人教版九年级下册《第二十六章反比例函数》单元测试题(2)有答案
人教版九年级下册《第二十六章 反比例函数》单元测试卷和答案详解
人教版九年级数学下册《第26章反比例函数》单元测试卷(2)一.选择题1.(3分)将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A.2B.C.D.62.(3分)反比例函数y=与y=﹣kx+1(k≠0)在同一坐标系的图象可能为()A.B.C.D.3.(3分)已知二次函数y=﹣x2+bx+c的图象如图,则一次函数y=﹣x﹣2b与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.4.(3分)反比例函数y=的图象是轴对称图形,它的对称轴的表达式是()A.y=x B.y=﹣x C.y=x,y=﹣x D.无法确定5.(3分)如图,设直线y=kx(k<0)与双曲线y=﹣相交于A(x1,y1)B(x2,y2)两点,则x1y2﹣3x2y1的值为()A.﹣10B.﹣5C.5D.106.(3分)已知反比例函数y=,下列结论中不正确的是()A.其图象经过点(﹣1,﹣3)B.其图象分别位于第一、第三象限C.当x>1时,0<y<3D.当x<0时,y随x的增大而增大7.(3分)反比例函数y=﹣的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限8.(3分)如图,矩形ABCD的顶点A和对称中心在反比例函数y=(k≠0,x>0)的图象上,若矩形ABCD的面积为10,则k的值为()A.10B.4C.3D.59.(3分)如图,点A是第一象限内双曲线y=(m>0)上一点,过点A作AB∥x轴,交双曲线y=(n<0)于点B,作AC∥y轴,交双曲线y=(n<0)于点C,连接BC.若△ABC的面积为,则m,n的值不可能是()A.m=,n=﹣B.m=,n=﹣C.m=1,n=﹣2D.m=4,n=﹣210.(3分)若函数的图象经过点(3,﹣4),则它的图象一定还经过点()A.(3,4)B.(2,6)C.(﹣12,1)D.(﹣3,﹣4)二.填空题11.(3分)已知y与x成反比例,且当x=﹣3时,y=4,则当x=6时,y的值为.12.(3分)函数y=(m+1)x是y关于x的反比例函数,则m=.13.(3分)反比例函数经过(﹣3,2),则图象在象限.14.(3分)如果把函数y=x2(x≤2)的图象和函数y=的图象组成一个图象,并称作图象E,那么直线y=3与图象E的交点有个;若直线y=m(m为常数)与图象E有三个不同的交点,则常数m的取值范围是.15.(3分)如图所示,点P(3a,a)是反比例函数图象y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则k=.三.解答题16.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.17.有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)下表是y与x的几组对应值:x…﹣2﹣101245678…y…m0﹣132…则m的值为;(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(4)观察图象,写出该函数的一条性质;(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为;18.在如图所示的平面直角坐标系中,作出函数的图象,并根据图象回答下列问题:(1)当x=﹣2时,求y的值;(2)当2<y<4时,求x的取值范围;(3)当﹣1<x<2,且x≠0时,求y的取值范围.19.我们已经知道,一次函数y=x+1的图象可以看成由正比例函数y=x的图象沿x轴向左平移1个单位得到;也可以看成由正比例函数y=x的图象沿y轴向上平移1个单位得到.(1)函数y=的图象可以看成由反比例函数y=的图象沿x轴向平移1个单位得到;(2)函数y=2x+4的图象可以看成由正比例函数y=2x图象沿x轴向平移个单位得到;(3)如果将二次函数y=﹣x2的图象沿着x轴向右平移a(a>0)个单位,再沿y轴向上平移2a个单位,得到y=﹣x2+mx﹣15的图象,试求m的值.20.我们已经学习过反比例函数y=的图象和性质,请你回顾研究它的过程,运用所学知识对函数y=﹣的图象和性质进行探索,并解决下列问题:(1)该函数的图象大致是.(2)写出该函数两条不同类型的性质:①;②;(3)写出不等式﹣+4>0的解集.人教版九年级数学下册《第26章反比例函数》单元测试卷(2)参考答案与试题解析一.选择题1.(3分)将x =代入反比例函数y =﹣中,所得函数值记为y 1,又将x =y 1+1代入函数中,所得函数值记为y 2,再将x =y 2+1代入函数中,所得函数值记为y 3,…,如此继续下去,则y 2012的值为()A .2B .C .D .6【考点】反比例函数的定义.【分析】分别计算出y 1,y 2,y 3,y 4,可得到每三个一循环,而2012=670…2,即可得到y 2012=y 2.【解答】解:y 1=﹣=﹣,把x =﹣+1=﹣代入y =﹣中得y 2=﹣=2,把x =2+1=3代入反比例函数y =﹣中得y 3=﹣,把x =﹣+1=代入反比例函数y=﹣得y 4=﹣…,如此继续下去每三个一循环,2012=670…2,所以y 2012=2.故选:A .2.(3分)反比例函数y =与y =﹣kx +1(k ≠0)在同一坐标系的图象可能为()A .B .C .D .【考点】反比例函数的图象;一次函数的图象.【分析】分别根据反比例函数与一次函数的性质对各选项进行逐一分析即可.【解答】解:A、由反比例函数的图象可知,k>0,一次函数图象呈上升趋势且交与y轴的正半轴,﹣k>0,即k<0,故本选项错误;B、由反比例函数的图象可知,k>0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项正确;C、由反比例函数的图象可知,k<0,一次函数图象呈上升趋势且交与y轴的负半轴(不合题意),故本选项错误;D、由反比例函数的图象可知,k<0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项错误.故选:B.3.(3分)已知二次函数y=﹣x2+bx+c的图象如图,则一次函数y=﹣x﹣2b与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【考点】反比例函数的图象;二次函数的图象;一次函数的图象.【分析】由函数图象经过y轴正半轴可知c>0,利用排除法即可得出正确答案.【解答】解:对称轴位于y轴左侧,a、b同号,即b<0.图象经过y轴正半可知c>0,根据对称轴和一个交点坐标用a表示出b,c,b=2a=﹣,c=,由一次函数y=﹣x﹣2b与反比例函数y=得到:=﹣x﹣2b,即x2﹣4x+3=0.则Δ=16﹣12=4>0,所以,可以确定一次函数和反比例函数有2个交点,由b<0可知,直线y=﹣x﹣2b经过一、二、四象限,由c>0可知,反比例函数y=的图象经过第一、三象限,故选:C.4.(3分)反比例函数y=的图象是轴对称图形,它的对称轴的表达式是()A.y=x B.y=﹣x C.y=x,y=﹣x D.无法确定【考点】反比例函数图象的对称性;轴对称图形.【分析】根据反比例函数图象为轴对称图形,并且有两条对称轴进行解答.【解答】解:反比例函数的图象是双曲线,且其为轴对称图形,关于直线y=x和y=﹣x 对称.故选:C.5.(3分)如图,设直线y=kx(k<0)与双曲线y=﹣相交于A(x1,y1)B(x2,y2)两点,则x1y2﹣3x2y1的值为()A.﹣10B.﹣5C.5D.10【考点】反比例函数图象的对称性.【分析】由反比例函数图象上点的坐标特征,两交点坐标关于原点对称,故x1=﹣x2,y1=﹣y2,再代入x1y2﹣3x2y1,由k=xy得出答案.【解答】解:由图象可知点A(x1,y1)B(x2,y2)关于原点对称,即x1=﹣x2,y1=﹣y2,把A(x1,y1)代入双曲线y=﹣得x1y1=﹣5,则原式=x1y2﹣3x2y1,=﹣x1y1+3x1y1,=5﹣15,=﹣10.故选:A.6.(3分)已知反比例函数y=,下列结论中不正确的是()A.其图象经过点(﹣1,﹣3)B.其图象分别位于第一、第三象限C.当x>1时,0<y<3D.当x<0时,y随x的增大而增大【考点】反比例函数的性质.【分析】根据反比例函数的性质对各选项进行逐一分析即可.【解答】解:A、∵(﹣1)×(﹣3)=3,∴图象必经过点(﹣1,﹣3),故本选项不符合题意;B、∵k=3>0,∴函数图象的两个分支分布在第一、三象限,故本选项不符合题意;C、∵x=1时,y=3且y随x的增大而增大,∴x>1时,0<y<3,故本选项不符合题意;D、函数图象的两个分支分布在第一、三象限,在每一象限内,y随x的增大而减小,故本选项符合题意.故选:D.7.(3分)反比例函数y=﹣的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【考点】反比例函数的性质;反比例函数的图象.【分析】根据k值确定函数图象经过的象限即可.【解答】解:因为k=﹣2020,所以反比例函数y=﹣的图象在第二、四象限,故选:C.8.(3分)如图,矩形ABCD的顶点A和对称中心在反比例函数y=(k≠0,x>0)的图象上,若矩形ABCD的面积为10,则k的值为()A.10B.4C.3D.5【考点】反比例函数系数k的几何意义;中心对称.【分析】设A点的坐标为()则根据矩形的性质得出矩形中心的坐标为:(),即(),进而可得出BC的长度.然后将坐标代入函数解析式即可求出k的值.【解答】解:设A(),∴AB=,∵矩形的面积为10,∴BC=,∴矩形对称中心的坐标为:(),即()∵对称中心在的图象上,∴,∴mk﹣5m=0,∴m(k﹣5)=0,∴m=0(不符合题意,舍去)或k=5,故选:D.法二:解:连接BE,作EH⊥AB于H.设A(),∴AB=,∴E(2m,),∵矩形ABCD的面积为10,∴△ABE的面积为=,∴=,即××(2m﹣m)=,∴k=5.故选:D.9.(3分)如图,点A是第一象限内双曲线y=(m>0)上一点,过点A作AB∥x轴,交双曲线y=(n<0)于点B,作AC∥y轴,交双曲线y=(n<0)于点C,连接BC.若△ABC的面积为,则m,n的值不可能是()A.m=,n=﹣B.m=,n=﹣C.m=1,n=﹣2D.m=4,n=﹣2【考点】反比例函数系数k的几何意义.【分析】根据反比例函数图象上点的坐标特征以及三角形的面积公式进行计算得出答案.【解答】解:设点A的坐标为(a,),∵AB∥x轴,AC∥y轴,∴点B的纵坐标为,点C的横坐标为a,将y=代入反比例函数y=得,x=,∴B(,),∴AB=a﹣,将x=a代入反比例函数y=得,y=,∴C(a,),∴AC=,=AB•AC=(a﹣)×==,∵S△ABC即(m﹣n)2=9m,当m=,n=﹣时,不满足(m﹣n)2=9m,因此选项A符合题意;当m=,n=﹣时,当m=1,n=﹣2时,当m=4,n=﹣2时,均满足(m﹣n)2=9m,因此选项B、C、D均不符合题意;故选:A.10.(3分)若函数的图象经过点(3,﹣4),则它的图象一定还经过点()A.(3,4)B.(2,6)C.(﹣12,1)D.(﹣3,﹣4)【考点】反比例函数图象上点的坐标特征.【分析】将(3,﹣4)代入y=求出k的值,再根据k=xy解答即可.【解答】解:∵函数的图象经过点(3,﹣4),∴k=3×(﹣4)=﹣12,符合题意的只有C:k=﹣12×1=﹣12.故选:C.二.填空题11.(3分)已知y与x成反比例,且当x=﹣3时,y=4,则当x=6时,y的值为﹣2.【考点】反比例函数的定义.【分析】根据待定系数法,可得反比例函数,根据自变量与函数值的对应关系,可得答案.【解答】解:设反比例函数为y=,当x=﹣3,y=4时,4=,解得k=﹣12.反比例函数为y=.当x=6时,y==﹣2,故答案为:﹣2.12.(3分)函数y=(m+1)x是y关于x的反比例函数,则m=3.【考点】反比例函数的定义.【分析】根据反比例函数的一般形式得到m2﹣2m﹣4=﹣1且m+1≠0,由此来求m的值即可.【解答】解:∵函数y=(m+1)是y关于x的反比例函数,∴m2﹣2m﹣4=﹣1且m+1≠0,解得m=3.故答案为:3.13.(3分)反比例函数经过(﹣3,2),则图象在二四象限.【考点】反比例函数的图象.【分析】易得反比例函数的比例系数,若为正数,在一三象限,若为负数在二四象限.【解答】解:∵反比例函数经过(﹣3,2),∴k=﹣3×2=﹣6,∴图象在二四象限,故答案为二四.14.(3分)如果把函数y=x2(x≤2)的图象和函数y=的图象组成一个图象,并称作图象E,那么直线y=3与图象E的交点有2个;若直线y=m(m为常数)与图象E有三个不同的交点,则常数m的取值范围是0<m<2.【考点】反比例函数的图象;二次函数的图象.【分析】在同一平面直角坐标系中,画出函数y=x2(x≤2)和函数y=的图象,根据函数图象即可得到直线y=3与图象E的交点个数以及常数m的取值范围.【解答】解:在同一平面直角坐标系中,画出函数y=x2(x≤2)和函数y=的图象,由图可得,直线y=3与图象E的交点有2个,∵直线y=m(m为常数)与图象E有三个不同的交点,∴直线y=m在直线y=2的下方,且在x轴的上方,∴常数m的取值范围是0<m<2,故答案为:2,0<m<2.15.(3分)如图所示,点P(3a,a)是反比例函数图象y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则k=12.【考点】反比例函数图象的对称性.【分析】根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式.【解答】解:由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP==a.于是π(a)2=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.故答案为:12.三.解答题16.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.【考点】反比例函数的定义.【分析】根据反比例函数的定义,可得答案.【解答】解:(1)由平均数,得x=,即y=是反比例函数;(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数改为不是反比例函数.(3)由路程与时间的关系,得t=,即t=是反比例函数.17.有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)函数y=的自变量x的取值范围是x≠3;(2)下表是y与x的几组对应值:x…﹣2﹣101245678…y…m0﹣132…则m的值为;(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(4)观察图象,写出该函数的一条性质当x>3时y随x的增大而减小(答案不唯一);(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为y1<y3<y2;【考点】反比例函数的图象;反比例函数的性质.【分析】(1)依据函数表达式中分母不等于0,即可得到自变量x的取值范围;(2)把x=﹣1代入函数解析式,即可得到m的值;(3)依据各点的坐标描点连线,即可得到函数图象;(4)依据函数图象,即可得到函数的增减性;(5)依据函数图象,即可得到当x1<3时,y1<1;当3<x2<x3时,1<y3<y2.【解答】解:(1)∵x﹣3≠0,∴x≠3;(2)当x=﹣1时,y===;(3)如图所示:(4)由图象可得,当x>3时,y随x的增大而减小(答案不唯一);(5)由图象可得,当x1<3时,y1<1;当3<x2<x3时,1<y3<y2.∴y1、y2、y3之间的大小关系为y1<y3<y2.故答案为:x≠3;;当x>3时,y随x的增大而减小;y1<y3<y2.18.在如图所示的平面直角坐标系中,作出函数的图象,并根据图象回答下列问题:(1)当x=﹣2时,求y的值;(2)当2<y<4时,求x的取值范围;(3)当﹣1<x<2,且x≠0时,求y的取值范围.【考点】反比例函数的图象;反比例函数的性质.【分析】(1)把x=﹣2代入函数解析式可得y的值;(2)(3)根据函数图象可直接得到答案.【解答】解:(1)当x=﹣2时,y==﹣3;(2)当2<y<4时:<x<3;(3)由图象可得当﹣1<x<2且x≠0时,y<﹣6或y>3.19.我们已经知道,一次函数y=x+1的图象可以看成由正比例函数y=x的图象沿x轴向左平移1个单位得到;也可以看成由正比例函数y=x的图象沿y轴向上平移1个单位得到.(1)函数y=的图象可以看成由反比例函数y=的图象沿x轴向右平移1个单位得到;(2)函数y=2x+4的图象可以看成由正比例函数y=2x图象沿x轴向左平移2个单位得到;(3)如果将二次函数y=﹣x2的图象沿着x轴向右平移a(a>0)个单位,再沿y轴向上平移2a个单位,得到y=﹣x2+mx﹣15的图象,试求m的值.【考点】反比例函数的图象;二次函数图象与几何变换;一次函数的图象;正比例函数的图象;一次函数图象与几何变换.【分析】(1)利用反比例函数图象的左右平移规律是左加右减;(2)利用一次函数图象的左右平移规律是左加右减;(3)利用二次函数图象的平移规律,再对应比较.【解答】解:(1)利用反比例函数图象的左右平移规律是左加右减,函数y=的图象可以看成由反比例函数y=的图象沿x轴向右平移1个单位得到.故答案为:右.(2)利用一次函数图象的上下平移规律是上加下减,函数y=2x+4的图象可以看成由正比例函数y=2x图象沿x轴向左平移2个单位得到.故答案为:左,2.(3)利用二次函数图象的平移规律,y=﹣x2向右平移a个单位,再向上平移2a个单位后可得:y=﹣(x﹣a)2+2a与y=﹣x2+mx﹣15对应后可得:∵a>0,∴故答案为:m=10.20.我们已经学习过反比例函数y=的图象和性质,请你回顾研究它的过程,运用所学知识对函数y=﹣的图象和性质进行探索,并解决下列问题:(1)该函数的图象大致是C.(2)写出该函数两条不同类型的性质:①在第三象限内,y随x的增大而增小;②图象的两个分支分别位于第三、四象限;(3)写出不等式﹣+4>0的解集.【考点】反比例函数的性质;二次函数的图象;二次函数的性质;反比例函数的图象.【分析】(1)对于函数y=﹣的图象,无论x取非零实数时,y的值总小于零,可得图象;(2)可以从函数的增减性方面进行说明,也可以从函数图象位于的象限说明;函数图象关于y轴成轴对称图形;(3)先求出y=﹣4时x的值,再根据图形确定不等式﹣+4>0的解集.【解答】解:(1)∵函数y =﹣<0,∴函数y =﹣的图象是:C故答案为:C.(2)该函数的性质:①在第三象限内,y随x的增大而增小,②图象的两个分支分别位于第三、四象限;故答案为:在第三象限内,y随x的增大而增小,图象的两个分支分别位于第三、四象限;(3)当y=﹣4时,﹣=﹣4,解得:x =,根据函数的图象和性质得,不等式﹣+4>0的解集是:x <﹣或x >.第21页(共21页)。
九年级数学下册第二十六章《反比例函数》单元测试题-人教版(含答案)
九年级数学下册第二十六章《反比例函数》单元测试题-人教版(含答案)一、单选题(本大题共12小题,每小题3分,共36分)1.如图,一次函数11y k x b =+与反比例函数22k y x =的图象相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为1-,则不等式21k k x b x+<的解集是( )A .10x -<<或2x >B .1x <-或02x <<C .1x <-或2x >D .12x -<<2.如图,一次函数(y kx b k =+、b 为常数,0)k ≠与反比例函数4y x =的图象交于A (1,m ),B (n ,2)两点,与坐标轴分别交于M ,N 两点.则△AOB 的面积为( )A .3B .6C .8D .123.已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值为3时,自变量x 的值为( ) A .﹣2 B .﹣23 C .﹣2或﹣23 D .﹣2或﹣324.古希腊学者阿基米德发现了著名的“杠杆原理”:杠杆平衡时,阻力×阻力臂=动力×动力臂.几位同学玩撬石头游戏,已知阻力(石头重量)和阻力臂分别为1600N 和0.5m ,小明最多能使出500N 的力量,若要撬动这块大石头,他该选择撬棍的动力臂( )A .至多为1.6mB .至少为1.6mC .至多为0.625mD .至少为0.625m5.在对物体做功一定的情况下,力F (N )与此物体在力的方向上移动的距离s (m )成反比例函数关系,其图象如图所示,点(4,3)P 在其图象上,则当力达到10N 时,物体在力的方向上移动的距离是( )A .2.4mB .1.2mC .1mD .0.5m6.反比例函数()0k y k x=≠图象的两个分支分别位于第一、三象限,则一次函数y kx k =-的图象大致是( ) A . B . C .D .7.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y (万元)与月份x 之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误..的是( )A .4月份的利润为50万元B .治污改造完成后每月利润比前一个月增加30万元C .治污改造完成前后共有4个月的利润低于100万元D .9月份该厂利润达到200万元8.下列函数:①2y x =-①111y x =-①11y x =-①21y x ,y 是x 的反比例函数的个数有( )A .0个B .1个C .2个D .3个9.如图,点D 是OABC 内一点,AD 与x 轴平行,BD 与y 轴平行,3BD =,120BDC ∠=︒,932BCD S =△反比例函数()0k y x x=<的图像经过C ,D 两点,则k 的值是( )A .63-B .6-C .123-D .12-10.若反比例函数(0)k y k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( ) A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1) 11.如图,在平面直角坐标系中,反比例函数k y x=(x >0)的图象和矩形ABCD 在第一象限,AD 平行于x 轴,且AB =2,AD =4,点A 的坐标为(2,6).将矩形向下平移,若矩形的两个顶点恰好同时落在反比例函数的图象上,则矩形的平移距离a 的值为( )A .a =2.5B .a =3C .a =2D .a =3.512.若点()()()123,2,,1,,4A x B x C x -都在反比例函数8y x =的图像上,则123,,x x x 的大小关系是( ) A .123x x x << B .231x x x << C .132x x x << D .213x x x <<二、填空题(本大题共8小题,每小题3分,共24分)13.如图,反比例函数k y x =的图象经过矩形ABCD 对角线的交点E 和点A ,点B 、C 在x 轴上,OCE △的面积为6,则k =______________.14.如图,直线AC 与反比例函数()0k y k x=>的图象相交于A 、C 两点,与x 轴交于点D ,过点D 作DE x ⊥轴交反比例函()0k y k x =>的图象于点E ,连结CE ,点B 为y 轴上一点,满足=AB AC ,且BC 恰好平行于x 轴.若1DCE S =,则k 的值为________.15.函数()241m y m x -=+是y 关于x 的反比例函数,则m =______.16.如图,OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数1(0)y x x=>的图象上,则经过点A 的反比例函数表达式为____________.17.如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)k y x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.18.如图所示,矩形ABCD 顶点A 、D 在y 轴上,顶点C 在第一象限,x 轴为该矩形的一条对称轴,且矩形ABCD 的面积为6.若反比例函数k y x =的图象经过点C ,则k 的值为_________.19.如图,平面直角坐标系中,O为坐标原点,等腰Rt①OAB的顶点B在第一象限,直角边OA在y轴上,点P是边AB上的一个三等分点,过点P的反比例函数kyx=的图象交斜边OB于点Q,①AOQ的面积为3,则k的值为_______.20.如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l y∥轴,且直线l分别与反比例函数y=8x(x>0)和y=kx(x>0)的图象交于P、Q两点,若13POQS=,则k的值为___________.三、解答题(本大题共5小题,每小题8分,共40分)21.已知点A为函数4(0)y xx=>图象上任意一点,连接OA并延长至点B,使AB OA=,过点B作//BC x轴交函数图象于点C,连接OC.(1)如图1,若点A的坐标为(4,)n,求点C的坐标;,垂足为D,求四边形OCDA的面积.(2)如图2,过点A作AD BC22.某种商品上市之初采用了大量的广告宣传,其销售量与上市的天数之间成正比,当广告停止后,销售量与上市的天数之间成反比(如图),现已知上市30天时,当日销售量为120万件.(1)写出该商品上市以后销售量y(万件)与时间x(天数)之间的表达式;(2)求上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数;(3)广告合同约定,当销售量不低于100万件,并且持续天数不少于12天时,广告设计师就可以拿到“特殊贡献奖”,那么本次广告策划,设计师能否拿到“特殊贡献奖”?23.如图,一次函数(0)y ax b a =+≠的图像交x 轴、y 轴于点P 、Q ,且与反比例函数()00m xm x y ≠<=,的图像相交于点(3)A n -,和点(13)B --,,过点A 作AC OP ⊥于点C .(1)求反比例函数和一次函数的解析式;(2)求四边形ABOC 的面积;(3)直接写出当0x <时,关于x 的不等式m kx b x +≤的解集.24.当下教育主管部门提倡加强高效课堂建设,要求教师课堂上要精讲,把时间、思考、课堂还给学生.通过实验发现:学生在课堂上听课注意力指标随上课时间的变化而变化,上课开始后,学生的学习兴趣递增,中间一段时间,学生的兴趣保持平稳高效状态,后阶段注意力开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段,当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A对应的指标值.(2)如果学生在课堂上的注意力指标不低于30属于学习高效阶段,请你求出学生在课堂上的学习高效时间段.25.近视镜的度数y(度)与镜片焦距x(m)成反比例函数关系,已知400度近视眼镜镜片的焦距为0.25m.(1)求y与x之间的函数关系式.y 时,求近视眼镜镜片焦距x的值.(2)当近视眼镜的度数500参考答案1.A2.A3.A4.B5.B6.D7.C8.B9.C10.C11.B12.B13.814.615.3216.1y x=- 17.418.319.20.18-21.(1)点C 的坐标为(2,2);(2)422.(1)()4030y x x =≤≤;()360030y x x=≥ (2)8(3)能23.(1)反比例函数解析式为3(0)y x x =<,一次函数解析式为4y x =-- (2)112ABOC S =四边形 (3)31x -≤≤-24.(1)点A对应的指标值为20,(2)注意力指标不低于30的高效时间段是上课4分钟到30分钟之间,25.(1)100 yx(2)0.2m。
九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版
九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果反比例函数的图象经过点P (﹣3,﹣1),那么这个反比例函数的表达式为( ) A .y =3xB .y =﹣3xC .y =13xD .y =﹣13x2.若反比例函数2y x=的图像经过(),n n ,则n 的值是( )A .2±B .CD .3.如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x的图象经过点C和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)4.对于反比例函数4y x=,下列说法错误的是( ) A .它的图象与坐标轴永远不相交 B .它的图象绕原点旋转180°能和本身重合 C .它的图象关于直线y x =±对称D .它的图象与直线y x =-有两个交点5.如图是同一直角坐标系中函数12y x =和22y x=的图象.观察图象可得不等式22x x >的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >6.如图,在平面直角坐标系中直线y mx =(0m ≠,m 为常数)与双曲线ky x=(0k ≠,k 为常数)交于点A ,B ,若()1,A a -和(),3B b -,过点A 作AM x ⊥轴,垂足为M ,连接BM ,则ABM ∆的面积是( )A .2B .1m -C .3D .67.如图,在平面直角坐标系中函数()0ky x x=>的图象经过点P 、Q 、R ,分别过这个三个点作x 轴、y 轴的平行线,阴影部分图形的面积从左到右依次为若OE ED DC ==,1310S S +=则k 的值为( )A .6B .12C .18D .24二、填空题8.平面直角坐标系xOy 中已知点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x =≠图象上的三点.若2ABC S =△,则k 的值为___________.9.如图,△AOB 中AO =AB ,OB 在x 轴上C ,D 分别为AB ,OB 的中点,连接CD ,E 为CD 上任意一点,连接AE ,OE ,反比例函数y k x=(x >0)的图象经过点A .若△AOE 的面积为2,则k 的值是___.10.在平面直角坐标系xOy 中过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长的值与面积的值相等,则这个点叫做“和谐点”.已知直线y =﹣2x +k 1与y 轴交于点A ,与反比例函数y 2k x=的图象交于点P (52-,m ),且点P 是“和谐点”,则△OAP 的面积为___.11.不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有-1,2,3,4四个数,从袋子中随机抽取一个小球,记标号为k ,不放回,将袋子摇匀,再随机抽取一个小球,记标号为b ,两次抽取完毕后,则直线y kx =与反比例函数by x=的图象经过的象限相同的概率为______. 12.如图,点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴,作AC x ⊥轴于点C ,交OB 于点D .若2OD BD =,则k 的值是______.13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =﹣6x(x <0)和y=8x(x >0)的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为__.14.一定质量的二氧化碳,其密度()3kg /m ρ=是体积()3m V 的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式___________,当33m V =时,则ρ=_______3kg /m .三、解答题15.如图1,反比例函数()0my x x=>的图象过点()4,3M .(1)求反比例函数my x=的表达式,判断点()2,8在不在该函数图象上,并说明理由; (2)反比例函数()16my x x=≤≤的图象向左平移2个单位长度,平移过程中图象所扫过的面积是______; (3)如图2,直线:8l y x =-+与x 轴、y 轴分别交于点A 、点B ,点P 是直线l 下方反比例函数my x=图象上一个动点,过点P 分别作PC x ∥轴交直线l 于点C ,作PD y ∥轴交直线l 于点D ,请判断AC BD ⋅的值是否发生变化,并说明理由,如果不变化,求出这个值. 16.阅读下列材料定义运算min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a =.例如:min 1,31-=-与min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4--=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,则()()2min,213kx b x x x x-+=+--.求这两个函数的解析式. 17.在如图平面直角坐标系中矩形OABC 的顶点B 的坐标为(4,2),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将△OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到△ODE ,OD 与CB 相交于点F ,反比例函数y =kx(x >0)的图象经过点F ,交AB 于点G .(1)求k 的值和点G 的坐标;(2)连接FG ,则图中是否存在与△BFG 相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA 上存在这样的点P ,使得△PFG 是等腰三角形.请直接写出点P 的坐标.18.我们不妨约定:在平面直角坐标系中若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则把该函数称之为“()X n 函数”.(1)在下列关于x 的函数中是“()X n 函数”的是________(填序号); ①6y x=,②4y x =,③225y x x =-- (2)若关于x 的函数y x h =-(h 为常数)是“()3X 函数”,与my x=(m 为常数,0m >)相交于A (A x ,A y )、B (B x ,B y )两点,A 在B 的左边,5B A x x -=,求m 的值;(3)若关于x 的“()X n 函数”24y ax bx =++(a ,b 为常数)经过点(1-,1),且1n =,当1t x t -≤≤时,则函数的最大值为1y ,最小值为2y ,且1212y y -=,求t 的值. 19.如图,在平面直角坐标系中四边形ABCD 为正方形,已知点A (0,﹣6)、D (﹣3,﹣7),点B 、C 在第三象限内.(1)求点B 的坐标;(2)在y 轴上是否存在一点P ,使ABP 是AB 为腰的等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.(3)将正方形ABCD 沿y 轴向上平移,若存在某一位置,使在第二象限内点B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上,求该反比例函数的解析式.参考答案与解析1.【答案】A【分析】根据点P 的坐标,利用待定系数法即可得.【详解】解:设这个反比例函数的表达式为(0)ky k x =≠ 由题意,将点(3,1)P --代入得:3(1)3k =-⨯-= 则这个反比例函数的表达式为3y x =故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键. 2.【答案】B【分析】将(),n n 代入解析式中即可求出n 的值. 【详解】解:将(),n n 代入2y x =中得2n n=解得:n =故选B.【点睛】此题考查的是根据点所在的图像求点的坐标,将点的坐标代入解析式求点的坐标是解决此题的关键.3.【答案】B【分析】作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标. 【详解】解:作CE ⊥OA 于E ,如图∵B(5,4),四边形AOCB为平行四边形∴CE=4∵反比例函数y=8x的图象经过点C∴S△COE=12OE•CE=12×8∵CE=4∴OE=2∴C(2,4),OA=BC=5-2=3 ∴A(3,0)∵点D是AB的中点∴点D的坐标为(3+50+422,),即D(4,2)故选:B.【点睛】本题考查了平行四边形的性质,反比例函数系数k的几何意义等,求得点C和点A的坐标是解题的关键.4.【答案】D【分析】当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A.∵反比例函数4yx=中4>0,∴此函数图象在一、三象限,故本选项正确;B.∵反比例函数4yx=的图象双曲线关于原点对称,故本选项正确;C.反比例函数的图象可知,图象关于直线y x=±对称,故本选项正确;D.∵反比例函数4yx=的图象位于第一、三象限,直线y x=-经过第二、四象限,所以直线y x=-与双曲线4yx=无交点,故本选项错误;故选D.【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 5.D【分析】根据图象进行分析即可得结果; 【详解】解:∵22x x> ∴12y y >由图象可知,函数12y x=和22y x =分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-, 由图象可以看出当10x -<<或1x >时,则函数12y x=在22y x =上方,即12y y >故选:D .【点睛】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质是解本题的关键. 6.【答案】C【分析】根据直线y mx =与双曲线k y x =都经过点A ,得出1a mk a =-⎧⎪⎨=⎪⎩-,进而得到k m =,再由直线y mx =与双曲线k y x =都经过点B ,得到33k b bm ⎧-=⎪⎨⎪-=⎩,进而得到2b m k =,进而求出b 的值,得到点A 的坐标,即可得到答案.【详解】由题,直线y mx =与双曲线ky x=都经过点A ∴1a m k a =-⎧⎪⎨=⎪⎩- ,得:k m =直线y mx =与双曲线ky x=都经过点B 33bm k b -=⎧⎪∴⎨-=⎪⎩,得:2b m k = 21b ∴=0b >1b ∴=13B ∴-(,)将点B 代入y mx =,得:3m -=3y x ∴=-13A ∴-(,)111313322ABM S ∆∴=⨯⨯+⨯⨯=故选:C【点睛】本题考查一次函数与反比例函数的图像问题,根据两者的交点结合解析式求出点的坐标是解题关键.7.【答案】B【分析】设未知数,表示出点P 、Q 、R 的坐标,进而表示S 1、S 2、S 3,由S 1+S 3=10列方程求解即可. 【详解】解:设OE =ED =DC =a ∵函数ykx =(x >0)的图象经过点P 、Q 、R∴点P (3k a ,3a ),Q (2k a ,2a ),R (ka ,a )∴OF 3k a =,OG 2k a =,OA k a =∴S 1=OF •CD 3k a =⨯a 3k =S 3=AG •OE =(2k k a a -)×a 2k =又∵S 1+S 3=10 ∴32k k +=10 解得k =12 故选:B .【点睛】本题考查反比例函数系数k 的几何意义以及反比例函数图象上点的坐标特征,用坐标表示线段的长是解决问题的关键. 8.【答案】34##0.75 【分析】由点A 、B 、C 的坐标可知260k m =>,m =n ,点B 、C 关于原点对称,求出直线BC 的解析式,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,根据2ABC S =△列式求出2m ,进而可得k 的值. 【详解】解:∵点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x=≠图象上的三点 ∴260k m => 6k mn = ∴m =n∴(3,2)B m m (3,2)C m m -- ∴点B 、C 关于原点对称∴设直线BC 的解析式为()0y kx k =≠ 代入(3,2)B m m 得:23m mk = 解得:23k =∴直线BC 的解析式为23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D 把x =m 代入23y x =得:23y m =∴D (m ,23m )∴AD =216633m m m -=∴()11633223ABCSm m m =⨯⋅+= ∴218m =∴2136684k m ==⨯=而当m <0时,则同样可得34k =故答案为:34【点睛】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.9.【答案】4【分析】根据等腰△AOB,中位线CD得出AD⊥OB,S△AOE=S△AOD=2,应用|k|的几何意义求k.【详解】解:如图:连接AD△AOB中AO=AB,OB在x轴上,C、D分别为AB,OB的中点∴AD⊥OB,AO∥CD∴S△AOE=S△AOD=2∴k=4.故答案为:4.【点睛】本题考查了反比例函数图象、等腰三角形以及中位线的性质、三角形面积,解题的关键是灵活运用等腰三角形的性质.10.【答案】254或754【分析】先根据“和谐点”的定义求出m的值,进而可求出点A的坐标,根据三角形的面积可求出△OAP的面积.【详解】解:∵点P(52-,m)是“和谐点”∴5+2|m|52=|m|,解得m=±10当m=10时,则P(52-,10)把点P的坐标代入一次函数和反比例的解析式得:k1=5,k2=﹣25∴A(0,5)∴S△OAP15255224=⨯⨯=.当m =﹣10时,则P (52-,﹣10)∴k 1=﹣15,k 2=25 ∴A (0,﹣15) ∴S △OAP 12=⨯1557524⨯=. 故答案为:254或754. 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |,读懂题意,明确和谐点的定义是解题的关键. 11.【答案】12【分析】画树状图,共有12个等可能的结果,直线y kx =与反比例函数by x=的图象经过的象限相同的结果有6个,再由概率公式求解即可. 【详解】解:画树状图如图:∵从袋子中随机抽取一个小球,记标号为k ,不放回后将袋子摇匀,再随机抽取一个小球,记标号为b ,共有12个数组∴直线y kx =与反比例函数by x=的图象经过的象限相同的数组有(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),共有6组∴k ,b 直线y kx =与反比例函数b y x=的图象经过的象限相同的概率为61122=.故答案为:12【点睛】此题考查了用列表法或树状图法求概率及一次函数与反比例函数的性质,熟练掌握利用列表法或树状图列出所有等可能的结果以及一次函数与反比例函数的性质是解题的关键. 12.【答案】9【分析】先求解A 的坐标,再表示B 的坐标,再证明,ABD COD ∽利用相似三角形的性质列方程求解即可.【详解】解: 点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴 63,,3,23kmB2,3,AAC x ⊥轴2,0,CAB x ∥轴,ABD COD ∽,ABBDOC OD而2OD BD = 213,22k 解得:9,k = 故答案为:9【点睛】本题考查的是反比例函数的性质,相似三角形的判定与性质,掌握“反比例函数的图像与性质”是解本题的关键. 13.【答案】7【分析】连接OA ,OB ,利用同底等高的两三角形面积相等得到三角形AOB 面积等于三角形ACB 面积,再利用反比例函数k 的几何意义求出三角形AOP 面积与三角形BOP 面积,即可得到结果. 【详解】解:如图,连接OA ,OB∵△AOB 与△ACB 同底等高 ∴S △AOB =S △ACB ∵AB ∥x 轴∴AB ⊥y 轴∵A 、B 分别在反比例函数y =﹣6x (x <0)和y =8x (x >0)的图象上∴S △AOP =3,S △BOP =4∴S △ABC =S △AOB =S △AOP +S △BOP =3+4=7. 故答案为:7.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数y =kx的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.也考查了三角形的面积. 14.【答案】10V ρ=103【分析】由函数图像信息可得反比例函数过点(5,2),根据待定系数法求解析式;将3V =代入即可求得ρ. 【详解】反比例函数过点(5,2) 设反比例函数解析式为kVρ= 则10k =∴反比例函数解析式为10Vρ=当3V =时,则103ρ= 故答案为:10V ρ=103【点睛】本题考查了反比例函数的应用,待定系数法求反比例函数的解析式,根据解析式求函数值,从图像获取信息是解题的关键.15.【答案】(1)不在,理由见解析 (2)20 (3)不变化,24【分析】对于(1),利用待定系数法求出函数关系式,再代入判断即可;对于(2),设点E 的横坐标和点F 的横坐标,再分别表示出点E ,F ,G ,H 的坐标,进而得出线段的长度,再根据平行四边形面积公式得出答案;对于(3),设点P 的横坐标为t ,分别表示点C ,点D 的坐标,再根据两点之间的距离公式得出AC 和BD 的长,进而得出答案.(1)将点()4,3M 代入m y x =得34m= 12m =∴12y x=;当2x =时,则6y = ∵68≠∴点()2,8不在函数图象上;(2)设点E 的横坐标是1,点F 的横坐标是6,点G ,H 分别对应点E ,F ,如图所示.图形扫过的面积即为平行四边形EFHG 的面积.令12y x=中1x =,则12y = 所以(112)E , -1,12G ()令12y x=中6x =,则2y = 所以(62)F ,,(4,2)H . 因为EG FH ∥,且EM FH = 所以四边形EGHF 为平行四边形所以=()2(122)20E F S EG y y ⋅-=⨯-=. 故答案为:20;(3)不变化,理由如下:因为直线l :8y x =-+与x 轴,y 轴分别交于点A ,点B 所以点A (8,0),B (0,8). 设点P 的横坐标是t 所以12(,)P t t.因为PC x ∥轴交直线l 于点C ,PD y ∥轴交直线l 于点D 所以1212(8,)C tt-+ (,8)D t t -+所以AC =BD =即24AC BD ⋅=⋅=所以AC BD ⋅为定值,为24..【点睛】本题主要考查了反比例函数图象上点的坐标特征,待定系数法求函数关系式,求平行四边形面积等,掌握数形结合思想是解题的关键.16.【答案】(1)①1;②4- (2)12y x=- 223y x =--【分析】(1)根据材料中的定义进行计算,即可求出答案; (2)由函数图像可知当20x -<<时,则2kx bx ,则min ,22k x b x b x-+=-+,结合已知可得()()2213x b x x x -+=+--,即可求出b ,得到一次函数解析式,求出点A 的坐标,再利用待定系数法求出反比例函数解析式. (1)解:根据题意∵min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a = ∴①()0min 3,21-=;∵4-∴②min 44-=-; 故答案为:①1;②4-;(2)解:由函数图像可知当20x -<<时,则2k x bx∴min,22kx b x b x-+=-+ 又∵()()2min,213kx b x x x x-+=+-- ∴()()2213x b x x x -+=+-- ∴3b =-∴一次函数223y x =-- 当x =-2时21y = ∴A (-2,1) 将A (-2,1)代入1ky x=得212k =-⨯=-∴反比例函数12y x=-.【点睛】本题考查了新定义的运算法则,零次幂,反比例函数与一次函数的综合问题,解题的关键是掌握题意,正确的运用数形结合的思想求解.17.【答案】(1)k =2,点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG ,证明详见解析;(3)点P 的坐标为(40)或(158,00). 【分析】(1)证明△COF ∽△AOB ,则CF OCAB OA=,求得:点F 的坐标为(1,2),即可求解; (2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG .证△OAB ∽△BFG :43AO BF = 24332AB BG ==即可求解.(3)分GF =PF 、PF =PG 、GF =PG 三种情况,分别求解即可. 【详解】解:(1)∵四边形OABC 为矩形,点B 的坐标为(4,2) ∴∠OCB =∠OAB =∠ABC =90°,OC =AB =2,OA =BC =4 ∵△ODE 是△OAB 旋转得到的,即:△ODE ≌△OAB ∴∠COF =∠AOB ,∴△COF ∽△AOB ∴CF OC AB OA =,∴2CF =24,∴CF =1∴点F 的坐标为(1,2) ∵y =kx(x >0)的图象经过点F∴2=1k ,得k =2 ∵点G 在AB 上 ∴点G 的横坐标为4对于y =2x ,当x =4,得y =12∴点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG . 下面对△OAB ∽△BFG 进行证明: ∵点G 的坐标为(4,12),∴AG =12 ∵BC =OA =4,CF =1,AB =2∴BF=BC﹣CF=3BG=AB﹣AG=32.∴43AOBF=24332ABBG==∴AO AB BF BG=∵∠OAB=∠FBG=90°∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,12)则FG2=9+94=454,PF2=(m﹣1)2+4,PG2=(m﹣4)2+14当GF=PF时,则即454=(m﹣1)2+4,解得:m;当PF=PG时,则同理可得:m=158;当GF=PG时,则同理可得:m=4综上,点P的坐标为(40)或(158,00).【点睛】本题考查的是反比例函数综合运用,涉及到旋转的性质、三角形相似、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.18.【答案】(1)②③( 2)4 (3)t=2或t=1【分析】(1)根据定义分析判断即可;(2)作出图形,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点,由xB﹣xA=5,设CN=x,则MC=5﹣x,则B(3+x,x),A(x﹣2,5﹣x),根据轴对称的性质以及反比例函数的性质可得(3+x)x+(x﹣2)(5﹣x)=0,继而求得x的值,即可求得B的坐标,根据反比例函数的意义即可求得m的值;(3)根据题意以及二次函数的性质,待定系数求二次函数解析式,进而分类讨论,根据121 2y y-=,即可求得t的值.(1)解:根据定义,函数关于直线x n=(n为常数)对称,即该函数图象是轴对称图形①6yx=的图象是中心对称图象,不符合题意;②4y x=,③225y x x=--的图象是轴对称图形,符合题意故答案为:②③(2)∵y=|x-h|是“X(3)”函数∴h=3如图,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点∴C(3,0),D(0,﹣3)∴∠BCN=∠OCD=45°由对称性可知,∠ACM=∠OCD=45°∴AM=CM,BN=CN∵xB﹣xA=5∴MN=5设CN=x,则MC=5﹣x∴B(3+x,x),A(x﹣2,5﹣x)∴(3+x)x+(x﹣2)(5﹣x)=0∴x=1∴B(4,1)∴m=4;(3)由题意得4112a bba-+=⎧⎪⎨-=⎪⎩解得12 ab=-⎧⎨=⎩∴此“X(n)函数”为y=﹣x2+2x+4①当t<1时x=t时,则y1=﹣t2+2t+4x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=(﹣t2+2t+4)﹣[﹣(t﹣1)2+2(t﹣1)+4]=﹣2t+3=12∴t=54(舍);②当t﹣1≥1,即t≥2时x=t﹣1时,则y1=﹣(t﹣1)2十2(t﹣1)+4x=t时,则y2=﹣t2+2t+4y1-y2=﹣(t﹣1)2+2(t﹣1)+4﹣(﹣t2+2t+4)=2t﹣3=12∴t=74(舍);③当1≤t<32时x=1时,则y1=5x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=5﹣[﹣(t﹣1)2+2(t﹣1)+4]=t2﹣4t+4=12∴t=2±,又因为1≤t<3 2∴t=2-④32≤t<2时x=1时,则y1=5x=t时,则y2=﹣t2十2t+4y1﹣y2=5﹣(﹣t2+2t+4)=t2﹣4t+4=12∴t=1,又因为32≤t<2∴t=1综上所述:t=2-t=1【点睛】本题考查了新定义,一次函数的性质,反比例函数的性质,二次函数的性质,根据新定义以及轴对称的性质求解是解题的关键.19.【答案】(1)B (-1,-3)(2)存在,(06-,或(06-,或()00,(3)6y x =-【分析】(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,证明ADF BAE ≅得出BE 与OE 的长度便可求得B 点坐标;(2)先求出AB 的值,再根据题意可得分类讨论,分为当AB =AP 时有两种情况和当AB =BP 时有一种情况进行求解即可;(3)先设向上平移了m 表示B '和D 的坐标,再根据B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上得B '和D 点的横、纵坐标的积相等,列出关于m 的方程即可求解.(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,如下图则90AFD AEB ∠=∠=︒∵点A (0,-6),D (-3,-7)∴DF =3,AF =1∵四边形ABCD 是正方形∴AB =AD 90BAD ∠=︒∴90DAF BAE DAF ADF ∠+∠=∠+∠=︒∴ADF BAE =∠∠∵ADF BAE F EAD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADF BAE ≅∴DF =AE =3,AF =BE =1∴OE=OA-AE=6-3=3∴B(-1,-3).(2)存在3种情况由(1)得ADF BAE≅且在Rt AFD中AB=AD①当AB=AP时的等腰三角形,如图则AP∵A为(0,-6)∴P点的坐标为(0,);②当AB=AP时,则如下图则AP∵A 为(0,-6)∴P 点的坐标为(0,);③当AB =BP 时,则如下图则BP ,且过B 作BE ⊥AP 于点E∵AB BP BE AP =⊥,∴3PE AE ==∴P 点在原点上则P 为(0,0).综上所述点P 的坐标为(06-,或(06-,或()00,. (3)设向上平移了m 可得B '为(-1,-3+m ),D 为(-3,-7+m ) 反比例函数关系式为k y x=()0k ≠ ∴()()1337k m m =-⨯-+=-⨯-+解得m =9∴k =()13166m -⨯-+=-⨯=- ∴反比例函数解析式为:6y x=- 【点睛】此题是反比例函数与正方形结合的综合体,主要考查了反比例函数的性质、待定系数法、全等三角形的性质和判定和等腰三角形的性质和判定,解决本题的关键是证明全等三角形和分类讨论.。
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。
人教版九年级数学下册第二十六章《反比例函数》单元测试及答案
九年级下册第二十六章《反比列函数》单元测试一、选择题(共12小题,每小题3分,满分36分)1.如图,某个反比例函数的图象经过点P,则它的解析式为()A.y=(x>0) B.y=(x>0)C.y=(x<0) D.y=(x<0)2.关于反比例函数y=2x的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小3.如图,在x轴正半轴上依次截取OA1=A1A2=A2A…A n-1A n(n为正整数),过点A1、A2、A3、…、A n分别作x轴的垂线,与反比例函数y=2x(x>0)交于点P1、P2、P3、…、P n,连接P1P2、P2P3、…、P n-1P n,过点P2、P3、…、P n分别向P1A1、P2A2、…、P n-1A n-1作垂线段,构成的一系列直角三角形(见图中阴影部分)的面积和是()A.1nn-B.1nn+C.12nD.14n4.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为()A.x l=1,x2=2 B.x l=﹣2,x2=﹣1 C.x l=1,x2=﹣2 D.x l=2,x2=﹣1 5.(2013•晋江市)若反比例函数的图象上有两点P1(2,y1)和P2(3,y2),那么()A.y1>y2>0 B.y1<y2<0 C.y2<y1<0 D.y2>y1>06.下列命题中正确的个数有个.①如果单项式3a4b y c与2a x b3c z是同类项,那么x= 4, y=3, z=1;②在反比例函数3yx=中,y随x的增大而减小;③要了解一批炮弹的杀伤半径,适合用普查方式;④从-3,-2,2,3四个数中任意取两个数分别作为k,b的值,则直线k by x=+经过第一、二、三象限的概率是16.7.在反比例函数1kyx-=的每一条曲线上,y都随着x的增大而减小,则k的值可以是()第1题图第3题图第4题图8.如图,直线l和双曲线kyx=(0k>)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为1S、△BOD的面积为2S、△POE的面积为3S ,则()A.123S S S<< B.123S S S>> C.123S S S=> D.123S S S=<9.下列四个点中,有三个点在同一反比例函数xky=的图象上,则不在这个函数图象上的点是()A.(5,1) B.(-1,5) C.(35,3) D.(-3,35-)10.对于反比例函数y=-1x图象的对称性叙述错误的是()A.关于原点中心对称 B.关于直线y=x对称C.关于直线y=-x对称 D.关于x轴对称11.如图,Rt△ABC的顶点B在反比例函数12yx=的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是A.12 B.34 C.32312- D.312-12.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=-1x、y=2x的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小 B.逐渐变大 C.保持不变 D.时大时小二、填空题(共6小题,每小题3分,满分18分)13.在第一象限内,点P(2,3),M(a,2)是双曲线kyx=(0k≠)上的两点,PA ⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为.14.如图,直线33+-=xy分别与x轴、y轴交于A、B两点,点P是xy3-=()0<x的图像上一点,PH⊥x轴于H,当以P为圆心,PH为半径的圆与直线AB相切时,OH的长为.第8题图第11题图第12题图D15.如图,在平面直角坐标系中,⊙A 与y 轴相切于原点O ,平行于x 轴的直线交⊙O 于M 、N 两点,若点M 的坐标是(-4,-2),过点N 的双曲线是y=k x ,则k= 16.如图,直线y=x+4与双曲线y=(k≠0)相交于A (﹣1,a )、B 两点,在y 轴上找一点P ,当PA+PB 的值最小时,点P 的坐标为 .17.如图,已知反比例函数y=7m x -的图象的一支位于第一象限. O 为坐标原点,点A 在该反比例函数位于第一象限的图象上,点B 与点A 关于x 轴对称,若△OAB 的面积为6,求m 的值为 .18.如图,M 为反比例函数k y x=的图象上的一点,MA 垂直于y 轴,垂足为A ,△MAO 的面积为2,则k 的值为________.三、解答题(共8小题,满分66分)19.(本题满分6分)如图,正方形的边长为2,边OA ,OC 分别在x 轴与y 轴上,反比例函数y=(k 为常数,k≠0)的图象经过正方形的中心D .(1)直接写出点D 的坐标;(2)求反比例函数的解析式.20.(本题满分6分)如图,已知直线y=ax+b与双曲线y=(x >0)交于A (x 1,y 1),B (x 2,y 2)两点(A 与B 不重合),直线AB 与x 轴交于P (x 0,0),与y 轴交于点C .若A ,B 两点坐标分别为(1,3),(3,y 2),求点P 的坐标.第16题图 第17题图 第18题图21.(本题满分7分)如图,反比例函数k y x =在第一象限的图象经过矩形OABC 对角线的交点E ,与BC 交于点D ,若点B 的坐标为(6,4).(1)求E 点的坐标及k 的值.(2)求△OCD 的面积.22.(本题满分7分)已知反比例函数k y x=的图象经过点A (-2,3). (1)求出这个反比例函数的解析式; (2)经过点A 的正比例函数y k x '=的图象与反比例函数图象还有其他的交点吗?若有,求出交点坐标;若没有,说明理由.23.(本题满分8分)如图,一次函数y=k 1x+b 与反比例函数y=相交于A (﹣1,2),B (2,m )两点,与y 轴相交于点C .(1)求k 1、k 2、m 的值;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积;(3)若M (x 1,y 1)、N (x 2,y 2)是反比例函数y=图象上的两点,且x 1<x 2时,y 1>y 2,指出点M 、N 各位于坐标系的哪个象限,并简要说明理由.24.(本题满分9分)已知正比例函数y=k 1x 的图象与反比例函数y=的图象的一个交点是(2,3).(1)求出这两个函数的表达式;(2)作出两个函数的草图,利用你所作的图形,猜想并验证这两个函数图象的另一个交点的坐标;(3)直接写出使反比例函数值大于正比例函数值的x 的取值范围.y xD E CA B O25.(本题满分11分)如图,在平面直角坐标系xOy中,函数y=4x(x>0)的图象与一次函数y=kx﹣k的图象交点为A(m,2).(1)求一次函数的解析式;(2)写出反比例函数值大于一次函数值时x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若P是x轴上一点,且满足△PAB的面积是4,求点P的坐标.26.(本题满分12分)已知边长为4的正方形ABCD,顶点A与坐标原点重合,一反比例函数图象过顶点C,动点P以每秒1个单位速度从点A出发沿AB方向运动,动点Q 同时以每秒4个单位速度从D点出发沿正方形的边DC﹣CB﹣BA方向顺时针折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t.(1)求出该反比例函数解析式;(2)连接PD,当以点Q和正方形的某两个顶点组成的三角形和△PAD全等时,求点Q 的坐标;(3)用含t的代数式表示以点Q、P、D为顶点的三角形的面积s,并指出相应t的取值.九年级下册第二十六章《反比列函数》单元测试答案一、选择题1、D2、D 3 、A 4、C 5、A 6、B 7、B 8、D9、B 10、D 11、C 12、C二、填空题13.4314.2315- 15.2 16.(0,52). 17.13. 18.4 三、解答题19.解:(1)∵正方形的边长为2,边OA ,OC 分别在x 轴与y 轴上,∴A (2,0),C (0,2),B (2,2),∵点D 是正方形的中心,∴D (1,1);(2)设反比例函数的解析式为y=,且该函数图象过点D (1,1),∴=1,∴k=1,∴反比例函数的解析式为y=.20.解:∵直线y=ax+b 与双曲线y=k x (x >0)交于A (1,3), ∴k=1×3=3,∴y=3x, ∵B (3,y 2)在反比例函数的图象上,∴y 2=33=1,∴B (3,1), ∵直线y=ax+b 经过A 、B 两点,∴331a b a b +=+=⎧⎨⎩解得14a b =-=⎧⎨⎩, ∴直线为y=-x+4,令y=0,则x=4,∴P (4,O );21.解:(1)∵ E 是矩形OABC 对角线的交点,∴OE=EB ;∵ 点B 的坐标为(6,4),∴E 点的坐标是(3,2);把3=x , 2y =代入k y x=得6k =; (2)设点D 的坐标为(,)x y ,则12OCD S OC OD ∆=⨯, 即1122OCD S xy k ∆==,∴132OCD S k ∆==.22.解:(1)Q点A(-2,3)在kyx=的图象上,3,6,2kk∴==--∴反比例函数的解析式为6. yx =-(2)有.Q正反比例函数的图象均关于原点对称,且点A在它们的图象上,则点B(2,-3)也在它们的图象上,∴它们相交的另一个交点坐标为(2,-3).23.解:(1)∵比例函数y=经过A(﹣1,2),∴k2=﹣y=经1×2=﹣2,∴比例函数为y=﹣,∵B(2,m)在比例函数y=﹣的图象上,∴m=﹣=﹣1,∴B(2,﹣1),∵直线y=k1x+b经过A(﹣1,2),B(2,﹣1),∴,解得k1=﹣1,b=1,(2)由直线y=﹣x+1可知C(0,1),∵点D与点C关于x轴对称,∴D(0,﹣1),∵B(2,﹣1),∴BD∥x轴,BD=2,∴△ABD的面积=×2×(2+1)=3;(3)点M位于第二象限,N位于第四象限,∵k2=﹣2<0,图象位于二、四象限,在每个象限内,y随x的增大而增大,∴如果M(x1,y1)、N(x2,y2)位于同一象限,有且x1<x2时,则y1<y2,∴M(x1,y1)、N(x2,y2)位于不同的象限,∵x1<x2,∴点M位于第二象限,N位于第四象限.24.解:(1)由正比例函数y=k1x的图象与反比例函数y=的图象的一个交点是(2,3),得3=2k1,3=.解得k1=,k2=6.正比例函数y=x;反比例函数y=;(2)画出函数的图象如图:两个函数图象的一个交点的坐标(2,3),猜想另一个交点的坐标(﹣2,﹣3),把(﹣2,﹣3)代入y=成立;(3)由图象可知:比例函数值大于正比例函数值的x的取值范围是x<﹣2或0<x<2.考点:反比例函数与一次函数的交点问题.25.解:(1)将A(m,2)代入y=4x(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx-k得,2k-k=2,解得k=2,则一次函数解析式为y=2x-2;(2)∵A(2,2),∴根据图象可知:反比例函数值大于一次函数值时x的取值范围0<x<2;(3)∵一次函数y=2x-2与x轴的交点为C(1,0),与y轴的交点为B(0,-2),S△ABP=S△ACP+S△BPC,∴12×2CP+12×2CP=4,解得CP=2.则P点坐标为(3,0),(-1,0).26.解:(1)∵正方形ABCD的边长为4,∴C的坐标为(4,4),设反比例解析式为y=kx,将C的坐标代入解析式得:k=16,则反比例解析式为y=16x;(2)当Q在DC上时,如图所示:此时△APD≌△CQB,∴AP=CQ,即t=4﹣4t,解得t=45,则DQ=4t=165,即Q1(165,4);当Q在BC边上时,有两个位置,如图所示:若Q在上边,则△QCD≌△PAD,∴AP=QC,即4t﹣4=t,解得t=43,则QB=8﹣4t=83,此时Q2(4,83);若Q在下边,则△APD≌△BQA,则AP=BQ,即8﹣4t=t,解得t=85,则QB=85,即Q3(4,85);当Q在AB边上时,如图所示:答案第5页,总5页此时△APD ≌△QBC ,∴AP=BQ ,即4t ﹣8=t ,解得t=83, 因为0≤t≤125,所以舍去. 综上所述Q 1(165,4); Q 2(4,83),Q 3(4,85); (3)当0<t≤1时,Q 在DC 上,DQ=4t ,则s=×4t×4=8t;当1≤t≤2时,Q 在BC 上,则BP=4﹣t ,CQ=4t ﹣4,AP=t ,则s=S 正方形ABCD ﹣S △APD ﹣S △BPQ ﹣S △CDQ =16﹣12AP•AD﹣12PB•BQ﹣12DC•CQ=16﹣12t×4﹣12(4﹣t )•[4﹣(4t ﹣4)]﹣12×4(4t ﹣4)═﹣2t 2+2t+8; 当2≤t≤125时,Q 在AB 上,PQ=12﹣5t ,则s=12×4×(12﹣5t ),即s=﹣10t+24. 总之,s 1=8t (0<t≤1);s 2=﹣2t 2+2t+8(1≤t≤2);s 3=﹣10t+24(2≤t≤125).。
人教版九年级数学下册《第26章反比例函数》单元综合测试卷(含答案)
第26章《反比例函数》单元综合测试卷第Ⅰ卷(选择题)一.选择题(共10小题)1.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小2.在反比例函数y=﹣图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y23.如图,直线y=x﹣3与双曲线y=的图象交于A、B两点,则不等式|x﹣3|>||的解集为()A.﹣1<x<0或x>4B.﹣1<x<0或0<x<4C.x<﹣1或x>4D.x<﹣1或0<x<44.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S=8,则k的值是()△ABOA.﹣12B.﹣8C.﹣6D.﹣45.如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为()A.2B.2C.D.26.如图,已知直线y=﹣x+与与双曲线y=(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为()A.B.C.D.7.如图,在平面直角坐标系中,点A、B的坐标分别为(0,4)、(4,0),点C 在第一象限内,∠BAC=90°,AB=2AC,函数y=(x>0)的图象经过点C,将△ABC沿x轴的正方向向右平移m个单位长度,使点A恰好落在函数y=(x >0)的图象上,则m的值为()A.B.C.3D.8.如图,Rt△AOC的直角边OC在x轴上,∠ACO=90°,反比例函数y=(x>0)=3,则k=()的图象与另一条直角边相C交于点D,=,S△AO CA.1B.2C.3D.49.如图,矩形OABC的顶点A在y轴的正半轴上,点C在x轴的正半轴上,反比例函数y=(k≠0)的图象的一个分支与AB交于点D,与BC交于点E,DF⊥x轴于点F,EG⊥y轴于点G,交DF于点H.若矩形OGHF和矩形HDBE 的面积分别是2和5,则k的值是()A.7B.C.2+D.1010.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为()A.5B.6C.4D.5第Ⅱ卷(非选择题)二.填空题(共6小题)11.如图,在平面直角坐标系中,平行四边形ABOC的边OB在x轴上,过点C (3,4)的双曲线与AB交于点D,且AC=2AD,则点D的坐标为.12.如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=.13.如图,已知点A在反比例函数y=(x>0)的图象上,作Rt△ABC,边BC 在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE 的面积为4,则k=.14.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与正比例函数y=kx、y=x(k>1)的图象分别交于点A、B.若∠AOB=45°,则△AOB的面积是.15.过双曲线y=(k>0)上的动点A作AB⊥x轴于点B,P是直线AB上的点,且满足AP=2AB,过点P作x轴的平行线交此双曲线于点C.如果△APC的面积为8,则k的值是.16.如图,已知反比例函数y=在第一象限内的图象上一点A,且OA=4,AB⊥x 轴,垂足为B,线段OA的垂直平分线交x轴于点C(点C在点B的左侧),则△ABC的周长等于.三.解答题(共7小题)17.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=,n=.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案).18.如图,在平面直角坐标系中,面积为4的正方形OABC的顶点O与坐标原点重合,边OA、OC分别在x轴、y轴的正半轴上,点B、P都在函数y=(x >0)的图象上,过动点P分别作轴x、y轴的平行线,交y轴、x轴于点D、E.设矩形PDOE与正方形OABC重叠部分图形的面积为S,点P的横坐标为m.(1)求k的值;(2)用含m的代数式表示CD的长;(3)求S与m之间的函数关系式.19.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)20.如图:直线y=x与反比例函数y=(k>0)的图象在第一象限内交于点A(2,m).(1)求m、k的值;(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式;(3)将△AOB沿直线AB向上平移,平移后A、O、B的对应点分别为A'、O'、B',当点O'恰好落在反比例函数y=的图象上时,求点A'的坐标.21.如图,在平面直角坐标系中,O为坐标原点,▱AOBC的顶点A、C的坐标分别为A(﹣2,0)、C(0,3),反比例函数的图象经过点B.(1)求反比例函数的表达式;(2)这个反比例函数的图象与一个一次函数的图象交于点B、D(m,1),根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y1=(x>0)的图象经过菱形对角线的交点A,且交另一边BC交于点F,点A的坐标为(4,2).(1)求反比例的函数的解析式;(2)设经过B,C两点的一次函数的解析式为y2=mx+b,求y1<y2的x的取值范围.23.如图1,在矩形ABCD中,点A(1,1),B(3,1),C(3,2),反比例函数y=(x>0)的图象经过点D,且与AB相交于点E.(1)求反比例函数的解析式.(2)过点C、E作直线,求直线CE的解析式.(3)如图2,将矩形ABCD沿直线CE平移,使得点C与点E重合,求线段BD 扫过的面积.参考答案一.选择题1.D.2.C.3.C.4.C.5.A.6.B.7.C.8.D.9.C.10.D.二.填空题11.(7,).12.12.13.8.14.215.12或4.16.2.三.解答题17.解:(1)∵反比例函数y=过点A(﹣1,3),B(﹣3,n)∴m=3×(﹣1)=﹣3,m=﹣3n∴n=1故答案为﹣3,1(2)设一次函数解析式y=kx+b,且过(﹣1,3),B(﹣3,1)∴解得:∴解析式y=x+4∵一次函数图象与x轴交点为C∴0=x+4∴x=﹣4∴C(﹣4,0)=S△AOC﹣S△BOC∵S△AOB=×4×3﹣×4×1=4∴S△AOB(3)∵kx+b≥∴一次函数图象在反比例函数图象上方∴﹣3≤x≤﹣1故答案为﹣3≤x≤﹣118.解(1)∵正方形OABC的面积4,∴BA=BC=OA=OC=2.∴点B(2,2)∵点B、P都在函数y=(x>0)的图象上∴k=2×2=4∴解析式y=(2)∵点P在y=的图象上,且横坐标为m,∴当0<m≤2时,CD=﹣2当m>2时,CD=2﹣(3)当0<m≤2时,S=2m当m>2时,S=2×=19.解:(1)设,由题意知,所以k=96,故;(2)当v=1m3时,;(3)当p=140kPa时,.所以为了安全起见,气体的体积应不少于0.69m3.20.解:(1)∵直线y=x经过A(2,m),∴m=2,∴A(2,2),∵A在y=的图象上,∴k=4.(2)设B(0,n),由题意:×(﹣n)×2=2,∴n=﹣2,∴B(0,﹣2),设直线AB的解析式为y=k′x+b,则有,∴,∴直线AB的解析式为y=2x+2.(3)当点O'恰好落在反比例函数y=的图象上时,点A'的坐标(4,4).21.解:(1)∵四边形ABCD是平行四边形,∴OA=BC,OA∥BC,而A(﹣2,0)、C(0,3),∴B(2,3);设所求反比例函数的表达式为y=(k≠0),把B(2,3)代入得k=2×3=6,∴反比例函数解析式为y=;(2)把D(m,1)代入y=得m=6,则D(6,1),∴当0<x<2或x>6时,反比例函数的值大于一次函数的值.22.解:(1)∵反比例函数y=的图象经过点A(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)如图,过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x﹣,根据题意得方程组,解此方程组得:或,∵点F在第一象限,∴点F的坐标为F(6,),∴y1<y2的x的取值范围是x>6.23.解:(1)由题可得,AD=CB=1,A(1,1),∴点D的坐标为(1,2),∵反比例函数y=(x>0)的图象经过点D,∴m=1×2=2,∴反比例函数的解析式为y=.(2)当y=1时,1=,∴x=2,∴E(2,1),设直线CE的解析式为y=kx+b,依题意得,解得,∴直线CE的解析式为y=x﹣1;(3)如图2,∵矩形ABCD沿着C E平移,使得点C与点E重合,∴点D'(0,1),B'(2,0),'=2S△BD'D=2××3×1=3.∴S四边形BDD'B。
第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册
第26章反比例函数一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图是反比例函数的图象,它的函数表达式是( ).A. y=5xB. y=2x C. y=−1xD. y=−2x2.对于反比例函数y=−5x,下列说法错误的是( )A. 图象经过点(1,−5)B. 图象位于第二、四象限C. 当x<0时,y随x的增大而减小D. 当x>0时,y随x的增大而增大3.如图,点A在双曲线y=kx上,B在y轴上,且AO=AB.若△ABO的面积为6,则k的值为 ( )A. 6B. −6C. 12D. −124.如图,直线y1=kx+1与反比例函数y2=2x的图象在第一象限交于点P(1,t),与x轴、y轴分别交于A,B 两点,则下列结论错误的是 ( )A. t=2B. △AOB是等腰直角三角形C. k=1D. 当x>1时,y2>y15.当x<0时,函数y=(k−1)x与y=2−k的y值都随x的增大而增大,则k的取值范围是( ).3xA. k>1B. 1<k<2C. k>2D. k<16.函数y=k和y=−kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )xA. B.C. D.7.若点A(−3,y1),B(−1,y2),C(2,y3)都在反比例函数y=k(k<0)的图象上,则y1,y2,y3的大小关系是( )xA. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y3<y2<y18.在大棚中栽培新品种的蘑菇,在18℃的条件下生长最快,因此用装有恒温系统的大棚栽培,如图是某天恒温系统从开启升温到保持恒温及关闭,大棚内温度y(℃)随时间x(时)变化的函数图象,其中BC段是函数(k>0)图象的一部分.若该蘑菇适宜生长的温度不低于12℃,则这y=kx天该品种蘑菇适宜生长的时间为( )A. 18小时B. 17.5小时C. 12小时D. 10小时9.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是( ).A. ①②B. ①④C. ②③D. ③④10.如图,点P、Q是反比例函数y=k(k≠0)图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥xx轴于点M,QB⊥y轴于点B,连接PB、QM.记SΔABP=S1,SΔQMN=S2,则S1与S2的大小关系为 ( )A. S1>S2B. S1<S2C. S1=S2D. 无法判断二、填空题:本题共6小题,每小题3分,共18分。
人教版初中数学九年级下册第26章《反比例函数》测试题(含答案)
人教版初中数学九年级下册第26章《反比例函数》测试题(含答案)一、选择题1、有下列四个函数,其中不属于反比例函数的是( )A B y=xCD xy=k (k ≠0)2y x=1y x -=2、如图,某反比例函数的图像过点M (-2,1),则此反比例函数表达式为( )A y=x2B y=-x 2 C y=x 21 D y=-x 213、在下图中,反比例函数xy k 12+=的图象大致是( )4、若反比例函数的图像在第二、四象限,则m 的值是( ).22(21)my m x -=-A 1-B 小于21的任意实数 C 1-或1 D 不能确定5、某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )A (-3,2)B (3,2)C (-2,-3)D. (6,1)6、在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,其图象如图所示,当310m V =时,气体的密度是( )A 5kg/m 3B 2kg/m 3C 100kg/m 3D 1kg/m 37、在反比例函数的图象中,阴影部分面积不为1的是( ).8、市一小数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y (cm )与宽x (cm )之间的函数关系的图象大致是 ( )9、若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为()A b c =B b c>C b c <D 无法判断10、已知,对于反比例函数,下列说法不正确的是( )22(1)0k a -+-=ky x=A 点(-2,-a )在它的图象上B 它的图象在第一、三象限C .当x >0时,y 随x 的增大而减小D .两个分支关于x 轴成轴对称二、填空题11、请你写出反比例函数图象上一个点的坐标是______6y x=12、已知反比例函数的图象经过点P (a+1,4),则a 的值为_____.8y x=13、有一个面积为120的梯形,其上底是下底长的,若上底长为x ,高为y ,则y 与x 的23函数关系式为________;当高为10时x=________14、已知反比例函数的图象分布在第二、四象限,则在一次函数中,xky =b kx y +=随的增大而(填“增大”或“减小”或“不变”).y x 15、老师给出了一个反比例函数,甲、乙、丙三位学生分别指出了这个函数的一个性质.甲:第一象限内有它的图象;乙:第三象限内有它的图象;丙:在每个象限内,y 随x 的增大而减小.请你写一个满足上述性质的反比例函数的解析式为________16、在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是______米.17、若正比例函数y=2x 的图象与反比例函数的图象没有交点,则实数k 的取值范围ky x=是______18、已知一次函数y 1=ax+b 与反比例函数y 2=在同一直角坐标系中的图象如图所示,则kx当y 1<y 2时,x 的取值范围是______19、已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2,),则8k 1+5k 2的值为____1220、两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x=的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;其中一定正确的是______三、解答题21、在某一电路中,保持电压不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(1)求I 与R 之间的函数关系式;(2)当电流I=0.5安培时,求电阻R 的值.22、如图,平面直角坐标系中,直线与轴交于点A ,与双曲线在第一1122y x =+x k y x =象限内交于点B ,BC ⊥轴于点C ,OC=2AO ,求双曲线的解析式.x23、已知图中的曲线是反比例函数(m 为常数)图象的一支.5m y x-=(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数2y x =的图象在第一象限的交点为A (2,n),求点A的坐标及反比例函数的解析式.24、已知y =y 1+y 2, y 1与成正比例,y 2与x 2成反比例.当x =1时,y =-12;当x x =4时,y =7.(1)求y 与x 的函数关系式和x 的取范围;(2)当x =时,求y 41的值。
新人教版九年级下《第26章反比例函数》单元测试题(含答案解析)
新人教版九年级下册数学《第26章反比例函数》单元测试题一.选择题(共10小题)1.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3C.y=﹣D.y=x2﹣12.在同一平面直角坐标系中,函数y=kx与y=的图象大致是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)3.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小4.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1.7,则S1+S2等于()A.4B.4.2C.4.6D.55.下列各点中,在函数y=﹣图象上的是()A.(﹣3,﹣2)B.(﹣2,3)C.(3,2)D.(﹣3,3)6.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是()A.y=B.y=C.y=D.y=7.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),当y=x的函数值大于y=的函数值时,x的取值范围()A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>28.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=9.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(2,4)在其图象上,则(﹣2,4)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=x和y=﹣x成轴对称10.已知反比例函数y=(k≠0)的图象经过(﹣4,2),那么下列四个点中,在这个函数图象上的是()A.(1,8)B.(3,)C.(,6)D.(﹣2,﹣4)二.填空题(共8小题)11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大”,则此函数的表达式可以为.12.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,连接OA,OB,则△OAC与△OBD的面积之和为.13.已知A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,且x1<0<x2,则y1与y2大小关系是.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为(x>0).15.反比例函数y=的图象与正比例函数y=6x的图象交于点P(m,12),则反比例函数的关系式是.16.如图、点P在反比例函数y=的图象上,PM⊥y轴于M,S=4,则k=.△POM17.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.若点B在x轴上,点A的坐标为(6,4),则△BOC的面积为.18.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=图象上的三个点,则y1、y2、y3的大小关系是.三.解答题(共7小题)19.已知y=(m2+2m)x是关x于的反比例函数,求m的值及函数的解析式.20.已知反比例函数y=(m﹣2)(1)若它的图象位于第一、三象限,求m的值;(2)若它的图象在每一象限内y的值随x值的增大而增大,求m的值.21.已知双曲线y=如图所示,点A(﹣1,m),B(n,2).求S.△AOB22.如图,在平面直角坐标系中,Rt△ABC的边AB⊥x轴,垂足为A,C的坐标为(1,0),反比例函数y=(x>0)的图象经过BC的中点D,交AB于点E.已知AB=4,BC=5.求k的值.23.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.(1)求反比例函数的解析式;(2)直接写出当y<4时x的取值范围.24.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=,n=.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案).25.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上的一点,且△ABP的面积是3,求点P的坐标;(3)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.新人教版九年级下册数学《第26章反比例函数》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3C.y=﹣D.y=x2﹣1【分析】根据反比例函数的定义判断即可.【解答】解:A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选:C.【点评】本题考查的是反比例函数的定义,形如y=(k为常数,k≠0)的函数称为反比例函数.2.在同一平面直角坐标系中,函数y=kx与y=的图象大致是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)【分析】分k>0和k<0两种情况分类讨论即可确定正确的选项.【解答】解:当k>0时,函数y=kx的图象位于一、三象限,y=的图象位于一、三象限,(1)符合;当k<0时,函数y=kx的图象位于二、四象限,y=的图象位于二、四象限,(4)符合;故选:B.【点评】考查了反比例函数和正比例函数的性质,解题的关键是能够分类讨论,难度不大.3.已知反比例函数y =﹣,下列结论中不正确的是( )A .图象必经过点(﹣3,2)B .图象位于第二、四象限C .若x <﹣2,则0<y <3D .在每一个象限内,y 随x 值的增大而减小【分析】根据反比例函数的性质进行选择即可.【解答】解:A 、图象必经过点(﹣3,2),故A 正确;B 、图象位于第二、四象限,故B 正确;C 、若x <﹣2,则y <3,故C 正确;D 、在每一个象限内,y 随x 值的增大而增大,故D 正确;故选:D .【点评】本题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.4.如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1.7,则S 1+S 2等于( )A .4B .4.2C .4.6D .5【分析】根据反比例函数系数k 的几何意义可得S 四边形AEOF =4,S 四边形BDOC =4,根据S 1+S 2=S 四边形AEOF +S 四边形BDOC ﹣2×S 阴影,可求S 1+S 2的值.【解答】解:如图,∵A 、B 两点在双曲线y =上,∴S 四边形AEOF =4,S 四边形BDOC =4,∴S 1+S 2=S 四边形AEOF +S 四边形BDOC ﹣2×S 阴影,∴S 1+S 2=8﹣3.4=4.6故选:C .【点评】本题考查了反比例函数系数k 的几何意义,熟练掌握在反比例函数y =图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.5.下列各点中,在函数y =﹣图象上的是( )A .(﹣3,﹣2)B .(﹣2,3)C .(3,2)D .(﹣3,3)【分析】只需把所给点的横纵坐标相乘,结果是﹣6的,就在此函数图象上.【解答】解:∵反比例函数y =﹣中,k =﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上,四个选项中只有B 选项符合.故选:B .【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.6.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是( )A .y =B .y =C .y =D .y =【分析】利用待定系数法求出反比例函数解析式即可.【解答】解:设反比例函数解析式为y =(k ≠0),把(1,﹣2)代入得:k =﹣2,则反比例函数解析式为y =﹣,故选:D .【点评】此题考查了待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键. 7.如图,正比例函数y =x 与反比例函数y =的图象交于A 、B 两点,其中A (2,2),当y =x 的函数值大于y =的函数值时,x 的取值范围( )A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>2【分析】由题意可求点B坐标,根据图象可求解.【解答】解:∵正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),∴点B坐标为(﹣2,﹣2)∴当x>2或﹣2<x<0故选:D.【点评】本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.8.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=【分析】先求得路程,再由等量关系“速度=路程÷时间”列出关系式即可.【解答】解:由于以80千米/时的平均速度用了6小时到达目的地,那么路程为80×6=480千米,∴汽车的速度v(千米/时)与时间t(小时)的函数关系为v=.故选:A.【点评】本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.9.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(2,4)在其图象上,则(﹣2,4)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=x和y=﹣x成轴对称【分析】根据反比例函数的性质一一判断即可;【解答】解:A、若点(2,4)在其图象上,则(﹣2,4)不在其图象上,故本选项不符合题意;B、当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C、错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D、正确,本选项符合题意,故选:D.【点评】本题考查反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.10.已知反比例函数y=(k≠0)的图象经过(﹣4,2),那么下列四个点中,在这个函数图象上的是()A.(1,8)B.(3,)C.(,6)D.(﹣2,﹣4)【分析】根据反比例函数y=(k≠0)的图象经过(﹣4,2),可以得到k的值,从而可以判断各个选项是否符合题意,本题得以解决.【解答】解:∵反比例函数y=(k≠0)的图象经过(﹣4,2),∴k=xy=(﹣4)×2=﹣8,∵1×8=8≠﹣8,故选项A不符合题意,∵3×(﹣)=﹣8,故选项B符合题意,∵×6=3≠﹣8,故选项C不符合题意,∵(﹣2)×(﹣4)=8≠﹣8,故选项D不符合题意,故选:B.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.二.填空题(共8小题)11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大”,则此函数的表达式可以为y=.【分析】根据题意和反比例函数的性质可以写出一个符合要求的函数解析式,本题得以解决.【解答】解:∵当x>0时,y随x的增大而增大,∴此函数的解析式可以为y =,故答案为:y =. 【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,写出相应的函数解析式,注意本题答案不唯一.12.如图,在平面直角坐标系xOy 中,函数y =(x >0)的图象经过点A ,B ,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,连接OA ,OB ,则△OAC 与△OBD 的面积之和为 2 .【分析】根据反比例函数比例系数k 的几何意义可得S △OAC =S △OBD =×2=1,再相加即可.【解答】解:∵函数y =(x >0)的图象经过点A ,B ,AC ⊥x 轴于点C ,BD ⊥y 轴于点D , ∴S △OAC =S △OBD =×2=1,∴S △OAC +S △OBD =1+1=2.故答案为2.【点评】本题考查了反比例函数比例系数k 的几何意义:过反比例函数图象上的点向x 轴或y 轴作垂线,这一点和垂足、原点组成的三角形的面积等于|k |.13.已知A (x 1,y 1),B (x 2,y 2)都在反比例函数的图象y =﹣上,且x 1<0<x 2,则y 1与y 2大小关系是 y 1>y 2 .【分析】将点A ,点B 坐标代入解析式,可求y 1,y 2,由x 1<0<x 2,可得y 1>0,y 2<0,即可得y 1与y 2大小关系.【解答】解:∵A (x 1,y 1),B (x 2,y 2)都在反比例函数的图象y =﹣上,∴y 1=,y 2=,∵x 1<0<x 2,∴y 1>0>y 2,故答案为:y 1>y 2【点评】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为y=﹣(x>0).【分析】根据关于x轴对称的性质得出点A关于x轴的对称点A′坐标(2,﹣1),从而得出C2对应的函数的表达式.【解答】解:∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A(2,1),∴A′坐标(2,﹣1),∴C2对应的函数的表达式为y=﹣,故答案为y=﹣.【点评】本题考查了反比例函数的性质,掌握关于x轴对称点的坐标是解题的关键.15.反比例函数y=的图象与正比例函数y=6x的图象交于点P(m,12),则反比例函数的关系式是y=.【分析】把点P(m,12)代入正比例函数y=6x得到关于m的一元一次方程,解之求得m的值,把P的坐标代入反比例函数y=,得到关于k的一元一次方程,解之,求得k的值,代入即可得到答案.【解答】解:把点P(m,12)代入正比例函数y=6x得:12=6m,解得:m=2,把点P(2,12)代入反比例函数y=得:12=,解得:k=24,即反比例函数得关系式是y=,故答案为:y=.【点评】本题考查了反比例函数和一次函数的交点问题,正确掌握代入法是解题的关键.16.如图、点P在反比例函数y=的图象上,PM⊥y轴于M,S=4,则k=﹣8.△POM【分析】此题可从反比例函数系数k的几何意义入手,△PMO的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=|k|再结合反比例函数所在的象限确定出k的值即可.=|k|=4,【解答】解:由题意知:S△PMO所以|k|=8,即k=±8.又反比例函数是第二象限的图象,k<0,所以k=﹣8,故答案为:﹣8.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.17.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.若点B在x轴上,点A的坐标为(6,4),则△BOC的面积为3.【分析】由于点A的坐标为(6,4),而点D为OA的中点,则D点坐标为(3,2),利用待定系数法科得到k=6,然后利用k的几何意义即可得到△BOC的面积=|k|=×6=3.【解答】解:∵点A的坐标为(6,4),而点D为OA的中点,∴D点坐标为(3,2),把D(3,2)代入y=得k=3×2=6,∴反比例函数的解析式为y=,∴△BOC的面积=|k|=×|6|=3.故答案为:3;【点评】本题考查了反比例y=(k≠0)数k的几何意义:过反比例函数图象上任意一点分别作x 轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.18.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=图象上的三个点,则y1、y2、y3的大小关系是y2>y3>y1.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可【解答】解:∵1>0,∴反比例函数y=图象在一、三象限,并且在每一象限内y随x的增大而减小,∵﹣1<0,∴A点在第三象限,∴y1<0,∵2>1>0,∴B、C两点在第一象限,∴y2>y3>0,∴y2>y3>y1.故答案是:y2>y3>y1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题(共7小题)19.已知y=(m2+2m)x是关x于的反比例函数,求m的值及函数的解析式.【分析】根据反比例函数的定义知m2+2m=﹣1,且m2+2m≠0,据此可以求得m的值,进而得出反比例函数的解析式.【解答】解:∵y=(m2+2m)x是反比例函数,∴m2+2m=﹣1,且m2+2m≠0,∴(m+1)(m+1)=0,∴m+1=0,即m=﹣1;∴反比例函数的解析式y=﹣x﹣1.【点评】本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx﹣1(k≠0)的形式.20.已知反比例函数y=(m﹣2)(1)若它的图象位于第一、三象限,求m的值;(2)若它的图象在每一象限内y的值随x值的增大而增大,求m的值.【分析】(1)根据反比例函数的定义与性质,得出,进而求解即可;(2)根据反比例函数的定义与性质,得出,进而求解即可.【解答】解:(1)由题意,可得,解得m=3;(2)由题意,可得,解得m=﹣2.【点评】本题考查了反比例函数的性质;用到的知识点为:反比例函数y =kx (k ≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.也考查了反比例函数的定义.21.已知双曲线y =如图所示,点A (﹣1,m ),B (n ,2).求S △AOB .【分析】根据点A 、B 两点在反比例函数图象上得其坐标,再根据S △AOB =S 矩形ODEC ﹣S △AOC ﹣S △BOD﹣S △ABE 可得答案.【解答】解:将点A (﹣1,m )、B (n ,2)代入y =,得:m =6、n =﹣3,如图,过点A 作x 轴的平行线,交y 轴于点C ,过点B 作y 轴的平行线,交x 轴于点D ,交CA 于点E ,则DE =OC =6、BD =2、BE =4、OD =3,AC =1、AE =2,∴S △AOB =S 矩形ODEC ﹣S △AOC ﹣S △BOD ﹣S △ABE=3×6﹣×1×6﹣×3×2﹣×2×4=8.【点评】本题主要考查反比例函数系数k 的几何意义,熟练掌握割补法求三角形的面积是解题的关键.22.如图,在平面直角坐标系中,Rt △ABC 的边AB ⊥x 轴,垂足为A ,C 的坐标为(1,0),反比例函数y =(x >0)的图象经过BC 的中点D ,交AB 于点E .已知AB =4,BC =5.求k 的值.【分析】根据勾股定理可求AC=3,则可求点A(4,0),可得点B(4,4),根据中点坐标公式可求点D坐标,把点D坐标代入解析式可求k的值.【解答】解:∵在Rt△ABC中,AB=4,BC=5∴AC===3∵点C坐标(1,0)∴OC=1∴OA=OC+AC=4∴点A坐标(4,0)∴点B(4,4)∵点C(1,0),点B(4,4)∴BC的中点D(,2)∵反比例函数y=(x>0)的图象经过BC的中点D∴2=∴k=5【点评】本题考查了反比例函数图象上点的坐标特征,勾股定理,中点坐标公式,熟练运用反比例函数图象性质是解决问题的关键.23.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.(1)求反比例函数的解析式;(2)直接写出当y<4时x的取值范围.【分析】(1)把P的坐标代入直线解析式求出a的值,确定出P′的坐标,即可求出反比例解析式;(2)结合图象确定出所求x的范围即可.【解答】解:(1)把P(﹣2,a)代入直线y=﹣2x解析式得:a=4,即P(﹣2,4),∴点P关于y轴对称点P′为(2,4),代入反比例解析式得:k=8,则反比例解析式为y=;(2)当y<4时,反比例函数自变量x的范围为x>2或x<0;一次函数自变量x的范围是x>﹣2.【点评】此题考查了待定系数法求反比例函数解析式,以及一次函数、反比例函数的性质,熟练掌握待定系数法是解本题的关键.24.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=﹣3,n=1.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案)﹣3≤x≤﹣1.【分析】(1)将A点坐标,B点坐标代入解析式可求m,n的值(2)用待定系数法可求一次函数解析式,根据S△AOB =S△AOC﹣S△BOC可求△AOB的面积.(3)由图象直接可得【解答】解:(1)∵反比例函数y=过点A(﹣1,3),B(﹣3,n)∴m =3×(﹣1)=﹣3,m =﹣3n∴n =1故答案为﹣3,1(2)设一次函数解析式y =kx +b ,且过(﹣1,3),B (﹣3,1)∴解得: ∴解析式y =x +4∵一次函数图象与x 轴交点为C∴0=x +4∴x =﹣4∴C (﹣4,0)∵S △AOB =S △AOC ﹣S △BOC∴S △AOB =×4×3﹣×4×1=4(3)∵kx +b ≥∴一次函数图象在反比例函数图象上方∴﹣3≤x ≤﹣1故答案为﹣3≤x ≤﹣1【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法,利用函数图象上的点满足函数关系式解决问题是本题关键.25.如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)与反比例函数y =(m ≠0)的图象交于点A (3,1),且过点B (0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P 是x 轴上的一点,且△ABP 的面积是3,求点P 的坐标;(3)若P 是坐标轴上一点,且满足PA =OA ,直接写出点P 的坐标.【分析】(1)将点A(3,1)代入y=,利用待定系数法求得反比例函数的解析式,再将点A(3,1)和B(0,﹣2)代入y=kx+b,利用待定系数法求得一次函数的解析式;(2)首先求得AB与x轴的交点C的坐标,然后根据S△ABP =S△ACP+S△BCP即可列方程求得P的横坐标;(3)分两种情况进行讨论:①点P在x轴上;②点P在y轴上.根据PA=OA,利用等腰三角形的对称性求解.【解答】解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=,解得m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2),∴,解得:,∴一次函数的表达式为y=x﹣2;(2)如图,设一次函数y=x﹣2的图象与x轴的交点为C.令y=0,则x﹣2=0,x=2,∴点C的坐标为(2,0).∵S△ABP =S△ACP+S△BCP=3,∴PC×1+PC×2=3,∴PC=2,∴点P的坐标为(0,0)、(4,0);word 版数学21 / 21 (3)若P 是坐标轴上一点,且满足PA =OA ,则P 点的位置可分两种情况:①如果点P 在x 轴上,那么O 与P 关于直线x =3对称,所以点P 的坐标为(6,0);②如果点P 在y 轴上,那么O 与P 关于直线y =1对称,所以点P 的坐标为(0,2).综上可知,点P 的坐标为(6,0)或(0,2).【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,三角形面积的计算以及等腰三角形的性质,正确求出函数的解析式是关键.。
(新)人教版九年级数学下册第26章《反比例函数》单元检测及答案
人教版数学九年级下学期第26章《反比例函数》单元测试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分) 1.下列函数是反比例函数的是( )A .y=xB .y=kx ﹣1 C .y=-8x D .y=28x2.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A .两条直角边成正比例B .两条直角边成反比例C .一条直角边与斜边成正比例D .一条直角边与斜边成反比例3.在双曲线y=1-kx的任一支上,y 都随x 的增大而增大,则k 的值可以是( )A .2B .0C .﹣2D .14.函数y=﹣x +1与函数y= -2x在同一坐标系中的大致图象是( )C BAy yy y5.若正比例函数y=﹣2x 与反比例函数y=kx图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为( ) A .(2,﹣1) B .(1,﹣2)C .(﹣2,﹣1)D .(﹣2,1)6.如图,过反比例函数y=kx(x >0)的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )xC .4D .5 k ≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点( )A.(1,﹣1) B.(﹣12,4)C.(﹣2,﹣1) D.(12,4)8.图象经过点(2,1)的反比例函数是()A.y=﹣2xB.y=2xC.y=12xD.y=2x9.若一次函数y=mx+6的图象与反比例函数y=nx在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤010.一个三角形的面积是12cm2,则它的底边y(单位:cm)是这个底边上的高x(单位:cm)的函数,它们的函数关系式(其中x>0)为()A.y=12xB.y=6x C.y=24xD.y=12x二、填空题(共6小题,每小题3分,共18分)11.若反比例函数y=(m+1)22mx-的图象在第二、四象限,m的值为.12.若函数y=(3+m)28mx-是反比例函数,则m=.13.已知反比例函数y=kx(k>0)的图象与经过原点的直线L相交于点A、B两点,若点A的坐标为(1,2),14.反比例函数y=kx的图象过点P(2,6),那么k的值是.15.已知:反比例函数y=kx的图象经过点A(2,﹣3),那么k=.16.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,分别过点A、B向xD、C,若矩形ABCD的面积是8,则k的值为.x72分)取何值时,函数y=2m113x+是反比例函数?OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx(k>0)的图象与BC边交于点E.当F为AB的中点时,求该函数的解析式;、y 2在第一象限的图象,1y =4x,过y 1上的任意一点A ,作x 轴S △AOB =1,求双曲线y 2的解析式. =4xy=kx的图象上,过点C 作CD ⊥y 轴,交y 轴负半轴于y 轴对称的点的坐标是 .(2)反比例函数y=x 关于y 轴对称的函数的解析式为 .(3)求反比例函数y=kx(k ≠0)关于x 轴对称的函数的解析式.22.(本题10分)如图,Rt △ABC 的斜边AC 的两个顶点在反比例函数y=1kx的图象上,点B 在反比例函数y=2kx的图象上,AB 与x 轴平行,BC=2,点A 的坐标为(1,3).(1)求C 点的坐标;(2)求点B 所在函数图象的解析式.y=x+b的图象与反比例函数y=kx(k为常数,k≠0)的图象交b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.O为坐标原点,△ABO的边AB垂直与x轴,垂足AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=kx的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.第26章《反比例函数》单元测试卷解析一、选择题1. 【答案】A 、y=x 是正比例函数;故本选项错误;B 、y=kx ﹣1当k=0时,它不是反比例函数;故本选项错误; C 、符合反比例函数的定义;故本选项正确;D 、y=28x的未知数的次数是﹣2;故本选项错误.故选C .2.【答案】设该直角三角形的两直角边是a 、b ,面积为S .则 S=12ab . ∵S 为定值,∴ab=2S 是定值,则a 与b 成反比例关系,即两条直角边成反比例. 故选:B .3.【答案】∵y 都随x 的增大而增大, ∴此函数的图象在二、四象限, ∴1﹣k <0, ∴k >1.故k 可以是2(答案不唯一), 故选A .4.【答案】函数y=﹣x +1经过第一、二、四象限,函数y=﹣2x分布在第二、四象限.故选A .5.【答案】∵正比例函数与反比例函数的图象均关于原点对称, ∴两函数的交点关于原点对称, ∵一个交点的坐标是(﹣1,2), ∴另一个交点的坐标是(1,﹣2). 故选B .6.【答案】∵点A 是反比例函数y=kx图象上一点,且AB ⊥x 轴于点B ,∴S △AOB =12|k |=2,解得:k=±4.∵反比例函数在第一象限有图象, ∴k=4. 故选C .7.【答案】∵反比例函数y=kx(k ≠0)的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,A 、1×(﹣1)=﹣1≠﹣2,故此点不在反比例函数图象上;B 、﹣12×4=﹣2,故此点,在反比例函数图象上;C 、﹣2×(﹣1)=2≠﹣2,故此点不在反比例函数图象上;D 、12×4=2≠﹣2,故此点不在反比例函数图象上. 故选B .8.【答案】设反比例函数解析式y=kx,把(2,1)代入得k=2×1=2,所以反比例函数解析式y=2x.故选B .9.【答案】依照题意画出图形,如下图所示.x+6x ﹣n=0, 故选A .10.【答案】由题意得y=2×12÷x=24x.故选C .二、填空题11.【答案】由题意得:2﹣m 2=﹣1,且m +1≠0, 解得:m=∵图象在第二、四象限, ∴m+1<0, 解得:m <﹣1, ∴m=故答案为:12.【答案】根据题意得:8-m 2= -1,3+m ≠0,解得:m=3.故答案是:3. 13.【答案】∵点A (1,2)与B 关于原点对称, ∴B 点的坐标为(﹣1,﹣2). 故答案是:(﹣1,﹣2).14.【答案】:∵反比例函数y=kx 的图象过点P (2,6),∴k=2×6=12,故答案为:12.15.【答案】根据题意,得﹣3=k2,解得,k=﹣6.16. 【答案】过点A 作AE ⊥y 轴于点E ,∵点A 在双曲线y=4x上,∴矩形EODA 的面积为:4, ∵矩形ABCD 的面积是8,∴矩形EOCB 的面积为:4+8=12, 则k 的值为:xy=k=12.x2m 113x 是反比例函数,∴2m +1=1,解得:m=0.OABC 中,OA=3,OC=2,∴B (3,2), F (3,1),∵点F 在反比例函数y=k x (k >0)的图象上,∴k=3,∴该函数的解析式为y= 3x(x >0);19.【解答】设双曲线y 2的解析式为y 2=kx,由题意得:S △BOC ﹣S △AOC =S △AOB ,k 2﹣42=1,解得;k=6;则双曲线y 2的解析式为y 2=6x . 20.【解答】(1)设C 点坐标为(x ,y ),∵△ODC 的面积是3,∴12 OD •DC=12x •(﹣y )=3,∴x •y=﹣6,而xy=k ,∴k=﹣6,∴所求反比例函数解析式为y=﹣6x;(2)∵CD=1,即点C ( 1,y ),把x=1代入y=﹣6x,得y=﹣6.∴C 点坐标为(1,﹣6),设直线OC 的解析式为y=mx ,把C (1,﹣6)代入y=mx 得﹣6=m ,∴直线OC 的解析式为:y=﹣6x . 21.【解答】(1)由于两点关于y 轴对称,纵坐标不变,横坐标互为相反数; 则点(3,6)关于y 轴对称的点的坐标是(﹣3,6);(2)由于两反比例函数关于y 轴对称,比例系数k 互为相反数;则k=﹣3,即反比例函数y=3x 关于y 轴对称的函数的解析式为y=﹣3x;(3)由于两反比例函数关于x 轴对称,比例系数k 互为相反数;则反比例函数y=k x (k ≠0)关于x 轴对称的函数的解析式为:y=﹣kx.22.【解答】(1)把点A (1,3)代入反比例函数y=1kx 得k 1=1×3=3,所以过A 点与C 点的反比例函数解析式为y=3x,∵BC=2,AB 与x 轴平行,BC 平行y 轴,∴B 点的坐标为(3,3),C 点的横坐标为3,把x=3代入y=3x得y=1,∴C 点坐标为(3,1);(2)把B (3,3)代入反比例函数y=2kx 得k 2=3×3=9,所以点B 所在函数图象的解析式为y=9x.23.【解答】(1)∵点A (﹣1,4)在反比例函数y=kx(k 为常数,k ≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣4x. 把点A (﹣1,4)、B (a ,1)分别代入y=x +b 中,解得:a= -4,b=5. (2)连接AO ,设线段AO 与直线l 相交于点M ,如图所示.OA 的中点,12,2).,2).24..【解答】(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),∵点C 为线段AO 的中点,∴点C 的坐标为(2,3m2+).∵点C 、点D 均在反比例函数y=kx 的函数图象上,解得:m=1,k=4.∴反比例函数的解析式为y=4x.(2)∵m=1,∴点A 的坐标为(4,4),∴OB=4,AB=4. 在Rt △ABO 中,OB=4,AB=4,∠ABO=90°,∴cos ∠OAB=AB OA ==. (3))∵m=1,∴点C 的坐标为(2,2),点D 的坐标为(4,1). 设经过点C 、D 的一次函数的解析式为y=ax +b ,解得:a= -12,b=3.∴经过C 、D 两点的一次函数解析式为y=﹣12x +3.。
人教版九年级数学下册第26章:反比例函数 测试卷含答案
人教版九年级数学下册第26章:反比例函数 测试卷含答案一、选择题1、反比例函数与直线相交于点A ,A 点的横坐标为-1,则此反比例函数ky x=2y x =-的解析式为()A .B .C .D .2y x =12y x =2y x =-12y x =-2、如图所示的函数图象的关系式可能是( ).(A )y = x (B )y =(C )y = x 2 (D) y = x 11x3、若点(3,4)是反比例函数图象上一点,则此函数图象必须经过点( 221m m y x+-=).(A )(2,6) (B )(2,-6)(C )(4,-3) (D )(3,-4)4、在同一平面直角坐标系中,函数y=k(x -1)与y=的大致图象是( ))0(<k xk5、已知一个矩形的面积为24cm 2,其长为ycm ,宽为xcm ,则y 与x 之间的函数关系的图象大致是( )6、函数y =与函数y =x 的图象在同一平面直角坐标系内的交点的个数是( )x1A 、一个 B 、二个 C 、三个 D 、零个7、已知点A (-2,y 1)、B (-1,y 2)、C (3,y 3)都在反比例函数的图象上( 4y x=)(A )y 1<y 2<y 3 (B) y 3<y 2<y 1 (C) y 3<y 1<y 2 (D) y 2<y 1<y 38、如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别作y 轴的垂线,得到三个三角形P 1A 10、P 2A 20、P 3A 30,设它们的面积分别是S 1、S 2、S 3,则( ). A . S 1<S 2<S 3 B . S 2<S 1<S 3C .S 1<S 3<S 2D .S 1=S 2=S 39.正比例函数y=x 与反比例函数y=的图象相交于A 、C 两点.AB ⊥x 轴于B,CD ⊥x 轴于1xD(如图),则四边形ABCD 的面积为( )A.1B.C.2D.325210 .如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是【 】(A )x <-1 (B )x >2 (C )-1<x <0,或x >2 (D )x <-1,或0<x <2二、填空题:11、若反比例函数在每一个象限内,随的增大而增大,则722)5(---=m m xm y y x =。
人教版九年级下册数学《第二十六章 反比例函数》单元测试题含答案
人教版九年级下册数学《第二十六章 反比例函数》单元测试题含答案一.选择题(共10小题,满分40分,每小题4分)1.已知反比例函数y =的图象上,那么下列各点中,在此图象上的是( ) A .(3,4) B .(﹣2,6) C .(﹣2,﹣6) D .(﹣3,﹣4)2.若点A (1,y 1)和点B (2,y 2)是反比例函数y =﹣图象上的两点,则y 1和y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .无法确定3.已知y =(m +1)x m +2是反比例函数,则函数的图象在( )A .第一、二象限B .第三、四象限C .第一、三象限D .第二、四象限4.已知一次函数y =kx ﹣1和反比例函数y =,则这两个函数在同一平面直角坐标系中的图象可能是( )A .B .C .D .5.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v (千米/时)与时间t (小时)的函数关系为( )A .v =B .v +t =480C .v =D .v =6.如果等腰三角形的面积为10,底边长为x ,底边上的高为y ,则y 与x 的函数关系式为( )A .y =B .y =C .y =D .y =7.反比例函数的图象经过点P (3,﹣4),则这个反比例函数的解析式为( )A .B .C .D .8.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为()A.5 B.6 C.7 D.89.如图,在菱形ABOC中,∠A=60°,它的一个顶点在反比例函数的图象上,若将菱形向下平移1个单位,点A恰好落在函数图象上,则反比例函数的解析式为()A.B.C.D.y=﹣10.如图,菱形ABCD的顶点A在x轴的正半轴上,边CD所在直线过点O,对角线BD∥x轴交AC于=,那么k的值为()点M,双曲线y=过点B且与AC交于点N,如果AN=3CN,S△NBCA.8 B.9 C.10 D.12二.填空题(共4小题,满分20分,每小题5分)11.已知A (1,y 1),B (2,y 2)两点在双曲线y =上,且y 1>y 2,则m 的取值范围是 .12.如图,点M (2,m )是函数y =x 与y =的图象在第一象限内的交点,则k 的值为 .13.把一个长、宽、高分别为3cm ,2cm ,1cm 的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s (cm 2)与高h (cm )之间的函数关系式为 .14.如图,Rt △ABC 的直角边BC 在x 轴负半轴上,斜边AC 上的中线BD 的反向延长线交y 轴负半轴于点E ,反比例函数y =﹣(x <0)的图象过点A ,则△BEC 的面积是 .三.解答题(共9小题,满分90分)15.(8分)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点A ,B 在反比例函数y =﹣(k >0,x >0)的图象上,纵坐标分别为1和3,求k 的值.16.(8分)如图,一次函数y 1=﹣x +2的图象与反比例函数y 2=(k ≠0)的图象分别交于第二、四象限的A ,B 两点,点A 的横坐标为﹣1.(1)求反比例函数的表达式;(2)根据图象回答:当x 取何值时,y 1<y 2.请直接写出答案: .17.(8分)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,作AC⊥x轴于点C.(1)求k的值;(2)直线y=ax+b(a≠0)图象经过点A交x轴于点B,且OB=2AC.求a的值.18.(8分)如图,直线y=﹣x+1与反比例函数y=的图象相交于点A、B,过点A作AC⊥x轴,垂足为点C(﹣2,0),连接AC、BC.(1)求反比例函数的解析式;;(2)求S△ABC(3)利用函数图象直接写出关于x的不等式﹣x+1<的解集.19.(10分)如图所示,直线AB与双曲线y=交于A,B两点,直线AB与x、y坐标轴分别交于C,D 两点,连接OA ,若OA =2,tan ∠AOC =,B (﹣3,m )(1)分别求一次函数与反比例函数式.(2)连接OB ,在x 轴上求点P 的坐标,△AOP 的面积等于△AOB 的面积.20.(10分)如图,在平面直角坐标系中,一次函数y 1=ax +b (a ≠0)的图象与反比例函数y 2=(k ≠0)的图象交于A 、C 两点,与x 轴交于点D ,过点A 作AB ⊥x 轴于点B ,点O 是线BD 的中点,AD =2,cos ∠ADB =.(1)求该反比例函数和一次函数的解析式;(2)直接写出当x 为何值时,y 1≥y 2.21.(12分)如图,一次函数y =ax +b (a ≠0)的图象与反比例函数y =的图象交于A 、B两点,与x 轴交于点C ,与y 轴交于点D ,已知OA =2,点B 的坐标是(m ,﹣4).(1)求反比例函数和一次函数的解析式;(2)若点E 在坐标轴上,且使得S △AED =2S △AOB ,求点E 的坐标.22.(12分)已知平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求反比例函数解析式;(2)求△OAB的面积.23.(14分)如图,一次函数y=﹣2x+8与函数y=(x>0)的图象交于A(m,6),B(n,2)两点,AC⊥y轴于C,BD⊥x轴于D(1)求k的值;(2)根据图象直接写出﹣2x+8﹣<0的x的取值范围;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.人教版九年级下册数学《第二十六章 反比例函数》单元测试题参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【解答】解:A .把x =3代入y =得:y ==﹣4,即A 项错误,B .把x =﹣2代入y =得:y ==6,即B 项正确,C .把x =﹣2代入y =得:y ==6,即C 项错误,D .把x =﹣3代入y =得:y ==4,即D 项错误,故选:B .2.【解答】解:∵点A (1,y 1)和点B (2,y 2)是反比例函数y =﹣图象上的两点又∵反比例函数y =﹣在x >0时,y 随着x 的增大而增大,且1<2,∴y 1<y 2,故选:A .3.【解答】解:依题意有m +2=﹣1,解得m =﹣3,因而函数是y =,故函数经过第二、四象限.故选:D .4.【解答】解:当k >0时,直线从左往右上升,双曲线分别在第一、三象限;∵一次函数y =kx ﹣1与y 轴交于负半轴,∴D 选项正确,故选:D .5.【解答】解:由于以80千米/时的平均速度用了6小时到达目的地,那么路程为80×6=480千米,∴汽车的速度v (千米/时)与时间t (小时)的函数关系为v =.故选:A.6.【解答】解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.7.【解答】解:∵反比例函数的图象经过点P(3,﹣4),∴k=﹣4×3=﹣12,∴反比例函数解析式为y=﹣.故选:B.8.【解答】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,=CE•BM=××4=7;∴S△CEB故选:C.9.【解答】解:过点C作CD⊥x轴于D,如图,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a, a),∴A(﹣a﹣a, a)∵点A向下平移1个单位的点为(﹣a﹣a, a﹣1),即(﹣a, a﹣1),则,解得.故反比例函数解析式是:.故选:C.10.【解答】解:设CN=a,BM=b,则AN=3a,设N(x,3a),B(x+b,2a),则,解得:ax=3,∵N在双曲线y=上,∴k =3ax =3×3=9,故选:B .二.填空题(共4小题,满分20分,每小题5分)11.【解答】解:∵A (1,y 1),B (2,y 2)两点在双曲线y =上,∴y 1=m +3,y 2=∵y 1>y 2,∴m +3>∴m >﹣3故答案为:m >﹣312.【解答】解:∵点M (2,m )是函数y =x 与y =的图象在第一象限内的交点,∴解得k =4故答案为:413.【解答】解:由题意可得:sh =3×2×1,则s =.故答案为:s =.14.【解答】解:连接AE ,OA ,如图,∵D 为AC 的中点,∴S △AED =S △CED ,S △ABD =S △CBD ,∴S △BCE =S △ABE ,∵S △ABE =S △AOB =×|﹣2|=1,∴△BEC 的面积为1.故答案为1.三.解答题(共9小题,满分90分)15.【解答】解:作AD⊥x轴于D,作BE⊥AD于E,如图,设A(k,1),B(,3)∵A、B点的纵坐标分别为1和3,∴AD=1,DE=3,∴AE=2,∵四边形AOCB为矩形,∴∠OAB=90°,∵∠BAE+∠OAD=90°,∠OAD+∠AOD=90°,∴∠BAE=∠AOD,∴Rt△ABE∽Rt△OAD,∴=,即=,解得k=或k=﹣(舍去)即k的值为.=﹣x+2得:16.【解答】解:(1)把x=﹣1代入一次函数y1y=﹣1+2=3,1即点A的坐标为:(﹣1,3),=得:把点A(﹣1,3)代入反比例函数y23=,解得:k =﹣3,即反比例函数为y 2=﹣,(2)一次函数y =﹣x +2与反比例函数y =﹣联立得:,解得:或,即点A 的坐标为:(﹣1,3),点B 的坐标为:(3,﹣1),由图象可知:当﹣1<x <0或x >3时,y 1<y 2,故答案为:﹣1<x <0或x >3.17.【解答】解:(1)∵函数y =(x >0)的图象经过点A (2,2),∴k =2×2=4;(2)∵OB =2AC ,AC =2,∴OB =4.分两种情况:①如果B (﹣4,0).∵直线y =ax +b (a ≠0)图象经过点A 交x 轴于点B ,∴,解得;②如果B (4,0).∵直线y =ax +b (a ≠0)图象经过点A 交x 轴于点B ,∴,解得.综上,所求a 的值为或﹣1.18.【解答】解:(1)把x =﹣2代入y =﹣x +1,得y =2+1=3,∴A (﹣2,3),∵反比例函数y =的图象过点A ,∴k =﹣2×3=﹣6,∴反比例函数的解析式为y=﹣;(2)由,解得,或,∴B(3,﹣2),=×3×5=7.5;∴S△ABC(3)由图象可知,当﹣2<x<0或x>3时,直线y=﹣x+1落在双曲线y=的下方,所以关于x的不等式﹣x+1<的解集是﹣2<x<0或x>3.19.【解答】解:(1)过A作AE⊥OC与E,∵tan∠AOC=,∴设AE=2x,OE=3x,∴AO==x=2,∴x=2,∴AE=4,OE=6,∴A(﹣6,4),∴线AB与双曲线y=交于A,B两点,∴k=﹣6×4=﹣3m,∴k=﹣24,m=8,∴反比例函数式为y=﹣,B(﹣3,8),设一次函数的解析式为y=kx+b,∴,解得:,∴一次函数的解析式为y=x+12;(2)设P(n,0),∵△AOP的面积等于△AOB的面积,∴|n |×4=(4+8)×3,∴n =±9,∴P (9,0)或(﹣9,0).20.【解答】解:(1)∵在Rt △ABD 中,∠ABD =90°,AD =2,cos ∠ADB =,∴BD =AD •cos ∠ADB =2×=2,由勾股定理得,AB ===4, ∵点O 是线段BD 的中点,∴点A 的坐标为(1,4),点D 的坐标为(﹣1,0).把A (1,4)代入y 2=,得反比例函数的解析式为:y 2=.把A (1,4),D (﹣1,0)代入y 1=ax +b ,得,解得,∴一次函数解析式为y 1=2x +2;(2)由,解得,或,∴C (﹣2,﹣2).由图象可知,当﹣2≤x <0或x ≥1时,一次函数y 1=ax +b (a ≠0)的图象在反比例函数y 2=(k ≠0)图象的上方,∴当﹣2≤x <0或x ≥1时,y 1≥y 2.21.【解答】解:(1)如图,作AH ⊥x 轴于H .在Rt △AOH 中,∵OA =2,tan ∠AOH =,∴AH =2,OH =4,∴A (﹣4,2),∵A (﹣4,2)在y =的图象上,∴k =﹣8,∵B (m ,﹣4),在y =﹣的图象上上,∴m =2,把A 、B 坐标代入y =kx +b ,则,解得,∴反比例函数的解析式为y =﹣,一次函数的解析式为y =﹣x ﹣2.(2)由y =﹣x ﹣2,令x =0,则y =﹣2;令y =0,则x =﹣2,∴D (0,﹣2),C (﹣2,0),∴S △AOB =S △AOD +S △BOD =×2×(4+2)=6,若点E 在x 轴上,设E (x ,0),则DE =|y ﹣(﹣2)|.由S △AED =2S △AOB ,可得×|y ﹣(﹣2)|×(4+2)=2×6.解得x =2或﹣6,∴点E 的坐标为(2,0)或(﹣6,0);若点E 在y 轴上,设E (0,y ),则CE =|x ﹣(﹣2)|.由S △AED =2S △AOB ,可得×|x ﹣(﹣2)|×4=2×6.解得y =4或﹣8,∴点E 的坐标为(0,4)或(0,﹣8);综上所述,点E 的坐标为(2,0)或(﹣6,0)或(0,4)或(0,﹣8).22.【解答】解:(1)∵点A(2,5)在反比例函数y=的图象上,∴k=2×5=10∴反比例函数解析式:y=,(2)∵点A在直线y=x+b上,∴5=2+b∴b=3∴一次函数解析式y=x+3∵直线y=x+b交x轴于点B∴点B(﹣3,0)=×3×5=∴S△AOB23.【解答】解:(1)∵一次函数y=﹣2x+8的图象经过A(m,6),B(n,2)两点,∴﹣2m+8=6,﹣2n+8=2,解得:m=1,n=3,∵函数y=(x>0的图象经过A(m,6),B(n,2)两点,∴k=6,(2)﹣2x+8﹣<0,即﹣2x+8<,由图象可知:x的取值范围为0<x<1或x>3,(3)设直线y=﹣2x+8上点P的坐标为(x,﹣2x+8).由△PCA和△PDB面积相等,×AC×|y A﹣y P|=×BD×|x B﹣x p|,即×1×[6﹣(﹣2x+8)]=×2×(3﹣x),解得:x=2,则y=﹣2x+8=4,∴点P的坐标为(2,4).。
人教版九年级数学下册《第26章反比例函数》单元测试卷(有答案)
人教版九年级数学下册第26章反比例函数单元测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 在下列函数中表示y是x的反比例函数的是()A.y=−2xB.y=2008xC.y=8x+1D.y=2x22. 已知点(1, 1)在反比例函数y=kx(k为常数,k≠0)的图象上,则这个反比例函数的大致图象是()A. B.C. D.3. 对于反比例函数y=−3x,下列说法正确的是()A.它的图象在第一、三象限B.点(1, 3)在它的图象上C.当x>0时,y随x的增大而减小D.当x<0时,y随x的增大而增大4. 若反比例函数y=1x的图象上有两点P1(1, y1)和P2(2, y2),那么()A.y2<y1<0B.y1<y2<0C.y2>y1>0D.y1>y2>05. 在同一平面直角坐标系中,函数y=−x+k(−2<k<2)与y=1x的图象的公共点的个数是()A.0个B.1个C.2个D.3个6. 购买x斤水果需24元,购买一斤水果的单价y与x的关系式是()A.y=24x(x>0) B.y=24x(x为自然数)C.y=24x(x为整数) D.y=24x(x为正整数)7. 下列四个点中,有三个点在同一反比例函数y=kx的图象上,则不在这个函数图象上的点是()A.(5, 1) B.(−1, 5)C.(53, 3) D.(−3, −53)8. 已知反比例函数y=kx(k<0)的图象上有两点A(x1, y1),B(x2, y2),且0<x1<x2,设y1−y2=a,则()A.a>0B.a<0C.a≥0D.a≤09. 下列四个关系式中,y是x的反比例函数的是()A.y=4xB.y=13xC.y=1x2D.y=1x+1精品 Word 可修改欢迎下载10. 已知反比例函数y=m2x 的图象过点(−3, −12),且y=mx的图象位于二、四象限,则m的值为()A.36B.±6C.6D.−6二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 已知点(a, −1)在反比例函数y=2x的图象上,则a=________.12. 已知反比例函数y=kx(k≠0)的图象与正比例函数y=mx(m≠0)的图象交于点(2, 1),则其另一个交点坐标为________.13. 反比例函数y=(2k+1)x k2−2在每个象限内y随x的增大而增大,则k=________.14. 若点(√3,−√3)在反比例函数y=kx(k≠0)的图象上,则k=________.15. 已知反比例函数y=k−1x的图象在第二、四象限内,那么k的取值范围是________.16. 设函数y=x−3与y=2x 的图象的两个交点的横坐标为a、b,则1a+1b=________.17. 有一块长方形试验田面积为3×106m2,试验田长y(单位:m)与宽x(单位:m)之间的函数关系式是________.18. 已知反比例函数y=2x的图象经过点A(m, 1),则m的值为________.19. 已知函数y=(m2+2m−3)x|m|−2.(1)若它是正比例函数,则m=________;(2)若它是反比例函数,则m=________.20. 双曲线y=kx 的部分图象如图所示,那么k=________.三、解答题(本题共计 6 小题,每题 10 分,共计60分,)21. 已知函数y=2m+1x m2−24的图象是双曲线.(1)求m的值;(2)若该函数的图象经过第二、四象限,求函数的表达式.22. 已知反比例函数y=kx(k为常数,且k≠0)的图象经过点A(2, 3)(1)画出这个反比例函数的图象并观察,这个函数的图象位于哪些象限?y随x怎样变化?(2)判断点B(−1, 6),C(3, 2)是否在这个函数的图象上,并说明理由.精品 Word 可修改欢迎下载23. 在平面直角坐标系xOy中,已知:直线y=−x反比例函数y=kx的图象的一个交点为A(a, 3).(1)试确定反比例函数的解析式;(2)写出该反比例函数与已知直线l的另一个交点坐标.24. 已知反比例函数y=1−2mx的图象经过点(−1, 4).(1)试确定m的值;(2)图象经过哪些象限?(3)若A(−1, y1),B(−4, y2),C(1, y3)是该函数图象上的点,试比较y1,y2,y3的大小;(4)直接回答点D(2, −2),E(−14, 16)是否在这个函数的图象上.25. 已知A(x1, y1),B(x2, y2)是反比例函数y=−2x图象上的两点,且x2−x1=−2,x1⋅x2=3.(1)在图中用“描点”的方法作出此反比例函数的图象;(2)求y1−y2的值及点A的坐标;(3)若−4<y≤−1,依据图象写出x的取值范围.26. 某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)精品 Word 可修改欢迎下载答案1. B2. C3. D4. D5. A6. A7. B8. B9. B10. D11. −212. (−2, −1)13. −114. −315. k<116. −1.517. y=3×106x18. 219. 3;(2)若它是反比例函数,则|m|−2=−1,解得:m1=1,m2=−1,∴m=−1.故答案为:−1.20. 221. 解:(1)根据题意得:m2−24=1,解得:m=±5.(2)∵函数的图象经过第二、四象限,∴2m+1<0,解得m<−12,∴m=−5,∴函数的表达式y=−9x.22. 解:(1)∵反比例函数的图象经过点A(2, 3),如图,∴k=2×3=6>0,∴这个函数的图象分布在一三象限,且在每一象限内y随x的增大而减小;(2)∵(−1)×6=−6,2×3=6,∴点B(−1, 6)不在这个函数的图象上,点C(3, 2)在这个函数的图象上.23. 解:(1)因为A(a, 3)在直线y=−x上,则a=−3,即A(−3, 3),又因为A(−3, 3)在y=kx的图象上,可求得k=−9,所以反比例函数的解析式为y=−9x;(2)另一个交点坐标是(3, −3).24. 解:(1)∵反比例函数y=1−2mx的图象经过点(−1, 4),∴4=1−2m−1,∴m=52;(2)∵1−2m=−4<0,精品 Word 可修改欢迎下载精品 Word 可修改 欢迎下载∴图象经过二、四象限;(3)∵反比例函数为:y =−4x , ∵A(−1, y 1),B(−4, y 2),C(1, y 3)是该函数图象上的点, ∴y 1=4,y 2=1,y 3=−4,∴y 1,y 2,y 3的大小是y 1>y 2>y 3;(4)当x =2时,y =−2,当x =−14时,y =16, ∴D(2, −2),E(−14, 16)在这个函数的图象上. 25. 解(1),(2)∵x 2−x 1=−2,x 1⋅x 2=3, ∴y 1−y 2=−2x 1−(−2x 2)=2(x 1−x 2)x 1x 2=2×23=43;由x 1−x 2=2得x 2=x 1−2,代入x 1⋅x 2=3得:x 12−2x 1−3=0,解得x 1=−1或x 1=3,当x 1=−1时,y 1=−2−1=2; 当x 1=3时,y 2=−23,∴点A 的坐标(−1, 2)或(3, −23);(3)如图,当−4<y ≤−1时,x 的取值范围为12<x ≤2. 26. 解:(1)设p =kv , 由题意知120=k 0.8, 所以k =96, 故p =96v;(2)当v =1m 3时,p =961=96(kPa);(3)当p =140kPa 时,v =96140≈0.69(m 3).所以为了安全起见,气体的体积应不少于0.69m 3.。
人教版九年级下册第二十六章《反比例函数》单元测试含详细答案
人教版九年级下册第二十六章《反比例函数》单元测试含详细答案一、选择题1、图象经过点(2,1)的反比例函数是()A.y=-B.y=C.y=-D.y=2x2、若函数y=的图象过点(1,﹣1),则函数y=kx﹣2的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限3、已知点A(x1,y1),B(x2,y2)是反比例函数y=的图象上的两点,若x1<0<x2,则有()A.y1<0<y2 B.y2<0<y1 C.y1<y2<0 D.y2<y1<04、对于反比例函数y=-,下列说法不正确的是()A.图象经过点(1,-3) B.图象分布在第二、四象限C.当x>0时,y随x的增大而增大D.点A(x1,y1),B(x2,y2)都在反比例函数y=-的图象上,若x1<x2,则y1<y25、在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A. B.C. D.6、对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=﹣x成轴对称7、若ab>0,则一次函数y=ax﹣b与反比例函数y=在同一坐标系数中的大致图象是()A. B.C. D.8、一次函数y1=kx+b和反比例函数y2=的图象如图,则使y1>y2的x范围是()A.x<-2或x>3 B.-2<x<0或x>3C.x<-2或0<x<3 D.-2<x<39、如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=(x>0)的图象经过顶点B,则k的值为()A.12 B.20 C.24 D.32,10、已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=,当电压为定值时,I 关于R的函数图象是()11、一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是()12、一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应( )A.不小于4.8Ω B.不大于4.8Ω C.不小于14Ω D.不大于14Ω13、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()二、填空题14、如图,已知双曲线y=与直线y=﹣x+6相交于A,B两点,过点A作x轴的垂线与过点B 作y轴的垂线相交于点C,若△ABC的面积为8,则k的值为.15、已知反比例函数y=﹣和一次函数y=kx+1的图象只有一个公共点,那么k的值为.16、函数y=中,自变量x的取值范围是.17、如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.18、如图,已知点A1、A2、A3、…、A n在x轴上,且OA1=A1A2=A2A3=…=A n﹣1A n=1,分别过点A1、A2、A3、A n作x轴的垂线,交反比例函数y=(x>0)的图象于点B1、B2、B3、…、B n,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2,…,若记△B1P1B2的面积为S1,△B2P2B3的面积为S2,…,△B n P n B n+1的面积为S n,则S1+S2+…+S2018= .19、如图,点A(﹣7,8),B(﹣5,4)连接AB并延长交反比例函数y=(x<0)的图象于点C,若=,则k= .20、已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.21、已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为.22、近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式为.(无需确定x的取值范围)23、小华要看一部300页的小说所需的天数y与平均每天看的页数x成比例函数,表达式为.三、简答题24、如图,一次函数与反比例函数的图像有公共点A(1,2)。
人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案
人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案(考试时间:90分钟 试卷满分:100分)一、选择题:(本大题共10小题,每小题3分,满分30分) 1.在下列函数中,y 是x 的反比例函数的是( ) A .2y x = B .2x y =C .2y x=D .21yx【答案】C【详解】A .该函数是正比例函数,故本选项错误; B .该函数是正比例函数,故本选项错误; C .该函数符合反比例函数的定义,故本选项正确; D .y 是()1x -的反比例函数,故本选项错误; 故选:C . 2.若双曲线(0)ky k x=<,经过点()12,A y -,()25,B y -则1y 与2y 的大小关系为( ) A .12y y < B .12y y > C .12y y = D .无法比䢂1y 与2y 的大小 【答案】B【详解】解: (0)ky k x=< ∴ 在同一象限内,y 随着x 的增大而增大即可求解()12,A y -,()25,B y -都在第二象限,且25->-∴12y y >.故选:B .3.已知反比例函数4y x=,则它的图象经过点( ) A .(2,8) B .(1,4)- C .(4,1) D .(2,2)-【答案】C【详解】解:由反比例函数4y x=可得:4xy = 2816⨯=,故A 选项不符合题意; 144-⨯=-,故B 选项不符合题意; 414⨯=,故C 选项符合题意;()224⨯-=-,故D 选项不符合题意.故选:C4.反比例函数5m y x-=的图象在第一、三象限,则m 的取值范围是( ) A .5m ≥ B .5m > C .5m ≤ D .5m <【答案】B【详解】解:∵反比例函数5m y x-=图象在第一、三象限 50m ∴->解得5m >. 故选:B5.如图,一次函数1y ax b 的图象与反比例函数2ky x=图象交于()2,A m 、()1,B n -两点,则当12y y >时,x 的取值范围是( )A .1x <-或2x >B .10x -<<或2x >C .12x -<<D .1x <-或02x <<【答案】B【详解】解:∵图象交于()2,A m 、()1,B n -两点 ∵当12y y >时,10x -<<或2x >. 故选B .6.若0ab >,则反比例函数aby x=与一次函数y ax b =+在同一坐标系中的大致图象可能是( )A .B .C .D .【答案】A【详解】解:0ab > ∴aby x=的图象在第一、三象限,排除B ,D ; 0ab >∴a ,b 同号当0a >,0b >时,y ax b =+的图象经过第一、二、三象限 当a<0,0b <时,y ax b =+的图象经过第二、三、四象限 综上可知,只有A 选项符合条件 故选A .7.在平面直角坐标系中,若反比例函数()0ky k x=≠的图像经过点()1,2A 和点()2,B m -,则m 的值为( ) A .1 B .1- C .2 D .2-【答案】B【详解】解:根据题意,将点()1,2A 代入()0ky k x =≠中得:21k =解得:2k =∵反比例函数解析式为2y x =将()2,B m -代入2y x =中得212m ==--故选:B .8.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流(A)I 与电阻()R Ω成反比例函数的图像,该图像经过点()880,0.25P .根据图像可知,下列说法正确的是( )A .当0.25I <时,880R <B .I 与R 的函数关系式是()2000I R R=> C .当1000R >时,0.22I >D .当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【详解】解:设I 与R 的函数关系式是(0)UI R R=>∵该图像经过点()880,0.25P ∵0.25880U= ∵220U =∵I 与R 的函数关系式是220(0)I R R=>,故选项B 不符合题意; 当0.25I =时,880R =,当1000R =时0.22I = ∵反比例函数(0)UI R R=>I 随R 的增大而减小 当0.25R <时880I >,当1000R >时0.22I <,故选项A ,C 不符合题意; ∵0.25R =时880I =,当1000R =时0.22I =∵当8801000R <<时,I 的取值范围是0.220.25I <<,故D 符合题意; 故选:D .9.正比例函数y x =与反比例函数1y x=的图象相交于A 、C 两点,AB x ⊥轴于点B ,CD x ⊥轴于点D (如图),则四边形ABCD 的面积为( )A .1B .32C .2D .52【答案】C【详解】解:解方程组1y xy x =⎧⎪⎨=⎪⎩,得:11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩ 即:正比例函数y x =与反比例函数1y x=的图象相交于两点的坐标分别为(1,1)A (1,1)C -- ∵AB x ⊥ CD x ⊥ ∵(1,0)D - (1,0)B ∵1111212122222四边形=⋅+⋅=⨯⨯+⨯⨯=ABCD S BD AB BD CD 即:四边形ABCD 的面积是2. 故选:C10.如图,正方形ABCD 的顶点分别在反比例函数11(0)k y k x=>和22(0)ky k x =>的图象上.若BD y ∥轴,点C 的纵坐标为4,则12k k +=( )A .32B .30C .28D .26【答案】A【详解】解:连接AC 交BD 于E ,延长BD 交x 轴于F ,连接OD 、OB 如图:四边形ABCD 是正方形AE BE CE DE ∴===设AE BE CE DE m ==== (,4)C aBD y ∥轴(,4)B a m m ∴++ (2,4)A a m + (,4)D a m m +-A ,B 都在反比例函数11(0)k y k x=>的图象上 14(2)(4)()k a m m a m ∴=+=++0m ≠4m a ∴=- (4,8)B a ∴-()4,D a(4,8)B a -在反比例函数11(0)k y k x=>的图象上,(4,)D a 在22(0)ky k x =>的图象上14(8)324k a a ∴=-=- 24k a =12324432k k a a ∴+=-+=;故选:A .二、填空题:(本大题共6小题,每小题3分,满分18分)11.已知反比例函数(0)ky kx=≠ 当x = y =- 则比例系数k 的值是______.【答案】4-【详解】解:把x = y =-4k =-=-;故答案为4-.12.如图 若反比例函数(0)ky x x=<的图像经过点A AB x ⊥轴于B 且AOB 的面积为5 则k =______.【答案】10-【详解】解:∵反比例函数(0)ky x x=<的图像经过点A AB OB ⊥ ∵设,k A a a ⎛⎫ ⎪⎝⎭∵12AOB k S a a=△ ∵反比例函数的图像在第二象限 ∵0k < a<0 则0ka> ∵11522AOB k S a k a ===△ ∵10k =- 故答案为:10-. 13.已知反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 则k 的取值范围是_____.【答案】3k >##3k < 【详解】解:∵反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 ∵30k -< ∵3k >.故答案为:3k >.14.如图 点M 和点N 分别是反比例函数a y x =(0x <)和by x=(0x >)的图象上的点MN x ∥轴 点P 为x 轴上一点 若4b a -= 则MNP S △的值为_______.【答案】2【详解】解:如图 连接,OM ON∵MN x ∥轴 ∵ ||||22MNP MNO a b S S ∆∆==+ ∵点M 和点N 分别是反比例的数(0)ay x x =<和(0)b y x x=> 的图象上的点 ∵0,0a b <> ∵||||4222222a b a b b a -+=-+== ∵2MNP S =△; 故答案为:2.15.已知点(3,)C n 在函数ky x=(k 是常数 0k ≠)的图象上 若将点C 先向下平移2个单位 再向左平移4个单位 得点D 点D 恰好落在此函数的图象上 n 的值是______. 【答案】12##0.5【详解】解:点(3,)C n 向下平移2个单位 再向左平移4个单位得(,)n --12; ∵(,)D n --12 ∵点C 、点D 均在函数k y x=上 ∵3k n = ()k n =--2 ∵()n n =--32 解得:12n =故答案为:1216.如图 正方形ABCD 的边长为5 点A 的坐标为(4,0) 点B 在y 轴上 若反比例函数(0)ky k x=≠的图象过点C 则k 的值为_______.【答案】3-【详解】解:如图 过点C 作CE y ⊥轴于E 在正方形ABCD 中 AB BC = 90ABC ∠=︒90ABO CBE ∴∠+∠=︒ 90OAB ABO ∠+∠=︒ OAB CBE ∴∠=∠点A 的坐标为(4,0)4∴=OA 5AB =3OB ∴= 在ABO 和BCE 中OAB CBE AOB BEC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABO BCE ∴≌4OA BE ∴== 3CE OB ==431OE BE OB ∴=-=-= ∴点C 的坐标为(3,1)-反比例函数(0)ky k x=≠的图象过点C 313k xy ∴==-⨯=-故答案为:3-.三、解答题(本大题共6题 满分52分) 17.(8分)已知反比例函数12y x=-. (1)说出这个函数的比例系数和自变量的取值范围. (2)求当3x =-时函数的值.(3)求当y =x 的值. 【答案】(1)12,0k x =-≠ (2)4(3)【详解】(1)解:∵12y x=- ∵12,0k x =-≠;(2)解:把3x =- 代入12y x =-得:1243y =-=-; ∵当3x =-时函数的值为:4;(3)解:把y = 代入12y x =-得:12x - 解得:43x ;∵当y =x 的值为:18.(9分)已知一次函数y =kx +b 与反比例函数y mx=的图像交于A (﹣3 2)、B (1 n )两点.(1)求一次函数和反比例函数的表达式; (2)求∵AOB 的面积;(3)结合图像直接写出不等式kx +b mx>的解集. 【答案】(1)一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=- (2)8(3)x <﹣3或0<x <1【详解】(1)解:∵反比例函数y mx =的图象经过点A (﹣3 2)∵m =﹣3×2=﹣6∵点B (1 n )在反比例函数图象上 ∵n =﹣6. ∵B (1 ﹣6)把A B 的坐标代入y =kx +b 则326k b k b -+=⎧⎨+=-⎩ 解得k =﹣2 b =﹣4∵一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=-; (2)解:如图 设直线AB 交y 轴于C则C (0 ﹣4)∵S △AOB =S △OCA +S △OCB 12=⨯4×312+⨯4×1=8; (3)解:观察函数图象知 不等式kx +b mx>的解集为x <﹣3或0<x <1. 19.(6分)某气球内充满一定质量的气体 当温度不变时 气球内气体的压强(kPa)p 与气体的体积()3m V 成反比例.当气体的体积30.8m V =时 气球内气体的压强112.5kPa p =.(1)当气体的体积为31m 时 它的压强是多少?(2)当气球内气体的压强大于150kPa 时 气球就会爆炸.问:气球内气体的体积应不小于多少气球才不会爆炸?【答案】(1)当气体的体积为31m 时 它的压强是90kPa (2)当气球内气体的体积应不小于30.6m 时 气球才不会爆炸 【详解】(1)解:设k V p=由题意得:0.8112.5k= ∵90k = ∵90V p=∵当1V =时 90p =∵当气体的体积为31m 时 它的压强是90kPa ; (2)解:当150p =时 900.6150V == ∵900k =>∵V 随p 的增大而增大∵要使气球不会爆炸 则0.6V ≥∵当气球内气体的体积应不小于30.6m 时 气球才不会爆炸.20.(9分)如图 一次函数28y x =-+与函数(0)ky x x=>的图像交于(,6)A m (,2)B n 两点 AC y ⊥轴于C BD x ⊥轴于D .(1)求k 的值;(2)连接OA OB 求AOB 的面积;(3)在x 轴上找一点P 连接AP BP 使ABP 周长最小 求点P 坐标. 【答案】(1)6 (2)8 (3)5,02⎛⎫ ⎪⎝⎭【详解】(1)解:∵一次函数28y x =-+与函数(0)k y x x=>的图像交于(,6)A m (,2)B n 两点 ∵628m =-+ 228n =-+ 解得1m = 3n = ∵点(1,6)A (3,2)B 代入反比例函数得 61k= ∵616k =⨯=.(2)解:如图所示设一次函数图像与x 轴的交点为M 在一次函数28y x =-+中 令0y = 则4x = ∵(4,0)M 且(1,6)A (3,2)B∵114642822AOB AOM BOM S S S =-=⨯⨯-⨯⨯=△△△.(3)解:已知(1,6)A (3,2)B 则点A 关于x 轴的对称点A '的坐标(1,6)- 如图所示 A P AP '= 则ABP 的周长为AP BP AB A P BP AB '++=++设直线BA '的解析式为y kx b =+将点(3,2)B 、(1,6)A '-代入 得326k b k b +=⎧⎨+=-⎩解得410k b =⎧⎨=-⎩ ∵直线BA '的解析式为410=-y x 当0y =时 则4100x -= 解方程得 52x = ∵点P P 的坐标为5,02⎛⎫⎪⎝⎭.21.(10分)已知一次12y x a =-+的图象与反比例函数()20ky k x=≠的图象相交. (1)判断2y 是否经过点(),1k .(2)若1y 的图象过点(),1k 且25a k +=. ∵求2y 的函数表达式.∵当0x >时 比较1y 2y 的大小. 【答案】(1)过 (2)∵21=y x;∵当01x <<时 12y y < 当1x >时 12y y > 当1x =时 12y y = 【详解】(1)∵()20ky k x =≠∵把点(),1k 代入反比例函数 得1kk= ∵2y 经过点(),1k . (2)①∵1y 的图象过点(),1k∵把点(),1k 代入12y x a =-+ 得12k a =-+ 又∵25a k += ∵解得2a = 1k = ∵21=y x∵2y 的函数表达式为:21=y x②如图所示:由函数图象得 当01x <<时 12y y <;当1x >时 12y y >;当1x =时 12y y =.22.(10分)图1 已知双曲线(0)ky k x=>与直线y k x '=交于A 、B 两点 点A 在第一象限 试回答下列问题:(1)若点A 的坐标为(3,1) 则点B 的坐标为 ;(2)如图2 过原点O 作另一条直线l 交双曲线(0)ky k x=>于P Q 两点 点P 在第一象限.∵四边形ABPQ 一定是 ;∵若点A 的坐标为(3,1) 点P 的横坐标为1 求四边形ABPQ 的面积.(3)设点A 、P 的横坐标分别为m 、n 四边形ABPQ 可能是矩形吗?可能是正方形吗?若可能 直接写出m 、n 应满足的条件;若不可能 请说明理由. 【答案】(1)(3,1)-- (2)∵平行四边形;∵16(3)mn k =时 四边形ABPQ 是矩形 不可能是正方形 理由见解析 【详解】(1)A 、B 关于原点对称 (3,1)A ∴点B 的坐标为(3,1)--故答案为:(3,1)--(2)∵A 、B 关于原点对称 P 、Q 关于原点对称 ∴OA OB = OP OQ = ∴四边形ABPQ 是平行四边形故答案为:平行四边形 ∵点A 的坐标为(3,1) ∴313k =⨯=∴反比例函数的解析式为3y x=点P 的横坐标为1 ∴点P 的纵坐标为3∴点P 的坐标为(1,3)由双曲线关于原点对称可知 点Q 的坐标为(1,3)-- 点B 的坐标为(3,1)--如图 过点A 、B 分别作y 轴的平行线 过点P 、Q 分别作x 轴的平行线 分别交于C 、D 、E 、F则四边形CDEF 是矩形 6CD = 6DE = 4DB DP == 2CP CA ==则四边形ABPQ 的面积=矩形CDEF 的面积-ACP △的面积-PDB △的面积-BEQ 的面积-AFQ △的面积36282816=----=(3)当AB PQ ⊥时四边形ABPQ 是正方形 此时点A 、P 在坐标轴上 由于点A P 不可能在坐标轴上且都在第一象限故不可能是正方形 即90POA ∠≠︒ PO AO BO QO ===时 四边形ABPQ 是矩形此时P 、A 关于直线y x =对称 即22k k m n m n ++=化简得mn k =∴mn k =时 四边形ABPQ 是矩形 不可能是正方形。
人教版九年级下《第二十六章反比例函数》单元测试题(2)有答案
第二十六章 反比例函数 单元测试题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.在下列选项中,是反比例函数关系的为( )A.在直角三角形中,30°角所对的直角边与斜边之间的关系B.在等腰三角形中,顶角与底角之间的关系C.圆的面积与它的直径之间的关系D.面积为20的菱形,其中一条对角线与另一条对角线之间的关系 2.如图所示,反比例函数6y x=-在第二象限的图象上有两点A 、B ,它们的横坐标分别为-1、-3,直线AB 与x 轴交于点C ,则△AOC 的面积为( ) A.8B.10C.12D.24第2题图3.如图所示,已知直线y =-x +2分别与x 轴、y 轴交于A ,B 两点,与双曲线y =x交于E ,F 两点,若AB =2EF ,则k 的值是( ) A.-1B.1C.12D.344.当k >0,x <0时,反比例函数x k y =的图象在( )A.第一象限B.第二象限 C.第三象限 D.第四象限 5.已知反比例函数ky x=的图象如图所示,则二次函数2224y kxx k =-+的图象大致为( )6.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A. 0B.0或1C.0或2D.47.如图所示,A 为反比例函数xk y =图象上一点,AB 垂直于x 轴交x 轴于B 点,若S △AOB =3,则k的值为 ( ) A.6 B.3C.23 D.不能确定8.已知点、、都在反比例函数4y x=的图象上,则的大小关系是( ) A.B. C.D.9.正比例函数与反比例函数1x的图象相交于A 、C 两点,AB ⊥x 轴于点B ,CD ⊥x 轴于点D (如图所示),则四边形ABCD 的面积为( ) A.1 B.32C.2D.5210.如图所示,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( ) A.2≤k ≤9 B.2≤k ≤8 C.2≤k ≤5D.5≤k ≤8二、填空题(每小题3分,共24分)11.已知反比例函数xky =的图象经过点A (–2,3),则当3-=x 时,y =_____. 12.点P 在反比例函数(k ≠0)的图象上,点Q (2,4)与点P 关于y 轴对称,则反比例函数的解析式为 .13.已知反比例函数xm y 33-=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大.14.若反比例函数xk y 3-=的图象位于第一、三象限内,正比例函数x k y )92(-=的图象过第二、四象限,则k 的整数值是________.15.现有一批救灾物资要从A 市运往B 市,如果两市的距离为500千米,车速为每小时千米,从A 市到B 市所需时间为小时,那么与之间的函数关系式为_________,是的________函数.16.如图所示,点A 、B 在反比例函数(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为 . 17.已知反比例函数4y x=,则当函数值时,自变量x 的取值范围是___________.18.在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函数xk y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”).三、解答题(共46分)19.(6分)已知一次函数kx y =与反比例函数xy 3=的图象都经过点A (m ,1).求: (1)正比例函数的解析式;(2)正比例函数与反比例函数的图象的另一个交点的坐标. 20.(6分)如图所示,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作轴的垂线,垂足为M ,已知△的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在轴上求一点P ,使PA PB +最小.21.(6分)如图所示是某一蓄水池的排水速度h )与排完水池中的水所用的时间t (h )之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量; (2)写出此函数的解析式;(3)若要6 h 排完水池中的水,那么每小时的排水量应该是多少? (4)如果每小时排水量是,那么水池中的水要用多少小时排完?22.(7分)若反比例函数xky =与一次函数42-=x y 的图象都经过点A (a ,2). (1)求反比例函数xky =的解析式; (2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围. 23.(7分)已知反比例函数y=(k 为常数,k ≠1).(1)其图象与正比例函数y=x 的图象的一个交点为P ,若点P 的纵坐标是2,求k 的值; (2)若在其图象的每一支上,y 随x 的增大而减小,求k 的取值范围;(3)若其图象的一支位于第二象限,在这一支上任取两点 A (x 1,y 1)、B (x 2,y 2),当y 1>y 2时,试比较x 1与x 2的大小.24.(7分)如图所示,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与反比例函数2k y x =(x)的图象分别交于点C 、 D ,且C 点的坐标为(1-,2).⑴分别求出直线AB 及反比例函数的解析式; ⑵求出点D 的坐标;⑶利用图象直接写出:当x 在什么范围内取值时,1y >2y .25.(7分)制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图所示).已知该材料在操作加热前的温度为15 ℃,加热5 min后温度达到60 ℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?第二十六章 反比例函数单元测试题参考答案1.D2.C 解析: ∵ 点A 、B 都在反比例函数的图象上,∴ A (-1,6),B (-3,2).设直线AB 的解析式为0)(y kx b k =+≠, 则6,23,k b k b =-+⎧⎨=-+⎩解得2,8,k b =⎧⎨=⎩∴ 直线AB 的解析式为28y x =+,∴ C (-4,0).在△AOC 中,OC =4,OC 边上的高(即点A 到x 轴的距离)为6,∴ △AOC 的面积14612.2=⨯⨯= 点拨:在平面直角坐标系中求三角形的面积时,一般要将落在坐标轴上的一边作为底.3.D 解析:如图所示,分别过点E ,F 作EG ⊥OA ,FH ⊥OA ,再过点E 作EM ⊥FH 并延长,交y 轴于点N . 过点F 作FR ⊥y 轴于点R .∵ 直线y =-x +2分别与x 轴,y 轴的交点为A (2,0),B (0,2), ∴ △AOB 为等腰直角三角形,AB. ∵ AB =2EF ,∴ EF.∵ △EMF 为等腰直角三角形.∴ EM =FM =1. ∴ △AEG ≌△BFR . ∵ S 矩形EGON =S 矩形FHOR =k ,S △EMF =12×1×1=12,S △AOB =12×2×2=2, S 矩形MHON =S △AEG +S △BFR ,∴ S 矩形EGON +S 矩形FHOR =S △AOB -S △EMF ,即2k=2-12=32,解得k=34. 4.C 解析:当时,反比例函数的图象在第一、三象限.当时,函数图象在第三象限,所以选C.5.D 解析:由反比例函数的图象可知,当1x =-时,1y >,即1k <-,所以在二次函数2224y kx x k =-+中,20k <,则抛物线开口向下,对称轴为414x k k -=-=,则110k-<<,故选D.6.A 解析:因为反比例函数的图象位于第二、四象限,所以,即.又,所以或(舍去).所以,故选A.7.A8.D 解析:因为反比例函数4y x=的图象在第一、三象限, 且在每个象限内y 随x 的增大而减小,所以. 又因为当时,,当时,,所以,,故选D.9.C 解析:联立方程组 得A (1,1),C ().所以,所以.10. A 解析:当反比例函数图象经过点C 时,k =2;当反比例函数图象与直线AB 只有一个交点时,令-x +6=,得x 2-6x +k =0,此时方程有两个相等的实数根,故Δ=36-4k =0,所以k =9,所以k 的取值范围是2≤k ≤9,故选A.11.2 解析:把点A (–2,3)代入x k y =中,得k = –6,即x y 6-=.把x = – 3代入xy 6-=中,得y =2. 12. 8y x=-解析:设点P (x,y ),∵ 点P 与点Q (2,4)关于y 轴对称,则P (-2,4), ∴ k=xy=-2×4=-8.∴8y x=-. 13.>1 <114.4 解析:由反比例函数xk y 3-=的图象位于第一、三象限内,得,即.又正比例函数x k y )92(-=的图象过第二、四象限,所以,所以.所以的整数值是4.15.反比例16. 4 解析:设点A (x ,),∵ OM =MN =NC ,∴ AM =,OC =3x .由S △AOC =OC ·AM =·3x ·=6,解得k =4. 17.或18.>19.解:(1)因为反比例函数xy 3=的图象经过点A (m ,1),所以将A (m ,1)代入xy 3=中,得m =3.故点A 坐标为(3,1). 将A (3,1)代入kx y =,得31=k ,所以正比例函数的解析式为3x y =. (2)由方程组⎪⎩⎪⎨⎧==,3,3xy x y 解得所以正比例函数与反比例函数的图象的另一个交点的坐标为(-3,-1).20.解:(1) 设A 点的坐标为(a ,b ),则kb a =.∴ ab k =. ∵ 112ab =,∴ 112k =.∴ 2k =.∴ 反比例函数的解析式为2y x=.(2) 由⎪⎪⎩⎪⎪⎨⎧==x y xy 212, 得或 ∴ A 为.设A 点关于x 轴的对称点为C ,则C 点的坐标为.如要在轴上求一点P ,使PA+PB 最小,即最小,则P 点应为BC 和x 轴的交点,如图所示. 令直线BC 的解析式为y mx n =+.∵ B 为(,2),∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴ BC 的解析式为35y x =-+.当0y =时,53x =.∴ P 点坐标为.21.分析:(1)观察图象易知蓄水池的蓄水量; (2)与之间是反比例函数关系,所以可以设,依据图象上点(12,4)的坐标可以求得与之间的函数关系式. (3)求当h 时的值.(4)求当h 时,t 的值.解:(1)蓄水池的蓄水量为12×4=48().(2)函数的解析式为.(3).(4)依题意有,解得(h ).所以如果每小时排水量是5 ,那么水池中的水要用9.6小时排完.22.解:(1)因为的图象过点A (),所以.因为反比例函数xky =的图象过点A (3,2),所以,所以x y 6=.(2) 求反比例函数x y 6=与一次函数42-=x y 的图象的交点坐标,得到方程:xx 642=-,解得.所以另外一个交点是(-1, -6).画出图象,可知当或时,426->x x. 23.分析:(1)显然P 的坐标为(2,2),将P (2,2)代入y =即可.(2)由k -1>0得k >1.(3)利用反比例函数的增减性求解. 解:(1)由题意,设点P 的坐标为(m ,2), ∵ 点P 在正比例函数y =x 的图象上, ∴ 2=m ,即m =2.∴ 点P 的坐标为(2,2). ∵ 点P 在反比例函数 y =的图象上,∴ 2=,解得k =5.(2)∵ 在反比例函数y =图象的每一支上,y 随x 的增大而减小,∴ k -1>0,解得k >1. (3)∵ 反比例函数y =图象的一支位于第二象限,∴ 在该函数图象的每一支上,y 随x 的增大而增大.∵ 点A (x 1,y 1)与点B (x 2,y 2)在该函数的第二象限的图象上,且y 1>y 2, ∴ x 1>x 2.点拨:反比例函数的图象和性质是解反比例函数题目的基础. 24.解:(1)将C 点坐标(1-,2)代入1y x m =+,得,所以13y x =+;将C 点坐标(1-,2)代入2k y x=,得.所以22y x=-. (2)由方程组解得所以D 点坐标为(-2,1).(3)当1y >2y 时,一次函数图象在反比例函数图象上方, 此时x 的取值范围是21x -<<-. 25.解:(1)当时,为一次函数,设一次函数解析式为,由于一次函数图象过点(0,15),(5,60), 所以解得所以.当时,为反比例函数,设函数关系式为,由于图象过点(5,60),所以.综上可知y 与x 的函数关系式为⎪⎩⎪⎨⎧≥<≤+=).5(300),50(159x xx x y(2)当y =15时,,所以从开始加热到停止操作,共经历了20 min .。
人教版九年级数学下册《第二十六章 反比例函数》单元测试题(有答案)
人教版九年级数学下册《第二十六章 反比例函数》单元测试题(有答案)一、选择题(本大题共10小题,每小题3分,共30分) 1.下列各点中,在函数y =-6x 图象上的是( )A .(-2,-4)B .(2,3)C .(-1,6) D.⎝⎛⎭⎫-12,3 2.已知点P ⎝⎛⎭⎫-12,2在反比例函数y =kx (k ≠0)的图象上,则k 的值是( ) A .-12B .2C .1D .-13.若双曲线y =kx 的图象经过第二、四象限,则k 的取值范围是( )A .k >0B .k <0C .k ≠0D .不存在4.已知三角形的面积一定,则它的底边a 上的高h 与底边a 之间的函数关系的图象大致是( )A B C D5.已知反比例函数y =kx (k ≠0)的图象经过点(2,5),若点(1,n )在反比例函数的图象上,则n 等于( )A .10B .5C .2 D.1106.关于反比例函数y =4x 的图象,下列说法正确的是( )A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称7.函数y =2x 与函数y =-1x在同一坐标系中的大致图象是( )8.在同一直角坐标系下,直线y =x +1与双曲线y =1x 的交点的个数为( )A .0个B .1个C .2个D .不能确定9.已知反比例函数y =ax (a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减小,则一次函数y =-ax +a 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限10.如图26-1,直线l 和双曲线y =kx (k >0)交于A ,B 两点,P 是线段AB 上的点(不与A ,B 重合),过点A ,B ,P 分别向x 轴作垂线,垂足分别是C ,D ,E ,连接OA ,OB ,OP ,设△AOC 面积是S 1,△BOD 面积是S 2,△POE 面积是S 3,则( )A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 1=S 2>S 3D .S 1=S 2<S 3图26-1 图26-2二、填空题(本大题共6小题,每小题4分,共24分)11.如图26-2所示的曲线是一个反比例函数图象的一支,点A 在此曲线上,则该反比例函数的解析式为______________.12.在反比例函数y =k -2013x 图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是______________.13.图26-3是一个反比例函数图象的一部分,点A (1,10),B (10,1)是它的端点.此函数的解析式为____________,自变量x 的取值范围为____________.图26-314.反比例函数y =(m -2)x 2m+1的函数值为13时,自变量x 的值是____________.15.l 1是反比例函数y =kx 在第一象限内的图象,且过点A (2,1),l 2与l 1关于x 轴对称,那么图象l 2的函数解析式为____________(x >0).16.反比例函数y =kx 的图象与一次函数y =2x +1的图象的一个交点是(1,k ),则反比例函数的解析式是__________.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.对于反比例函数y =7x ,请写出至少三条与其相关的正确结论.例如:反比例函数经过点(1,7).18.在某一电路中,保持电压不变,电流I (单位:A)与电阻R (单位:Ω)成反比例,当电阻R =5 Ω时,电流I =2 A.(1)求I 与R 之间的函数关系式; (2)当电流为20 A 时,电阻应是多少?19.反比例函数y =kx的图象经过点A (2,3).(1)求这个函数的解析式;(2)请判断点B (1,6)是否在这个反比例函数的图象上,并说明理由.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图26-4,一次函数y 1=kx +b 的图象与反比例函数y 2=mx 的图象相交于点A (2,3)和点B ,与x 轴相交于点C (8,0),求这两个函数的解析式.图26-421.某空调厂的装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调.(1)从组装空调开始,每天组装的台数m (单位:台/天)与生产的时间t (单位:天)之间有怎样的函数关系?(2)由于气温提前升高,厂家决定将这批空调提前十天上市,那么装配车间每天至少要组装多少台空调?22.点P (1,a )在反比例函数y =kx 的图象上,它关于y 轴的对称点在一次函数y =2x +4的图象上,求此反比例函数的解析式.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.已知图26-5中的曲线为函数y =m -5x (m 为常数)图象的一支.(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数y =2x 的图象在第一象限的交点为A (2,n ),求点A 的坐标及反比例函数的解析式.图26-524.如图26-6,在平面直角坐标系中,O 为原点,一次函数与反比例函数的图象相交于A (2,1),B (-1,-2)两点,与x 轴交于点C .(1)分别求反比例函数和一次函数的解析式(关系式); (2)连接OA ,求△AOC 的面积.图26-625.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x (单位:元)与日销售量y (单位:个)之间有如下关系:(1)(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式.若物价局规定此贺卡的单价最高不能超过10元,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?第二十六章单元测试题参考答案1.C 2.D 3.B 4.D 5.A 6.D 7.B 8.C 9.C10.D 解析:点A ,B 在反比例函数的图象上,所以S 1=S 2,设PE 与双曲线相交于点F ,则△FOE 的面积=S 1=S 2,显然S 3>S △FOE ,所以S 1=S 2<S 3.11.y =3x 12.k >2013 13.y =10x1≤x ≤1014.-9 解析:由2m +1=-1,可得m =-1,即y =-3x ,当y =13时,x =-9.15.y =-2x 解析:点A 关于x 轴的对称点为(2,-1),所以图象l 2的函数解析式为y=-2x.16.y =3x17.解:(1)函数图象位于第一、三象限;(2)在每个象限内,y 随x 的增大而减小;(3)函数自变量的取值范围是x ≠0;(4)函数关于原点对称等.18.解:(1)设I =kR ,把R =5,I =2代入,可得k =10,即I 与R 之间的函数关系式为I =10R .(2)把I =20代入I =10R ,可得R =0.5.即电阻为0.5 Ω.19.解:(1)把点A 的坐标代入函数y =kx 中,可得3=k2.解得k =6,即这个函数的解析式为y =6x .(2)∵点B 的坐标满足解析式y =6x ,∴B (1,6)在这个反比例函数的图象上. 20.解:把 A (2,3)代入y 2=mx ,得m =6.把A (2,3),C (8,0)代入y 1=kx +b , 得⎩⎪⎨⎪⎧k =-12,b =4.∴这两个函数的解析式为y 1=-12x +4,y 2=6x.21.解:(1)由题意可得,mt =2×30×150, 即m =9000t.(2)2×30-10=50,把t =50代入m =9000t ,可得m =900050=180.即装配车间每天至少要组装180台空调.22.解:点P (1,a )关于y 轴的对称点是(-1,a ). ∵点(-1,a )在一次函数y =2x +4的图象上, ∴a =2×(-1)+4=2.∴k =2. ∴反比例函数的解析式为y =2x.23.解:(1)∵这个反比例函数的图象分布在第一、三象限, ∴m -5>0,解得m >5.(2)∵点A (2,n )在正比例函数y =2x 的图象上, ∴n =2×2=4,则A 的点坐标为(2,4).又∵点A 在反比例函数y =m -5x的图象上, ∴4=m -52,即m -5=8.∴反比例函数的解析式为y =8x.24.解:(1)设一次函数解析式为y 1=kx +b (k ≠0),反比例函数解析式为y 2=ax (a ≠0),将A (2,1),B (-1,-2)代入y 1,得⎩⎪⎨⎪⎧ 1=2k +b ,-2=-k +b .∴⎩⎪⎨⎪⎧k =1,b =-1.∴y 1=x -1. 将A (2,1)代入y 2,得a =2,∴y 2=2x .(2)∵y 1=x -1,当y 1=0时,x =1.∴C (1,0). ∴OC =1.∴S △AOC =12×1×1=12.25.解:(1)y 与x 之间的函数关系式为y =60x ,图略.(2)W =(x -2)·y =(x -2)·60x =60-120x ,当x =10时,W 有最大值.人教版九年级下册数学《第26章反比例函数》单元测试卷(解析版)一.选择题(共10小题)1.下列函数是反比例函数的是()A.B.y=x2+x C.D.y=4x+82.下列函数中,属于反比例函数的有()A.y=B.y=C.y=8﹣2x D.y=x2﹣13.已知函数y=kx中y随x的增大而减小,那么它和函数y=在同一直角坐标系内的大致图象可能是()A.B.C.D.4.在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.5.如图,A、B是双曲线y=上关于原点对称的任意两点,AC∥y轴,BD∥y轴,则四边形ACBD的面积S满足()A.S=1B.1<S<2C.S=2D.S>26.如图,以原点为圆心的圆与反比例函数y=的图象交于A、B、C、D四点,已知点A 的横坐标为1,则点C的横坐标()A.﹣4B.﹣3C.﹣2D.﹣17.反比例函数y=﹣的图象在()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限8.已知反比例函数(k≠0),当x<0时,y随x的增大而增大,那么一次函数y=kx ﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限9.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A.:1B.2:C.2:1D.29:1410.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()A.①②③B.②③④C.①③④D.①②④二.填空题(共5小题)11.已知:是反比例函数,则m=.12.一次函数y=﹣x+1与反比例函数,x与y的对应值如下表:不等式﹣x+1>﹣的解为.13.如图,在平面直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(2a,a)是反比例函数y=的图象与正方形的一个交点,则图中阴影部分的面积是.14.写出一个图象位于第一、三象限的反比例函数的表达式:.15.如图,矩形ABOC的面积为3,反比例函数y=的图象过点A,则k=.三.解答题(共4小题)16.已知函数解析式y=1+.(1)在下表的两个空格中分别填入适当的数:(2)观察上表可知,当x的值越来越大时,对应的y值越来越接近于一个常数,这个常数是什么?17.如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?18.有这样一个问题:探究函数y=+x的图象与性质.小东根据学习函数的经验,对函数y=+x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+x的自变量x的取值范围是;(2)下表是y与x的几组对应值.求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可):.19.如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点A、与y轴交于点B,连接AB.(1)求证:P为线段AB的中点;(2)求△AOB的面积.2019年人教版九年级下册数学《第26章反比例函数》单元测试卷参考答案与试题解析一.选择题(共10小题)1.下列函数是反比例函数的是()A.B.y=x2+x C.D.y=4x+8【分析】根据反比例函数的定义进行判断.反比例函数的一般形式是(k≠0).【解答】解:A、该函数符合反比例函数的定义,故本选项正确.B、该函数是二次函数,故本选项错误;C、该函数是正比例函数,故本选项错误;D、该函数是一次函数,故本选项错误;故选:A.【点评】本题考查了反比例函数的定义.判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为(k为常数,k≠0)或y=kx﹣1(k为常数,k≠0).2.下列函数中,属于反比例函数的有()A.y=B.y=C.y=8﹣2x D.y=x2﹣1【分析】此题应根据反比例函数的定义,解析式符合y=(k≠0)的形式为反比例函数.【解答】解:选项A是正比例函数,错误;选项B属于反比例函数,正确;选项C是一次函数,错误;选项D是二次函数,错误.故选:B.【点评】本题考查了反比例函数的定义,注意在解析式的一般式(k≠0)中,特别注意不要忽略k≠0这个条件.3.已知函数y=kx中y随x的增大而减小,那么它和函数y=在同一直角坐标系内的大致图象可能是()A.B.C.D.【分析】先根据正比例函数的性质判断出k的符号,再根据反比例函数的性质利用排除法求解即可.【解答】解:∵函数y=kx中y随x的增大而减小,∴k<0,∴函数y=kx的图象经过二、四象限,故可排除A、B;∵k<0,∴函数y=的图象在二、四象限,故C错误,D正确.故选:D.【点评】本题考查的是正比例函数及反比例函数的性质,熟知以上知识是解答此题的关键.4.在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.【分析】根据一次函数及反比例函数的图象与系数的关系作答.【解答】解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,故A选项正确;B 、因为y =kx +3的图象交y 轴于正半轴,故B 选项错误;C 、因为y =kx +3的图象交y 轴于正半轴,故C 选项错误;D 、由函数y =的图象可知k >0与y =kx +3的图象k <0矛盾,故D 选项错误. 故选:A .【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.5.如图,A 、B 是双曲线y =上关于原点对称的任意两点,AC ∥y 轴,BD ∥y 轴,则四边形ACBD 的面积S 满足( )A .S =1B .1<S <2C .S =2D .S >2【分析】根据过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S =|k |可知,S △AOC =S △BOD =|k |,再根据反比例函数的对称性可知,O 为DC 中点,则S △AOD =S △AOC =|k |,S △BOC =S △BOD =|k |,进而求出四边形ADBC 的面积.【解答】解:∵A ,B 是函数y =的图象上关于原点O 对称的任意两点,且AC 平行于y 轴,BD 平行于y 轴,∴S △AOC =S △BOD =,假设A 点坐标为(x ,y ),则B 点坐标为(﹣x ,﹣y ), 则OC =OD =x ,∴S △AOD =S △AOC =,S △BOC =S △BOD =,∴四边形ABCD 面积=S △AOD +S △AOC +S △BOC +S △BOD =×4=2. 故选:C .【点评】此题主要考查了反比例函数中比例系数k 的几何意义,难易程度适中.过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S=|k|.6.如图,以原点为圆心的圆与反比例函数y=的图象交于A、B、C、D四点,已知点A 的横坐标为1,则点C的横坐标()A.﹣4B.﹣3C.﹣2D.﹣1【分析】因为圆既是轴对称图形又是中心对称图形,故关于原点对称;而双曲线也既是轴对称图形又是中心对称图形,故关于原点对称,且关于y=x和y=﹣x对称.【解答】解:把x=1代入y=,得y=3,故A点坐标为(1,3);∵A、B关于y=x对称,则B点坐标为(3,1);又∵B和C关于原点对称,∴C点坐标为(﹣3,﹣1),∴点C的横坐标为﹣3.故选:B.【点评】本题主要考查了反比例函数图象的中心对称性和轴对称性,要求同学们要熟练掌握,灵活运用.7.反比例函数y=﹣的图象在()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限【分析】根据反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:∵k=﹣1,∴图象在第二、四象限,故选:C.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数图象的性质.8.已知反比例函数(k ≠0),当x <0时,y 随x 的增大而增大,那么一次函数y =kx﹣k 的图象经过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【分析】由反比例函数的性质可判断k 的符号,再根据一次函数的性质即可判断一次函数的图象经过的象限.【解答】解:因为反比例函数(k ≠0),当x <0时,y 随x 的增大而增大, 根据反比例函数的性质,k <0,再根据一次函数的性质,一次函数y =kx ﹣k 的图象经过第一、二、四象限. 故选:B .【点评】此题考查了反比例函数y =(k ≠0)的性质:①当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②当k >0时,在同一个象限内,y 随x 的增大而减小;当k <0时,在同一个象限,y 随x 的增大而增大.9.如图,两个反比例函数y 1=(其中k 1>0)和y 2=在第一象限内的图象依次是C 1和C 2,点P 在C 1上.矩形PCOD 交C 2于A 、B 两点,OA 的延长线交C 1于点E ,EF ⊥x 轴于F 点,且图中四边形BOAP 的面积为6,则EF :AC 为( )A .:1B .2:C .2:1D .29:14【分析】首先根据反比例函数y 2=的解析式可得到S △ODB =S △OAC =×3=,再由阴影部分面积为6可得到S矩形PDOC=9,从而得到图象C 1的函数关系式为y =,再算出△EOF 的面积,可以得到△AOC 与△EOF 的面积比,然后证明△EOF ∽△AOC ,根据对应边之比等于面积比的平方可得到EF :AC 的值.【解答】解:∵A 、B 反比例函数y 2=的图象上,∴S △ODB =S △OAC =×3=,∵P 在反比例函数y 1=的图象上,∴S 矩形PDOC =k 1=6++=9,∴图象C 1的函数关系式为y =, ∵E 点在图象C 1上,∴S △EOF =×9=,∴==3,∵AC ⊥x 轴,EF ⊥x 轴, ∴AC ∥EF , ∴△EOF ∽△AOC ,∴=,故选:A .【点评】此题主要考查了反比例函数系数k 的几何意义,以及相似三角形的性质,关键是掌握在反比例函数y =图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |;在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k |,且保持不变.10.函数y =和y =在第一象限内的图象如图,点P 是y =的图象上一动点,PC ⊥x轴于点C ,交y =的图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA =AP .其中所有正确结论的序号是( )A .①②③B .②③④C .①③④D .①②④【分析】由于A 、B 是反比函数y =上的点,可得出S △OBD =S △OAC =,故①正确;当P 的横纵坐标相等时PA =PB ,故②错误;根据反比例函数系数k 的几何意义可求出四边形PAOB 的面积为定值,故③正确;连接PO ,根据底面相同的三角形面积的比等于高的比即可得出结论.【解答】解:∵A 、B 是反比函数y =上的点,∴S △OBD =S △OAC =,故①正确;当P 的横纵坐标相等时PA =PB ,故②错误;∵P 是y =的图象上一动点, ∴S 矩形PDOC =4,∴S 四边形PAOB =S 矩形PDOC ﹣S △ODB ﹣﹣S △OAC =4﹣﹣=3,故③正确; 连接OP ,===4,∴AC =PC ,PA =PC ,∴=3,∴AC =AP ;故④正确; 综上所述,正确的结论有①③④. 故选:C .【点评】本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.二.填空题(共5小题)11.已知:是反比例函数,则m=﹣2.【分析】根据反比例函数的定义.即y=(k≠0),只需令m2﹣5=﹣1、m﹣2≠0即可.【解答】解:因为是反比例函数,所以x的指数m2﹣5=﹣1,即m2=4,解得:m=2或﹣2;又m﹣2≠0,所以m≠2,即m=﹣2.故答案为:﹣2.【点评】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.12.一次函数y=﹣x+1与反比例函数,x与y的对应值如下表:不等式﹣x+1>﹣的解为x<﹣1或0<x<2.【分析】先判断出交点坐标,进而判断在交点的哪侧相同横坐标时一次函数的值都大于反比例函数的值即可.【解答】解:易得两个交点为(﹣1,2),(2,﹣1),经过观察可得在交点(﹣1,2)的左边或在交点(2,﹣1)的左边,y轴的右侧,相同横坐标时一次函数的值都大于反比例函数的值,所以不等式﹣x+1>﹣的解为x<﹣1或0<x<2.【点评】给出相应的函数值,求自变量的取值范围应该从交点入手思考.13.如图,在平面直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(2a,a)是反比例函数y=的图象与正方形的一个交点,则图中阴影部分的面积是4.【分析】先利用反比例函数解析式y=确定P点坐标为(2,1),由于正方形的中心在原点O,则正方形的面积为16,然后根据反比例函数图象关于原点中心对称得到阴影部分的面积为正方形面积的.【解答】解:把P(2a,a)代入y=得2a•a=2,解得a=1或﹣1,∵点P在第一象限,∴a=1,∴P点坐标为(2,1),∴正方形的面积=4×4=16,=4.∴图中阴影部分的面积=S正方形故答案为4.【点评】本题考查了反比例函数图象的对称性:反比例函数图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=﹣x;②一、三象限的角平分线y=x;对称中心是:坐标原点.14.写出一个图象位于第一、三象限的反比例函数的表达式:.【分析】首先设反比例函数解析式为y=,再根据图象位于第一、三象限,可得k>0,再写一个k大于0的反比例函数解析式即可.【解答】解;设反比例函数解析式为y=,∵图象位于第一、三象限,∴k>0,∴可写解析式为y=,故答案为:y=.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.15.如图,矩形ABOC的面积为3,反比例函数y=的图象过点A,则k=﹣3.【分析】在反比例函数y=的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.【解答】解:∵矩形ABOC的面积为3,∴|k|=3.∴k=±3.又∵点A在第二象限,∴k<0,∴k=﹣3.故答案为:﹣3.【点评】本题主要考查的是反比例函数系数k的几何意义,掌握反比例函数系数k的几何意义是解题的关键.三.解答题(共4小题)16.已知函数解析式y=1+.(1)在下表的两个空格中分别填入适当的数:(2)观察上表可知,当x的值越来越大时,对应的y值越来越接近于一个常数,这个常数是什么?【分析】(1)用代入法,分别把x=5、y=1.2代入函数解析式中即可;(2)由表格可知,当x趋近于正无穷大时,y越来越接近1.【解答】解:(1)x=5时,y=3;y=1.2时,x=50;填入表格如下:(2)由上表可知,当x的值越来越大时,对应的y值越来越接近于常数1.【点评】此题主要考查已知解析式时,求对应的自变量和函数的值.17.如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?【分析】(1)根据反比例函数图象的对称性可知,该函数图象位于第二、四象限,则m ﹣5<0,据此可以求得m的取值范围;(2)根据函数图象中“y值随x的增大而增大”进行判断.【解答】解:(1)∵反比例函数图象关于原点对称,图中反比例函数图象位于第四象限,∴函数图象位于第二、四象限,则m﹣5<0,解得,m<5,即m的取值范围是m<5;(2)由(1)知,函数图象位于第二、四象限.所以在每一个象限内,函数值y随自变量x增大而增大.①当y1<y2<0时,x1<x2.②当0<y1<y2,x1<x2.③当y1<0<y2时,x2<x1.【点评】本题考查了反比例函数的图象,反比例函数图象上点的坐标特征.注意:解答(2)题时,一定要分类讨论,以防错解.18.有这样一个问题:探究函数y=+x的图象与性质.小东根据学习函数的经验,对函数y=+x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+x的自变量x的取值范围是x≠1;(2)下表是y与x的几组对应值.求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可):该函数没有最大值,也没有最小值.【分析】(1)由图表可知x≠0;(2)根据图表可知当x=4时的函数值为m,把x=4代入解析式即可求得;(3)根据坐标系中的点,用平滑的直线连接即可;(4)观察图象即可得出该函数的其他性质.【解答】解:(1)x≠1,故答案为x≠1;(2)令x=4,∴y=+4=;∴m=;(3)如图(4)该函数的其它性质:该函数没有最大值,也没有最小值;故答案为该函数没有最大值,也没有最小值.【点评】本题考查了反比例函数的图象和性质,根据图表画出函数的图象是解题的关键.19.如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点A、与y轴交于点B,连接AB.(1)求证:P为线段AB的中点;(2)求△AOB的面积.【分析】(1)利用圆周角定理的推论得出AB是⊙P的直径即可;(2)首先假设点P坐标为(m,n)(m>0,n>0),得出OA=2OM=2m,OB=2ON =2n,进而利用三角形面积公式求出即可.【解答】(1)证明:∵点A、O、B在⊙P上,且∠AOB=90°,∴AB为⊙P直径,即P为AB中点;(2)解:∵P为(x>0)上的点,设点P的坐标为(m,n),则mn=12,过点P作PM⊥x轴于M,PN⊥y轴于N,∴M的坐标为(m,0),N的坐标为(0,n),且OM=m,ON=n,∵点A、O、B在⊙P上,∴M为OA中点,OA=2 m;N为OB中点,OB=2 n,∴S=OA•O B=2mn=24.△AOB【点评】此题主要考查了反比例函数综合以及三角形面积求法和圆周角定理推论等知识,熟练利用反比例函数的性质得出OA,OB的长是解题关键.人教版九下数学《第26章反比例函数》单元测试卷(解析版)一.选择题(共10小题)1.下列函数中,是反比例函数的是()A.y=x﹣1B.C.D.2.在同一坐标系中,函数y=和y=kx+1的图象大致是()A.B.C.D.3.如图,以原点为圆心的圆与反比例函数的图象交于A、B、C、D四点,已知点A的横坐标为1,则点C的横坐标()A.﹣3B.﹣2C.﹣1D.﹣44.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,3)B.若x>1,则﹣3<y<0C.图象在第二、四象限内D.y随x的增大而增大5.如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1B.2C.3D.46.已知点M(﹣2,3)在双曲线y=上,则下列各点一定在该双曲线上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(2,3)D.(3,2)7.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y=B.y=﹣C.y=D.y=﹣8.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20B.8≤k≤20C.5≤k≤8D.9≤k≤209.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=10.当温度不变时,气球内气体的气压P(单位:kPa)是气体体积V(单位:m3)的函数,下表记录了一组实验数据:P与V的函数关系式可能是()A.P=96V B.P=﹣16V+112C.P=16V2﹣96V+176D.P=二.填空题(共5小题)11.若函数是反比例函数,则m=.12.函数y=,当y≥﹣2时,x的取值范围是(可结合图象求解).13.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为.14.若反比例函数的图象经过第一、三象限,则k的取值范围是.15.如图,函数y=﹣x与函数y=﹣的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D.则四边形ACBD的面积为.三.解答题(共6小题)16.已知函数解析式y=1+.(1)在下表的两个空格中分别填入适当的数:(2)观察上表可知,当x的值越来越大时,对应的y值越来越接近于一个常数,这个常数是什么?17.如图,A、B两点在函数y=(x>0)的图象上.(1)求m的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.18.已知实数a,b满足a﹣b=1,a2﹣ab+2>0,当1≤x≤2时,函数y=(a≠0)的最大值与最小值之差是1,求a的值.19.如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A 作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.20.在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.21.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十六章 反比例函数 单元测试题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.在下列选项中,是反比例函数关系的为( )A.在直角三角形中,30°角所对的直角边与斜边之间的关系B.在等腰三角形中,顶角与底角之间的关系C.圆的面积与它的直径之间的关系D.面积为20的菱形,其中一条对角线与另一条对角线之间的关系 2.如图所示,反比例函数6y x=-在第二象限的图象上有两点A 、B ,它们的横坐标分别为-1、-3,直线AB 与x 轴交于点C ,则△AOC 的面积为( ) A.8B.10C.12D.24第2题图3.如图所示,已知直线y =-x +2分别与x 轴、y 轴交于A ,B 两点,与双曲线y =x交于E ,F 两点,若AB =2EF ,则k 的值是( ) A.-1B.1C.12D.344.当k >0,x <0时,反比例函数x k y =的图象在( )A.第一象限B.第二象限C.第三象限D.第四象限 5.已知反比例函数ky x=的图象如图所示,则二次函数2224y kx x k =-+的图象大致为( )第3题图第5题图6.若反比例函数1232)12(---=k k xk y 的图象位于第二、四象限,则k 的值是( )A. 0B.0或1C.0或2D.47.如图所示,A 为反比例函数xk y =图象上一点,AB 垂直于x 轴交x 轴于B 点,若S △AOB =3,则k 的值为( ) A.6 B.3C.23 D.不能确定8.已知点、、都在反比例函数4y x=的图象上,则的大小关系是( ) A.B. C.D.9.正比例函数与反比例函数1x的图象相交于A 、C 两点,AB ⊥x 轴于点B ,CD ⊥x 轴于点D (如图所示),则四边形ABCD 的面积为( ) A.1 B.32C.2D.5210.如图所示,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( ) A.2≤k ≤9 B.2≤k ≤8 C.2≤k ≤5D.5≤k ≤8二、填空题(每小题3分,共24分)11.已知反比例函数xky =的图象经过点A (–2,3),则当3-=x 时,y =_____. 12.点P 在反比例函数(k ≠0)的图象上,点Q (2,4)与点P 关于y 轴对称,则反比例函数的解析式为 .13.已知反比例函数xm y 33-=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大.14.若反比例函数xk y 3-=的图象位于第一、三象限内,正比例函数x k y )92(-=的图象过第二、四象限,则k 的整数值是________.15.现有一批救灾物资要从A 市运往B 市,如果两市的距离为500千米,车速为每小时千米,从A 市到B 市所需时间为小时,那么与之间的函数关系式为_________,是的________函数.16.如图所示,点A 、B 在反比例函数(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为 . 17.已知反比例函数4y x=,则当函数值时,自变量x 的取值范围是___________.18.在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函数xk y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”).三、解答题(共46分)19.(6分)已知一次函数kx y =与反比例函数xy 3=的图象都经过点A (m ,1).求: (1)正比例函数的解析式;(2)正比例函数与反比例函数的图象的另一个交点的坐标. 20.(6分)如图所示,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作轴的垂线,垂足为M ,已知△的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在轴上求一点P ,使PA PB +最小.21.(6分)如图所示是某一蓄水池的排水速度h )与排完水池中的水所用的时间t (h )之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量; (2)写出此函数的解析式;(3)若要6 h 排完水池中的水,那么每小时的排水量应该是多少? (4)如果每小时排水量是,那么水池中的水要用多少小时排完?22.(7分)若反比例函数xky =与一次函数42-=x y 的图象都经过点A (a ,2). (1)求反比例函数xky =的解析式; (2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围. 23.(7分)已知反比例函数y=(k 为常数,k ≠1).(1)其图象与正比例函数y=x 的图象的一个交点为P ,若点P 的纵坐标是2,求k 的值; (2)若在其图象的每一支上,y 随x 的增大而减小,求k 的取值范围;(3)若其图象的一支位于第二象限,在这一支上任取两点 A (x 1,y 1)、B (x 2,y 2),当y 1>y 2时,试比较x 1与x 2的大小.24.(7分)如图所示,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与反比例函数2k y x = (x)的图象分别交于点C 、 D ,且C 点的坐标为(1-,2). ⑴分别求出直线AB 及反比例函数的解析式; ⑵求出点D 的坐标;⑶利用图象直接写出:当x 在什么范围内取值时,1y >2y .25.(7分)制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y (℃),从加热开始计算的时间为x (min ).据了解,当该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图所示).已知该材料在操作加热前的温度为15 ℃,加热5 min 后温度达到60 ℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止 操作,共经历了多少时间?第二十六章 反比例函数单元测试题参考答案1.D2.C 解析: ∵ 点A 、B 都在反比例函数的图象上,∴ A (-1,6),B (-3,2).设直线AB 的解析式为0)(y kx b k =+≠,则6,23,k b k b =-+⎧⎨=-+⎩解得2,8,k b =⎧⎨=⎩∴ 直线AB 的解析式为28y x =+,∴ C (-4,0).在△AOC 中,OC =4,OC 边上的高(即点A 到x 轴的距离)为6,∴ △AOC 的面积14612.2=⨯⨯= 点拨:在平面直角坐标系中求三角形的面积时,一般要将落在坐标轴上的一边作为底.3.D 解析:如图所示,分别过点E ,F 作EG ⊥OA ,FH ⊥OA ,再过点E 作EM ⊥FH 并延长,交y 轴于点N . 过点F 作FR ⊥y 轴于点R .∵ 直线y =-x +2分别与x 轴,y 轴的交点为A (2,0),B (0,2), ∴ △AOB 为等腰直角三角形,AB 2. ∵ AB =2EF ,∴ EF 2∵ △EMF 为等腰直角三角形.∴ EM =FM =1. ∴ △AEG ≌△BFR . ∵ S 矩形EGON =S 矩形FHOR =k ,S △EMF =12×1×1=12,S △AOB =12×2×2=2, S 矩形MHON =S △AEG +S △BFR ,∴ S 矩形EGON +S 矩形FHOR =S △AOB -S △EMF ,即2k=2-12=32,解得k=34. 4.C 解析:当时,反比例函数的图象在第一、三象限.当时,函数图象在第三象限,所以选C.5.D 解析:由反比例函数的图象可知,当1x =-时,1y >,即1k <-,所以在二次函数2224y kx x k=-+中,20k <,则抛物线开口向下,对称轴为414x k k -=-=,则110k-<<,故选D. 6.A 解析:因为反比例函数的图象位于第二、四象限,所以,即.又,所以或(舍去).所以,故选A.7.A8.D 解析:因为反比例函数4y x=的图象在第一、三象限, 且在每个象限内y 随x 的增大而减小,所以. 又因为当时,,当时,,所以,,故选D.9.C 解析:联立方程组 得A (1,1),C ().所以,所以.10. A 解析:当反比例函数图象经过点C 时,k =2;当反比例函数图象与直线AB 只有一个交点时,令-x +6=,得x 2-6x +k =0,此时方程有两个相等的实数根,故Δ=36-4k =0,所以k =9,所以k 的取值范围是2≤k ≤9,故选A.第3题答图11.2 解析:把点A (–2,3)代入x k y =中,得k = –6,即x y 6-=.把x = – 3代入xy 6-=中,得y =2. 12. 8y x=-解析:设点P (x,y ),∵ 点P 与点Q (2,4)关于y 轴对称,则P (-2,4), ∴ k=xy=-2×4=-8.∴8y x=-. 13.>1 <114.4 解析:由反比例函数xk y 3-=的图象位于第一、三象限内,得,即.又正比例函数x k y )92(-=的图象过第二、四象限,所以,所以.所以的整数值是4.15.反比例16. 4 解析:设点A (x ,),∵ OM =MN =NC ,∴ AM =,OC =3x .由S △AOC =OC ·AM =·3x ·=6,解得k =4. 17.或18.>19.解:(1)因为反比例函数xy 3=的图象经过点A (m ,1), 所以将A (m ,1)代入xy 3=中,得m =3.故点A 坐标为(3,1). 将A (3,1)代入kx y =,得31=k ,所以正比例函数的解析式为3x y =. (2)由方程组⎪⎩⎪⎨⎧==,3,3xy x y 解得所以正比例函数与反比例函数的图象的另一个交点的坐标为(-3, -1).20.解:(1) 设A 点的坐标为(a ,b ),则kb a =.∴ ab k =. ∵ 112ab =,∴ 112k =.∴ 2k =.∴ 反比例函数的解析式为2y x=.(2) 由⎪⎪⎩⎪⎪⎨⎧==x y xy 212, 得或 ∴ A 为.设A 点关于x 轴的对称点为C ,则C 点的坐标为.如要在轴上求一点P ,使PA+PB 最小,即最小,则P 点应为BC 和x 轴的交点,如图所示. 令直线BC 的解析式为y mx n =+. ∵ B 为(,2),∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴ BC 的解析式为35y x =-+.当0y =时,53x =.∴ P 点坐标为.21.分析:(1)观察图象易知蓄水池的蓄水量; (2)与之间是反比例函数关系,所以可以设,依据图象上点(12,4)的坐标可以求得与之间的函数关系式. (3)求当h 时的值.(4)求当h 时,t 的值.解:(1)蓄水池的蓄水量为12×4=48().(2)函数的解析式为.(3).(4)依题意有,解得(h ).所以如果每小时排水量是5 ,那么水池中的水要用9.6小时排完.22.解:(1)因为的图象过点A (),所以.因为反比例函数xky =的图象过点A (3,2),所以,所以x y 6=.(2) 求反比例函数x y 6=与一次函数42-=x y 的图象的交点坐标,得到方程:xx 642=-,解得.所以另外一个交点是(-1, -6).画出图象,可知当或时,426->x x. 23.分析:(1)显然P 的坐标为(2,2),将P (2,2)代入y =即可.(2)由k -1>0得k >1.(3)利用反比例函数的增减性求解. 解:(1)由题意,设点P 的坐标为(m ,2), ∵ 点P 在正比例函数y =x 的图象上, ∴ 2=m ,即m =2.∴ 点P 的坐标为(2,2). ∵ 点P 在反比例函数 y =的图象上,∴ 2=,解得k =5.(2)∵ 在反比例函数y =图象的每一支上,y 随x 的增大而减小,∴ k -1>0,解得k >1. (3)∵ 反比例函数y =图象的一支位于第二象限,∴ 在该函数图象的每一支上,y 随x 的增大而增大.∵ 点A (x 1,y 1)与点B (x 2,y 2)在该函数的第二象限的图象上,且y 1>y 2, ∴ x 1>x 2.点拨:反比例函数的图象和性质是解反比例函数题目的基础. 24.解:(1)将C 点坐标(1-,2)代入1y x m =+,得,所以13y x =+;将C 点坐标(1-,2)代入2k y x=,得.所以22y x=-. (2)由方程组解得所以D 点坐标为(-2,1).(3)当1y >2y 时,一次函数图象在反比例函数图象上方, 此时x 的取值范围是21x -<<-. 25.解:(1)当时,为一次函数,设一次函数解析式为,由于一次函数图象过点(0,15),(5,60),所以解得所以.当时,为反比例函数,设函数关系式为,由于图象过点(5,60),所以.综上可知y 与x 的函数关系式为⎪⎩⎪⎨⎧≥<≤+=).5(300),50(159x xx x y(2)当y =15时,,所以从开始加热到停止操作,共经历了20 min .。