rfc1677.Tactical Radio Frequency Communication Requirements for IPng
一种低信噪比下的宽带扩频信号捕获跟踪方法
一种低信噪比下的宽带扩频信号捕获跟踪方法
梁中英;张少侃
【期刊名称】《中国新技术新产品》
【年(卷),期】2022()22
【摘要】为了解决低信噪比下宽带扩频信号的捕获算法复杂、实现成本高和受多普勒频率影响性能下降的问题,该文提出了一种易于实现的并行捕获及跟踪方法。
采用分段并行频域捕获方法进行初始捕获,并复用相同的算法模块对信号进行定时跟踪,同时估算出多普勒频偏补偿捕获的信号,达到在极低信噪比和存在一定的多普勒频偏条件下对连续扩频信号稳定捕获跟踪的效果,且该方法实现简单、硬件资源占用较少,已应用于工程建设中。
【总页数】3页(P42-44)
【作者】梁中英;张少侃
【作者单位】广州海格通信集团股份有限公司
【正文语种】中文
【中图分类】TN926
【相关文献】
1.低信噪比直序扩频导航信号的自适应捕获算法研究
2.一种高动态低信噪比下载波快速捕获跟踪方法
3.高动态低信噪比下扩频信号捕获算法研究
4.一种突发通信下扩频信号捕获及频偏跟踪方法
5.一种高动态低信噪比环境下基于多样本点串行快速傅里叶变换的信号捕获方法
因版权原因,仅展示原文概要,查看原文内容请购买。
常用的军用电磁兼容测试标准
常用的军用电磁兼容测试标准
随着军事技术的不断进步和发展,军用电子设备在现代战争中扮演着至关重要的角色。
为了确保军用电子设备能够在电磁环境下正常运作,军用电磁兼容测试成为了必不可少的一环。
以下是常用的军用电磁兼容测试标准:
1. MIL-STD-461:该标准旨在规定军用电子设备在电磁环境下的要求和测试方法,包括辐射和传导两种测试方法。
2. MIL-STD-464:该标准是一项指导性文件,旨在确保不同系统和设备在电磁环境下协同工作。
它规定了电磁环境的分类、行动和计划、电磁干扰源和敏感性评估等方面的要求。
3. RTCA DO-160:该标准是一项航空工业标准,规定了航空电子设备在电磁环境下的要求和测试方法。
4. CISPR 22:该标准规定了电子设备在射频辐射的限制和测量方法。
5. IEC 61000:该标准规定了电子设备在电磁环境下的要求和测试方法,包括辐射和传导两种测试方法。
以上是常用的军用电磁兼容测试标准,其中MIL-STD-461和MIL-STD-464是美国军方颁布的标准,而RTCA DO-160则是航空工业标准。
这些标准的制定旨在确保军用电子设备在电磁环境下能够正常工作,为现代战争的胜利提供坚实的支持。
- 1 -。
CAN总线通讯部件测试规范
3.1.4 测试步骤 ................................................................................................................................... 10
3.1.5 评价指标 ................................................................................................................................... 10
1.5
术语和缩写 ......................................................................................................................................... 8
2 测试设备 ............................................................................................................................................................. 9
1.2
适用范围 ............................................................................................................................................. 8
RFC
Request For Comments 请求评议
• 起始于1969年 • Internet起始于? • 在Internet从诞生到不断发展壮大的过程中, 出现过各种各样的协议和思想讨论,从最初的 NCP协议到现代Internet的基石TCP/IP协议族, 无一不闪耀着研究人员的智慧光芒,正是这些 成百上千各种协议的发明、讨论和完善,才使 得人类社会逐步进入到互联网时代。而这些闪 耀着人类智慧结晶的思想成果大都以一种称为 RFC的文档格式记录起来。
• 鸟类承载可以提供高延时,低吞吐量的低等级 服务。这种连接技术在使用标准传输的情况下, 每个"载鸟"只能提供单个点对点的路径的传输, 但是只要不是在早春时节,就可以无干扰地 使用多个"载鸟"。这是由于鸟类承载能够利用 3D以太空间,相对的IEEE802.3使用的是1维 以太空间。鸟类拥有天然的冲突避免机制,能 够提高可用性。不像其他一些网络技术,如无 线电波,鸟类承载不会受限于线视线距离,能 够在一些城市间提供面向连接的服务,通常会 使用中央枢纽拓扑。
RFC 1149
RFC 1149 - StFra bibliotekndard for the transmission of IP datagrams on avia
RFC 1149 - Standard for the transmission of IP datagrams on avia
• 一种使用鸟类传输IP数据报的标准 • 本备忘录描述了一种方法来使用鸟类传输IP 封装的数据包。这种方法在城域网范围格 外有用。 此方法是实验性质的,并非推荐标准。本 文档可以任意分发。
• 在接收方,去除胶带后,可以将纸卷副本的数据报 文光学扫描为电子传输形式。
2023年度高炮随动系统自动测试中正弦机发送频率的确定
2023年度高炮随动系统自动测试中正弦机发送频率的确定随动系统是近年来应用十分广泛的一种控制系统,它广泛应用于航空、海运、铁路、汽车等领域,具有精度高、响应速度快、控制精度高等优势。
在高炮系统中,随动系统也发挥着非常重要的作用,它是保证高炮精度、射击稳定性和准确性的关键因素。
而在随动系统中,正弦机作为电气控制元件之一,其在实现系统控制方面的作用也是非常关键的。
为了确保高炮随动系统的正常运行,需要对其进行自动测试。
在测试过程中,其中一个重要的环节是对正弦机的发送频率进行确定。
本文将研究探讨如何对高炮随动系统中的正弦机发送频率进行确定。
一、高炮随动系统中正弦机的发送频率在高炮随动系统中,正弦机是一种输出正弦信号的电气控制元件。
其主要功能是将电气信号转换为机械信号,驱动随动系统中的执行器,从而实现对高炮瞄准、方向调节等系统控制。
正弦机的输出频率是控制系统中非常重要的参数之一。
因为高炮系统需要快速地进行瞄准和射击,所以正弦机的频率应该越高越好。
但是当频率过高时,随动系统的响应速度可能会受到影响。
因此,在确定正弦机输出频率时,需要在控制系统的响应速度和正弦机输出频率之间进行平衡。
二、高炮随动系统自动测试的基本原理与流程为了确定高炮随动系统中正弦机的发送频率,需要进行自动测试。
高炮随动系统的自动测试基于如下原理和流程:1.采集控制系统的输出信号随动系统的输出信号是通过把电气信号转化为机械信号来实现的。
因此,在自动测试过程中,需要先采集控制系统输出的电气信号,以了解控制系统的响应特性。
2.通过FFT解析频谱通过对采集到的控制系统输出信号进行FFT解析,可以得到信号的频率特性,并得出信号的主要频率分量。
在自动测试过程中,可以通过对FFT解析结果的分析,了解控制系统的响应速度和正弦机发送频率之间的关系。
3.确定正弦机发送频率根据FFT解析结果,可以确定正弦机的发送频率。
在确定频率时,需要考虑控制系统的响应速度和正弦机输出频率之间的平衡关系,以确保系统的稳定性和可靠性。
移动无线通信系统中保留信道的分配方法[发明专利]
专利名称:移动无线通信系统中保留信道的分配方法专利类型:发明专利
发明人:高裕昌
申请号:CN98125144.7
申请日:19981126
公开号:CN1219083A
公开日:
19990609
专利内容由知识产权出版社提供
摘要:一种移动无线通信系统中所使用的保留信道分配方法能够根据波动变化的切换业务密度,利用一模糊逻辑控制器对保留信道数的分配进行自适应控制。
根据这种方法,切换呼叫的业务密度可由基站在一预定周期内确定,而且,根据此切换呼叫的业务密度,就可对用于处理原始呼叫和切换呼叫的正常信道数与用于处理切换呼叫的保留信道数之间的比例进行调节。
申请人:LG情报通信株式会社
地址:韩国汉城
国籍:KR
代理机构:中原信达知识产权代理有限责任公司
代理人:余朦
更多信息请下载全文后查看。
用于从多个外围设备接收数据的方法及设备[发明专利]
专利名称:用于从多个外围设备接收数据的方法及设备专利类型:发明专利
发明人:朴庠泉,郑恩祯,金圣伦
申请号:CN201980002304.2
申请日:20190507
公开号:CN111108712A
公开日:
20200505
专利内容由知识产权出版社提供
摘要:提供一种提高从多个外围设备接收正常数据的概率的数据接收方法及设备。
设备的数据接收方法包括:从多个外围设备中的任意一个外围设备接收当前数据;确定所接收的当前数据是否是正常数据;基于确定结果计算下一个数据是正常数据的概率;并且根据所计算的概率确定是否接收下一个数据;其中,下一个数据是通过任意一个外围设备或另一外围设备发送的数据。
申请人:国防科学研究所
地址:韩国大田广域市
国籍:KR
代理机构:北京康信知识产权代理有限责任公司
代理人:刘彬
更多信息请下载全文后查看。
一种基于信誉度的移动代理安全策略
图1移动主机和代理交互示意图
移动代理携带的信息包括执行任务所需的数据和初始设定的迁移路径信息和操作权限信息。
工作流程如下:
H1给移动代理MA携带的信息赋初值,包括设定移动代理的操作权限、移动代理迁移路径和所经过的主对移动代理的任务数据和资料进行加密,
PK(1024),校验数CN=SK(I)+PK(1
PK(CN)进行校验。
目标主机H1提供一套与其自身有关的安全规则,标主机中存储有信誉度表,如表1所示,不同的信誉度评价
为了构建移动代理和主机之间的信誉度,
主机的安全策略、双向信誉度表和移动代理自身的安全保护
策略。
通过上述手段,保证安全运行环境和目标主机,
恶意主机和恶意代理的侵害,确保移动代理高效、
通过研究移动代理的安全性问题,分为移动代理自身、
《
2018年全国两会期间,习近平总书记在参加重庆代表团审议时
指出,领导干部要讲政德。
他高屋建瓴、
核心要义,即明大德、守公德、严私德。
本书紧紧围绕习近平总书记
关于政德的重要讲话精神,内容全面、
的要求,有助于领导干部深入学习政德精神,
代成就新作为,在新征程上谱写新篇章。
直扩系统在低信噪比下伪码的快速捕获方法
直扩系统在低信噪比下伪码的快速捕获方法
李朝阳;邓念高;孙刚
【期刊名称】《职业技术》
【年(卷),期】2009(000)007
【摘要】伪码捕获是直扩通信系统的关键技术之一,伪码捕获时间、捕获概率抗干扰能力直接影响系统性能。
本文在传统的滑动相关捕获方法基础上提出了一种快速伪码捕获方法,它利用反馈环路来进行相关累积,可以在相同伪码长度及信噪比下获得更加尖锐的相关峰值。
通过仿真可以看出,这种方法相对传统方法具有捕获时间短、抗干扰能力强、捕获概率大、虚警率低等特点。
【总页数】1页(P75)
【作者】李朝阳;邓念高;孙刚
【作者单位】湖北中船重工722研究所
【正文语种】中文
【中图分类】TP368.1
【相关文献】
1.一种低信噪比下的伪码快速捕获算法 [J], 韩宁;张大伟;尚朝轩
2.直扩系统在低信噪比下伪码的快速捕获方法 [J], 李朝阳;邓念高;孙刚
3.低信噪比条件下扩频伪码均值捕获算法的改进 [J], 田明浩;潘成胜;冯永新
4.低信噪比下的基于FFT的快速伪码捕获法 [J], 王守亚;吴琰;;
5.一种高动态低信噪比环境下基于多样本点串行快速傅里叶变换的信号捕获方法[J], 陈延涛;董彬虹;李昊;蔡沅沅
因版权原因,仅展示原文概要,查看原文内容请购买。
超奈奎斯特传输 代码
超奈奎斯特传输代码【原创版】目录1.超奈奎斯特传输简介2.超奈奎斯特传输的实现3.但特沃思滤波器的应用4.使用 Python 实现超奈奎斯特传输和但特沃思滤波器5.总结正文1.超奈奎斯特传输简介超奈奎斯特传输(FTN,Fast Transient Numerical)是一种信号处理技术,其目的是在有限的时间内精确地恢复信号。
在信号处理领域,奈奎斯特定理是一个重要的参考原则,它表明当采样频率大于信号中最高频率的两倍时,就可以从离散的采样数据中完整地重构出原始的连续信号。
然而,在实际应用中,为了减少数据量和计算复杂度,人们常常希望使用较低的采样频率。
超奈奎斯特传输技术就是在此背景下应运而生的,它通过采用特殊的算法,可以在较低的采样频率下实现高效的信号恢复。
2.超奈奎斯特传输的实现超奈奎斯特传输的实现通常涉及两个主要步骤:数据采样和信号恢复。
在数据采样阶段,信号被离散化为一组采样数据;在信号恢复阶段,通过一定的算法从采样数据中还原出原始的连续信号。
超奈奎斯特传输技术的核心在于信号恢复阶段的算法,它可以在较低的采样频率下实现高效的信号恢复。
3.但特沃思滤波器的应用但特沃思滤波器(Butterworth Filter)是一种常用的数字滤波器,它可以对信号进行平滑处理,去除高频噪声。
在超奈奎斯特传输技术中,但特沃思滤波器常常用于信号恢复阶段的预处理,以提高信号的质量和恢复效果。
4.使用 Python 实现超奈奎斯特传输和但特沃思滤波器在 Python 中,可以使用 scipy 库中的 signal 模块来实现超奈奎斯特传输和但特沃思滤波器。
具体步骤如下:1.导入库:```pythonfrom scipy import signalimport numpy as npimport matplotlib.pyplot as plt```2.定义滤波器参数:```pythonfs = 100 # 采样频率yq = 0.5 # 奈奎斯特频率order = 5 # 滤波器阶数```3.生成信号:```pythont = np.linspace(0, 1, 1000)f = 50 # 信号频率A = 1 # 信号幅值y = A * np.sin(2 * np.pi * f * t)```4.对信号进行采样:```python= len(t)y_sampled = y[0::n]```5.使用但特沃思滤波器对信号进行预处理:```pythony_filtered = signal.butterworth(y_sampled, order, cutoff=nyq, fs=fs)```6.恢复原始信号:```pythony_recovered = signal.interpolate(y_filtered, t, order=order, t=None, method="sinc", fs=fs)```7.绘制结果:```pythonplt.figure()plt.plot(t, y, label="原始信号")plt.plot(t, y_recovered, label="恢复信号")plt.legend()plt.show()```5.总结超奈奎斯特传输技术是一种在较低采样频率下实现信号恢复的有效方法,其核心算法可以在有限的时间内精确地重构出原始信号。
一种多路缓冲与分时存取的雷达信号传输方法与实现
一种多路缓冲与分时存取的雷达信号传输方法与实现于志伟;李伟;王平安;郭琳琳【摘要】分析了在数字相控阵雷达种类繁多的信号传输与交换过程中传输管理机制存在的必要性,重点研究了传输子模块和分类子模块联合工作来完成操控指令在数据处理与信号处理系统之间的传输过程,提出了一种多路缓冲与分时存取方法,并完成了程序设计及工程实现.【期刊名称】《雷达与对抗》【年(卷),期】2016(036)004【总页数】3页(P29-31)【关键词】相控阵雷达;多路缓冲;分时存取;信号传输【作者】于志伟;李伟;王平安;郭琳琳【作者单位】中国船舶重工集团公司第七二四研究所,南京211153;中国船舶重工集团公司第七二四研究所,南京211153;中国船舶重工集团公司第七二四研究所,南京211153;中国船舶重工集团公司第七二四研究所,南京211153【正文语种】中文【中图分类】TN911.7相控阵雷达在进行目标探测时,其内部各分系统之间实时进行着种类繁多的操控信息和海量回波数据的交互。
这些大容量的信息数据流若没有统一的安排和管理而直接进行传输,一方面会带来严重的硬件资源浪费,另一方面由于数据突发传输带来的拥堵将大大降低分系统信息传输效率,导致系统响应变慢。
尤其在雷达信号预处理系统与数据处理系统之间,大容量的经过处理的多通道回波信息内容以及数据处理系统对波束的实时调度、对信号处理方式的实时控制等信息交错紧密耦合传输,越来越需要一个传输管理机制来对相控阵雷达内部信息分发进行实时管控,从而实现数字相控阵雷达内部的信息在各分系统之间高效有序传输。
传输管理机制包括传输模块和分类模块。
传输模块负责预处理系统与数据处理系统之间的信号传输与接口转换,通过光纤接收数据处理系统送来的各种操控指令,并翻译成与雷达其他各分系统相适应的指令协议,通过与各分系统相适应的硬件接口分发给各分系统内部最终作出响应的目的单元,从而有效提高各单元的实时响应能力。
分类模块则对传输链路中的信息数据进行分类管理,进行组合排序,并打包给传输模块,从而提高信息传输效率。
军用数据链指标
军用数据链指标军用数据链是一种用于军事通信和信息传输的技术。
它通过无线方式传输数据,实现军队内部各个单元之间的实时信息交流和协同作战。
军用数据链的指标对于其性能和效果至关重要,下面将从多个方面分析军用数据链的指标。
军用数据链的传输速率是评估其性能的重要指标之一。
传输速率决定了数据链能够传输的数据量大小,越高的传输速率意味着数据链能够传输更多的信息,从而提高军队的作战效率。
同时,高传输速率还能够保证信息的实时性,使各个单元能够及时获取最新的情报和指令。
军用数据链的抗干扰能力也是重要的指标之一。
在军事作战环境中,电磁干扰往往非常严重,包括电磁波干扰、雷达干扰等。
军用数据链需要具备较强的抗干扰能力,能够在干扰环境下稳定传输数据,保证信息的可靠性和准确性。
军用数据链的覆盖范围也是需要考虑的指标之一。
军队的作战区域往往很广,需要在不同地形和环境下进行通信和信息传输。
因此,军用数据链需要具备较大的覆盖范围,能够实现远距离通信和信息传输,确保各个单元之间的联系畅通无阻。
军用数据链的安全性也是需要重视的指标。
军队的通信和信息传输往往涉及到重要的军事机密,需要保证数据的机密性和防护性。
军用数据链需要具备强大的加密和防护能力,能够抵御各种黑客攻击和信息泄露的风险,确保军队的信息安全。
军用数据链的稳定性和可靠性也是需要考虑的指标。
在战斗环境中,通信和信息传输的稳定性和可靠性非常重要,任何中断或延迟都可能导致严重的后果。
因此,军用数据链需要具备较高的稳定性和可靠性,能够在极端条件下正常工作。
军用数据链的指标涵盖了传输速率、抗干扰能力、覆盖范围、安全性、稳定性和可靠性等多个方面。
这些指标直接影响到军队的作战效能和信息战能力,因此在研发和选择军用数据链时,需要全面考虑这些指标,确保其能够满足军队的需求,并保证信息的安全和可靠传输。
信息优先级保护的动态频谱分配算法
信息优先级保护的动态频谱分配算法
毛忠阳;孙林;刘锡国;刘传辉
【期刊名称】《电讯技术》
【年(卷),期】2022(62)8
【摘要】为提高海上无人艇编队无线网络频谱利用率,同时满足不同优先级信息的传输需求,提出了一种信息优先级保护的动态频谱分配算法。
算法采用完全信息动态博弈模型,引入异步分布式定价(Asynchronous Distributed Pricing,ADP)算法设计效用函数。
鉴于传统ADP算法在有较多通信余量时干扰价格定价过高,改进干扰价格定义。
为体现优先级对分配的影响,在效用函数中加入信息权重。
对效用函数成本部分进一步更改,可在实现高优先级信息优先传输的同时,依据通信速率需求合理分配信道通信容量。
经过仿真验证,所提算法在吞吐量和可靠性方面优于基于节点优先级的分配算法。
【总页数】6页(P1023-1028)
【作者】毛忠阳;孙林;刘锡国;刘传辉
【作者单位】海军航空大学信号与信息处理山东省重点实验室;海军航空大学航空通信教研室
【正文语种】中文
【中图分类】TN929.5
【相关文献】
1.一种基于历史信息的感知无线电动态频谱分配算法
2.优先级保护的分布式动态频谱分配算法
3.基于联合优先级调度的协作动态频谱分配机制设计
4.基于用户需求和历史信息的动态频谱分配算法
5.混合频谱共享方式下面向多信道接入的动态频谱分配算法
因版权原因,仅展示原文概要,查看原文内容请购买。
基于短波测量数据的信道模型聚类方法
基于短波测量数据的信道模型聚类方法
金珠;吴永宏;任源博;管英祥;蒋宏奎
【期刊名称】《电波科学学报》
【年(卷),期】2013(28)3
【摘要】提出了一种使用减法聚类有效分类离散随机信道参数的方法.在青岛-北京链路的信道测量数据基础上,使用该方法将短波信道测量计算出的信道参数分别进行一维和多维聚合分类,得到在特定链路、时间上,某频率对应的典型信道参数和信道模型,为短波频谱管理中的频率打分提供精确量化依据.
【总页数】6页(P567-571,589)
【作者】金珠;吴永宏;任源博;管英祥;蒋宏奎
【作者单位】中国电波传播研究所,山东青岛266107;中国电波传播研究所,山东青岛266107;中国电波传播研究所,山东青岛266107;中国电波传播研究所,山东青岛266107;中国电波传播研究所,山东青岛266107
【正文语种】中文
【中图分类】TN92
【相关文献】
1.基于布朗桥理论的超短波信道路径损耗模型 [J], 刘广凯;全厚德;崔佩璋;姚少林
2.基于短波信道模型的天波雷达回波模拟方法 [J], 代林;曾芳玲
3.基于短波信道模型的宽带信号传输实现 [J], 张晓莉;裴腾达;牛志军;高晓兵
4.基于Watterson模型的短波信道仿真 [J], 韩仿仿;林自豪
5.基于Watterson模型的短波航空移动信道建模与仿真 [J], 李国军;马欢;叶昌荣;罗一平
因版权原因,仅展示原文概要,查看原文内容请购买。
数字伪码跟踪环中的野值剔除新方法
数字伪码跟踪环中的野值剔除新方法
王永庆;乔媛;吴嗣亮
【期刊名称】《北京理工大学学报》
【年(卷),期】2009(29)11
【摘要】针对伪码跟踪环中由于相位误差鉴别结果出现野值而导致跟踪性能下降的问题,提出了一种野值剔除方法.该方法根据伪码跟踪环中鉴别器的鉴别范围及环路的跟踪状态,调节野值剔除门限.与常规伪码跟踪环相比,采用该方法的环路具有更高的跟踪精度和抗干扰能力.仿真结果表明,设计方法通过有效剔除环路鉴别器输出的野值,提高了伪码跟踪环的跟踪精度和稳定性.
【总页数】3页(P998-1000)
【关键词】直接序列扩频信号;伪码跟踪环;鉴别器;野值
【作者】王永庆;乔媛;吴嗣亮
【作者单位】北京理工大学雷达技术研究所
【正文语种】中文
【中图分类】TN914.42
【相关文献】
1.弹道跟踪数据野值剔除方法性能分析 [J], 侯博文;王炯琦;周萱影;李冬;何章鸣
2.目标跟踪系统中野值的判别与剔除方法 [J], 孙书鹰;段修生;王志强;单甘霖
3.无源定位跟踪中野值的检测与剔除方法 [J], 杨军玲
4.目标跟踪中野值的判别与剔除方法 [J], 张强;孙红胜;胡泽明;
5.目标跟踪中野值的判别与剔除方法 [J], 张强;孙红胜;胡泽明
因版权原因,仅展示原文概要,查看原文内容请购买。
一种抗转发式干扰的低截获波形优化设计方法
一种抗转发式干扰的低截获波形优化设计方法顾兵【摘要】针对雷达面临的转发式欺骗干扰,提出一种有效对抗转发式欺骗干扰的雷达波形优化设计方法,采用遗传算法优化出正交性能良好的多相编码子脉冲信号,利用多个子信号进行拼接优化设计产生具备低截获概率和抗转发式干扰能力的雷达波形.【期刊名称】《舰船电子对抗》【年(卷),期】2019(042)002【总页数】7页(P14-19,23)【关键词】遗传算法;正交多相编码;低截获概率;转发式干扰【作者】顾兵【作者单位】中国船舶重工集团公司第七二三研究所,江苏扬州225101【正文语种】中文【中图分类】TN9740 引言现代战争中雷达面临日趋复杂的电磁环境威胁,各种军用有意干扰、民用无意干扰大量涌入雷达接收机,导致雷达探测性能下降[1]。
尤其是多部雷达之间的同频干扰[2]和射频采样存储技术[3]的发展,采用全脉冲复制、切片复制、部分复制形式密集存储转发,有相参处理增益,干扰效率大大提高[4]。
多相编码雷达信号,其信号形式复杂,具备低截获优势,同样长度的多相编码信号比二相编码信号拥有更高的匹配滤波主副比[4]。
本文利用多相编码信号复杂波形带来的低截获优势,正交波形的互相关低峰值特性,设计一种有效对抗转发式欺骗干扰的低截获雷达波形。
多相编码信号结构形式复杂,能够有效降低电子战设备的截获概率或者延长截获时间,用遗传算法优化出多组正交多相编码子脉冲信号,将这些子脉冲信号按照一定的形式拼接成雷达发射波形。
雷达在处理时进行分段分时处理,当前处理信号段大概率与转发干扰信号正交,具备较好的抗转发式欺骗干扰能力。
1 遗传算法遗传算法是模拟自然界生物在繁殖过程中遗传和进化过程而发展出的一种高效、并行、全局搜索的数学算法,在函数优化领域有较为广泛的应用,尤其是一些多模型、非线性的优化问题。
遗传算法是一个典型的迭代优化过程,其主要步骤有:(1) 对参数集合域选择适当的策略进行编码,使其转化为对应的位串结构空间;(2) 设定衡量各个样本个体优劣尺度的适应度函数;(3) 确定遗传策略及参数,包括种群大小、进化次数、交叉和变异概率、初始种群数、复制、交叉、变异方法等;(4) 随机产生规定量的初始种群;(5) 计算出初始种群中所有个体的适应度评价值;(6) 根据确定的遗传策略,对初始种群进行复制、交叉、变异等操作进而形成下一代种群;(7) 判断进化后的群体是否满足判断条件,或者已经达到所设定的进化代数,若满足则停止进化,若不满足则重新进行进化并计算适应度评价值。
高速无线寻呼系统的编码方法
高速无线寻呼系统的编码方法
孙增军;刘江涛
【期刊名称】《电子与信息化》
【年(卷),期】1997(000)011
【摘要】本文乎先介绍了当前无线寻呼系统普遍使用的国际NO.1无线寻呼码,即POCSAG码,然后着重分析了三种高速寻呼系统的编码方法。
【总页数】4页(P12-15)
【作者】孙增军;刘江涛
【作者单位】国防科技大学电子工程学院;国防科技大学电子工程学院
【正文语种】中文
【中图分类】TN929.5
【相关文献】
1.新一代高速无线寻呼系统 [J], 倪维桢;
2.福州将建立高速无线寻呼系统 [J], ;
3.高速无线寻呼系统的编码方法 [J], 孙增军;刘东涛
4.无线寻呼系统中编码高速化的发展趋势 [J], 宋铁成
5.无线寻呼系统中的高速编码方式 [J], 宋铁成;
因版权原因,仅展示原文概要,查看原文内容请购买。
一种遥感卫星高码速VCM数传信道的均衡技术
一种遥感卫星高码速VCM数传信道的均衡技术朱文杰;陈金树【摘要】在基于第二代数字卫星视频广播协议(DVB-S2)标准的遥感卫星可变编码调制(VCM)高码速数传信道中,宽带信号的大失真、大频偏和低信噪比会导致解调器载波环路不锁定.传统的DVB-S2解调器并不能解决这个问题.在载波环路前增加一个均衡器补偿失真,可以让载波环路稳定锁定.为了克服载波环路前信号的频偏和相偏对均衡器的影响,提出了一种均衡技术,利用起始序列(SOF)和导频的先验信息进行双重自相关变换,设计了一种新的误差函数和迭代过程.仿真结果表明,该均衡技术可在该应用条件下支持解调稳定工作.【期刊名称】《电讯技术》【年(卷),期】2018(058)011【总页数】6页(P1252-1257)【关键词】遥感卫星;数传信道;载波环路;可变编码调制【作者】朱文杰;陈金树【作者单位】清华大学电子工程系,北京 100084;清华大学电子工程系,北京100084【正文语种】中文【中图分类】TN9271 引言为了提高遥感卫星下行数据率,除了数据压缩和极化复用等技术手段外,我国的遥感卫星数传模式引进了可变编码调制模式(Variable Coding and Modulation,VCM)。
通过VCM技术可以充分利用链路余量,从而提高数据的平均传输速率。
在对VCM技术支持的协议中,欧洲第二代数字卫星视频广播协议(European Digital Video Broadcasting -Satellite Second Generation,DVB-S2)是一个成熟协议[1]。
我国2018年发射的高分七号卫星将采用基于DVB-S2的VCM技术,这将是我国下一代遥感卫星重点发展的技术。
传统主流的基于DVB-S2的VCM解调器结构[2]仅适用于低码率(30 Msample/s 以下)的静止卫星。
然而,低地轨道遥感卫星的频偏最大可接近1 MHz,多普勒频偏变化率最大可达15 kHz/s,其码率通常在300 Msample/s左右,地面站测试时最高可达500 Msample/s,其信号是一个宽带信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Network Working Group B. Adamson Request for Comments: 1677 Naval Research Laboratory Category: Informational August 1994 Tactical Radio Frequency Communication Requirements for IPngStatus of this MemoThis memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution ofthis memo is unlimited.AbstractThis document was submitted to the IETF IPng area in response to RFC 1550. Publication of this document does not imply acceptance by the IPng area of any ideas expressed within. Comments should besubmitted to the big-internet@munnari.oz.au mailing list.Executive SummaryThe U.S. Navy has several efforts exploring the applicability ofcommercial internetworking technology to tactical RF networks. Some these include the NATO Communication System Network Interoperability (CSNI) project, the Naval Research Laboratory Data/Voice Integration Advanced Technology Demonstration (D/V ATD), and the NavyCommunication Support System (CSS) architecture development.Critical requirements have been identified for security, mobility,real-time data delivery applications, multicast, and quality-of-service and policy based routing. Address scaling for Navyapplication of internet technology will include potentially verylarge numbers of local (intra-platform) distributed information andweapons systems and a smaller number of nodes requiring globalconnectivity. The flexibility of the current Internet Protocol (IP) for supporting widely different communication media should bepreserved to meet the needs of the highly heterogeneous networks ofthe tactical environment. Compact protocol headers are necessary for efficient data transfer on the relatively-low throughput RF systems. Mechanisms which can enhance the effectiveness of an internetdatagram protocol to provide resource reservation, priority, andservice quality guarantees are also very important. The broadcastnature of many RF networks and the need for broad dissemination ofinformation to warfighting participants makes multicast the generalcase for information flow in the tactical environment.Adamson [Page 1]BackgroundThis paper describes requirements for Internet Protocol nextgeneration (IPng) candidates with respect to their application tomilitary tactical radio frequency (RF) communication networks. Thefoundation for these requirements are experiences in the NATOCommunication System Network Interoperability (CSNI) project, theNaval Research Laboratory Data/Voice Integration Advanced Technology Demonstration (D/V ATD), and the Navy Communication Support System(CSS) architecture development.The goal of the CSNI project is to apply internetworking technologyto facilitate multi-national interoperability for typical militarycommunication applications (e.g., electronic messaging, tactical data exchange, and digital voice) on typical tactical RF communicationlinks and networks. The International Standard Organization (ISO)Open Systems Interconnect (OSI) protocol suite, including theConnectionless Network Protocol (CLNP), was selected for this project for policy reasons. This paper will address design issuesencountered in meeting the project goals with this particularprotocol stack.The D/V ATD is focused on demonstrating a survivable, self-configuring, self-recovering RF subnetwork technology capable ofsimultaneously supporting data delivery, including message transfer, imagery, and tactical data, and real-time digital voice applications. Support for real-time interactive communication applications wasextended to include a "white board" and other similar applications.IP datagram delivery is also planned as part of this demonstrationsystem.The CSS architecture will provide U.S. Navy tactical platforms with a broad array of user-transparent voice and data information exchangeservices. This will include support for sharing and management oflimited platform communication resources among multiple warfightingcommunities. Emphasis is placed on attaining interoperability withother military services and foreign allies. Utilization ofcommercial off-the-shelf communications products to take advantage of existing economies of scale is important to make any resulting system design affordable. It is anticipated that open, voluntary standards, and flexible communication protocols, such as IP, will play a keyrole in meeting the goals of this architecture.IntroductionBefore addressing any IPng requirements as applied to tactical RFcommunications, it is necessary to define what this paper means by"IPng requirements". To maintain brevity, this paper will focus on Adamson [Page 2]criteria related specifically to the design of an OSI model’s Layer 3 protocol format and a few other areas suggested by RFC 1550. Thereare several additional areas of concern in applying internetworkprotocols to the military tactical RF setting including routingprotocol design, address assignment, network management, and resource management. While these areas are equally important, this paper will attempt to satisfy the purpose of RFC 1550 and address issues moredirectly applicable to selection of an IPng candidate.ScalingThe projection given in RFC 1550 that IPng should be able to dealwith 10 to the 12th nodes is more than adequate in the face ofmilitary requirements. More important is that it is possible toassign addresses efficiently. For example, although a militaryplatform may have a relatively small number of nodes withrequirements to communicate with a larger, global infrastructure,there will likely be applications of IPng to management and controlof distributed systems (e.g., specific radio communications equipment and processors, weapons systems, etc.) within the platform. Thislocal expansion of address space requirements may not necessarilyneed to be solved by "sheer numbers" of globally-unique addresses but perhaps by alternate delimitation of addressing to differentiatebetween globally-unique and locally-unique addressing. Theadvantages of a compact internet address header are clear forrelatively low capacity RF networks.Timescale, Transition and DeploymentThe U.S. Navy and other services are only recently (the last fewyears) beginning to design and deploy systems utilizing open systems internetworking technology. From this point of view, the time scale for selection of IPng must be somewhat rapid. Otherwise, twotransition phases will need to be suffered, 1) the move from unique, "stove pipe" systems to open, internetworked (e.g., IP) systems, and then 2) a transition from deployed IP-based systems to IPng. In some sense, if an IPng is quickly accepted and widely implemented, thetransition for tactical military systems will be somewhat easier than the enterprise Internet where a large investment in current IPalready exists. However, having said this, the Department of Defense as a whole already deploys a large number of IP-capable systems, and the issue of transition from IP to IPng remains significant.SecurityAs with any military system, information security, includingconfidentiality and authenticity of data, is of paramount importance. With regards to IPng, network layer security mechanisms for tactical Adamson [Page 3]RF networks generally important for authentication purposes,including routing protocol authentication, source authentication, and user network access control. Concerns for denial of service attacks, traffic analysis monitoring, etc., usually dictate that tactical RFcommunication networks provide link layer security mechanisms.Compartmentalization and multiple levels of security for differentusers of common communication resources call for additional security mechanisms at the transport layer or above. In the typical tactical RF environment, network layer confidentiality and, in some cases,even authentication becomes redundant with these other securitymechanisms.The need for network layer security mechanisms becomes more critical when the military utilizes commercial telecommunications systems orhas tactical systems inter-connected with commercial internets.While the Network Encryption Server (NES) works in this role today,there is a desire for a more integrated, higher performance solution in the future. Thus, to meet the military requirement forconfidentiality and authentication, an IPng candidate must be capable of operating in a secure manner when necessary, but also allow forefficient operation on low-throughput RF links when other securitymechanisms are already in place.In either of these cases, key management is extremely important.Ideally, a common key management system could be used to provide key distribution for security mechanisms at any layer from theapplication to the link layer. As a result, it is anticipated,however, that key distribution is a function of management, andshould not dependent upon a particular IPng protocol format.MobilityThe definition of most tactical systems include mobility in someform. Many tactical RF network designs provide means for members to join and leave particular RF subnets as their position changes. For example, as a platform moves out of the RF line-of-sight (LOS) range, it may switch from a typical LOS RF media such as the ultra-highfrequency (UHF) band to a long-haul RF media such as high frequency(HF) or satellite communication (SATCOM).In some cases, such as the D/V ATD network, the RF subnet willperform its own routing and management of this dynamic topology.This will be invisible to the internet protocol except for(hopefully) subtle changes to some routing metrics (e.g., more orless delay to reach a host). In this instance, the RF subnetworkprotocols serve as a buffer to the internet routing protocols andIPng will not need to be too concerned with mobility.Adamson [Page 4]In other cases, however, the platform may make a dramatic change inposition and require a major change in internet routing. IPng mustbe able to support this situation. It is recognized that an internet protocol may not be able to cope with large, rapid changes intopology. Efforts will be made to minimize the frequency of this in a tactical RF communication architecture, but there are instanceswhen a major change in topology is required.Furthermore, it should be realized that mobility in the tacticalsetting is not limited to individual nodes moving about, but that, in some cases, entire subnetworks may be moving. An example of this is a Navy ship with multiple LANs on board, moving through the domainsof different RF networks. In some cases, the RF subnet will bemoving, as in the case of an aircraft strike force, or Navybattlegroup.Flows and Resource ReservationThe tactical military has very real requirements for multi-mediaservices across its shared and inter-connected RF networks. Thisincludes applications from digital secure voice integrated withapplications such as "white boards" and position reporting formission planning purposes to low-latency, high priority tactical data messages (target detection, identification, location and headinginformation). Because of the limited capacity of tactical RFnetworks, resource reservation is extremely important to controlaccess to these valuable resources. Resource reservation can play a role in "congestion avoidance" for these limited resources as well as ensuring that quality-of-service data delivery requirements are metfor multi-media communication.Note there is more required here than can be met by simple quality-of-service (QoS) based path selection and subsequent source-routingto get real-time data such as voice delivered. For example, tosupport digital voice in the CSNI project, a call setup and resource reservation protocol was designed. It was determined that the QoSmechanisms provided by the CLNP specification were not sufficient for our voice application path selection. Voice calls could not berouted and resources reserved based on any single QoS parameter(e.g., delay, capacity, etc.) alone. Some RF subnets in the CSNItest bed simply did not have the capability to support voice calls.To perform resource reservation for the voice calls, the CLNP costmetric was "hijacked" as essentially a Type of Service identifier to let the router know which datagrams were associated with a voicecall. The cost metric, concatenated with the source and destination addresses were used to form a unique identifier for voice calls inthe router and subnet state tables. Voice call paths were to beselected by the router (i.e. the "cost" metric was calculated) as a Adamson [Page 5]rule-based function of each subnet’s capability to support voice, its delay, and its capacity. While source routing provided a possiblemeans for voice datagrams to find their way from router to router,the network address alone was not explicit enough to direct the data to the correct interface, particularly in cases where there weremultiple communication media interconnecting two routers along thepath. Fortunately, exclusive use of the cost QoS indicator for voice in CSNI was able to serve as a flag to the router for packetsrequiring special handling.While a simple Type of Service field as part of an IPng protocol can serve this purpose where there are a limited number of well knownservices (CSNI has a single special service - 2400 bps digitalvoice), a more general technique such as RSVP’s Flow Specificationcan support a larger set of such services. And a field, such as the one sometimes referred to as a Flow Identification (Flow ID), canplay an important role in facilitating inter-networked datacommunication over these limited capacity networks.For example, the D/V ATD RF sub-network provides support for bothconnectionless datagram delivery and virtual circuit connectivity.To utilize this capability, an IPng could establish a virtual circuit connection across this RF subnetwork which meets the requirements of an RSVP Flow Specification. By creating an association between aparticular Flow ID and the subnetwork header identifying theestablished virtual circuit, an IPng gateway could forward dataacross the low-capacity while removing most, if not all, of the IPng packet header information. The receiving gateway could re- construct these fields based on the Flow Specification of the particular FlowID/virtual circuit association.In summary, a field such as a Flow Identification can serve at least two important purposes:1) It can be used by routers (or gateways) to identifypackets with special, or pre-arranged deliveryrequirements. It is important to realize that it maynot always be possible to "peek" at internet packetcontent for this information if certain securityconsiderations are met (e.g., an encrypted transportlayer).2) It can aid mapping datagram services to differenttypes of communication services provided byspecialized subnet/data link layer protocols.Adamson [Page 6]MulticastTactical military communication has a very clear requirement formulticast. Efficient dissemination of information to distributedwarfighting participants can be the key to success in a battle. Inmodern warfare, this information includes imagery, the "tacticalscene" via tactical data messages, messaging information, and real-time interactive applications such as digital secure voice. Many of the tactical RF communication media are broadcast by nature, andmulticast routing can take advantage of this topology to distributecritical data to a large number of participants. The throughputlimitations imposed by these RF media and the physics of potentialelectronic counter measures (ECM) dictate that this information bedistributed efficiently. A multicast architecture is the generalcase for information flow in a tactical internetwork.Quality of Service and Policy-Based RoutingQuality of service and policy based routing are of particularimportance in a tactical environment with limited communicationresources, limited bandwidth, and possible degradation and/or denial of service. Priority is a very important criteria in the tacticalsetting. In the tactical RF world of limited resources (limitedbandwidth, radio assets, etc.) there will be instances when there is not sufficient capacity to provide all users with their perception of required communication capability. It is extremely important for ashared, automated communication system to delegate capacity higherpriority users. Unlike the commercial world, where everyone has amore equal footing, it is possible in the military environment toassign priority to users or even individual datagrams. An example of this is the tactical data exchange. Tactical data messages aregenerally single-datagram messages containing information on thelocation, bearing, identification, etc., of entities detected bysensors. In CSNI, tactical data messages were assigned 15 different levels of CLNP priority. This ensured that important messages, such as a rapidly approaching enemy missile’s trajectory, were givenpriority over less important messages, such as a friendly, slow-moving tanker’s heading.ApplicabilityThere will be a significant amount of applicability to tactical RFnetworks. The current IP and CLNP protocols are being givenconsiderable attention in the tactical RF community as a means toprovide communication interoperability across a large set ofheterogeneous RF networks in use by different services and countries. The applicability of IPng can only improve with the inclusion offeatures critical to supporting QoS and Policy based routing, Adamson [Page 7]security, real-time multi-media data delivery, and extendedaddressing. It must be noted that it is very important that the IPng protocol headers not grow overly large. There is a sharp tradeoffbetween the value added by these headers (interoperability, globaladdressing, etc.) and the degree of communication performanceattainable on limited capacity RF networks. Regardless of the datarate that future RF networks will be capable of supporting, there is always a tactical advantage in utilizing your resources moreefficiently.Datagram ServiceThe datagram service paradigm provides many useful features fortactical communication networks. The "memory" provided by datagramheaders, provides an inherent amount of survivability essential tothe dynamics of the tactical communication environment. Theavailability of platforms for routing and relaying is never 100%certain in a tactical scenario. The efficiency with which multi-cast can be implemented in a connectionless network is highly critical in the tactical environment where rapid, efficient informationdissemination can be a deciding factor. And, as has been proven,with several different Internet applications and experiments, adatagram service is capable of providing useful connection-orientedand real-time communication services.Consideration should be given in IPng to how it can co-exist withother architectures such as switching fabrics which offer demand-based control over topology and connectivity. The military owns many of its own communication resources and one of the large problems inmanaging the military communication infrastructure is directing those underlying resources to where they are needed. Traditionalmanagement (SNMP, etc.) is of course useful here, but RFcommunication media can be somewhat dynamically allocated. Circuitswitching designs offer some advantages here. Dial-up IP routing is an example of an integrated solution. The IPng should be capable of supporting a similar type of operation.Support of Communication MediaThe tactical communication environment includes a very broad spectrum of communication media from shipboard fiber-optic LANs to very lowdata rate (<2400 bps) RF links. Many of the RF links, even higherspeed ones, can exhibit error statistics not necessarily well-serviced by higher layer reliable protocols (i.e., TCP). In thesecases, efficient lower layer protocols can be implemented to provide reliable datagram delivery at the link layer, but at the cost ofhighly variable delay performance.Adamson [Page 8]It is also important to recognize that RF communication cannot beviewed from the IPng designer as simple point-to-point links.Often, highly complex, unique subnetwork protocols are utilized tomeet requirements of survivability, communications performance withlimited bandwidth, anti- jam and/or low probability of detectionrequirements. In some of these cases IPng will be one of severalLayer 3 protocols sharing the subnetwork.It is understood that IPng cannot be the panacea of Layer 3protocols, particularly when it comes to providing special mechanisms to support the endangered-specie low data rate user. However, notethat there are many valuable low data rate applications useful to the tactical user. And low user data rates, coupled with efficientnetworking protocols can allow many more users share limited RFbandwidth. As a result, any mechanisms which facilitate compression of network headers can be considered highly valuable in an IPngcandidate.Security ConsiderationsSecurity issues are discussed throughout this memo.Author’s AddressR. Brian AdamsonCommunication Systems BranchInformation Technology DivisionNaval Research LaboratoryNRL Code 5523Washington, DC 20375EMail: adamson@Adamson [Page 9]。