质、全等三角形的判定及性质和勾股定理,掌握等腰直角三角形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键.四、压轴题26.见解析【解析】【分析】先根据平行线的性质,得到角的关系,然后证明OCD OFE△≌△,写出证明过程和依据即可.【详解】解:过点E作//EF AC交BC于F,∴ACB EFB∠=∠(两直线平行,同位角相等),∴D OEF∠=∠(两直线平行,内错角相等),在OCD与OFE△中()()()COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证, ∴OCD OFE △≌△,(ASA )∴CD FE =(全等三角形对应边相等)∵AB AC =(已知)∴ACB B =∠∠(等边对等角)∴EFB B ∠=∠(等量代换)∴BE FE =(等角对等边)∴CD BE =;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.27.(1)35,2⎛⎫ ⎪⎝⎭;(2)2;(3)不是;(4)(6,75) 【解析】【分析】 (1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab +=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132, ∴5+32=5×32-1, ∴35,2⎛⎫ ⎪⎝⎭是“白马有理数对”, 故答案为:35,2⎛⎫ ⎪⎝⎭;(2)若(,3)a 是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n 是“白马有理数对”,则m+n=mn-1,那么-n+(-m )=-(m+n )=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n ,-m )不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75, ∴(6,75)是“白马有理数对”, 故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.28.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解. (2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠,()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒.②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知, 11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE A MC ︒∠+∠+∠=,112()90CMF ABE A MC ︒∴∠+∠+∠=,()1129090EMF AMC ︒︒∴-∠+∠=, ()112906090AMC ︒︒︒∴-+∠=, 1130A MC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.29.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】 (1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠3=90°,∴∠1=∠3.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3.②因为△BFC ≌△AOB ,3(,0)A k-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k +点3(3,3)Ck-+,如图2, -1<Cy≤2,即:-1<33k+≤2,则334k-≤<-.【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.30.(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析.【解析】【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM;(2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解;(3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP.【详解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM.∵∠NCM=135°,∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;(2)过点N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC ≌△CDM (AAS ),∴NE=CD ,CE=DM ;∵S 112=AC•NE ,S 212=AB•CD , ∴12S AC S AB=; (3)当AC=2BD 时,对于满足条件的任意点N ,AN=CP 始终成立,理由如下:过点N 作NE ⊥AC 于E ,由(2)可得NE=CD ,CE=DM .∵AC=2BD ,BP=BM ,CE=DM ,∴AC ﹣CE=BD+BD ﹣DM ,∴AE=BD+BP=DP .∵NE=CD ,∠NEA=∠CDP=90°,AE=DP ,∴△NEA ≌△CDP (SAS ),∴AN=PC .【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.。

2016-2017年上海市八年级数学期中测试卷(含答案)

2016-2017年上海市八年级数学期中测试卷(含答案)

上海民办新竹园中学2016学年第一学期八年级期中考试卷一、填空题1. 22. 和y x y +=____________3. 把中根号外的a 放到根号内是:=____________4. x 的取值范围是____________5. 分解因式:42239x x −−=____________6. 方程2310x x ++=的两根为m 、n =____________7. 已知2+x 的方程240x x c −+=的一个根,则c 的值为____________8. 已知关于x 的方程22(3)04m x m x +−+=有两个不相等的实数根,则m 的最大整数值是____________9. 方程2420x x −−=的两个根分别是1x 、2x ,且12x x <,则2212x x −=____________10. 为了迎接“双十一”。

超市对某一食品进行连续两次降价促销,每盒的价格由原来的80元降至52.8元,如果平均每次降价的百分率为x , 则根据题意所列方程为:____________11. 把命题“同角的余角相等”改写成为“如果…,那么…”的形式是____________12. 如图,矩形ABCD 中,AC 与BD 相交于点O ,30,16ACB AC ∠=︒=,将矩形ABCD 绕点O 旋转后点A 与点D 重合,点B 落在点E 处,那么AE 的长为____________13. 如图,点D 、E 分别是线段AB 、AC 的中点,点F 、G 分别是线段BD 、CE 的中点,若6FG =,则BC =____________第12题 第13题二、选择题14. 下列各式一定成立的是( )A. =B. =C. 2=±D. 4= 15.下列说法正确的是( )A. 原命题和逆命题同真同假B. 两直线平行,同旁内角互补这个定理有逆定理C. 一个定理的逆命题也是它的逆定理D. 如果两个角的补角相等,那么这两个角的余角也相等16. 当3a <|4|a −的结果是( )A. -1B. 1C. 27a −D. 72a −17. 等腰直角三角形斜边的中线为2 )A. 2B. 5C. 10+D. 20+18. 已知四边形ABCD 中,四个角都是90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A. AD BC =B. AB CD =C. CD BC =D. AC BD =三、简答题19.20. 计算:2)(2−21. 解方程:2(21)4(21)30x x ++++=22. 解方程:11()()22y y +−=23. 解方程:()222()00mnx m n x mn mn −++=≠24. 当3322x y +−==25. 已知:x =,求分式222325235x x x x x x +−−++−的值四、解答题26. 如图,在四边形ABCD 中,BC AB >,180A C ∠+∠=︒,且AD DC =,求证:BF 平分ABC ∠.27. 如图,点E 是直角三角形ABC 斜边AB 的中点,D 是BC 延长线上一点,且CD CE =,ABC ∠的平分线交DE 于点F ,求证:点F 在线段BD 的垂直平分线上28. 如图,在等边三角形ABC 中,D 、E 分别是BC 、AB 上一点,且,BD AE CN AD =⊥于点N ,CE 交AD 于点M ,证明:MN 与CM 的关系,并证明你的结论29. 某机械租赁公司有同一型号的机器设备40套,经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出.在此基础上,当每套设备的月租金每提高10 元时,这种设备就少租出一套,且没租出的一套设备每月需支出费用(维护费、管理费等)20 元.设每套设备的月租金为x (元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y (元)(1)用含x 的代数式表示未出租的设备数(套)以及所有未出租设备(套)的支出费;(2)求y 与x 之间的二次函数关系式;(3)当x 为何值时,租赁公司出租该型号设备的月收益最大,为多少?(4)当租赁公司的月收益不低于11040 元时,此时租赁公司出租的设备套数应满足什么条件?参考答案1、>2、3或53、4、01x ≤<5、()()22233x x +−6、37、18、19、− 10、()280152.8x −=11、如果两个角是同一个角的余角,那么这两个角相等。

2016~2017学年八年级上学期第二次月考考试(含答案)

2016~2017学年八年级上学期第二次月考考试(含答案)

2016~2017学年八年级上学期第二次月考考试数学试卷(考试时间:100分钟,满分:120分)二 一、选择题:(每小题3分,共30分) 1.若5)2(32+-=-a xa y 是一次函数,则a 的值是( )A .-2B. 2C. 2±D. 3±2.一次函数y=-x -1的图象与y 轴的交点坐标为( )A. (-1,0)B. (1,0)C. (0,1)D. (0,-1)3.一次函数b x y +=2的图像与y 轴的交点坐标为(0,-2),则=b ( ) A 、-2 B 、2 C 、21D 、4 4. 点P (-1,2)关于x 轴对称点的坐标是( )A 、(1,-2)B 、(-1,2)C 、(1,2)D 、(-1,-2) 5. 若关于y x ,的二元一次方程组⎩⎨⎧=-=+ky x ky x 95的解也是二元一次方程632=+y x 的解,则k 的值为( ) A .43-B .43C .34D .34- 6.下列四点中,在函数23+=x y 的图象上的点是( )A .(2,0)B .(0,-1.5)C .(-1,1)D .(-1,-1) 7.下列函数中是一次函数的是( ). A .y =2x 2-1B .y =1x -C .y =13x + D .y =3x +2x 2-1 8.16的算术平方根是( )A 、4B 、-4C 、±4D 、8 9.如图,直线l 1、l 2的交点坐标可以看作方程组( )的解A 、22,22x y x y -=-⎧⎨-=⎩B 、1,22y x y x =-+⎧⎨=-⎩C 、21,22x y x y -=-⎧⎨-=-⎩D 、21,22y x y x =+⎧⎨=-⎩10.已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )A B C D 二.填空题:(每小题4分,共32分) 11.若52133=---n m y x是二元一次方程,则.______________,==n m12.一个三角形的两个内角是35°和110°,则另一个内角是 .13.已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 14.二元一次方程组⎩⎨⎧=+=+423y x y x 的解是: .15.若点)3,(+m m 在函数221+-=x y 的图象上,则_____=m ,函数1-=x y 一定 不经过第 象限。

月考二模拟卷二

月考二模拟卷二

八年级数学上册第二次月考模拟卷(二)1、下列各数属于无理数的是( )A 、1.2B 、9C 、22 D 、13- 2、下列计算正确的是( )A 、33a a a ÷=B 、23235a a a +=C 、2(2)a -=24a -D 、326()a a = 3、抛一枚硬币10次,其中“正面朝上”2次,那么“反面朝上”的频率是( )A 、2B 、20%C 、8D 、80%4、下列各组数能够成直角三角形的是( )A 、2,3,4B 、2,2,3C 、6,5 ,3D 、122,2,1125、如图,你能根据最大正方形的面积得到的恒等式是( )A 、22()()a b a b a b -=+-B 、222()2a b a ab b +=++C 、222()2a b a ab b -=-+D 、22()(2)23a b a b a ab b ++=++6、如图是用圆规和直尺画已知角的平分线的示意图,它是根据全等三角形识别中的( )A 、SSSB 、SASC 、AASD 、ASA7、如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②CD=CE ;③DE 平分∠ADB ;④BE+AC=AB ,其中正确的有( )A 、1个B 、2个C 、3个D 、4个第5题 第6题 第7题8、16的算术平方根是___________。

994。

10、因式分解:2484x x -+=___________。

11、计算:(23)(32)x x -+=_______________。

12、已知△ABC ,下列条件能够判定△ABC 是等边三角形的是_________(写序号)①AB=BC=AC ②∠A =∠B=600 ③∠A =∠B=∠C ④AB=BC ,∠A=60013、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为__________。

上海民办桃李园实验学校八年级上册期末数学模拟试卷含详细答案

上海民办桃李园实验学校八年级上册期末数学模拟试卷含详细答案

上海民办桃李园实验学校八年级上册期末数学模拟试卷含详细答案一、选择题1.下列说法:①三角形的一个外角等于它的任意两个内角和;②内角和等于外角和的多边形只有四边形;③角是轴对称图形,角的对称轴是角平分线.其中正确的有()个.A.0 B.1 C.2 D.32.若关于x的分式方程1233m xx x-=---有增根,则实数m的值是()A.2B.2-C.1D.03.新型冠状病毒“COVID﹣19”的平均半径约为50纳米(1纳米=10﹣9米),这一数据用科学记数法表示,正确的是()A.50×10﹣9米B.5.0×10﹣9米C.5.0×10﹣8米D.0.5×10﹣7米4.如图,有A,B两个正方形,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为5和16,则正方形A,B的面积之和为()A.11 B.9 C.21 D.235.如图,△CEF中,∠E=70°,∠F=50°,且AB∥CF ,AD∥CE,连接BC,CD,则∠A的度数是()A.40°B.45°C.50°D.60°6.下列多项式中,不能进行因式分解的是()A.﹣a2+b2B.﹣a2﹣b2C.a3﹣3a2+2a D.a2﹣2ab+b2﹣1 7.如图,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:其中正确的结论有()①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN;⑤△AFN≌△AEM.A.2个B.3个C.4个D.5个8.在平面直角坐标系中,若干个等腰直角三角形按如图所示的规律摆放.点P 从原点O 出发,沿着“1234O A A A A →→→→…”的路线运动(每秒一条直角边),已知1A 坐标为()()()231,12,0,,1,3A A ()44,0A ···,设第n 秒运动到点(n P n 为正整数),则点2020P 的坐标是)( )A .()2020,0B .()2019,1C .()1010,0D .()2020,1-9.如图,点D 在△ABC 的边BC 上,BD CD >.将△ABD 沿AD 翻折,使B 落在点E 处.且DE 与AC 交于点F .设△AEF 的面积为1S ,△CDF 的面积为2S ,则1S 与2S 的大小关系为( )A .12S S >B .12S SC .12S S <D .不确定10.如图所示,在直角三角形ACB 中,已知∠ACB=90°,点E 是AB 的中点,且DE AB ⊥,DE 交AC 的延长线于点D 、交BC 于点F ,若∠D=30°,EF=2,则DF 的长是( )A .5B .4C .3D .2二、填空题11.如图,在△ABC 中,AD 、AE 分别是边BC 上的中线与高,AE =4,△ABC 的面积为12,则CD 的长为_____.12.若x+y =5,xy =6,则x 2+y 2+2007的值是_____.13.在边长为a 的正方形中挖掉一边长为b 的小正方形(a >b ),把余下的部分剪成直角梯形后,再拼成一个等腰梯形(如图),通过计算阴影部分的面积,验证了一个等式,这个等式是_____.14.若4,3a b ab +==,则 22a b +的值为________.15.已知:AD 、AE 分别是ABC 的高,中线,6BE =,4CD =,则DE 的长为_________.16.如图,AC 是半圆O 的一条弦,以弦AC 为折线将弧AC 折叠后过圆心O ,⊙O 的半径为2,则圆中阴影部分的面积为_____.17.如图,△ABC 中,点D 在边BC 上,DE ⊥AB 于E ,DH ⊥AC 于H ,且满足DE=DH ,F 为AE 的中点,G 为直线AC 上一动点,满足DG =DF ,若AE=4cm ,则AG= _____cm .18.若△ABC 中,AD 是BC 边上的高线,AE 平分∠BAC ,∠B =40°,∠C =50°,则∠EAD=_____°.19.计算11x x x+-的结果为__________. 20.计算:201(1)3π-⎛⎫+-= ⎪⎝⎭____________. 三、解答题21.如图,在ABC 中,110ABC ∠=,40A ∠=.(1)作ABC 的角平分线BE (点E 在AC 上;用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求BEC ∠的度数.22.如图,在ABC ∆和DEF ∆中,B 、E 、C 、F 在同一直线上,下面有四个条件:①AB DE =;②AC DF =;③//AB DE ;④BE CF =.请你从中选三个作为题设,余下的一个作为结论,写出一个真命题,并加以证明.解:我写的真命题是:已知:____________________________________________;求证:___________.(注:不能只填序号)证明如下:23.已知:230m mn +=,210mn n -=-,求下列代数式的值:(1)222m mn n +-;(2)227m n +-.24.如图,在ABC 中,点D 为BC 上一点,过点D 作DE AB ⊥于点,E DF AC ⊥于点F .连接EF .(1)若,3,5BAD DAC DE AC ∠=∠==,求ADC 的面积;(2)若DF AF =,求证:2AE DE EF +=.25.如图,点B ,E ,C ,F 在一条直线上,AB=DE ,AC=DF ,BE=CF .试说明: (1)ABC DEF ≅;(2)A EGC ∠=∠.26.已知ΔABC 是等腰三角形.(1)若∠A = 100°,求∠B 的度数;(2)若∠A = 70°,求∠B 的度数;(3)若∠A =α(45°<α< 90°),过顶点B 的角平分线BD 与过顶点C 的高CE 交于点F ,求∠BFC 的度数(用含α的式子表示).27.已知:如图,ABC 中,∠ABC=45°,CD AB ⊥于D ,BE 平分∠ABC ,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G (1)求证:BF=AC ;(2)判断CE 与BF 的数量关系,并说明理由28.观察下列等式:第1个等式:1111(1)1323a ==⨯-⨯; 第2个等式:21111()35235a ==⨯-⨯; 第3个等式:31111()57257a ==⨯-⨯; 第4个等式:41111()79279a ==⨯-⨯;…… 请回答下列问题:(1)按以上规律,用含n 的式子表示第n 个等式:n a = = (n 为正整数) (2)求1234100•••a a a a a +++++ 的值.29.如图,//AB CD ,点E 在直线CD 上,射线EF 经过点,B BG ,平分ABE ∠交CD 于点G .(1)求证:BGE GBE ∠=∠;(2)若70∠︒=DEF ,求FBG ∠的度数.30.观察下列各式(x -1)(x +1)=x 2-1(x -1)(x 2+x +1)=x 3-1(x -1)(x 3+x 2+x +1)=x 4-1(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x +1)(2)你能否由此归纳出一般规律(x -1)(x n +x n-1+…+x +1)(3)根据以上规律求32018+32017+32016+32+3+1的值【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据三角形的外角和定理、三角形的内角和定理、角的性质、对称轴的定义知识点逐个判断即可.【详解】解: ①应为三角形的一个外角等于与它不相邻的两个内角的和,故本选项错误; ②内角和等于外角和的多边形只有四边形,故正确;③角是轴对称图形,角的对称轴是角的平分线所在的直线,③错误;综上所述, ②正确,故选B .【点睛】本题考查了三角形的外角和定理、三角形的内角和定理、角的性质、对称轴的定义相关知识点,能熟记知识点的内容是解此题的关键.2.A解析:A【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出m 的值.【详解】去分母得:m=x-1-2x+6,由分式方程有增根,得到x-3=0,即x=3,把x=3代入整式方程得:m=2,故选:A .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.3.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:50纳米=50×10﹣9米=5.0×10﹣8米.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.C解析:C【解析】【分析】设A 正方形的边长为a ,B 正方形的边长为b ,根据图形得到a 2+b 2=5+2ab ,ab =8,得到答案.【详解】解:设A 正方形的边长为a ,B 正方形的边长为b ,由图甲可知,a 2﹣b 2﹣b (a ﹣b )×2=5,即a 2﹣2ab +b 2=5,∴a 2+b 2=5+2ab ,由图乙可知,(a +b )2﹣a 2﹣b 2=16,即ab =8,∴a 2+b 2=5+2ab =21,故选:C .【点睛】本题考查的是完全平方公式的几何背景,掌握平方差公式和完全平方公式是解题的关键.5.D解析:D【解析】【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF , ∴31∠=∠, ∵AD CE ,∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.6.B解析:B【解析】【分析】根据多项式特点, 通过提公因式法或公式法判断是否可以进行因式分解,再利用排除法求解.【详解】解:A 、两个平方项异号,可用平方差公式进行因式分解,故A 正确;B 、两个平方项同号,不能运用平方差公式进行因式分解,故B 错误;C 、可先运用提公因式法,再运用十字相乘法,原式=a (a 2-3a+2)=a (a-1)(a-2),故C 正确;D 、可先分组,再运用公式法,原式=(a-b )2-1=(a-b+1)(a-b-1),故D 正确. 故选B .【点睛】本题考查公式法、提公因式法、分组分解法分解因式,熟练掌握因式分解的各种方法是解本题的关键.7.C解析:C【解析】【分析】①正确.可以证明△ABE ≌△ACF 可得结论.②正确,利用全等三角形的性质可得结论.③正确,根据ASA 证明三角形全等即可.④错误,本结论无法证明.⑤正确.根据ASA证明三角形全等即可.【详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴BE=CF,AF=AE,故②正确,∠BAE=∠CAF,∠BAE−∠BAC=∠CAF−∠BAC,∴∠1=∠2,故①正确,∵△ABE≌△ACF,∴AB=AC,又∠BAC=∠CAB,∠B=∠C△ACN≌△ABM(ASA),故③正确,CD=DN不能证明成立,故④错误∵∠1=∠2,∠F=∠E,AF=AE,∴△AFN≌△AEM(ASA),故⑤正确,故选:C.【点睛】本题考查三角形全等的判定方法和三角形全等的性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.8.A解析:A【解析】【分析】通过观察可知,纵坐标每6个进行循环,先求出前面6个点的坐标,从中得出规律,再按规律写出结果便可.【详解】解:由题意知,A1(1,1),A2(2,0),A3(3,1),A4(4,0),A5(5,-1),A6(6,0),A7(7,1),…由上可知,每个点的横坐标等于序号,纵坐标每6个点依次为:1,0,1,0,-1,0这样循环,∴A2020(2020,0),故选:A.【点睛】本题是一个规律题,根据题意求出点的坐标,从中找出规律来,这是解题的关键所在.9.A解析:A【解析】【分析】依据点D在△ABC的边BC上,BD>CD,即可得到S△ABD>S△ACD,再根据折叠的性质,即可得到S1>S2.【详解】解:∵点D在△ABC的边BC上,BD>CD,∴S△ABD>S△ACD,由折叠可得,S△ABD=S△AED,∴S△AED>S△ACD,∴S△AED−S△ADF>S△ACD−S△ADF,即S1>S2,故选:A.【点睛】本题主要考查了折叠的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.B解析:B【解析】【分析】求出∠B=30°,结合EF=2,得到BF,连接AF,根据垂直平分线的性质得到FA=FB=4,再证明∠DAF=∠D,得到DF=AF=4即可.【详解】解:∵DE⊥AB,则在△AED中,∵∠D=30°,∴∠DAE=60°,在Rt△ABC中,∵∠ACB=90°,∠BAC=60°,∴∠B=30°,在Rt△BEF中,∵∠B=30°,EF=2,∴BF=4,连接AF,∵DE是AB的垂直平分线,∴FA=FB=4,∠FAB=∠B=30°,∵∠BAC=60°,∴∠DAF=30°,∵∠D=30°,∴∠DAF=∠D,∴DF=AF=4,故选B.【点睛】本题考查了垂直平分线的判定和性质,直角三角形的性质,解题的关键是掌握相应定理,构造线段AF.二、填空题11.3【解析】【分析】利用三角形的面积公式求出BC即可解决问题.【详解】∵AE⊥BC,AE=4,△ABC的面积为12,∴×BC×AE=12,∴×BC×4=12,∴BC=6,∵AD是△A解析:3【解析】【分析】利用三角形的面积公式求出BC即可解决问题.【详解】∵AE⊥BC,AE=4,△ABC的面积为12,∴12×BC×AE=12,∴12×BC×4=12,∴BC=6,∵AD是△ABC的中线,∴CD =12BC =3, 故答案为3.【点睛】本题考查三角形的面积,三角形的中线与高等知识,解题的关键是熟练掌握基本知识,属于中基础题.12.2020【解析】【分析】利用完全平方公式得到x2+y2+2007=(x+y )2-2xy+2007,然后利用整体代入的方法计算.【详解】解:∵x+y=5,xy =6,∴x2+y2+2007=解析:2020【解析】【分析】利用完全平方公式得到x 2+y 2+2007=(x+y )2-2xy+2007,然后利用整体代入的方法计算.【详解】解:∵x+y =5,xy =6,∴x 2+y 2+2007=(x+y )2﹣2xy+2007=52﹣2×6+2007=2020.故答案为:2020.【点睛】本题考查完全平方公式,解题关键是记住完全平方公式((a ±b )2=a 2±2ab+b 2).13.【解析】【分析】用大正方形的面积减去小正方形的面积得到左边图形中阴影部分的面积,用梯形的面积公式表示右边图形中阴影部分的面积,然后利用阴影部分的面积列等式,整理得到平方差公式.【详解】解:解析:()()22a b a b a b -=+-【解析】【分析】用大正方形的面积减去小正方形的面积得到左边图形中阴影部分的面积,用梯形的面积公式表示右边图形中阴影部分的面积,然后利用阴影部分的面积列等式,整理得到平方差公式.【详解】解:根据题意得a 2﹣b 2=12(2b +2a )•(a ﹣b ), 即a 2﹣b 2=(a +b )(a ﹣b ).故答案为a 2﹣b 2=(a +b )(a ﹣b ).【点睛】本题考查了平方差公式的几何背景:运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.14.10【解析】【分析】【详解】因为,所以,故答案为:10.解析:10【解析】【分析】【详解】因为()2222a b a ab b +=+=,所以()2222242316610a b a b ab +=+-=-⨯=-=, 故答案为:10.15.2或10【解析】【分析】由已知条件,可推导出;再假设D 点所在的不同位置,分别计算,即可得到答案.【详解】∵是的中线,且∴假设点D 在CB 的延长线上,如下图∵是的中线,且∴∵∴解析:2或10【解析】【分析】由已知条件,可推导出6EC BE ==;再假设D 点所在的不同位置,分别计算DE ,即可得到答案.【详解】∵AE 是ABC 的中线,且6BE =∴6EC BE ==假设点D 在CB 的延长线上,如下图∵AE 是ABC 的中线,且6BE =∴212BC BE ==∵4CD =∴CD BC <,和图形不符∴该假设不成立;假设点D 在点E 和点B 之间,如下图∵4CD =,6EC =∴CD EC <,和图形不符∴该假设不成立;假设点D 在点E 和点C 之间,如下图∴642DE EC CD =-=-=;假设点D 在点BC 延长线上,如下图∴6410DE EC CD =+=+=;故答案为:2或10.【点睛】本题考察了三角形中线和三角形高的知识;求解的关键是熟练掌握三角形中线和三角形高的性质,从而完成求解.16.【解析】【分析】过点作,交于,连接、,证明弓形的面积弓形的面积,这样图中阴影部分的面积的面积.【详解】过点作,交于,连接、,,,是的直径,,,,是等边三角形,,弓形面积 3【解析】【分析】过点O 作OE AC ⊥,交AC 于D ,连接OC 、BC ,证明弓形OC 的面积=弓形BC 的面积,这样图中阴影部分的面积=OBC 的面积.【详解】过点O 作OE AC ⊥,交AC 于D ,连接OC 、BC ,1122OD DE OE OA ===, ∴30A ∠=︒,AB 是O 的直径,∴90ACB ∠=︒,∴60B ∠=︒,2OB OC ==,∴OBC 是等边三角形,∴OC BC =,∴弓形OC 面积=弓形BC 的面积,∴阴影部分面积12332OBC S==⨯ 3【点睛】本题考查了折叠问题、扇形的面积.解决本题的关键是把阴影部分的面积转化为OBC 的面积. 17.2或6.【解析】【分析】【详解】∵DE ⊥AB ,DH ⊥AC ,∴∠AED=∠AHE=90°.在△ADE 和△ADH 中,∵AD=AD,DE=DH, ∴△ADE ≌△ADH(HL),∴AH=A解析:2或6.【解析】【分析】【详解】∵DE ⊥AB ,DH ⊥AC ,∴∠AED=∠AHE=90°.在△ADE 和△ADH 中,∵AD=AD,DE=DH, ∴△ADE ≌△ADH(HL),∴AH=AE=4cm.∵F 为AE 的中点,∴AF=EF=2cm.在△FDE 和△GDH 中,∵DF=DG,DE=DH, ∴△FDE ≌△GDH(HL),∴GH=EF=2cm.当点G 在线段AH 上时,AG=AH-GH=4-2=2cm;当点G 在线段HC 上时,AG=AH+GH=4+2=6cm;故AG 的长为2或6.18.5【解析】【分析】由三角形的高得出,求出,由三角形内角和定理求出 ,由角平分线求出,即可得出的度数.【详解】解:中,是边上的高,,,,平分,,.故答案为:5.【点睛】本题解析:5【解析】【分析】由三角形的高得出90ADC ∠=︒,求出DAC ∠,由三角形内角和定理求出 BAC ∠,由角平分线求出EAC ∠,即可得出EAD ∠的度数.【详解】解:ABC ∆中,AD 是BC 边上的高,90ADC ∴∠=︒,90905040DAC C , 180180405090BAC B C ,AE ∵平分BAC ∠, 11904522EACBAC , 45405EAD EAC DAC .故答案为:5.【点睛】本题考查了三角形内角和定理、角平分线的定义、角的和差计算;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.19.1【解析】【分析】根据分式的加减法法则计算即可得答案.【详解】==1.故答案为:1【点睛】本题考查分式的加减,同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,解析:1 【解析】【分析】根据分式的加减法法则计算即可得答案.【详解】11x x x+- =11x x+- =1.故答案为:1【点睛】本题考查分式的加减,同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减;熟练掌握运算法则是解题关键.20.10【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:原式=9+1=10【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.解析:10【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:原式=9+1=10【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.三、解答题21.(1)见解析;(2)95°【解析】【分析】(1)依据角平分线的作法,即可得到△ABC 的角平分线BE ;(2)依据三角形内角和定理,即可得到∠AEB 的度数,再根据邻补角的定义,即可得到∠BEC 的度数.【详解】(1)如图(满足“三弧一线”可得)线段BE 即为所求(2)由(1)得,BE 平分ABC ∠∵110ABC ∠=︒ ∴1552ABE ABC ∠=∠=︒ ∵40A ∠=︒∴180554085AEB ∠=︒-︒-︒=︒∵180AEB BEC ∠+∠=︒∴1808595BEC ∠=︒-︒=︒【点睛】本题主要考查了三角形内角和定理以及基本作图,解决问题的关键是掌握角平分线的作法.22.已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AC=DF ,BE=CF .求证:AB ∥DE.证明见解析.或已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AB ∥DE ,BE=CF .求证:AC=DF .证明见解析.【解析】【分析】由BE=CF ⇒BC=EF ,所以,由①②④,可用SSS ⇒△ABC ≌△DEF ⇒∠ABC=∠DEF ⇒ AB ∥DE ;由①③④,可用SAS ⇒△ABC ≌△DEF ⇒AC=DF ;由于不存在ASS 的证明全等三角形的方法,故由其它三个条件不能得到1或4.【详解】解:将①②④作为题设,③作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AC=DF ,BE=CF . 求证:AB ∥DE .证明:在△ABC 和△DEF 中,∵BE=CF ,∴BC=EF.又∵AB=DE ,AC=DF ,∴△ABC ≌△DEF (SSS )∴∠ABC=∠DEF .∴ AB ∥DE.将①③④作为题设,②作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,AB=DE ,AB ∥DE ,BE=CF . 求证:AC=DF .证明:∵AB ∥DE,∴∠ABC=∠DEF.在△ABC 和△DEF 中∵BE=CF ,∴BC=EF.又∵AB=DE ,∠ABC=∠DEF ,∴△ABC ≌△DEF (SAS ),∴AC=DF .【点睛】本题考查命题与定理、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.23.(1)20;(2)33.【解析】【分析】(1)将已知两等式左右两边相加,即可求出所求代数式的值;(2)将已知两等式左右两边相减,即可求出所求代数式的值.【详解】(1)∵230m mn +=,210mn n -=-,∴222m mn n +-=(2m mn +)+(2mn n -)=30-10=20;(2)∵230m mn +=,210mn n -=-,∴227m n +-=(2m mn +)-(2mn n -)-7=30-(-10)-7=30+10-7=33.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.24.(1)152;(2)证明见解析. 【解析】【分析】(1)由题意易得AD 为BAC ∠的角平分线,DE DF =,然后根据三角形面积计算公式可求解;(2)延长EA 到点G ,使AG DE =,连接FG ,则有360AED EDF DFA FAE ∠+∠+∠+∠=︒,进而得到EDF GAF ∠=∠,故EDF GAF ∆∆≌,然后根据全等三角形的性质及等腰三角形可进行求解.【详解】(1)解:BAD DAC ∠=∠∴AD 为BAC ∠的角平分线,DE AB DF AC ⊥⊥∴DE DF =∴11115532222ADC S AC DF AC DE ∆=⨯=⨯=⨯⨯=; (2)证明:延长EA 到点G ,使AG DE =,连接FG ,在四边形AEDF 中,360AED EDF DFA FAE ∠+∠+∠+∠=︒,90AED ∠=︒,90DAF ∠=︒,∴180EDF FAE ∠+∠=︒,180GAF FAE ∠+∠=︒,∴EDF GAF ∠=∠,在EDF ∆和GAF ∆中,DE AG DF AFEDF GAF =⎧⎪=⎨⎪∠=∠⎩, ∴EDF GAF ∆∆≌,∴,13EF GF =∠=∠,1290∠+∠=︒,∴3290∠+∠=︒,∴90EFG ∠=︒,∴GAF ∆是等腰三角形,∴EG =,,EG EA AG AG DE =+=,∴EG AE DE =+,∴AE DE +=.【点睛】本题主要考查等腰三角形的性质与判定及全等三角形的判定与性质,关键是根据全等三角形的判定与性质及直角三角形的性质得到角、线段的等量关系,然后利用等腰三角形的性质求解即可.25.(1)见解析;(2)见解析【解析】【分析】(1)根据等式性质,由BE=CF 得BC=EF ,再根据SSS 定理得△ABC ≌△DEF 即可;(2)由全等三角形得∠B=∠DEF ,由平行线的判定定理得AB ∥DE ,再根据平行线的性质得∠A=∠EGC .【详解】(1)∵BE CF =,∴BE EC CF EC +=+,即BC EF =,在△ABC 与△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩, ∴(SSS)ABC DEF ≅△△;(2)∵△ABC ≌△DEF ,∴∠B=∠DEF ,∴AB ∥DE ,∴∠A=∠EGC .【点睛】本题考查了全等三角形的判定和性质,平行线的性质与判定,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.26.(1)40°;(2)55°或70°或40°;(3)135°-14α或180°-α或90°+12α. 【解析】【分析】(1)根据等腰三角形的性质和三角形内角和计算即可;(2)分∠A 为顶角时和∠A 为底角时两种情况分别求解;(3)主要分∠A 为顶角时和∠A 为底角时两种情况分别求解.【详解】解:(1)∵∠A =100°,∴△ABC 中,∠B=∠C ,∴∠B =()1180100402⨯︒-︒=︒; (2)①当∠A 为顶角时,∠B =()118070552⨯︒-︒=︒; ②∠A 为底角时,若∠B 为底角,则∠B =∠A=70°,若∠B 为顶角,则∠B =180707040︒-︒-︒=︒, 故∠B 的度数为55°或70°或40°;(3)①∠A 为顶角时,如图,BD 平分∠ABC ,CE ⊥AB ,∴∠ABC=90°-12α,∴∠DBC=∠ABD=12∠ABC=45°-14α, ∴∠BFC=∠BEF+∠ABD=90°+45°-14α=135°-14α;②∠A 为底角时,若∠B为顶角,如图,∵CD⊥AB,∴∠ACE=90°-∠A=90°-α,∵AB=BC,BD平分∠ABC,∴BD⊥AC,∴∠BFC=∠ACE+∠CDF=90°-α+90°=180°-α;若∠B为底角,如图,∵AC=BC,∴∠A=∠ABC=α,∵BD平分∠ABC,∴∠ABD=∠CBD=12α,∵CE⊥AB,∴∠CEB=90°,∴∠BFC=∠CEB+∠EBF=90°+12α.综上:∠BFC的度数为135°-14α或180°-α或90°+12α.【点睛】本题考查了等腰三角形的性质,角平分线的定义,以及三角形内角和,特别注意利用分类讨论的方法,避免漏解.27.(1)证明见解析;(2)12CE BF=,理由见解析【解析】【分析】(1)由题意可以得到Rt ⊿DFB ≅Rt ⊿DAC ,从而得到BF=AC ;(2)由题意可以得到Rt ⊿BEA ≅Rt ⊿BEC ,所以1122CE AE AC BF ===. 【详解】证明:∵CD ⊥AB ,∠ABC=45°, ∴BCD 是等腰直角三角形,∠DBF=90°-∠BFD ,∠A=90°-∠DCA ,又BE AC ⊥,∴∠EFC =90°-∠DCA ,∴∠A=∠EFC∵∠BFD=∠EFC ,∴∠A=∠DFB ,∴在Rt ⊿DFB 和Rt ⊿DAC 中,∠BDF=∠CDA ,∠A=∠DFB ,BD=DC ,∴Rt ⊿DFB ≅Rt ⊿DAC ,∴BF=AC ; (2) 12CE BF = 理由是:∵BE 平分ABC ,∴∠ABE=∠CBE ,在Rt ⊿BEA 和Rt ⊿BEC 中,∠AEB=∠CEB ,BE=BE ,∠ABE=∠CBE ,∴Rt ⊿BEA ≅Rt ⊿BEC ,∴12CE AE AC ==由(1)得:12CE BF =. 【点睛】本题考查三角形的综合问题,熟练掌握三角形全等的判定和性质是解题关键.28.(1)1(21)(21)n n -+;111()22121n n --+;(2)100201 【解析】【分析】(1)观察等式数字变化规律即可得出第n 个等式;(2)利用积化和差计算出a 1+a 2+a 3+…+a 100的值.【详解】解:(1) 解: 1111(1)1323a ==⨯-⨯; 21111()35235a ==⨯-⨯; 31111()57257a ==⨯-⨯; 41111()79279a ==⨯-⨯;…… 1111()(21)(21)22121n a n n n n ==--+-+故答案为:1(21)(21)n n -+; 111()22121n n --+ (2)1234100a a a a a +++++ =11111111111(1)()()...()232352572199201-+-+-++- =11111111(1...)233557199201-+-+-++- =11(1)2201- =12002201⨯ =100201【点睛】此题考查数字的变化规律,从简单情形入手,找出一般规律,利用规律解决问题.29.(1)见解析;(2)145°【解析】【分析】(1)根据//AB CD ,可得ABG BGE ∠=∠,根据BG 平分ABE ∠,可得ABG GBE ∠=∠,进而可得BGE GBE ∠=∠;(2)根据//AB CD ,可得70ABE DEF ∠=∠=︒,根据平角定义可得180110ABF ABE ∠=︒-∠=︒,根据BG 平分ABE ∠,可得1352ABG ABE ∠=∠=︒,进而可得FBG ∠的度数.【详解】解:(1)证明://AB CD ,ABG BGE ∴∠=∠, BG 平分ABE ∠,ABG GBE ∴∠=∠,BGE GBE ∴∠=∠;(2)//AB CD ,70ABE DEF ∴∠=∠=︒,180110ABF ABE ∴∠=︒-∠=︒, BG 平分ABE ∠,1352ABG ABE ∴∠=∠=︒, 11035145FBG ABF ABG ∴∠=∠+∠=︒+︒=︒.答:FBG ∠的度数为145︒.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.30.(1)x7﹣1;(2)x n+1﹣1;(3)2019312-.【解析】【分析】(1)仿照已知等式求出所求原式的值即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,利用得出的规律变形,计算即可求出值.【详解】(1)根据题中规律得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)总结题中规律得:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1;(3)原式=12×(3﹣1)×(32018+32017+…+32+3+1)=2019312-.【点睛】此题考查了平方差公式,规律型:数字的变化类,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.。

八年级上学期第二次月考模拟数学试题

八年级上学期第二次月考模拟数学试题

八年级上学期第二次月考模拟数学试题一、选择题1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .22.下列四个实数中,属于无理数的是( ) A .0B .9C .23D .123.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为( )A .12B .13C .14D .15 4.64的立方根是( )A .4B .±4C .8D .±85.下列条件中,不能判断△ABC 是直角三角形的是( )A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:2:36.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( ) A .1-B .0C .1D .27.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( ) A .31y x =-+B .32y x =-+C .31y x =--D .32y x =--8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,09.若关于x 的分式方程211x ax -=+的解为负数,则字母a 的取值范围为( )A.a≥﹣1 B.a≤﹣1且a≠﹣2 C.a>﹣1 D.a<﹣1且a≠﹣2 10.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.二、填空题11.17.85精确到十分位是_____.12.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E 表示的实数是_____.13.已知y与x成正比例,当x=8时,y=﹣12,则y与x的函数的解析式为_____.14.已知113-=a b,则分式232a ab ba ab b+-=--__________.15.当a=_______时,分式2123a aa+--的值为1.16.如图,点P为∠AOB内任一点,E,F分别为点P关于OA,OB的对称点.若∠AOB=30°,则∠E+∠F=_____°.17.若分式293xx--的值为0,则x的值为_______.18.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =34x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.19.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 20.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,4、()3,4,若直线y kx =与线段AB 有公共点,则k 的取值范围为__________.三、解答题21.在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系. (1)在网格中画出△111A B C ,使它与△ABC 关于y 轴对称;(2)点A 的对称点1A 的坐标为 ; (3)求△111A B C 的面积.22.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7×13-6×14=7,17×23-16×24=7,不难发现,结果都是7.①请你再选择一个类似的部分试一试,看看是否符合这个规律; ②请你利用整式的运算对以上的规律加以证明. 23.计算或求值(1)计算:(2a+3b )(2a ﹣b ); (2)计算:(2x+y ﹣1)2;(3)当a =2,b =﹣8,c =5时,求代数式24b b ac-+-的值;(4)先化简,再求值:(m+252m --)243m m -⨯-,其中m =12-. 24.已知:如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,点E 是AC 的中点. (1)求证:BED ∆是等腰三角形:(2)当BCD ∠= ° 时,BED ∆是等边三角形.25.在平面直角坐标系中,直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,直线l 2:y =kx +2(k >0)与坐标轴交于点C ,D ,直线l 1,l 2与相交于点E .(1)当k =2时,求两条直线与x 轴围成的△BDE 的面积;(2)点P (a ,b )在直线l 2:y =kx +2(k >0)上,且点P 在第二象限.当四边形OBEC 的面积为233时. ①求k 的值;②若m =a +b ,求m 的取值范围.四、压轴题26.如图,直线2y x m =-+交x 轴于点A ,直线122y x =+交x 轴于点B ,并且这两条直线相交于y 轴上一点C ,CD 平分ACB ∠交x 轴于点D .(1)求ABC 的面积.(2)判断ABC 的形状,并说明理由.(3)点E 是直线BC 上一点,CDE △是直角三角形,求点E 的坐标.27.如图1.在△ABC 中,∠ACB =90°,AC =BC =10,直线DE 经过点C ,过点A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足分别为点D 和E ,AD =8,BE =6. (1)①求证:△ADC ≌△CEB ;②求DE 的长;(2)如图2,点M 以3个单位长度/秒的速度从点C 出发沿着边CA 运动,到终点A ,点N 以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度; ②当t 为何值时,点M 与点N 重合; ③当△PCM 与△QCN 全等时,则t = .28.如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3 cm/s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm/s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s).(1)点M 、N 从移动开始到停止,所用时间为 s ; (2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2 cm/s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.29.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF30.一次函数y=kx+b的图象经过点A(0,9),并与直线y=53x相交于点B,与x轴相交于点C,其中点B的横坐标为3.(1)求B点的坐标和k,b的值;(2)点Q为直线y=kx+b上一动点,当点Q运动到何位置时△OBQ的面积等于272?请求出点Q的坐标;(3)在y轴上是否存在点P使△PAB是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.D解析:D【解析】【分析】根据无理数的定义,即可得到答案.【详解】=D正确;03=,23是有理数,故ABC错误;故选择:D.【点睛】本题考查了无理数的定义,解题的关键是熟记定义.3.A解析:A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB的周长.【详解】解:∵D是BC的中点,BC=6,∴BD=3,由折叠的性质可知DN=AN,∴△DNB的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等4.A解析:A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.5.B解析:B【解析】【分析】A、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠C的值;D、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A、因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形,故A选项不符合题意;B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;D、因为a:b:c=1:2,所以设a=x,b=2x,x,则x2+x)2=(2x)2,故为直角三角形,故D选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.6.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.7.D解析:D【解析】【分析】求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.上下平移时只需让b的值加减即可.【详解】y=-3x+4的k=-3,b=4,沿x轴向左平移2个单位后,新直线解析式为:y=-3(x+2)+4=-3x-2.故选:D.【点睛】本题考查了一次函数的平移变换,属于基础题,关键掌握将直线上下平移时k的值不变,只有b发生变化.8.B解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.9.D解析:D 【解析】 【分析】先求出分式方程的解,由分式方程有意义的条件可知1x ≠-,即方程的解1≠-,由解为负数可知分式方程的解小于0,可得字母a 的取值范围. 【详解】解:方程两边同时乘以(x +1),得2x ﹣a =x +1, 解得:x =a +1, ∵解为负数, ∴a +1<0, ∴a <﹣1,因为分式有意义,则10x +≠,1x ≠-,即11a +≠-,解得2a ≠- ∴a <﹣1且a ≠﹣2, 故选:D . 【点睛】本题考查了分式方程,根据分式方程解的情况确定参数的取值范围,解题过程中易忽视分式有意义的条件,熟练掌握分式方程的解法是解题的关键.10.A解析:A 【解析】【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题11.9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.12.【解析】∵∠ABC=90°,AB=2,BC=1,∴AC= = ,∵CD=CB=1,∴AD=AC-CD= -1,∴AE=-1,∴点E表示的实数是 -1.【解析】∵∠ABC=90°,AB=2,BC=1,∴,∵CD=CB=1,∴ -1,∴,∴点E13.y=-x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=解析:y=-3 2 x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=-32,∴所求函数解析式是y=-32 x;故答案为:y=-32 x.【点睛】本题考查了待定系数法求函数解析式,解题的关键是理解成正比例的关系的含义.14.【解析】【分析】首先把两边同时乘以,可得,进而可得,然后再利用代入法求值即可.【详解】解:∵,∴ ,∴,∴故答案为:【点睛】此题主要考查了分式化简求值,关键是掌握代入求值时, 解析:34【解析】【分析】 首先把113-=a b两边同时乘以ab ,可得3b a ab -= ,进而可得3a b ab -=-,然后再利用代入法求值即可.【详解】 解:∵113-=a b, ∴3b a ab -= ,∴3a b ab -=-, ∴2323263334a b ab a ab b ab ab a ab b a b ab ab ab 故答案为:34【点睛】 此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.15.-3【解析】【分析】根据题意列出方程,解出a 即可.【详解】解:根据题意得:=1,即可得到解得 :根据中 得到舍弃所以故答案为:-3.【点睛】此题主要考查了可化为一元解析:-3【解析】【分析】根据题意列出方程,解出a 即可.【详解】 解:根据题意得:2123a a a +--=1, 即可得到 2123a a a +-=-解得 :3a =± 根据2123a a a +--中 30a -≠ 得到3a ≠ 舍弃3a =所以3a =-故答案为:-3.【点睛】此题主要考查了可化为一元二次方程的分式方程,关键是根据题意列出分式方程. 16.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.17.-3【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2解析:-3【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:29=030 xx⎧-⎨-≠⎩,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.18.【解析】【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,解析:28 5【解析】【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=34x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,22345+=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴PB PMAB AO=,即:754PM =, 所以可得:PM=285. 19.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x --=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.【解析】【分析】由直线与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 解析:443k ≤≤ 【解析】【分析】由直线y kx =与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 的坐标分别为()1,4、()3,4,∴令y=4时, 解得:4x k= , ∵直线y=kx 与线段AB 有公共点,∴1≤4k≤3, 解得:443k ≤≤. 故答案为:443k ≤≤. 【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于k 的一元一次不等式是解题的关键.三、解答题21.(1)见解析;(2)(-3,5);(3)7.【解析】【分析】(1)分别作出点A 、B 、C 关于y 轴的对称点,再顺次连接可得;(2)根据所作图形可得A 1点的坐标;(3)根据割补法求解可得△111A B C 的面积等于矩形的面积减去三个三角形的面积.【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)由图知A 1的坐标为(-3,5);故答案是:(-3,5);(3)△111A B C 的面积为4×4-12×2×3-12×1×4-12×2×4=7. 【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.22.(1)见解析;(2)证明见解析.【解析】【分析】(1)直接利用已知数据求出即可;(2)利用数字之间的变化规律得出一般式,进而验证即可.【详解】(1)例如11×17-10×18=7;3×9-2×10=7;(2)设最小的一个数为x ,其他三个分别为x+1,x+7,x+8,则:(x+1)(x+7)-x (x+8),=x 2+8x+7-x 2-8x ,=7.【点睛】此题考查了数字的变化规律,整式的混合运算,由特殊到一般,利用日历表中数字的特点得出一般性结论解决问题.23.(1)4a 2+4ab ﹣3b 2;(2)4x 2+4xy+y 2﹣4x ﹣2y ﹣1;(3)426+4)﹣2m ﹣6,-5【解析】【分析】(1)利用多项式乘多项式展开,然后合并即可;(2)利用完全平方公式计算;(3)先计算出24b ac -,然后计算代数式的值;(4)先把括号内通分,再把分子分母因式分解后约分得到原式26m =--,然后把m 的值代入计算即可.【详解】解:(1)原式224263a ab ab b =-+-22443a ab b =+-;(2)原式2(2)2(2)1x y x y =+-+-2244421x xy y x y =++---;(3)224(8)42524b ac -=--⨯⨯=,= (4)原式(2)(2)52(2)[]23m m m m m +---=--- (3)(3)2(2)23m m m m m +--=--- 2(3)m =-+26m =--,当12m =-时,原式12()652=-⨯--=-. 【点睛】本题考查了多项式乘法和、分式的化简求值以及代数式求值.掌握整式乘法和分式运算法则熟练运算是解题关键.24.(1)证明见解析;(2)150.【解析】试题分析:(1)根据直角三角形斜边上的中线等于斜边的一半可得BE=12AC ,DE=12AC ,从而得到BE=DE .(2)利用等边对等角以及三角形外角的性质得出12∠DEB=∠DAB,即可得出∠DAB=30°,然后根据四边形内角和即可求得答案.试题解析:证明:(1)∵∠ABC=∠ADC=90°,点E 是AC 边的中点, ∴BE=12AC ,DE=12AC , ∴BE=DE , ∴△BED 是等腰三角形;(2)∵AE=ED ,∴∠DAE=∠EDA ,∵AE=BE ,∴∠EAB=∠EBA ,∵∠DAE+∠EDA=∠DEC ,∠EAB+∠EBA=∠BEC ,∴∠DAB=12∠DEB , ∵△BED 是等边三角形,∴∠DEB=60°,∴∠BAD=30°,∴∠BCD=360°-90°-90°-30°=150°.25.(1)△BDE 的面积=8;(2)①k =4;②﹣12<m <2. 【解析】【分析】(1)由直线l 1的解析式可得点A 、点B 的坐标,当k =2时,由直线l 2的解析式可得点C 、点D 坐标,联立直线l 1与直线l 2的解析式可得点E 坐标,根据三角形面积公式求解即可;(2)①连接OE .设E (n ,﹣2n +6),由S 四边形OBEC =S △EOC +S △EOB 可求得n 的值,求出点E 坐标,把点E 代入y =kx +2中求出k 值即可;②由直线y =4x +2的表达式可确定点D 坐标,根据点P (a ,b )在直线y =4x +2上,且点P 在第二象限可得42b a =+及a 的取值范围,由m =a +b 可确定m 的取值范围.【详解】解:(1)∵直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,∴当y =0时,得x =3,当x =0时,y =6;∴A (0,6)B (3,0);当k =2时,直线l 2:y =2x +2(k ≠0),∴C (0,2),D (﹣1,0) 解2622y x y x =-+⎧⎨=+⎩得14x y =⎧⎨=⎩, ∴E (1,4),4BD ∴=,点E 到x 轴的距离为4,∴△BDE 的面积=12×4×4=8. (2)①连接OE .设E (n ,﹣2n +6),∵S 四边形OBEC =S △EOC +S △EOB , ∴12×2×n +12×3×(﹣2n +6)=233, 解得n =23, ∴E (23,143), 把点E 代入y =kx +2中,143=23k +2,解得k =4.②∵直线y =4x +2交x 轴于D ,∴D (﹣12,0), ∵P (a ,b )在第二象限,即在线段CD 上,∴﹣12<a <0, ∵点P (a ,b )在直线y =kx +2上∴b =4a +2,∴m =a +b =5a +2,15222a -<+< ∴﹣12<m <2.【点睛】本题考查了一次函数与几何图形的综合,涉及了一次函数与坐标轴的交点、解析式,两条直线的交点及围成的三角形的面积,灵活的将函数图像与解析式相结合是解题的关键. 四、压轴题26.(1)5;(2)直角三角形,理由见解析;(3)44,33E ⎛⎫-⎪⎝⎭或82,33E ⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)先求出直线122y x =+与x 轴的交点B 的坐标和与y 轴的交点C 的坐标,把点C 代入直线2y x m =-+,求出m 的值,再求它与x 轴的交点A 的坐标,ABC 的面积用AB 乘OC 除以2得到;(2)用勾股定理求出BC 的平方,AC 的平方,再根据AB 的平方,用勾股定理的逆定理证明ABC 是直角三角形;(3)先根据角平分线求出D 的坐标,再去分两种情况构造全等三角形,利用全等三角形的性质求出对应的边长,从而得到点E 的坐标.【详解】解:(1)令0x =,则10222y =⨯+=, ∴()0,2C ,令0y =,则1202x +=,解得4x =-, ∴()4,0B -,将()0,2C 代入2y x m =-+,得2m =,∴22y x =-+,令0y =,则220x -+=,解得1x =,∴1,0A ,∴5AB =,2OC =, ∴152ABC S AB OC =⋅=△; (2)根据勾股定理,222224220BC BO OC =+=+=,22222125AC AO OC =+=+=,且22525AB ==,∴222AB BC AC =+,则ABC 是直角三角形;(3)∵CD 平分ACB ∠, ∴12AD AC BD BC ==, ∴1533AD AB ==, ∴23OD AD OA =-=, ∴2,03D ⎛⎫- ⎪⎝⎭①如图,CED ∠是直角,过点E 作EN x ⊥轴于点N ,过点C 作CM EN ⊥于点M , 由(2)知,90ACB ∠=︒,∵CD 平分ACB ∠,∴45ECD ∠=︒,∴CDE △是等腰直角三角形,∴CE DE =,∵90NED MEC ∠+∠=︒,90NED NDE ∠+∠=︒,∴MEC NDE ∠=∠,在DNE △和EMC △中,NDE MEC DNE EMC DEEC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()DNE EMC AAS ≅,设DN EM x ==,EN CM y ==,根据图象列式:DO DN CM EN EM CO +=⎧⎨+=⎩,即232x y x y ⎧+=⎪⎨⎪+=⎩,解得2343x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴43EN CM ==, ∴44,33E ⎛⎫- ⎪⎝⎭;②如图,CDE ∠是直角,过点E 作EG x ⊥轴于点G ,同理CDE △是等腰直角三角形,且可以证得()CDO DEG AAS ≅,∴2DG CO ==,23EG DO ==, ∴28233GO GD DO =+=+=, ∴82,33E ⎛⎫- ⎪⎝⎭,综上:44,33E⎛⎫-⎪⎝⎭,82,33E⎛⎫-⎪⎝⎭.【点睛】本题考查一次函数综合,解题的关键是掌握一次函数解析式的求解,与坐标轴交点的求解,图象围成的三角形面积的求解,还涉及勾股定理、角平分线的性质、全等三角形等几何知识,需要运用数形结合的思想去求解.27.(1)①证明见解析;②DE=14;(2)①8t-10;②t=2;③t=10,2 11【解析】【分析】(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECB AC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=10 11;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.28.(1)203;(2)①t=83;②a=185;(3)t=6.4或t=103【解析】【分析】(1)根据时间=路程÷速度即可求得答案;(2)①由题意得:BM=CN=3t,则只可以是△CMN≌△BAM,AB=CM,由此列出方程求解即可;②由题意得:CN≠BM,则只可以是△CMN≌△BMA,AB=CN=12,CM=BM,进而可得3t=10,求解即可;(3)分情况讨论,当△CMN≌△BPM时,BP=CM,若此时P由A向B运动,则12-2t=20-3t,但t=8不符合实际,舍去,若此时P由B向A运动,则2t-12=20-3t,求得t=6.4;当△CMN≌△BMP时,则BP=CN,CM=BM,可得3t=10,t=103,再将t=103代入分别求得AP,BP的长及a的值验证即可.【详解】解:(1)20÷3=203,故答案为:203;(2)∵CD∥AB,∴∠B=∠DCB,∵△CNM与△ABM全等,∴△CMN≌△BAM或△CMN≌△BMA,①由题意得:BM=CN=3t,∴△CMN≌△BAM∴AB=CM,∴12=20-3t,解得:t=83;②由题意得:CN≠BM,∴△CMN≌△BMA,∴AB=CN=12,CM=BM,∴CM=BM=12 BC,∴3t=10,解得:t=10 3∵CN=at,∴103a=12解得:a=185;(3)存在∵CD∥AB,∴∠B=∠DCB,∵△CNM与△PBM全等,∴△CMN≌△BPM或△CMN≌△BMP,当△CMN≌△BPM时,则BP=CM,若此时P由A向B运动,则BP=12-2t,CM=20-3t,∵BP=CM,∴12-2t=20-3t,解得:t=8 (舍去)若此时P由B向A运动,则BP=2t-12,CM=20-3t,∵BP=CM,∴2t-12=20-3t,解得:t=6.4,当△CMN≌△BMP时,则BP=CN,CM=BM,∴CM=BM=12 BC∴3t=10,解得:t=10 3当t=103时,点P的路程为AP=2t=203,此时BP=AB-AP=12-203=163,则CN=BP=16 3即at=163,∵t=103,∴a=1.6符合题意综上所述,满足条件的t的值有:t=6.4或t=10 3【点睛】本题考查了全等三角形的判定及性质的综合运用,解决本题的关键就是用方程思想及分类讨论思想解决问题,把实际问题转化为方程是常用的手段.29.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD≌△CBE,再由全等三角形的性质即可证得CD=BE;(2)先证明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如图3,过点D作DG∥BC交AC于点G,根据等边三角形的三边相等,可以证得AD=DG=CE;进而证明△DGF和△ECF全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD和BE始终相等,理由如下:如图1,AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD,∠A=∠BCE=60°在△ACD与△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始终相等;(2)证明:根据题意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等边三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF始终等于EF是正确的,理由如下:如图,过点D作DG∥BC交AC于点G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG为等边三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.30.(1)点B (3,5),k =﹣43,b =9;(2)点Q (0,9)或(6,1);(3)存在,点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478) 【解析】 【分析】(1)53y x =相交于点B ,则点(3,5)B ,将点A 、B 的坐标代入一次函数表达式,即可求解; (2)OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=,即可求解; (3)分AB AP =、AB BP =、AP BP =三种情况,分别求解即可. 【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+, 则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m或4; 当AB BP =时,同理可得:9m =(舍去)或1-; 当AP BP =时,同理可得:478m =;综上点P的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478).【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.。

八年级上学期第二次月考模拟数学试题

八年级上学期第二次月考模拟数学试题

八年级上学期第二次月考模拟数学试题一、选择题1.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362B .332C .6D .32.变量x 、y 有如下的关系,其中y 是x 的函数的是( ) A .28y x =B .||y x =C .1y x=D .412x y =3.下列运算正确的是( ) A .=2B .|﹣3|=﹣3C .=±2D .=34.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h5.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .15 6.变量x 与y 之间的关系是y =2x+1,当y =5时,自变量x 的值是( )A .13B .5C .2D .3.57.满足下列条件的△ABC 是直角三角形的是( ) A .∠A :∠B :∠C =3:4:5 B .a :b :c =1:2:3 C .∠A =∠B =2∠CD .a =1,b =2,c =38.点P(2,-3)所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限9.若253x +在实数范围内有意义,则x 的取值范围是( ) A .x >﹣52B .x >﹣52且x ≠0 C .x ≥﹣52D .x ≥﹣52且x ≠0 10.如图,在△ABC 中,AC 的垂直平分线交AC 于点E ,交BC 于点D ,△ABD 的周长为16cm ,AC 为5cm ,则△ABC 的周长为( )A .24cmB .21cmC .20cmD .无法确定二、填空题11.若等腰三角形的两边长为10cm ,5cm ,则周长为__________cm .12.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点,已知点A (0,4),点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m ,当m =3时,则点B 的横坐标是_____.13.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -.把一条长为2020个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A -----…的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是__________.14.如图,在ABC ∆和EDB ∆中,90C EBD ∠=∠=︒,点E 在AB 上.若ABC EDB ∆∆≌,4AC =,3BC =,则DE =______.15.点A (2,-3)关于x 轴对称的点的坐标是______.16.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P 1(x 1 , y 1)、P 2(x 2 , y 2)两点,若x 1>x 2 , 则y 1________y 2(填“>”或“<”).17.如图,已知ABD CBD ∠∠=,若以“SAS”为依据判定ABD ≌CBD ,还需添加的一个直接条件是______.18.如图,将长方形纸片ABCD 沿对角线AC 折叠,AD 的对应线段AD ′与边BC 交于点E .已知BE =3,EC =5,则AB =___.19.若点(3,)P m -与(,6)Q n 关于x 轴对称,则m n +=__________.20.如图,在Rt ABC ∆中,90B =∠,6AB =,8BC =,将ABC ∆折叠,使点B 恰好落在斜边AC 上,与点'B 重合,AE 为折痕,则'EB 的长度是__________.三、解答题21.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD 的四边中点E ,F ,G ,H 依次连接起来得到的四边形EFGH 是平行四边形吗. 小敏在思考问题时,有如下思路:连接AC .结合小敏的思路作答:(1)若只改变图1中四边形ABCD 的形状(如图2),则四边形EFGH 还是平行四边形吗?说明理由,参考小敏思考问题的方法解决一下问题; (2)如图2,在(1)的条件下,若连接AC ,BD .①当AC 与BD 满足什么条件时,四边形EFGH 是菱形,写出结论并证明; ②当AC 与BD 满足什么条件时,四边形EFGH 是矩形,直接写出结论.22.如图1,在平面直角坐标系xOy 中,点A 的坐标是(0,2),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形(90ACP ︒∠=,点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合). (初步探究)(1)写出点B 的坐标________;(2)点C 在x 轴上移动过程中,作PD x ⊥轴,垂足为点D ,都有AOC CDP ∆∆≌,请在图2中画出当等腰直角AOP ∆的顶点P 在第四象限时的图形,并求证:AOC CDP ∆∆≌. (深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.探究点P 在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;(4)直接写出2AP的最小值为________.23.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y (件)之间的关系如表:x/元…152025…y/件…252015…已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?24.定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图①,小海同学在作△ABC的外心时,只作出两边BC,AC的垂直平分线得到交点O,就认定点O是△ABC的外心,你觉得有道理吗?为什么?(2)如图②,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF,连接DE,EF,DF,得到△DEF.若点O为△ABC的外心,求证:点O也是△DEF的外心.25.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?四、压轴题26.如图,已知A(3,0),B(0,-1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,直接写出此时∠APB的度数及P点坐标27.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D ,E 分别是边AC ,BA 延长线上的点且AE=CD ,BD 与EC 的延长线交于点F ,此时∠BFE 的度数是 度;(2)如图③,在△ABC 中,AC=BC ,∠ACB 是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,AE=CD ,BD 与EC 的延长线交于点F ,若∠ACB=α,求∠BFE 的大小.(用含α的代数式表示).28.如图,在平面直角坐标系中,直线AB 经过点A (3,32)和B (23,0),且与y 轴交于点D ,直线OC 与AB 交于点C ,且点C 的横坐标为3. (1)求直线AB 的解析式;(2)连接OA ,试判断△AOD 的形状;(3)动点P 从点C 出发沿线段CO 以每秒1个单位长度的速度向终点O 运动,运动时间为t 秒,同时动点Q 从点O 出发沿y 轴的正半轴以相同的速度运动,当点Q 到达点D 时,P ,Q 同时停止运动.设PQ 与OA 交于点M ,当t 为何值时,△OPM 为等腰三角形?求出所有满足条件的t 值.29.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.30.在△ABC 中,∠BAC =45°,CD ⊥AB ,垂足为点D ,M 为线段DB 上一动点(不包括端点),点N 在直线AC 左上方且∠NCM =135°,CN =CM ,如图①. (1)求证:∠ACN =∠AMC ;(2)记△ANC 得面积为5,记△ABC 得面积为5.求证:12S AC S AB=; (3)延长线段AB 到点P ,使BP =BM ,如图②.探究线段AC 与线段DB 满足什么数量关系时对于满足条件的任意点M ,AN =CP 始终成立?(写出探究过程)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,利用轴对称的性质得MP=MC ,NP=ND ,OP=OD=OC=3,∠BOP=∠BOD ,∠AOP=∠AOC ,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,然后利用含30度的直角三角形三边的关系计算出CD 即可. 详解:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,则MP=MC ,NP=ND ,OP=OD=OC=3,∠BOP=∠BOD ,∠AOP=∠AOC ,∴PN+PM+MN=ND+MN+MC=DC ,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°, ∴此时△PMN 周长最小, 作OH ⊥CD 于H ,则CH=DH , ∵∠OCH=30°, ∴OH=12OC=32, CH=3OH=32, ∴CD=2CH=3. 故选D .点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.2.C解析:C 【解析】 【分析】根据函数的定义:对于x 的每一个取值,y 都有唯一确定的值与之对应即可确定有几个函数. 【详解】A. 28y x =,y 不是x 的函数,故错误;B. ||y x =,y 不是x 的函数,故错误;C. 1y x= ,y 是x 的函数,故正确; D. 412x y =,y 不是x 的函数,故错误; 故选C. 【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.3.A解析:A 【解析】 【分析】根据算术平方根和立方根的定义、绝对值的性质逐一计算可得结论. 【详解】 A .=2,此选项计算正确; B .|﹣3|=3,此选项计算错误;C .=2,此选项计算错误;D .不能进一步计算,此选项错误. 故选A . 【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质.4.C解析:C 【解析】甲的速度是:20÷4=5km/h ; 乙的速度是:20÷1=20km/h ;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到, 故选C .5.A解析:A 【解析】 【分析】首先依据线段垂直平分线的性质得到AE=CE ;接下来,依据AE=CE 可将△ABE 的周长为:14转化为AB+BC=14,求解即可. 【详解】∵DE 是AC 的垂直平分线, ∴AE=CE ,∴△ABE 的周长为:AB+BE+AE=AB+BE+CE=AB+BC ∵ABC 的周长为24,ABE 的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 6.C解析:C【解析】【分析】直接把y=5代入y=2x+1,解方程即可.【详解】解:当y=5时,5=2x+1,解得:x=2,故选:C.【点睛】此题主要考查了函数值,关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.7.D解析:D【解析】【分析】根据三角形内角和定理判断A、C即可;根据勾股定理的逆定理判断B、D即可.【详解】A、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形;B、∵12+22≠32,∴△ABC不是直角三角形;C、∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,∴∠A=∠B=75°,∠C=37.5°,∴△ABC不是直角三角形;D、∵12+)2=22,∴△ABC是直角三角形.故选:D.【点睛】此题主要考查利用三角形内角和定理和勾股定理判定直角三角形,熟练掌握,即可解题. 8.D解析:D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵点P的横坐标为正,纵坐标为负,∴点P(2,-3)所在象限为第四象限.故选D.9.C解析:C【解析】【分析】根据二次根式有意义的条件即可确定x的取值范围.【详解】解:由题意得,2x+5≥0,解得x≥﹣52,故选:C.【点睛】a 时有意义,正确理解二次根式有意义的条件是解题的关键.10.B解析:B【解析】【分析】由垂直平分线可得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度即可.【详解】∵DE是AC的垂直平分线,∴AD=DC,∵△ABD的周长=AB+BD+AD=16,∴△ABC的周长为AB+BC+AC=AB+BD+AD+AC=16+5=21.故选:B.【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度.二、填空题11.【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm为腰时,三角形周长为10+10+5=25cm;②以5解析:25cm【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm为腰时,三角形周长为10+10+5=25cm;②以5cm为腰,因为5+5=10,不符合三角形两边之和大于第三边,此情况不成立;故答案为:25cm.【点睛】此题主要考查三角形三边关系及等腰三角形的性质,注意分类讨论思想的应用是本题的解题关键.12.3或4【解析】【分析】作出图形,然后根据图形判断出横坐标的可能值即可;【详解】解:如图当点B为(3,0),(4,0)记ΔAOB内部(不包括边界)的整点为(1,1),(1,2),(2,1解析:3或4【解析】【分析】作出图形,然后根据图形判断出横坐标的可能值即可;【详解】解:如图当点B为(3,0),(4,0)记内部(不包括边界)的整点为(1,1),(1,2),(2,1)共三个点,故当时,则点的横坐标可能是3,4.故填3,4.【点睛】此题考查了点的坐标,关键是根据题意画出图形,找出点B 的横坐标与△AOB 内部(不包括边界)的整点m 之间的关系,考查数形结合的数学思想方法.13.【解析】【分析】根据各个点的坐标,分别求出AB 、BC 、CD 和DA 的长,即可求出细线绕一圈的长度,然后用2020除以细线绕一圈的长度即可判断.【详解】解:∵,,,∴AB=2,BC=3,CD解析:()1,1【解析】【分析】根据各个点的坐标,分别求出AB 、BC 、CD 和DA 的长,即可求出细线绕一圈的长度,然后用2020除以细线绕一圈的长度即可判断.【详解】解:∵()1,1A ,()1,1B -,()1,2C --,()1,2D -∴AB=2,BC=3,CD=2,DA=3∴细线绕一圈所需:AB+BC+CD+DA=10个单位长度2020÷10=202(圈),即细线正好绕了202圈故细线另一端所在位置正好为点A ,它的坐标为()1,1故答案为:()1,1.【点睛】此题考查的是探索点的坐标规律题,掌握把坐标转化为线段的长是解决此题的关键. 14.5【解析】【分析】先根据勾股定理求得AB 的长度,再由全等三角形的性质可得DE 的长度.【详解】解:在Rt△ACB 中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌解析:5【解析】【分析】先根据勾股定理求得AB的长度,再由全等三角形的性质可得DE的长度.【详解】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴DE=AB=5.【点睛】本题考查勾股定理,全等三角形的性质.熟记全等三角形对应边相等是解决此题的关键. 15.(2,3)【解析】【分析】根据 “关于x轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.16.<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小进行判断即可.【详解】解:∵一次函数y=-2x+1中k=-2<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小进行判断即可.【详解】解:∵一次函数y=-2x+1中k=-2<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.17.AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD解析:AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD,BD=BD,∴添加AB=CB时,可以根据SAS判定△ABD≌△CBD,故答案为AB=CB.【点睛】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.18.4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD 是矩形,∴AB=CD ,B解析:4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC 是等腰三角形,EC =EA =4,在直角三角形ABE 中由勾股定理可求出AB .【详解】解:∵四边形ABCD 是矩形,∴AB =CD ,BC =AD ,∠A =∠B =∠C =∠D =90°,由折叠得:AD =AD ′,CD =CD ′,∠DAC =∠D ′AC ,∵∠DAC =∠BCA ,∴∠D ′AC =∠BCA ,∴EA =EC =5,在Rt △ABE 中,由勾股定理得,AB 4,故答案为:4.【点睛】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC 是等腰三角形是解此题的关键.19.-9【解析】【分析】先根据关于轴对称对称的两点横坐标相等,纵坐标互为相反数求出m 和n 的值,然后代入m+n 计算即可.【详解】∵点与关于轴对称,∴m=-6,n=-3,∴m+n=-6-3=-解析:-9【解析】【分析】先根据关于x 轴对称对称的两点横坐标相等,纵坐标互为相反数求出m 和n 的值,然后代入m+n 计算即可.【详解】∵点(3,)P m -与(,6)Q n 关于x 轴对称,∴m=-6,n=-3,∴m+n=-6-3=-9.故答案为:-9.【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数.20.3【解析】【分析】首先根据折叠可得BE=EB′,AB′=AB=6,然后设BE=EB′=x,则EC=8-x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理列方程即可算解析:3【解析】【分析】首先根据折叠可得BE=EB′,AB′=AB=6,然后设BE=EB′=x,则EC=8-x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理列方程即可算出答案.【详解】解:根据折叠可得BE=EB′,AB′=AB=6,设BE=EB′=x,则EC=8-x,∵∠B=90°,AB=6,BC=8,∴在Rt△ABC中,由勾股定理得,AC=10,∴B′C=10-6=4,在Rt△B′EC中,由勾股定理得,x2+42=(8-x)2,解得x=3,故答案为:3.【点睛】此题主要考查了翻折变换,以及勾股定理,关键是分析清楚折叠以后哪些线段是相等的.直角三角形两条直角边的平方和等于斜边的平方.三、解答题21.(1)是平行四边形;(2)①AC=BD;证明见解析;②AC⊥BD.【解析】【分析】(1)如图2,连接AC,根据三角形中位线的性质及平行四边形判定定理即可得到结论;(2)①由(1)知,四边形EFGH是平行四边形,且FG=12BD,HG=12AC,于是得到当AC=BD时,FG=HG,即可得到结论;②若四边形EFGH是矩形,则∠HGF=90°,即GH⊥GF,又GH∥AC,GF∥BD,则AC⊥BD.【详解】解::(1)是平行四边形.证明如下:如图2,连接AC ,∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC ,EF=12AC ,同理HG ∥AC ,HG=12AC , 综上可得:EF ∥HG ,EF=HG ,故四边形EFGH 是平行四边形;(2)①AC=BD .理由如下: 由(1)知,四边形EFGH 是平行四边形,且FG=12BD ,HG=12AC , ∴当AC=BD 时,FG=HG ,∴平行四边形EFGH 是菱形;②当AC ⊥BD 时,四边形EFGH 为矩形.理由如下:同(1)得:四边形EFGH 是平行四边形,∵AC ⊥BD ,GH ∥AC ,∴GH ⊥BD ,∵GF ∥BD ,∴GH ⊥GF ,∴∠HGF=90°,∴四边形EFGH 为矩形.【点睛】此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.22.(1)()2,0B ;(2)证明见解析;(3)点P 在直线上运动;2y x =-;(4)8.【解析】【分析】(1)根据等腰三角形的性质即可求解;(2)根据题意作图,再根据等腰直角三角形的性质判定AOC CDP ∆∆≌;(3)根据题意去特殊点,再利用待定系数法即可求解;(4)当P 在B 点时,AP 最小,故可求解.【详解】(1)∵点A的坐标是(0,2),△AOB为等腰直角三角形,∴AO=BO∴()2,0B(2)如图,∵ACP∆是等腰直角三角形,且90ACP∠=︒∴AC PC=∵PD BC⊥∴90PDC∠=︒∴90AOC PDC∠=∠=︒,90DPC PCD∠+∠=︒∵90ACP∠=︒∴90ACB PCD∠+∠=︒∴DPC ACB∠=∠在AOC∆和CDP∆中,,,.AOC PDCDPC ACBAC PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOC CDP AAS∆∆≌(3)点P在直线上运动;∵两点确定一条直线∴可以取两个特殊点当P在y轴上时,2OP OC OA===,∴()0,2P-当P在x轴上时,2OP OA==,∴()2,0P设所求函数关系式为y kx b=+;将()2,0和()0,2-代入,得20,2.k bb+=⎧⎨=-⎩220bk b=-⎧⎨+=⎩解得1,2.kb=⎧⎨=-⎩21bk=-⎧⎨=⎩所以所求的函数表达式为2y x=-;(4)如图,作AP⊥直线2y x=-,即P与B点重合,∴AP2=22+22=8.【点睛】此题主要考查一次函数的几何综合,解题的关键是熟知一次函数的性质。

八年级上学期第二次月考质量自测数学试题

八年级上学期第二次月考质量自测数学试题

八年级上学期第二次月考质量自测数学试题一、选择题1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .22.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =--3.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒4.以下关于多边形内角和与外角和的表述,错误的是( )A .四边形的内角和与外角和相等B .如果一个四边形的一组对角互补,那么另一组对角也互补C .六边形的内角和是外角和是2倍D .如果一个多边形的每个内角是120︒,那么它是十边形.5.当12(1)a -+与13(2)a --的值相等时,则( )A .5a =-B .6a =-C .7a =-D .8a =- 6.在直角坐标系中,将点(-2, -3)向左平移2个单位长度得到的点的坐标是( )A .(-2,-5)B .(-4,-3)C .(0,-3)D .(-2,1) 7.如图,正方形OACB 的边长是2,反比例函数k y x=图像经过点C ,则k 的值是( )A .2B .2-C .4D .4-8.如图,在平面直角坐标系xOy 中,直线y =﹣43x +4与x 轴、y 轴分别交于点A 、B ,M 是y 轴上的点(不与点B 重合),若将△ABM 沿直线AM 翻折,点B 恰好落在x 轴正半轴上,则点M 的坐标为( )A .(0,﹣4 )B .(0,﹣5 )C .(0,﹣6 )D .(0,﹣7 )9.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .x >-1B .x <-1C .x <-2D .无法确定 10.点P(2,-3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题11.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____.12.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.13.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____.14.计算222m m m+--的结果是___________ 15.计算:32()x y -=__________.16.如图,△ABC 中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则△AEG 周长为____.17.如图,在Rt ABC △中,90B ∠=︒,30A ∠=︒,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若1BD =,则AC 的长是__________.18.如图,点E ,F 在AC 上,AD=BC ,DF=BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是________(添加一个即可)19.已知一次函数1y kx b =+与2y mx n =+的函数图像如图所示,则关于,x y 的二元一次方程组0,0kx y b mx y n -+=⎧⎨-+=⎩的解是______.20.若点(3,)P m -与(,6)Q n 关于x 轴对称,则m n +=__________.三、解答题21.直角三角形ABC 中,90ABC ∠=︒,点D 为AC 的中点,点E 为CB 延长线上一点,且BE CD =,连接DE .(1)如图1,求证2C E ∠=∠(2)如图2,若6AB =、5BE =,ABC ∆的角平分线CG 交BD 于点F ,求BCF ∆的面积.22.如图,Rt ABC ∆中,90ACB ∠=︒.(1)尺规作图(保留作图痕迹,不写作法与证明):①作B 的平分线BD 交边AC 于点D ;②过点D 作DE AB ⊥于点E ; (2)在(1)所画图中,若3CD =,8AC =,则AB 长为________________.23.(1)如图①,小明同学作出ABC ∆两条角平分线AD ,BE 得到交点I ,就指出若连接CI ,则CI 平分ACB ∠,你觉得有道理吗?为什么?(2)如图②,Rt ABC ∆中,5AC =,12BC =,13AB =,ABC ∆的角平分线CD 上有一点I ,设点I 到边AB 的距离为d .(d 为正实数)小季、小何同学经过探究,有以下发现:小季发现:d 的最大值为6013. 小何发现:当2d =时,连接AI ,则AI 平分BAC ∠.请分别判断小季、小何的发现是否正确?并说明理由.24.(12216-(3)(3)8+-(2)化简:22x 9x 31-69x 4x x -+÷-++ 25.解方程:(1)4x 2﹣8=0;(2)(x ﹣2)3=﹣1.四、压轴题26.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.②求证:M为BE的中点.③探究:若在点D运动的过程中,OMBD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).27.在平面直角坐标系中点A(m−3,3m+3),点 B(m,m+4)和 D(0,−5),且点 B 在第二象限.(1)点B 向平移单位,再向下平移(用含m 的式子表达)单位可以与点A 重合;(2)若点B 向下移动 3 个单位,则移动后的点B 和点A 的纵坐标相等,且有点 C(m−2,0).①则此时点A、B、C 坐标分别为、、.②将线段AB 沿y 轴负方向平移n 个单位,若平移后的线段AB 与线段CD 有公共点,求n 的取值范围.③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达)28.已知三角形ABC 中,∠ACB =90°,点D (0,-4),M (4,-4).(1)如图1,若点C 与点O 重合,A (-2,2)、B (4,4),求△ABC 的面积;(2)如图2,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数;(3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .29.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫ ⎪⎝⎭都是“白马有理数对”. (1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________; (2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)30.如图,A ,B 是直线y =x +4与坐标轴的交点,直线y =-2x +b 过点B ,与x 轴交于点C .(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.D解析:D【解析】根据左加右减,上加下减的平移规律解题.【详解】解:把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为3(2)4y x =-++,整理得:32y x =--,故选D.【点睛】本题考查了直线的平移变换,属于简单题,熟悉直线的平移规律是解题关键.3.C解析:C【解析】【分析】由已知条件,根据轴对称的性质可得∠C =∠C ′=30°,利用三角形的内角和等于180°可求答案.【详解】∵△ABC 与△A ′B ′C ′关于直线l 对称,∴∠A =∠A ′=30°,∠C =∠C ′=60°;∴∠B =180°−30°-60°=90°.故选:C .【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.4.D解析:D【解析】【分析】根据多边形的内角和和外角和定理,逐一判断排除即可得解.【详解】A.四边形的内角和为360°,外角和也为360°,A 选项正确;B.根据四边形的内角和为360°可知,一组对角互补,则另一组对角也互补,B 选项正确;C.六边形的内角和为62180720()-⨯︒=︒,外角和为360°,C 选项正确;D.假设是n 边形,(2)180120n n -⨯︒=︒解得610n =≠,D 选项错误. 故选:D.【点睛】本题主要考查了多边形的内角和、外角和定理,熟练掌握计算公式是解决本题的关键. 5.C【解析】【分析】根据题意列出等式,由负整数指数幂的运算法则将分式方程转化为一元一次方程求解即可.【详解】依题意,112(1)3(2)a a --+=-,即3(1)2(2)a a +=-,解得7a =-,经检验7a =-是原分式方程的解,故选:C.【点睛】本题主要考查了负整数指数幂的运算及分式方程的解,熟练掌握相关运算知识及运算能力是解决本题的关键. 6.B解析:B【解析】【分析】直接利用平移的性质得出答案.【详解】(−2,−3)向左平移2个单位长度得到的点的坐标是:(−4,−3).故选B.【点睛】考查点的平移,掌握上下改变纵坐标,左右横左标变化是解题的关键.7.C解析:C【解析】【分析】根据正方形的性质,即可求出点C 的坐标,然后代入反比例函数解析式里即可.【详解】解:∵正方形OACB 的边长是2,∴点C 的坐标为(2,2)将点C 的坐标代入k y x=中,得 22k = 解得:4k =故选C .【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.8.C【解析】【分析】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,则有AB=AC,而AB的长度根据已知可以求出,所以C点的坐标由此求出;又由于折叠得到CM=BM,在直角△CMO中根据勾股定理可以求出OM,也就求出M的坐标.【详解】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,∵直线y=﹣43x+4与x轴、y轴分别交于点A、B,∴A(3,0),B(0,4),∴AB=223+4=5,设OM=m,由折叠知,AC=AB=5,CM=BM=OB+OM=4+m,∴OC=8,CM=4+m,根据勾股定理得,64+m2=(4+m)2,解得:m=6,∴M(0,﹣6),故选:C.【点睛】本题主要考查一次函数的图象,图形折叠的性质以及勾股定理,通过勾股定理,列方程,是解题的关键.9.B解析:B【解析】【分析】如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b>k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.【详解】解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.故关于x的不等式k1x+b>k2x的解集为:x<-1.故选B.10.D解析:D【解析】析:应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵点P的横坐标为正,纵坐标为负,∴点P(2,-3)所在象限为第四象限.故选D.二、填空题11.【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】本题考查的是正比例函数的定义,一般解析:【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】(k是常数,k≠0)的函数叫做正比本题考查的是正比例函数的定义,一般地形如y kx例函数.12.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.解:∵函数y=kx-4的图象平行于直线y=-2x ,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x ,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.【点睛】本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.13.【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数的图象向上平移3个单位长度可得:.故答案为:【点睛】本题考查了函数图像平移,解决本解析:31y x =-【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数34y x =-的图象向上平移3个单位长度可得:34331y x x =-+=-. 故答案为:31y x =-【点睛】本题考查了函数图像平移,解决本题的关键是熟练掌握函数图像的平移规律,要与点的坐标平移区别开.14.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母.15.【解析】【分析】根据积的乘方法则进行计算.【详解】故答案为:【点睛】考核知识点:积的乘方.理解积的乘方法则是关键.解析:62x y【解析】【分析】根据积的乘方法则进行计算.【详解】()2323262()x y x y x y -=-= 故答案为:62x y【点睛】考核知识点:积的乘方.理解积的乘方法则是关键. 16.【解析】【分析】根据线段垂直平分线的性质可得AE=BE ,AG=GC ,据此计算即可.【详解】解:∵ED ,GF 分别是AB ,AC 的垂直平分线,∴AE=BE ,AG=GC ,∴△AEG 的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE ,AG=GC ,据此计算即可.【详解】解:∵ED ,GF 分别是AB ,AC 的垂直平分线,∴AE=BE ,AG=GC ,∴△AEG 的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.17.【解析】解:,,∴.又∵垂直平分,∴,.∵,∴,∴,,.由勾股定理可得.故答案为.解析:【解析】解:90B ∠=︒,30A ∠=︒,∴60ACB ∠=︒.又∵DE 垂直平分AC ,∴CD AD =,30ACD A DCB ∠=∠=︒=∠.∵1BD =,∴2CD AD ==,∴3AB =,30A ∠=︒,12BC AC =.由勾股定理可得AC =故答案为 18.∠D=∠B【解析】【分析】要判定△ADF ≌△CBE ,已经有AD=BC ,DF=BE ,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC , D解析:∠D=∠B【解析】【分析】要判定△ADF ≌△CBE ,已经有AD =BC ,DF =BE ,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC , DF=BE ,∴只要添加∠D=∠B ,根据“SAS ”即可证明△ADF ≌△CBE.故答案为∠D=∠B.【点睛】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS )、边角边(SAS )、角边角(ASA )、角角边(AAS ).19.【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解,从而可得答案.【详解】解:∵一次函数和一次函数的图象交点的坐标为∴方程组的解是: .故答案为: .【点睛】本题解析:12x y =-⎧⎨=⎩【解析】【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解,从而可得答案.【详解】解:∵一次函数1y kx b =+和一次函数2y mx n =+的图象交点的坐标为()1,2,- ∴方程组00kx y b mx y n -+=⎧⎨-+=⎩的解是:12x y =-⎧⎨=⎩ . 故答案为: 12x y =-⎧⎨=⎩. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.掌握以上知识是解题的关键.20.-9【解析】【分析】先根据关于轴对称对称的两点横坐标相等,纵坐标互为相反数求出m 和n 的值,然后代入m+n 计算即可.【详解】∵点与关于轴对称,∴m=-6,n=-3,∴m+n=-6-3=-解析:-9【解析】【分析】先根据关于x 轴对称对称的两点横坐标相等,纵坐标互为相反数求出m 和n 的值,然后代入m+n 计算即可.【详解】∵点(3,)P m -与(,6)Q n 关于x 轴对称,∴m=-6,n=-3,∴m+n=-6-3=-9.故答案为:-9.【点睛】本题考查了坐标平面内的轴对称变换,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数;关于y 轴对称的两点,纵坐标相同,横坐标互为相反数.三、解答题21.(1)见解析(2)9613 【解析】【分析】(1)连接BD ,依题意得BD=CD ,所以∠C=∠CBD ,可证明∠CBD=2E ∠,进而可得结论; (2)过点F 作FM BC ⊥,FN AC ⊥,根据已知求出CD=5,AC=10,由勾股定理求出BC=8,求出S △BCD =12S △ABC ,再根据BCD BCF CDF S S S ∆∆∆=+,即111222CD FN BC FM =⋅+⋅可求出FM ,从而可得结论. 【详解】(1)连接BD点D 为AC 中点,且90ABC ∠=︒,12BD AC CD AD ∴===, CD BE =,BE BD ∴=,BDE E ∴∠=∠,又BD CD ∴=,C DBC ∴∠=∠,2C DBC BDE E E ∴∠=∠=∠+∠=∠,(2)过点F 作FM BC ⊥,FN AC ⊥.CG 平分ABC ∠,FM FN ∴=,5BE =,5,10CD AD BE AC ∴====,又6AB =∴在Rt ABC ∆中,222AB BC AC +=,8BC ∴=BD 为ABC ∆中线,11111681222222BCD ABC S S AB BC ∆∆∴==⨯⨯=⨯⨯⨯=, 又BCD BCF CDF S S S ∆∆∆=+,111222CD FN BC FM ∴=⋅+⋅, 11581222FM FM ∴⨯⨯+⨯⨯=, 2413FM ∴=, 1124968221313BCF S BC FM ∆∴=⋅=⨯⨯=, 【点睛】 此题考查了直角三角形的性质,角平分线的性质以及三角形中线的性质,熟练掌握这些性质是解题的关键.22.(1)①详见解析;②详见解析;(2)10.【解析】【分析】(1)①按角的平分线的作法步骤作图即可;②按垂线的作法步骤作图即可;(2)根据角平分线的性质得到DE =CD .在△AED 中利用勾股定理得到AE 的长.设AB =x ,则BE =AB -AE =x -4.证明Rt △BDC ≌Rt △BDE ,得到BC =DE =x -4.在Rt △ABC 中,利用勾股定理列方程即可得到结论.【详解】(1)①如图,BD 就是所要求作的图形.②如图,DE 就是所要求作的图形.(2)∵∠C =90°,DE ⊥AB ,BD 平分∠ABC ,∴DE =CD =3.∵AC =8,∴AD =AC -DC =8-3=5,∴AE 222253AD DE -=-.设AB =x ,则BE =AB -AE =x -4.在Rt △BDC 和Rt △BDE 中,∵BD =BD ,DC =DE ,∴Rt △BDC ≌Rt △BDE ,∴BC =DE =x -4.在Rt △ACB 中,∵222AC BC AB +=,∴2228(4)x x +-=,解得:x =10.∴AB =10.【点睛】本题考查了基本作图和角平分线的性质以及勾股定理.掌握角平分线的性质是解答本题的关键.23.(1)有道理,理由详见解析;(2)小季和小何都正确,理由详见解析【解析】【分析】(1)过I 点分别作IM ,IN ,IK 垂直于AB ,BC ,AC 于点M ,N ,K ,根据角平分线的性质即可得解;(2)根据等积法的相关方法进行求解即可.【详解】(1)如下图,过I 点分别作IM ,IN ,IK 垂直于AB ,BC ,AC 于点M ,N ,K ,连接IC∵AI 平分∠BAC ,IM ⊥AB ,IK ⊥AC∴IM =IK ,同理IM =IN∴IK =IN又∵IK ⊥AC ,IN ⊥BC∴CI 平分∠BCA ;(2)如下图,过C 点作CE ⊥AB 于点E ,则d 的最大值为CE 长∵5AC =,12BC =∴115123022ABC S AC BC ∆=⋅=⨯⨯= 又∵11133022ABC S AB CE CE ∆=⋅=⨯⨯= ∴6013CE = ∴d 的最大值为6013 ∴小季正确;假设此时AI 平分BAC ∠,如下图,连接AI ,BI ,过I 点作IG ,IH ,IF 分别垂直于AC ,BC ,AB 于点G ,H ,F∵AI 平分BAC ∠,CD 平分∠ACB∴BI 平分∠CBA∵IG ⊥AC ,IH ⊥BC ,ID ⊥AB∴IG=IH=IF=d∵ACB AIC BIC ABI S S S S ∆∆∆∆=++∴11112222AC BC AC IG BC IH AB IF ⋅=⋅+⋅+⋅ ∴1111512512132222d d d ⨯⨯=⨯⨯+⨯⨯+⨯⨯ ∴2d =∴假设成立,当2d =时,连接AI ,则AI 平分BAC ∠∴小何正确.【点睛】本题主要考查了等积法及角平分线的性质,熟练掌握等积法的运用及角平分线性质的证明是解决本题的关键.24.(1) 2 ; (2) 73x -- 【解析】【分析】(1)首先计算平方根和立方根,然后进行加减运算即可;(2)根据分式的除法和减法进行计算.【详解】解:(1)原式=4332-+-=2;(2)原式=()()()2334133x x x x x +-+-⨯+- =413x x +-- =343x x x ---- =73x -- 【点睛】 本题考查分式的混合运算和二次根式的混合运算,解题的关键是明确它们各自的计算方法.25.(1)=x (2)1x =【解析】【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解.【详解】解:(1)4x 2﹣8=0,移项得:4x 2﹣8=0,即x 2=2,开方得:=x ;(2)(x ﹣2)3=﹣1,开立方得:x﹣2=﹣1,解得:x=1.【点睛】本题主要考查一元二次方程的解法及立方根,熟练掌握运算法则是解题的关键.四、压轴题26.(1)①E(3,﹣2)②见解析;③12OMBD,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【解析】【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM ≌△EHM (AAS ),∴OM =MH∴OA +OD= OA +AH=OH=OM +MH=2MH=2(AM +AH )=2(AM +OD )整理可得OA ﹣OD =2AM .综上:OA+OD =2AM 或OA ﹣OD =2AM .【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.27.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E ⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S △COD = S △OB'C + S △OB'D∴''222CO OD CO B M OD B E ⨯⨯⨯=+ ∴353(3)51222n ⨯⨯-⨯=+ 解得:193n =, 综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2) 12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.28.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD⊥ x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.29.(1)35,2⎛⎫⎪⎝⎭;(2)2;(3)不是;(4)(6,75)【解析】【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab+=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132,∴5+32=5×32-1,∴35,2⎛⎫⎪⎝⎭是“白马有理数对”,故答案为:3 5,2⎛⎫ ⎪⎝⎭;(2)若(,3)a是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n是“白马有理数对”,则m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1≠ mn-1∴(-n,-m)不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.30.(1)A(-4,0) ;B(0,4);C(2,0);(2)①点E的位置见解析,E(43-,0);②D点的坐标为(-1,3)或(45,125)【解析】【分析】(1)先利用一次函数图象上点的坐标特点求得点A、B的坐标;然后把B点坐标代入y=−2x+b求出b的值,确定此函数解析式,然后再求C点坐标;(2)①根据轴对称—最短路径问题画出点E的位置,由待定系数法确定直线DB1的解析式为y=−3x−4,易得点E的坐标;②分两种情况:当点D在AB上时,当点D在BC上时.当点D在AB上时,由等腰直角三角形的性质求得D点的坐标为(−1,3);当点D在BC上时,设AD交y轴于点F,证△AOF 与△BOC 全等,得OF=2,点F 的坐标为(0,2),求得直线AD 的解析式为122y x =+,与y=−2x +4组成方程组,求得交点D 的坐标为(45,125). 【详解】 (1)在y=x +4中,令x =0,得y=4,令y =0,得x=-4,∴A(-4,0) ,B(0,4)把B(0,4)代入y=-2x+b ,得b =4,∴直线BC 为:y=-2x+4在y=-2x +4中,令y =0,得x=2,∴C 点的坐标为(2,0);(2)①如图∵点D 是AB 的中点∴D (-2,2)点B 关于x 轴的对称点B 1的坐标为(0,-4),设直线DB 1的解析式为y kx b =+,把D (-2,2),B 1(0,-4)代入,得224k b b -+=⎧⎨=-⎩, 解得k=-3,b=-4,∴该直线为:y=-3x-4,令y=0,得x=43-, ∴E 点的坐标为(43-,0). ②存在,D 点的坐标为(-1,3)或(45,125). 当点D 在AB 上时,∵OA=OB=4,∴∠BAC=45°,∴△ACD 是以∠ADC 为直角的等腰直角三角形,∴点D的横坐标为4212,当x=-1时,y=x+4=3,∴D点的坐标为(-1,3);当点D在BC上时,如图,设AD交y轴于点F.∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,又∵AO=BO,∠AOF=∠BOC,∴△AOF≌△BOC(ASA)∴OF=OC=2,∴点F的坐标为(0,2),设直线AD的解析式为y mx n=+,将A(-4,0)与F(0,2)代入得402m nn-+=⎧⎨=⎩,解得1,22m n==,∴122y x=+,联立12224y xy x⎧=+⎪⎨⎪=-+⎩,解得:45125xy⎧=⎪⎪⎨⎪=⎪⎩,∴D的坐标为(45,125).综上所述:D点的坐标为(-1,3)或(45,125)【点睛】本题是一次函数的综合题,难度适中,考查了利用待定系数法求一次函数的解析式、轴对称的最短路径问题、直角三角形问题,第(2)②题采用了分类讨论的思想,与三角形全等结合,解题的关键是灵活运用一次函数的图象与性质以及全等的知识.。

上海初二初中数学月考试卷带答案解析

上海初二初中数学月考试卷带答案解析

上海初二初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、填空题1.如图3若∠A=600,则∠BOD= ,∠BCD= ;2.如图4, PA,PB分别为⊙O的切线,切点分别为A、B,PA=6,在劣弧AB(︵)上任取一点C,过C作⊙O 的切线,分别交PA,PB于D,E,则△PDE的周长是3.三角形的面积为4,周长为10,则这个三角形的内切圆半径为4.扇形的圆心角是80°,半径R=5,则扇形的面积为5.6.如图5,PA,PB分别为⊙O的切线,切点分别为A、B,∠P=80°,则∠C=7.如图6,已知AB是的直径,BD=CB,∠CAB=30°,请根据已知条件和所给图形,写出三个正确的结论:(除AO=OB=BD外)①、;②、;③、8.的相反数是▲9.写出一个分母至少含有两项且能够约分的分式10.11.7m=3,7n=5,则72m-n=12.一组按规律排列的式子:,其中第7个式子是第n个式子是13.=" "14.方程的解是15.=二、解答题1.已知二次函数的图象的对称轴为x=2,函数的最小值为3,且图象经过点(- 1,5),求此二次函数图象的关系式2.如图二次函数y=ax2+bx+c的图象经过A 、B、C三点。

(1)观察图象,写出A 、B、C三点的坐标,并求出抛物线解析式;(2)求此抛物线的顶点坐标和对称轴;(3)观察图象,当x取何值时,y<0?y=0?y>0?3.4.如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE.求证:∠D = ∠B.5.如图,△ABC内接于⊙O,D是弧AC的中点,求证:CD2=DE?DB。

(6分)6.某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为且过顶点C(0,5)(长度单位:m)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5 m的地毯,地毯的价格为20元 / ,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EF GH的周长为27.5 m,求斜面EG的倾斜角∠GEF的正切值.7.1238.1 已知的值2 已知,求的值9.先化简代数式,然后在取一组m,n的值代入求值10.1211.2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?三、选择题1.计算: ( ▲ )A.-4B.4C.2D.-22.如果一个角的补角是150º,那么这个角是 ( ▲ )A.60ºB.50ºC.40ºD.30º3.单项式的系数是 ( ▲ )A.-3B.3C.D.4.已知某些多面体的平面展开图如图所示,其中是三棱柱的是 ( ▲ )5.温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将1 300 000 000用科学记数法表示为 ( ▲ )A.13×108B.1.3×108C.1.3×109D.1.396.已知方程2x+6=x+2的解满足,则a的值是 ( ▲ )A.-15B.15C.10D.-107.下列说法正确的是 ( ▲ )A.对顶角相等B.和等于90º的两个角互为补角C.如果∠1+∠2+∠3 =180º,那么∠1、∠2、∠3互为补角D.一个角的补角一定大于这个角8.已知等腰三角形的两边长分别为3和7,这个三角形的周长是 ( ▲ )A.13B.17C.13或17D.14或179.若a+b<0,ab<0,则下列判断正确的是 ( ▲ )A.a、b都是正数B.a、b都是负数C.a、b异号且负数的绝对值大D.a、b异号且正数的绝对值大10.如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足为B,PA⊥PC,则下列不正确的语句是 ( ▲ )(A)线段PB的长是点P到直线晓的距离(B)PA、PB、PC三条线段中,PB最短(C)线段AC的长是点A到直线PC的距离(D)线段PC的长是点C到直线PA的距离11.下列运算正确的是()A B C(-2m-n)2=4m-n D12.分式的最简公分母是()A 72xyz2B 108xyzC 72xyzD 96xyz213.用科学计数法表示的树-3.6×10-4写成小数是()A 0.00036B -0.0036C -0.00036D -3600014.如果把分式中的x,y都扩大3倍,那么分式的值()A 扩大3倍B 不变C 缩小3倍D 扩大2倍15.若分式的值为0,则x的值为()A 2B -2C 2或-2D 2或316.计算的结果是()A 1B x+1C D17.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程①②72-x=③x+3x="72" ④上述所列方程,正确的有()个A 1B 2C 3D 418.在中,分式的个数是()A 2B 3C 4D 519.分式方程().A.无解B.有解x="1"C.有解x="2"D.有解x=020.若的值是()A -2B 2C 3D -321.把分式方程,的两边同时乘以x-2,约去分母,得()A 1-(1-x)="1 "B 1+(1-x)="1 " c 1-(1-x)="x-2 " D 1+(1-x)=x-222.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是:()A.B.C.D.上海初二初中数学月考试卷答案及解析一、填空题1.如图3若∠A=600,则∠BOD= ,∠BCD= ;【答案】120° 120°【解析】根据圆内接四边形的性质,可求得∠BOD的度数,根据圆周角定理,可求得∠BCD的度数.解:∵四边形ABCD内接于⊙O,∠A=60°∴∠BCD=180°-∠A=180°-60°=120°故∠BOD=2∠BCD=2×60°=120°2.如图4, PA,PB分别为⊙O的切线,切点分别为A、B,PA=6,在劣弧AB(︵)上任取一点C,过C作⊙O 的切线,分别交PA,PB于D,E,则△PDE的周长是【答案】12【解析】利用切线长定理可以得到△PDE的周长=2PA,据此即可求解.解:∵PA,PB分别为⊙O的切线,∴PA=PB,同理,DA=DC,EB=EC.∴△PDE的周长=PD+DE+PE=PD+DC+CE+PE=PD+AD+PE+BE=PA+PB=2PA=2×6=12.故答案是:12.3.三角形的面积为4,周长为10,则这个三角形的内切圆半径为【答案】0.8【解析】根据三角形的另一个面积公式S= ?r?p,得出三角形的内切圆半径即可.解:如图所示,⊙O与△ABC三边分别相切与AB,BC,AC于点D,F,E,∵三角形的面积为S=S△AOB +S△AOC+S△BOC=4cm2,周长为P=AB+BC+AC=10cm,根据S=(AB?DO+BC?FO+OE?AC)=(AB?r+BC?r+AC?r)=?r?p,∴4=×r×10,解得:r=0.8(cm).故答案为:0.8cm.4.扇形的圆心角是80°,半径R=5,则扇形的面积为【答案】50π/9【解析】略5.【答案】【解析】此题考查圆与三角形的知识因为经过B、C两点,所以圆心肯定在线段BC的中垂线上,又因为AB=AC,所以A点也在线段BC的中垂线上。

上海民办桃李园实验学校数学三角形解答题达标检测卷(Word版 含解析)

上海民办桃李园实验学校数学三角形解答题达标检测卷(Word版 含解析)

上海民办桃李园实验学校数学三角形解答题达标检测卷(Word 版 含解析)一、八年级数学三角形解答题压轴题(难)1.如图,在△ABC 中,已知AD BC ⊥于点D ,AE 平分()BAC C B ∠∠>∠(1)试探究EAD ∠与C B ∠∠、的关系;(2)若F 是AE 上一动点,当F 移动到AE 之间的位置时,FD BD ⊥,如图2所示,此时EFD C B ∠∠∠与、的关系如何?(3)若F 是AE 上一动点,当F 继续移动到AE 的延长线上时,如图3,FD BC ⊥,①中的结论是否还成立?如果成立请说明理由,如果不成立,写出新的结论.【答案】(1)∠EAD=12(∠C-∠B ),理由见解析; (2)∠EFD=12(∠C-∠B ),理由见解析; (3)∠AFD=12(∠C-∠B )成立,理由见解析. 【解析】【分析】 (1)由图不难发现∠EAD=∠EAC-∠DAC ,再根据三角形的内角和定理结合角平分线的定义分别用结论中出现的角替换∠EAC 和∠DAC ;(2)作AG BC ⊥于G 转化为(1)中的情况,利用(1)的结论即可解决;(3)作AH BC ⊥于H 转化为(1)中的情况,利用(1)的结论即可解决.【详解】解:(1)∠EAD=12(∠C-∠B ).理由如下:∵AE 平分∠BAC ,∴∠BAE=∠CAE=12∠BAC ∵∠BAC=180°-(∠B+∠C )∴∠EAC=12[180°-(∠B+∠C )] ∵AD ⊥BC ,∴∠ADC=90°, ∴∠DAC=180°-∠ADC-∠C=90°-∠C ,∵∠EAD=∠EAC-∠DAC∴∠EAD=12 [180°-(∠B+∠C )]-(90°-∠C )=12(∠C-∠B ). (2)∠EFD=12(∠C-∠B ).理由如下:作AG BC ⊥于G由(1)可知∠EAG=12(∠C-∠B ) ∵FD BD ⊥,AG BC ⊥∴FD ∥AG∴∠EAG=∠EFD ∴∠EFD=12(∠C-∠B ) (3)∠AFD=12(∠C-∠B ).理由如下:作AH BC ⊥于H由(1)可知∠EAH=12(∠C-∠B )∵FD BD ⊥,AH BC ⊥∴FD ∥AH∴∠EAH=∠AFD∴∠AFD=12(∠C-∠B ) 【点睛】本题主要考查了三角形的内角和定理,综合利用角平分线的定义和三角形内角和定理是解答此题的关键.2.如图, A 为x 轴负半轴上一点, B 为x 轴正半轴上一点, C(0,-2),D(-3,-2).(1)求△BCD 的面积;(2)若AC ⊥BC,作∠CBA 的平分线交CO 于P ,交CA 于Q,判断∠CPQ 与∠CQP 的大小关系, 并证明你的结论.【答案】(1)3;(2)∠CPQ =∠CQP ,理由见解析;【解析】【分析】(1)求出CD 的长度,再根据三角形的面积公式列式计算即可得解;(2)根据角平分线的定义可得∠ABQ=∠CBQ ,然后根据等角的余角相等解答;【详解】解:(1)∵点C (0,-2),D (-3,-2),∴CD=3,且CD//x 轴∴△BCD 面积=12×3×2=3; (2)∠CPQ =∠CQP ,∵AC ⊥BC , ∴∠ACO +∠BCO =90°,又∠ACO +∠OAC =90°∴∠OAC =∠BCO ,又BQ 平分∠CBA ,∴∠ABQ =∠CBQ ,∵∠CQP=∠OAC+∠ABQ∠CPQ=∠CBQ+∠BCO,∴∠CQP=∠CPQ(2)∠CPQ=∠CQP,∵AC⊥BC,∴∠ACO+∠BCO=90°,又∠ACO+∠OAC=90°∴∠OAC=∠BCO,又BQ平分∠CBA,∴∠ABQ=∠CBQ,∵∠CQP=∠OAC+∠ABQ∠CPQ=∠CBQ+∠BCO,∴∠CQP=∠CPQ【点睛】本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质,综合题,熟记性质并准确识图是解题的关键.3.探究:(1)如图1,在△ABC中,BP平分∠ABC,CP平分∠ACB.求证:∠P=90°+12∠A.(2)如图2,在△ABC中,BP平分∠ABC,CP平分外角∠ACE.猜想∠P和∠A有何数量关系,并证明你的结论.(3)如图3,BP平分∠CBF,CP平分∠BCE.猜想∠P和∠A有何数量关系,请直接写出结论.【答案】(1)见解析;(2)12∠A=∠P,理由见解析;(3)∠P=90°﹣12∠A,理由见解析【解析】【分析】(1)根据三角形内角和定理以及角平分线的性质进行解答即可:(2)根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果,(3)根据三角形的外角性质、内角和定理、角平分线的定义探求并证明.【详解】证明:(1)∵△ABC中,∠ABC+∠ACB=180°﹣∠A.又∵BP平分∠ABC,CP平分∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB,∴∠PBC+∠PCB=12(180°﹣∠A),根据三角形内角和定理可知∠BPC=180°﹣12(180°﹣∠A)=90°+12∠A;(2)12∠A=∠P,理由如下:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=12∠ABC,∠PCE=12∠ACE.∵∠ACE是△ABC的外角,∠PCE是△BPC的外角,∴∠ACE=∠ABC+∠A,∠PCE=∠PBC+∠P,∴12∠ACP=12∠ABC+12∠A,∴12∠ABC+12∠A=∠PBC+∠P,∴12∠A=∠P.(3)∠P=90°﹣12∠A,理由如下:∵P点是外角∠CBF和∠BCE的平分线的交点,∠P+∠PBC+∠PCB=180°∴∠P=180°﹣(∠PBC+∠PCB)=180°﹣12(∠FBC+∠ECB)=180°﹣12(∠A+∠ACB+∠A+∠ABC)=180°﹣12(∠A+180°)=90°﹣12∠A.【点睛】本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角和以及补角的定义以及三角形的内角和为180°,此类题解题的关键是找出角平分线平分的两个角的和的度数,从而利用三角形内角和定理求解.4.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图,若α=β,判断BE、DF的位置关系,并说明理由.【答案】(1)120°;(2)β﹣α=60° 理由见解析;(3)平行,理由见解析.【解析】【分析】(1)利用四边形的内角和求出∠ABC与∠ADC的和,利用角平分线的定义以及α+β=120°推导即可;(2)由(1)得,∠MBC+∠NDC=α+β,利用角平分线的定义得∠CBG+∠CDG=12(α+β),在△BCD中利用三角形的内角和定理得∠BDC+∠CDB =180°﹣β,在△BDG中利用三角形的内角和定理得出关于α、β的等式整理即可得出结论;(3)延长BC交DF于H,由(1)得∠MBC+∠NDC=α+β,利用角平分线的定义得∠CBE+∠CDH=12(α+β),利用三角形的外角的性质得∠CDH=β﹣∠DHB,然后代入∠CBE+∠CDH=12(α+β)计算即可得出一组内错角相等.【详解】(1)解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°-(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC)=360°-[360°-(α+β)]=α+β,∵α+β=120°,∴∠MBC+∠NDC=120°;(2)β﹣α=60°理由:如图1,连接BD,由(1)得,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=12∠MBC,∠CDG=12∠NDC,∴∠CBG+∠CDG=12∠MBC+12∠NDC=12(∠MBC+∠NDC)=12(α+β),在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,∴12(α+β)+180°﹣β+30°=180°,∴β﹣α=60°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=12∠MBC,∠CDH=12∠NDC,∴∠CBE+∠CDH=12∠MBC+12∠NDC=12(∠MBC+∠NDC)=12(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=12(α+β),∵α=β,∴∠CBE +β﹣∠DHB =12(β+β)=β, ∴∠CBE =∠DHB ,∴BE ∥DF .【点睛】 此题是三角形综合题,主要考查了平角的意义,四边形的内角和,三角形内角和,三角形的外角的性质,角平分线的意义,用整体代换的思想是解本题的关键,整体思想是初中阶段的一种重要思想,要多加强训练.5.(1)在ABC ∆中,AD BC ⊥,BE AC ⊥,CF AB ⊥,16BC =,3AD =,4BE =,6CF =,则ABC ∆的周长为______.(2)如图①,在ABC ∆中,已知点D ,E ,F 分别为边BC ,BD ,CD 的中点,且4ABC S ∆=2cm ,则AEF S ∆等于______2cm .① ②(3)如②图,三角形ABC 的面积为1,点E 是AC 的中点,点O 是BE 的中点,连接AO 并延长交BC 于点D ,连接CO 并延长交AB 于点F ,则四边形BDOF 的面积为______. 【答案】(1)36(2)2(3)16【解析】【分析】(1)利用三角形面积公式,求出AB 、AC 的长,再计算三角形的周长即可;(2)设ABC ∆在BC 边上的高为h ,则12ABC S BC h ∆=⋅,根据线段中点的定义以及线段的和差得出12EF BC =,继而再根据三角形面积公式进行求解即可; (3)设BOF S x ∆=,BOD S y ∆=,根据三角形中线将三角形分成两个面积相等的三角形可得14AOE COE AOB COB S S S S ∆∆∆∆====,从而得14AOF S x ∆=-,34ACF S x ∆=-,14BCF S x ∆=+,14COD S y ∆=-,34ACD S y ∆=-,14ABD S y ∆=+,利用等高的两三角形面积之比等于底边之比分别列出关于x 、y 的方程,求出x 、y 的值即可求得答案.【详解】(1)111222ABC S BC AD AC BE AB CF ∆=⋅=⋅=⋅, ∴BC AD AC BE AB CF ⋅=⋅=⋅,即16346AC AB ⨯=⋅=⋅,∴12AC =,8AB =,∴△ABC 的周长=AB+BC+AC=36;(2)设ABC ∆在BC 边上的高为h , 则12ABC S BC h ∆=⋅, ∵E 为BD 中点,∴12ED BD =, ∵F 为DC 中点,∴12DF DC =, ∴111222EF BD DC BC =+=, ∴211112cm 2222AEF ABC S EF h BC h S ∆∆=⋅=⋅⋅==; (3)设BOF S x ∆=,BOD S y ∆=,∵点E ,O 分别是AC ,BE 的中点,1ABC S ∆=, ∴14AOE COE AOB COB S S S S ∆∆∆∆====, ∴14AOF S x ∆=-,34ACF S x ∆=-,14BCF S x ∆=+, ∴134414x x x x --=+,即2213164x x x -=-, 解得112x =, 又14COD S y ∆=-,34ACD S y ∆=-,14ABD S y ∆=+, ∴141344y y y y +=--,得112y =, 故11112126BDOF S x y =+=+=四边形. 【点睛】本题考查了三角形面积的应用,三角形的周长,解题关键在于找出等高的两三角形面积与底边的对应关系.6.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.【答案】(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【解析】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP与BE的交点为M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如图④,设PE与AC的交点为F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.7.(1)如图1,有一块直角三角板XYZ(其中∠X=90°)放置在△ABC上,恰好三角板XYZ 的两条直角边XY,XZ分别经过B,C两点,且直角顶点X在△ABC内部.①若∠A=40°,∠ABC+∠ACB= °;∠XBC+∠XCB= °;②试判断∠A与∠XBA+∠XCA之间存在怎样数量关系?并写出证明过程.(2)如图2,如果直角顶点X在△ABC外部,试判断∠A、∠XBA、∠XCA之间又存在怎样的数量关系?(只写出答案,无需证明).【答案】(1)①140,90;②∠A+∠XBA+∠XCA=90°,证明见解析;(2)∠A+(∠XBA-∠XCA)=90°【解析】试题分析:(1)①根据三角形内角和定理可得∠ABC+∠ACB=180°﹣∠A=140°,∠XBC+∠XCB=180°﹣∠XBC=90°,进而可求出∠ABX+∠ACX 的度数;②根据三角形内角和定义有90°+(∠ABX+∠ACX)+∠A=180°,则可得出结论.(2)由②的解题思路可得:∠A+(∠XBA-∠XCA)=90°.(1)①若∠A=40°,∠ABC+∠ACB= 140 °;∠XBC+∠XCB= 90 °;②∠A+∠XBA+∠XCA=90°(或等式的变形也可以)证明:∵∠X=90°∴∠XBC+∠XCB=180°-∠X=90°∵∠A+∠ABC+∠ACB=180°,∴∠A+(∠XBA+∠XCA)+(∠XBC+∠XCB)=180°,∴∠A+(∠XBA+∠XCA)=180°-90°=90°,∴∠A=90°-(∠XBA+∠XCA)(2)∠A+(∠XBA-∠XCA) =90°.点睛:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是熟练掌握三角形的内角和为180°以及沟通外角和内角的关系.8.如图①,在△ABC中,AE平分∠BAC,∠C>∠B,F是AE上一点,且FD⊥BC于D点.(1)试猜想∠EFD,∠B,∠C的关系,并说明理由;(2)如图②,当点F在AE的延长线上时,其余条件不变,(1)中的结论还成立吗?说明理由.①②【答案】(1)∠EFD=12∠C-12∠B.()成立,理由见解析.【解析】【分析】先根据AE平分∠BAC推出∠BAE=12∠BAC=12[180°-(∠B+∠C)],再根据外角的定义求出∠FED=∠B+∠BAE,然后利用直角三角形的性质求出∠EFD=90°-∠FED.【详解】解:(1)∠EFD=12∠C-12∠B.理由如下:由AE是∠BAC的平分线知∠BAE=12∠BAC.由三角形外角的性质知∠FED=∠B+12∠BAC,故∠B+12∠BAC+∠EFD=90°①.在△ABC中,由三角形内角和定理得∠B+∠BAC+∠C=180°,即12∠C+12∠B+12∠BAC=90°②.②-①,得∠EFD=12∠C-12∠B.(2)成立.理由如下:由对顶角相等和三角形的外角性质知:∠FED=∠AEC=∠B+12∠BAC,故∠B+12∠BAC+∠EFD=90°①.在△ABC中,由三角形内角和定理得:∠B+∠BAC+∠C=180°,即12∠B+12∠BAC+12∠C=90°②.②-①,得∠EFD=12∠C-12∠B.【点睛】此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.9.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;(简单应用)(2)如图2,AP、CP分别平分∠BAD.∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数;(问题探究)(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.(拓展延伸)(4)在图4中,若设∠C=α,∠B=β,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B之间的数量关系为: ______ (用α、β表示∠P,不必证明)【答案】(1)证明见解析;(2)26°;(3)26°;(4)∠P=23α+13β.【解析】【分析】(1)根据三角形内角和定理即可证明.(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;(3)表示出∠PAD和∠PCD,再根据(1)的结论列出等式并整理即可得解;(4)列出方程组即可解决问题.【详解】(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2) 如图2,∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,∵∠2+∠B=∠3+∠P,∠1+∠P=∠4+∠D,∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°;(3)如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°;(4)∠P=23α+13β.10.动手操作,探究:探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系.已知:如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.并说明理由.探究二:若将△ADC改为任意四边形ABCD呢?已知:如图(2),在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,请你利用上述结论探究∠P与∠A+∠B的数量关系,并说明理由.探究三:若将上题中的四边形ABCD改为六边形ABCDEF如图(3)所示,请你直接写出∠P 与∠A+∠B+∠E+∠F的数量关系.【答案】探究一: 90°+12∠A;探究二:12(∠A+∠B);探究三:∠P=12(∠A+∠B+∠E+∠F)﹣180°.【解析】试题分析:探究一:根据角平分线的定义可得∠PDC=12∠ADC,∠PCD=12∠ACD,然后根据三角形内角和定理列式整理即可得解.探究二:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究一解答即可.探究三:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究一解答即可.试题解析:探究一:∵DP、CP分别平分∠AD C和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠ACD,∴∠DPC=180°-∠PDC-∠PCD,=180°-12∠ADC-12∠ACD,= 180°-12(∠ADC+∠ACD),=180°-12(180°-∠A),=90°+12∠A;探究二:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=12∠ADC,∠PCD=12∠BCD,∴∠DPC=180°-∠PDC-∠PCD,=180°-12∠ADC-12∠BCD,=180°-12(∠ADC+∠BCD),=180°-12(360°-∠A-∠B),=12(∠A+∠B);探究三:六边形ABCDEF的内角和为:(6-2)×180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC=12∠EDC,∠PCD=12∠BCD,∴∠P=180°-∠PDC-∠PCD,=180°-12∠EDC-12∠BCD,=180°-12(∠EDC+∠BCD),=180°-12(720°-∠A-∠B-∠E-∠F),=12(∠A+∠B+∠E+∠F)-180°,即∠P=12(∠A+∠B+∠E+∠F)-180°.点睛:本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,在此类题目中根据同一个解答思路求解是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B B 2016-2017学年第一学期八年级数学第二次
月考模拟试卷
(考试时间90分钟)
1.函数y =的定义域是 ; 2.已知函数()x
f x x 2
=
+,则f = ;
3
.等腰三角形的周长为22厘米,腰长为x 厘米,底边长为y 厘米,
求y 与x 之间的函数解析式 ; 4.“面积相等的三角形一定全等”是 命题。

(填“真”或 “假”) ;
5.如图,在△ABC 中,∠C=90°,BD 平分∠ABC 交AC 于D ,CD=6, 则点D 到AB 的距离为__________;
6.如图,在△ABC 中,∠ACB =90°, ∠A =30°,CD ⊥AB 于D , AB = 4厘米,则BD=____厘米;
第5题 第6题 第11题
7.把命题“对顶角相等。

”改写成“如果…,那么…”的形 式: ; 8.命题“两直线平行,同旁内角互补”的题设是 , 结论是 ;
9.和线段两个端点距离相等的点的轨迹是这条线段的 ; 10.命题“等腰三角形的两底角相等”的逆命题是 ;
11.如图,在Rt △ABC 中,90ABC ∠=
,BD 是斜边AC 上的高.如
果154∠=
,那么C ∠= 度;
D
第12题
C
B 12.如图,在Rt △AB
C 中,∠B=90°,点
D 在BC 上,D
E ⊥AC 于E ,DE=DB 。

若∠C=32°,则∠DAE=___________度; 13.如图,在∆ABC 中,AB AC 10==厘米,
BC 6=厘米,AB 的垂直平分线交AC 于点
D ,则∆BDC 的周长为 厘米。

二.选择题:(每小题3分,共12分)
14.下列各条件中,不能够判定两个三角形必定
全等的是( )
(A )两边及其夹角对应相等; (B )三边对应相等;
(C )两边及一边的对角对应相等; (D )两角及一角的对边对应相等 15.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,
使得△AOD ≌△COB 。

( ) (A )AO=CO (B )∠A=∠C
(C )DO=BO (D )∠ODB=∠OBD
16.如图,P 是AOB ∠平分线上一点, PA OA ⊥,PB OB ⊥, 下列式子中成立的是 ( ) ①AP=PB ②OA=OB ③OP AB ⊥
④有三个全等三角形
(A )①② (B )①②③ (C )①②③④ (D )②③④ 17. 下列结论不正确的是( )
(A )直角三角形的两个锐角互余 (B )在直角三角形中,斜边上的高等于斜边的一半 (C )在直角三角形中,斜边大于直角边
(D )在直角三角形中,如果一个锐角等于030,那么它所对的直角边等于
斜边的一半 三.简答题:(本大题共7小题,每题6分,共计42分)
18.已知,如图,AC 与BD 相交于点O,∠ABC=∠DCB, ∠ACB=∠DBC , 求证: △ABC ≌△DBC 。

A
B C
E
D
(第13题)
(第18题)A P O
A
D O C B
D A
P
D C
19.如图,已知Rt △AFC 和Rt △DEB 中,AB=DC ,AF=DE 。

求证:Rt △AFC ≌Rt △DEB
20.已知:如图,点P 在CD 上,∠BAD+∠ADP=180°,∠1=∠2。

求证:∠3=∠4。

21.已知:P 是线段AB 的中点,DP=CP ,AD=BC 。

求证:∠1=∠2。

22.如图,已知:的中点是,点AC E 90ADC ABC
=∠=∠。

求证:△BDE 是等腰三角形。

A C
F E D C
A
23.已知,如图,AB=AE ,BC=ED ,∠B =∠E ,F 是CD 边的中点。

求证:A F ⊥CD 。

24.已知:如图,在△ABC 中,AB=AC ,∠BAC=120°,AB 的垂直平分线MN
分别交BC 、AB 于点M 、N 。

求证:CM=2BM
四、(本题7分)
25.甲乙两人同时登西山,甲、乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题: (1)甲登山的速度是每分钟 米,
(2)乙在A 地提速时距地面的高度b 为 米. (3)求出甲登山全过程中,登山时距地面的高度y (米)与登山时间x (分)
之间的函数关系式以及定义域.
N M C B A
答案
一.填空题:
1. 5x 3
≥-
; 2. 5- 3. y=22-2x 4.假; 5.6 ; 6.1; 7.如果两个角是对顶角,那么这两个角相等; 8. 题设是两直线平行,结论是同旁内角互补;
9.垂直平分线; 10.两个内角相等的三角形是等腰三角形; 11.54° 12.29°; 13. 16; 二.选择题:
14. C ; 15. B ; 16. C. 17. B ; 三.简答题:
18. 略 19. 略 20.略 21.略 22.略 23.略 24.略 25.(1)10 1分 (2)30 1分
(3)y=100+10x 4分 (0≤x ≤20) 1分。

相关文档
最新文档