高考数学试题分项版解析 专题04 三角函数与三角形 理(含解析)

合集下载

三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

三角函数、解三角形——2024届高考数学试题分类汇编(解析版)

2024高考复习·真题分类系列2024高考试题分类集萃·三角函数、解三角形
微专题总述:三角函数的图像与性质
【扎马步】2023高考三角函数的图像与性质方面主要考察“卡根法”的运用,是最为基础的表现
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,加强图像考察与其他知识点如几何、函数的结合,对称思想的隐含
微专题总述:正弦定理与余弦定理的应用
【扎马步】2023高考解三角形小题部分紧抓“教考衔接”基础不放,充分考察正余弦定理的运用
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,在考察正余弦定理时与角平分线定理结合(初中未涉及此定理)
微专题总述:解三角形综合问题
【扎马步】2023高考解三角形大题部分仍然与前几年保持一直模式,结构不良题型日益增多,但方向不变,均是化为“一角一函数”模式是达到的最终目的,考察考生基本计算与化简能力
【雕龙头】在稳中求新的过程中,2023高考试题也透露出了新的风向,如新高考卷中出现的数形结合可加快解题速度,利用初中平面几何方法快速求出对应参量在近几年高考题中频繁出现,可见初高中结合的紧密 2023年新课标全国Ⅰ卷数学
16.已知在ABC 中,
()3,2sin sin A B C A C B +=−=. (1)求sin A ;
(2)设5AB =,求AB 边上的高.
2023高考试题分类集萃·三角函数、解三角形参考答案
2。

2022年高考数学真题:三角函数与解三角形(解析版)

2022年高考数学真题:三角函数与解三角形(解析版)

第3讲三角函数与解三角形一、单选题1.(2022·全国·高考真题(理))双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 的两支交于M ,N 两点,且123cos 5F NF ,则C 的离心率为()AB .32C .132D .172【答案】C 【解析】【分析】依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,可判断N 在双曲线的右支,设12F NF ,21F F N ,即可求出sin ,sin ,cos ,在21F F N 中由12sin sin F F N 求出12sin F F N ,再由正弦定理求出1NF ,2NF ,最后根据双曲线的定义得到23b a ,即可得解;【详解】解:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,所以1OG NF ,因为123cos 05F NF,所以N 在双曲线的右支,所以OG a ,1OF c ,1GF b ,设12F NF ,21F F N ,由123cos 5F NF,即3cos 5 ,则4sin 5=,sin a c ,cos b c ,在21F F N 中,12sin sin sin F F N 4334sin cos cos sin 555b a a bc c c,由正弦定理得211225sin sin sin 2NF NF c c F F N ,所以112553434sin 2252c c a b a b NF F F N c,2555sin 222c c a a NF c 又12345422222a b a b aNF NF a,所以23b a ,即32b a ,所以双曲线的离心率132c e a故选:C2.(2022·全国·高考真题)若sin()cos()sin 4,则()A . tan 1B . tan 1C . tan 1D . tan 1【答案】C 【解析】【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】由已知得:sin cos cos sin cos cos sin sin 2cos sin sin ,即:sin cos cos sin cos cos sin sin 0 ,即: sin cos 0 ,所以 tan 1 ,故选:C3.(2022·全国·高考真题)记函数()sin (0)4f x x b的最小正周期为T .若23T ,且()y f x 的图象关于点3,22中心对称,则2f()A .1B .32C .52D .3【答案】A【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足23T ,得223,解得23 ,又因为函数图象关于点3,22对称,所以3,24k k Z ,且2b ,所以12,63k k Z ,所以52 ,5()sin 224f x x ,所以5sin 21244f .故选:A4.(2022·全国·高考真题(理))设函数π()sin 3f x x在区间(0,π)恰有三个极值点、两个零点,则 的取值范围是()A .513,36B .519,36C .138,63D .1319,66【答案】C 【解析】【分析】由x 的取值范围得到3x的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得0 ,因为 0,x ,所以,333x,要使函数在区间 0, 恰有三个极值点、两个零点,又sin y x ,,33x的图象如下所示:则5323 ,解得13863 ,即138,63.故选:C .5.(2022·全国·高考真题(理))沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图, AB 是以O 为圆心,OA 为半径的圆弧,C 是的AB 中点,D 在 AB 上,CD AB .“会圆术”给出 AB 的弧长的近似值s 的计算公式:2CD s AB OA.当2,60OA AOB 时,s ()A .112B .112C D .92【答案】B 【解析】【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案.【详解】解:如图,连接OC ,因为C 是AB 的中点,所以OC AB ,又CD AB ,所以,,O C D 三点共线,即2OD OA OB ,又60AOB ,所以2AB OA OB ,则OC 2CD所以22211222CD s AB OA.故选:B.6.(2022·全国·高考真题(理))函数 33cos x xy x 在区间ππ,22的图象大致为()A .B .C .D .【答案】A 【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令33cos ,,22x xf x x x,则 33cos 33cos x x x xf x x x f x ,所以 f x 为奇函数,排除BD ;又当0,2x时,330,cos 0x x x ,所以 0f x ,排除C.故选:A.7.(2022·全国·高考真题(文))将函数π()sin (0)3f x x的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则 的最小值是()A .16B .14C .13D .12【答案】C 【解析】【分析】先由平移求出曲线C 的解析式,再结合对称性得,232k kZ ,即可求出 的最小值.【详解】由题意知:曲线C 为sin sin()2323y x x,又C 关于y 轴对称,则,232k kZ ,解得12,3k kZ ,又0 ,故当0k 时, 的最小值为13.故选:C.二、填空题8.(2022·全国·高考真题(理))记函数 cos (0,0π)f x x 的最小正周期为T ,若3()2f T ,9x 为()f x 的零点,则 的最小值为____________.【答案】3【解析】【分析】首先表示出T ,根据f T ,再根据π9x 为函数的零点,即可求出 的取值,从而得解;【详解】解:因为 cos f x x ,(0 ,0π )所以最小正周期2πT,因为 2π3cos cos 2πcos 2f T,又0π ,所以π6 ,即 πcos 6f x x,又π9x为 f x 的零点,所以ππππ,Z 962k k ,解得39,Z k k ,因为0 ,所以当0k 时min 3 ;故答案为:39.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD .当ACAB取得最小值时,BD ________.1## 【解析】【分析】设220CD BD m ,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m ,在ACD △中,22222cos 444AC CD AD CD AD ADC m m ,所以 2222224421214441243424211m m m AC m m AB m m m mm m44 当且仅当311mm 即1m 时,等号成立,所以当ACAB取最小值时,1m .1.三、解答题10.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知1233123S S S B .(1)求ABC 的面积;(2)若2sin sin 3A C ,求b .【答案】(2)12【解析】【分析】(1)先表示出123,,S S S ,再由123S S S 2222a c b ,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB A C,即可求解.(1)由题意得22221231,,2S a a S b S c ,则2221234442S S S a b c,即2222a c b ,由余弦定理得222cos 2a c b B ac ,整理得cos 1ac B ,则cos 0B ,又1sin 3B ,则cos B ,1cos ac B 1sin 2ABC S ac B (2)由正弦定理得:sin sin sin b a cB AC ,则223294sin sin sin sin sin 423b ac ac B A C A C,则3sin 2b B ,31sin 22b B .11.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B.(1)若23C,求B ;(2)求222a b c的最小值.【答案】(1)π6;(2)5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B化成cos sin A B B ,再结合π02B,即可求出;(2)由(1)知,π2C B ,π22A B ,再利用正弦定理以及二倍角公式将222a b c 化成2224cos 5cos B B,然后利用基本不等式即可解出.(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B,即1sin cos cos sin sin cos cos 2B A B A B A B C,而π02B ,所以π6B ;(2)由(1)知,sin cos 0B C ,所以πππ,022C B ,而πsin cos sin 2B C C,所以π2C B,即有π22A B .所以222222222sin sin cos 21cos sin cos a b A B B B c C B2222222cos 11cos 24cos 555cos cos B BB BB.当且仅当2cos 2B 时取等号,所以222a b c的最小值为5.12.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知 sin sin sin sin C A B B C A .(1)若2A B ,求C ;(2)证明:2222a b c 【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得, sin sin C C A ,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再根据正弦定理,余弦定理化简即可证出.(1)由2A B , sin sin sin sin C A B B C A 可得, sin sin sin sin C B B C A ,而π02B,所以 sin 0,1B ,即有 sin sin 0C C A ,而0π,0πC C A ,显然C C A ,所以,πC C A ,而2A B ,πA B C ,所以5π8C .(2)由 sin sin sin sin C A B B C A 可得,sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C ,然后根据余弦定理可知,22222222222211112222a c b b c a b c a a b c ,化简得:2222a b c ,故原等式成立.27.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A .(1)证明:2222a b c ;(2)若255,cos 31a A ,求ABC 的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c ,即可得解.(1)证明:因为 sin sin sin sin C A B B C A ,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C ,所以2222222222222a c b b c a a b c ac bc ab ac bc ab,即22222222222a c b a b c b c a ,所以2222a b c ;(2)解:因为255,cos 31a A ,由(1)得2250bc ,由余弦定理可得2222cos a b c bc A ,则50502531bc ,所以312bc,故 2222503181b c b c bc ,所以9b c ,所以ABC 的周长为14a b c .。

2014届高三名校数学(理)试题分省分项汇编 专题04 三角函数与三角形

2014届高三名校数学(理)试题分省分项汇编 专题04 三角函数与三角形

一.基础题组1. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知4cos()65πα-=,则sin()3πα+= .2. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】求值:002cos10sin 20cos 20-= .3. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知向量(sin ,1),(1,cos ),22a b ππθθθ==-<< .(1) 若a b ⊥,求θ;(2) 求a b +的最大值.【答案】(1)4πθ=【解析】试题分析:(1)由向量垂直的充要条件:11221212(,y ),(,y ),0y y 0a x b x a b a b x x ==⊥⇔⋅=⇔+=,这样4. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】已知ABC ∆的周长1,且sin sin A B C + (1)求边AB 的长; (2)若ABC ∆的面积为1sin 6C ,求角C .试题解析:解:(1)由题意及正弦定理得:1AB BC AC ++=,BC AC +=,两式相减得1AB =.…………(6分)5. 【江苏省灌云高级中学2013-2014学年度高三第一学期期中考试】如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m 和15m ,从建筑物AB 的顶部A 看建筑物CD 的张角045CAD ∠=. (1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的张角分别为APB α∠=,DPC β∠=,问点P 在何处时,tan()αβ+最小?试题解析:解:(1)如图作AN CD ⊥ 于N .91569AB CD AB CD DN EC ∴ ,=,=,=,= .设AN x DAN θ∠=,= ,4545CAD CAN θ∠︒∴∠︒ =,=- . 在Rt ANC ∆ 和Rt AND ∆ 中,069tan ,tan(45-)=x x θ ………………………4分()91tan 451tan tan x θθθ-∴︒+=-= 化简整理得215540x x --= , 解得12)183(x x =,=-舍去 .BC 的长度是18 m . ………………………7分6. 【南京市、盐城市2014届高三第一次模拟考试】在ABC ∆中,2BC =,23A π=,则AB AC ⋅的最小值为 .7. 【南京市、盐城市2014届高三第一次模拟考试】 在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,已知2c =,3C π=.(1)若ABC ∆a ,b ;(2)若sin sin()2sin 2C B A A +-=,求ABC ∆的面积.8. 【江苏省通州高级中学2013-2014学年度秋学期期中考试】已知ααcos 21sin +=,且)2,0(πα∈,则)4sin(2cos παα-的值为__ ▲____.【答案】214- 【解析】9. 【江苏省通州高级中学2013-2014学年度秋学期期中考试】 在△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c , AC AB ∙=8,∠BAC =θ,a =4, (1)求b ·c 的最大值及θ的取值范围;(2)求函数f (θ)=23sin 2(π4+θ)+2cos 2θ-3的最值.当2+62ππθ=,即=6πθ时,max f()3θ=.考点:1.余弦定理;2.三角函数的图象;3.基本不等式10. 【江苏省扬州中学2013—2014学年第一学期月考】若动直线)(R a a x ∈=与函数()3sin()()cos()66f x xg x x ππ=+=+与的图象分别交于N M ,两点,则||MN 的最大值为 .11. 【江苏省扬州中学2013—2014学年第一学期月考】设向量),cos ,(sin x x a =),sin 3,(sin x x b =x ∈R ,函数)2()(b a a x f +⋅=.(1)求函数)(x f 的单调递增区间;(2)求使不等式()2f x '≥成立的x 的取值集合.试题解析:(1) )2()(x f +⋅=222sin cos 2(sin 3sin cos )x x x x x =++ 3111cos 23222(sin 2cos 2)2x x x x =+-=+⋅22(sin 2coscos 2sin )22sin(2)666x x x πππ=+-=+-. …………5′ 由222262k x k πππππ-≤-≤+,得63k x k ππππ-≤≤+()k ∈Z ,∴()f x 的单调递增区间为[,]63k k ππππ-+()k ∈Z . …………8′12. 【苏北四市2014届高三第一次质量检测】 在△ABC 中,已知3AB =,o 120A =,且ABC ∆,则BC 边长为 .13. 【苏北四市2014届高三第一次质量检测】已知函数()2sin(2)(0)4f x x ωωπ=->的最大值与最小正周期相同,则函数()f x 在[11]-,上的单调增区间为 . 【答案】13[,]44- 【解析】试题分析:由题意可知,函数()2sin()4f x x ππ=-,令22242k x k ππππππ-+≤-≤+,解得1322,44k x k k Z -+≤≤+∈,又[1,1]x ∈-,所以1344x -≤≤,所以函数()f x 在[1,1]-上的单调递增区间为13[,]44-.考点:三角函数的图象与性质.14. 【苏北四市2014届高三第一次质量检测】已知向量(cos ,sin )θθ=a ,(2,1)=-b .(1)若⊥a b ,求sin cos sin cos θθθθ-+的值;(2)若2-=a b ,(0,)2θπ∈,求sin()4θπ+的值.15. 【苏州市2014届高三调研测试】 若函数()sin()f x x θ=+(π02θ<<)的图象关于直线π6x =对称,则θ = ▲ .【答案】3π16. 【苏州市2014届高三调研测试】已知π3sin()45x +=,π4sin()45x -=,则tan x = ▲ .17. 【苏州市2014届高三调研测试】 在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,且1cos 2a C c b +=.(1)求角A 的大小;(2)若a =4b =,求边c 的大小.试题解析:(1)用正弦定理,由1cos ,2a C cb +=得1sin cos sin sin .2A C C B +=………2分sin sin()sin cos cos sin ,B A C A C A C =+=+1sin cos sin .2C A C ∴=………4分 1sin 0,cos .2C A ≠∴= ………6分0,.3A A ππ<<∴=………8分18. 【江苏省兴化市安丰高级中学2014届高三12月月考】已知)0,2(πα-∈,53cos =α,则=+)4tan(πα .19.【江苏省兴化市安丰高级中学2014届高三12月月考】在ABC ∆中,若2,60,a B b =∠=︒=,则c = .20.二.能力题组1. 【江苏省诚贤中学2014届高三数学月考试题】在△ABC ,已知.sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++(1)求角A 值;(2)求C B cos sin 3-的最大值.2. 【江苏省兴化市安丰高级中学2014届高三12月月考】已知(cos ,sin ),(cos ,sin )a b ααββ==.(1)若67πβα=-,求a b ⋅ 的值; (2)若4,58a b πα⋅== ,且⎪⎭⎫⎝⎛-∈-0,2πβα,求tan()αβ+的值.3. 【江苏省兴化市安丰高级中学2014届高三12月月考】 在锐角△ABC 中,角A 、B 、C的对边分别为a 、b 、c ,且 .3tan )(222bc A a c b =-+ (1)求角A ;(2)若2a =,求ABC ∆面积S 的最大值. 【答案】(1)60A ︒=;(2)3. 【解析】试题分析:(1)由式子.3tan )(222bc A a c b =-+的结构特征,很自然联想到余弦定理,将其化为关于角A 的三角函数,由其函数值则可求出角A ;(2)由第(1)题的结果,可知1sin 2S bc A ==,再由条件可得,224b c bc +=+,利用基本不等式可求出bc 的最大值,进一步可得三角形面积的最大值.三.拔高题组1. 【江苏省诚贤中学2014届高三数学月考试题】如图,两座建筑物CD AB ,的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9cm 和15cm ,从建筑物AB 的顶部A 看建筑物CD 的视角︒=∠45CAD .求BC 的长度;在线段BC 上取一点(P 点P 与点C B ,不重合),从点P 看这两座建筑物的视角分别为,,βα=∠=∠DPC APB 问点P 在何处时,βα+最小?【答案】⑴18m ;⑵当BP 为27)m 时,αβ+取得最小值. 【解析】+取得最小值.……………………………14分答:当BP为27)m时,αβ考点:1.两角和差的正切公式;2.直角三角形中正切的表示;3.导数在函数中的运用。

2019年高考数学理真题分项解析:专题04 三角函数与三角形

2019年高考数学理真题分项解析:专题04 三角函数与三角形

专题四 三角函数与三角形1.【2019高考新课标Ⅰ,理11】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A. ①②④ B. ②④C. ①④D. ①③【答案】C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案.【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .2.【2019高考新课标Ⅱ,理9】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A. f (x )=│cos 2x │ B. f (x )=│sin 2x │ C. f (x )=cos│x │D. f (x )= sin│x │【解析】 【分析】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.【详解】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos2y x =图象,由图象知,其周期为2π,在区间(,)42ππ单调递增,A 正确;作出sin 2y x=的图象,由图象知,其周期为2π,在区间(,)42ππ单调递减,排除B ,故选A .【点睛】利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数;3.【2019高考新课标Ⅱ,理10】已知a ∈(0,π2),2sin2α=cos2α+1,则sinα= A.15 B.55 C. 33D.255【答案】B【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+Q ,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭Q . sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,5sin 5α∴=,故选B . 【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.4.【2019高考新课标Ⅲ,理12】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A. ①④ B. ②③C. ①②③D. ①③④【答案】D 【解析】 【分析】本题为三角函数与零点结合问题,难度大,通过整体换元得5265πππωπ≤+<,结合正弦函数的图像分析得出答案.【详解】当[0,2]x πÎ时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦,∵f (x )在[0,2]π有且仅有5个零点, ∴5265πππωπ≤+<,∴1229510ω≤<,故④正确, 由5265πππωπ≤+<,知,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦时, 令59,,5222x ππππω+=时取得极大值,①正确;极小值点不确定,可能是2个也可能是3个,②不正确; 因此由选项可知只需判断③是否正确即可得到答案, 当0,10x π⎛⎫∈ ⎪⎝⎭时,(2),5510x ππωπω+⎡⎤+∈⎢⎥⎣⎦, 若f (x )在0,10π⎛⎫⎪⎝⎭单调递增, 则(2)102ωππ+< ,即<3ϖ , ∵1229510ω≤<,故③正确. 故选:D .【点睛】极小值点个数动态的,易错,③正确性考查需认真计算,易出错,本题主要考查了整体换元的思想解三角函数问题,属于中档题.5.【2019高考天津卷,理7】已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭( ) A. 2- B. 2-C. 2D. 2【答案】C 【解析】 【分析】只需根据函数性质逐步得出,,A ωϕ值即可。

数学一轮复习第4章三角函数解三角形第1讲三角函数的基本概念同角三角函数的基本关系与诱导公式试题1理

数学一轮复习第4章三角函数解三角形第1讲三角函数的基本概念同角三角函数的基本关系与诱导公式试题1理

第四章三角函数、解三角形第一讲三角函数的基本概念、同角三角函数的基本关系与诱导公式练好题·考点自测1.已知下列命题:①第二象限角大于第一象限角;②不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;③若sin α=sin β,则α与β的终边相同;④若cos θ<0,则θ是第二或第三象限的角.其中正确的个数是()A.1B.2 C。

3 D。

42。

sin 2·cos 3·tan 4的值()A。

小于0 B。

大于0C。

等于0 D.不存在3.已知点P(cos 300°,sin 300°)是角α终边上一点,则sin α—cos α= ()A.√32+12B。

-√32+12C。

√32−12D。

-√32−124.[2019全国卷Ⅰ,7,5分]tan 255°= ()A.-2—√3B。

—2+√3C。

2—√3 D.2+√35.[2020全国卷Ⅱ,2,5分][理]若α为第四象限角,则 ( ) A 。

cos 2α>0 B 。

cos 2α〈0 C 。

sin 2α>0 D.sin 2α<06。

已知sin α+cos α=12,α∈(0,π),则1-tanα1+tanα= ( )A.—√7B.√7C.√3 D 。

-√3图4-1—17。

[2019北京,8,5分]如图4—1-1,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为 ( ) A 。

4β+4cos β B.4β+4sin β C.2β+2cos β D.2β+2sin β8.[2018全国卷Ⅰ,11,5分]已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( )A.15B .√55C 。

2√55D.1拓展变式1.在一块顶角为120°、腰长为2的等腰三角形厚钢板废料OAB 中用电焊切割成扇形,现有如图4-1—3所示两种方案,既要充分利用废料,又要切割时间更短,则方案更优.2.(1)[2021洛阳市联考]已知角α的顶点为坐标原点,始边与x轴非负半轴重合,终边与直线y=3x重合,且sin α<0,P(m,n)是角α终边上一点,且|OP|=√10(O为坐标原点),则m-n 等于()A.2B.-2C.4 D。

高考《三角函数与解三角形》(解析版)

高考《三角函数与解三角形》(解析版)

专题四 三角函数与解三角形第十二讲 解三角形答案部分 2019年1.解:(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==. 因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-,()sin 1202sin A C C ︒+-=,1sin 2sin 2C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 60C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 2.解析:由余弦定理有2222cos b a c ac B =+-, 因为6b =,2a c =,π3B =,所以222π36(2)4cos 3c c c =+-,所以212c =,21sin sin 2ABC S ac B c B ===△3.解析(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin 0A ≠,所以sinsin 2A CB +=.由180A B C ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此60B =︒. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===.由于ABC △为锐角三角形,故090A ︒<<︒,090C ︒<<︒,由(1)知120A C +=︒,所以3090C ︒<<︒,故122a <<ABC S <<△. 因此,ABC △面积的取值范围是,82⎛⎫⎪ ⎪⎝⎭.4.解析 设()2AD AB A AO C λλ==+u u u u r u u u u u r u u u rr ,1()(1)3AO AE EO AE EC AE AC AE AE AC AB ACμμμμμμ-=+=+=+-=-+=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,所以1232λμλμ-⎧=⎪⎪⎨⎪=⎪⎩,解得1214λμ⎧=⎪⎪⎨⎪=⎪⎩,所以11()24AO AD AB AC ==+u u u r u u u r u u u r u u u r ,13EC AC AE AB AC =-=-+u u u r u u u r u u u r u u ur u u u r ,221131266()()()43233AO EC AB AC AB AC AB AB AC AC ⋅=⨯+⨯-+=-+⋅+=u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r221322AB AB AC AC -+⋅+u u ur u u u r u u u r u u u r , 因为221322AB AC AB AB AC AC ⋅=-+⋅+u u u r u u u r u u u r u u u r u u u r u u u r ,所以221322AB AC =u u ur u u u r ,所以223AB AC=u u u r u u u r,所以AB AC =. 5.解析 (1)由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以3c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos B =. 因此π25sin cos 2B B ⎛⎫+== ⎪⎝⎭. 6.解析:在直角三角形ABC 中,4AB =,3BC =,5AC =,4sin 5C =, 在BCD △中,sin sin BD BC C BDC=∠,可得122BD =;135CBD C ∠=-o ,224372sin sin(135)(cos sin )225510CBD C C C ⎛⎫∠=-=+=⨯+=⎪⎝⎭o , 所以()72cos cos 90sin ABD CBD CBD ∠=-∠=∠=o.7.解析:(I )由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯-⎪⎝⎭. 因为2b c =+,所以()222123232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭.解得5c =, 所以7b =.(II )由1cos 2B =-得sin B =.由正弦定理得sin sin c C B b ==在ABC △中,B ∠是钝角,所以C ∠为锐角.所以11cos 14C ==. 所以()sin sin cos cos sin B C B C B C -=-=. 8.解析(Ⅰ)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B a a +-+-===-⋅⋅.(Ⅱ)由(Ⅰ)可得sin 4B ==,从而sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-,故πππ71sin 2sin 2cos cos 2sin 66682B B B ⎛⎫+=+=-⨯= ⎪⎝⎭.2010-2018年1.A 【解析】因为213cos 2cos121255=-=⨯-=-C C ,所以由余弦定理, 得22232cos 251251()325=+-⋅=+-⨯⨯⨯-=AB AC BC AC BC C ,所以=AB A .2.C 【解析】根据题意及三角形的面积公式知2221sin 24a b c ab C +-=,所以222sin cos 2a b c C C ab +-==,所以在ABC ∆中,4C π=.故选C . 3.A 【解析】由sin (12cos )2sin cos cos sin B C A C A C +=+,得sin 2sin cos sin cos sin B B C A C B +=+,即2sin cos sin cos B C A C =,所以2sin sin B A =,即2b a =,选A . 4.A 【解析】由余弦定理得213931AC AC AC =++⇒=,选A.5.C 【解析】设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得1sin 34a c π==,则a =.在△ABC 中,由余弦定理可得222222295322b ac c c c c =+-=+-=,则b =.由余弦定理,可得22222259cos 2c c c b c a A bc +-+-===C . 6.B 【解析】11sin 22AB BC B ⋅⋅=,∴sin 2B =,所以45B =o 或135B =o. 当45B =o时,1AC ==,此时1,AB AC BC ===90A =o 与“钝角三角形”矛盾;当135B =o时,AC ==.7.A 【解析】因为A B C π++=,由1sin 2sin()sin()2A ABC C A B +-+=--+得1sin 2sin 2sin 22A B C ++=, 即1sin[()()]sin[()()]sin 22A B A B A B A B C ++-++--+=, 整理得1sin sin sin 8A B C =, 又111sin sin sin 222S ab C bc A ac B ===,因此322222211sin sin sin 864S a b c A B C a b c ==,由12S ≤≤ 得222311264a b c ≤≤,即8abc ≤≤C 、D 不一定成立.又0b c a +>>,因此()8bc b c bc a +>⋅≥,即()8bc b c +>,选项A 一定成立.又0a b c +>>,因此()8ab a b +>,显然不能得出()ab a b +>B 不一定成立.综上所述,选A .8.C 【解析】由22()6c a b =-+可得22226a b c ab +-=-①,由余弦定理及3C π=可得222a b c ab +-=②.所以由①②得6ab =,所以1sin 23ABC S ab π∆==9.C 【解析】∵tan15tan(6045)2=-=o o o∴60tan 6060tan151)BC =-=o o.10.D 【解析】225cos 10A -=,1cos 5A =,由余弦定理解得5b =. 11.A 【解析】边换角后约去sin B ,得1sin()2A C +=,所以1sin 2B =,但B 非最大角,所以6B π=.12.C 【解析】由余弦定理可得AC =sin 10A =. 13.B 【解析】∵cos cos sin bC c B a A +=,∴由正弦定理得2sin cos sin cos sin B C C B A +=,∴2sin()sin B C A +=,∴2sin sin A A =,∴sin 1A =,∴△ABC 是直角三角形.14.B 【解析】由正弦定理得:sin sin sin 60sin 45BC AC ACAC A B ︒︒=⇔=⇔=15.D 【解析】由正弦定理,得22sin sin sin cos A B B A A +=,即22sin (sin cos )B A A A ⋅+=,sin B A =,∴sin sin b B a A== 16.D 【解析】设AB c =,则AD c =,BD =,BC =ΔABD 中,由余弦定理得2222413cos 23c c c A c +-==,则sin 3A =,在ΔABC 中,由正弦定理得sin sin 3c BC C A ==,解得sin C =.17.A 【解析】因为120C ∠=o,c =,所以2222cos c a b ab C =+-,222122()2a ab ab =+--所以22,0,aba b ab a b a b a b-=-=>>+ 因为0,0a b >>,所以0aba b a b-=>+,所以a b >.故选A .18.9【解析】因为120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,所以60ABD CBD ∠=∠=o,由三角形的面积公式可得111sin120sin 60sin 60222ac a c =+o o o , 化简得ac a c =+,又0a >,0c >,所以111a c+=,则1144(4)()559c a a c a c a c a c +=++=+++=≥, 当且仅当2c a =时取等号,故4a c +的最小值为9. 19.7;3【解析】因为a =2b =,60A =o,所以由正弦定理得2sin sin 7b AB a⨯===.由余弦定理2222cos a b c bc A =+-可得2230c c --=,所以3c =.202222224241cos 22424AB BC AC ABC AB BC +-+-∠===⨯⨯⨯⨯,由22sin cos 1ABC ABC ∠+∠=所以sin4ABC∠===,1sin2BDCS BD BC DBC∆=⨯⨯∠11sin()sin22BD BC ABC BD BC ABCπ=⨯⨯-∠=⨯⨯∠1222=⨯⨯=.C因为BD BC=,所以D BCD∠=∠,所以2ABC D BCD D∠=∠+∠=∠,cos cos24ABCBDC∠∠====.21.2【解析】单位圆内接正六边形是由6个边长为1的正三角形组成,所以61611sin602S=⨯⨯⨯⨯=o.22.2113【解析】∵4cos5A=,5cos13C=,所以3sin5A=,12sin13C=,所以()63sin sin sin cos cos sin65B AC A C A C=+=+=,由正弦定理得:sin sinb aB A=解得2113b=.23.1 【解析】由1sin2B=得6Bπ=或56π,因为6Cπ=,所以56Bπ≠,所以6Bπ=,于是23Aπ=.有正弦定理,得21sin32bπ=,所以1b=.24.7【解析】由已知得ABC ∆的面积为1sin 20sin 2AB AC A A ⋅==所以sin A =,(0,)2A π∈,所以3A π=. 由余弦定理得2222cos BC AB AC AB AC A =+-⋅=49,7BC =. 25.【解析】如图作PBC ∆,使75∠=∠=oB C ,2BC =,作出直线AD 分别交线段PB 、PC 于A 、D 两点(不与端点重合),且使75∠=oBAD ,则四边形ABCD 就是符合题意的四边形,过C 作AD 的平行线交PB 于点Q ,在PBC ∆中,可求得BP =QBC ∆中,可求得BQ =,所以AB 的取值范围为.26.1【解析】∵2223cos 24b c a A bc +-==, 而sin 22sin cos 243cos 21sin sin 64A A A a A C C c ⨯==⨯=⨯⨯=. 27.8 【解析】 因为0A π<<,所以sin A ==又1sin 28ABC S bc A ∆===24bc ∴=, 解方程组224b c bc -=⎧⎨=⎩,得6b =,4c =,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.28.ο30=∠BAC ,ο105=∠ABC ,在ABC ∆中,由ο180=∠+∠+∠ACB BAC ABC ,所以ο45=∠ACB ,因为600=AB ,由正弦定理可得οο30sin 45sin 600BC=, 即2300=BC m ,在BCD Rt ∆中,因为ο30=∠CBD ,2300=BC , 所以230030tan CDBC CD ==ο,所以6100=CD m .29.150【解析】在三角形ABC 中,AC =,在三角形MAC 中,sin 60sin 45MA AC=o o,解得MA =在三角形MNA sin 60==o ,故150MN =. 30.2【解析】由b B c C b 2cos cos =+得:sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,sin 2sin A B =,∴2a b =,故2ab=. 31.π32【解析】3sin 5sin A B =, π32212cos 2,53222=⇒-=-+=⇒=+=⇒C ab c b a C a c b b a ,所以π32.32sin sin()cos 2BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD+-∠=•,2223BD ∴==33.①②③【解析】①222221cos 2223a b c ab ab ab c C C ab ab π+-->⇒=>=⇒< ②2222224()()12cos 2823a b c a b a b a b c C C ab ab π+-+-++>⇒=>≥⇒< ③当2C π≥时,22232233c a b c a c b c a b ≥+⇒≥+>+与333a b c +=矛盾④取2,1a b c ===满足()2a b c ab +<得:2C π<⑤取2,1a b c ===满足22222()2a b c a b +<得:3C π<.34.4【解析】根据余弦定理可得2214(7)22(7)()4b b b =+--⨯⨯-⨯-,解得b =4. 35. 在ABC ∆中,根据sin sin sin AB AC BCC B A==,得sin sin 2sin sin ACAB C C C B=⋅==,同理2sin BC A =, 因此22sin 4sin AB BC C A +=+22sin 4sin()3C C π=+-4sin )C C C ϕ=+=+.36【解析】根据sin sin AB ACC B=得5sin sin 7AB C B AC ===11cos 14C ==, 所以sin sin[()]sin cos cos sin A B C B C B C π=-+=+111142-= 37.4【解析】(方法一)考虑已知条件和所求结论对于角A 、B 和边a 、b 具有轮换性.当A =B 或a =b 时满足题意,此时有:1cos 3C =,21cos 1tan 21cos 2C C C -==+,tan22C =,1tan tan tan 2A B C===,tan tan tan tan C CA B+= 4. (方法二)226cos 6cos b aC ab C a b a b+=⇒=+, 2222222236,22a b c c ab a b a b ab +-⋅=++=tan tan sin cos sin sin cos sin sin()tan tan cos sin sin cos sin sin C C C B A B A C A B A B C A B C A B +++=⋅=⋅21sin cos sin sin C C A B =⋅.由正弦定理,得:上式22222214113cos ()662c c c c C ab a b =⋅===+⋅.38.6π【解析】由sin cos 2B B +=得12sin cos 2B B +=,即sin 21B =, 因02B π<<,所以2,24B B ππ==.又因为2,2,a b ==由正弦定理得22sin sin 4A π=,解得1sin 2A =,而,a b <则04A B π<<=,故6a π=. 39.【解析】(1)在ABC ∆中,∵1cos 7B =-,∴(,)2B ππ∈,∴243sin 1cos B B =-=. 由正弦定理得sin sin a b A B=⇒7sin 43A =,∴3sin A =. ∵(,)2B ππ∈,∴(0,)2A π∈,∴π3A ∠=.(2)在ABC ∆中,∵sin sin()sin cos cos sin C A B A B A B =+=+=31143()2727⨯-+⨯=3314. 如图所示,在ABC ∆中,∵sin hC BC=,∴sin h BC C =⋅=33337⨯=, ∴AC 边上的高为33.40.【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,所以2sin ADB ∠=.由题设知,90ADB ∠<︒,所以cos 5ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯25=. 所以5BC =.41.【解析】(1)在ABC △中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =又因为(0π)B ∈,,可得3B π=.(2)在ABC △中,由余弦定理及2a =,3c =,3B π=,有2222cos 7b a c ac B =+-=,故b =.由πsin cos()6b A a B =-,可得sin A =a c <,故cos A =.因此sin 22sin cos A A A ==21cos 22cos 17A A =-=.所以,sin(2)sin 2cos cos 2sin A B A B A B -=-=11727214-⨯= 42.【解析】(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A=由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得121cos()cos cos sin sin 632B C B C B C +=-=-=-所以2π3B C +=,故π3A =. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得b c +=.故ABC △的周长为343.【解析】(1)由已知得tan A =,所以23A π=. 在ABC ∆中,由余弦定理得222844cos 3c c π=+-,即2+224=0c c -.解得6c =-(舍去),4c = (2)有题设可得2CAD π∠=,所以6BAD BAC CAD π∠=∠-∠=.故ABD ∆面积与ACD ∆面积的比值为1sin26112AB AD AC AD π⋅⋅=⋅. 又ABC ∆的面积为142sin 2BAC ⨯⨯∠=ABD ∆44.【解析】由题设及A B C π++=得2sin 8sin 2B B =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =. (2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABCS ∆=,则172ac =.由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.45.【解析】(Ⅰ)在ABC △中,因为a b >,故由3sin 5B =,可得4cos 5B =. 由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b =.由正弦定理sin sin a bA B=,得sin sin a B A b ==.所以,bsin A的值为13. (Ⅱ)由(Ⅰ)及a c <,得cos 13A =,所以12sin 22sin cos 13A A A ==, 25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 44426A A A +=+=. 46.【解析】(Ⅰ)在△ABC 中,因为60A ∠=︒,37c a =,所以由正弦定理得sin 3sin 7c A C a ==. (Ⅱ)因为37c a a =<,所以60C A ∠<∠=o,由7a =,所以3737c =⨯=.由余弦定理2222cos a b c bc A =+-得222173232b b =+-⨯⨯, 解得8b =或5b =-(舍).所以△ABC的面积11sin 8322S bc A ==⨯⨯=47.【解析】(Ⅰ)由tan tan 2(tan tan )cos cos A BA B B A +=+得sin sin sin 2cos cos cos cos cos cos C A BA B A B A B⨯=+,所以C B C sin sin sin +=2,由正弦定理,得c b a 2=+.(Ⅱ)由abc ab b a ab c b a C 22222222--+=-+=)(cos22233311112222()2c c a b ab =--=-=+….所以C cos 的最小值为12.48.【解析】(I )证明:由正弦定理sin sin sin a b cA B C==可知 原式可以化解为cos cos sin 1sin sin sin A B CA B C+==∵A 和B 为三角形内角 , ∴sin sin 0A B ≠则,两边同时乘以sin sin A B ,可得sin cos sin cos sin sin B A A B A B += 由和角公式可知,()()sin cos sin cos sin sin sin B A A B A B C C π+=+=-= 原式得证。

2023年新高考数学创新题型微专题04 三角函数(新定义)(解析版)

2023年新高考数学创新题型微专题04 三角函数(新定义)(解析版)

专题04 三角函数(新定义)一、单选题1.(2023秋·山东临沂·高一统考期末)我们学过度量角有角度制与弧度制,最近,有学者提出用“面度制”度量角,因为在半径不同的同心圆中,同样的圆心角所对扇形的面积与半径平方之比是常数,从而称这个常数为该角的面度数,这种用面度作为单位来度量角的单位制,叫做面度制.在面度制下,角θ的面度数为2π3,则角θ的正弦值为( ) A.2B .12C .12−D. 【答案】D【分析】根据面度数的定义,可求得角θ的弧度数,继而求得答案. 【详解】设角θ所在的扇形的半径为r ,则2212π23r r θ=, 所以4π3θ=,所以4ππsin sin sin 33θ==−=, 故选:D .2.(2023秋·江苏苏州·高一统考期末)定义:正割1sec cos αα=,余割1csc sin αα=.已知m 为正实数,且22csc tan 15m x x +≥对任意的实数,2x x k k Z ππ∈⎛⎫≠+ ⎪⎝⎭均成立,则m 的最小值为( )A .1B .4C .8D .9【答案】D【分析】利用已知条件先化简,分离参数,转化恒成立求最值问题【详解】由已知可得22222sin csc tan 15sin cos xx x xm m x +=+≥,即422sin 15sin cos xx xm ≥−. 因为()2x k k Z ππ≠+∈,所以2cos (0,1]x ∈,则422sin 15sin cos x x x −()222222(1-cos )1=151cos =17+16cos cos cos x x x x x −−−⎛⎫ ⎪⎝⎭ 21716cos 9x x≤−=,当且仅当21cos 4x =时等号成立,故9m ≥, 故选:D.3.(2022·全国·高一专题练习)密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“0-07”,478密位写成“4-78”.若2(sin cos )2sin cos αααα−=,则角α可取的值用密位制表示错误..的是( ) A .12-50 B .2-50 C .13-50 D .32-50【答案】C【分析】根据同角三角函数的基本关系及二倍角公式求出α,再根据所给算法一一计算各选项,即可判断; 【详解】解:因为2(sin cos )2sin cos αααα−=, 即22sin 2sin cos cos 2sin cos αααααα−+=, 即4sin cos 1αα=,所以1sin 22α=,所以22,6k k Z παπ=+∈,或522,6k k Z παπ=+∈, 解得,12k k Z παπ=+∈或5,12k k Z παπ=+∈ 对于A :密位制1250−对应的角为125052600012ππ⨯=,符合题意; 对于B :密位制250−对应的角为2502600012ππ⨯=,符合题意; 对于C :密位制1350−对应的角为135092600020ππ⨯=,不符合题意; 对于D :密位制3250−对应的角为3250132600012ππ⨯=,符合题意; 故选:C4.(2022秋·山东青岛·高三山东省青岛第五十八中学校考阶段练习)计算器是如何计算sin x ,cos x ,πx ,ln x 些函数,通过计算多项式的值求出原函数的值,如357sin 3!5!7!x x x x x =−+−+,246cos 12!4!6!x x x x =−+−+,其中!12n n =⨯⨯⨯,英国数学家泰勒发现了这些公式,可以看出,右边的项用得越多,计算得出的sin x 和cos x 的值也就越精确.运用上述思想,可得到3sin 12π⎛⎫−+ ⎪⎝⎭的近似值为( )A .0.50B .0.52C .0.54D .0.56【答案】C【分析】将3sin 12π⎛⎫−+ ⎪⎝⎭化为cos1,根据新定义,取1x =代入公式246cos 12!4!6!x x x x =−+−+⋅⋅⋅中,直接计算取近似值即可.【详解】由题意可得,3sin 1cos12π⎛⎫−+= ⎪⎝⎭,故246111111cos1112!4!6!224720=−+−+=−+−+10.50.0410.0010.54=−+−+⋯≈,故选:C .5.(2022春·广东中山·高二统考期末)密位制是度量角与弧的常用制度之一,周角的16000称为1密位.用密位作为角的度量单位来度量角与弧的制度称为密位制.在密位制中,采用四个数字来记角的密位,且在百位数字与十位数字之间加一条短线,单位名称可以省去,如15密位记为“00—15”,1个平角=30—00,1个周角=60—00,已知函数()2cos f x x =−,3,22x ππ⎡⎤∈⎢⎥⎣⎦,当()f x 取到最大值时对应的x 用密位制表示为( ) A .15—00 B .35—00 C .40—00 D .45—00【答案】C【分析】利用导数研究()f x 在给定区间上的最大值,结合题设密位制定义确定()f x 取到最大时x 用密位制.【详解】由题设,()2sin f x x '=,在4[,)23x ππ∈时()0f x '>,在43(,]32x ππ∈时()0f x '<,所以()f x 在4[,)23x ππ∈上递增,在43(,]32x ππ∈上递减,即max 4()()3f x f π=,故()f x 取到最大值时对应的x 用密位制表示为40—00. 故选:C6.(2022春·云南昆明·高二校考期末)在平面直角坐标系xOy 中,P (x ,y )(xy ≠0)是角α终边上一点,P与原点O 之间距离为r ,比值rx 叫做角α的正割,记作sec α;比值r y 叫做角α的余割,记作csc α;比值x y 叫做角α的余切,记作cot α.四名同学计算同一个角β的不同三角函数值如下:甲:5sec 4β=−;乙:5csc 3β=;丙:3tan 4β=−;丁:4cot 3β=.如果只有一名同学的结果是错误的,则错误的同学是( ) A .甲 B .乙C .丙D .丁【答案】D【分析】当甲错误时,乙一定正确,从而推导出丙、丁均错误,与题意不符,故甲一定正确;再由丙丁必有一个错误,得到乙一定正确,由此利用三角函数的定义能求出结果.【详解】解:当甲:5sec 4β=−错误时,乙:5csc 3β=正确,此时53r y =,r =5k ,y =3k ,则|x |=4k ,(k >0), 4tan 3y x β∴==或4tan 3β=−,∴丙:3tan 4β=−不正确,丁:4cot 3β=不正确,故错误的同学不是甲;甲:5sec 4β=−,从而r =5k ,x =﹣4k ,|y |=3k ,(k >0),此时,乙:5csc 3β=;丙:3tan 4β=−;丁:4cot 3β=必有两个正确,一个错误,∵丙和丁应该同号,∴乙正确,丙和丁中必有一个正确,一个错误,∴y =3k >0,x =﹣4k <0,34tan ,cot 43ββ∴=−=−,故丙正确,丁错误, 综上错误的同学是丁. 故选:D .7.(2023秋·湖南邵阳·高一统考期末)设,a b R ∈,定义运算,,a a ba b b a b ≥⎧⊗=⎨<⎩,则函数()sin cos f x x x =⊗的最小值为( )A .1−B .C .12−D .0【答案】B【分析】由定义先得出sin sin cos ()cos cos sin x x xf x x x x ≥⎧=⎨>⎩,然后分sin cos x x ≥,cos sin x x >两种情况分别求出()f x 的最小值,从而得出答案.【详解】由题意可得sin sin cos ()sin cos cos cos sin x x xf x x x x x x ≥⎧=⊗=⎨>⎩当sin cos x x ≥时,即sin cos 04x x x π⎛⎫−=−≥ ⎪⎝⎭则22,4k x k k Z ππππ≤−≤+∈,即522,44k x k k Z ππππ+≤≤+∈此时当52,4x k k Z ππ=+∈时,sin x 有最小值为当cos sin x x >时,即sin cos 04x x x π⎛⎫−=−< ⎪⎝⎭则222,4k x k k Z πππππ+<−<+∈,即5922,44k x k k Z ππππ+<<+∈此时,cos x >所以()f x 的最小值为故选:B8.(2023秋·浙江杭州·高一浙江大学附属中学校考期末)正割()secant 及余割()cos ecant 这两个概念是由伊朗数学家阿布尔⋅威发首先引入的.定义正割1sec cos αα=,余割1csc sin αα=.已知m 为正实数,且22csc tan 15m x x ⋅+≥对任意的实数π,2k x x k ⎛⎫≠∈ ⎪⎝⎭Z 均成立,则m 的最小值为( )A .1B .4C .8D .9【答案】D【分析】由参变量分离法可得出2211716cos cos m x x ⎛⎫≥−+ ⎪⎝⎭,利用基本不等式可求得m 的取值范围,即可得解.【详解】由已知可得22222sin csc tan 15sin cos m x m x x x x ⋅+=+≥,可得422sin 15sin cos x m x x≥−, 因为()Z 2x k k ππ≠+∈,则(]2cos 0,1x ∈,因为()()2242222221cos sin 115sin 151cos 1716cos cos cos cos x x x x x xxx −⎛⎫−=−−=−+ ⎪⎝⎭179≤−=, 当且仅当21cos 4x =时,等号成立,故9m ≥. 故选:D.9.(2022春·江西景德镇·高二景德镇一中校考期中)对集合{}12,,,k a a a ⋯和常数m ,把()()()222122sin sin sin k a m a m a m kσ−+−++−=定义为集合{}12,,,k a a a ⋯相对于m 的“正弦方差",则集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”为( )A .32B C .12D .与m 有关的值【答案】C【分析】先确定集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”的表达式,再利用半角公式,两角和与差的余弦公式化简可得结果.【详解】由题知,集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”为2222sin sin sin 6263m m m πππσ⎛⎫⎛⎫⎛⎫−−+−++− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()1cos 21cos 21cos 21333222m m m πππ⎛⎫⎛⎫⎛⎫−−−−− ⎪ ⎪ ⎪−−⎝⎭⎝⎭ ⎪=++ ⎪ ⎪⎝⎭ ()13cos 2cos 2cos 2633m m m πππ⎡⎤⎛⎫⎛⎫⎛⎫=−++−+−⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦把()()1cos 2cos 2232m m m π⎛⎫+= ⎪⎝⎭,()()cos 2cos 2m m π−=−, ()()1cos 2cos 2232m m m π⎛⎫−= ⎪⎝⎭,代入上式整理得,212σ=.故选:C.10.(2022秋·山东·高三山东聊城一中校联考阶段练习)现有如下信息:(1)黄金分割比(简称:黄金比)是指把一条线段分割为两部分,较短部分与较长部分的长度之比等于较(2)黄金三角形被誉为最美三角形,是较短边与较长边之比为黄金比的等腰三角形. (3)有一个内角为36o 的等腰三角形为黄金三角形, 由上述信息可求得126sin =( ) AB12CD【答案】D【分析】如图作三角形,先求出5cos364=126sin 的值. 【详解】如图,等腰三角形ABC ,36ABC ∠=,,AB BC a AC b ===,取AC 中点,D 连接BD .b a =, 由题意可得1511512sin 22224bABC b a a ∠−−====,所以22cos 12sin 12ABC ABC ∠∠=−=−= 所以5cos364=所以5126364sin cos ︒==. 故选:D. 11.(2021秋·四川巴中·高一校联考期末)定义运算a bad bc c d=−,如果()()105,(0,0)2sin 2f x x πωϕωϕ=><<+的图像的一条对称轴为,4x πϕ=满足等式2cos 3tan ϕϕ=,则ω取最小值时,函数()f x 的最小正周期为( ) A .2πB .πC .3π2D .2π【答案】C【分析】根据2cos 3tan ϕϕ=,利用切化弦和同角三角函数关系转化成sin ϕ的二次方程,可求出ϕ的值,结合对称轴可求出ω,最后利用周期公式进行求解即可. 【详解】105()10sin()102sin()f x x x ωϕωϕ==+−+,因为2cos 3tan ϕϕ=,所以sin 2cos 3cos ϕϕϕ=,即22cos 3sin ϕϕ=,22(1sin )3sin ϕϕ−=, 所以(sin 2)(2sin 1)0ϕϕ+−=,解得1sin 2ϕ=或2−(舍去), 而02πϕ<<,所以6πϕ=,即()10sin()106f x x πω=+−,而()y f x =的图象的一条对称轴为4x π=,所以10sin 1046ππω⎛⎫⨯+=± ⎪⎝⎭,即462k πππωπ⨯+=+,Z k ∈,解得443k ω=+,Z k ∈,所以正数ω取最小值为43,此时函数()f x 的最小正周期为23423ππ=.故选:C .12.(2020·全国·高三校联考阶段练习)对于集合{}12,,,n x x x ⋅⋅⋅,定义:()()()22210200cos cos cos n x x x x x x n−+−+⋅⋅⋅+−Ω=为集合{}12,,,n x x x ⋅⋅⋅相对于0x 的“余弦方差”,则集合32,,,105105ππππ⎧⎫−−⎨⎬⎩⎭相对于0x 的“余弦方差”为( ) A .14B .12CD【答案】B【解析】根据所给“余弦方差”定义公式,代入集合中的各元素,即可得Ω的表达式,结合余弦降幂公式及诱导公式化简,即可求解.【详解】由题意可知,集合32,,,105105ππππ⎧⎫−−⎨⎬⎩⎭相对于0x 的“余弦方差”代入公式可得2222000032cos cos cos cos 1051054x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫−−+−−+−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭Ω=0000321cos 21cos 21cos 21cos 210510522224x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+−−+−−+−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+++=0000321cos 21cos 21cos 21cos 21051058x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+++++++−++− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=00002344cos 2cos 2cos 2cos 255558x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+++++−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=因为0000423cos 2cos 20,cos 2cos 205555x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫++−=++−= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以原式4182Ω==, 故选:B.【点睛】本题考查了新定义应用,降幂公式及诱导公式化简三角函数式的应用,属于中档题.13.(2020秋·江西宜春·高三奉新县第一中学校考阶段练习)已知函数()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π,若定义{},max ,,a a b a b b a b⎧=⎨<⎩…,则函数()max{()h x f x =,()cos }f x x 在区间3,22ππ⎛⎫⎪⎝⎭内的图象是 A . B .C .D .【答案】A【分析】由题知()2tan()(0)f x x ωω=>,利用T πω=求出ω,再根据题给定义,化简求出()h x 的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π, 所以()2tan()(0)f x x ωω=> 的周期为π, 则1T ππωπ===, 所以{}2sin ,,2()max 2tan ,2sin 32tan ,,2x x h x x x x x ππππ⎧⎛⎤∈ ⎪⎥⎪⎝⎦==⎨⎛⎫⎪∈ ⎪⎪⎝⎭⎩,由正弦函数和正切函数图象可知A 正确. 故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解. 14.(2022春·陕西延安·高一校考阶段练习)对于函数()f x ,在使()f x M ≥成立的所有常数M 中,我们把M的最大值称为函数()f x 的“下确界”.若函数()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的“下确界”为12−,则m 的取值范围是( ) A .,62ππ⎛⎤− ⎥⎝⎦B .,62ππ⎛⎫− ⎪⎝⎭C .5,66ππ⎛⎤− ⎥⎝⎦D .5,66ππ⎛⎫− ⎪⎝⎭【答案】A【分析】由下确界定义,()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的最小值是12−,由余弦函数性质可得.【详解】由题意()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的最小值是12−,又21()3cos()13cos163332f ππππ−=−−+=+=−, 由13cos(2)132x π−+≥−,得1cos(2)32x π−≥−,22222333k x k πππππ−≤−≤+,,62k x k k Z ππππ−≤≤+∈,0k =时,62x ππ−≤≤,所以62m ππ−<≤.故选:A .【点睛】本题考查新定义,由新定义明确本题中的下确界就是函数的最小值.可通过解不等式确定参数的范围.15.(2020·全国·高一假期作业)如果函数()f x 在区间D 上是凸函数,那么对于区间D 内的任意1x ,2x ,…,n x ,都有()()()1212n n f x f x f x x x x f nn ++++++⎛⎫≤ ⎪⎝⎭,若sin y x =在区间()0,π上是凸函数,那么在ABC ∆中,sin sin sin A B C ++的最大值是( )A .32B .3CD 【答案】D【分析】利用“凸函数”的定义得到恒成立的不等式,利用三角形的内角和为π,即可求出最大值. 【详解】因为sin y x =在区间[0,]π上是“凸函数”,所以sin sin sin sin sin 333A B C A B C π++++=…得sin sin sin A B C ++…即:sin sin sin A B C ++的最大值是2故选:D.【点睛】本题考查理解题中的新定义,并利用新定义求最值,还运用三角形的内角和.二、多选题16.(2022·全国·高一专题练习)定义:()()()22210200cos cos cos n nθθθθθθμ−+−++−=为集合{}12,,,n A θθθ=相对常数0θ的“余弦方差”.若0,2πθ⎡⎤∈⎢⎥⎣⎦,则集合,03A π⎧⎫=⎨⎬⎩⎭相对θ的“余弦方差”的取值可能为( ) A .38B .12C .34D .45【答案】ABC【分析】根据所给定义及三角恒等变换公式将函数化简,再根据0θ的取值范围,求出026θπ+的取值范围,再根据正弦函数的性质计算可得.【详解】解:依题意()2200cos cos 0πθθμ⎛⎫−+− ⎪ 22000cos cos sin cos 332sin ππθθθ=+⎛⎫+ ⎪⎝⎭220001cos cos 22θθθ⎛⎫+ ⎝⎪⎭=2220000013cos sin sin cos 4242θθθθθ++=200013cos sin 2242θθθ+= 001cos 221442θθ+=00111cos 224222θθ⎛⎫=+ ⎪⎝⎭+⎪ 011sin 2462πθ⎛⎫=+ ⎪⎝⎭+, 因为00,2πθ⎡⎤∈⎢⎥⎣⎦,所以02,7666πππθ⎡⎤+∈⎢⎥⎣⎦,所以01s 22n 1i 6,πθ⎛⎫⎡⎤+∈ ⎪⎢⎥⎣−⎝⎭⎦,所以33,84μ⎡⎤∈⎢⎥⎣⎦;故选:ABC17.(2021秋·全国·高三校联考期中)数学中一般用{}min ,a b 表示a ,b 中的较小值,{}max ,a b 表示a ,b 中的较大值;关于函数:(){}min sin ,sin f x x x x x =;(){}max sin ,sin g x x x x x =,有如下四个命题,其中是真命题的是( ) A .()f x 与()g x 的最小正周期均为π B .()f x 与()g x 的图象均关于直线32x π=对称 C .()f x 的最大值是()g x 的最小值 D .()f x 与()g x 的图象关于原点中心对称 【答案】BD【分析】先求出()f x ,()g x ,结合函数()f x 与()g x 的图象即可求解【详解】设()sin 2sin(),()sin 2sin(),33h x x x x t x x x x ππ==+==−则{}32sin(),22,322()min (),()2sin(),22,322x k x k f x h x t x x k x k ππππππππππ⎧++≤≤+⎪⎪==⎨⎪−−+<<+⎪⎩,{}32sin(),22,322()max (),()2sin(),22,322x k x k g x h x t x x k x k ππππππππππ⎧−+≤≤+⎪⎪==⎨⎪+−+<<+⎪⎩函数()f x 与()g x 的大致图象如下所示:对A ,由图知,()f x 与()g x 的最小正周期均为2π;故A 错误; 对B ,由图知,32x π=为函数()f x 与()g x 的对称轴,故B 正确. 对C ,12f π⎛⎫= ⎪⎝⎭,由图知∶函数()f x 的值域为[]2,1−,函数()g x 的值域为[]1,2−,故C 错误;对D ,由图知,()f x 与()g x 的图象关于原点中心对称,故D 正确; 故选:BD.18.(2022·江苏·高一专题练习)已知角θ和ϕ都是任意角,若满足2,2k k Z πθϕπ+=+∈,则称θ与ϕ“广义互余”.若()1sin 4πα+=−,则下列角β中,可能与角α“广义互余”的有( )A .sin β=B .()1cos 4πβ+=C .tan β=D .tan β=【答案】AC【分析】由题可得1sin 4α=,根据诱导公式化简计算判断每个选项即可. 【详解】若α与β广义互余,则2()2k k Z παβπ+=+∈,即2()2k k Z πβπα=+−∈.又由()1sin 4πα+=−,可得1sin 4α=.对于A ,若α与β广义互余,则sin sin(2)cos 24k πβπαα=+−===±,由sin β=可得α与β可能广义互余,故A 正确;对于B ,若α与β广义互余,则1cos cos(2)sin 24k πβπαα=+−==,由()1cos 4πβ+=可得 1cos 4β=−,故B 错误;对于C ,综上可得sin β=1cos 4β=,所以sin tan cos βββ==C 正确,D 错误. 故选:AC .19.(2022春·辽宁沈阳·高一沈阳市第一二〇中学校考阶段练习)在数学史上,为了三角计算的简便并且更加追求计算的精确性,曾经出现过下列两种三角函数:定义1cos θ−为角θ的正矢,记作sin ver θ,定义1sin θ−为角θ的余矢,记作sin cover θ,则下列命题正确的是( ) A .161sin32ver π= B .sin sin 2ver cover πθθ⎛⎫−= ⎪⎝⎭C .若sin 12sin 1cover x ver x −=−,则()21sin sin 5cover x ver x −=D .函数()sin 2020sin 202036f x ver x cover x ππ⎛⎫⎛⎫=−++ ⎪ ⎪⎝⎭⎝⎭的最大值为2【答案】BC【分析】利用诱导公式化简可得A 错误,B 正确;化简已知等式得到tan x ,将所求式子化简为正余弦齐次式,由此可配凑出tan x 求得结果,知C 正确;利用诱导公式化简整理得到()22sin 20206f x x π⎛⎫=−+ ⎪⎝⎭,由此可知最大值为4,知D 错误.【详解】对于A ,16163sin 1cos 1cos 51cos 33332ver πππππ⎛⎫=−=−+=+= ⎪⎝⎭,A 错误; 对于B ,sin 1cos 1sin sin 22ver cover ππθθθθ⎛⎫⎛⎫−=−−=−= ⎪ ⎪⎝⎭⎝⎭,B 正确;对于C ,sin 11sin 1tan 2sin 11cos 1cover x x x ver x x −−−===−−−, ()()22222sin cos sin sin 1sin 1cos 12sin cos 1sin cos x xcover x ver x x x x x x x∴−=−−+=−=−+22tan 411tan 15x x =−=−+15=,C 正确; 对于D ,()1cos 20201sin 202036f x x x ππ⎛⎫⎛⎫=−−+−+= ⎪ ⎪⎝⎭⎝⎭2cos 2020sin 2020266x x πππ⎡⎤⎛⎫⎛⎫−−++−+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22sin 20206x π⎛⎫=−+ ⎪⎝⎭,∴当sin 202016x π⎛⎫+=− ⎪⎝⎭时,()max 224f x =+=,D 错误.故选:BC.【点睛】关键点点睛:本题考查了三角函数的新定义的问题,解题关键是能够充分理解已知所给的定义,结合三角函数的诱导公式、正余弦齐次式的求解等知识来判断各个选项.20.(2022秋·河南濮阳·高一濮阳一高校考期末)在数学史上,为了三角计算的简便并且更加追求计算的精确性,曾经出现过下列两种三角函数:•定义1cos θ−为角θ的正矢,记作sin ver θ,•定义1sin θ−为角θ的余矢,记作sin cover θ,则下列命题中正确的是( ) A .函数sin y ver x =在3,22ππ⎡⎤⎢⎥⎣⎦上是减函数B .函数sin sin ver xy cover x=的最小正周期为πC .sin(sin 2ver )cover πθθ−=D .sin(sin sin sin sin ver )ver cover cover ver αβαβαβ+=⋅+⋅ 【答案】AC【分析】由余弦函数的单调性可判断A 选项;验证得()()y x y x π≠+,可判断B 选项;由定义的诱导公式可判断C 选项;取4παβ==,代入验证可判断D 选项.【详解】因为sin 1cos y ver x x ==−,而cos y x =在3,22ππ⎡⎤⎢⎥⎣⎦上是增函数,所以函数sin 1cos y ver x x ==−在3,22ππ⎡⎤⎢⎥⎣⎦上是减函数,故A 正确; 函数versin 1cos 1cos ();()coversin 1sin 1sin π−+==+=−+x x xy x y x x x x,所以()()y x y x π≠+,所以B 错误;sin 1cos 1sin sin 22ver cover ππθθθθ⎛⎫⎛⎫−=−−=−= ⎪ ⎪⎝⎭⎝⎭,故C 正确;取4παβ==,sin(1cos12ver )παβ+=−=,sin sin sin sin ver cover cover ver αβαβ⋅+⋅1cos 1sin 1sin 1cos 34444+ππππ⎛⎫⎛⎫⎛⎫⎛⎫=−⋅−−⋅−=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以sin(sin sin sin sin ver )ver cover cover ver αβαβαβ+≠⋅+⋅, 故D 错误, 故选:AC.【点睛】本题考查函数的新定义,三角函数的诱导公式,同角三角函数间的关系,余弦函数的性质,属于中档题.三、填空题21.(2023·高一课时练习)我们规定把2221cos ()cos cos ()3y B A B B A ⎡⎤=+++−⎣⎦叫做B 对A 的余弦方差,那么对任意实数B ,B 对π3的余弦方差是______.【答案】12##0.5【分析】根据余弦方差的定义求得正确答案. 【详解】依题意,B 对π3的余弦方差是:2221ππcos ()cos cos ()333y B B B ⎡⎤=+++−⎢⎥⎣⎦2π2π1cos(2)1cos(2)11cos 2333222B B B ⎡⎤+++−⎢⎥+=++⎢⎥⎢⎥⎣⎦ 12π2π3cos(2)cos 2cos(2)633B B B ⎡⎤=++++−⎢⎥⎣⎦12π2π2π2π3cos 2cos sin 2sin cos 2cos 2cos sin 2sin 63333B B B B B ⎛⎫=+−+++ ⎪⎝⎭ 11113cos 2cos 2cos 26222B B B ⎛⎫=−+−= ⎪⎝⎭. 故答案为:1222.(2022·全国·高一专题练习)已知()(),f x g x 都是定义在R 上的函数,若存在实数,m n ,使得()()()h x mf x ng x =+,则称()h x 是()f x ,()g x 在R 上生成的函数.若()()22cossin ,sin 22=−=x xf xg x x ,以下四个函数中:①π6y x ⎛⎫=− ⎪⎝⎭;②ππcos 2424x x y ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭;③2π2cos 124xy ⎛⎫=−− ⎪⎝⎭; ④22sin 2=y x .所有是()(),f x g x 在R 上生成的函数的序号为________. 【答案】①②③.【详解】()()22cossin cos ,sin 22x xf x xg x x =−==.①:πππcos sin sin )666y x x x x x ⎛⎫=−=+= ⎪⎝⎭,因此有m n ==()(),f x g x 在R 上生成的函数;②:πππcos )24242x x y x x ⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭,因此有0m n ==,本函数是()(),f x g x 在R 上生成的函数; ③:2ππ2cos 1cos()sin 242xy x x ⎛⎫=−−=−= ⎪⎝⎭,因此有0,1m n ==,本函数是()(),f x g x 在R 上生成的函数; ④:2222sin 28sin cos y x x x ==,显然不存在实数,m n ,使得228sin cos cos sin x x m x n x =+成立,因此本函数不是()(),f x g x 在R 上生成的函数, 故答案为:①②③23.(2021春·江苏淮安·高一校联考阶段练习)形如a bc d 的式子叫做行列式,其运算法则为a b ad bc c d=−,则行列式sin15cos15︒︒的值是___________. 【答案】12−【分析】根据新定义计算即可.【详解】由题意sin151sin 45sin15cos 45cos15cos 602cos15︒=︒︒=︒︒−︒︒=−︒=−︒. 故答案为12−.24.(2023·高一课时练习)若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出下列四个函数:①()1sin cos f x x x =+;②()2f x x =()3sin f x x =;④())4sin cos f x x x =+.其中“同形”函数有__________.(选填序号)【答案】①②【分析】利用三角恒等变换转化函数解析式,对比各函数的最小正周期及振幅即可得解.【详解】由题意,()1sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,())4sin cos 2sin 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,四个函数的最小正周期均相同,但振幅相同的只有①,②, 所以“同形”函数有①②. 故答案为:①②.25.(2023·高一课时练习)在直角坐标系中,横、纵坐标均为整数的点叫格点.若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数.在[],x ππ∈−上,下列函数中,为一阶格点函数的是___________.(选填序号)①sin y x =;②e 1x y =−;③ln y x =;④2y x = 【答案】①②③【分析】根据题目定义以及各函数的图象与性质即可判断.【详解】当[],x ππ∈−时,函数sin y x =,e 1x y =−的图象只经过一个格点()0,0,符合题意; 函数ln y x =的图象只经过一个格点()1,0,符合题意;函数2y x =的图象经过七个格点,()()()()()()()3,9,2,4,1,1,0,0,1,1,2,4,3,9−−−,不符合题意.故答案为:①②③.26.(2022春·河南商丘·高一商丘市第一高级中学校考开学考试)在平面直角坐标系xoy 中,已知任意角θ以坐标原点o 为顶点,x 轴的非负半轴为始边,若终边经过点00(,)p x y ,且(0)op r r =>,定义:00y x sos rθ+=,称“sos θ”为“正余弦函数”,对于“正余弦函数y sosx =”,有同学得到以下性质:①该函数的值域为⎡⎣; ②该函数的图象关于原点对称;③该函数的图象关于直线34x π=对称; ④该函数为周期函数,且最小正周期为2π;⑤该函数的递增区间为32,244k k k z ππππ⎡⎤−+∈⎢⎥⎣⎦.其中正确的是__________.(填上所有正确性质的序号) 【答案】①④⑤.【详解】分析:根据“正余弦函数”的定义得到函数)4y sosx x π==+,然后根据三角函数的图象与性质分别进行判断即可得到结论.详解:①中,由三角函数的定义可知00cos ,sin x r x y r x ==,所以00sin cos )[4y x y sosx x x x r π+===+=+∈,所以是正确的;②中,)4y sosx x π==+,所以()0)104f π=+=≠,所以函数关于原点对称是错误的;③中,当34x π=时,33()sin()0444f ππππ+==≠34x π=对称是错误的;④中,)4y sosx x π==+,所以函数为周期函数,且最小正周期为2π,所以是正确的;⑤中,因为)4y sosx x π==+,令22242k x k πππππ−≤+≤+,得322,44k x k k Z ππππ−≤≤+∈,即函数的单调递增区间为3[2,2],44k k k Z ππππ−+∈,所以是正确的,综上所述,正确命题的序号为①④⑤.点睛:本题主要考查了函数的新定义的应用,以及三角函数的图象与性质的应用,其中解答中根据函数的新定义求出函数y sosx =的表达式是解答的关键,同时要求熟练掌握三角函数的图象与性质是解答额基础,着重考查了分析问题和解答问题的能力,属于中档试题.27.(2015秋·广东揭阳·高一统考期中)定义一种运算,令,且,则函数的最大值是_______________【答案】54【详解】试题分析::∵,∴0≤sinx≤1∴()22255cos sin sin sin 1sin 144y x x x x x =+=−++=−−+≤ 由题意可得,()22215cos sin ,sin cos cos 224f x x x f x x x x π⎛⎫⎛⎫=+−=−=−++ ⎪ ⎪⎝⎭⎝⎭函数的最大值54考点:三角函数的最值四、解答题28.(2023春·云南文山·高一校考阶段练习)人脸识别技术在各行各业的应用改变着人类的生活,所谓人脸人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用测量距离的方式有曼哈顿距离和余弦距离.若二维空间有两个点()11,A x y ,()22,B x y ,则曼哈顿距离为:()1212,d A B x x y y =−+−,余弦相似度为:()cos ,A B =()1cos ,A B −(1)若()1,2A −,34,55B ⎛⎫⎪⎝⎭,求A ,B 之间的曼哈顿距离(),d A B 和余弦距离;(2)已知()sin ,cos M αα,()sin ,cos N ββ,()sin ,cos Q ββ−,若()1cos ,5M N =,()2cos ,5M Q =,求tan tan αβ的值【答案】(1)145,15−(2)3−【分析】(1)根据公式直接计算即可.(2)根据公式得到1sin sin cos cos 5αβαβ+=,2sin sin cos cos 5αβαβ−=,计算得到答案.【详解】(1)()3414,12555d A B =−−+−=,()34cos ,55A B ==,故余弦距离等于()1cos ,15A B −=−; (2)()cos ,M N =1sin sin cos cos 5αβαβ=+=;()cos ,M Q =2sin sin cos cos 5αβαβ=−=故3sin sin 10αβ=,1cos cos 10αβ=−,则sin sin tan tan 3cos cos αβαβαβ==−. 29.(2023·高一课时练习)知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.与之类似,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对()sad .如图,在ABC 中,AB AC =.顶角A 的正对记作sad A ,这时sad BCA AB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述对角的正对定义,解下列问题: (1)sad60的值为( )A .12 B .1 C D .2 (2)对于0180A <∠<,A ∠的正对值sad A 的取值范围是______. (3)已知3sin 5α=,其中α为锐角,试求sad α的值. 【答案】(1)B(2)()0,2(3)sad α=【分析】(1)在等腰ABC 中,取60A ∠=,AB AC =,利用正对的定义可得出sad60sad A =的值; (2)在等腰ABC 中,AB AC =,取BC 的中点D ,连接AD ,则AD BC ⊥,推导出sad 2sin 2AA =,结合正弦函数的基本性质可求得sad A 的取值范围;(3)利用同角三角函数的基本关系求出cos α,利用二倍角公式可求得sin 2α,由此可得出sad 2sin2αα=的值.【详解】(1)解:在等腰ABC 中,60A ∠=,AB AC =,则ABC 为等边三角形, 所以,sad60sad 1BCA AB===, 故选:B.(2)解:在等腰ABC 中,AB AC =,取BC 的中点D ,连接AD ,则AD BC ⊥,则2sad 2cos 2cos 902sin 22BC BD A A A B AB AB ⎛⎫====−= ⎪⎝⎭, 因为0180A <∠<,则0902A <<,故()sad 2sin 0,22AA =∈. 故答案为:()0,2.(3)解:π02α<<,则π024α<<,所以,24cos 12sin 52αα===−,所以,sin2α=sad 2sin 2αα==. 30.(2020秋·全国·高三校联考阶段练习)若函数()()sin cos ,f x a x b x a b =+∈R ,平面内一点坐标(),M a b ,我们称M 为函数()f x 的“相伴特征点”,()f x 为(),M a b 的“相伴函数”.(1)已知()1sin sin cos 2222x x x f x ⎛⎫=+− ⎪⎝⎭,求函数()f x 的“相伴特征点”;(2)记122M ⎛' ⎝⎭的“相伴函数”为()g x ,将()g x 图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得图象上所有点横坐标缩短为原来的13(纵坐标不变),再将所得的图象上所有点向右平移4π个单位长度,得到函数()h x ,作出()h x 在529,3636ππ⎡⎤⎢⎥⎣⎦上的图象.【答案】(1)11,22⎛⎫− ⎪⎝⎭;(2)作图见解析.【分析】(1)利用二倍角的降幂公式化简得出()11sin cos 22f x x x =−,由此可得出函数()y f x =的“相伴特征点”的坐标;(2)由题中定义可得出()sin 3g x x π⎛⎫=+ ⎪⎝⎭,利用三角函数图象变换得出()52sin 312h x x π⎛⎫=− ⎪⎝⎭,然后通过列表、描点、连线,可得出函数)y h x =在区间529,3636ππ⎡⎤⎢⎥⎣⎦上的图象. 【详解】(1)()211cos sin 111sinsin cos sin cos 222222222x x x x x f x x x −=+−=+−=−Q , 故函数()y f x =的“相伴特征点”为11,22⎛⎫− ⎪⎝⎭;(2)由题意可得()1sin sin 23g x x x x π⎛⎫==+ ⎪⎝⎭, 将函数()y g x =图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象,再将所得图象上所有点横坐标缩短为原来的13(纵坐标不变),可得到函数2sin 33y x π⎛⎫=+ ⎪⎝⎭的图象,再将所得的图象上所有点向右平移4π个单位长度,可得到函数()52sin 32sin 34312h x x x πππ⎡⎤⎛⎫⎛⎫=−+=− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,当529,3636x ππ⎡⎤∈⎢⎥⎣⎦时,503212x ππ≤−≤,列表如下:故函数()y h x =在529,3636ππ⎡⎤⎢⎥⎣⎦上的图象如下图所示.【点睛】本题考查三角函数的新定义、利用三角函数图象变换求解析式,同时也考查了五点作图法,考查分析问题和解决问题的能力,属于中等题. 五、双空题31.(2022秋·内蒙古包头·高一统考期末)对任意闭区间I ,I M 表示函数sin 6y x π⎛⎫=+ ⎪⎝⎭在区间I 上的最大值,则0,2M π⎡⎤⎢⎥⎣⎦=______,若[0,][,2]2t t t M M =,则t 的值为______.【答案】 1;23π或π 【分析】由题可得2,663x πππ⎡⎤+∈⎢⎥⎣⎦,故0,2M π⎡⎤⎢⎥⎣⎦=1;对t 分类讨论,利用正弦函数的性质得出符合条件的t 即可.【详解】当0,2x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,∴当62x ππ+=时,max 1y =,∴0,2M π⎡⎤⎢⎥⎣⎦=1;当62t ππ+<,即3t π<时,[0,]sin 6t M t π⎛⎫=+ ⎪⎝⎭,[,2][0,]sin 6t t t M t M π⎛⎫+= ⎪>⎝⎭, 这与[0,][,2]2t t t M M =矛盾, 当62t ππ+≥且5262t ππ+<,即736t ππ≤<时,[0,]1t M =,[,2]sin 6t t M t π=⎛⎫+ ⎪⎝⎭或[,2]sin 26t t M t π=⎛⎫+ ⎪⎝⎭,由[0,][,2]2t t t M M =可得,1sin 62t π⎛⎫+= ⎪⎝⎭或1sin 262t π⎛⎫+= ⎪⎝⎭,所以23t π=或t π=, 当5262t ππ+≥,即76t π≥时,[0,]1t M =,[,2]1t t M =,这与[0,][,2]2t t t M M =矛盾; 综上所述,t 的值为23π或π. 故答案为:1;23π或π.32.(2019秋·北京海淀·高三人大附中校考阶段练习)已知集合M 是满足下列性质的函数()f x 的全体,存在非零常数T ,对任意x ∈R ,有()()f x T Tf x +=成立.(1)给出下列两个函数:()1f x x =,()()2201f x a a =<<,其中属于集合M 的函数是__________.(2)若函数()sin f x kx M =∈,则实数k 的取值集合为__________. 【答案】 2()f x {|,}k k m m Z π=∈ 【分析】(1)根据集合M 的性质判断.(2)根据集合M 的性质求解,由sin ()sin k x T T kx +=恒成立成立,只有1T =±,【详解】(1)若1()f x M ∈,则存在非零点常数T ,使得11()()f x T Tf x +=,则x T Tx +=,(1)0T x T −+=对x R ∈恒成立,这是不可能的,1()f x M ∉;若2()f x M ∈,则存在非零点常数T ,使得22()()f x T Tf x +=,则22a Ta =,对x R ∈恒成立,1T =,2()f x M ∈; (2)函数()sin f x kx M =∈,则存在非零点常数T ,使得()()f x T T f x +=,即sin ()sin k x T T kx +=,0k =时,()0f x M =∈,0k ≠时,由x R ∈知kx R ∈,()k x T k R +∈,sin [1,1]kx ∈−,sin ()[1,1]k x T +∈−,因此要使sin ()sin k x T T kx+=成立,只有1T =±,若1T =,则sin()sin kx k kx +=,2,T m m Z π=∈,若1T =−,则sin()sin kx k kx −=−,即sin()sin kx k kx π−+=,2k m ππ−+=,(21),k m m Z π=−−∈, 综上实数k 的取值范围是{|,}k k m m Z π=∈. 故答案为:2(),f x {|,}k k m m Z π=∈.【点睛】本题考查新定义问题,此类问题的特点是解决问题只能以新定义规则为依据,由新定义规则把问题转化,转化为熟悉的问题进行解决.。

专题4-4 三角函数与解三角形大题综合归类-(原卷 版)

专题4-4 三角函数与解三角形大题综合归类-(原卷 版)

专题4-4 三角函数与解三角形大题综合归类目录一、热点题型归纳【题型一】三角函数求解析式:“识图”................................................................................................. 1 【题型二】图像与性质1:单调性与值域................................................................................................ 3 【题型三】图像与性质2:恒等变形:结构不良型 ................................................................................ 4 【题型四】图像与性质3:恒成立(有解)求参数 ................................................................................ 5 【题型五】图像与性质4:零点与对称轴................................................................................................ 6 【题型六】解三角形1:面积与周长常规................................................................................................ 8 【题型七】解三角形2:计算角度与函数值 ............................................................................................ 9 【题型八】解三角形3:求面积范围(最值) ...................................................................................... 10 【题型九】解三角形4:周长最值 ......................................................................................................... 11 【题型十】解三角形5:巧用正弦定理求“非对称”型 ...................................................................... 11 【题型十一】解三角形6:最值范围综合.............................................................................................. 12 二、真题再现 ............................................................................................................................................ 12 三、模拟测试 .. (14)【题型一】三角函数求解析式:“识图”【典例分析】(2023·全国·高三专题练习)函数()sin(π),R f x A x x ϕ=+∈(其中π0,02A ϕ>≤≤)部分图象如图所示,1(,)3P A 是该图象的最高点,M ,N 是图象与x 轴的交点.(1)求()f x 的最小正周期及ϕ的值;(2)若π4PMN PNM ∠+∠=,求A 的值.1.(2023·全国·高三专题练习)已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将()f x 图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到函数()y g x =的图象,求函数()g x ≥.2.(2022·四川·宜宾市教科所三模(理))已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x ;(2)若2f α⎛⎫= ⎪⎝⎭()0,πα∈,求cos2α的值.3.(2022·全国·高三专题练习)已知函数()()sin ,0,0,2f x A x x R A ωϕωϕπ⎛⎫=+∈>>< ⎪⎝⎭部分图象如图所示.(1)求()f x 的最小正周期及解析式; (2)将函数()y f x =的图象向右平移3π个单位长度得到函数()y g x =的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【题型二】图像与性质1:单调性与值域【典例分析】(2022·浙江·高三开学考试)已知函数()21cos cos 2f x x x x =⋅-. (1)求函数()f x 的单调递增区间; (2)求()f x 在区间[0,2π]上的最值.【变式演练】1.(2022·湖北·高三开学考试)已知函数2()sin cos sin sin 44f x x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期;(2)若[0,]x π∈,求出()f x 的单调递减区间.2.(2022·黑龙江·双鸭山一中高三开学考试)已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.3.(2022·全国·高三专题练习)已知函数()()()2sin cos cos 04f x x x x ππωωωω⎛⎫=--+> ⎪⎝⎭的最小正周期为π.(1)求()f x 图象的对称轴方程;(2)将()f x 的图象向左平移6π个单位长度后,得到函数()g x 的图象,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【题型三】图像与性质2:恒等变形:结构不良型【典例分析】(2023·全国·高三专题练习)在①sin α=①2tan 40αα-=这两个条件中任选一个,补充到下面的问题中,并解答.已知角a 是第一象限角,且___________. (1)求tan α的值;(2)3)cos()cos(3)2πααπαπ+++-的值.注:如果选择多个条件分别解答,按第一个解答计分.【变式演练】1.(2022·北京·二模)已知函数2()cos cos (0,)ωωωω=++>∈R f x x x x m m .再从条件①、条件①、条件①这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件①:函数()f x 的最小正周期为π;条件①:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件①:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.2.(2023·全国·高三专题练习)已知函数()()sin cos 0,0f x a x x a ωωω=>>.从下列四个条件中选择两个作为已知,使函数()f x 存在且唯一确定.条件①:π14f ⎛⎫= ⎪⎝⎭;条件①:()f x 为偶函数;条件①:()f x 的最大值为1;条件①:()f x 图象的相邻两条对称轴之间的距离为π2. 注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.(1)求()f x 的解析式;(2)设()()22cos 1g x f x x ω=-+,求函数()g x 在()0,π上的单调递增区间.3.(2023·全国·高三专题练习)已知函数()()2sin cos f x a x x x x =∈R ,若__________.条件①:0a >,且()f x 在x ∈R 时的最大值为1条件①:6f π⎛⎫= ⎪⎝⎭请写出你选择的条件,并求函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.注:如果选择条件①和条件①分别解答,按第一个解答计分.【题型四】图像与性质3:恒成立(有解)求参数【典例分析】(2023·全国·高三专题练习)已知函数()π2sin()3f x x =+.(1)若不等式()3f x m -≤对任意ππ[,]63x ∈-恒成立,求整数m 的最大值;(2)若函数()π()2g x f x =-,将函数()g x 的图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移12π个单位,得到函数()y h x =的图象,若关于x 的方程()102h x k -=在π5π[,]1212x ∈-上有2个不同实数解,求实数k 的取值范围.【变式演练】1.(2023·全国·高三专题练习)已知平面向量2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =,()f x m n =⋅,其中0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求函数()f x 的单调增区间; (2)将函数()f x 的图象所有的点向右平移12π个单位,再将所得图象上各点横坐标缩短为原来的12(纵坐标不变),再向下平移1个单位得到()g x 的图象,若()g x m =在5,824x ππ⎡⎤∈-⎢⎥⎣⎦上恰有2个解,求m 的取值范围.2.(2023·全国·高三专题练习)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)先将函数()f x 的图象向右平移3π个单位长度,再将所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到()g x 的图象.(i )若0m >,当[0,]x m ∈时,()g x 的值域为[2],求实数m 的取值范围;(ii )若不等式2()(21)()10g x t g x t -+--≤对任意的,32x ππ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.3.(2022·全国·高三专题练习)已知:函数()2sin cos f x x x x =. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间;(3)若函数()()g x f x k =-在π0,4⎡⎤⎢⎥⎣⎦上有两个不同的零点,写出实数k 的取值范围.(只写结论)【题型五】图像与性质4:零点与对称轴【典例分析】(2022·全国·高三专题练习)已知函数()4cos cos 1(0)3f x x x πωωω⎛⎫=⋅-- ⎪>⎝⎭的部分图像如图所示,若288AB BC π⋅=-,B ,C 分别为最高点与最低点.(1)求函数()f x 的解析式;(2)若函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦,上有且仅有三个不同的零点1x ,2x ,3x ,(123x x x <<),求实数m 的取值范围,并求出123 cos (2)x x x ++的值.【变式演练】1.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象.当130,6x π⎡⎤∈⎢⎥⎣⎦时,方程()0g x a -=恰有三个不相等的实数根()123123,,x x x x x x <<,求实数a 的取值范围和1232x x x ++的值.2.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,若方程()0g x m -=在70,3π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根()123123,,x x x x x x <<,求m 的取值范围及()123tan 2x x x ++的值.3.(2023·全国·高三专题练习)已知数2()2sin 1(0)6212x f x x πωπωω⎛⎫⎛⎫=+++-> ⎪ ⎪⎝⎭⎝⎭的相邻两对称轴间的距离为2π. (1)求()f x 的解析式;(2)将函数()f x 的图象向右平移6π个单位长度,再把各点的横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()g x 的值域;(3)对于第(2)问中的函数()g x ,记方程4()3g x =在4,63x ππ⎡⎤∈⎢⎥⎣⎦上的根从小到大依次为12,,n x x x ,若m =1231222n n x x x x x -+++++,试求n 与m 的值.【题型六】解三角形1:面积与周长常规【典例分析】(2022·安徽·高三开学考试)在ABC 中,点,M N 分别在线段,BC BA 上,且,BM CM ACN BCN =∠=∠,3,22AB AM AC ===.(1)求BM 的长;(2)求BCN △的面积.【变式演练】1.(2022·北京·高三开学考试)在ABC 中,角A ,B ,C 的对边分别为,,,sin2sin =a b c C C . (1)求C ∠;(2)若1b =,且ABCABC 的周长.2.(2022·江苏·南京市金陵中学河西分校高三阶段练习)已知ABC 的三个内角,,A B C 所对的边分别为a ,b ,c ,)tan tan tan tan 1+=B C B C . (1)求角A 的大小;(2)若1a =,21)0c b -=,求ABC 的面积.3.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos 0B b A -=. (1)求A ;(2)若c =a =ABC 的面积.【题型七】解三角形2:计算角度与函数值【典例分析】(2022·全国·高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.【变式演练】1.(2021·天津静海·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足()()2sin 2sin 2sin a b A b a B c C -+-=. (1)求角C 的大小;(2)若c =4a b +=,求ABC 的面积.(3)若cos =A ,求()sin 2A C -的值.2.(2022·北京市第二十二中学高三开学考试)已知ABC 的内角,,A B C 所对的对边分别为,,a b c ,周长为1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.3.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)222S a c b =+-. (1)求角B 的大小;(2)若2a c =,求sin C .【题型八】解三角形3:求面积范围(最值)【典例分析】(2022·云南·昆明一中高三开学考试)已知ABC 的内角,,A B C 所对边分别为,,a b c ,且222sin sin sin sin A B C B C -=. (1)求A ;(2)若a =ABC 面积的最大值.【变式演练】1.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若a =ABC 面积的最大值.2.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知ABC 的外接圆半径R =tan tan B C +=.(1)求B 和b 的值;(2)求ABC 面积的最大值.3.(2021·江苏·矿大附中高三阶段练习)ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin cos sin (2cos )A B B A =-.(1)若b c +,求A ;(2)若2a =,求ABC 的面积的最大值.【题型九】解三角形4:周长最值【典例分析】(2022·黑龙江·双鸭山一中高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B C A B +-=. (1)求角C 的大小;(2)若ABCABC 周长的取值范围.【变式演练】1.(2022·广东·深圳外国语学校高三阶段练习)已知ABC 中,内角,,A B C 所对边分别为,,a b c ,若()2cos cos 0a c B b C --=.(1)求角B 的大小;(2)若2b =,求a c +的最大值.2.(2022·湖北·襄阳五中高三开学考试)在锐角ABC 中,角A ,B ,C ,的对边分别为a ,b ,c ,从条件①:3sin cos tan 4A A A =,条件①12=,条件①:2cos cos cos a A b C c B -=这三个条件中选择一个作为已知条件. (1)求角A 的大小;(2)若2a =,求ABC 周长的取值范围.3.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,= (1)求角A ;(2)若4a =,求b c +的取值范围.【题型十】解三角形5:巧用正弦定理求“非对称”型【典例分析】(2022·四川成都·模拟预测(理))①ABC 中,角,,A B C 所对边分别是,,a b c ,tan tan 2tan tan A AB C bc,cos cos 1b C c B +=.(1)求角A 及边a ; (2)求2b c +的最大值.【变式演练】1.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos2B C B C A -=+. (1)求角A 的大小;(2)若a =2b c +的最大值.2..(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin B c a C b c a b -=+-,①23cos cos cos 24A C A C --=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =_______. (1)求角B ﹔(2)求2a c -的范围.【题型十一】解三角形6:最值范围综合【典例分析】(2022·浙江·高三开学考试)记ABC 内角,,A B C 的对边分别是,,a b c ,已知tan tan 2tan tan tan B CB A A=-.(1)求证:2222b c a +=;(2)求2abc 的取值范围.【变式演练】1.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,已cos sin B b C =+. (1)求C 的大小;(2)若ABC 为锐角三角形且c =22a b +的取值范围.2.(2022·湖南湘潭·高三开学考试)设ABC 的内角,,A B C 的对边分别为,,a b c ,A 为钝角,且tan bB a =.(1)探究A 与B 的关系并证明你的结论; (2)求cos cos cos A B C ++的取值范围.1.(2022·天津·高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值. 2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin A C =,求b . 3.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+4.(·浙江·高考真题(理))已知ABC 的内角,,A B C 所对的对边分别为,,a b c 1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.6.(2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.7.(山东·高考真题)已知函数()2sin 2y x ϕ=+,x ∈R ,π02ϕ<<,函数的部分图象如下图,求(1)函数的最小正周期T 及ϕ的值: (2)函数的单调递增区间.8.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =(I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.9.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+.. (1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.10.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件①、条件①这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件①:ABC 的周长为4+条件①:ABC11.(2023·全国·高三专题练习)在ABC 中.3sin cos 64A A π⎛⎫-= ⎪⎝⎭.(1)求角A ;(2)若8AC =,点D 是线段BC 的中点,DE AC ⊥于点E ,且DE =CE 的长.1.(2022·浙江省杭州学军中学模拟预测)已知函数()()sin y f x A x B ωϕ==++(其中A ,ω,ϕ,B 均为常数,且0A >,0>ω,ϕπ<)的部分图像如图所示.(1)求()f x 的解析式;(2)若5()126g x f x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,,02x π⎛⎫∈- ⎪⎝⎭,求()g x 的值域.2.(2022·全国·高三专题练习)已知向量(sin a x =,(1,cos )b x =.(1)若a b ⊥,求sin 2x 的值;(2)令()f x a b =⋅,把函数()f x 的图像上每一点的横坐标都缩短为原来的一半(纵坐标不变),再把所得的图像沿x 轴向左平移6π个单位长度,得到函数()g x 的图像,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3.(2023·全国·高三专题练习)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,再从条件①、条件①、条件①这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定. (1)求()f x 的解析式;(2)设函数()()6g x f x f x π⎛⎫=++ ⎪⎝⎭,求()g x 在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值.条件①:()f x 的最小正周期为π;条件①:()00f =;条件①:()f x 图象的一条对称轴为4x π=. 注:如果选择多组条件分别解答,按第一个解答计分.4.(2023·全国·高三专题练习)已知函数()()()3,sin 26f x x x a a a g x x π⎛⎫=--+∈=+ ⎪⎝⎭R .(1)若()f x 为奇函数,求实数a 的值;(2)若对任意[]10,1x ∈,总存在20,2x π⎡⎤∈⎢⎥⎣⎦,使()()12f x g x =成立,求实数a 的取值范围.5.(2023·全国·高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min 2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值; 6、(2022·安徽·高三开学考试)记ABC 的内角,,A B C 的对边分别为,,a b c ,且23,2b c B C ==.(1)求cos C ;(2)若5a =,求c .7.(2022·广西·模拟预测(文))设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且2cos 2sin c b A b A -=. (1)证明:()sin 2sin sin A B B A -=; (2)若3A B =,求B 的值.8.(2022·全国·高三专题练习)在①2cos cos c b B a A -=;①sin cos 2AA =;()sin a C C =,这三个条件中任选一个,补充在下面的横线上,并加以解答.在ABC 中,角,,A B C 的对边分别是,,a b c ,若__________.(填条件序号) (1)求角A 的大小;(2)若3a =,求ABC 面积的最大值.注:如果选择多个条件分别解答,按第一个解答计分.9.(2021·福建省华安县第一中学高三期中)在①π1cos cos 32B B ⎛⎫-=+ ⎪⎝⎭,①sin (sin sin )sin a A c C A b B +-=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中.问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =______________. (1)求角B ;(2)求a c +的最大值.注:如果选择多个条件分别解答,按第一个解答计分. 10.(2022·山东烟台·三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos cos 2cos b a A C c A =+. (1)求角A ;(2)若4a =,求2c b -的取值范围.11.(2023·全国·高三专题练习)在ABC 中,点D 在边BC 上,3AB =,2AC =. (1)若AD 是BAC ∠的角平分线,求:BD DC ;(2)若AD 是边BC 上的中线,且AD =,求BC .12.(2022·全国·模拟预测(文))在①3cos210cos 10A A +-=,①sin cos A A -=①tan 2A =三个条件中任选一个,补充在下面的问题中,并作答.如果多选,则按第一个解答给分. 已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且______ (1)求cos A ;(2)sin sin B C 的最大值.。

专题04 三角函数与解三角形A辑(解析版)-2021年高考数学压轴必刷题(第一辑)

专题04 三角函数与解三角形A辑(解析版)-2021年高考数学压轴必刷题(第一辑)

2021年高考数学压轴必刷题(第一辑)专题04三角函数与解三角形A辑1.【2020年全国3卷文科12】已知函数f(x)=sin x+1sinx,则()A.f(x)的最小值为2B.f(x)的图像关于y轴对称C.f(x)的图像关于直线x=π对称D.f(x)的图像关于直线x=π2对称【答案】D【解析】∵sinx可以为负,所以A错;∵sinx≠0∴x≠kπ(k∈Z)∵f(−x)=−sinx−1sinx=−f(x)∴f(x)关于原点对称;∵f(2π−x)=−sinx−1sinx ≠f(x),f(π−x)=sinx+1sinx=f(x),故B错;∴f(x)关于直线x=π2对称,故C错,D对故选:D2.【2020年北京卷10】2020年3月14日是全球首个国际圆周率日(πDay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n充分大时,计算单位圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().A.3n(sin30°n +tan30°n)B.6n(sin30°n+tan30°n)C.3n(sin60°n +tan60°n)D.6n(sin60°n+tan60°n)【答案】A 【解析】单位圆内接正6n边形的每条边所对应的圆周角为360°n×6=60°n,每条边长为2sin30°n,所以,单位圆的内接正6n边形的周长为12nsin30°n,单位圆的外切正6n边形的每条边长为2tan30°n ,其周长为12ntan30°n,∴2π=12nsin30°n +12ntan 30°n2=6n (sin 30°n+tan30°n),则π=3n (sin 30°n+tan30°n).故选:A.3.【2019年天津文科07】已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,且f (x )的最小正周期为π,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (π4)=√2,则f (3π8)=( )A .﹣2B .−√2C .√2D .2【答案】解:∵f (x )是奇函数,∴φ=0, ∵f (x )的最小正周期为π, ∴2πω=π,得ω=2,则f (x )=A sin2x ,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ). 则g (x )=A sin x ,若g (π4)=√2,则g (π4)=A sinπ4=√22A =√2,即A =2,则f (x )=A sin2x ,则f (3π8)=2sin (2×3π8=2sin 3π4=2×√22=√2,故选:C .4.【2019年天津理科07】已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g (π4)=√2,则f (3π8)=( )A .﹣2B .−√2C .√2D .2【答案】解:∵f (x )是奇函数,∴φ=0, 则f (x )=A sin (ωx )将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ). 即g (x )=A sin (12ωx )∵g (x )的最小正周期为2π, ∴2π12ω=2π,得ω=2,则g (x )=A sin x ,f (x )=A sin2x ,若g (π4)=√2,则g (π4)=A sinπ4=√22A =√2,即A =2,则f (x )=2sin2x ,则f (3π8)=2sin (2×3π8=2sin 3π4=2×√22=√2,故选:C .5.【2019年新课标2文科11】已知α∈(0,π2),2sin2α=cos2α+1,则sin α=( )A .15B .√55 C .√33 D .2√55【答案】解:∵2sin2α=cos2α+1, ∴可得:4sin αcos α=2cos 2α, ∵α∈(0,π2),sin α>0,cos α>0,∴cos α=2sin α,∵sin 2α+cos 2α=sin 2α+(2sin α)2=5sin 2α=1, ∴解得:sin α=√55. 故选:B .6.【2019年新课标1文科11】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A ﹣b sin B =4c sin C ,cos A =−14,则bc =( )A .6B .5C .4D .3【答案】解:∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , a sin A ﹣b sin B =4c sin C ,cos A =−14, ∴{a 2−b 2=4c 2cosA =b 2+c 2−a 22bc =−14,解得3c 2=12bc , ∴bc =6.故选:A .7.【2019年新课标3理科12】设函数f (x )=sin (ωx +π5)(ω>0),已知f (x )在[0,2π]有且仅有5个零点.下述四个结论:①f (x )在(0,2π)有且仅有3个极大值点 ②f (x )在(0,2π)有且仅有2个极小值点③f (x )在(0,π10)单调递增④ω的取值范围是[125,2910)其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④【答案】解:当x ∈[0,2π]时,ωx +π5∈[π5,2πω+π5], ∵f (x )在[0,2π]有且仅有5个零点, ∴5π≤2πω+π5<6π, ∴125≤ω<2910,故④正确,因此由选项可知只需判断③是否正确即可得到答案, 下面判断③是否正确, 当x ∈(0,π10)时,ωx +π5∈[π5,(ω+2)π10],若f (x )在(0,π10)单调递增,则(ω+2)π10<π2,即ω<3,∵125≤ω<2910,故③正确.故选:D .8.【2019年新课标1理科11】关于函数f (x )=sin|x |+|sin x |有下述四个结论: ①f (x )是偶函数②f (x )在区间(π2,π)单调递增③f (x )在[﹣π,π]有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是( ) A .①②④ B .②④C .①④D .①③【答案】解:f (﹣x )=sin|﹣x |+|sin (﹣x )|=sin|x |+|sin x |=f (x )则函数f (x )是偶函数,故①正确, 当x ∈(π2,π)时,sin|x |=sin x ,|sin x |=sin x ,则f (x )=sin x +sin x =2sin x 为减函数,故②错误, 当0≤x ≤π时,f (x )=sin|x |+|sin x |=sin x +sin x =2sin x ,由f (x )=0得2sin x =0得x =0或x =π,由f (x )是偶函数,得在[﹣π,)上还有一个零点x =﹣π,即函数f (x )在[﹣π,π]有3个零点,故③错误, 当sin|x |=1,|sin x |=1时,f (x )取得最大值2,故④正确, 故正确是①④, 故选:C .9.【2019年北京文科08】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β,图中阴影区域的面积的最大值为( )A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β 【答案】解:由题意可得∠AOB =2∠APB =2β, 要求阴影区域的面积的最大值,即为直线QO ⊥AB , 即有QO =2,Q 到线段AB 的距离为2+2cos β, AB =2•2sin β=4sin β,扇形AOB 的面积为12•2β•4=4β,△ABQ 的面积为12(2+2cos β)•4sin β=4sin β+4sin βcos β=4sin β+2sin2β,S △AOQ +S △BOQ =4sin β+2sin2β−12•2•2sin2β=4sin β, 即有阴影区域的面积的最大值为4β+4sin β. 故选:B .10.【2018年新课标1文科11】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a ),B (2,b ),且cos2α=23,则|a ﹣b |=( ) A .15B .√55 C .2√55D .1 【答案】解:∵角α的顶点为坐标原点,始边与x 轴的非负半轴重合, 终边上有两点A (1,a ),B (2,b ),且cos2α=23, ∴cos2α=2cos 2α﹣1=23,解得cos 2α=56, ∴|cos α|=√306,∴|sin α|=√1−3036=√66,|tan α|=|b−a2−1|=|a ﹣b |=|sinα||cosα|=√66√306=√55. 故选:B .11.【2018年新课标2文科10】若f (x )=cos x ﹣sin x 在[0,a ]是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π【答案】解:f (x )=cos x ﹣sin x =﹣(sin x ﹣cos x )=−√2sin (x −π4), 由−π2+2k π≤x −π4≤π2+2k π,k ∈Z , 得−π4+2k π≤x ≤34π+2k π,k ∈Z , 取k =0,得f (x )的一个减区间为[−π4,3π4],由f (x )在[0,a ]是减函数, 得a ≤3π4. 则a 的最大值是3π4.故选:C .12.【2018年新课标3文科11】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2−c 24,则C =( ) A .π2B .π3C .π4D .π6【答案】解:∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c . △ABC 的面积为a 2+b 2−c 24,∴S△ABC=12absinC=a2+b2−c24,∴sin C=a2+b2−c22ab=cos C,∵0<C<π,∴C=π4.故选:C.13.【2018年北京理科07】在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1B.2C.3D.4【答案】解:由题意d=√1+m2=|√m2+1sin(θ+α)−2|√m+1,tanα=1m=y x,∴当sin(θ+α)=﹣1时,d max=1√m+1≤3.∴d的最大值为3.故选:C.14.【2018年北京文科07】在平面直角坐标系中,AB̂,CD̂,EF̂,GĤ是圆x2+y2=1上的四段弧(如图),点P其中一段上,角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是()A.AB̂B.CD̂C.EF̂D.GĤ【答案】解:A.在AB段,正弦线小于余弦线,即cosα<sinα不成立,故A不满足条件.B.在CD段正切线最大,则cosα<sinα<tanα,故B不满足条件.C.在EF段,正切线,余弦线为负值,正弦线为正,满足tanα<cosα<sinα,D.在GH段,正切线为正值,正弦线和余弦线为负值,满足cosα<sinα<tanα不满足tanα<cosα<sinα.故选:C.15.【2017年新课标1文科11】△ABC的内角A,B,C的对边分别为a,b,c,已知sin B+sin A(sin C﹣cos C)=0,a=2,c=√2,则C=()A.π12B.π6C.π4D.π3【答案】解:sin B=sin(A+C)=sin A cos C+cos A sin C,∵sin B+sin A(sin C﹣cos C)=0,∴sin A cos C+cos A sin C+sin A sin C﹣sin A cos C=0,∴cos A sin C+sin A sin C=0,∵sin C≠0,∴cos A=﹣sin A,∴tan A=﹣1,∵π2<A<π,∴A=3π4,由正弦定理可得csinC =asinA,∴sin C=csinA a,∵a=2,c=√2,∴sin C=csinAa=√2×√222=12,∵a>c,∴C =π6, 故选:B .16.【2017年天津理科07】设函数f (x )=2sin (ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f (5π8)=2,f (11π8)=0,且f (x )的最小正周期大于2π,则( ) A .ω=23,φ=π12 B .ω=23,φ=−11π12 C .ω=13,φ=−11π24 D .ω=13,φ=7π24【答案】解:由f (x )的最小正周期大于2π,得T4>π2,又f (5π8)=2,f (11π8)=0,得T 4=11π8−5π8=3π4,∴T =3π,则2πω=3π,即ω=23.∴f (x )=2sin (ωx +φ)=2sin (23x +φ), 由f (5π8)=2sin(23×5π8+φ)=2,得sin (φ+5π12)=1.∴φ+5π12=π2+2kπ,k ∈Z . 取k =0,得φ=π12<π. ∴ω=23,φ=π12. 故选:A .17.【2017年天津文科07】设函数f (x )=2sin (ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f (5π8)=2,f (11π8)=0,且f (x )的最小正周期大于2π,则( ) A .ω=23,φ=π12 B .ω=23,φ=−11π12 C .ω=13,φ=−11π24 D .ω=13,φ=7π24【答案】解:由f (x )的最小正周期大于2π,得T4>π2, 又f (5π8)=2,f (11π8)=0,得T 4=11π8−5π8=3π4,∴T =3π,则2πω=3π,即ω=23.∴f (x )=2sin (ωx +φ)=2sin (23x +φ),由f (5π8)=2sin(23×5π8+φ)=2,得sin (φ+5π12)=1. ∴φ+5π12=π2+2kπ,k ∈Z . 取k =0,得φ=π12<π. ∴ω=23,φ=π12. 故选:A .18.【2016年新课标1理科12】已知函数f (x )=sin (ωx +φ)(ω>0,|φ|≤π2),x =−π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在(π18,5π36)上单调,则ω的最大值为( )A .11B .9C .7D .5【答案】解:∵x =−π4为f (x )的零点,x =π4为y =f (x )图象的对称轴, ∴2n+14⋅T =π2,即2n+14⋅2πω=π2,(n ∈N )即ω=2n +1,(n ∈N ) 即ω为正奇数, ∵f (x )在(π18,5π36)上单调,则5π36−π18=π12≤T2,即T =2πω≥π6,解得:ω≤12, 当ω=11时,−11π4+φ=k π,k ∈Z , ∵|φ|≤π2, ∴φ=−π4, 此时f (x )在(π18,5π36)不单调,不满足题意;当ω=9时,−9π4+φ=k π,k ∈Z , ∵|φ|≤π2, ∴φ=π4, 此时f (x )在(π18,5π36)单调,满足题意;故ω的最大值为9, 故选:B .19.【2016年新课标2文科11】函数f (x )=cos2x +6cos (π2−x )的最大值为( )A .4B .5C .6D .7【答案】解:函数f (x )=cos2x +6cos (π2−x ) =1﹣2sin 2x +6sin x , 令t =sin x (﹣1≤t ≤1), 可得函数y =﹣2t 2+6t +1 =﹣2(t −32)2+112,由32∉[﹣1,1],可得函数在[﹣1,1]递增,即有t =1即x =2k π+π2,k ∈Z 时,函数取得最大值5. 故选:B .20.【2016年天津文科08】已知函数f (x )=sin 2ωx 2+12sin ωx −12(ω>0),x ∈R ,若f (x )在区间(π,2π)内没有零点,则ω的取值范围是( ) A .(0,18]B .(0,14]∪[58,1)C .(0,58]D .(0,18]∪[14,58]【答案】解:函数f (x )=sin 2ωx 2+12sin ωx −12=1−cosωx 2+12sin ωx −12=√22sin(ωx −π4), 由f (x )=0,可得sin(ωx −π4)=0,解得x =kπ+π4ω∉(π,2π),∴ω∉(18,14)∪(58,54)∪(98,94)∪⋯=(18,14)∪(58,+∞), ∵f (x )在区间(π,2π)内没有零点, ∴ω∈(0,18]∪[14,58]. 故选:D .21.【2014年天津文科08】已知函数f (x )=√3sin ωx +cos ωx (ω>0),x ∈R ,在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A .π2B .2π3C .πD .2π【答案】解:∵已知函数f (x )=√3sin ωx +cos ωx =2sin (ωx +π6)(ω>0),x ∈R ,在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,正好等于f (x )的周期的13倍,设函数f (x )的最小正周期为T ,则13⋅T =π3,∴T =π,故选:C .22.【2013年新课标2理科12】已知点A (﹣1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1) B .(1−√22,12) C .(1−√22,13] D .[13,12) 【答案】解:解法一:由题意可得,三角形ABC 的面积为 12⋅AB ⋅OC =1,由于直线y =ax +b (a >0)与x 轴的交点为M (−ba ,0),由直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,可得b >0, 故−ba≤0,故点M 在射线OA 上.设直线y =ax +b 和BC 的交点为N ,则由{y =ax +b x +y =1可得点N 的坐标为(1−b a+1,a+b a+1).①若点M 和点A 重合,则点N 为线段BC 的中点,故N (12,12),把A 、N 两点的坐标代入直线y =ax +b ,求得a =b =13.②若点M 在点O 和点A 之间,此时b >13,点N 在点B 和点C 之间, 由题意可得三角形NMB 的面积等于12,即12⋅MB ⋅y N =12,即 12×(1+ba )⋅a+ba+1=12,可得a =b 21−2b >0,求得 b <12, 故有13<b <12.③若点M 在点A 的左侧,则b <13,由点M 的横坐标−b a<−1,求得b >a .设直线y =ax +b 和AC 的交点为P ,则由 {y =ax +by =x +1求得点P 的坐标为(1−b a−1,a−b a−1),此时,由题意可得,三角形CPN 的面积等于12,即 12•(1﹣b )•|x N ﹣x P |=12,即12(1﹣b )•|1−ba+1−1−ba−1|=12,化简可得2(1﹣b )2=|a 2﹣1|.由于此时 b >a >0,0<a <1,∴2(1﹣b )2=|a 2﹣1|=1﹣a 2 .两边开方可得 √2(1﹣b )=√1−a 2<1,∴1﹣b 2,化简可得 b >1−√22, 故有1−√22<b <13. 再把以上得到的三个b 的范围取并集,可得b 的取值范围应是 (1−√22,12), 故选:B .解法二:当a =0时,直线y =ax +b (a >0)平行于AB 边,由题意根据三角形相似且面积比等于相似比的平方可得(1−b 1)2=12,b =1−√22,趋于最小. 由于a >0,∴b >1−√22. 当a 逐渐变大时,b 也逐渐变大,当b =12时,直线经过点(0,12),再根据直线平分△ABC 的面积,故a 不存在,故b <12.综上可得,1−√22<b <12,故选:B .23.【2012年天津文科07】将函数y =sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点(3π4,0),则ω的最小值是( ) A .13B .1C .53D .2【答案】解:将函数y =sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象对应的函数为y =sin ω(x −π4).再由所得图象经过点(3π4,0)可得sin ω(3π4−π4)=sin (ωπ2)=0,∴ω•π2=k π,k ∈z .故ω的最小值是2, 故选:D .24.【2011年新课标1理科11】设函数f (x )=sin (ωx +φ)+cos (ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,且f (﹣x )=f (x ),则( ) A .f (x )在(0,π2)单调递减B .f (x )在(π4,3π4)单调递减C .f (x )在(0,π2)单调递增D .f (x )在(π4,3π4)单调递增【答案】解:由于f (x )=sin (ωx +ϕ)+cos (ωx +ϕ)=√2sin(ωx +ϕ+π4), 由于该函数的最小正周期为T =2πω,得出ω=2, 又根据f (﹣x )=f (x ),得φ+π4=π2+k π(k ∈Z ),以及|φ|<π2,得出φ=π4. 因此,f (x )=√2sin(2x +π2)=√2cos2x ,若x ∈(0,π2),则2x ∈(0,π),从而f (x )在(0,π2)单调递减, 若x ∈(π4,3π4),则2x ∈(π2,3π2),该区间不为余弦函数的单调区间,故B ,C ,D 都错,A 正确. 故选:A .25.【2010年浙江理科09】设函数f (x )=4sin (2x +1)﹣x ,则在下列区间中函数f (x )不存在零点的是( ) A .[﹣4,﹣2]B .[﹣2,0]C .[0,2]D .[2,4]【答案】解:在同一坐标系中画出g (x )=4sin (2x +1)与h (x )=x 的图象 如下图示:由图可知g (x )=4sin (2x +1)与h (x )=x 的图象在区间[﹣4,﹣2]上无交点,由图可知函数f(x)=4sin(2x+1)﹣x在区间[﹣4,﹣2]上没有零点故选:A.26.【2010年上海理科18】某人要制作一个三角形,要求它的三条高的长度分别为113,111,15,则此人将()A.不能作出这样的三角形B.作出一个锐角三角形C.作出一个直角三角形D.作出一个钝角三角形【答案】解:设三边分别为a,b,c,利用面积相等可知1 13a=111b=15c,∴a:b:c=13:11:5令a=13,b=11,c=5由余弦定理得cos A=52+112−1322×5×11<0,所以角A为钝角,故选:D.27.【2010年北京文科07】某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为()A.2sinα﹣2cosα+2B.sinα−√3cosα+3C.3sinα−√3cosα+1D.2sinα﹣cosα+1【答案】解:由正弦定理可得4个等腰三角形的面积和为:4×12×1×1×sinα=2sinα由余弦定理可得正方形边长为:√12+12−2×1×1×cosα=√2−2cosα故正方形面积为:2﹣2cosα所以所求八边形的面积为:2sinα﹣2cosα+2故选:A.。

2014年高考数学(理)试题分项版解析:专题04 三角函数与解三角形(分类汇编)Word版含解析

2014年高考数学(理)试题分项版解析:专题04 三角函数与解三角形(分类汇编)Word版含解析

1. 【2014高考湖南卷第9题】已知函数()sin(),f x x ϕ=-且230()0,f x dx π=⎰则函数()f x 的图象的一条对称轴是( ) A.56x π=B.712x π=C.3x π=D.6x π=2. 【2014高考江苏卷第5题】已知函数cos y x =与函数sin(2)(0)y x φφπ=+≤<,它们的图像有一个横坐标为3π的交点,则ϕ的值是 .3. 【2014高考江苏卷第14题】 若ABC ∆的内角满足sin 2sin A B C =,则co s C 的最小值是 .【答案】4【解析】由已知sin 2sin A B C =及正弦定理可得2a c =,4. 【2014辽宁高考理第9题】将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增5. 【2014全国1高考理第16题】已知c b a ,,分别为ABC ∆三个内角C B A ,,的对边,2=a ,且()C b c B A b sin )()sin (sin 2-=-+,则ABC ∆面积的最大值为____________.又22b c 4bc bc +-=≥,故1S bcsinA 2BAC ∆=≤ 【考点定位】1、正弦定理和余弦定理;2、()三角形的面积公式.6. 【2014全国2高考理第4题】钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5B.C. 2D. 17. 【2014全国2高考理第14题】 函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.8. 【2014山东高考理第12题】在ABC ∆中,已知tan AB AC A ⋅=,当6A π=时,ABC∆的面积为________.9. 【2014四川高考理第3题】为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( ) A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度10. 【2014高考广东卷理第12题】在ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,已知b B c C b 2cos cos =+,则=ba.11. 【2014全国1高考理第6题】如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为( )【考点定位】1.解直角三角形;2、三角函数的图象. 12.【2014全国1高考理第8题】设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则( ) (A ) 32παβ-=(B )32παβ+=(C )22παβ-=(D )22παβ+=13. 【2014高考北京版理第14题】设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]62ππ上具有单调性,且2()()()236f f f πππ==-,则()f x 的最小正周期为 .14. 【2014高考安徽卷理第11题】若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称, 则ϕ的最小正值是________.15. 【2014高考福建卷第12题】在ABC ∆中,60,4,A AC BC =︒==,则ABC ∆的面积等于_________.16. 【2014江西高考理第4题】在ABC ∆中,内角A,B,C 所对应的边分别为,,,c b a ,若,3,6)(22π=+-=C b a c 则ABC ∆的面积( )A.3B.239 C.233 D.3317. .【2014四川高考理第13题】如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67,30,此时气球的高是46m ,则河流的宽度BC 约等于 m .(用四舍五入法将结果精确到个位.参考数据:sin 670.92≈,cos670.39≈,sin 370.60≈,cos370.80≈ 1.73≈)18. 【2014浙江高考理第4题】为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位19. 【2014浙江高考理第17题】如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值 .20.【2014重庆高考理第10题】已知ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积S 满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式一定成立的是( )A.8)(>+c b bcB.()ac a b +>C.126≤≤abcD.1224abc ≤≤【答案】A 【解析】试题分析:由题设得:()()1sin 2+sin 2sin 22A B C ππ-=-+1sin 2+sin2B+sin 22A C ⇒=21. 【2014陕西高考理第2题】函数()cos(2)6f x x π=-的最小正周期是( ).2A π .B π .2C π .4D π22. 【2014天津高考理第12题】在ABC D 中,内角,,A B C 所对的边分别是,,a b c .已知14b c a -=,2sin 3sin B C =,则cos A 的值为_______.23. 【2014大纲高考理第3题】设sin33,cos55,tan35,a b c =︒=︒=︒则( )A .a b c >>B .b c a >>C .c b a >>D .c a b >>24. 【2014大纲高考理第16题】若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 .。

新高考数学(理)之三角函数与解三角形 专题04 三角恒等变换(解析版)

新高考数学(理)之三角函数与解三角形 专题04 三角恒等变换(解析版)

新高考数学(理)三角函数与平面向量04 三角恒等变换一、具本目标:1.两角和与差的三角函数公式 (1)会用向量的数量积推导出两角差的余弦公式;(2)能利用两角差的余弦公式导出两角差的正弦、正切公式;(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;2.简单的三角恒等变换:能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)3.(1) 已知两角的正余弦,会求和差角的正弦、余弦、正切值. (2) 会求类似于15°,75°,105°等特殊角的正、余弦、正切值. (3) 用和差角的正弦、余弦、正切公式化简求值. (4)逆用和差角的正弦、余弦、正切公式化简求值. (5) 会配凑、变形、拆角等方法进行化简与求值. 二、知识概述:知识点一 两角和与差的正弦、余弦、正切公式两角和与差的正弦公式: ()sin sin cos cos sin α+β=αβ+αβ,()sin sin cos cos sin α-β=αβ-αβ.两角和与差的余弦公式:()cos cos cos sin sin α+β=αβ-αβ, ()cos cos cos sin sin α-β=αβ+αβ. 两角和与差的正切公式:()tan tan tan 1tan tan α+βα+β=-αβ,【考点讲解】()tan tan tan 1tan tan α-βα-β=+αβ.【特别提醒】公式的条件:1. 两角和与差的正弦、余弦公式中的两个角α、β为任意角.2.两角和与差的正切公式中两个角有如下的条件:(),,,.2222k k k k k z ππππα+β≠π+α-β≠π+α≠π+β≠π+∈知识点二 公式的变用1. 两角和与差的正弦公式的逆用与辅助角公式:()22sin cos sin a x b x a b x +=++ϕ(其中φ角所在的象限由a,b 的符号确定,φ的值由tan baϕ=确定),在求最值、化简时起着重要的作用. 2. ()tan tan tan 1tan tan α+βα+β=-αβ变形为()()tan tan tan 1tan tan α+β=α+β-αβ,()tan tan tan 1tan tan α+βα+β=-αβ变形为()tan tan tan tan 1tan α+βαβ=-α+β.()tan tan tan 1tan tan α-βα-β=+αβ变形为()()tan tan tan 1tan tan α-β=α-β+αβ,()tan tan tan 1tan tan α-βα-β=+αβ变形为()tan tan tan tan 1tan α-βαβ=-α-β来使用. 条件为:(),,,.2222k k k k k z ππππα+β≠π+α-β≠π+α≠π+β≠π+∈ 知识点三 二倍角公式: 1.22tan sin 22sin cos 1tan ααααα==+ 2222221tan cos 2cos sin 2cos 112sin 1tan ααααααα-=-=-=-=+ 22tan tan 21tan ααα=-2. 常见变形:(1)22cos 1sin 2αα-=,22cos 1cos 2αα+=(2)()2cos sin 2sin 1ααα+=+,()2cos sin 2sin 1ααα-=-;(3)αα2cos 22cos 1=+,αα2sin 22cos 1=-.3.半角公式:2cos 12sin αα-±=,2cos 12cos αα+±=,αααcos 1cos 12tan+-±=,αααααsin cos 1cos 1sin 2tan-=+=.1.【2019年高考全国Ⅱ卷文理】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=( ) A .15B .55 C .33D .255【解析】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查.2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,5sin 5α∴=,故选B . 【答案】B2.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为( ) A .2B .3C .4D .5【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=,得sin 0x =或cos 1x =,[]0,2πx ∈Q ,0π2πx ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【答案】B3.【2018年高考全国Ⅰ卷文数】已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为 4【真题分析】【解析】本题考查的是二倍角公式及余弦型函数的周期及最值问题.根据题意有()135cos 21(1cos 2)2cos 2222f x x x x =+--+=+,所以函数()f x 的最小正周期为2ππ2T ==,且最大值为()max 35422f x =+=,故选B. 【答案】B4.【2018年高考全国Ⅰ卷】若1sin 3α=,则cos2α=( ) A .89 B .79 C .79- D .89-【解析】本题主要考查二倍角公式及求三角函数的值.2217cos 212sin 12()39αα=-=-⨯=.故选B. 【答案】B5.【2018年高考全国Ⅰ卷文数】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15 B .55 C .255D .1 【解析】本题主要考查任意角的三角函数和三角恒等变換根据条件,可知,,O A B 三点共线,从而得到2b a =,因为22212cos22cos 12131a ⎛⎫=-=⋅-= ⎪+⎝⎭αα,解得215a =,即55a =,所以525a b a a -=-=. 【答案】B6.【2017年高考全国Ⅰ卷文数】已知4sin cos 3αα-=,则sin 2α=( ) A .79-B .29-C .29D .79【解析】()2sin cos 17sin 22sin cos 19ααααα--===--.所以选A. 【答案】A7.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+23172(cos )48x =-++, 1cos 1x -≤≤Q ,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【答案】4-8.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.【解析】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,函数()2sin 2f x x ==1cos 42x -,周期为π2. 【答案】π29.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 . 【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-.πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()2222222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭2222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式22222122==22110⎛⎫⨯+-⨯ ⎪+⎝⎭; 当1tan 3α=-时,上式=22112()1()2233[]=1210()13⨯-+--⨯-+. 综上,π2sin 2.410α⎛⎫+= ⎪⎝⎭ 【答案】21010.【2018年高考全国Ⅰ卷文数】已知5π1tan()45-=α,则tan =α__________. 【解析】本题主要考查三角恒等变换,考查考生的运算求解能力.5πtan tan5πtan 114tan 5π41tan 51tan tan 4ααααα--⎛⎫-=== ⎪+⎝⎭+⋅,解方程得3tan 2=α.故答案为32. 【答案】3211.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【解析】本题主要考查三角恒等变换.因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα所以11sin ,cos 22==αβ, 因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【答案】12-12.【2017年高考江苏卷】若π1tan(),46-=α则tan =α .【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【答案】7513.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+-⎪⎝⎭, 所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数()f x 取得最小值,此时33sin ,sin222x x =-=-, 所以()min 33332222f x ⎛⎫=⨯--=- ⎪ ⎪⎝⎭,故答案是332-.【答案】332-14.【2017年高考全国Ⅱ理数】函数()23sin 3cos 4f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是 . 【解析】本题主要考查的是三角函数式的化简及三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”化简三角函数的解析式的综合考查.()2223131cos 3cos cos 3cos cos 1442f x x x x x x ⎛⎫=-+-=-++=--+ ⎪ ⎪⎝⎭,由自变量的范围:π0,2x ⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,当3cos 2x =时,函数()f x 取得最大值1.【答案】115.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【解析】本题主要考查三角函数及其恒等变换等基础知识.(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=. 又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 2133621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭3π1cos 223x ⎛⎫=-+ ⎪⎝⎭. 因此,函数的值域是33[1,1]22-+. 【答案】(1)π2θ=或3π2;(2)33[1,1]22-+. 16.【2018年高考北京卷文数】已知函数2()sin 3sin cos f x x x x =+.(1)求()f x 的最小正周期; (2)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值. 【解析】本题主要考查二倍角公式、辅助角公式、正弦函数的性质. (1)1cos 23311π1()sin 2sin 2cos 2sin(2)2222262x f x x x x x -=+=-+=-+, 所以()f x 的最小正周期为2ππ2T ==. (2)由(1)知π1()sin(2)62f x x =-+.因为π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--.要使得()f x 在π[,]3m -上的最大值为32,即πsin(2)6x -在π[,]3m -上的最大值为1. 所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.【答案】(1)π;(2)π3.1. sin15°sin105°的值是( ) A .14 B .14-C .34D .34-【解析】本题的考点二倍角的正弦和诱导公式:sin15°sin105°=sin15°cos15°=12sin30°=14,故选A . 【答案】A2.已知sin2α=13,则cos 2(π4α-)=( ) A .34 B .23 C .45 D .56【解析】本题考点二倍角的余弦,三角函数的化简求值.∵sin2α=13,∴cos 2(π4α-)=π11cos 211sin 22232223αα⎛⎫+-+⎪+⎝⎭===.故选B . 【答案】B3.已知sin α=45-,α∈(π,3π2),则tan 2α等于( ) A .-2 B .12 C .12-或2 D .-2或12【解析】∵sin α=45-,α∈(π,3π2),∴cos α=35-,∴tan α=43.∵α∈(π,3π2),∴2α∈(π2,3π4),∴tan 2α<0. tan α=22tan21tan 2αα- =43,即2tan 22α+ 3tan2α-2=0,解得tan2α=-2,或tan2α=12(舍去),故选A .【答案】A【模拟考场】4.设π0,2α⎛⎫∈ ⎪⎝⎭,π0,4β⎛⎫∈ ⎪⎝⎭,且tan α=1sin 2cos 2ββ+,则下列结论中正确的是( ) A .2π4αβ-=B .π24αβ+=C .π4αβ-=D .π4αβ+= 【解析】本题的考点二倍角的余弦,二倍角的正弦..tan α=()222sin cos 1sin 2sin cos 1tan cos 2cos sin cos sin 1tan ββββββββββββ++++===---πtan 4β⎛⎫=+ ⎪⎝⎭ 因为π0,2α⎛⎫∈ ⎪⎝⎭,πππ,442β⎛⎫+∈ ⎪⎝⎭,所以π4αβ-=.故选C . 【答案】C5.已知角αβ,均为锐角,且cos α=35,tan (α−β)=−13,tan β=( ) A .13 B .913 C .139D .3【解析】∵角α,β均为锐角,且cos α=35,∴sin α=21cos α- =45,tan α=43,又tan (α−β)=tan tan 1+tan tan αβαβ-=4tan 341+tan 3ββ-=−13, ∴tan β=3,故选D .【答案】D6.设α为锐角,若π3cos()65α+=,则πsin()12α-=( ) A .210 B .210- C .45 D .45- 【解析】因为α为锐角,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭,因为π3cos()65α+=,所以π4sin()65α+=,故πππππsin()sin sin cos 126464ααα⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππ2432cos sin 6425510α⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭.故选A.【答案】A7.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【解析】本题考查的是二倍角的降幂公式与三角函数的最小正周期,先利用三角恒等变换(降幂公式)化简函数()f x ,再判断b 和c 的取值是否影响函数()f x 的最小正周期.21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而c 不影响周期.故选B . 【答案】B8.已知34cos sin =-αα,则=α2sin ( ) A .97- B .92- C .92 D .97【解析】本题的考点是二倍角的正弦正逆用,将34cos sin =-αα两边平方()2234cos sin ⎪⎭⎫ ⎝⎛=-αα, 化简后可得916cos sin 2cos sin 22=-+αααα即=α2sin 97-.【答案】A 9.函数()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6cos 3sin 51ππx x x f 的最大值为( ) A .56B .1C .53D .51【解析】将()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6cos 3sin 51ππx x x f 化简,利用两角和、差的正余弦公式及辅助角公式,三角函数 最值的性质可以求得函数最大值.由()6sin sin 6cos cos 3sin cos 3cos sin 51ππππx x x x x f ++⎪⎭⎫ ⎝⎛+= x x x x sin 21cos 23cos 103sin 101+++=⎪⎪⎭⎫ ⎝⎛+=+=x x x x cos 23sin 2156cos 533sin 53⎪⎭⎫ ⎝⎛+=3sin 56πx , 因为13sin 1≤⎪⎭⎫ ⎝⎛+≤-πx ,所以函数的最大值为56.【答案】A10.若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( ) A.1 B.2 C.3 D.4【解析】本题考点是两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换. 三角恒等变换的主要是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算.本例应用两角和与差的正弦(余弦)公式化简所求式子,利用同角关系式求出使已知条件可代入的值,然后再化简,求解过程中注意公式的顺用和逆用.3cos()10sin()5παπα-=-33cos cos sin sin 1010sin cos cos sin 55ππααππαα+-33cos tan sin 1010tan cos sin 55ππαππα+=-33cos 2tan sin 105102tan cos sin 555ππππππ+=- 33cos cos 2sin sin 510510sin cos 55ππππππ+==333cos cos sin sin sin sin 510510510sin cos 55ππππππππ++ =333cos cos sin 5101010sin cos 55ππππππ⎛⎫-+ ⎪⎝⎭=13cos sin 1025sin cos 55ππππ+1cos cos 10210sin cos 55ππππ+=1cos cos 1021014sin 210πππ+= 3cos103cos 10ππ==.【答案】C11.已知向量a r =(sin θ,2-),b r =(1,cos θ),且a r ⊥b r ,则sin 2θ+cos 2θ的值为( )A .1B .2C .12D .3 【解析】本题考点是三角函数的恒等变换及化简求值,数量积判断两个平面向量的垂直关系.由题意可得a r ·b r =sin θ-2cos θ=0,即tan θ=2.∴sin 2θ+cos 2θ=2222sin cos +cos cos +sin θθθθθ=22tan +11+tan θθ=1,故选A . 【答案】A12.已知cos θ=-725,θ∈(-π,0),则sin 2θ+cos 2θ=( )A .125B .15±C .15D .15- 【解析】∵cos θ=-725,θ∈(-π,0), ∴cos 22θ-sin 22θ=(cos 2θ+sin 2θ)(cos 2θ-sin 2θ)<0,2θ∈(π2-,0), ∴sin 2θ+cos 2θ<0,cos 2θ-sin 2θ>0,∵(sin 2θ+cos 2θ)2=1+sin θ=1-491625-=125,∴sin 2θ+cos 2θ=15-.故选D .【答案】D13. =+οο75sin 15sin .【解析】本题考查的是三角恒等变换及特殊角的三角函数值的求解. 法一、6sin15sin 75sin15cos152sin(1545)2+=+=+=o o o o o o . 法二、6sin15sin 75sin(4530)sin(4530)2sin 45cos302+=-++==o o o o o o o o . 法三、62626sin15sin 75442-++=+=o o . 【答案】62. 14.在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 .【解析】本题考查的是三角恒等变换及正切的性质,本题要求会利用三角形中隐含的边角关系作为消元依据,同时要记住斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,sin sin(B C)2sin sin tan tan 2tan tan A B C B C B C =+=⇒+=,因此tan tan tan tan tan tan tan 2tan tan 22tan tan tan tan tan tan 8A B C A B C A B C A B C A B C =++=+≥⇒≥,即最小值为8.【答案】8.15.【2018江苏卷16】已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-. (1)求cos2α的值;(2)求tan()αβ-的值.【解析】(1)因为,,所以. 4tan 3α=sin tan cos ααα=4sin cos 3αα=因为,所以, 因此,. (2)因为为锐角,所以.又因为,所以, 因此.因为,所以, 因此,. 16.【2016高考山东理数】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A +=+ (Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值.【解析】试题分析:(Ⅰ)根据两角和的正弦公式、正切公式、正弦定理即可证明;(Ⅱ)根据余弦定理公式表示出cosC ,由基本不等式求cos C 的最小值.试题解析:()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B ⎛⎫+=+ ⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+,即()2sin sin sin A B A B +=+.因为A B C π++=,所以()()sin sin sin A B C C π+=-=.从而sin sin =2sin A B C +.由正弦定理得2a b c +=.()∏由()I 知2a b c +=, 所以 2222222cos 22a b a b a b c C ab ab +⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭, 当且仅当a b =时,等号成立.故 cos C 的最小值为12. 17.已知函数()22sin sin 6f x x x π⎛⎫=-- ⎪⎝⎭,R x ∈ 22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈5cos()5αβ+=-225sin()1cos ()5αβαβ+=-+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+(I)求()f x 最小正周期;(II)求()f x 在区间[,]34p p -上的最大值和最小值. 【解析】本题考点两角和与差的正余弦公式、二倍角的正余弦公式、三角函数的图象与性质.综合运用三角 知识,从正确求函数解析式出发,考查最小正周期的求法与函数单调性的应用,从而求出函数的最大值与最小值,体现数学思想与方法的应用.(I) 由已知,有1cos 21cos211313()cos2sin 2cos2222222x x f x x x x π⎛⎫-- ⎪⎛⎫-⎝⎭=-=+- ⎪⎝⎭ 311sin 2cos2sin 24426x x x π⎛⎫--=- ⎪⎝⎭. 所以()f x 的最小正周期22T ππ==. (II)因为()f x 在区间[,]36p p --上是减函数,在区间[,]64p p -上是增函数, 113(),(),()346244f f f πππ-=--=-=,所以()f x 在区间[,]34p p -上的最大值为34,最小值为12-. 【答案】(I)π; (II) max 3()4f x =,min 1()2f x =-.。

(浙江专版)高考数学分项版解析 专题04 三角函数与解三角形 理

(浙江专版)高考数学分项版解析 专题04 三角函数与解三角形 理

【十年高考】(浙江专版)高考数学分项版解析 专题04 三角函数与解三角形 理一.基础题组1. 【2014年.浙江卷.理4】为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位 答案:D解析:sin 3cos334y x x x π⎛⎫=+=+ ⎪⎝⎭,故只需将y x 向左平移4π个单位. 考点:三角函数化简,图像平移.2. 【2013年.浙江卷.理4】已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“π2ϕ=”的( ). A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3. 【2013年.浙江卷.理6】已知α∈R ,sin α+2cos αtan 2α=( ). A .43 B .34 C .34- D .43- 【答案】:C【解析】:由sin α+2cos αsin α2cos α.①把①式代入sin 2α+cos 2α=1中可解出cos α=1010或31010, 当cos α=1010时,sin α=31010; 当cos α=31010时,sin α=1010-. ∴tan α=3或tan α=13-,∴tan 2α=34-. 4. 【2012年.浙江卷.理4】把函数y =cos2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )5. 【2011年.浙江卷.理6】若02πα<<,02πβ-<<,1cos()43πα+=,3cos()42πβ-=则cos()2βα+=(A 3(B )3(C 53 (D )6。

高考数学分项版解析 专题04 三角函数与解三角形 理

高考数学分项版解析 专题04 三角函数与解三角形 理

第四章三角函数与解三角形一.基础题组1.【2005天津,理8】要得到2cosy x=的图象,只需将函数2sin24y xπ⎛⎫=+⎪⎝⎭的图象上所有的点的A、横坐标缩短到原来的12倍(纵坐标不变),再向左平行移动π个单位长度B、横坐标缩短到原来的12倍(纵坐标不变),再向右平行移动π个单位长度C、横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动π个单位长度D、横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动π个单位长度【答案】C2.【2006天津,理8】已知函数xbxaxf cossin)(-=(a、b为常数,0≠a,Rx∈)在4π=x处取得最小值,则函数)43(xfy-=π是()A.偶函数且它的图象关于点)0,(π对称B.偶函数且它的图象关于点)0,23(π对称C.奇函数且它的图象关于点)0,23(π对称 D.奇函数且它的图象关于点)0,(π对称【答案】D【解析】已知函数()sin cosf x a x b x=-(a、b为常数,0,)a x R≠∈,∴22())f x a b xϕ=+-的周期为2π,若函数在4π=x处取得最小值,不妨设3()sin()4f x xπ=-,则函数3()4y f xπ=-=33sin()sin44x xππ-+=,所以3()4y f x π=-是奇函数且它的图象关于点(,0)π对称,选D.3.【2008天津,理3】设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是 (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数 【答案】B【解析】()cos 2f x x =-是周期为π的偶函数,选B . 4.【2009天津,理7】已知函数)4sin()(πω+=x x f (x∈R,ω>0)的最小正周期为π,为了得到函数g(x)=cosωx 的图象,只要将y =f(x)的图象( )A.向左平移8π个单位长度B.向右平移8π个单位长度 C.向左平移4π个单位长度 D.向右平移4π个单位长度【答案】A5.【2010天津,理7】在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 23,sin C =3sin B ,则A =( )A .30° B.60° C.120° D.150° 【答案】A【解析】利用正弦定理,sinC =3可化为c =3又∵a2-b2=3bc,∴a2-b2=3b×23b=6b2,即a2=7b2,a=7b.在△ABC中,cosA=222222(23)(7)322223b c a b b bbc b+-+-==⨯,∴A=30°.6.【2011天津,理6】如图,在△ABC中,D是边AC上的点,且,23,2AB CD AB BD BC BD===,则sin C的值为A.33B.36C.63D.66【答案】D【解析】7.【2012天津,理6】在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cos C=( )A.725B.725- C.725± D.2425【答案】A【解析】 在△ABC 中,由正弦定理:sin sin b c B C =,∴,sin sin C c B b=∴sin28sin 5B B =,∴4cos 5B =. ∴cosC=cos2B =2cos2B -1=725.8.【2013天津,理6】在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC =( ). A .10 B .10 C .31010 D .55【答案】C【解析】在△ABC 中,由余弦定理得AC2=AB2+BC2-2AB·BCcos∠ABC =2292232+-⨯⨯⨯=5,即得AC =5.由正弦定理sin sin AC BCABC BAC =∠∠,即53sin 22BAC=∠,所以sin ∠BAC =310.9.【2014天津,理12】在ABC D 中,内角,,A B C 所对的边分别是,,a b c .已知14b c a -=,2sin 3sin B C =,则cos A 的值为_______.【答案】14-.考点:1.正弦定理;2.余弦定理的推论.10. 【2015高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为315 ,12,cos ,4b c A -==- 则a 的值为 .【答案】8【考点定位】同角三角函数关系、三角形面积公式、余弦定理.11. 【2015高考天津,理15】(本小题满分13分)已知函数()22sin sin 6f x x x π⎛⎫=--⎪⎝⎭,R x ∈(I)求()f x 最小正周期; (II)求()f x 在区间[,]34p p-上的最大值和最小值. 【答案】(I)π; (II) max 3()f x =,min 1()2f x =-. 【解析】(I) 由已知,有1cos 21cos211313()cos22cos222222x x f x x x x π⎛⎫-- ⎪⎛⎫-⎝⎭=-=+- ⎪⎝⎭3112cos2sin 24426x x x π⎛⎫--=- ⎪⎝⎭. 所以()f x 的最小正周期22T ππ==. (II)因为()f x 在区间[,]36p p --上是减函数,在区间[,]64p p-上是增函数,113(),(),()346244f f f πππ-=--=-=,所以()f x 在区间[,]34p p-上的最大值为34,最小值为12-. 【考点定位】三角恒等变形、三角函数的图象与性质.12. 【2016高考天津理数】在△ABC 中,若=13AB ,BC =3,120C ∠=o ,则AC =(A )1(B )2(C )3(D ) 4【答案】A【解析】试题分析:由余弦定理得213931AC AC AC =++⇒=,选A. 【考点】余弦定理【名师点睛】①利用正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.②利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.二.能力题组1.【2006天津,理17】如图,在ABC ∆中,2AC =,1BC =,43cos =C . (1)求AB 的值; (2)求()C A +2sin 的值.【答案】(1)AB =(2)【解析】解:(1)由余弦定理,AB 2=AC 2+BC 2-2AC •BC •cosC=4+1−2×2×1×=2. 那么,AB =(2)解:由cosC =,且0<C <π,得sin C =由正弦定理解得sinA =所以,cosA =由倍角公式sin2A =2sin A •cos A =且cos2A =1−2sin 2A =故sin(2A +C )=sin2A cos C +cos2A sin C =2.【2008天津,理17】已知⎪⎭⎫ ⎝⎛3∈=⎪⎭⎫⎝⎛-4,2,1024cos πππx x . (Ⅰ)求x sin 的值; (Ⅱ)求⎪⎭⎫⎝⎛+32sin πx 的值. 【答案】(I )45,(II )2473+-(Ⅱ)因为⎪⎭⎫ ⎝⎛∈43,2ππx ,故53541sin 1cos 22-=⎪⎭⎫ ⎝⎛--=--=x x2571cos 22cos ,2524cos sin 22sin 2-=-=-==x x x x x 所以5037243sin 2cos 3cos 2sin 32sin +-=+=⎪⎭⎫⎝⎛+πππx x x3.【2009天津,理17】在△ABC 中,5=BC ,AC =3,sinC =2sinA.(1)求AB 的值; (2)求sin(42π-A )的值.【答案】(Ⅰ)25;(Ⅱ)2 【解析】解:(1)在△ABC 中,根据正弦定理,ABCC AB sin sin =. 于是522sin sin ===BC BC ACAB . (2)在△ABC 中,根据余弦定理,得5522cos 22=•-+=2AC AB BC AC AB A . 于是55cos 1sin 2=-=A A . 从而54cos sin 22sin ==A A A ,53sin cos 2cos 22=-=A A A . 所以1024sin2cos 4cos2sin )42sin(=-=-πππA A A . 4.【2010天津,理17】已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ).(1)求函数f (x )的最小正周期及在区间[0,2π]上的最大值和最小值; (2)若f (x 0)=65,x 0∈[4π,2π],求cos2x 0的值. 【答案】(1) π. 最大值为2,最小值为-1. (2)343-(2)由(1)可知f(x0)=2sin(2x0+6π). 又因为f(x0)=65,所以sin(2x0+6π)=35.由x0∈[4π,2π],得2x0+6π∈[27,36ππ]. 从而cos(2x0+6π)45=-. 所以cos2x0=cos[(2x0+6π)-6π]=cos(2x0+6π)cos 6π+sin(2x0+6π)sin 6π=.5.【2011天津,理15】已知函数()tan(2),4f x x π=+(Ⅰ)求()f x 的定义域与最小正周期;(II )设0,4πα⎛⎫∈ ⎪⎝⎭,若()2cos 2,2f αα=求α的大小.【答案】(Ⅰ){|,}82k x R x k Z ππ∈≠+∈,.2π;(Ⅱ).12π【解析】(I )解:由2,42x k k Z πππ+≠+∈,得,82k x k Z ππ≠+∈. 所以()f x 的定义域为{|,}82k x R x k Z ππ∈≠+∈ ()f x 的最小正周期为.2π (II )解:由()2cos 2,2a f a = 得tan()2cos 2,4a a π+=22sin()42(cos sin ),cos()4a a a a ππ+=-+ 整理得sin cos 2(cos sin )(cos sin ).cos sin a aa a a a a a+=+-- 因为(0,)4a π∈,所以sin cos 0.a a +≠因此211(cos sin ),sin 2.22a a a -==即 由(0,)4a π∈,得2(0,)2a π∈.所以2,.612a a ππ==即6.【2012天津,理15】已知函数f (x )=sin(2x +π3)+sin(2x -π3)+2cos 2x -1,x ∈R . (1)求函数f (x )的最小正周期; (2)求函数f (x )在区间[π4-,π4]上的最大值和最小值. 【答案】(1) π, (2) 最大值为2,最小值为-1.7.【2014天津,理15】已知函数()23cos sin 3cos 34f x x x x π⎛⎫=⋅+-+ ⎪⎝⎭,x R ∈. (Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 【答案】(Ⅰ)求()f x 的最小正周期p ;(Ⅱ)函数()f x 在闭区间,44p p 轾犏-犏臌上的最大值为14,最小值为12-. 【解析】试题分析:(Ⅰ)由已知利用两角和与差的三角函数公式及倍角公式将()f x 的解析式化为一个复合角的三角函数式,再利用正弦型函数()sin y A x B ωϕ=++的最小正周期计算公式2T πω=,即可求得函数()f x 的最小正周期;(Ⅱ)由(Ⅰ)得函数()1sin 223f x x p 骣÷ç=-÷ç÷ç桫,分析它在闭区间,44p p 轾犏-犏臌上的单调性,可知函数()f x 在区间,412p p轾犏--犏臌上是减函数,在区间,124p p 轾犏-犏臌上是增函数,由此即可求得函数()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.也可以利用整体思想求函数()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.(Ⅱ)∵()f x 在区间,412pp轾犏--犏臌上是减函数,在区间,124p p 轾犏-犏臌上是增函数,144f p 骣÷ç-=-÷ç÷ç桫,1122f p 骣÷ç-=-÷ç÷ç桫,144f p 骣÷ç=÷ç÷ç桫,∴函数()f x 在闭区间,44p p 轾犏-犏臌上的最大值为14,最小值为12-.考点:1.两角和与差的正弦公式、二倍角的正弦与余弦公式;2.三角函数的周期性和单调性.8.【2016高考天津理数】已知函数()f x =4tan x sin(2x π-)cos(3x π-)-3(Ⅰ)求f (x )的定义域与最小正周期; (Ⅱ)讨论f (x )在区间[,44ππ-]上的单调性. 【答案】(Ⅰ){|,}2x x k k π≠+π∈Z ,π;(Ⅱ)在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减.【解析】试题分析:(Ⅰ)先利用诱导公式、两角差余弦公式、二倍角公式将函数化为基本三角函数:()=2sin 23f x x π-(),再根据正弦函数的性质求定义域、最小正周期;(Ⅱ)根据(Ⅰ)的结论,研究函数f (x )在区间[,44ππ-]上单调性. 试题解析:()I ()f x 的定义域为,2x x k k ⎧π⎫≠+π∈⎨⎬⎩⎭Z . ()4tan cos cos 34sin cos 333f x x x x x x ππ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭213=4sin cos sin 32sin cos 23sin 32x x x x x x ⎛⎫+-=+- ⎪ ⎪⎝⎭()=sin 231cos 23sin 23cos 2=2sin 23x x x x x π+--=--().所以, ()f x 的最小正周期2.2T π==π【考点】三角函数性质,诱导公式、两角差余弦公式、二倍角公式【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数基本关系式、两角和与差的正、余弦公式、二倍角公式、辅助角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,开方时正负取舍是解题正确的保证. 对于三角函数来说,常常是先化为y =A sin(ωx +φ)+k 的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式.三.拔高题组1.【2005天津,理17】在△AB C 中,∠A 、∠B 、∠C 所对的边长分别为a 、b 、c ,设a 、b 、c 满足条件222b c bc a +-=和132c b =+。

高考数学专题04三角函数与解三角形-高考数学(理)试题分项版解析(解析版).docx

高考数学专题04三角函数与解三角形-高考数学(理)试题分项版解析(解析版).docx

1. 【2014高考湖南卷第9题】已知函数()sin(),f x x ϕ=-且230()0,f x dx π=⎰则函数()f x 的图象的一条对称轴是( ) A.56x π=B.712x π= C.3x π= D.6x π=2. 【2014高考江苏卷第5题】已知函数cos y x =与函数sin(2)(0)y x φφπ=+≤<,它们的图像有一个横坐标为3π的交点,则ϕ的值是 .3. 【2014高考江苏卷第14题】 若ABC ∆的内角满足sin 2sin 2sin A B C +=,则cos C 的最小值是 .仅当2232a b =即23a b =时等号成立. 【考点】正弦定理与余弦定理,基本不等式. 4. 【2014辽宁高考理第9题】将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增5. 【2014全国1高考理第16题】已知c b a ,,分别为ABC ∆三个内角C B A ,,的对边,2=a ,且()C b c B A b sin )()sin (sin 2-=-+,则ABC ∆面积的最大值为____________.6. 【2014全国2高考理第4题】钝角三角形ABC 的面积是12,AB=1,BC=2 ,则AC=( )A. 5B.5 C. 2 D. 17. 【2014全国2高考理第14题】 函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.8. 【2014山东高考理第12题】在ABC ∆中,已知tan AB AC A ⋅=,当6A π=时,ABC ∆的面积为________.9. 【2014四川高考理第3题】为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( ) A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度10. 【2014高考广东卷理第12题】在ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,已知b Bc C b 2cos cos =+,则=ba.11. 【2014全国1高考理第6题】如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为( )POAM【考点定位】1.解直角三角形;2、三角函数的图象. 12. 【2014全国1高考理第8题】设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则( ) (A ) 32παβ-= (B )32παβ+=(C )22παβ-=(D )22παβ+=【答案】C 【解析】13. 【2014高考北京版理第14题】设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]62ππ上具有单调性,且2()()()236f f f πππ==-,则()f x 的最小正周期为 .14. 【2014高考安徽卷理第11题】若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称, 则ϕ的最小正值是________.15. 【2014高考福建卷第12题】在ABC ∆中,60,4,23A AC BC =︒==,则ABC ∆的面积等于_________.16. 【2014江西高考理第4题】在ABC ∆中,内角A,B,C 所对应的边分别为,,,c b a ,若,3,6)(22π=+-=C b a c 则ABC ∆的面积( )A.3B.239 C.233 D.3317. .【2014四川高考理第13题】如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67,30,此时气球的高是46m ,则河流的宽度BC 约等于 m .(用四舍五入法将结果精确到个位.参考数据:sin 670.92≈,cos670.39≈,sin 370.60≈,cos370.80≈,3 1.73≈)18. 【2014浙江高考理第4题】为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位19. 【2014浙江高考理第17题】如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值 .'0y =得,454x =-,代入()2203tan 3225x x θ-=+得,()220353tan 39225x x θ-==+,故tan θ的最大值为539. 考点:解三角形,求最值. 20.【2014重庆高考理第10题】已知ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积S 满足 C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式一定成立的是( ) A.8)(>+c b bc B.()162ac a b +> C.126≤≤abc D.1224abc ≤≤21. 【2014陕西高考理第2题】函数()cos(2)6f x x π=-的最小正周期是( ).2A π.B π .2C π .4D π22. 【2014天津高考理第12题】在ABC D 中,内角,,A B C 所对的边分别是,,a b c .已知14b c a -=,2sin 3sin B C =,则cos A 的值为_______.23. 【2014大纲高考理第3题】设sin33,cos55,tan35,a b c =︒=︒=︒则 ( )A .a b c >>B .b c a >>C .c b a >>D .c a b >>24. 【2014大纲高考理第16题】若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 .25. 【2014高考安徽卷第16题】(本小题满分12分)设ABC 的内角,,A B C 所对边的长分别是,,a b c ,且3,1,2.b c A B === (1)求a 的值; (2)求sin()4A π+的值.26. 【2014高考北京理第15题】如图,在ABC ∆中,,83B AB π∠==,点D 在BC 边上,且2CD =,1cos 7ADC ∠=. (1)求sin BAD ∠; (2)求BD ,AC 的长.27. 【2014高考大纲理第17题】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知3cos 2cos a C c A =,1tan 3A =,求B .【答案】135B ??. 【解析】试题分析:由题设及正弦定理得:3sin cos 2sin cos ,A C C A =从而得tan A 与tan C 的关系式,由已知tan A 的28. 【2014高考福建理第16题】已知函数1()cos (sin cos )2f x x x x =+-.(1)若02πα<<,且2sin 2α=,求()f α的值; (2)求函数()f x 的最小正周期及单调递增区间.考点:1.三角函数的性质.2.三角的恒等变形.29. 【2014高考广东理第16题】已知函数()sin 4f x A x π⎛⎫=+ ⎪⎝⎭,x R ∈,且53122f π⎛⎫=⎪⎝⎭. (1)求A 的值; (2)若()()32f f θθ+-=,0,2πθ⎛⎫∈ ⎪⎝⎭,求34f πθ⎛⎫- ⎪⎝⎭.【考点定位】本题考查诱导公式、同角三角函数的基本关系以及两角和的三角函数,综合考查三角函数的求值问题,属于中等题.30. 【2014高考湖北理第17题】某实验室一天的温度(单位:C )随时间t (单位:h )的变化近似满足函数关系;)24,0[,12sin12cos310)(∈--=t t t t f ππ.(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11C ,则在哪段时间实验室需要降温?31. 【2014高考湖南理第18题】如图5,在平面四边形ABCD 中,1,2,7AD CD AC ===.(1)求cos CAD ∠的值; (2)若7cos 14BAD ∠=-,21sin 6CBA ∠=,求BC 的长.32.【2014高考江苏第15题】已知5sin25παπα⎛⎫∈=⎪⎝⎭,,.(1)求sin()4πα+的值;(2)求5cos(2)6πα-的值.33. 【2014高考江西理第16题】已知函数()sin()cos(2)f x x a x θθ=+++,其中,(,)22a R ππθ∈∈- (1)当2,4a πθ==时,求()f x 在区间[0,]π上的最大值与最小值;(2)若()0,()12f f ππ==,求,a θ的值.【答案】(1)最大值为2,2最小值为-1. (2)1.6a πθ=-⎧⎪⎨=-⎪⎩【解析】试题分析:(1)求三角函数最值,首先将其化为基本三角函数形式:当2,4a πθ==时,22()sin()2cos()sin cos 2sin sin()42224f x x x x x x x πππ=+++=+-=-,再结合基本三角函数性质求最34. 【2014高考辽宁理第17题】在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.27cos 1sin 9C C =-=,利用cos()cos cos sin sin B C B C B C -=+,即可求出结果.35. 【2014高考山东卷第16题】已知向量(,cos 2)a m x =,(sin 2,)b x n =,设函数()f x a b =⋅,且()y f x =的图象过点(,3)12π和点2(,2)3π-. (Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间. 【答案】(I )3,1m n ==.(II )函数()y g x =的单调递增区间为[,],2k k k Z πππ-∈.【解析】试题分析:(1)由题意知()sin 2cos 2f x a b m x n x =∙=+.根据()y f x =的图象过点(,3)12π和2(,2)3π-,得到3sin cos 66442sin cos33m n m n ππππ⎧=+⎪⎪⎨⎪-=+⎪⎩, 解得3,1m n ==.(2)由(1)知:()3sin 2cos 22sin(2)6f x x x x π=+=+.由题意知:()()2sin(22)6g x f x x πϕϕ=+=++,36. 【2014高考陕西第16题】ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (1)若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (2)若c b a ,,成等比数列,求B cos 的最小值.时等号成立),即得2211cos 222a c B ac +=-≥,所以B cos 的最小值为1237. 【2014高考上海理科第题】函数212cos (2)y x =-的最小正周期是 .38. 【2014高考上海理科第21题】如图,某公司要在AB 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设A B 、在同一水平面上,从A 和B 看D 的仰角分别为βα和. (1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)? (2)施工完成后.CD 与铅垂方向有偏差,现在实测得,,45.1812.38==βα求CD 的长(结果精确到0.01米)?39. 【2014高考上海理科第12题】设常数a 使方程sin 3cos x x a +=在闭区间[0,2π]上恰有三个解123,,x x x ,则123x x x ++= .【答案】73π 【解析】原方程可变为2sin()3a x π=+,如图作出函数2sin(),[0,2]3y x x ππ=+∈的图象,再作直线y a =,从图象可知函数2sin(),[0,2]3y x x ππ=+∈在[0,]6π上递增,7[,]66ππ上递减,在7[,2]6ππ上递增,只有当3a =时,直线y a =与函数2sin(),[0,2]3y x x ππ=+∈的图象有三个交点,10x =,23x π=,32x π=,所以12373x x x π++=.【考点】解三角方程,方程的解与函数图象的交点. 40. 【2014高考四川第16题】已知函数()sin(3)4f x x π=+.(1)求()f x 的单调递增区间; (2)若α是第二象限角,4()cos()cos 2354f απαα=+,求cos sin αα-的值.若sin cos 0αα+≠,则2451(cos sin )cos sin 52αααα=-⇒-=-. 【考41.【2014高考天津第15题】已知函数()23cos sin 3cos 34f x x x x π⎛⎫=⋅+-+ ⎪⎝⎭,x R ∈. (Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.1122f p 骣÷ç-=-÷ç÷ç桫,144f p 骣÷ç=÷ç÷ç桫,∴函数()f x 在闭区间,44p p 轾犏-犏臌上的最大值为14,最小值为12-. 考点:1.两角和与差的正弦公式、二倍角的正弦与余弦公式;2.三角函数的周期性和单调性. 【考点定位】三角函数的性质、三角恒等变换三角函数的求值.42.【2014高考浙江理第18题】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知,3a b c ≠=,22cos -cos 3sin cos -3sin cos .A B A A B B =(I )求角C 的大小; (II )若4sin 5A =,求ABC ∆的面积.(II )由3c =,4sin 5A =,sin sin a c A C =得85a =,由a c <,得A C <,从而3cos 5A =,故43.【2014高考重庆理科第17题】已知函数()()⎪⎭⎫⎝⎛<≤->+=220sin 3πϕπωϕω,x x f 的图像关于直线3π=x 对称,且图像上相邻两个最高点的距离为π.(I )求ω和ϕ的值; (II )若⎪⎭⎫ ⎝⎛<<=⎪⎭⎫⎝⎛326432παπαf ,求⎪⎭⎫ ⎝⎛+23cos πα的值.试题解析:解:(I )因()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期T π=,从而22Tπω==.。

2021-2022年高考数学分项汇编 专题4 三角函数与三角形(含解析)理

2021-2022年高考数学分项汇编 专题4 三角函数与三角形(含解析)理

2021-2022年高考数学分项汇编专题4 三角函数与三角形(含解析)理一.基础题组1. 【xx全国新课标,理5】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=( )A.-B.- C. D.【答案】B2. 【xx全国1,理8】为得到函数的图像,只需将函数的图像()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位【答案】A.3. 【xx全国,理5】函数的单调增区间为()(A)(B)(C )Z k ∈+),4k ,43-k (ππππ(D )Z k ∈+),43k ,4-k (ππππ 【答案】C4. 【xx 课标全国Ⅰ,理15】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cosθ=__________.【答案】:5. 【xx 课标全国Ⅰ,理17】如图,在△ABC 中,∠ABC =90°,AB =,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =,求PA ;(2)若∠APB =150°,求tan ∠PBA .6. 【xx全国,理17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C+a sin C-b-c=0.(1)求A;(2)若a=2,△ABC的面积为,求b,c.7. 【xx全国,理17】△ABC的内角A,B,C的对边分别为a,b,c.已知A-C=90°,,求C.8. 【xx全国卷Ⅰ,理17】在ΔABC中,内角A、B、C的对边长分别为a、b、c ,已知a2-c2=2b,且sinAcosC=3cosAsinC,求b.9. 【xx全国1,理17】(本小题满分10分)设的内角所对的边长分别为,且.(Ⅰ)求的值;(Ⅱ)求的最大值.10. 【xx 高考新课标1,理2】oooosin 20cos10cos160sin10 =( )(A ) (B ) (C ) (D ) 【答案】D【考点定位】三角函数求值. 二.能力题组1. 【xx 课标Ⅰ,理6】如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数,则的图像大致为( )【答案】CPOAMDPOAMD2. 【xx课标Ⅰ,理8】设且则()(A)(B)(C)(D)【答案】C3. 【xx全国,理9】已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则ω的取值范围是( ) A. B. C.(0,] D.(0,2]【答案】A4. 【xx新课标,理9】若cosα=-,α是第三象限的角,则1tan21tan2αα+-=( )A.- B. C.2 D.-2【答案】:A5. 【xx全国卷Ⅰ,理8】如果函数y=3cos(2x+φ)的图像关于点(,0)中心对称,那么|φ|的最小值为…()A. B. C. D.【答案】:A6. 【xx全国,理6】的内角A、B、C的对边分别为若成等比数列,且c=2a,则cosB=()(A)(B)(C)(D)【答案】B7. 【xx全国1,理6】当时,函数x xx xf2sinsin 82cos1)(2 ++=的最小值为()A.2 B.C.4 D.【答案】C8. 【xx新课标,理16】在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2.若△ADC的面积为3-,则∠BAC=__________.【答案】:60°9. 【xx全国,理17】(本小题满分12分)的三个内角为A、B、C,求当A为何值时取得最大值,并求出这个最大值。

2021年高考数学分项汇编 专题04 三角函数与三角形(含解析)理

2021年高考数学分项汇编 专题04 三角函数与三角形(含解析)理

2021年高考数学分项汇编专题04 三角函数与三角形(含解析)理一.基础题组1. 【xx新课标,理4】钝角三角形ABC的面积是,AB=1,BC= ,则AC=( )A. 5B.C. 2D. 1【答案】B2. 【xx全国,理7】已知α为第二象限角,sinα+cosα=,则cos2α=( )A. B. C. D.【答案】A3. 【2011新课标,理5】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=( )A.-B.- C.D.【答案】B【解析】4. 【xx全国2,理2】函数y=sin2x cos2x的最小正周期是()A.2πB.4πC.D.【答案】:D【解析】:化简y=sin4x,∴T=.∴选D.5. 【xx全国3,理1】已知为第三象限角,则所在的象限是()A.第一或第二象限 B.第二或第三象限C.第一或第三象限 D.第二或第四象限【答案】B6. 【xx全国2,理4】已知函数在内是减函数,则()(A) (B) (C) (D)【答案】B【解析】在上是增函数,由在在是减函数,可知,并且,,所以.7. 【xx全国2,理13】已知α是第二象限的角,tan(π+2α)=-,则tanα=________.[答案]:-8. 【xx课标全国Ⅱ,理17】(本小题满分12分)△ABC的内角A,B,C的对边分别为a,b,c,已知a=b cos C+c sin B.(1)求B;(2)若b=2,求△ABC面积的最大值.9. 【xx全国2,理17】(10分)△ABC中,D为边BC上的一点,BD=33,sin B=,cos∠ADC=,求AD. 【解析】由cos∠ADC=>0知B<,10. 【xx全国2,理17】已知向量a=(sinθ,1),b=(1,cosθ),-<θ<.(1)若a⊥b,求θ;(2)求|a+b|的最大值.11. 【xx高考新课标2,理17】(本题满分12分)中,是上的点,平分,面积是面积的2倍.(Ⅰ) 求;(Ⅱ)若,,求和的长.【考点定位】1、三角形面积公式;2、正弦定理和余弦定理.12.二.能力题组1. 【xx全国2,理7】为了得到函数y=sin(2x-)的图像,只需把函数y=sin(2x+)的图像( )A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位【答案】:B2. 【xx全国3,理7】设,且,则()A.B.C.D.【答案】C【解析】可以得到|sinx-cosx|=sinx-cosx,所以,,,解得:.3. 【xx全国2,理1】函数的最小正周期是()(A) (B) (C) (D)【答案】C【解析】4. 【xx全国2,理7】锐角三角形的内角、满足,则有()(A) (B) (C) (D)【答案】A5. 【xx新课标,理14】函数的最大值为_________.【答案】16. 【xx全国,理14】当函数y=sin x-cos x(0≤x<2π)取得最大值时,x=__________.【答案】:【解析】:y=sin x-cos x=.当y取最大值时,,∴x=2kπ+.又∵0≤x<2π,∴.7. 【xx全国2,理14】设为第四象限的角,若,则__________________.【答案】8. 【xx全国3,理19】(本小题满分12分)△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,(Ⅰ)求cotA+cotC的值;(Ⅱ)设的值.三.拔高题组1. 【2011新课标,理11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<)的最小正周期为π,且f(-x)=f(x),则( )A.f(x)在(0,)单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【答案】A【解析】2. 【xx全国3,理8】=()A.B.C.1 D.【答案】B3. 【xx课标全国Ⅱ,理15】设θ为第二象限角,若,则sin θ+cos θ=__________. 【答案】:4. 【2011新课标,理16】在△ABC中,B=60°,AC=,则AB+2BC的最大值为__________.【答案】【解析】30560 7760 睠,21992 55E8 嗨31007 791F 礟35387 8A3B 註21908 5594 喔 29221 7225 爥27797 6C95 沕 27435 6B2B 欫733686 8396 莖!。

2021-2022年高考数学分项汇编 专题04 三角函数与三角形(含解析)文

2021-2022年高考数学分项汇编 专题04 三角函数与三角形(含解析)文

2021-2022年高考数学分项汇编专题04 三角函数与三角形(含解析)文一.基础题组1. 【xx课标全国Ⅱ,文4】△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,,,则△ABC的面积为( ).A. B.C. D.【答案】:B2. 【xx全国2,文3】已知sinα=,则cos(π-2α)等于( )A.- B.- C. D.【答案】:B3. 【xx全国2,文1】cos330°=( )(A) (B) (C) (D)【答案】:C【解析】cos330°=cos(360°-30°)=cos30°=√3/24. 【xx全国2,文3】函数f(x)=|sinx|的一个单调递增区间是( )(A)(,)(B) (,)(C) (,)(D) (,2)【答案】:C5. 【xx全国2,文3】函数的最小正周期是( )(A)(B)(C)(D)【答案】D6. 【xx全国3,文1】已知为第三象限角,则所在的象限是()A.第一或第二象限 B.第二或第三象限C.第一或第三象限 D.第二或第四象限【答案】D7. 【xx全国2,文1】函数的最小正周期是()(A) (B) (C) (D)【答案】C【解析】8. 【xx全国2,文4】已知函数在内是减函数,则()(A) (B) (C) (D)【答案】B9. 【xx 全国2,文14】 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________. 【答案】110. 【xx 全国2,文13】已知α是第二象限的角,tan α=,则cos α=________. 【答案】:-11. 【xx 全国2,文17】(本小题满分12分)四边形的内角与互补,2,3,1====DA CD BC AB . (Ⅰ)求和;(Ⅱ)求四边形的面积. 【答案】(Ⅰ),;(Ⅱ).(Ⅱ)四边形的面积11sin sin 22S AB DA A BC CD C =⋅+⋅011(1232)sin 6022S =⨯⨯+⨯⨯ .12. 【xx 全国新课标,文17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +a sin C -b -c =0. (1)求A ;(2)若a =2,△ABC 的面积为,求b ,c .13. 【xx 全国2,文17】(本小题满分12分) 在2545,10,cos 5ABC B AC C ∆∠=︒==中,,求 (1)(2)若点D AB 是的中点,求中线CD 的长度。

高考数学理真题分项解析:专题04 三角函数与三角形之欧阳理创编

高考数学理真题分项解析:专题04 三角函数与三角形之欧阳理创编

专题四三角函数与三角形时间:2021.03.05 创作:欧阳理1.【2015高考新课标1,理2】=( )(A)(B)(C)(D)【答案】D【解析】原式= ==,故选D.【考点定位】三角函数求值.【名师点睛】本题解题的关键在于观察到20°与160°之间的联系,会用诱导公式将不同角化为同角,再用两角和与差的三角公式化为一个角的三角函数,利用特殊角的三角函数值即可求出值,注意要准确记忆公式和灵活运用公式.2.【2015高考山东,理3】要得到函数的图象,只需要将函数的图象()(A)向左平移个单位(B)向右平移个单位(C)向左平移个单位(D)向右平移个单位【答案】B【解析】因为,所以要得到函数的图象,只需将函数的图象向右平移个单位.故选B.【考点定位】三角函数的图象变换.【名师点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.3.【2015高考新课标1,理8】函数=的部分图像如图所示,则的单调递减区间为( )(A) (B)(C)(D)【答案】D【考点定位】三角函数图像与性质【名师点睛】本题考查函数的图像与性质,先利用五点作图法列出关于方程,求出,或利用利用图像先求出周期,用周期公式求出,利用特殊点求出,再利用复合函数单调性求其单调递减区间,是中档题,正确求使解题的关键.4.【2015高考四川,理4】下列函数中,最小正周期为且图象关于原点对称的函数是()【答案】A【解析】对于选项A,因为,且图象关于原点对称,故选A.【考点定位】三角函数的性质.【名师点睛】本题不是直接据条件求结果,而是从4个选项中找出符合条件的一项,故一般是逐项检验,但这类题常常可采用排除法.很明显,C、D选项中的函数既不是奇函数也不是偶函数,而B选项中的函数是偶函数,故均可排除,所以选A.5.【2015高考重庆,理9】若,则()A、1B、2C、3D、4【答案】C【解析】由已知,=,选C.【考点定位】两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换.【名师点晴】三角恒等变换的主要题目类型是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算即可.本例应用两角和与差的正弦(余弦)公式化解所求式子,利用同角关系式使得已知条件可代入后再化简,求解过程中注意公式的顺用和逆用.6.【2015高考陕西,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数,据此函数可知,这段时间水深(单位:m)的最大值为()A.5 B.6 C.8 D.10【答案】C【解析】由图象知:,因为,所以,解得:,所以这段时间水深的最大值是,故选C.【考点定位】三角函数的图象与性质.【名师点晴】本题主要考查的是三角函数的图象与性质,属于容易题.解题时一定要抓住重要字眼“最大值”,否则很容易出现错误.解三角函数求最值的试题时,我们经常使用的是整体法.本题从图象中可知时,取得最小值,进而求出的值,当时,取得最大值.7.【2015高考安徽,理10】已知函数(,,均为正的常数)的最小正周期为,当时,函数取得最小值,则下列结论正确的是()(A)(B)(C)(D)【答案】A【考点定位】1.三角函数的图象与应用;2.函数值的大小比较.【名师点睛】对于三角函数中比较大小的问题,一般的步骤是:第一步,根据题中所给的条件写出三角函数解析式,如本题通过周期判断出,通过最值判断出,从而得出三角函数解析式;第二步,需要比较大小的函数值代入解析式或者通过函数图象进行判断,本题中代入函数值计算不太方便,故可以根据函数图象的特征进行判断即可.Equation Section (Next)【2015高考湖南,理9】将函数的图像向右平移个单位后得到函数的图像,若对满足的,,有,则()A. B. C. D.【答案】D.【解析】试题分析:向右平移个单位后,得到,又∵,∴不妨,,∴,又∵,∴,故选D.【考点定位】三角函数的图象和性质.【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考查,多以为背景来考查其性质,解决此类问题的关键:一是会化简,熟悉三角恒等变形,对三角函数进行化简;二是会用性质,熟悉正弦函数的单调性,周期性,对称性,奇偶性等.【2015高考上海,理13】已知函数.若存在,,,满足,且(,),则的最小值为.【答案】【解析】因为,所以,因此要使得满足条件的最小,须取即【考点定位】三角函数性质【名师点睛】三角函数最值与绝对值的综合,可结合数形结合解决.极端位置的考虑方法是解决非常规题的一个行之有效的方法.8.【2015高考天津,理13】在中,内角所对的边分别为,已知的面积为,则的值为.【答案】【解析】因为,所以,又,解方程组得,由余弦定理得,所以.【考点定位】同角三角函数关系、三角形面积公式、余弦定理.【名师点睛】本题主要考查同角三角函数关系、三角形面积公式、余弦定理.解三角形是实际应用问题之一,先根据同角三角关系求角的正弦值,再由三角形面积公式求出,解方程组求出的值,用余弦定理可求边有值.体现了综合运用三角知识、正余弦定理的能力与运算能力,是数学重要思想方法的体现.【2015高考上海,理14】在锐角三角形中,,为边上的点,与的面积分别为和.过作于,于,则.【答案】【考点定位】向量数量积,解三角形【名师点睛】向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b=|a||b|cos<a,b>.(2)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.向量夹角与三角形内角的关系,可利用三角形解决;向量的模与三角形的边的关系,可利用面积解决. 9.【2015高考广东,理11】设的内角,,的对边分别为,,,若,,,则. 【答案】.【解析】因为且,所以或,又,所以,,又,由正弦定理得即解得,故应填入.【考点定位】三角形的内角和定理,正弦定理应用.【名师点睛】本题主要考查三角形的内角和定理、运用正弦定理解三角形,属于容易题,解答此题要注意由得出或时,结合三角形内角和定理舍去.[来源:学优高考网gkstk]10.【2015高考北京,理12】在中,,,,则.【答案】1【解析】考点定位:本题考点为正弦定理、余弦定理的应用及二倍角公式,灵活使用正弦定理、余弦定理进行边化角、角化边.【名师点睛】本题考查二倍角公式及正弦定理和余弦定理,本题属于基础题,题目所求分式的分子为二倍角正弦,应用二倍角的正弦公式进行恒等变形,变形后为角的正弦、余弦式,灵活运用正弦定理和余弦定理进行角化边,再把边长代入求值.11.【2015高考湖北,理12】函数的零点个数为.【答案】2【解析】因为所以函数的零点个数为函数与图象的交点的个数,函数与图象如图,由图知,两函数图象有2个交点,所以函数有2个零点.【考点定位】二倍角的正弦、余弦公式,诱导公式,函数的零点.【名师点睛】数形结合思想方法是高考考查的重点. 已知函数的零点个数,一般利用数形结合转化为两个图象的交点个数,这时图形一定要准确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题04 三角函数与三角形1.【2015高考新课标1,理2】oooosin 20cos10cos160sin10- =( )(A )-(B (C )12- (D )12【答案】D【解析】原式=oooosin 20cos10cos 20sin10+ =osin30=12,故选D. 【考点定位】三角函数求值.【名师点睛】本题解题的关键在于观察到20°与160°之间的联系,会用诱导公式将不同角化为同角,再用两角和与差的三角公式化为一个角的三角函数,利用特殊角的三角函数值即可求出值,注意要准确记忆公式和灵活运用公式.2.【2015高考山东,理3】要得到函数sin 43y x π⎛⎫=-⎪⎝⎭的图象,只需要将函数sin 4y x =的图象( )(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【解析】因为sin 4sin 4312y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,所以要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭ 的图象,只需将函数sin 4y x = 的图象向右平移12π个单位.故选B. 【考点定位】三角函数的图象变换.【名师点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.3.【2015高考新课标1,理8】函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A)13(,),44k k k Z ππ-+∈ (B)13(2,2),44k k k Z ππ-+∈ (C)13(,),44k k k Z -+∈ (D)13(2,2),44k k k Z -+∈【答案】D【考点定位】三角函数图像与性质【名师点睛】本题考查函数cos()y A x ωϕ=+的图像与性质,先利用五点作图法列出关于ωϕ,方程,求出ωϕ,,或利用利用图像先求出周期,用周期公式求出ω,利用特殊点求出ϕ,再利用复合函数单调性求其单调递减区间,是中档题,正确求ωϕ,使解题的关键.4.【2015高考四川,理4】下列函数中,最小正周期为且图象关于原点对称的函数是( )()cos(2)2A y x π=+ ()sin(2)2B y x π=+ ()sin 2cos 2C y x x =+ ()sin cos D y x x =+【答案】A【解析】对于选项A ,因为2sin 2,2y x T ππ=-==,且图象关于原点对称,故选A. 【考点定位】三角函数的性质.【名师点睛】本题不是直接据条件求结果,而是从4个选项中找出符合条件的一项,故一般是逐项检验,但这类题常常可采用排除法.很明显,C 、D 选项中的函数既不是奇函数也不是偶函数,而B 选项中的函数是偶函数,故均可排除,所以选A.5.【2015高考重庆,理9】若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( )A 、1B 、2C 、3D 、4 【答案】C 【解析】由已知,3cos()10sin()5παπα-=-33cos cos sin sin1010sin cos cos sin55ππααππαα+-33cos tan sin1010tan cos sin55ππαππα+=-33cos2tan sin105102tan cos sin555ππππππ+=-33cos cos2sin sin510510sin cos55ππππππ+==155(cos cos)(cos cos)21010101012sin25πππππ++-3cos103cos10ππ==,选C.【考点定位】两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换.【名师点晴】三角恒等变换的主要题目类型是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算即可.本例应用两角和与差的正弦(余弦)公式化解所求式子,利用同角关系式使得已知条件可代入后再化简,求解过程中注意公式的顺用和逆用.6.【2015高考陕西,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x kπϕ=++,据此函数可知,这段时间水深(单位:m)的最大值为()A.5 B.6 C.8 D.10【答案】C【解析】由图象知:min2y=,因为min3y k=-+,所以32k-+=,解得:5k=,所以这段时间水深的最大值是max3358y k=+=+=,故选C.【考点定位】三角函数的图象与性质.【名师点晴】本题主要考查的是三角函数的图象与性质,属于容易题.解题时一定要抓住重要字眼“最大值”,否则很容易出现错误.解三角函数求最值的试题时,我们经常使用的是整体法.本题从图象中可知sin16xπϕ⎛⎫+=-⎪⎝⎭时,y取得最小值,进而求出k的值,当sin16xπϕ⎛⎫+=⎪⎝⎭时,y取得最大值.7.【2015高考安徽,理10】已知函数()()sinf x xωϕ=A+(A,ω,ϕ均为正的常数)的最小正周期为π,当23xπ=时,函数()f x取得最小值,则下列结论正确的是()(A)()()()220f f f<-<(B)()()()022f f f<<-(C )()()()202f f f -<< (D )()()()202f f f <<- 【答案】A【考点定位】1.三角函数的图象与应用;2.函数值的大小比较.【名师点睛】对于三角函数中比较大小的问题,一般的步骤是:第一步,根据题中所给的条件写出三角函数解析式,如本题通过周期判断出ω,通过最值判断出ϕ,从而得出三角函数解析式;第二步,需要比较大小的函数值代入解析式或者通过函数图象进行判断,本题中代入函数值计算不太方便,故可以根据函数图象的特征进行判断即可.【2015高考湖南,理9】将函数()sin 2f x x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( )A.512π B.3π C.4π D.6π 【答案】D. 【解析】试题分析:向右平移ϕ个单位后,得到)22sin()(ϕ-=x x g ,又∵2|)()(|21=-x g x f ,∴不妨ππk x 2221+=,ππϕm x 22222+-=-,∴πϕπ)(221m k x x -+-=-,又∵12min3x x π-=,∴632πϕπϕπ=⇒=-,故选D.【考点定位】三角函数的图象和性质.【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考查,多以)sin()(ϕω+=x A x f 为背景来考查其性质,解决此类问题的关键:一是会化简,熟悉三角恒等变形,对三角函数进行化简;二是会用性质,熟悉正弦函数的单调性,周期性,对称性,奇偶性等.【2015高考上海,理13】已知函数()sin f x x =.若存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值 为 . 【答案】8【解析】因为()sin f x x =,所以()()max min ()()2m n f x f x f x f x -≤-=,因此要使得满足条件()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=的m 最小,须取123456783579110,,,,,,,6,222222x x x x x x x x πππππππ========即8.m = 【考点定位】三角函数性质【名师点睛】三角函数最值与绝对值的综合,可结合数形结合解决.极端位置的考虑方法是解决非常规题的一个行之有效的方法.8.【2015高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为315,12,cos ,4b c A -==- 则a 的值为 .【答案】8【解析】因为0A π<<,所以215sin 1cos 4A A =-=, 又115sin 315,242ABC S bc A bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得 2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【考点定位】同角三角函数关系、三角形面积公式、余弦定理.【名师点睛】本题主要考查同角三角函数关系、三角形面积公式、余弦定理.解三角形是实际应用问题之一,先根据同角三角关系求角A 的正弦值,再由三角形面积公式求出24bc =,解方程组求出,b c 的值,用余弦定理可求边a 有值.体现了综合运用三角知识、正余弦定理的能力与运算能力,是数学重要思想方法的体现.【2015高考上海,理14】在锐角三角形C AB 中,1tan 2A =,D 为边CB 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DFC ⊥A 于F ,则D DF E⋅=u u u r u u u r.【答案】1615-【考点定位】向量数量积,解三角形【名师点睛】向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos<a ,b>.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b=x 1x 2+y 1y 2.向量夹角与三角形内角的关系,可利用三角形解决;向量的模与三角形的边的关系,可利用面积解决.9.【2015高考广东,理11】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若3a =1sin 2B =,6C =π,则b = . 【答案】1.【解析】因为1sin 2B =且()0,B π∈,所以6B π=或56B π=,又6C π=,所以6B π=,23A BC ππ=--=,又3a =由正弦定理得sin sin a bA B =即32sin sin 36b ππ=解得1b =,故应填入1. 【考点定位】三角形的内角和定理,正弦定理应用.【名师点睛】本题主要考查三角形的内角和定理、运用正弦定理解三角形,属于容易题,解答此题要注意由1sin 2B =得出6B π=或56B π=时,结合三角形内角和定理舍去56B π=. 10.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯ 考点定位:本题考点为正弦定理、余弦定理的应用及二倍角公式,灵活使用正弦定理、余弦定理进行边化角、角化边.【名师点睛】本题考查二倍角公式及正弦定理和余弦定理,本题属于基础题,题目所求分式的分子为二倍角正弦,应用二倍角的正弦公式进行恒等变形,变形后为角的正弦、余弦式,灵活运用正弦定理和余弦定理进行角化边,再把边长代入求值.11.【2015高考湖北,理12】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 .【答案】2【解析】因为2π()4cos cos()2sin |ln(1)|22x f x x x x =---+|)1ln(|sin 2sin )cos 1(2+--+=x x x x |)1ln(|2sin +-=x x所以函数)(x f 的零点个数为函数x y 2sin =与|)1ln(|+=x y 图象的交点的个数, 函数x y 2sin =与|)1ln(|+=x y 图象如图,由图知,两函数图象有2个交点, 所以函数)(x f 有2个零点.【考点定位】二倍角的正弦、余弦公式,诱导公式,函数的零点.【名师点睛】数形结合思想方法是高考考查的重点. 已知函数的零点个数,一般利用数形结合转化为两个图象的交点个数,这时图形一定要准确。

相关文档
最新文档